Programming in Assembly Language
the pRISC-based
Heterogeneous System

pRISC team

(Version 1.0)

This document was prepared with IZTEX 2,

Preamble

Instead of using as accelerator Intel’s multi-core CPU, or the Nvidia’s oximoronic General Purpose
Graphic Processing Unit, GPGPU, or Google’s Tensor Processing Unit, TPU, or Intel’s Video processing
Unit, VPU, or Nvidia’s Data Processing Unit, DPU, let’s see how to use pRISC Heterogeneous System
to obtain and use a library of accelerated functions.

The system is described through a top view of the structure and a detailed view of the architectural re-
sources. The second chapter describes the host and accelerator assembly language, and the third chapter
is dedicated to accelerating computation through the use of libraries of functions defined and optimized
in assembly language.

Contents

1 Heterogeneous System

1.1 Heterogeneous Structure ittt e e e e e
1.2 Heterogeneous Architecture
1.2.1 HostProgram
1.2.2 Accelerator Program

2 Assembly Level

2.1 HostAssembler L
2.1.1 Host’'sISA e
2.1.2 HOST’sLibrary of Function
2.2 Accelerator Assembler L
2.2.1 Controller Assembly
Instruction Formats
Binary Operations e
Unary Operations ottt
222 Array Assembly
Instruction Formats
Binary Operations e
Unary Operations 0 v vt e
2.3 Examples e e e e
2.3.1 The HOST as an array program launcher
232 Vector Operations v v vt e e e e e e e e e e
2.3.3 Predicated operations e e e e
2.3.4 Reductions Operations i e e e e e e
2.3.5 Search-based operations
2.3.6 Shiftregister operations L. ol
3 Library Level
3.1 Designing Library
32 UsingLibrary oL
Bibliography
35

21
21
26

35

CONTENTS

Chapter 1

Heterogeneous System

A heterogeneous computing system consists of a host computer and an accelerator. The host has an
assembly language that contains, in addition to the established instructions of a RISC processor, a li-
brary of kernel functions that call on the hardware structure of the accelerator for efficient calculation of
computationally intensive functions.

1.1 Heterogeneous Structure

The heterogeneity of computing systems became necessary when the distinction between complex and
intensive computing was imposed. Intensive computing involves optimizing execution time, energy con-
sumption and silicon area (price). For this reason, the segregation between the two computing resources
(see Figure 1.1) of a heterogeneous system appeared:

* the host processor, as part of the HOST COMPUTER, for complex computing

* the ACCELERATOR, for intense computing, which works as a hardware accelerated library of
functions.

Heterogenous Computing System

**

|

|

|

|

| ACCELERATOR < > HOST le——>
|

|

|

|

COMPUTER

,,

Figure 1.1: Heterogenous computing system.

The organization of the ACCELERATOR — a pRISC! parallel computing system — part of the het-
erogeneous computing system is represented in Figure 1.2, where:

IpRISC comes form parallel RISC, term coined by Jim Peek, the leader of the master students team who designed the first
RISC chip under the supervision of David Patterson and Carlo Sequin (https://www.computerhistory.org/revolution/
digital-logic/12/286/1593).

2 CHAPTER 1. HETEROGENEOUS SYSTEM
MAP : is a linear array of p cells each containing an execution unit and a local data memory (register
file) of m scalars

DISTRIBUTE : is a log-depth pipelined tree distribution network use to distribute in each clock cycle
a command from CONTROLLER to the cells in MAP

CONTROLLER : is a mono-core processing element with its program and data memory and 10O system
used to communicate with the HOST processor; it issues in each clock cycle a command to be
executed by each active cells in MAP

SCAN/REDUCE : is a log-depth circuit performing scan and reduction functions.

Comand
0g-depth tre€
DISTRIBUTE
Program
YvyYy -~ -~---=--n---- Y Y
A <«—»{ CONTROLLER | Dataln
p-cell array of cells B i ‘ DataOut
Y Y J\ J
YYY Y
SCAN/REDUCE
log-depth network of circuits
ReduceOut

Figure 1.2: pRISC accelerator.

PRISC accelerator is connected to the HOST system on 3 channels:
* Program: used to transfer from the HOST’s processor

— the programs in assembly languages to be loaded in the program memory of CONTROLLER,
usually at the initialization of the system

— the sequence of operations (each having associated in the program memory of CON-
TROLLER a program in assembler) to be performed by ACCELERATOR under the control
of HOST

— the sequence of data transfer orders to manage the flow on the other two channels
* Dataln: is the way used to load data from the HOST’s memory

* DataOut: is the way used to store data in the HOST’s memory

1.2 Heterogeneous Architecture

The instructions executed in the heterogeneous system are grouped into three sets:

hISA : host’s processor instruction set architecture, with two subsets:

1.2. HETEROGENEOUS ARCHITECTURE 3

mainISA : a standard set of RISC-type instructions

libraryISA : a library of specific functions executed by the accelerator
cISA : accelerator’s controller instruction set architecture, with a standard set of RISC-type instructions

alSA : array’s instruction set architecture oriented on vector operations.

Programming the heterogeneous system means to design and run two programs: one on HOST and
another on ACCELERATOR.

1.2.1 Host Program

The file 0_hProgram is part of the project installed on Vivado environment. It instals in accelerator the
program(s) to be executed and starts running them.

/****************************>l<***
File name: 0_hProgram.sv
HOST PROGRAM
>l<********>l<>l<******>l<**/
hVALUE(0,0); // rf[0] <= 0
hPSEND (0 ,0); // send program from hDmem[O] to contrPM[0] and
// and run it from 0 in accelerator

// here comes the code to be executed

hHALT;

1.2.2 Accelerator Program

The file 0_aProgram is part of the project installed on Vivado environment. It is installed when the
system is initialized. The HOST’s program does this by the first two instructions it run.

/3 s ok ook ok ok ok ok oKk oKk ok kR Kk kR o ok ok ok ok o ok ok ok ok ok ok Kk oKk oKk ok ok ook ok o o ok ok ok ok ok ok ok ok Kok
File name: O0_aProgram.sv
ACCELERATOR PROGRAM
**/
cPLOAD(0); ACTIVATE; // load program from 0; all cell active
cNOP; GETIO(1); // discard the 1/0 register of array
cNOP; IXLOAD; // ACC <= [0, I, ..., (p-=-1)]

// here comes the code to be executed;
// for example: ‘include “00_theKernel.sv”

LB(32); cHALT; NOP;
cPRUN(0); NOP; // run from 0

The assembly program for accelerator has two columns: the first for the code executed by the
comtroller, and the second for the code issued by the controller to be executed in the active p cells
of the MAP array.

CHAPTER 1. HETEROGENEOUS SYSTEM

Chapter 2

Assembly Level

The architectural parameters are defined in the file 0_DEFINES. vh whose first lines are as follows:

/* skosk skosk ok skosk sk skoskosk
File name: O_DEFINES . vh

Sk kok ok kokk Rk Rk Rk ok ok ok kk ok k Rk Rk kokk Rk kkokokkokkokkkkowkkkkkkxkxkkkkkkkk %/

‘define n (32) // internal word
‘define p (16) // number of cells in MAP
‘define m (1024) // memory size

2.1 Host Assembler

2.1.1 Host’s ISA
The memory resources of the HOST computer:

reg [31:0] hPmem[0:‘m-1], HOST’s program memory
reg [63:0] hDmem[0: ‘m-1], HOST’s data memory

For the simulation reasons we limit, for simple testes, the size of the memories to m = 1024.
The processor’s variable are:

reg [‘n-1:0] rf[0:31] : register file
reg [$clog2(‘m)-1:0] pc : program counter
reg cr : carry bit

The two instruction formats are:

instr={ opCode[5:0] , // operation code
dest [4:0] , // destination address in register file
left[4:0] , // left operand address in register file
right[4:0] , // right operand address in register file

nu[10:0] } // not used
|
{ opCode[5:0] , // operation code

5

6 CHAPTER 2. ASSEMBLY LEVEL

dest[4:0] , // destination address in register file
left[4:0] , // left operand address in register file
value[15:0] } // signed integer value as right operand

Each assembly-level instruction is made by concatenating the operation micro-code (indicated on the
first column of the following tables) with the micro-code that selects the operation mode (indicated on

the first line in the following table). In use (see Table 2.1), value [15:0] is expanded to its signed 32-bit
form, as follows:

val[31:0] = {{16{valuel[15]}}, value[15:0]}

Table 2.1: Host’s Instruction Set Architecture.

OpCode | Commentaries | Assembly
CONTROL OPERATIONS
nop no operation: pc <= pc+1 hNOP
hjmp relative jump: pc <= pc+val hJMP(Ib)
hjmpz conditioned jump: pc <= (rf[left]==0) ? pc+val : pc+l | hIMPZ(, Ib)
hjmpnz conditioned jump: pc <= (rf[left]==0) ? pc+l : pct+val | hJMPNZ(], Ib)
hajmp absolute jump: pc <= pc + val hAJMP(val)
hhalt halt: pc <= pc RHALT
hpsend send to Map a auto-delimited program hPSEND(d, 1)
hdget get from Map a stream of data hDGET(d, 1, r)
hdsend send to Map a stream of data hDSEND(d, 1, 1)
hintwait | interrupt wait hINTWAIT
hsttcc start host’s cycle counter hSTARTCC
hstpcc stop host’s cycle counter hSTOPCC
FUNCTIONAL OPERATIONS
hadd {cr, rfldest]} <= rf[left] + rfl[right] hADD(, 1, 1)
haddcr {cr, rfldest]l} <= rflleft] + rflright] + cr hADDCR(, 1, r)
hsub {cr, rfldest]} <= rf[left] - rfl[right] hSUB(, 1, r)
hsubcr {cr, rfldest]l} <= rflleft] - rflright] - cr hSUBCR(d, 1, r)
hmult {cr, rfldest]} <= {cr, rflleft] * rflrightl} hMULT(d, 1, 1)
hbwand | {cr, rfldestl} <= {cr, rfl[left] & rflrightl} hAND(, 1, r)
hbwor {cr, rfldest]l} <= {cr, rflleft] | rflrightl} hOR(d, 1, r)
hbwxor {cr, rfldestl} <= {cr, rflleft] A rflrightl} hXOR(d, 1, r)
haddv {cr, rfldest]l} <= rflleft] + val hADDV(d, 1, val)
hadderv | {cr, rfldest]} <= rf[left] + val + cr hADDCRV(, 1, val)
hsubv {cr, rfldest]l} <= rflleft] - val hSUBV(d, 1, val)
hsuberv | {cr, rfldest]} <= rf[left] - val - cr hSUBCRV(d, 1, val)
hmultv {cr, rfldest]l} <= {cr, rflleft] * val} hMULTV(, 1, val)
hbwandv | {cr, rfldest]} <= {cr, rflleft] & val} hANDV(d, 1, val)
hbworv {cr, rfldest]l} <= {cr, rflleft] | val} hORV(d, 1, val)
hbwxorv | {cr, rfldest]} <= {cr, rfl[left] A val} hXORV(d, 1, val)
DATA TRANSFER INSTRUCTIONS
hvalue {cr, rfldest]} <= {cr, {16{vall15]}}, val} hVALUE(d, val)
hinsval {cr, rfldest]l} <= {cr, {rflleft][15:0], val}} hINSVAL(d, val)
hload {cr, rfldest]} <= {cr, hDmem[rf[left]]} hLOAD(d, 1)
hstore hDmem [rf [1eft]] <= rf[right] hSTORE(], r)
hssend accelerator <= {desr,left,value} = scalar hSSEND(val)
hfsend accelerator <= value = function hFSEND(val)

2.2. ACCELERATOR ASSEMBLER

2.1.2 HOST’s Library of Function

The library of functions are defined using two mainISA functions:

* hfsend: to specify the function using a code sent to accelerator

¢ hssend: to send the associated values for a function if needed

In file cgHOST_LIBRARY . sv the way the functions are generated is presented.

Table 2.2: Host’s Function Library Architecture (FLA) defined in file:
00_theKernel.sv.

Assembly Commentaries

hSTART Start controller’s cycle counter

hSTOP Stop controller’s cycle counter

hINTRQ Interrupt request

hVGENX(addr) V(addr) <= IX

hVGENN(addr,val) V(addr) <= [val ... vall]

hSQGENX(addr) Generate square matrix [V[addr]=IX ... V[addr+p-1]=IX+p-1]
hSQGENN(addr) Generate square matrix with V[addr+i]l= [1 i ... i],fori=0,...,p—1
hMAIN(addr,val) Generate diagonal matrix starting with V[addr] with value val
hPRANDOM(addr) | Generate pseudo-random square matrix starting with V[addr]
hMSEND(addr,size) | Send square matrix of size starting from V[addr]

hMGET((addr,size) Get square matrix of size and load from V [addr]

hSQMADD(,L,r) Add square matrices: M[d] <= M[1] + M[r]

hSQMVMULT(d,L,r) | Multiply square matrices with vector: V[d] <= M[1] * V[r]
hSQMMULT(d,1,r) Square matrices multiply: M[d] <= M[1] * M[r]

hSQMMAC(d,Lr) Square matrices multiply and add: M[d] <= M[d] + (M[1] * M[r])
hTRANS(d,]) Transpose square matrix: M[d] <= trans(M[1])

In Table 2.2, M[v] represents a p X p square matrix with the first vector V[a] and the last vector

V[a+p-1].

2.2 Accelerator Assembler

While the register file of the host processor is a two output port memory, in accelerator is used a register

file with only one output port. The processing is accumulator based with a big sized register file.
The memory resources of the accelerator are:

reg [63:0]
reg [31:0]

contrPM[0: ‘m-1] // controller’s program memory
contrDM[0: ‘m-1] // controller’s data memory (register file)

reg [‘n-1:0] arrayDM[0:‘m-1] // each cell’s data memory (register file)

The variable seen by the instruction set are:

FOR CONTROLLER:

reg [$clog2(‘m)-1:0] pc // program counter
reg [31:0] acc // controller’s accumuulator
reg cr // controller’s carry

reg[$clog2(‘m)-1:0]

reg[31:0]

addrReg // controller’s address register
mem[0:m-1] // controller’s data memory

val
addr

coOp
FOR MAP
reg
reg
regl
regl
regl
regl

val
addr

b[il

coOp

CHAPTER 2. ASSEMBLY LEVEL

= {{8{value[23]}},value} // used as operand
= value[$clog2(‘m)-1:0] // used as address
= redOut // co-operand: reduction network output
ARRAY IN EACH CELL:
[31:0] acc[0:p-1] // array’s accumuulator
cr[0:p-1] // array’s carry
$clog2(m)-1:0] addrReglO0:p-1] // array’s address register
n-1:0] mem [0:m] // array’s data memory
$clog2(p)-1] act[0:p-1] // activate counter
n-1:0] sr[0:p-1] // serial register
= {{8{value[23]}},value} // used as operand
= value[$clog2(‘m)-1:0] // used as address
=(act==0)71:0
= acc // co-operand: controller’s accumulator

2.2.1 Controller Assembly

Instruction Formats

The two instruction formats are:

inst

r = {cOpcodeBinary[4:0] , // operation code for binary operations
cMode[2:0] , // second operand selection mode
value[23:0] } // signed integer value

|
{8°b11111_000 R

cOpcodeUnary[4:0] , // operation code
value[18:0] } // integer to par

Binary Operations

for unary operations
ameterize operations

Because the architecture is accumulator-based, the left operand is the accumulator, acc, and the second
operand, for the binary operations (BOP), is established according to the following selection modes:

imm :

dir

rel

rei

cim :

val

acc <= acc BOP val

: mem[addr]

acc <= acc BOP mem[addr]

: mem[addrReg+addr]

acc <= acc BOP mem[addrReg+addr]

: mem[addrReg+addr]; addrReg = addrReg+addr
acc <= acc BOP mem[addrReg+addr];

co0p = redOut

acc <= acc BOP redOut

2.2. ACCELERATOR ASSEMBLER 9

Each binary assembly-level instruction is made by concatenating the 5-bit operation micro-code
(indicated on the first column of Table 2.3 and described in the file 0_DEFINES. sv) with the 3-bit micro-

code that selects the operation mode (indicated on the first line in the same table).

Table 2.3: Instructions with operands from the controller’s Instruction

Set Architecture.
cOpcodeBinary\cMode | imm dir rel rei cim
cadd cVADD(s) cADD(s) cRADD(s) cRIADD(s) CADD
caddc cVADDC(s) cADDC(s) | cRADDC(s) | cRIADDC(s) | CADDC
csub cVSUB(s) cSUB(s) cRSUB(s) cRISUB(s) CSUB
crsub cVRSUB(s) cRSUB(s) cRRSUB(s) cRIRSUB(s) CRSUB
csubc cVSUBC(s) cSUBC(s) cRSUBC(s) cRISUBC(s) CSUBC
crsubc cVRSUBC(s) | cRSUBC(s) | cRRSUBC(s) | cRIRSUBC(s) | CRSUBC
cmult cVMULT(s) cMULT(s) cRMULT(s) cRIMULT(s) CMULT
cbwand cVANDC(s) cAND(s) cRAND(s) cRIAND(s) CAND
cbwor cVOR(s) cOR(s) cROR(s) cRIOR(s) COR
cbwxor cVXOR(s) cXOR(s) cRXOR(s) cRIXOR(s) CXOR
cload cVLOADC(s) cLOAD(s) cRLOAD(s) cRILOADC(s) CLOAD
cstore c¢STORE(s) | cRSTORE(s) | cRISTORE(s) | CCSTORE

For example, the addition can be performed in 5 different modes, as follows:

e cVADD(35) means acc <= acc + 35

e cADD(12) means acc <= acc + mem[12]

e cRADD(12) means acc <=
e cRIADD(12) means acc <=

e cCADD(12) means acc <=

Unary Operations

The unary operations are defined for instr([31:24] = 8°b11111.000 = {‘contr, ‘imm}, by

acc + mem[addr + 12]

acc + redOut

instr [23:0] (see Instruction Formats in 2.2.1).

acc + mem[addr + 12];addr <= addr + 12

Table 2.4: Sequencer’s Instruction Set Architecture with no operand.

{cOpcodeUnary,value[2:0]} | Commentaries Assembly
{cshift,4} Shift right one bit position cSHR
{cshift,5} Shift right arithmetic one bit position cASHR
{cshift,6} Shift right one bit position with carry c¢SHRC
{cshift,1} Shift left one bit position cSHL
{cshift,2} Shift left one bit position with carry c¢SHLC
{cshift,7} Rotate right one bit position cROTR
{cshift,3} Rotate left one bit position cROTL
{gshift,0} 1-position global right shift c¢GRSHIFT
{gshift,1} 1-position global left shift cGLSHIFT
{gshift,5} Reduction output insert right cRREDINS
{gshift,4} Reduction output insert left cLREDINS
{gshift,2} 1-position global right rotate cGRROTATE

10

CHAPTER 2. ASSEMBLY LEVEL

{cOpcodeUnary,value[2:0]} | Commentaries Assembly
{gshift,3} 1-position global left rotate cGLROTATE
nop No operation cNOP

jmp Relative jump to label s cIMP(s)
ajmp Absolute jump to label s cAIMP(s)
brz Jump to label s if acc=0 cBRZ(s)

brnz Jump to label s if acc!=0 cBRNZ(s)
brzdec Jump to label s if acc=0; acc<=acc-1 cBRZDEC(s)
brnzdec Jump to label s if acc!=0; acc<=acc-1 | cBRNZDEC(s)
halt pc <= pc cHALT
cinsval acc <= {(acc << 8), value[7:0]} | cINSVAL
crela addr <= acc cADDRLD
start Start cycle counter cSTART

stop Stop cycle counter cSTOP

2.2.2 Array Assembly
Instruction Formats

The two instruction formats are:
instr = {opcodeBinary[4:0]

mode[2:0]
value[23:0]
|

{8°b11111_000
opcodeUnary[4:0]
value[18:0]

Because the architecture is accumulator-based, the left operand in each cell is the accumulator, acc [i],
and the second operand, for the binary operations (BOP), is established according to the following selec-

tion modes:

imm : val

, // operation code for binary operations
, // second operand selection mode
} // signed integer value

3

s 1/
Y //

acc[i] <= acc[i] BOP val

operation code for unary operations
integer to parameterize operations

acc[i] <= acc[i] BOP mem[i] [addrReg[i]+addr]
addrReg[i]+addr
accl[i] <= acc[i] BOP mem[i] [addrReg[i]+addr]

acc[i] <= acc[i] BOP mem[i] [addrRegl[i]+acc]

dir : mem[i] [addr]
acc[i] <= acc[i] BOP mem[i] [addr]
rel : mem[i] [addrReg[i]+addr]
rei : mem[i] [addrRegl[i]+addr]; addrRegli] =
cim : co0p = acc
acc[i] <= acc[i] BOP acc
cdr : mem[i] [coOp]
acc[i] <= acc[i] BOP mem[i] [acc]
crl : mem[i] [addrReg[i]+co0p]
cri : mem[i] [addrReg[i]+coOp]; addrRegl[i] =

addrReg[i]+acc
acc[i] <= acc[i] BOP mem[i] [addrRegl[i]+acc]

2.2. ACCELERATOR ASSEMBLER 11

Binary Operations

Each binary assembly-level instruction is made by concatenating the 5-bit operation micro-code (indi-
cated on the first column of Table 2.5 and described in the file 0_DEFINES. sv) with the 3-bit micro-code
that selects the operation mode (indicated on the first line in the same table).

Table 2.5: Instructions with operands from the Instruction Set Architecture.

imm dir rel rei cim cdr crl cri
add VADD(s) ADD(s) RADD(s) RIADDC(s) CADD CAADD CRADD CRIADD
addc VADDC(s) ADDC(s) RADDC(s) RIADDC(s) CADDC CAADDC CRADDC CRIADDC
sub VSUB(s) SUB(s) RSUB(s) RISUB(s) CSUB CASUB CRSUB CRISUB
rsub VRSUB(s) RSUB(s) RRSUB(s) RIRSUB(s) CRSUB CARSUB CRRSUB CIRRSUB
subc VSUBC(s) SUBC(s) RSUBC(s) RISUBC(s) CSUBC CASUBC CRSUBC CRISUBC
rsubc VRSUBC(s) RSUBC(s) RRSUBC(s) | RIRSUBC(s) CRSUBC CARSUBC | CRRSUBC | CRIRSUBC
mult VMULT(s) MULT(s) RMULT(s) RIMULT(s) CMULT CAMULT CRMULT CRIMULT
bwand VAND(s) AND(s) RAND(s) RIAND(s) CAND CAAND CRAND CRIAND
bwor VOR(s) OR(s) ROR(s) RIOR(s) COR CAOR CROR CRIOR
bwxor VXOR(s) XOR(s) RXOR(s) RIXOR(s) CXOR CAXOR CRXOR CRIXOR
load VLOAD(s) LOAD(s) RLOAD(s) RILOAD(s) CLOAD CALOAD CRLOAD CRILOAD
store STORE(s) RSTORE(s) | RISTORE(s) CSTORE CRSTORE | CRISTORE
getio GETIO(s) RIGETIO(s)
sendio SENDIO(s) RISENDIO(s)
search VSEARCH(s) SEARCH
csearch VCSEARCH(s) CSEARCH
insert VINSERT(s) INSERT

For example, the multiplication can be performed in 8 different modes, as follows:

e VMULT(35) means acc[i] <= acc[i] * 35,fori = 0,1,...,p-1

* MULT(12) means acc[i] <= acc[i] * mem[i][12],fori = 0,1,...,p-1

* RMULT(12) means acc[i] <= acc[i] * mem[i] [addr[i] + 12],fori = 0,1,...,p-1

e RIMULT(12) means acc[i] <= acc[i] * mem[i] [addr[i] + 12]; addr[i] <= addr[il
+ 12, fori = 0,1,...,p-1

* CMULT means acc[i] <= acc[i] * acc,fori = 0,1,...,p-1
* CAMULT means acc[i] <= acc[i] * mem[i] [acc],fori = 0,1,...,p-1
e CRMULT means acc[i] <= acc[i] * mem[i] [addr[i] + acc]l,fori = 0,1,...,p-1
e CRIMULT means acc[i] <= acc[i] * mem[i] [addr([i] + acc]; addr[i] <= addr[i] +
acc,fori = 0,1,...,p-1
Unary Operations

The unary operations are defined for instr[31:24] = 8’b11111.000 = {‘contr, ‘imm}, by
instr[23:0] (see Instruction Formats in 2.2.2).

Table 2.6: Map’s Instruction Set Architecture with no operand.

{cOpcode, value[2:0]} | Commentaries Assembly
{shift,4} Shift right one bit position SHR
{shift,5} Shift right arithmetic one bit position ASHR

12

CHAPTER 2. ASSEMBLY LEVEL

{cOpcode, value[2:0]} | Commentaries Assembly

{shift,6} Shift right one bit position with carry SHRC

{shift,1} Shift left one bit position SHL

{shift,2} Shift left one bit position with carry SHLC

{shift,7} Rotate right one bit position ROTR

{shift,3} Rotate left one bit position ROTL

ixload accl[i] <=1 IXLOAD

getsr acc[i] <= serialRegl[i] GETSR

sendsr serialReg[i] <= acc[i] SENDSR
{where,0} b[i] <= (b[i] & acc[i]l=0) ? 1 : O WHEREZERO
{where,1} bli] <= (b[i] & carry[il) ? 1 : 0 WHERECARRY
{where,2} b[i]l <= (b[i] & acc[il[31]=1) 7 1 : 0 WHERENEGATIVE
{where,3} b[i] <=i=0 ? 0 : (b[i-1] ? 1 : 0) WHEREPREVACT
{where 4} b[i] <= (b[i] & first 7 1 : 0) WHEREFIRST
{where,5} b[i] <= (b[i] & next ? 1 : 0) WHERENEXT
{where,6} b[i] <= (b[i] & !(first | next)) ? 1 : O | WHEREPREV
{where,8} bli] <= (b[i] & !'(acc[i]=0)) ? 1 : O WHERENZERO
{where,9} b[i] <= (b[i] & !carry[il) ? 1 : O WHERENCARRY
{where, 10} bl[i] <= (b[i] & !(acc[i]l[31]=1)) ? 1 : O | WHERENNEGATIVE
{where,11} b[i] <= i=0 7 1 : (bl[i-11 7 0 : 1) WHERENPREVACT
{where,12} bl[i] <= (b[i] & !'first) ? 1 : O WHERENFIRST
{where,13} bl[i]l <= (b[i] & 'mext) ? 1 : O WHERENNEXT
{where, 14} b[i] <= (b[i] & (first | next)) ? 1 : O | WHERENPREV
elsew Reapply the last where with the negated condition ELSEWHERE
back Redo b[i] affected by the most recently active where | ENDWHERE

selsh b[i] <= i=0 ? 0 : b[i-1] SELSHIFT

allact bl[i] <=1 ACTIVATE
{setred,0} Set the reduction function on addition REDADD
{setred,3} Set the reduction function on minimum REDMIN
{setred,2} Set the reduction function on maximum REDMAX
{setred,1} Set the reduction function on logical OR REDOR

delete DELETE

cinsval accl[i] <= {(acc[i] << 8), value[7:0]} INSVAL

crela addr[i] <= acc[i] ADDRLD

2.3 Examples

2.3.1 The HOST as an array program launcher

Example 2.1 If we only want to run a single program (for testing), then we will use the host only to
load and run the program written for the accelerator. The file 0_hProgram.sv will have the following

minimal form:

/s s ot s st s st s st s s sk s s s sk s sl s sl sk st sk R ool s ot s R s o s ok s sk s sk s st sl st ke s sl s i sl oSl sl sk R s R R SR sk sk ok ok ok
File name: O0_hProgram.sv

HOST PROGRAM

kkck Rk Rk ok Rk Rk Rk Rk ok kok Rk Rk Rk Rk ko kk Rk wk Rk ko kkkk Rk kk Rk ok ok ok kkwkwk Rk kkkkkwkwkkk k% %/

hVALUE(0,0); //

hPSEND (0 ,0);
// no host program

hHALT;

rf[0] <= 0

// send program from 0 and run

it from 0

2.3. EXAMPLES 13

The file 0_aProgram. sv will contain the program we want to run, with the prefix and suffix previously
described. Let’s exemplify it with the program that loads into the vector V[2] the index vector to which
the constant 1 is added.

/*********>l<********************************>l<*****************************

File name: 0_aProgram.sv

Description: load in V[2] the index vector incremented with 5

****>l<************>l<************>l<>l<**/
cPLOAD(0); ACTIVATE; // load program from 0; all cell active
cNOP; GETIO(1); // discard the 1/0 register of array
cNOP; IXLOAD; // ACC <= [0 1 ... (p-1)]

// the program
c¢cVLOAD(77); VADD(5);
c¢STORE (3); STORE(2);

// end program

LB(32); cHALT,; NOP;

cPRUN(0); NOP; // run from 0

The simulation program, O_simulation.sv, first use the previous two programs running
0_hostCodeGenerator.sv and 0_accCodeGenerator.sv generating the following code for the host
in host’s program memory:

hPmem[0] = 10100000000000000000000000000000

hPmem[1] = 10000000000000000000000000000000
hPmem[2] = 00100100000000000000000000000000
hPmem[3] = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

and the following code for the accelerator in host’s data memory:

hDmem [0] = 1111100000000000000000000000000011111000011000000000000000000000
hDmem [1] = 0110000100000000000000000000000100000000000000000000000000000000
hDmem [2] = 1111100001001000
hDmem [3] = 0000000000000000000000000000010101000000000000000000000001001101
hDmem [4] = 0100100100000000000000000000001001001001000000000000000000000011
hDmem [5] = 0000000000000000000000000000000011111000001110000000000000000000
hDmem [6] = 0000000000000000000000000000000011111000011010000000000000000000
hDmem [7] = XX

The simulator displays the two programs, the initializes the simulation generating the reset signal for
4 time units. The host sends the program from its data memory in the program memory of the controller
using the instruction hPSEND(0,0). Because the program ends with the instruction cPRUN(0) ; NOP;

its execution starts from the address 0 in controller’s program memory.
The result provided by the simulation’s monitor running on the Vivado environment is:

t=0 pc=x cAcc=x cMEM=[x, x, x, x, x, x, X, x, x] ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=1 pc=0 cAcc=x cMEM=[x, x, x, x, x, X, X, x, x] ACC=[x, x, x, x, x, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=27 pc=1 cAcc=x cMEM=[x, x, x, x, X, X, X, X, x] ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=29 pc=2 cAcc=x cMEM=[x, x, x, x, %, X, X, x, x] ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=31 pc=3 cAcc=x cMEM=[x, x, x, x, %, X, X, x, x] ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=33 pc=4 cAcc=x cMEM=[x, x, x, x, %, x, X, x, x] ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=35 pc=b cAcc=x cMEM=[x, x, x, x, X, X, X, x, x] ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=37 pc=b cAcc=77 cMEM=[x, x, x, x, X, X, X, x, x] ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=39 pc=b cAcc=77 cMEM=[x, x, x, 77, x, x, X, x, x] ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=41 pc=0 cAcc=77 cMEM=[x, x, x, 77, x, x, X, x, x] ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=43 pc=0 cAcc=77 cMEM=[x, x, x, 77, x, x, X, x, x] AcCc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] B = [1111111111111111]
t=45 pc=0 cAcc=77 cMEM=[x, x, x, 77, x, x, x, x, x] AcCC=[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] B = [1111111111111111]

14 CHAPTER 2. ASSEMBLY LEVEL

while the display provides, at the end of simulation:

vect[0] = [x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]J
vect[1] = [x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, XJ
vect[2] = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
vect[3] = [x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, XJ

Note: in this example and in the followings, the results provided by the monitor and the display of
the simulator program, 0_simulator.sv are edited to illustrate only the significant behavior for the
example run.

o

2.3.2 Vector operations

Example 2.2 7o raise the index vector to the fourth power and store it in V[1], we write the following
program:

/**
File name: 0_aProgram.sv
Description: V[I] <= IX"4

kkk Rk Rk kR kR kR Rk kokkkkx kR kR ok kokkkkwk Rk kokkkkkkw kR ok kkkkkwkwk ko kkkkkwkwkkk k% %/

cPLOAD(0); ACTIVATE;
cNOP; GETIO(1);
cNOP; IXLOAD;
// the program
cVLOAD(2); STORE (0);
cNOP; NOP; // because the lack of forwarding
LB(13); cBRNZDEC(13); MULT(0);
cNOP; STORE(1);
// end program
LB(32); cHALT; NOP;
cPRUN(0); NOP;

The result is:

0 cAcc=x ACC=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, X]
=1 cAcc=x ACC=[x, x, %X, X, X, X, X, X, X, X, X, X, X, X, X, XJ

11 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]

=29 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, XJ]
t=41 cAcc=1 ACC=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=43 cAcc=1 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=45 cAcc=0 ACC=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=47 cAcc=-1 ACC=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
t=49 cAcc=-1 ACC=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
t=51 cAcc=-1 ACC=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
t=63 cAcc=-1 ACC=[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225]
t=55 cAcc=-1 ACC=[0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375]
t=57 cAcc=-1 ACC=[0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625]

while the display provides, at the end of simulation:

vect([0] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[1] = [0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625]
vect[2] = [x, x, x, x, x, X, X, X, X, X, X, X, X, X, X, X]

<o

2.3. EXAMPLES 15

2.3.3 Predicated operations

Example 2.3 The effect of the predicated operation is illustrated by the following program which multi-
plies by 2 the even indexes and with 3 the odd indexes.

/* skoskeoske sk sk sk sk skoskoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk
File name: 0_aProgram.sv

Description: accl[i] <= (i = 2j) 2?2 2i : 3i, for j = 0,1,...,p/2-1
**/
cPLOAD(0); ACTIVATE;
cNOP; GETIO(1);
cNOP; IXLOAD;
// the program
cNOP; VAND(1);
cNOP; WHEREZERO
cNOP; IXLOAD;
cNOP; VMULT(2);
cNOP; ELSEWHERE;
cNOP; IXLOAD;
cNOP; VMULT (3);
cNOP; ENDWHERE;
cNOP; STORE(1);
// end program
LB(32); cHALT,; NOP;
cPRUN(0); NOP;

The result is:

t=0 pc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=1 pc=0 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=41 pc=1 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=43 pc=2 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=45 pc=3 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=47 pc=4 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=49 pc=5 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=61 pc=6 ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=63 pc=7 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=55 pc=8 ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=57 pc=9 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] B = [1111111111111111]
t=59 pc=10 AcCC=[0, 1, O, 1, O, 1, O, 1, O, 1, O, 1, O, 1, O, 1] B = [1111111111111111]
t=61 pc=11 Acc=[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] B = [1010101010101010]
t=63 pc=12 AcC=[0, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1, 12, 1, 14, 1] B = [1010101010101010]
t=65 pc=12 ACC=[0, 1, 4, 1, 8, 1, 12, 1, 16, 1, 20, 1, 24, 1, 28, 1] B = [1010101010101010]
t=67 pc=12 ACC=[0, 1, 4, 1, 8, 1, 12, 1, 16, 1, 20, 1, 24, 1, 28, 1] B = [0101010101010101]
t=69 pc=0 Acc=[0, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15] B = [0101010101010101]
t=71 pc=0 ACC=[0, 3, 4, 9, 8, 15, 12, 21, 16, 27, 20, 33, 24, 39, 28, 45] B = [0101010101010101]
t=73 pc=0 AccC=[0, 3, 4, 9, 8, 15, 12, 21, 16, 27, 20, 33, 24, 39, 28, 45] B = [1111111111111111]

while the display provides, at the end of simulation:

vect[0] = [x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]J
vect[1] = [0, 3, 4, 9, 8, 15, 12, 21, 16, 27, 20, 33, 24, 39, 28, 45]
vect[2] = [x, x, x, %X, X, X, X, X, X, X, X, X, X, X, X, XJ

<o

16 CHAPTER 2. ASSEMBLY LEVEL

2.3.4 Reductions operations

Example 2.4 The effect of the reduction network is illustrated by the following program which, starting
from the index vector incremented with 1, loads the sum of the components, Boolean OR, the minimum
and the maximum values into the controller accumulator one by one.

/*********>l<>I<>I<*****>I<***********>l<>I<***
File name: 0_aProgram.sv
Description: ACC <= redADD (IX+1); redOR((IX+1); redMIN(IX+1);redMAX(IX+1)

cPLOAD(0); ACTIVATE;
cNOP; GETIO(1);
cNOP; IXLOAD;
// the program
cNOP; VADD(1);
cNOP; REDADD;
cNOP; REDOR ;
cNOP; REDMIN ;
cNOP; REDMAX;
cNOP; NOP;
cNOP; NOP;
cCLOAD; NOP;
cCLOAD; NOP;
c¢CLOAD; NOP;
cCLOAD; NOP;
cCLOAD; NOP;
cCLOAD; NOP;
cCLOAD; NOP;
// end program

LB(32); cHALT,; NOP;

cPRUN(0); NOP;

The result is:

t=1 pc=0 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=561 pc=1 cAcc=x ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=53 pc=2 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=65 pc=3 cAcc=x ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=57 pc=4 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=59 pc=5 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=61 pc=6 cAcc=x ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=63 pc=7 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]J B = [1111111111111111]
t=65 pc=8 cAcc=x ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=67 pc=9 cAcc=x ACC=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] B = [1111111111111111]
£=69 pc=10 cAcc=x ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=71 pc=11 cAcc=x AcC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=73 pc=12 chcc=x ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=75 pc=13 cAcc=x ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=77 pc=14 cAcc=x ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=79 pc=15 cAcc=x ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=81 pc=16 cAcc=136 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=83 pc=17 cAcc=31 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=85 pc=17 cAcc=1 AcC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=87 pc=17 chcc=16 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=89 pc=0 cAcc=16 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]

<o

2.3. EXAMPLES 17

Example 2.5 Example 2.4 is repeated in the following program which uses a wait loop to take into
account the latencies introduced by the distribution network and by the reduction network.

/*********>l<********************************>l<*****************************
File name: 0_aProgram.sv
Description: ACC <= redADD (IX+1); redOR((IX+1); redMIN(IX+1);redMAX(IX+1)

kkkkckkkk Rk Rk Rk Rk kkok Rk Rk Rk Rk kkok Rk kk Rk kkkkk Rk ok kR ok kkokkkwkwkkkkkkkkwk kg Rk k% %/

cPLOAD (0); ACTIVATE;
cNOP; GETIO(1);
cNOP; IXLOAD;
// the program
cNOP; VADD(1);
cNOP; REDADD
cNOP; REDOR ;
cNOP; REDMIN;
cVLOAD($clog2 (‘p)); REDMAX;
LB(5); c¢BRNZDEC(5); NOP; // latency loop
cCLOAD; NOP;
cCLOAD; NOP;
c¢CLOAD; NOP;
cCLOAD; NOP;
// end program
LB(32); cHALT,; NOP;
cPRUN(0); NOP;

The result is:

t=1 pc=0 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=43 pc=1 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=45 pc=2 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=47 pc=3 cAcc=x ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=49 pc=4 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=561 pc=b cAcc=x ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=53 pc=6 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=65 pc=7 cAcc=x ACC=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=57 pc=8 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=59 pc=8 chAcc=x Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16] B = [1111111111111111]
t=61 pc=8 cAcc=4 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=63 pc=8 cAcc=3 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=65 pc=8 cAcc=2 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=67 pc=9 cAcc=1 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=69 pc=10 cAcc=0 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=71 pc=11 cAcc=-1 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=73 pc=12 chcc=136 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=75 pc=13 cAcc=31 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=77 pc=13 cAcc=1 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=79 pc=13 cAcc=16 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]
t=81 pc=0 cAcc=16 ACC=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] B = [1111111111111111]

<O

2.3.5 Search-based operations

Example 2.6 Test the effect of the instruction WHEREFIRST (select the first active cell), VSEARCH (val)
(keep active all the cells where acc[i] = val) and VCSEARCH(val) (keep active all the cells where
acc[i] = val ifitis preceded by an active cell).

18

CHAPTER 2. ASSEMBLY LEVEL

J% kkkckkckkkkkk Rk Rk kkokkk Rk Rk Rk ok kokkkkk Rk Rk ok ok ok kkkk Rk kk ok kokkkwkwkk ok kk ok kkwk kg ok k%

File name: 0_aProgram.sv
Description :

Skokokk Rk kokk Rk Rk Rk kok sk ok kR kR kR okokkokkkk ok k ok okkkok ok kkkkxkkokkokkkkkkwkkk Rk ok ok kkkxk %/

cPLOAD(0); ACTIVATE;
cNOP; GETIO(1);
cNOP; IXLOAD;
// the program
¢cVLOAD(8); VADD(-5);
cNOP; WHERENCARRY ;
cNOP; NOP;
cNOP; WHEREFIRST ;
cNOP; VADD(20);
cNOP; ACTIVATE;
cNOP; NOP;
cNOP; VSEARCH (7);
cNOP; VCSEARCH (8);
cNOP; VADD(10);
// end program
LB(32); cHALT; NOP;
cPRUN(0); NOP;
The result is:
t=0 pc=x cAcc=x ACC=[x, x, X, X, X, X, X, X, X, X,
t=1 pc=0 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X,
t=43 pc=1 cAcc=x ACC=[x, x, %, X, X, X, X, X, X, X,
t=45 pc=2 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X,
t=47 pc=3 cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X,
t=49 pc=4 cAcc=x ACC=[x, x, X, X, X, X, X, X, X, X,
t=61 pc=b cAcc=x ACC=[x, x, x, X, X, X, X, X, X, X,
t=53 pc=6 cAcc=8 ACC=[x, x, X, X, X, X, X, X, X, X,
t=55 pc=7 cAcc=8 ACC=[x, x, X, X, X, X, X, X, X, X,
t=57 pc=8 cAcc=8 ACC=[x, x, X, X, X, X, X, X, X, X,
t=59 pc=9 cAcc=8 ACC=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
t=61 pc=10 cAcc=8 ACC=[-5, -2, -3, -2, -1, 0, 1, 2, 3
t=63 pc=11 cAcc=8 ACC=[-5, -2, -3, -2, -1, 0, 1, 2, 3
t=65 pc=12 cAcc=8 ACC=[-5, -2, -3, -2, -1, 0, 1, 2, 3
t=67 pc=13 cAcc=8 ACC=[-5, -2, -3, -2, -1, 0, 1, 2, 3
t=69 pc=13 cAcc=8 ACC=[-5, -2, -3, -2, -1, 20, 1, 2,
t=71 pc=13 cAcc=8 ACC=[-5, -2, -3, -2, -1, 20, 1, 2,
t=73 pc=0 cAcc=8 ACC=[-5, -2, -3, -2, -1, 20, 1, 2,
t=75 pc=0 cAcc=8 ACC=[-5, -2, -3, -2, -1, 20, 1, 2,
t=77 pc=0 cAcc=8 ACC=[-5, -2, -3, -2, -1, 20, 1, 2,
t=79 pc=0 cAcc=8 ACC=[-5, -2, -3, -2, -1, 20, 1, 2,
<O

2.3.6 Shift register operations

//

//
//

//
//
//

//
//
//

load index

subtract 5 form each cell
select where is no carry
keep selected the first

add 20

activate all cells

search where acc = 7

select where the next is 8
add 10 in the selected cell
X, X, XxJ B = [XXXXXXXXXXXXXXXX]
X, X, xJ] B = [XXXXXXXXXXXXXXXX]
X, X, XJ B = [XXXXXXXXXXXXXXXX]
X, X, XJ] B = [XXXXXXXXXXXXXXXX]
X, X, xJ B = [XXXXXXXXXXXXXXXX]
X, X, XJ] B = [XXXXXXXXXXXXXXXX]
x, X, xJ B = [XXXXXXXXXXXXXXXX]
X, X, xJ B = [XXXXXXXXXXXXXXXX]
x, x, x] B = [1111111111111111]
X, X, XJ] B = [1111111111111111]
2, 13, 14, 15] B = [1111111111111111]
, 7, 8, 9, 10] B = [1111111111111111]
, 7, 8, 9, 10] B = [0000011111111111]
, 7, 8, 9, 10] B = [0000011111111111]
, 7, 8, 9, 10] B = [0000010000000000]
6, 7, 8, 9, 10] B = [0000010000000000]
6, 7, 8, 9, 10] B = [1111111111111111]
6, 7,8, 9, 101 B = [1111111111111111]
6, 7, 8, 9, 10] B = [0000000000001000]
6, 7, 8, 9, 101 B = [0000000000000100]
6, 7, 18, 9, 101 B = [0000000000000100]

Example 2.7 Test the global shift and rotate instructions bi loading the serial register with the index

vector.

/% ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok sk ok R sk ok kR ok ok ok ok ok

File name: 0_aProgram.sv

2.3. EXAMPLES 19

Description :
sk ko ok o R Rk R R o R R R R R R Rk R KR R R ok R kR o R ok R R o R R R R R R Rk R kR Rk R kR ok

cPLOAD(0); ACTIVATE,;
cNOP; GETIO(1);
cNOP; IXLOAD;

// the program
cNOP; SENDSR ;
cGRROTATE ; NOP; // global right rotate
cGRROTATE ; NOP;
¢GLROTATE ; NOP; // global left rotate
cGLROTATE; NOP;
cGRSHIFT ; NOP; // global right shift
cGRSHIFT ; NOP;
cGLSHIFT; NOP; // global left shift
cGLSHIFT ; NOP;

// end program

LB(32); cHALT,; NOP;

cPRUN(0); NOP;

The result is:

t=1 pc=0 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, %, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=41 pc=1 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X]
t=43 pc=2 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X]
t=45 pc=3 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=47 pc=4 ACC=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=49 pc=5 ACC=[x, x, %, X, X, X, X, X, X, X, X, X, X, X, X, XJ SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=51 pc=6 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, XJ SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=53 pc=7 ACC=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=55 pc=8 ACC=[x, x, %, X, X, X, X, X, X, X, X, X, X, X, X, XJ SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=57 pc=9 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=59 pc=10 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
t=61 pc=11 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
t=63 pc=12 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
t=65 pc=12 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[15, O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
t=67 pc=12 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
t=69 pc=0 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[0, O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
t=71 pc=0 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[0, O, O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
£=73 pc=0 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0]
£=75 pc=0 Acc=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 0]

o

Example 2.8 Accumulate the index vector with its value and its value globally shifted right three times.

/**
File name: 0_aProgram.sv

Description:
**/

cPLOAD (0); ACTIVATE;
cNOP; GETIO (1);
cNOP; IXLOAD;
// the program

cNOP; SENDSR ;
cGRSHIFT; SRADD;
cGRSHIFT; SRADD;
cGRSHIFT; SRADD;
cGRSHIFT ; SRADD;

// end program

20 CHAPTER 2. ASSEMBLY LEVEL

LB(32); cHALT; NOP;
cPRUN(0); NOP;

The result is:

t=0 pc=x ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=1 pc=0 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, XJ]
t=33 pc=1 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, XJ]
t=35 pc=2 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, XJ]
t=37 pc=3 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, XJ]
t=39 pc=4 ACC=[x, x, %, X, X, X, X, X, X, X, X, X, X, X, X, XJ SR=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, XJ]
t=41 pc=b5 ACC=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, XJ]
t=43 pc=6 ACC=[x, x, %, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=45 pc=7 ACC=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, X, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=47 pc=8 ACC=[x, x, %, X, X, X, X, X, X, X, X, X, X, X, X, X] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=49 pc=8 ACC=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
t=51 pc=8 ACC=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] SrR=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

£=53 pc=0 ACC=[0,

1

2 , 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30] SR=[0,
t=55 pc=0 AcC=[0, 2,

2

2

[¢] , 9, 10, 11, 12, 13, 14]
11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44] SR=[0, O,

[¢]

[¢]

, 9, 10, 11, 12, 13]
, 7, 8,9, 10, 11, 12]
, 6, 7,8, 9, 10, 11]

(SIS RN
© © 0D W

o RN W
=N WS
N W o

t=57 pc=0 ACC=[0,
t=59 pc=0 ACC=[0,

, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57] SR=[0,
, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69] SR=[0,

oo~ ®
©

o

Example 2.9 Teste the insert and delete instructions performed on the content of the shift register (SR).

/* skoske sk sk sk sk sk sk skoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk
File name: 0_aProgram.sv

Description :

sk sk sk sk sk sk sk sk sk skosk ok skosk ok sk sk sk sk sk */

cPLOAD (0); ACTIVATE;

cNOP; GETIO(1);

cNOP; IXLOAD;

// the program

ccNOP; SENDSR ; // load SR with index vector

cNOP; VSEARCH (8); // select the cell with acc[i]=8

cNOP; NOP;

cNOP; DELETE; // delete RS in the selected cell

cNOP; DELETE;

cVLOAD(55); INSERT (66); // insert value 66

cNOP; CINSERT; // insert acc=55

// end program
LB(32); cHALT; NOP;
cPRUN (0); NOP;
The result is:

t=0 pc=x cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=1 pc=0 cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, x, x, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=37 pc=1 cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=39 pc=2 cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=41 pc=3 cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=43 pc=4 cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=45 pc=b cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=47 pc=6 cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [XXXXXXXXXXXXXXXX]
t=49 pc=7 cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=51 pc=8 cAcc=x ACC=[x, x, x, ... x, x, x] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=53 pc=9 cAcc=x ACC=[0, 1, 2, ... 13, 14, 15] SR=[x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X] B = [1111111111111111]
t=55 pc=10 cAcc=x ACC=[0, 1, 2, 13, 14, 15] Ssr=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] B = [1111111111111111]
t=57 pc=10 cAcc=55 ACC=[0, 1, 2, 13, 14, 15] Ssr=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] B = [0000000010000000]
t=61 pc=0 cAcc=55 ACC=[0, 1, 2, 13, 14, 15] Ssr=[0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 0] B = [0000000010000000]
t=63 pc=0 cAcc=55 ACC=[0, 1, 2, 13, 14, 15] sr=[0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 0, 0] B = [0000000010000000]
t=65 pc=0 cAcc=55 ACC=[0, 1, 2, ... 13, 14, 15] SR=[0, 1, 2, 3, 4, 5, 6, 7, 66, 10, 11, 12, 13, 14, 15, 0] B = [0000000010000000]
t=67 pc=0 cAcc=55 ACC=[0, 1, 2, ... 13, 14, 15] SR=[0, 1, 2, 3, 4, 5, 6, 7, 55, 66, 10, 11, 12, 13, 14, 15] B = [0000000010000000]

o

Chapter 3

Library Level

The library of functions FLA defined in Section 2.1.2 in Table 2.2 is implemented in assembler in file
00_theKernel.sv. When FLA is loaded in controller’s program emory its execution halts on its first
line. It is activated by programs written for the host computer: 0_hProgram.sv.

3.1 Designing Library

The 16 functions of FLA are accessed through a jump located at the beginning of the program after the
initial instruction HALT.

/>l<****>l<>l<>i<****>l<>k>l<***>l<>l<>i<**
File name: 00 _theKernel.v
Description: LINEAR ALGEBRA KERNEL LIBRARY FUNCTIONS

kckkck Rk ok Rk Rk Rk Rk Rk kR kR kR kR kkkkkxckxck Rk kkkkkkkkkkkkkkkkkkwkwkkkkkkxkx %/

cHALT; NOP;

cJMP(1); NOP; // hSTART

cJMP(2); NOP; // hSTOP

cJMP(3); NOP; // hINTRQ

cJMP (4); NOP; // hSQGENX(d)

cJMP(5); NOP; // hSQGENN

cJMP (6); NOP; // hWMSEND(addr—1,size)
cJMP(7); NOP; // hMGET(addr -1, size)
cJMP(8); NOP; // hMAIN(addr—-1)

cJMP(9); NOP; // hSQADD(dest, left ,right)

cJMP(10); NOP; // hVGENX(addr)

cJMP(11); NOP; // hVGENN(addr, value)

cJMP(12); NOP; // hSOQOMVMULT(matrix , vectror , dest)
cJMP(13); NOP; // hSOMMULT(dest , left , right)
cJMP(14); NOP; // hSOMMAC(dest , left , right)
cJMP(15); NOP; // hTRANS(dest, left)

cJMP(16); NOP; // hPRANDOM(dest)

LB(1); c¢START; VLOAD(22);
cJMP(32); NOP;
// xxxxxxxxtx STOP COUNTER %% % % % % % % % % % % % 5% % % o 3 sk ok ok ok o % % o % ok ok ok ok ok ok ok o % o o o ok sk ok
LB(2); <¢STOP; VLOAD(33);
cJMP(32); NOP;

21

22

CHAPTER 3. LIBRARY LEVEL

// wxssnskkwksk INTERRUPT REQEST st st s skt ot st skt st st sk s sfe sk s s ke sk s s ke sk s sk ke st st s ke sk ok s sk ok o ok

LB(3); CcSETINT; VLOAD(44);
cJMP (32); NOP;
// wxxskxkxksx SQUARE MATRIX X GENERATE s s s s s oo ook ook o ok s ook o ok sk ook ohook sk ok ok
LB(4); cPARAM; NOP;
cNOP; CLOAD;
cVLOAD(‘p —1); VSUB(1);
cNOP; ADDRLD;
cNOP; IXLOAD;
LB(17); cNOP; RISTORE (1);
cBRNZDEC(17); VADD(1);
cJMP(32); NOP;
// wxxskxskkxksk SQUARE MATRIX N GENERATE s s s 5 s sk s ot st sk s ot o sk sk ofe o sk sk sk ok s sk sk of s sk ok ok s ok ok
LB(5); cPARAM; NOP;
cNOP; CLOAD;
cVLOAD(‘p—-1); VSUB(1);
cNOP; ADDRLD;
cNOP; VLOAD(0);
LB(18); cNOP; RISTORE (1)
cBRNZDEC(18); VADD(1);
cJMP(32); NOP;
/) kxxxkkkrwxkx SEND MATRIX % s % % sk ok o s ok ok o sk ok ok o sk ok ok ok sk ok ok ook ok o ok ok ok o sk ok ok okosk sk ok ok sk sk kokosk ok
LB(6); cPARAM; NOP;
cPARAM; CLOAD;
cNOP; ADDRLD;
cNOP; NOP;
cNOP; RISENDIO (0);
LB(19); cNOP; NOP;
cBRZDEC(32); NOP;
cNOP; NOP;
cNOP; NOP;
cNOP; NOP;
cDATAEXT(‘p/2); NOP;
cJMP(19); RISENDIO (1);
/) wxxxxxxxtx GET MATRIX sk %% % % % ok sk sk sk ok ok ok o o o o ok sk ok ok ok ok ok ok o ok ok sk ok sk ok ok ok ok o o o o sk sk ok
LB(7); cPARAM; GETIO(‘m-1);
cVSUB(1); NOP;
cPARAM; CLOAD;
cVSUB(1); ADDRLD;
cNOP; NOP;
cNOP; NOP;
LB(20); cDATAINS(‘p/2); NOP;
cNOP; RIGETIO (1);
¢cBRZDEC(32); NOP;
cNOP; NOP;
cNOP; NOP;
cNOP; NOP;
cJMP(20); NOP;
/) kxxxkskkrxx MAIN MATRIX GENERATE % % s % % s s % o s sk % o sk ok ok o sk ok ok o ok ok o ook ok ok okosk ok ok oskosk ok
LB(8); cPARAM; NOP;
cNOP; CLOAD;
cPARAM ; ADDRLD;

3.1. DESIGNING LIBRARY 23

cNOP; IXLOAD;
cNOP; WHEREZERO
cNOP; CLOAD;
cNOP; ELSEWHERE ;
cNOP; VLOAD(0);
cNOP; ENDWHERE ;
cVLOAD(‘p -2); SENDSR ;
cGRSHIFT ; RSTORE (0);
LB(22); cNOP; GETSR;
cGRSHIFT ; RISTORE (1);
cBRNZDEC(22); NOP;
cJMP(32); NOP;
// wxxgkxskkxksk ADD SQUARE MATRICES s s s 5 st sk sk of o sk sk ke ok s sk s o s sk s ot s s sk ok ok sk ok of s sk ok of ook ok
LB(9); cPARAM; NOP;
¢cSTORE (3); NOP; // dest at mem[3]
cPARAM; NOP;
¢STORE (4); NOP; // left at mem[4]
cPARAM ; NOP;
¢STORE (5); NOP; // right at mem[5]
cSUB (4); NOP;
¢STORE (0); NOP; // right—left at mem[O]
cLOAD(3); NOP;
cSUB(5); NOP;
¢STORE(1); NOP; // dest—right at mem[]]
cLOAD(4); NOP;
cSUB (3); NOP;
cVADD(1); NOP;
¢STORE (2); NOP; // left —dest+1 at mem[2]
cVLOAD(‘p); NOP;
c¢cSTORE (6); NOP;
LB(23); cLOAD(4); NOP;
cADD (0); CALOAD;
cADD(1); CAADD;
cADD(2); CSTORE;;
¢STORE (4); NOP;
cLOAD(6); NOP;
cVSUB(1); NOP;
¢cSTORE (6); NOP;
cBRNZ(23); NOP;
cJMP(32); NOP;
[/ wxxxgssskkskkk INDEX VECTOR GENERATE st st st s s s sk sk ok sk sk s o ok sk ok sk s skosk sk sk ok ok ok ok ok sk ok sk skoskok
LB(10); cPARAM; IXLOAD;
cJMP(32); CSTORE;;
// xxxxskxskxxxxx N VECTOR GENERATE %% %% %% %% %%k skk ks k sk skoksk sk ok ko k ok o ok sk ok ok ok
LB(11); cPARAM; NOP;
cPARAM ; CLOAD;
cJMP(32); CSTORE;;
/) wxxxkxkktktt MATRIX—VECTOR MULTIPLY % 3% s s s s sk s s 5 5 o % o s sk sk ok sk ok ok o % o o % o sk sk sk ok
LB(12); cPARAM; NOP; // dest address
¢STORE (1); NOP; // mem[l] dest address
cPARAM;; NOP; // matrix address

cVADD(‘p); REDADD; // end matrix

24

cNOP;

cPARAM ;

cNOP;

cNOP;

cVLOAD(‘p —-1);
LB(24); cLREDINS;

cBRNZDEC (24);

c¢VLOAD($clog2 (‘p));
LB(27); cBRNZDEC(27);

cLOAD(1);

cJMP(32);

CHAPTER 3. LIBRARY LEVEL

CLOAD;
ADDRLD;
CALOAD;
STORE (0);
RILOAD(-1);
MULT(0);
RILOAD(-1);
NOP;

NOP;

GETSR ;
CSTORE ;

// wxsknskkxksk MULTIPLY SQUARE MATRICES st s s st st s st st sk s st st s s st st sk sk sk sk s sk sk sk s sk sk ok o sk ok

LB(13); cPARAM;
cVSUB(1);
¢STORE (3);
cPARAM;
cVADD(‘p —-1);
¢STORE (0);
cPARAM ;
¢cSTORE (2);
¢VLOAD(‘p);
¢cSTORE (1);
cLOAD(2);
cVADD(1);
¢cSTORE (2);
cVLOAD(‘p —1);

LB(25); cLREDINS;
cBRNZDEC(25);
c¢VLOAD($clog2 (‘p)-3);

LB(28); cBRNZDEC(28);
cLOAD(3);
cVADD(1);
¢STORE (3);
cLOAD(2);
cVADD(1);
¢STORE (2);
cLOAD (0);
cLOAD(1);
cVSUB(1);
cBRZ (32);
¢STORE(1);
cVLOAD(‘p —1);
cJMP (25);

REDADD;

NOP;

NOP; // dest => 3
NOP;
NOP;
NOP; //
CLOAD;
ADDRID; // right => 2
NOP;

NOP;

NOP;

CALOAD;

STORE (0);
RILOAD(0);
MULT(0);
RILOAD(-1);

NOP;

NOP;

NOP;

NOP;

GETSR;

CSTORE

CALOAD;

NOP;

STORE (0);

CLOAD;

NOP;

ADDRLD;

NOP;

RILOAD(0);

NOP;

left = 0

[/ sxwrwsxrrx MULTIPLY & ACCUMULATE SQUARE MATRICES s s s s s sk s ok s o s o s ok o s e

LB(14); cPARAM;
cVSUB(1);
¢STORE (3);
cPARAM;
cVADD(‘p —-1);
¢STORE (0);
cPARAM ;
¢STORE (2);

REDADD;

NOP;

NOP; // dest => 3
NOP;

NOP;

NOP; //
CLOAD;
ADDRID; // right => 2

left => 0

3.1. DESIGNING LIBRARY

¢VLOAD(‘p);
¢STORE (1);
cLOAD(2);
cVADD(1);
¢STORE (2);
cVLOAD(‘p—-1);
LB(26); cLREDINS;
cBRNZDEC(26);
cVLOAD($clog2 (‘p) -3);
LB(29); ¢cBRNZDEC(29);
cLOAD(3);
cVADD(1);
¢STORE (3);
NOP;
cLOAD(2);
cVADD(1);
¢STORE (2);
cLOAD (0);
cLOAD(1);
cVSUB (1);
cBRZ (32);
¢STORE (1);
cVLOAD(‘p —1);
cJMP(26);

25

NOP;

NOP;

NOP;
CALOAD;
STORE (0);
RILOAD (0);
MULT(0);
RILOAD(-1);
NOP;

NOP;

NOP;

NOP;
GETSR;
CAADD;
CSTORE;
CALOAD;
NOP;

STORE (0);
CLOAD;
NOP;
ADDRLD;
NOP;
RILOAD(0);
NOP;

J/ sxxxkxxkxt TRANSPOSE s#xtsssksskxskkkkkskgkskwkrkhkskkskwskwkkkskkskkskwskoksksk sk sk sk

LB(15); cPARAM;
¢STORE (0);
cPARAM ;
¢STORE(1);
cVADD(2+ ‘p);
¢STORE (2);
cVLOAD(‘p+1);
¢STORE (3);

// READ ALL

LB(33); cLOAD(1);
¢cGRROTATE;
cLOAD(3);
cVSUB(1);
cBRZ(34);
¢cSTORE (3);
cLOAD (2);
cVADD(1);
¢STORE (2);
cJMP(33);

// ROTATE ALL

LB(34); cVLOAD(‘p);
¢STORE (3);
cNOP;

LB(35); cVSUB(1);
cBRZ(37);
¢STORE (3);

LB(36); cGLROTATE;

IXLOAD;

SENDSR; // mem[O]=dest
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;

// mem[l]= source

// mem[2]=temp
// counter

GETSR;
CADD;
ADDRLD;
NOP;

NOP;

NOP;
RLOAD(0);
CSTORE;
NOP;

NOP;

VLOAD(3x* ‘p+8);
ADDRLD;;

NOP;
RILOAD(-1);
SENDSR ;

NOP;

GETSR ;

26

cBRNZDEC(36);

cLOAD (3);

cJMP (35);
// STORE ALL

LB(37); cVLOAD(‘p-1);

¢STORE (3);
cGRROTATE;;
cLOAD (0);
cLOAD(3);
cVADD(2+ ‘p+8);
¢cGRROTATE;
cLOAD (3);
c¢cBRZDEC (32);
¢STORE (3);
cJMP(38);

LB(38);

NOP;
NOP;
RSTORE (0);

IXLOAD;
SENDSR ;
NOP;
GETSR;
CADD;
ADDRLD;;
CALOAD;
RSTORE (0);
NOP;
NOP;
NOP;

CHAPTER 3. LIBRARY LEVEL

// sxxxsskskxxk PSEUDO—-RANDOM MATRIX s s s s s ok s sk sk ok sk sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok sk sk sk ok skosk sk

LB(16); cPARAM;

cNOP;

cNOP;
cVLOAD(‘p-1);
cNOP;

cNOP;

cNOP;

cNOP;

cNOP;

cNOP;

cNOP;

cNOP;

cNOP;
c¢cBRNZDEC(33);
cJMP(32);

LB(33);

3.2 Using Library

ACTIVATE;
CLOAD;
ADDRLD;
IXLLOAD;
VADD(29);

VMULT(98765);

SHR ;

SHR ;

SHR ;

SHR ;

SHR ;
VAND(31);
CRSTORE;;
NOP;

NOP;

The FLA is inserted into the program run by the accelerator as follows:

/% %k ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok o sk ok sk oK sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok sk sk ok sk Rk ok ok ok ko ok

File name: 0_aProgram.sv
Description: load in V[2] the

index vector

incremented with 1

Hokkckkk Rk Rk Rk ok kk Rk Rk Rk ko kkkok Rk Rk Rk Rk kkok Rk kkkk Rk Rk ok kkkkkk Rk kkkkkkkwkkkkk k% %/

// load program from O;

all cell active

// discard the [/0 register of array

// ACC <= [0 I

cPLOAD(0); ACTIVATE;
cNOP; GETIO(1);
cNOP; IXLOAD;

// the program
‘include ”00_theKernel.sv”

// end program
LB(32); cHALT,;
cPRUN(0);

NOP;
NOP;

// run from 0

(p=1)]

3.2. USING LIBRARY

27

Example 3.1 The host program that loads a matrix of p X p pseudo-randomly generated elements into
the accelerator is the following:

/**
File name: 0_hProgram.sv

HOST PROGRAM

kkckkckkk ok Rk Rk Rk Rk ok kok Rk Rk Rk Rk ko kk Rk kk Rk ko kkk Rk Rk Rk kkkkokwkkk Rk kkkkkwkk kR k k% %/

hVALUE (0 ,0); // rf[0] <= 0
hPSEND (0 ,0); // send program from 0 and run it from 0
// the host program

hSTART;

hPRANDOM (8) ; // generate at 8 a pseudo-random matrix

hSTOP;

// end program
hHALT;
The result:

vect[7] = [x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
vect[8] = [21, 16, 30, 13, 27, 29, 24, 6, 21, 3, 17, 8, 21, 29, 16, 13]
vect[9] = [8, 21, 22, 3, 24, 13, 6, 27, 8, 29, 30, 16, 8, 13, 21, 3]
vect[10] = [16, 8, 17, 29, 6, 3, 27, 24, 16, 13, 22, 21, 16, 3, 8, 29]
vect[11] = [21, 16, 30, 13, 27, 29, 24, 6, 21, 3, 17, 8, 21, 29, 16, 13]
vect[12] = [8, 21, 22, 3, 24, 13, 6, 27, 8, 29, 30, 16, 8, 13, 21, 3]
vect[13] = [16, 8, 17, 29, 6, 3, 27, 24, 16, 13, 22, 21, 16, 3, 8, 29]
vect[14] = [21, 16, 30, 13, 27, 29, 24, 6, 21, 3, 17, 8, 21, 29, 16, 13]
vect[15] = [8, 21, 22, 3, 24, 13, 6, 27, 8, 29, 30, 16, 8, 13, 21, 3]
vect[16] = [16, 8, 17, 29, 6, 3, 27, 24, 16, 13, 22, 21, 16, 3, 8, 29]
vect[17] = [21, 16, 30, 13, 27, 29, 24, 6, 21, 3, 17, 8, 21, 29, 16, 13]
vect[18] = [8, 21, 22, 3, 24, 13, 6, 27, 8, 29, 30, 16, 8, 13, 21, 3]
vect[19] = [16, 8, 17, 29, 6, 3, 27, 24, 16, 13, 22, 21, 16, 3, 8, 29]
vect[20] = [21, 16, 30, 13, 27, 29, 24, 6, 21, 3, 17, 8, 1, 29, 16, 13]
vect[21] = [8, 21, 22, 3, 24, 13, 6, 27, 8, 29, 30, 16, 0, 13, 1, 3]
vect[22] = [16, 8, 17, 29, 6, 3, 27, 24, 16, 13, 22, 1, 11, 3, 0, 9]
vect[23] = [1, 16, 30, 13, 27, 9, 24, 6, 21, 3, 17, 0, 14, 29, 11, 25]
vect[24] = [x, x, x, X, X, X, X, X, X, X, X, X, X, X, X, X]
aCC=175

The execution time is 175 clock cycles (the start and stop of the clock cycle counter is included).

o

Example 3.2 The transpose operation for the square matrix of p X p elements generated starting with
the vector 8 is described by the following program:

/**
File name: 0_hProgram. sv

HOST PROGRAM

kokck Rk Rk kkkR kR Rk kokk Rk x kR k Rk kkkkkwk Rk kokkkk ok kwkkkkkkkkxkwk ko kkkkkwkwkkk k% %/

hVALUE (0 ,0); /7 rf[0] <= 0

28 CHAPTER 3. LIBRARY LEVEL

hPSEND (0 ,0); // send program from 0 and run in array from 0
// the host program
hSQGENN (8); // generate at 8 matrix N
hSTART;
hTRANS(‘p+8,8); // transpose from 8 to p+8
hSTOP;
// end program
hHALT;
The result:
vect[8] = [0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O]
vect[9] =[1, 1, 1, 1,1, 1,1, 1,1, 1, 1,1, 1, 1, 1, 1]
vect[10] = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2, 2]
vect[11] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
vect[12] = [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
vect[13] = [, 5, 5, 6, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
vect[14] = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
vect(18] = [7, 7, 7, 7,7, 7,7, 7,7, 7, 7,7, 7,7, 7, 7]
vect[16] = [8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
vect[17] = [9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9]

vect[18] = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]
vect[19] = [11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11]
vect[20] = [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]
vect[21] = [13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13]

vect[22] = [14, 14,
vect[23] = [15,

-
S
-
S

14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14]
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15]

H

()]
i
S

15,

-
(¢}
-
(¢}

vect[24] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[25] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[26] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[27] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[28] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[29] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[30] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[31] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[32] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[33] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[34] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[35] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[36] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[37] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[38] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[39] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

aCC=662

For each component of the transposed matrix a number of 652 /256 = 2.52 clock cycles are used. The
acceleration obtained is only in O(1). As p increases, the number of cycles per element of the resulting
matrix reduces, converging to 1.

o

Example 3.3 Matrix-vector multiplication is exemplified with matrix obtained starting from the index
vector, IX, and the a constant vector containing 3.

3.2. USING LIBRARY

29

/* skoskeoske sk sk sk sk sk skoskosk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk oskosk sk sk sk sk sk sk sk sk sk
File name: 0_hProgram. sv
HOST PROGRAM
sk sk sk sk sk sk sk sk sk ki skosk ok sk sk sk sk sk */

/] rf[0] <= 0

hVALUE (0 ,0);
hPSEND (0 ,0);

// send program from 0 and run

// the host program
hSQGENX (8);
hVGENN(3, ‘p+8);

hSQMVMULT(‘p+9, 8, ‘p+8);

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

5
6
7,
8
9

10,

3, 3, 3,
X, X, X,
X, X, X,
X, X, X,
X, X, X,
X, X, X,
X, X, X,
X, X, X,
5, 6, 7,
6, 7, 8,
7, 8, 9,
8, 9, 10,
9

, 10, 11,

// generate matrix IX at 8

// generate constant 3 vector at p+S8

// matrix—vector multiply

3, 3, 3, 3, 3, 3, 3, 3]

X, X, X, X, X, X, X, XJ]

X, X, X, X, X, X, X, XJ

X, X, X, X, X, X, X, XJ]

X, X, X, X, X, X, X, XJ]

X, X, X, X, X, X, X, XJ]

X, X, X, X, X, X, X, XJ]

X, X, X, X, X, X, X, XJ]

8, 9, 10, 11, 12, 13, 14, 15]

9, 10, 11, 12, 13, 14, 15, 16]

10, 11, 12, 13, 14, 15, 16, 17]
11, 12, 13, 14, 15, 16, 17, 18]
12, 13, 14, 15, 16, 17, 18,

19]

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

hSTART ;
hSTOP ;
// end program
hHALT;
The result:
vect [0] [3, 3, 3, 3,
vect[1] [x, x, x, X,
vect [2] [x, x, x, %,
vect [3] [x, x, x, X,
vect [4] [x, x, x, x,
vect [5] [x, x, x, x,
vect [6] [x, x, x, X,
vect [7] [x, x, x, x,
vect [8] [o, 1, 2, 3,
vect[9] [1, 2, 3, 4,
vect [10] [2, 3, 4, 5,
vect[11] [3, 4, 5, 6,
vect[12] [4, 5, 6, 7,
vect [13] [5, 6, 7, 8,
vect[14] [6, 7, 8, 9,
vect [15] [7, 8, 9,
vect [16] [s,
vect [17] [9,
vect [18] [10, 11, 12,
vect[19] = [11, 12, 13,
vect [20] [12, 13, 14,
vect [21] [13, 14, 15,
vect [22] [14, 15, 16,
vect [23] [15, 16, 17,
vect [24] [3, 3, 3, 3,
vect [25]
aCC=59

13,
14,
15,
16,
17,
18,
3,

14, 15,
15, 16,
16, 17,
17, 18,
18, 19,
19, 20,
3, 3, 3,

186,
17,
18,
19,
20,
21,

17,
18,
19,
20,
21,
22,

18,
19,
20,
21,
22,
23,

3, 3, 3, 3,
[360, 408, 456, 504, 552, 600, 648, 696, 744, 792, 840, 888,

19, 20,
20, 21,
21, 22,
22, 23,
23, 24,
24, 25,
3, 3, 3,

21,
22,
23,
24,
25,
26,

3]

22,
23,
24,
25,
26,
27,

23,
24,
25,
26,
27,
28,

24,
25,
26,
27,
28,
29,

25]
26]
27]
28]
29]
30]

936, 984, 1032, 1080]

in array from 0

The execution time per element of vector is 49/16 = 3.06 clock cycles. It corresponds to 16 multipli-
cations and 15 additions. As p increases, the number of clock cycles per element of the resulting matrix
reduces, converging to 2.

O

Example 3.4 Matrix multiplication is exemplified using IX matrix generated from vector 8 and the diag-
onal matrix, containing 2 as non-zero elements, generated immediately after the first matrix. The result
is computed immediately after the second matrix.

30

CHAPTER 3. LIBRARY LEVEL

/* skoskoske sk sk sk sk sk skoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sl sk ok sk sk sk sk sk sk sk sk sk
File name: 0_hProgram. sv
HOST PROGRAM

kkck Rk Rk kR kR kR Rk kokkkkx kR k Rk kokkkkwk Rk kokkkkkkw kR ok kkkkkwkwk ko kkkkkwkwkkk k% %/

hVALUE (0 ,0);
hPSEND (0 ,0);

//
//

// the host program

rf[0] <= 0

send program from 0 and run in array from 0

hSQGENX (8) ; // to array: generate matrix X
hMAIN(‘p +8,2); // to array: generate matrix UNIT
hSTART;
hSQMMULT(2* ‘p+8, ‘p+8,8); // to array: multiply matrices
hSTOP;
// end program
hHALT;
The result:
vect([8] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[9] = [i, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
vect[10] = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
vect[11] = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
vect[12] = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
vect[13] = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
vect[14] = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
vect[15] = [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
vect[16] = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
vect[17] = [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
vect[18] = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
vect[19] = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
vect[20] = [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
vect[21] = [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
vect[22] = [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
vect[23] = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
vect[24] = [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 0, O]
vect[25] = [0, 2, O, O, O, O, O, O, O, O, O, O, O, O, O, O]
vect[26] = [0, 0, 2, 0, 0, 0, 0, 0, 0, O, O, O, 0, 0, 0, O]
vect[27] = [0, 0, 0, 2, 0, 0, 0, 0, 0, O, 0O, O, 0, 0, 0, 0]
vect[28] = [0, O, O, O, 2, O, O, O, O, O, O, O, O, O, O, O]
vect[29] = [0, 0, 0, 0, 0, 2, 0, 0, 0, 0O, 0, 0, 0, 0, 0, 0]
vect[30] = [0, 0, 0, O, O, 0, 2, 0, 0, O, O, O, 0, 0, 0, O]
vect[31] = [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, O, 0, 0, 0, 0]
vect[32] = [0, O, O, O, O, O, O, O, 2, O, O, O, O, O, O, O]
vect[33] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, O]
vect[34] = [0, 0, 0, 0, 0, 0, 0, 0, 0, O, 2, 0, 0, 0, 0, 0]
vect[35] = [0, 0, 0, 0, 0O, O, 0, 0, 0, O, O, 2, 0, 0, 0, O]
vect[36] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0]
vect[37] = [0, 0, 0, 0, 0O, 0, O, 0, 0, O, O, O, 0, 2, 0, O]
vect[38] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0O, 0, 0, 0, 0, 2, 0]
vect[39] = [0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, 2]
vect[40] = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]
vect[41] = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32]
vect[42] = [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34]
vect[43] = [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36]
vect[44] = [8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38]
vect[45] = [10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40]
vect[46] = [12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42]
vect[47] = [14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44]
vect[48] = [16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46]
vect[49] = [18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48]
vect[50] = [20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
vect[51] = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52]
vect[52] = [24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54]

3.2. USING LIBRARY 31

vect[563] = [26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56]

vect[54] = [28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58]
vect[55] = [30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60]
aCC=789

The execution time per element of the resulting matrix is 779/256 = 3.08 clock cycles. As p increases,
the number of clock cycles per element of the resulting matrix reduces, converging to 2.
o

Example 3.5 Matrix addition is exemplified using IX matrix generated from vector 0 and the diagonal
matrix, containing 55 as non-zero elements, generated immediately after the first matrix. The result is
computed at the end of the second matrix.

/**
File name: 0_hProgram.sv
HOST PROGRAM

**/

hVALUE(0,0); // rf[0] <= 0

hPSEND (0 ,0); // send program from 0 and run in array from 0
// the host program

hSQGENX (0); // to array: generate matrix X

hMAIN(‘p ,55); // to array: generate matrix UNIT

hSTART;

hSQMADD(2x ‘p, 0, ‘p); // to array: add matrices

hSTOP;
// end program

hHALT;

The result:

vect[0] = [O,
vect[1] = [1,

1 , 8, 9, 10, 11, 12, 13, 14, 15]
2

vect[2] = [2, 3,
4

2, 3,4,5,6, 7

,3,4,5,86,7,8,9, 10, 11, 12, 13, 14, 15, 16]
4, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
5,6,7,8,9

vect[3] = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
vect[4] = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
vect[5] = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
vect[6] = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
vect[7] = [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
vect[8] = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
vect[9]1 = [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

vect[10] = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
vect[11] = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
vect[12] = [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
vect[13] = [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]

vect[14] = [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
vect[15] = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
vect[16] = [55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0]
vect[17] = [0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
vect[18] = [0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
vect[19] = [0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
vect[20] = [0, 0, 0, 0, 55, 0, 0, 0, 0O, 0, 0, 0, 0, O, O, 0]
vect[21] = [0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
vect[22] = [0, 0, 0, 0, 0, O, 55, 0, 0, 0, 0, 0, 0, O, 0, 0]
vect[23] = [0, 0, 0, 0, 0, 0, O, 55, 0, 0, 0, 0, 0, 0, 0, 0]
vect[24] = [0, 0, 0, 0, 0, 0, O, O, 55, 0, 0, 0, 0, 0, 0, 0]
vect[25] = [0, 0, 0, 0, 0, O, 0, 0, 0, 55, 0, 0, 0, O, 0, 0]
vect[26] = [0, 0, 0, 0, 0, 0, O, 0, 0, 0, 55, 0, 0, 0, 0, 0]
vect[27] = [0, 0, 0, 0, 0, O, 0, 0, 0, 0, O, 55, 0, 0, 0, 0]

32 CHAPTER 3. LIBRARY LEVEL

vect[28] = [0, O, O, O, O, O, O, O, O, O, O, O, 55, 0, 0, O]

vect[29] = [0, O, O, O, O, O, O, O, O, O, O, O, O, 55, 0, O]

vect [30] fo, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, 55, 0]

vect[31] fo, o, o, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, O, O, 55]

vect [32] [55, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

vect [33] [1, 57, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

vect [34] [2, 3, 59, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]

vect [35] [3, 4, 5, 61, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]

vect [36] 4, 5, 6, 7, 63, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

vect [37] [5, 6, 7, 8, 9, 65, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

vect[38] 6, 7, 8, 9, 10, 11, 67, 13, 14, 15, 16, 17, 18, 19, 20, 21]

vect[39] [7, 8, 9, 10, 11, 12, 13, 69, 15, 16, 17, 18, 19, 20, 21, 22]

vect [40] [s, 9, 10, 11, 12, 13, 14, 15, 71, 17, 18, 19, 20, 21, 22, 23]

vect [41] [9, 10, 11, 12, 13, 14, 15, 16, 17, 73, 19, 20, 21, 22, 23, 24]

vect [42] (10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 75, 21, 22, 23, 24, 25]

vect [43] [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 77, 23, 24, 25, 26]

vect [44] [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 79, 25, 26, 27]

vect [45] [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 81, 27, 28]

vect [46] [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 83, 29]

vect [47] [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 85]
<

Example 3.6 Matrix multiplication and accumulation (MACC) is illustration using IX matrix and unit
diagonal matrix. They al multiplied and then the second multiplication is added with the previous multi-

plication.

/* sk sk sk sk sk sk sk sk sk ok sk
File name: 0_hProgram.sv

HOST PROGRAM

kkckkck Rk ok Rk Rk Rk Rk ok kokkk Rk Rk Rk ok kok Rk Rk Rk kokkkkkkkk Rk kkokkokwkwkkkkkkkkwkkkkk k% %/

hVALUE(0,0);
hPSEND (0 ,0);
// the host program

//

rf[0] <= 0

// send program from 0 and run

in array from 0

hSQGENX (8); // generate matrix X
hMAIN(‘p+8.,1); // generate matrix UNIT
hSQMMULT(2+ ‘p+8, ‘p+8,8); // multiply matrices
hSTART;
hSQMMAC(2+ ‘p+8, ‘p+8.,8); // multiply & accumulate matrices
hSTOP;
// end program
hHALT;
The result:
vect[8] = 1[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[9] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
vect[10] = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
vect[11] = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
vect[12] = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
vect[13] = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
vect[14] = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
vect[15] = [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
vect[16] = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
vect[17] = [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
vect[18] = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
vect[19] = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
vect[20] = [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
vect[21] = [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
vect[22] = [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

3.2. USING LIBRARY 33

vect[23] = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
vect[24] = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O]

vect[25] = [0, 1, 0, 0, 0, 0, O, O, 0, O, O, 0, 0, 0, 0, O]

vect[26] = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, O, O, 0, 0, 0, O]

vect[27] = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, O, 0, 0, 0, 0, O]

vect[28] = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0O, O, 0, 0, 0, 0, O]

vect[29] = [0, 0, 0, 0, 0O, 1, 0, 0, 0, 0, O, 0, 0, 0, 0, O]

vect[30] = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0O, O, 0, 0, 0, 0, O]

vect[31] = [0, 0, 0, 0, 0, 0, O, 1, 0, 0, 0, 0, 0, 0, 0, O]

vect[32] = [0, 0, 0, 0, 0, 0, 0O, O, 1, 0, O, 0, 0, 0, 0, O]

vect[33] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, O]

vect[34] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0O, 1, 0, 0, 0, 0, O]

vect[35] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, O]

vect[36] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0O, 0, 1, 0, 0, O]

vect[37] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, O]

vect[38] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, O]

vect[39] = [0, 0, 0, 0, 0, 0, 0O, 0O, 0, 0O, O, 0, 0, 0, 0, 1]

vect[40] = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]
vect[41] = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32]
vect[42] = [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34]
vect[43] = [6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36]

vect[44] = [8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38]
vect[45] = [10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40]
vect[46] = [12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42]
vect[47] = [14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44]
vect[48] = [16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46]
vect[49] = [18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48]
vect[50] = [20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
vect[51] = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52]
vect[52] = [24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54]
vect[53] = [26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56]
vect[54] = [28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58]
vect[55] = [30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60]

aCC=821

o

Example 3.7 Matrix transfer is tested by generating, from vect [0], the IX matrix which is sent to the
host’s memory and then is get back in accelerator starting with vect [20].

/* sk skosk sk sk sk sk sk skosk s sk sk sk sk sk sk
File name: 0_hProgram.sv
HOST PROGRAM

kR kkk Rk Rk Rk Rk kokok Rk Rk Rk Rk ok kok Rk kk Rk kokkkkkkkk Rk kkkkokwkkkkkkkkkkwk kg kk k% %/

hVALUE (0 ,0); // rf[0] <= 0

hPSEND (0 ,0); // send program from 0 and run in array from 0
// the host program

hSQGENX (0); // to array: generate matrix X

hSTART; // to array: start cycles counter

hMSEND(O, 16); // to array: send matrix
hVALUE(1,127); // for host: end address in host
hVALUE (0 ,0); // for host: start address in host
hDGET (0,0 ,1); // for host: get data in host

hMGET (20, 16); // to array: get matrix
hVALUE(1,127); // for host: end address in host
hVALUE (0 ,0); // for host: start address in host
hDSEND (0,0 ,1); // for host: send data from host
hSTOP; // to array: stop cycles coounter

34

// end program

CHAPTER 3. LIBRARY LEVEL

hHALT;

The result:
vect[0] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect[1] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
vect[2] = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
vect[3] = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
vect[4] = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
vect[5] = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
vect[6] = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
vect[7] = [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
vect[8] = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
vect[9] = [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
vect[10] = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
vect[11] = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
vect[12] = [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
vect[13] = [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
vect[14] = [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
vect[15] = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
vect[16] = [x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X]
vect[17] = [x, x, %X, X, X, X, X, X, X, X, X, X, X, X, X, X]
vect[18] = [x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, X]
vect[19] = [x, x, x, x, X, X, X, X, X, X, X, X, X, X, X, XJ
vect[20] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
vect([21] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
vect[22] = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
vect[23] = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
vect[24] = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
vect[25] = [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
vect[26] = [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
vect[27] = [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
vect[28] = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
vect[20] = [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
vect[30] = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
vect[31] = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
vect[32] = [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
vect[33] = [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]
vect[34] = [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
vect[35] = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
aCC=503

The transfer of 256 scalars back and forth is performed in 493 clock cycles, i.e., 493/512 = 0.96

clock cycles.
o

Bibliography

[1] Mihaela Malita, Gheorghe Stefan, Dominique Thiébaut: “Not Multi-, but Many-Core: Designing Integral
Parallel Architectures for Embedded Computation”, International Workshop on Advanced Low Power Systems
held in conjunction with 21st International Conference on Supercomputing Seattle, WA, USA, June 17, 2007.

[2] Mihaela Malita, George Vladut Popescu, Gheorghe M. Stefan, “Heterogenous Computing System for Deep
Learning”, in Witold Pedrycz, Shyi-Chen (Eds.): Deep Learning: Concepts and Architectures, Springer Inter-
national Publishing, pp 287-319.

[3] Mihaela Malita, George V1adut Popescu, Gheorghe M. Stefan, “Heterogenous Computing for Markov Models
in Big Data”, CSCI 2019 International Conference.

[4] Gheorghe Stefan, Anand Sheel, Bogdan Mitu, Tom Thomson, Dan Tomescu: “The CA1024: A Fully Pro-
grammable System-On-Chip for Cost-Effective HDTV Media Processing”, Hot Chips: A Symposium on High
Performance Chips, Memorial Auditorium, Stanford University, August 20 to 22, 2006.

[Online]. Available:
https://youtu.be/HMLT4EpKBAw at 35:00
[5] Gheorghe Stefan, Mihaela Malita: “Can one-chip parallel computing be liberated from ad hoc solutions? A

computation model based approach and its implementation”, /8th Inter. Conf. on Circuits, Systems, Communi-
cations and Computers, 2014, pp. 582-597.

[Online]. Available:
http://www.inase.org/library/2014/santorini/bypaper/COMPUTERS/COMPUTERS2-42. pdf

35

