
Loops & Complexity
in

DIGITAL SYSTEMS
∗

Lecture Notes on Digital Electronics

Vol. 1

(work in endless progress)

Gheorghe M. Ştefan

– 2024 version –

2

This document was prepared with LATEX2ε

Introduction

Few legitimate questions about how to teach digital systems in Ten Giga-Gate Per Chip Era are waiting
for an answer.

1. What means a complex digital system? How complex systems are designed using small and simple
circuits?

2. How a digital system expands its size, increasing in the same time its speed? Are there simple
mechanisms to be emphasized?

3. Is there a special mechanism allowing a “hierarchical growing” in a digital system? Or, how new
features can be added in a digital system?

The first question occurs because already exist many different big systems which seem to have differ-
ent degree of complexity. For example: big memory circuits and big processors. Both are implemented
using a huge number of circuits, but the processors seem to be more “complicated” than the memories.
In almost all text books complexity is related only with the dimension of the system. Complexity means
currently only size, the concept being unable to make necessary distinctions in Hundred Giga-Gate Per
Chip Era. The last improvements of the microelectronic technologies allow us to put on a Silicon die
one hundred billions of gates, but the design tools are faced with more than the size of the system to
be realized in this way. The size and the complexity of a digital system must be distinctly and carefully
defined in order to have a more flexible conceptual environment for designing, implementing and testing
systems in Hundred Giga-Gate Per Chip Era.

The second question rises in the same context of the big and the complex systems. Growing a
digital system means both increasing its size and its complexity. How are correlated these two growing
processes? The dynamic of adding circuits and of adding adding features seems to be very different and
governed by distinct mechanisms.

The third question occurs in the hierarchical contexts in which the computation is defined. For
example, Kleene’s functional hierarchy or Chomsky’s grammatical hierarchy are defined to explain how
computation or formal languages used in computation evolve from simple to complex. Is this hierarchy
reflected in a corresponding hierarchical organization of digital circuits? It is obvious that a sort of
similar hierarchy must be hidden in the multitude of features already emphasized in the world of digital
circuits. Let be the following list of usual terms: boolean functions, storing elements, automata circuits,
finite automata, memory functions, processing functions, . . ., self-organizing processes, Is it possible
to disclose in this list a hierarchy, and more, is it possible to find similarities with previously exemplified
hierarchies?

The first answer will be derived from the Kolmogorov-Chaitin algorithmic complexity: the com-
plexity of a circuit is related with the dimension of its shortest formal description. A big circuit (a

3

4

circuit built using a big number o gates) can be simple or complex depending on the possibility to em-
phasize repetitive patterns in its structure. A no pattern circuit is a complex one because its description
has the dimension proportional with its size. Indeed, for a complex, no pattern circuit each gate must be
explicitly specified.

The second answer associate the composition with sizing and the loop with featuring. Composing
circuits results biggest structures with the same kind of functionality, while closing loops in a circuit new
kind of behaviors are induced. Each new loop adds more autonomy to the system, because increases the
dependency of the output signals in the detriment of the input signals. Shortly, appropriate loops means
more autonomy that is equivalent sometimes with a new level of functionality.

The third answer is given by proposing a taxonomy for digital systems based on the maximum number
of included loops closed in a certain digital system. The old distinction between combinational and
sequential, applied only to circuits, is complemented with a classification taking into the account the
functional and structural diversity of the digital systems used in the contemporary designs. More, the
resulting classification provides classes of circuits having direct correspondence with the levels belonging
to Kleene’s and Chomsky’s hierarchies.

The first chapter: What’s a Digital System? Few general questions are answered in this chapter. One
refers to the position of digital system domain in the larger class of the sciences of computation. Another
asks for presenting the ways we have to implement actual digital systems. The importance is also to
present the correlated techniques allowing to finalize a digital product.

The second chapter: Gates The combinational circuits (0-OS) are introduced using a functional ap-
proach. We start with the simplest functions and, using different compositions, the basic simple func-
tional modules are introduced. The distinction between simple and complex combinational circuits is
emphasized, presenting specific technics to deal with complexity.

The third chapter: Memories There are two ways to close a loop over the simplest functional combi-
national circuit: the one-input decoder. One of them offers the stable structure on which we ground the
class of memory circuits (1-OS) containing: the elementary latches, the master-slave structures (the serial
composition), the random access memory (the parallel composition) and the register (the serial-parallel
composition). Few applications of storing circuits (pipeline connection, register file, content addressable
memory, associative memory) are described.

The fourth chapter: Automata Automata (2-OS) are presented in the fourth chapter. Due to the
second loop the circuit is able to evolve, more or less, autonomously in its own state space. This chapter
begins presenting the simplest automata: the T flip-flop and the JK flip-flop. Continues with composed
configurations of these simple structures: counters and related structures. Further, our approach makes
distinction between the big sized, but simple functional automata (with the loop closed through a simple,
recursive defined combinational circuit that can have any size) and the random, complex finite automata
(with the loop closed through a random combinational circuit having the size in the same order with
the size of its definition). The autonomy offered by the second loop is mainly used to generate or to
recognize specific sequences of binary configurations.

The fifth chapter: Processors The circuits having three loops (3-OS) are introduced. The third loop
may be closed in three ways: through a 0-OS, through an 1-OS or through a 2-OS, each of them being

5

meaningful in digital design. The first, because of the segregation process involved in designing automata
using JK flip-flops or counters as state register. The size of the random combinational circuits that
compute the state transition function is reduced, in the most of case, due to the increased autonomy of
the device playing the role of the register. The second type of loop, through a memory circuit, is also
useful because it increases the autonomy of the circuit so that the control exerted on it may be reduced
(the circuit “knows more about itself”). The third type of loop, that interconnects two automata (an
functional automaton and a control finite automaton), generates the most important digital circuits: the
processor.

The sixth chapter: Computing Machines The effects of the fourth loop are shortly enumerated in the
sixth chapter. The computer is the typical structure in 4-OS. It is also the support of the strongest seg-
regation between the simple physical structure of the machine and the complex structure of the program
(a symbolic structure). Starting from the fourth order the main functional up-dates are made structuring
the symbolic structures instead of restructuring circuits. Few new loops are added in actual designs only
for improving time or size performances, but not for adding new basic functional capabilities. For this
reason our systematic investigation concerning the loop induced hierarchy stops with the fourth loop.
The toyMachine behavioral description is revisited and substituted with a pure structural description.

The main stream of this book deals with the simple and the complex in digital systems, emphasizing
them in the segregation process that opposes simple structures of circuits to the complex structures of
symbols. The functional information offers the environment for segregating the simple circuits from the
complex binary configurations.

When the simple is mixed up with the complex, the apparent complexity of the system increases over
its actual complexity. We promote design methods which reduce the apparent complexity by segregating
the simple from the complex. The best way to substitute the apparent complexity with the actual com-
plexity is to drain out the chaos from order. One of the most important conclusions of this book is that
the main role of the loop in digital systems is to segregate the simple from the complex, thus emphasizing
and using the hidden resources of autonomy.

In the digital systems domain prevails the art of disclosing the simplicity because there exists the
symbolic domain of functional information in which we may ostracize the complexity. But, the complex-
ity of the process of disclosing the simplicity exhausts huge resources of imagination. This book offers
only the starting point for the architectural thinking: the art of finding the right place of the interface
between simple and complex in computing systems.

Acknowledgments

6

Contents

1 WHAT’S A DIGITAL SYSTEM? 1
1.1 Framing the digital design domain . 1
1.2 Defining a digital system . 14
1.3 Different embodiment of digital systems . 17
1.4 Correlated domains . 19
1.5 Problems . 21

2 GATES:
Zero order, no-loop digital systems 25
2.1 Simple, Recursive Defined Circuits . 26
2.2 The many-output random circuit: Read Only Memory 50
2.3 Concluding about combinational circuits . 54
2.4 Problems . 56
2.5 Projects . 59

3 MEMORIES:
First order, 1-loop digital systems 61
3.1 Stable/Unstable Loops . 62
3.2 Elementary Structures . 63
3.3 The Serial Composition: the Edge Triggered Flip-Flop 70
3.4 The Parallel Composition: the Random Access Memory 75
3.5 The Serial-Parallel Composition: the Register . 82
3.6 Applications . 83
3.7 Concluding About Memory Circuits . 86
3.8 Problems . 87
3.9 Projects . 93

4 AUTOMATA:
Second order, 2-loop digital systems 95
4.1 Basic definitions in automata theory . 96
4.2 Finite Automata: the Complex Automata . 99
4.3 Functional Automata: the Simple Automata . 132
4.4 Concluding about automata . 140
4.5 Problems . 141
4.6 Projects . 148

7

8 CONTENTS

5 PROCESSORS:
Third order, 3-loop digital systems 151
5.1 Automata using counters as registers . 152
5.2 Loops closed through memories . 153
5.3 Processors . 156
5.4 Case Study: toyRISC Processor . 158
5.5 Concluding about the third loop . 166
5.6 Problems . 167
5.7 Projects . 167

6 COMPUTING MACHINES:
≥4–loop digital systems 169
6.1 Types of fourth order systems . 169
6.2 The computer – support for the strongest segregation 170
6.3 Problems . 173
6.4 Projects . 173

A Binary Arithmetic 177
A.1 Binary representations . 177
A.2 Adding/Substracting . 179
A.3 Multiply/Divede . 180

B Boolean functions 181
B.1 Short History . 181
B.2 Elementary circuits: gates . 181
B.3 How to Deal with Logic Functions . 183
B.4 Minimizing Boolean functions . 186
B.5 Problems . 194

C Introduction in ADC & DAC Convertors 195
C.1 Analog circuits . 195
C.2 ADC . 197
C.3 DAC . 197

Bibliography 199

Contents (detailed)

1 WHAT’S A DIGITAL SYSTEM? 1
1.1 Framing the digital design domain . 1

1.1.1 Digital Domain . 1
1.1.2 Digital domain as part of electronics . 3
1.1.3 Modules in Verilog vs. Classes in Object Oriented Languages 9
1.1.4 Digital domain as part of computer science . 12

1.2 Defining a digital system . 14
1.3 Different embodiment of digital systems . 17
1.4 Correlated domains . 19

Verification & testing . 19
Physical design . 20
Computer architecture . 21
Embedded systems . 21
Project management . 21
Business & Marketing & Sales . 21

1.5 Problems . 21

2 GATES:
Zero order, no-loop digital systems 25
2.1 Simple, Recursive Defined Circuits . 26

2.1.1 Decoders . 26
Informal definition . 26
Formal definition . 26
Recursive definition . 27
Non-recursive description . 29
Arithmetic interpretation . 30
Application . 30

2.1.2 Demultiplexors . 30
Informal definition . 31
Formal definition . 31
Recursive definition . 32

2.1.3 Multiplexors . 33
Informal definition . 33
Formal definition . 33
Recursive definition . 34

9

10 CONTENTS (DETAILED)

Structural aspects . 35
Application . 36

2.1.4 Priority encoder . 36
2.1.5 Increment circuit . 39
2.1.6 Adders . 39

Carry-Look-Ahead Adder . 43
2.1.7 Arithmetic and Logic Unit . 44
2.1.8 Comparator . 49

2.2 The many-output random circuit: Read Only Memory 50
2.3 Concluding about combinational circuits . 54

Simple circuits vs. complex circuits . 54
Simple circuits have recursive definitions 55
Speeding circuits means increase their size 55
Big sized complex circuits require programmable circuits 55
Circuits represent a strong but ineffective computational model 55

2.4 Problems . 56
2.4.1 Recursive circuits . 57
2.4.2 Random circuits . 58

2.5 Projects . 59

3 MEMORIES:
First order, 1-loop digital systems 61
3.1 Stable/Unstable Loops . 62

The unstable loop . 62
The stable loop . 62

. 63
3.2 Elementary Structures . 63

3.2.1 Elementary Latches . 63
The reset-only latch . 63
The set-only latch . 64
The heterogenous set-reset latch . 64
The symmetric set-reset latch . 64
The first latch problem . 66
The second latch problem . 66
. 66

Application: debouncing circuit . 66
3.2.2 Elementary Clocked Latches . 67
3.2.3 Data Latch . 68

3.3 The Serial Composition: the Edge Triggered Flip-Flop 70
3.3.1 The Master-Slave Principle . 71
3.3.2 The D Flip-Flop . 72
3.3.3 The Serial Register . 74

3.4 The Parallel Composition: the Random Access Memory 75
3.4.1 The n-Bit Latch . 75
3.4.2 Asynchronous Random Access Memory . 76

Expanding the number of bits per word . 79

CONTENTS (DETAILED) 11

Expanding the number of words by two dimension addressing 79
3.5 The Serial-Parallel Composition: the Register . 82
3.6 Applications . 83

3.6.1 Synchronous RAM . 83
3.6.2 Register File . 85

3.7 Concluding About Memory Circuits . 86
The first closed loop in digital circuits latches events 86
Meaningful circuits occur by composing latches 86
Distinguishing between “how?” and “when?” 87
Registers and RAMs are basic structures 87
RAM is not a memory, it is only a physical support 87
Memorizing means to associate . 87
To solve ambiguities a new loop is needed 87

3.8 Problems . 87
Stable/unstable loops . 87
Simple latches . 88
Master-slave flip-flops . 89
Enabled circuits . 89
RAMs . 90
Registers . 90
Pipeline systems . 91
Register file . 92

3.9 Projects . 93

4 AUTOMATA:
Second order, 2-loop digital systems 95
4.1 Basic definitions in automata theory . 96
4.2 Finite Automata: the Complex Automata . 99

4.2.1 Representing finite automata . 99
Flow-charts . 100

The flow-chart for a half-automaton . 100
The flow-chart for a Moore automaton 101
The flow-chart for a Mealy automaton 102

Transition diagrams . 103
Transition diagrams for half-automata 103
Transition diagrams Moore automata 105
Transition diagrams Mealy automata . 106

Procedures . 107
Defines . 107
Half-Automaton . 108
Immediate Moore . 109
Delayed Moore . 110
Immediate Mealy . 110
Delayed Mealy . 111

4.2.2 Designing Finite Automata . 112
Preliminary Examples . 112

12 CONTENTS (DETAILED)

State Coding . 122
Minimal variation encoding . 124
Reduced dependency encoding . 125
Incremental codding . 126
One-hot state encoding . 126

Minimizing finite automata . 126
Minimizing the size by an appropriate state codding 126
Minimizing the complexity by one-hot encoding 129
Version 1: with ”one-hot” encoding . 129
Version 2: compact binary codding . 130

4.2.3 Control Automata (CROM) . 130
4.3 Functional Automata: the Simple Automata . 132

4.3.1 The Smallest Automaton: the T Flip-Flop . 132
4.3.2 Counters . 133

Program Counter (PC) . 135
4.3.3 Structured State Space Automaton(S3A) . 137
4.3.4 Multi-port S3A . 138

4.4 Concluding about automata . 140
Synchronous automata need non-transparent state registers 140
The second loop means the behavior’s autonomy 140
Simple automata can have n states . 140
Complex automata have only finite number of states 141
Control automata suggest the third loop 141

4.5 Problems . 141
4.6 Projects . 148

5 PROCESSORS:
Third order, 3-loop digital systems 151
5.1 Automata using counters as registers . 152
5.2 Loops closed through memories . 153

Version 1: the controlled Arithmetic & Logic Automaton 154
Version 2: the commanded Arithmetic & Logic Automaton 155

5.3 Processors . 156
5.3.1 Interpretive Processor: CISC Processor (RALU & CROM) 157
5.3.2 Executive Processor: RISC Processor (RALU & PC) 157

5.4 Case Study: toyRISC Processor . 158
5.4.1 The Concept of Processor’s Architecture . 158
5.4.2 toyRISC Micro-architecture . 159
5.4.3 toyRISC Instruction Set Architecture . 161
5.4.4 toyRISC Implementation . 162

Behavioral description . 162
toyRISC.sv file . 162
DCDtoyRISC.sv file . 163
PCoyRISC.sv file . 164
RALUtoyRISC.sv file . 165

5.5 Concluding about the third loop . 166

CONTENTS (DETAILED) 13

The third loop is closed through simple automata 166
”Intelligent registers” ask less structural control 166
The loop through a storage element ask less symbolic control 166
Looping through a memory circuit allows a more complex “understanding”166
Looping through an automaton allows any effective computation. 166
The third loop allows the symbolic functional control 166
Real processors use circuit level parallelism 166

5.6 Problems . 167
5.7 Projects . 167

6 COMPUTING MACHINES:
≥4–loop digital systems 169
6.1 Types of fourth order systems . 169
6.2 The computer – support for the strongest segregation 170

6.2.1 Four-Loop Circuits (4-OS) & Controlling by Information 172
6.2.2 Five-Loop Circuits (5-OS): Computer with RISC Processor 173

6.3 Problems . 173
6.4 Projects . 173

A Binary Arithmetic 177
A.1 Binary representations . 177

A.1.1 Positive integers . 177
A.1.2 Decimal to binary conversion . 177
A.1.3 Signed integers . 177

Sign-magnitude representation . 177
Ones’ complement representation . 178
Two’s complement representation . 178

A.1.4 Fix point fractionary numbers . 178
A.1.5 Floating point numbers . 179

IEEE half-precision . 179
Google’s brain float . 179
NVidia’s TensorFloat . 179
AMD’s fp24 . 179
Pixar’s PXR24 . 179
IEEE 754 single-precision . 179

A.2 Adding/Substracting . 179
A.2.1 Adding positive integers . 180
A.2.2 Adding signed integers . 180
A.2.3 Subtracting . 180
A.2.4 Overflow . 180

A.3 Multiply/Divede . 180
A.3.1 . 180
A.3.2 . 180

14 CONTENTS (DETAILED)

B Boolean functions 181
B.1 Short History . 181

Aristotle of Stagira . 181
George Boole . 181
Claude Elwood Shannon . 181

B.2 Elementary circuits: gates . 181
B.2.1 Zero-input logic circuits . 182
B.2.2 One input logic circuits . 182
B.2.3 Two inputs logic circuits . 182
B.2.4 Many input logic circuits . 183

B.3 How to Deal with Logic Functions . 183
Identity principle . 184
Double negation principle . 184
Associativity . 184
Commutativity . 184
Distributivity . 184
Absorbtion . 185
Half-absorbtion . 185
Substitution . 185
Exclusion . 185
De Morgan laws . 185

B.4 Minimizing Boolean functions . 186
B.4.1 Canonical forms . 186
B.4.2 Algebraic minimization . 187

Minimal depth minimization . 187
Multi-level minimization . 189
Many output circuit minimization . 189

B.4.3 Veitch-Karnaugh diagrams . 189
Minimizing with V-K diagrams . 191
Minimizing incomplete defined functions . 193
V-K diagrams with included functions . 193

B.5 Problems . 194

C Introduction in ADC & DAC Convertors 195
C.1 Analog circuits . 195
C.2 ADC . 197
C.3 DAC . 197

Bibliography 199

Chapter 1

WHAT’S A DIGITAL SYSTEM?

Talking about Apple, Steve said, “The system is
there is no system.” Then he added, “that does’t
mean we don’t have a process.” Making the dis-
tinction between process and system allows for a
certain amount of fluidity, spontaneity, and risk,
while in the same time it acknowledges the impor-
tance of defined roles and discipline.

J. Young & W. Simon1

A process is a strange mixture of rationally estab-
lished rules, of imaginatively driven chaos, and of
integrative mystery.

A possible good start in teaching about a complex domain is an informal one. The main problems
are introduced friendly, using an easy approach. Then, little by little, a more rigorous style will be able
to consolidate the knowledge and to offer formally grounded techniques. The digital domain will be
disclosed here alternating informal “bird’s-eye views” with simple, formalized real stuff. Rather than
imperatively presenting the digital domain we intend to disclose it in small steps using a project oriented
approach.

1.1 Framing the digital design domain

1.1.1 Digital Domain

In the electronic digital domain we work with two values only (see Figure 1.1):

1They co-authored iCon. Steve Jobs. The Greatest Second Act in the History of Business, an unauthorized portrait of the
co-founder of Apple.

1

2 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

6

-
t

V

0/false 1/true
VDD

Figure 1.1: The two levels of the signal in the digital domain. Low level (0 Volt) for 0 or false, and
high level (VDD Volt) for 1 or true.

• 0, represented by the electrical value 0 V, having two meanings:

– the numerical value 0

– the logic value false

• 1, represented by the electrical value VDD V, having two meanings:

– the numerical value 1

– the logic value true

a

b

c

d

e

f
g

-
-
-
-
-
-
-

-
-
-
-

a
b
c
d
e
f
g

B0
B1
B2
B3

? ? ? ? ? ? ? ?

? ? ? ?

Adder
��

A3 A2 A1 A0 B3 B2 B1 B0

S3 S2 S1 S0

CRinCRout

a. b.

Figure 1.2: The version of digital circuits. a. Logic circuit: trans-coder for seven-segment display. b.
Numeric circuit: four-bit numbers adder.

Consequently, there are two kinds of circuits (see Figure 1.2):

• logic circuits (Fig. 1.2a)

• numeric circuits (Fig. 1.2b)

Digital domain can be defined starting from two different, but complementary view points: the struc-
tural view point or the functional view point. The first version presents the digital domain as part of
electronics, while the second version sees the digital domain as part of computer science.

1.1. FRAMING THE DIGITAL DESIGN DOMAIN 3

1.1.2 Digital domain as part of electronics

Electronics started as a technical domain involved in processing continuously variable signals. Now the
domain of electronics is divided in two sub-domains: analogue electronics, dealing with continuously
variable signals and digital electronics based on elementary signals, called bits, which take only two
different levels 0 and 1, but can be used to compose any complex signals. Indeed, a sequence of n bits
is used to represent any number between 0 and 2n − 1, while a sequence of numbers can be used to
approximate a continuously variable signal. Let us take first examples with 1-bit signals.

Example 1.1 A disciplined driver starts the car’s engine only if all four doors are closed and, in all
occupied seats, the seat belts are connected. The key contact and the previous condition are the ones that
start the engine. (This example is from [1].)

The car is equipped with sensors for each door (d1, d2, d3, d4), for each seat (s1, s2, s3,

s4), for each belt (b1, b2, b3, b4) and for the ignition key (k). The logic function that generates the
start bit (s) is as follows:

s = (doors_are_closed) AND (each_occupied_with_belt_on) AND (key_is_on)

s = (d1 AND d2 AND d3 AND d4) AND

((b1 OR (NOT b1) AND (NOT s1)) AND

(b2 OR (NOT b2) AND (NOT s2)) AND

(b3 OR (NOT b3) AND (NOT s3)) AND

(b4 OR (NOT b4) AND (NOT s4))) AND

k)

In algebraic notation:

s = (d1 ·d2 ·d3 ·d4) · ((b1+b1′ · s1′) · (b2+b2′ · s2′) · (b3+b3′ · s3′) · (b4+b4′ · s4′)) · k

Because the operator AND, “·”, is usually omitted:

s = d1 d2 d3 d4 (b1+b1′ s1′)(b2+b2′ s2′)(b3+b3′ s3′)(b4+b4′ s4′)k

The expression ca be simplified because: a+a′b = a+b (half-absorbtion rule).
Indeed, the car can start if each place has the belt on or is not occupied. Results the simplified form:

s = d1 d2 d3 d4 (b1+ s1′)(b2+ s2′)(b3+ s3′)(b4+ s4′)k

The Verilog description is:

module i g n i t i o n K e y (output s ,
input d1 , d2 , d3 , d4 , s1 , s2 , s3 , s4 ,

b1 , b2 , b3 , b4 , k) ;
a s s i g n s = d1 & d2 & d3 & d4 & (b1 | ˜ s1) &

(b2 | ˜ s2) &
(b3 | ˜ s3) &
(b4 | ˜ s4) & k ;

endmodule

⋄

4 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

Example 1.2 Let be the analogue, continuously variable, signal in Figure 1.3. It can be approximated
by values sampled in discrete moments of time determined by the positive transitions of a square wave
periodic signal called clock. It switches with a frequency of 1/T . The value of the signal is measured in
units u (for example, u = 100mV or u = 10µA). The operation is called analog to digital conversion, and
it is performed by an analog to digital converter – ADC. Results the following sequence of numbers:

6

-

s(t), S[2:0]

t

t

1

0

0 1 1

1

1

1

6

0

clock

1

1×u

2×u

3×u

4×u

5×u

6×u

-
t

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
T�-

-

6

t

-

6

t

-

6

t

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1 1

1

1 1 1 1

0 1 1 1

0

0

0

0 0 0 0 0

0 0

0 0

0

0

0 0

0 0

0

0

0

0

0 0

0 0 0 0

C=S[2]

B=S[1]

A=S[0]

6

-

W="(1<s<5)"

4 4 42 2 31 5 6 6 6 6 6 5 1 1 1 1 5 5 5

Figure 1.3: Analogue to digital conversion. The analog signal, s(t), is sampled at each T using the unit mea-
sure u, and results the three-bit digital signal S[2:0]. A first application: the one-bit digital signal W="(1<s<5)"
indicates, by its active value 1, the time interval when the digital signal is strictly included between 1u and 5u. The
three-bit result of conversion is S[2:0].

s(0×T) = 1units ⇒ 001,
s(1×T) = 4units ⇒ 100,
s(2×T) = 5units ⇒ 101,
s(3×T) = 6units ⇒ 110,
s(4×T) = 6units ⇒ 110,
s(5×T) = 6units ⇒ 110,
s(6×T) = 6units ⇒ 110,

1.1. FRAMING THE DIGITAL DESIGN DOMAIN 5

s(7×T) = 6units ⇒ 110,
s(8×T) = 5units ⇒ 101,
s(9×T) = 4units ⇒ 100,
s(10×T) = 2units ⇒ 010,
s(11×T) = 1units ⇒ 001,
s(12×T) = 1units ⇒ 001,
s(13×T) = 1units ⇒ 001,
s(14×T) = 1units ⇒ 001,
s(15×T) = 2units ⇒ 010,
s(16×T) = 3units ⇒ 011,
s(17×T) = 4units ⇒ 100,
s(18×T) = 5units ⇒ 101,
s(19×T) = 5units ⇒ 101,
s(20×T) = 5units ⇒ 101,
. . .

6

-

s(t)

t

-
t

6
clock

66

1×u/2
2×u/2
3×u/2
4×u/2
5×u/2
6×u/2
7×u/2
8×u/2
9×u/2

10×u/2
11×u/2
12×u/2
13×u/2

0

1

Figure 1.4: More accurate analogue to digital. The analogous signal is sampled at each T/2 using the unit
measure u/2.

If a more accurate representation is requested, then both, the sampling period, T and the measure
units u must be reduced. For example, in Figure 1.4 both, T and u are halved. A better approximation
is obtained with the price of increasing the number of bits used for representation. Each sample is
represented on 4 bits instead of 3, and the number of samples is doubled. This second, more accurate,
conversion provides the following stream of binary data:
<0011, 0110, 1000, 1001, 1010, 1011, 1011, 1100, 1100, 1100, 1100, 1100, 1100,

1100, 1011, 1010, 1010, 1001, 1000, 0101, 0100, 0011, 0010, 0001, 0001, 0001,

0001, 0001, 0010, 0011, 0011, 0101, 0110, 0111, 1000, 1001, 1001, 1001, 1010,

1010, 1010, ...>

⋄

An ADC is characterized by two main parameters:

6 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

• the sampling rate: expressed in samples per second – SPS – or by the sampling frequency – 1/T

• the resolution: the number of bits used to represent the value of a sample

Commercial ADC are provided with resolution in the range of 6 to 24 bits, and the sample rate exceeding
3 GSPS (giga SPS). At the highest sample rate the resolution is limited to 12 bits.

DAC1-ADC1

6 6

6 6

-

ADCM -

analogInput 1 analogOut put 1

DACN-
analogInput M

analogOut put N

DIGITAL

SYSTEM

6
clock

Figure 1.5: Generic digital electronic system.

The generic digital electronic system is represented in Figure 1.5, where:

• analogInput i, for i = 1, . . .M, provided by various sensors (microphones, ...), are sent to the input
of M ADCs

• ADCi converts analogInput i in a stream of binary coded numbers, using an appropriate sampling
interval and an appropriate number of bits for approximating the level of the input signal

• DIGITAL SYSTEM processes the M input streams of data providing on its outputs N streams of
data applied on the input of N Digital-to-Analog Converters (DAC)

• DAC j converts its input binary stream to analogOut put j

• analogOut put j, for j = 1, . . .N, are the outputs of the electronic system used to drive various
actuators (loudspeakers, ...)

• clock is the synchronizing signal applied to all the components of the system; it is used to trigger
the moments when the signals are ready to be used and the subsystems are ready to use the signals.

While loosing something at conversion, we are able to gain at the level of processing. The good
news is that the loosing process is under control, because both, the accuracy of conversion and of digital
processing are highly controllable.

In this stage we are able to understand that the internal structure of DIGITAL SYSTEM from Figure
1.5 must have the possibility to do deal with binary signals which must be stored & processed. The
signals are stored synchronized with the active edge of the clock signal, while for processing are used

1.1. FRAMING THE DIGITAL DESIGN DOMAIN 7

circuits dealing with two distinct values: 0 and 1. Usually, the value 0 is represented by the low voltage,
currently 0, while the value 1 by high voltage, currently ∼ 1V . Consequently, two distinct kinds of
circuits can be emphasized in this stage:

• registers: used to register, synchronously with the active edge of the clock signal, the n-bit binary
configuration applied on its inputs

• logic circuits: used to implement a correspondence between all the possible combinations of 0s
and 1s applied on its m-bit input and the binary configurations generated on its n-bit output.

Example 1.3 Let us consider a system with one analog input digitized with a low accuracy converter
which provides only three bits (like in the example presented in Figure 1.3). The one-bit output, w, of
the Boolean (logic) circuit2 to be designed, let’s call it window, must be active (on 1) each time when
the result of conversion is less than 5 and greater than 1. In Figure 1.3 the wave form represents the
signal w for the particular signal represented in the first wave form. The transfer function of the circuit
is represented in the table from Figure 1.6a, where: for three binary input configurations, S[2:0] =

{C,B,A} = 010 | 011 | 100, the output must take the value 1, while for the rest the output must be
0. Pseudo-formally, we write:

W = 1 when ((not C = 1) and (B = 1) and (not A = 1)) or

((not C = 1) and (B = 1) and (A = 1)) or

((C = 1) and (not B = 1) and (not A = 1))

Using the Boolean logic notation:

W =C′ ·B ·A′+C′ ·B ·A+C ·B′ ·A′ =C′B(A′+A)+CB′A′ =C′B+CB′A′

The resulting logic circuit is represented in Figure 1.6b, where:

• three NOT circuits are used for generating the negated values of the three input variables: C, B,

A

• one 2-input AND circuit computes C’B

• one 3-input AND circuit computes CB’A’

• one 2-input OP circuit computes the final OR between the previous two functions.

The circuit is simulated and synthesized using its description in the hardware description language
(HDL) Verilog, as follows:

2See details about Boolean logic in the appendix Boolan Functions.

8 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

C

0

B

0

A

0
0 0
0 0
0

0 0
0

0

1
1

1
1

1

1 1
1 1
1 1 1

0

W

0

C

B

A

W

0
0
0

1
1
1

a. b.

w1

w2

w3

w4 w5

window

notc

outOr

and1

notb

nota

and2

Figure 1.6: The circuit window. a. The truth table represents the behavior of the output for all binary configu-
rations on the input. b. The circuit implementation.

/ * **
F i l e name : window . v
C i r c u i t name : Window
D e s c r i p t i o n : t h e c i r c u i t d e t e c t s t h e i n p u t i n t h e range o f (1 , 5)
** * /
module window (output W,

input C , B , A) ;

wire w1 , w2 , w3 , w4 , w5 ; / / w i r e s f o r i n t e r n a l c o n n e c t i o n s

not n o t c (w1 , C) , / / t h e i n s t a n c e ’ no tc ’ o f t h e g e n e r i c ’ not ’
no tb (w2 , B) , / / t h e i n s t a n c e ’ notb ’ o f t h e g e n e r i c ’ not ’
n o t a (w3 , A) ; / / t h e i n s t a n c e ’ nota ’ o f t h e g e n e r i c ’ not ’

and and1 (w4 , w1 , B) , / / t h e i n s t a n c e ’ and1 ’ o f t h e g e n e r i c ’ and ’
and2 (w5 , C , w2 , w3) ; / / t h e i n s t a n c e ’ and2 ’ o f t h e g e n e r i c ’ and ’

or outOr (W, w4 , w5) ; / / t h e i n s t a n c e ’ outOr ’ o f t h e g e n e r i c ’ or ’

endmodule

In Verilog, the entire circuit is considered a module, whose description starts with the keyword
module and ends with the keyword endmodule, which contains:

• the declarations of two kinds of connections:

– external connections associated to the name of the module as a list containing:

* the output connections (only one, W, in our example)

* the input connections (C, B and A)

1.1. FRAMING THE DIGITAL DESIGN DOMAIN 9

– internal connections declared as wire, w1, w2, ... w5, used to interconnect the output
of the internal circuits to the input of the internal circuits

• the instantiation of previously defined modules; in our example these are generic logic circuits
expressed by keywords of the language, as follows:

– circuits not, instantiated as nota, notb, notc; the first connection in the list of connec-
tions is the output, while the second is the input

– circuits and, instantiated as and1, and2; the first connection in the list of connections is
the output, while the next are the inputs

– circuit or, instantiated as outOr; the first connection in the list of connections is the output,
while the next are the inputs

The Verilog description is used for simulating and for synthesizing the circuit.
The simulation is done by instantiating the circuit window inside the simulation module simWindow:

/ * **
F i l e name : simWindow . v
C i r c u i t name : S i m u l a t i o n module f o r simWindow . v
D e s c r i p t i o n : g e n e r a t e s t i m u l u s f o r t h e module simWindow . v
** * /

module simWindow ;

reg A, B , C ;
wire W ;

i n i t i a l begin {C , B , A} = 3 ’ b000 ;
#1 {C , B , A} = 3 ’ b001 ;
#1 {C , B , A} = 3 ’ b010 ;
#1 {C , B , A} = 3 ’ b011 ;
#1 {C , B , A} = 3 ’ b100 ;
#1 {C , B , A} = 3 ’ b101 ;
#1 {C , B , A} = 3 ’ b110 ;
#1 {C , B , A} = 3 ’ b111 ;
#1 $ s t o p ;

end

window d u t (W, C , B , A) ;

i n i t i a l $monitor (”S=%b W=%b ” ,
{C , B , A} , W) ;

endmodule

⋄

1.1.3 Modules in Verilog vs. Classes in Object Oriented Languages
What kind of language is the Verilog HDL? We will show it is a sort of Object Oriented Language. Let
us design in Verilog a four-input adder modulo 28.

10 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

/ * **
F i l e : adder2 . v
D e s c r i b e s : two−i n p u t mod256 adder
** * /
module ad de r2 (output [7 : 0] out ,

input [7 : 0] in0 , i n 1) ;

a s s i g n o u t = i n 0 + i n 1 ;

endmodule

/ * **
F i l e : adder4 . v
D e s c r i b e s : four −i n p u t mod256 adder
** * /
module ad de r4 (output [7 : 0] out ,

input [7 : 0] in0 , in1 , in2 , i n 3) ;

wire [7 : 0] sum1 , sum2 ;

ad de r2 add1 (sum1 , in0 , i n 1) ,
add1 (sum2 , in2 , i n 3) ,
add1 (out , sum1 , sum2) ;

endmodule

In C++ programming language the programm for adding four numbers can be write using, instead of
two modules, two classes, as follow:

1.1. FRAMING THE DIGITAL DESIGN DOMAIN 11

/ * **
F i l e : adder2 . cpp
D e s c r i b e s :

− C o n s t r u c t o r : d e s c r i b e s a two−i n p u t i n t e g e r adder
− Methods : d i s p l a y s t h e b e h a v i o r o f adder2 f o r t e s t

** * /
c l a s s ad de r2 { p u b l i c :

i n t in1 , in2 , o u t ;
/ / C o n s t r u c t o r
ad de r2 (i n t a , i n t b){

i n 1 = a ;
i n 2 = b ;
o u t = i n 1 + i n 2 ;

}
/ / Method
void d i sp l ayAdd2 () {

c o u t << i n 1 << i n 2 << o u t << e n d l ;
}

} ;

/ * **
F i l e : adder4 . cpp
D e s c r i b e s :

− C o n s t r u c t o r : d e s c r i b e s a four −i n p u t i n t e g e r adder
+ u s e s t h r e e i n s t a n c e s o f adder2 : S1 , S2 , S3

− Methods : d i s p l a y s t h e b e h a v i o r o f adder4 f o r t e s t
** * /
c l a s s ad de r4 { p u b l i c :

i n t in1 , in2 , in3 , in4 , o u t ;
/ / C o n s t r u c t o r
ad de r4 (i n t a , i n t b , i n t c , i n t d){

i n 1 = a ;
i n 2 = b ;
i n 3 = c ;
i n 4 = d ;
ad de r2 S1 (a , b) ;
ad de r2 S2 (c , d) ;
ad de r2 S3 (S1 . out , S2 . o u t) ;
o u t = S3 . o u t ;

}
/ / Method
void d i sp l ayAdd4 () {

c o u t << i n 1 << i n 2 << i n 3 << i n 4 << o u t << e n d l ;
}

} ;

The class adder2 describe the two-input adder used to build, three times instantiated in class adder4,

12 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

a four input adder.
A class is more complex than a module because it can contain, as a method, the way the calss is

tested. In Verilog we have to define a distinct module, testAdde2 or testAdder4, for simulation.

1.1.4 Digital domain as part of computer science

The domain of digital systems is considered, form the functional view point, as part of computing sci-
ence. This, possible view point presents the digital systems as systems which compute their associated
transfer functions. A digital system is seen as a sort of electronic system because of the technology
used now to implement it. But, from a functional view point it is simply a computational system, be-
cause future technologies will impose maybe different physical ways to implement it (using, for example,
different kinds of nano-technologies, bio-technologies, photon-based devices,). Therefore, we de-
cided to start our approach using a functionally oriented introduction in digital systems, considered as
a sub-domain of computing science. Technology dependent knowledge is always presented only as a
supporting background for various design options.

Where can be framed the domain of digital systems in the larger context of computing science? A
simple, informal definition of computing science offers the appropriate context for introducing digital
systems.

ALGORITHMS

HARDWARE LANGUAGES

TECHNOLOGY APPLICATIONS

	

	

R

R

abstract

actual
?

digital systems

R

Figure 1.7: What is computer science? The domain of digital systems provides techniques for designing the
hardware involved in computation.

Definition 1.1 Computer science (see also Figure 1.7) means to study:

• algorithms,

• their hardware embodiment

• and their linguistic expression

with extensions toward

• hardware technologies

• and real applications. ⋄

1.1. FRAMING THE DIGITAL DESIGN DOMAIN 13

The initial and the most abstract level of computation is represented by the algorithmic level. Algo-
rithms specify what are the steps to be executed in order to perform a computation. The most actual level
consists in two realms: (1) the huge and complex domain of the application software and (2) the very
tangible domain of the real machines implemented in a certain technology. Both contribute to implement
real functions (asked, or aggressively imposed, my the so called free market). An intermediate level pro-
vides the means to be used for allowing an algorithm to be embodied in a physical structure of a machine
or in an informational structure of a program. It is about (1) the domain of the formal programming
languages, and (2) the domain of hardware architecture. Both of them are described using specific and
rigorous formal tools.

The hardware embodiment of computations is done in digital systems. What kind of formal tools
are used to describe, in the most flexible and efficient way, a complex digital system? Figure 1.8 presents
the formal context in which the description tools are considered. Pseudo-code language is an easy to
understand and easy to use way to express algorithms. Anything about computation can be expressed
using this kind of languages. By the rule, in a pseudo-code language we express, for our (human) mind,
preliminary, not very well formally expressed, ideas about an algorithm. The “main user” of this kind
of language is only the human mind. But, for building complex applications or for accessing advanced
technologies involved in building big digital systems, we need refined, rigorous formal languages and
specific styles to express computation. More, for a rigorous formal language we must take into account
that the “main user” is a merciless machine, instead of a tolerant human mind. Elaborated programming
languages (such as C++, Java, Prolog, Lisp) are needed for developing complex contexts for computation
and to write using them real applications. Also, for complex hardware embodiments specific hardware
description languages, HDL, (such as Verilog, VHDL, SystemC) are proposed.

	 R

PSEUDO-CODE
LANGUAGE

PROGRAMMING
LANGUAGES

HARDWARE DESCRIPTION
LANGUAGES

Figure 1.8: The linguistic context in computer science. Human mind uses pseudo-code languages to ex-
press informally a computation. To describe the circuit associated with the computation a rigorous HDL (hardware
description language) is needed, and to describe the program executing the computation rigorous programming
languages are used.

Both, general purpose programming languages and HDLs are designed to describe something for
another program, mainly for a compiler. Therefore, they are more complex and rigorous than a simple
pseudo-code language.

The starting point in designing a digital system is to describe it using what we call a specification,
shortly, a spec. There are many ways to specify a digital system. In real life a hierarchy of specs are used,
starting from high-level informal specs, and going down until the most detailed structural description is

14 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

provided. In fact, de design process can be seen as a stream of descriptions which starts from an idea
about how the new object to be designed behaves, and continues with more detailed descriptions, in each
stage more behavioral descriptions being converted in structural descriptions. At the end of the process
a full structural description is provided. The design process is the long way from a spec about what we
intend to do to another spec describing how our intention can be fulfilled.

At one end of this process there are innovative minds driven by the will to change the world. In these
imaginative minds there is no knowledge about “how”, there is only willingness about “what”. At the
other end of this process there are very skilled entities “knowing” how to do very efficiently what the last
description provides. They do not care to much about the functionality they implement. Usually, they
are machines driven by complex programs.

In between we need a mixture of skills provided by very well instructed and trained people. The role
of the imagination and of the very specific knowledge are equally important.

How can be organized optimally a designing system to manage the huge complexity of this big chain,
leading from an idea to a product? There is no system able to manage such a complex process. No one can
teach us about how to organize a company to be successful in introducing, for example, a new processor
on the real market. The real process of designing and imposing a new product is trans-systemic. It is a
rationally adjusted chaotic process for which no formal rules can ever provided.

Designing a digital system means to be involved in the middle of this complex process, usually far
away from its ends. A digital system designer starts his involvement when the specs start to be almost
rigorously defined, and ends its contribution before the technological borders are reached.

However, a digital designer is faced in his work with few level of descriptions during the execution
of a project. More, the number of descriptions increases with the complexity of the project. For a
very simple project, it is enough to start from a spec and the structural description of the circuit can be
immediately provided. But for a very complex project, the spec must be split in specs for sub-systems,
each sub-system must be described first by its behavior. The process continue until enough simple sub-
systems are defined. For them structural descriptions can be provided. The entire system is simulated
and tested. If it works synthesisable descriptions are provided for each sub-system.

A good digital designer must be well trained in providing various description using an HDL. She/he
must have the ability to make, both behavioral and structural descriptions for circuits having any level of
complexity. Playing with inspired partitioning of the system, a skilled designer is one who is able to use
appropriate descriptions to manage the complexity of the design.

1.2 Defining a digital system

Digital systems belong to the wider class of the discrete systems (systems having a countable number of
states). Therefore, a general definition for digital system can be done as a special case of discrete system.

Definition 1.2 A digital system, DS, in its most general form is defined by specifying the five components
of the following quintuple:

DS = (X ,Y,S, f ,g)

where: X ⊆ {0,1}n is the input set of n-bit binary configurations, Y ⊆ {0,1}m is the output set of m-bit
binary configurations, S ⊆ {0,1}q is the set of internal states of q-bit binary configurations,

f : (X ×S)→ S

is the state transition function, and
g : (X ×S)→ Y

1.2. DEFINING A DIGITAL SYSTEM 15

is the output transition function.
⋄

State memory

transition function
f : (X×S)→ S

State

transition function
g : (X×S)→ Y

Output

?

? ?

??

?

n

m

q
q

X

S

Y

-clock

S+

Figure 1.9: Digital system.

A digital system (see Figure 1.9) has two simultaneous evolutions:

• the evolution of its internal state which takes into account the current internal state and the current
input, generating the next state of the system

• the evolution of its output, which takes into account the current internal state and the current input
generating the current output.

The internal state of the system determines the partial autonomy of the system. The system behaves on
its outputs taking into account both, the current input and the current internal state.

Because all the sets involved in the previous definition have the form {0,1}b, each of the b one-bit
input, output, or state evolves in time switching between two values: 0 and 1. The previous definition
specifies a system having a n-bit input, an m-bit output and a q-bit internal state. If xt ∈ X = {0,1}n,
yt ∈Y = {0,1}m, st ∈ S = {0,1}q are values on input, output, and of state at the discrete moment of time
t, then the behavior of the system is described by:

st = f (xt−1,st−1)

yt = g(xt ,st)

16 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

While the current output is computed from the current input and the current state, the current state was
computed using the previous input and the previous state. The two functions describing a discrete system
belong to two distinct class of functions:

sequential functions : used to generate a sequence of values each of them iterated from its predecessor
(an initial value is always provided, and the i-th value cannot be computed without computing all
the previous i−1 values); it is about functions such as st = f (xt−1,st−1)

non-sequential functions : used to compute an output value starting only from the current values ap-
plied on its inputs; it is about functions such as yt = g(xt ,st).

Depending on how the functions f and g are defined results a hierarchy of digital systems. More on
this in the next chapters.

The variable time is essential for the formal definition of the sequential functions, but for the formal
definition of the non-sequential ones it is meaningless. But, for the actual design of both, sequential and
non-sequential function the time is a very important parameter.

Results the following requests for the simplest embodiment of an actual digital systems:

• the elements of the sets X , Y and S are binary cods of n, m and q bits – 0s and 1s – which are be
codded by two electric levels; the current technologies work with 0 Volts for the value 0, and with
a tension level in the range of 1-2 Volts for the value 1; thus, the system receives on its inputs:

Xn−1,Xn−2, . . .X0

stores the internal state of form:
Sq−1,Sq−2, . . .S0

and generate on its outputs:
Ym−1,Ym−2, . . .Y0

where: Xi,S j,Yk ∈ {0,1}.

• physical modules (see Figure 1.10), called combinational logic circuits – CLC –, to compute
functions like f (xt ,st) or g(xt ,st), which continuously follow, by the evolution of their output
values delayed with the propagation time tp, any change on the inputs xt and st (the shaded time
interval on the wave out represent the transient value of the output)

• a “master of the discrete time” must be provided, in order to make consistent suggestions for the
simple ideas as “previous”, “now”, “next”; it is about the special signal, already introduced, having
form of a square wave periodic signal, with the period T which swings between the logic level 0
and the logic level 1; it is called clock, and is used to “tick” the discrete time with its active edge
(see Figure 1.11 where a clock signal, active on its positive edge, is shown)

• a storing support to memorize the state between two successive discrete moments of time is re-
quired; it is the register used to register, synchronized with the active edge of the clock signal, the
state computed at the moment t − 1 in order to be used at the next moment, t, to compute a new
state and a new output; the input must be stable a time interval tsu (set-up time) before the active
edge of clock, and must stay unchanged th (hold time) after; the propagation time after the clock
is tp.

1.3. DIFFERENT EMBODIMENT OF DIGITAL SYSTEMS 17

0 0 . . . 0 0

0 0 . . . 1 0
0 0 . . . 0

1

. . .

1

1 . . . 10
01

1 1
. . .
. . .

11
1 1

1
1
1 1

1

1
1

1
1

1

1

0 0
000

0 0

0 0
0 0

0 0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Xn−1 Xn−2 . . . X1 X0
6

-
time

-
time

Ym−1Ym−2 . . .

a.

6

in

out

in1

F(in1) F(in2)

in2

� -tp

in

out

CLC

?

?

c.b.

Figure 1.10: The module for non-sequential functions. a. The table used to define the function as a
correspondence between all input binary configurations in and binary configurations out. b. The logic symbol for
the combinatorial logic circuit – CLC – which computes out = F(in). c. The wave forms describing the time
behaviour of the circuit.

-

6
clock

time

titi−2 ti−1

6 6 6 6 6

ti+1 ti+2

-�
Tclock

Figure 1.11: The clock. This clock signal is active on its positive edge (negative edge as active edge is also
possible). The time interval between two positive transitions is the period Tclock of the clock signal. Each positive
transition marks a discrete moment of time.

(More complex embodiment are introduced later in this text book. Then, the state will have a structure
and the functional modules will result as multiple applications of this simple definition.)

The most complex part of defining a digital system is the description of the two functions f and g.
The complexity of defining how the system behaves is managed by using various Hardware Description
Languages – HDLs. The formal tool used in this text book is the Verilog HDL. The algebraic description
of a digital system provided in Definition 1.2 will be expressed as the Verilog definition.

1.3 Different embodiment of digital systems

The physical embodiment of a digital system evolved, in the second part of the previous century, from
circuits built using vacuum tubes to now a day complex systems implemented on a single die of sili-
con containing billions of components. We are here interested only by the actual stage of technology
characterized by an evolutionary development and a possible revolutionary transition.

The evolutionary development is from the multi-chip systems approach to the system on a chip (SoC)
implementations.

18 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

6

-
time

6

-
time

6

-
time

6

clock

dataIn

in1

ti+1

dataOut

in1

- �tsu

- �th

tp� -

a. b.

register

?

?

dataIni = dataOuti+1

in

dataOuti = dataIni−1

outclock

r

r

Figure 1.12: The register. a. The wave forms describing timing details about how the register swithces around
the active edge of clock. b. The logic symbol used to define the static behaviour of the register when both, inputs
and outputs are stable between two active edges of the clock signal.

The revolutionary transition is from Application Specific Integrated Circuit (ASIC) approach to the
fully programmable solutions for SoC.

SoC means integrating on a die a big system which, sometimes, involve more than one technology.
Multi-chip approach was, and it is in many cases, necessary because of two reasons: (1) the big size
of the system and, more important, (2) the need of use of few incompatible technologies. For example,
there are big technological differences in implementing analog or digital circuits. If the circuit is analog,
there is also a radio frequency sub-domain to be considered. The digital domain has also its specific
sub-domain of the dynamic memories. Accommodating on the same silicon die different technologies
is possible but the price is sometimes too big. The good news is that there are continuous technological
developments providing cheap solutions for integrating previously incompatible technologies.

An ASIC provides very efficient solutions for well defined functions and for big markets. The main
concern with this approach is the lack of functional flexibility on a very fast evolving market. Another
problem with the ASIC approach is related with the “reusability” of the silicon area which is a very
expensive resource in a digital system. For example, if the multiplication function is used in few stages
of the algorithm performed by an ASIC, then a multiplication circuit must be designed and placed on
silicon few times even if the circuits stay some- or many-times unused. An alternative solution provides
only one multiplier which is “shared” by different stages of the algorithm, if possible.

There are different types of “programmable” digital systems:

• reconfigurable systems: are physical structures, having a set of useful features, can be configured,
to perform a specific function, by the binary content of some specific storage registers called
configuring registers; the flexibility of this approach is limited to the targeted application domain

• programmable circuits: are general purpose structures whose interconnection and simple func-
tionality are both programmed providing any big and complex systems; but, once the functionality

1.4. CORRELATED DOMAINS 19

in place, the system performs a fix function

• programmable systems: are designed using one or many programmable computing machines
able to provide any transfer function between its inputs and outputs.

All these solutions must be evaluated takeing into account their flexibility, speed performance, com-
plexity, power consumption, and price. The flexibility is minimal for configurable systems and maximal
for programmable circuits. Speed performance is easiest to be obtained with reconfigurable systems,
while the programmable circuits are the laziest at big complexities. Complexity is maximal for pro-
grammable circuits and limited for reconfigurable systems. Power consumption is minimal for recon-
figurable solutions, and maximal for programmable circuits. Price is minimal for reconfigurable sys-
tems, and maximal for programmable circuits. In all the previous evaluations programmable systems are
avoided. Maybe this is the reason for which they provide overall the best solution!

Designing digital circuits is about the hardware support of programmable systems. This book pro-
vides knowledge on circuits, but the final target is to teach how to build various programmable structures.
Optimizing a digital system means to have a good balance between the physical structure of circuits and
the informational structure of programs running on them. Because the future of complex systems be-
longs to the programmable systems, the hardware support offered by circuits must be oriented toward
programmable structures, whose functionality is actualized by the embedded information (program).

Focusing on programmable structures does not mean we ignore the skills involved in designing
ASICs or reconfigurable systems. All we discuss about programmable structures applies also to any
kind of digital structure. What will happen will be that at a certain level in the development of digital
systems features for accepting program control will be added.

1.4 Correlated domains

Digital design must be preceded and followed by other disciplines. There are various prerequisites for
attending a digital design course. These disciplines are requested for two reasons:

• the student must be prepared with an appropriate pool of knowledge

• the student must be motivated to acquire a new skill.

In an ideal world, a student is prepared to attend digital design classes by having knowledge about:
Boolean algebra (logic functions, canonic forms, minimizing logic expressions), Automata theory (for-
mal languages, finite automata, . . . Turing Machine), Electronic devices (MOS transistor, switching the-
ory), Switching circuits (CMOS structure, basic gates, transmission gate, static & dynamic behavior of
the basic structures).

In the same ideal world, a student can be motivated to approach the digital design domain if he payed
attention to Theory of computation, Microprocessor architecture, Assembly languages.

Attending the classes of Digital Systems is only a very important step on a long journey which
suppose to attend a lot of other equally important disciplines. The most important are listed bellow.

Verification & testing For complex digital system verification and testing become very important
tasks. The design must be verified to be sure that the intended functionality is in place. Then in each
stage, on the way from the initial design to the fabrication of the actual chip, various tests are performed.
Specific techniques are developed for verification and testing depending on the complexity of the design.

20 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

Specific design techniques are used to increase the efficiency of testing. Design for testability is a well
developed sub-domain which helps us with design tricks for increasing the accuracy and speed of testing.

Physical design The digital system designer provides only a description. It is a program written in
a HDL. This description must be used to build accurately an actual chip containing many hundred of
million of circuits. It is a multi-stage process where after circuit design, simulation, synthesis, and
functional verification, done by the digital design team, follow layout design & verification, mask
preparation, wafer fabrication, die test. During this long process a lot of additional technical problem
must be solved. A partial enumeration of them follows.

• Clock distribution: The clock signal is a pulse signal distributed almost uniformly on the whole
area of the chip. For a big circuit the clock distribution is a critical problem because of the power
involved and because of the accuracy of the temporal relation imposed for it.

• Signal propagation: Besides clock there are a lot of other signals which can be critical if they
spread on big parts of the circuit area. The relation between these signals makes the problem
harder.

• Chip interface circuits: The electrical charge of an interface circuit is much bigger than for the
internal one. The capacitance load on pins being hundred times bigger the usual internal load, the
output current for pin driver must be correspondingly.

• Powering: The switching energy is provided from a DC power supply. The main problem is to
have enough energy right in time at the power connections of each circuit form the chip. Power
distribution is made difficult by the inductive effect of the power connections.

• Cooling: The electrical energy introduced in circuit, through the power system, must be then,
unfortunately, extracted as caloric energy (heat) by cooling it.

• Packaging: The silicon die is mounted in a package which must fulfil a lot of criteria. It must
allow powering and cooling the die it contains. Also, it must provide hundreds or even thousands
external connections. Not to mention protection to cosmic rays,

• Board design: The chips are designed to be mounted on boards where they are interconnected
with other electronic components. Because of the very high density of connections, designing a
board is a very complex job involving knowledge from a lot of related domains (electromagnetism,
mechanics, chemistry, . . .).

• System design: Actual applications are finalized as packaged systems containing one or many
boards, sometimes interconnected with electro-mechanical devices. Putting together many com-
ponents, powering them, cooling them, protecting them from disturbing external (electromagnetic,
chemical, mechanical, . . .) factors, adding esthetic qualities require multi-disciplinary skills.

For all these problems specific knowledge must be acquired attending special classes, course modules,
or full courses.

1.5. PROBLEMS 21

Computer architecture Architectural thinking is a major tendency in the contemporary word. It is a
way to discuss about the functionality of an object ignoring its future actual implementation. The ar-
chitectural approach helps us to clarify first what we intend to build, unrestricted by the implementation
issues. Computer architecture is a very important sub-domain of computer science. It allow us to develop
independently the hardware domain and the software domain maintaining in the same time a high “com-
municating channel” between the two technologies: one referring to the physical structures and another
involving the informational structure of programs.

Embedded systems In an advanced stage of development of digital system the physical structure of
the circuits start to be interleaved with the informational structure of programs. Thus, the functional
flexibility of the system and its efficiency is maximized. A digital system tend to be more and more
a computational system. The computation become embedded into the core of a digital system. The
discipline of embedded system or embedded computation3 starts to be a finis coronat opus of digital
domain.

Project management Digital systems are complex systems. In order to finalize a real product a lot of
activities must be correlated. Therefore, an efficient management is mandatory for a successful project.
More, the management of the digital system project has some specific aspects to be taken into account.

Business & Marketing & Sales Digital systems are produced to be useful. Then, they must spread
in our human community in the most appropriate way. Additional, but very related skills are needed
to enforce on the market a new digital system. The knowledge about business, about marketing and
sales is crucial for imposing a new design. A good, even revolutionary idea is necessary, but absolutely
insufficient. The pure technical skills must be complemented by skills helping the access on the market,
the only place where a design receives authentic recognition.

1.5 Problems
Problem 1.1 Let be the full 4-bit adder described in the following Verilog module:

module f u l l A d d e r (output [3 : 0] o u t ,
output c rOu t , / / c a r r y o u t p u t
input [3 : 0] i n 0 ,
input [3 : 0] i n 1 ,
input c r I n) ; / / c a r r y i n p u t

wire [4 : 0] sum ;

a s s i g n sum = i n 0 + i n 1 + c r I n ;
a s s i g n o u t = sum [3 : 0] ;
a s s i g n c rOu t = sum [4] ;

endmodule

3In DCAE chair of the Electronics Faculty, in Politehnica University of Bucharest this topics is taught as Functional Elec-
tronics, a course introduced in late 70s by the Professor Mihai Dr’ag’anescu.

22 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

Use the module fullAdder to design the following 16-bit full adder:

module bigAdder (output [1 5 : 0] o u t ,
output c rOu t , / / c a r r y o u t p u t
input [1 5 : 0] i n 0 ,
input [1 5 : 0] i n 1 ,
input c r I n) ; / / c a r r y i n p u t

/ / ???

endmodule

The resulting project will be simulated designing the appropriate test module.

Problem 1.2 Draw the block schematic of the following design:

module topModule (output [7 : 0] out ,
input [7 : 0] in1 ,
input [7 : 0] in2 ,
input [7 : 0] i n 3) ;

wire [7 : 0] wire1 , wi re2 ;

bottomModule mod1 (. o u t (wi re1) ,
. i n 1 (i n 1) ,
. i n 2 (i n 2)) ,

mod2 (. o u t (wi re2) ,
. i n 1 (wi re1) ,
. i n 2 (i n 3)) ,

mod3 (. o u t (o u t) ,
. i n 1 (i n 3) ,
. i n 2 (wi re2)) ;

endmodule

module bottomModule (output [7 : 0] out ,
input [7 : 0] in1 ,
input [7 : 0] i n 2) ;

/ / . . .
endmodule

Synthesize it to test your solution.

Problem 1.3 Let be the schematic representation of the design topSyst in Figure 1.13. Write the Ver-
ilog description of what is described in Figure 1.13. Test the result by synthesizing it.

1.5. PROBLEMS 23

syst1

in1 in2

out

syst1

in1 in2

out

in1

syst2

in2

out1 out2

syst4syst4

in2in1

out

in2in1

out

? ?

? ? ?

?

syst3

?

out

? ??

? in

?

? ?

?

syst2in1

out1 out2

8

8

8 8 8

8 8

8

8

8

8

8 8

8
8 8

8 8

a. b.

in1 in2

out2

in3

out1

topSyst

in2

Figure 1.13: The schematic of the design topSyst. a. The top module topSyst b. The structure of the
module syst2.

24 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

Chapter 2

GATES:
Zero order, no-loop digital systems

Belief #5: That qualitative as well as quantita-
tive aspects of information systems will be accel-
erated by Moore’s Law. . . . In the minds of some
of my colleagues, all you have to do is identify one
layer in a cybernetic system that’s capable of fast
change and then wait for Moore’s Law to work its
magic.

Jaron Lanier1

The Moore’s Law applies to size not to complexity.

In this chapter we will forget for the moment about loops. Composition is the only mechanism in-
volved in building a combinational digital system. No-loop circuits generate the class of history free
digital systems whose outputs depend only by the current input variables, and are reassigned “continu-
ously” at each change of inputs. Anytime the output results as a specific “combination” of inputs. No
autonomy in combinational circuits, whose outputs obey “not to say a word” to inputs.

The combinational functions with n 1-bit inputs and m 1-bit outputs are called Boolean function and
they have the following form:

f : {0,1}n →{0,1}m.

For n = 1 only the NOT function is meaningful in the set of the 4 one-input Boolean functions. For n = 2
from the set of 16 different functions only few functions are currently used: AND, OR, XOR, NAND,
NOR, NXOR. Starting with n = 3 the functions are defined only by composing 2-input functions. (For a
short refresh see Appendix Boolean functions.)

Composing small gates results big systems. The growing process was governed in the last 40 years
by Moore’s Law2. For a few more decades maybe the same growing law will act. But, starting from
millions of gates per chip, it is very important what kind of circuits grow exponentially!

1Jaron Lanier coined the term virtual reality. He is a computer scientist and a musician.
2The Moore’s Law says the physical performances in microelectronics improve exponentially in time.

25

26 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

Composing gates results two kinds of big circuits. Some of them are structured following some
repetitive patterns, thus providing simple circuits. Others grow patternless, providing complex circuits.

2.1 Simple, Recursive Defined Circuits

The first circuits used by designers were small and simple. When they were grew a little they were
called big or complex. But, now when they are huge we must talk, more carefully, about big sized simple
circuits or about big sized complex circuits. In this section we will talk about simple circuits which can
be actualized at any size, i.e., their definitions don’t depend by the number, n, of their inputs.

In the class of n-inputs circuits there are 22n
distinct circuits. From this tremendous huge number of

logical function we use currently an insignificant small number of simple functions. What is strange is
that these functions are sufficient for almost all the problem which we are confronted (or we are limited
to be confronted).

One fact is clear: we can not design very big complex circuits because we can not specify them. The
complexity must get away in another place (we will see that this place is the world of symbols). If we
need big circuit they must remain simple.

In this section we deal with simple, if needed big, circuits and in the next with the complex circuits,
but only with ones having small size.

From the class of the simple circuits we will present only some very usual such as decoders, demul-
tiplexors, multiplexors, adders and arithmetic-logic units. There are many other interesting and useful
functions. Many of them are proposed as problems at the end of this chapter.

2.1.1 Decoders

The simplest problem to be solved with a combinational logic circuit (CLC) is to answer the question:
“what is the value applied to the input of this one-input circuit?”. The circuit which solves this problem
is an elementary decoder (EDCD). It is a decoder because decodes its one-bit input value by activating
distinct outputs for the two possible input values. It is elementary because does this for the smallest
input word: the one-bit word. By decoding, the value applied to the input of the circuit is emphasized
activating distinct signals (like lighting only one of n bulbs). This is one of the main functions in a digital
system. Before generating an answer to the applied signal, the circuit must “know” what signal arrived
on its inputs.

Informal definition

The n-input decoder circuit – DCDn – (see Figure 2.1) performs one of the basic function in digital
systems: with one of its m one-bit outputs specifies the binary configuration applied on its inputs. The
binary number applied on the inputs of DCDn takes values in the set X = {0,1, ...2n − 1}. For each of
these values there is one output – y0,y1, ...ym−1 – which is activated on 1 if its index corresponds with
the current input value. If, for example, the input of a DCD4 takes value 1010, then y10 = 1 and the rest
15 one-bit outputs take the value 0.

Formal definition

In order to rigorously describe and to synthesize a decoder circuit a formal definition is requested. Using
Verilog HDL, such a definition is very compact certifying the non-complexity of this circuit.

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 27

x0x1
. . .

xn−1
y0 y1 . . . ym−1

DCDn

--

-

? ? ?

Figure 2.1: The n-input decoder (DCDn).

Definition 2.1 DCDn is a combinational circuit with the n-bit input X, xn−1, . . . ,x0, and the m-bit output
Y , ym−1, . . . ,y0, where: m = 2n, with the behavioral Verilog description:

/ * **
F i l e name : dec . v
C i r c u i t name : Decoder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n−i n p u t decoder
** * /

module dec # (parameter inDim = n) (input [inDim − 1 : 0] s e l ,
output [(1 << inDim) − 1 : 0] o u t) ;

a s s i g n o u t = 1 << s e l ;
endmodule

⋄

The previous Verilog description is synthesisable by the current software tools which provide an efficient
solution. It happens because this function is simple and it is frequently used in designing digital systems.

Recursive definition

The decoder circuit DCDn for any n can be defined recursively in two steps:

• defining the elementary decoder circuit (EDCD = DCD1) as the smallest circuit performing the
decode function

• applying the divide & impera rule in order to provide the DCDn circuit using DCDn/2 circuits.

For the first step EDCD is defined as one of the simplest and smallest logical circuits. Two one-input
logical function are used to perform the decoding. Indeed, parallel composing (see Figure 2.2a) the
circuits performing the simplest functions: f 1

2 (x0) = y1 = x0 (identity function) and f 1
1 (x0) = y0 = x′0

(NOT function), we obtain an (EDCD). If the output y0 is active, it means the input is zero. If the output
y1 is active, then the input has the value 1.

In order to isolate the output from the input the buffered EDCD version is considered serial compos-
ing an additional inverter with the previous circuit (see Figure 2.2b). Hence, the fan-out of EDCD does
not depend on the fan-out of the circuit that drives the input.

The second step is to answer the question about how can be build a (DCDn) for decoding an n-bit
input word.

28 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

EDCD

x0
y0

y1

a.

x0

y0

y1

b.

Figure 2.2: The elementary decoder (EDCD). a. The basic circuit. b. Buffered EDCD, a serial-parallel
composition.

DCDn/2

DCDn/2

-

6

xn−1 . . .x0

n/2

n/2

y0

y1

yp−1

y0 y1
yp−1

y0 y1 yp−1

yp

ym−1

n

Figure 2.3: The recursive definition of n-inputs decoder (DCDn). Two DCDn/2 are used to drive a two
dimension array of AND2 gates. The same rule is applied for the two DCDn/2, and so on until DCD1 = EDCD is
needed.

Definition 2.2 The structure of DCDn is recursive defined by the rule represented in Figure 2.3. The
DCD1 is an EDCD (see Figure 2.2b). ⋄

The previous definition is a constructive one, because provide an algorithm to construct a decoder
for any n. It falls into the class of the “divide & impera” algorithms which reduce the solution of the
problem for n to the solution of the same problem for n/2.

The quantitative evaluation of DCDn offers the following results:

Size: GSDCD(n) = 2nGSAND(2)+2GSDCD(n/2) = 2(2n +GSDCD(n/2))
GSDCD(1) = GSEDCD = 2
GSDCD(n) ∈ O(2n)

Depth: DDCD(n) = DAND(2)+DDCD(n/2) = 1+DDCD(n/2) ∈ O(log n)
DDCD(1) = DEDCD = 2

Complexity: CDCD ∈ O(1) because the definition occupies a constant drown area (Figure 2.3) or a con-
stant number of symbols in the Verilog description for any n.

The size, the complexity and the depth of this version of decoder is out of discussion because the
order of the size can not be reduced under the number of outputs (m = 2n), for complexity O(1) is the
minimal order of magnitude, and for depth O(log n) is optimal takeing into account we applied the
“divide & impera” rule to build the structure of the decoder.

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 29

Non-recursive description

An iterative structural version of the previous recursive constructive definition is possible, because the
outputs of the two DCDn/2 from Figure 2.3 are also 2-input AND circuits, the same as the circuits on
the output level. In this case we can apply the associative rule, implementing the last two levels by only
one level of 4-input ANDs. And so on, until the output level of the 2n n-input ANDs is driven by n
EDCDs. Now we have the decoder represented in Figure 2.4). Apparently it is a constant depth circuit,
but if we take into account that the number of inputs in the AND gates is not constant, then the depth
is given by the depth of an n-input gate which is in O(log n). Indeed, an n-input AND has an efficient
implementation as as a binary tree of 2-input ANDs.

x0

x1

xn−1

y0 y1 ym−1

.

Figure 2.4: “Constant depth” DCD Applying the associative rule into the hierarchical network of AND2 gates
results the one level ANDn gates circuit driven by n EDCDs.

This “constant depth” DCD version – CDDCD – is faster than the previous for small values of n
(usually for n < 6; for more details see Appendix Basic circuits), but the size becomes SCDDCD(n) =
n×2n+2n ∈ O(n2n). The price is over-dimensioned related to the gain, but for small circuits sometimes
it can be accepted.

The pure structural description for DCD3 is:

/ * **
F i l e name : dec3 . v
C i r c u i t name : 3− i n p u t Decoder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a 3− i n p u t decoder
** * /
module dec3 (output [7 : 0] out ,

input [2 : 0] i n) ;
/ / i n t e r n a l c o n n e c t i o n s

wire in0 , nin0 , in1 , nin1 , in2 , n i n2 ;
/ / EDCD f o r i n [0]

not no t00 (nin0 , i n [0]) , no t01 (in0 , n in0) ;
/ / EDCD f o r i n [1]

not no t10 (nin1 , i n [1]) , no t11 (in1 , n in1) ;
/ / EDCD f o r i n [2]

not no t20 (nin2 , i n [2]) , no t21 (in2 , n in2) ;
/ / t h e second l e v e l

and and0 (o u t [0] , n in2 , nin1 , n in0) ; / / o u t p u t 0
and and1 (o u t [1] , n in2 , nin1 , i n 0) ; / / o u t p u t 1

30 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

and and2 (o u t [2] , n in2 , in1 , n in0) ; / / o u t p u t 2
and and3 (o u t [3] , n in2 , in1 , i n 0) ; / / o u t p u t 3
and and4 (o u t [4] , in2 , nin1 , n in0) ; / / o u t p u t 4
and and5 (o u t [5] , in2 , nin1 , i n 0) ; / / o u t p u t 5
and and6 (o u t [6] , in2 , in1 , n i n0) ; / / o u t p u t 6
and and7 (o u t [7] , in2 , in1 , i n 0) ; / / o u t p u t 7

endmodule

For n = 3 the size of this iterative version is identical with the size which results from the recursive
definition. There are meaningful differences only for big n. In real designs we do not need this kind of
pure structural descriptions because the current synthesis tools manage very well even pure behavioral
descriptions such that from the formal definition of the decoder.

Arithmetic interpretation

The decoder circuit is also an arithmetic circuit. It computes the numerical function of exponentiation:
Y = 2X . Indeed, for n = i only the output yi takes the value 1 and the rest of the outputs take the value 0.
Then, the number represented by the binary configuration Y is 2i.

Application

Because the expressions describing the m outputs of DCDn are:

y0 = x′n−1 · x′n−2 · . . .x′1 · x′0
y1 = x′n−1 · x′n−2 · . . .x′1 · x0
y2 = x′n−1 · x′n−2 · . . .x1 · x′0
...
ym−2 = xn−1 · xn−2 · . . .x1 · x′0
ym−1 = xn−1 · xn−2 · . . .x1 · x0

the logic interpretation of these outputs is that they represent all the min-terms for an n-input function.
Therefore, any n-input logic function can be implemented using a DCDn and an OR with maximum m−1
inputs.

Example 2.1 Let be the 3-input 2-output function defined in the table from Figure 2.5. A DCD3 is used
to compute all the min-terms of the 3 variables a, b, and c. A 3-input OR is used to “add” the min-terms
for the function X, and a 4-input OR is used to “add” the min-terms for the function Y.

Each min-term is computed only once, but it can be used as many times as the implemented functions
suppose.

⋄

2.1.2 Demultiplexors

The structure of the decoder is included in the structure of the other usual circuits. Two of them are the
demultiplexor circuit and the multiplexer circuit. These complementary functions are very important in
digital systems because of their ability to perform “communication” functions. Indeed, demultiplexing

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 31

x0
x1
x2

y0 y1 y2 y3 y4 y5 y6 y7

DCD3

X

Y

-
-
-a

b
c

0 0 0
100

1 00
0 1 1
1
1
1
1

1
1

1
0 0
0

0
1

a b c X Y

1

1
1

1
1

1

1

0

0 0
0
0 0

0 0

0

Figure 2.5:

means to spread a signal from a source to many destinations, selected by a binary code and multiplexing
means the reverse operation to catch signals from distinct sources also selected using a selection code.
Inside of both circuits there is a decoder used to identify the source of the signal or the destination of the
signal by decoding the selection code.

Informal definition

The first informally described solution for implementing the function of an n-input demultiplexor is to
use a decoder with the same number of inputs and m 2-input AND connected as in Figure 2.6. The value
of the input enable is generated to the output of the gate opened by the activated output of the decoder
DCDn. It is obvious that a DCDn is a DMUXn with enable = 1. Therefore, the size, depth of DMUXs
are the same as for DCDs, because the depth is incremented by 1 and to the size is added a value which
is in O(2n).

y0 y1 ym−1

x0

DCDn

x1

xn−1

-
-

-

y0 y1 ym−1

enable

Figure 2.6: Demultiplexor. The n-input demultiplexor (DMUXn) includes a DCDn and 2n AND2 gates used to
distribute the input enable in 2n different places according to the n-bit selection code.

For example, if on the selection input X = s, then the outputs yi take the value 0 for i ̸= s and
ys = enable. The inactive value on the outputs of this DMEX is 0.

Formal definition

Definition 2.3 The n-input demultiplexor – DMUXn – is a combinational circuit which transfers the 1-
bit signal from the input enable to the one of the outputs ym−1, . . . ,y0 selected by the n-bit selection code
X = xn−1, . . . ,x0, where m = 2n. It has the following behavioral Verilog description:

32 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : dmux . v
C i r c u i t name : D e m u l t i p l e x o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r a n−i n p u t d e m u l t i p l e x o r
** * /

module dmux #(parameter inDim = n) (input [inDim − 1 : 0] s e l ,
input enab le ,
output [(1 << inDim) − 1 : 0] o u t) ;

a s s i g n o u t = e n a b l e << s e l ;
endmodule

⋄

Recursive definition

The DMUX circuit has also a recursive definition. The smallest DMUX, the elementary DMUX –
EDMUX –, is a 2-output one, with a one-bit selection input. EDMUX is represented in Figure 2.7.
It consists of an EDCD used to select, with its two outputs, the way for the signal enable. Thus, the
EDMUX is a circuit that offers the possibility to transfer the same signal (enable) in two places (y0 and
y1), according with the selection input (x0) (see Figure 2.7.

EDMUX-

? ?

?

x0

y0 y1

enable

a. b.

enable

x0
EDCD

y0 y1

Figure 2.7: The elementary demultiplexor. a. The internal structure of an elementary demultiplexor (ED-
MUX) consists in an elementary decoder, 2 AND2 gates, and an inverter circuit as input buffer. b. The logic
symbol.

The same rule – divide & impera – is used to define an n-input demultiplexor, as follows:

Definition 2.4 DMUXn is defined as the structure represented in Figure 2.8, where the two DMUXn−1
are used to select the outputs of an EDMUX. ⋄

If the recursive rule is applied until the end the resulting circuit is a binary tree of EDMUXs. It has
SDMUX(N)∈ O(2n) and DDMUX(n)∈ O(n). If this depth is considered too big for the current application,
the recursive process can be stopped at a convenient level and that level is implemented with a “constant
depth” DMUXs made using “constant depth” DCDs. The mixed procedures are always the best. The
previous definition is a suggestion for how to use small DMUXs to build bigger ones.

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 33

DMUXn−1

? ?

�
-

enable

y0 y m
2 −1

DMUXn−1

? ?

�
-enable

y0

�
EDMUX

-

xn−2 , . . . ,x0

n−1

enable

x0

xn−1

y0 y1

y0

. . .

y m
2 −1 y m

2

. . .

ym−1

y m
2 −1

enable

Figure 2.8: The recursive definition of DMUXn. Applying the same rule for the two DMUXn−1 a new level
of 2 EDMUXs is added, and the output level is implemented using 4 DMUXn−2. And so on until the
output level is implemented using 2n−1 EDMUXs. The resulting circuit contains 2n −1 EDMUXs.

2.1.3 Multiplexors

Now about the inverse function of demultiplexing: the multiplexing, i.e., to take a bit of information
from a selected place and to send in one place. Instead of spreading by demultiplexing, now the multi-
plexing function gathers from many places in one place. Therefore, this function is also a communication
function, allowing the interconnecting between distinct places in a digital system. In the same time, this
circuit is very useful for implementing random, i.e. complex, logical functions, as we will see at the end
of this chapter. More, in the next chapter we will see that the smallest multiplexor is used to build the
basic memory circuits. Looks like this circuit is one of the most important basic circuit, and we must pay
a lot of attention to it.

Informal definition

The direct intuitive implementation of a multiplexor with n selection bits – MUXn – starts also from a
DCDn which is now serially connected with an AND-OR structure (see Figure 2.9). The outputs of the
decoder open, for a given input code, only one AND gate that transfers to the output the corresponding
selected input which, by turn, is OR-ed to the output y.

Applying in this structure the associativity rule, for the AND gates to the output of the decoder and
the supplementary added ANDs, results the actual structure of MUX. The structure AND-OR maintains
the size and the depth of MUX in the same orders as for DCD.

Formal definition

As for the previous two circuits – DCD and DMUX –, we can define the multiplexer using a behavioral
(functional) description.

Definition 2.5 A multiplexer MUXn is a combinational circuit having n selection inputs xn−1, . . . ,x0 that
selects to the output y one input from the m = 2n selectable inputs, im−1, . . . , i0. The Verilog description
is:

34 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

y1

6
xn−1 , . . . ,x0

y0

ym−1

. . .

DCDn

. . .

n

i0 i1 im−1

y

. . .

Figure 2.9: Multiplexer. The n selection inputs multiplexer MUXn is made serial connecting a DCDn with an
AND-OR structure.

/ * **
F i l e name : mux . v
C i r c u i t name : M u l t i p l e x o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r a n s e l e c t i o n i n p u t s

m u l t i p l e x o r
** * /

module mux #(parameter inDim = n)
(input [inDim − 1 : 0] s e l , / / s e l e c t i o n i n p u t s

input [(1<< inDim) − 1 : 0] i n , / / s e l e c t e d i n p u t s
output o u t) ;

a s s i g n o u t = i n [s e l] ;
endmodule

⋄

The MUX is obviously a simple function. Its formal description, for any number of inputs has a
constant size. The previous behavioral description is synthesisable efficiently by the current software
tools.

Recursive definition

There is also a rule for composing large MUSs from the smaller ones. As usual, we start from an
elementary structure. The elementary MUX – EMUX – is a selector that connects the signal i1 or i0
in y according to the value of the selection signal x0. The circuit is presented in Figure 2.10a, where
an EDCD with the input x0 opens only one of the two ANDs ”added” by the OR circuit in y. Another
version for EMUX uses tristate inverting drivers (see Figure 2.10c).

The definition of MUXn starts from EMUX, in a recursive manner. This definition will show us that
MUX is also a simple circuit (CMUX(n) ∈ O(1)). In the same time this recursive definition will be a
suggestion for the rule that composes big MUXs from the smaller ones.

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 35

x0

i0 i1

y
a. b.

EMUX-

? ?

?

x0

y

i0 i1

c.

c’

c’

c

x0

yi1

i0

c

c’c

Figure 2.10: The elementary multiplexer (EMUX). a. The structure of EMUX containing an EDCD and
the smallest AND-OR structure. b. The logic symbol of EMUX. c. A version of EMUX using transmission gates
(see section Basic circuits).

Definition 2.6 MUXn can be made by serial connecting two parallel connected MUXn/2 with an EMUX
(see Figure 2.11 that is part of the definition), and MUX1 = EMUX. ⋄

MUXn−1

? ?

-
i0 i m

2 −1

y

MUXn−1

? ?

-
i0 i m

2 −1

y

EMUX

? ?

?

-

i0 i m
2 −1 i m

2 im−1

xn−2 , . . . ,x0

xn−1

y

y

x0
i0 i1

.

.

Figure 2.11: The recursive definition of MUXn. Each MUXn−1 has a similar definition (two MUXn−2 and
one EMUX), until the entire structure contains EMUXs. The resulting circuit is a binary tree of 2n −1 EMUXs.

Structural aspects

This definition leads us to a circuit having the size in O(2n) (very good, because we have m = 2n inputs
to be selected in y) and the depth in O(n). In order to reduce the depth we can apply step by step the next
procedure: for the first two levels in the tree of EMUXs we can write the equation

y = x1(x0i3 + x′0i2)+ x′1(x0i1 + x′0i0)

that becomes
y = x1x0i3 + x1x′0i2 + x′1x0i1 + x′1x′0i0.

36 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

Using this procedure two or more levels (but not too many) of gates can be reduced to one. Carefully
applied this procedure accelerate the speed of the circuit.

Application

Because the logic expression of a n selection inputs multiplexor is:

y = xn−1 . . .x1x0im−1 + . . .+ x′n−1 . . .x
′
1x0i1 + x′n−1 . . .x

′
1x′0i0

any n-input logic function is specified by the binary vector {im−1, . . . i1, i0}. Thus any n input logic
function can be implemented with a MUXn having on its selected inputs the binary vector defining it.

Example 2.2 Let be function X defined in Figure 2.12 by its truth table. The implementation with a
MUX3 means to use the right side of the table as the defining binary vector.

x0
x1
x2

i0 i1 i2 i3 i4 i5 i6 i7

MUX3

???????
0 0 0

100
1 00

0 1 1
1
1
1
1

1
1

1
0 0
0

0
1

a b c X

?1

1
1 ?

y

X

0

0

0

0
0

0

0

1 0 0 01 1

-
-
-a

b
c

Figure 2.12:

⋄

2.1.4 Priority encoder

An encoder is a circuit which connected to the outputs of a decoder provides the value applied on the
input of the decoder. As we know only one output of a decoder is active at a time. Therefore, the encoder
compute the index of the activated output. But, a real application of an encoder is to encode binary
configurations provided by any kind of circuits. In this case, more than one input can be active and the
encoder must have a well defined behavior. One of this behavior is to encode the most significant bit and
to ignore the rest of bits. For this reason the encoder is a priority encoder.

The n-bit input, enabled priority encoder circuit, PE(n), receives xn−1,xn−2, . . .x0 and, if the enable
input is activated, en = 1, it generates the number Y = ym−1,ym−2, . . .y0, with n = 2m, where Y is the
biggest index associated with xi = 1 if any, else zero output is activated. (For example: if en = 1, for
n = 8, and x7,x6, . . .x0 = 00110001, then y2,y1,y0 = 101 and zero = 0) The following Verilog code
describe the behavior of PE(n).

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 37

/ * **
F i l e name : p r i o r i t y e n c o d e r . v
C i r c u i t name : P r i o r i t y Encoder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an 8− b i t i n p u t p r i o r i t y encoder
** * /

module p r i o r i t y e n c o d e r # (parameter m = 3)
(input [(1 ’ b1<<m) − 1 : 0] i n ,

input e n a b l e ,
output reg [m− 1 : 0] o u t ,
output reg z e r o) ;

i n t e g e r i ;
always @(*) i f (e n a b l e) begin o u t = 0 ;

f o r (i =(1 ’ b1 << m) −1; i >=0; i = i −1)
i f ((o u t == 0) && i n [i]) o u t = i ;

i f (i n == 0) z e r o = 1 ;
e l s e z e r o = 0 ;

end
e l s e begin o u t = 0 ;

z e r o = 1 ;
end

endmodule

For testing the previous description the following test module is used:

38 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
** * /

module t e s t p r i o r i t y e n c o d e r # (parameter m = 3) ;
reg [(1 ’ b1<<m) − 1 : 0] i n ;
reg e n a b l e ;
wire [m− 1 : 0] o u t ;
wire z e r o ;
i n i t i a l begin e n a b l e = 0 ;

i n = 8 ’ b11111111 ;
#1 e n a b l e = 1 ;
#1 i n = 8 ’ b00000001 ;
#1 i n = 8 ’ b0000001x ;
#1 i n = 8 ’ b000001xx ;
#1 i n = 8 ’ b00001xxx ;
#1 i n = 8 ’ b0001xxxx ;
#1 i n = 8 ’ b001xxxxx ;
#1 i n = 8 ’ b01xxxxxx ;
#1 i n = 8 ’ b1xxxxxxx ;
#1 i n = 8 ’ b110 ;
#1 $ s t o p ;

end
p r i o r i t y e n c o d e r d u t (i n ,

e n a b l e ,
o u t ,
z e r o) ;

i n i t i a l $monitor ($t ime , ” e n a b l e=%b i n=%b o u t=%b z e r o=%b ” ,
enab le , in , out , z e r o) ;

endmodule

Running the previous code the simulation provides the following result:

t ime = 0 e n a b l e = 0 i n = 11111111 o u t = 000 z e r o = 1
t ime = 1 e n a b l e = 1 i n = 11111111 o u t = 111 z e r o = 0
t ime = 2 e n a b l e = 1 i n = 00000001 o u t = 000 z e r o = 0
t ime = 3 e n a b l e = 1 i n = 0000001 x o u t = 001 z e r o = 0
t ime = 4 e n a b l e = 1 i n = 000001 xx o u t = 010 z e r o = 0
t ime = 5 e n a b l e = 1 i n = 00001 xxx o u t = 011 z e r o = 0
t ime = 6 e n a b l e = 1 i n = 0001 xxxx o u t = 100 z e r o = 0
t ime = 7 e n a b l e = 1 i n = 001 xxxxx o u t = 101 z e r o = 0
t ime = 8 e n a b l e = 1 i n = 01 xxxxxx o u t = 110 z e r o = 0
t ime = 9 e n a b l e = 1 i n = 1 xxxxxxx o u t = 111 z e r o = 0
t ime =10 e n a b l e = 1 i n = 00000110 o u t = 010 z e r o = 0

It is obvious that this circuit computes the integer part of the base 2 logarithm. The output zero is

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 39

used to notify that the input value is unappropriate for computing the logarithm, and “prevent” us from
takeing into account the output value.

2.1.5 Increment circuit

The simplest arithmetic operation is the increment. The combinational circuit performing this function
receives an n-bit number, xn−1, . . .x0, and a one-bit command, inc, enabling the operation. The outputs,
yn−1, . . .y0, and crn−1 behaves according to the value of the command:

If inc = 1, then
{crn−1,yn−1, . . .y0}= {xn−1, . . .x0}+1

else
{crn−1,yn−1, . . .y0}= {0,xn−1, . . .x0}.

EINC INCn−1

?

?

�� �

? ?

? ?

x0xn−2xn−1

yn−1 yn−2 y0

inccrn−1
crn−2

in

out

inccr

b.

EINC

in

out

inc
cr

a.

INCn

Figure 2.13: Increment circuit. a. The elementary increment circuit (called also half adder). b. The recursive
definition for an n-bit increment circuit.

The increment circuit is built using as “brick” the elementary increment circuit, EINC, represented
in Figure 2.13a, where the XOR circuit generate the increment of the input if inc = 1 (the current bit is
complemented), and the circuit AND generate the carry for the the next binary order (if the current bit
is incremented and it has the value 1). An n-bit increment circuit, INCn is recursively defined in Figure
2.13b: INCn is composed using an INCn−1 serially connected with an EINC, where INC0 = EINC.

2.1.6 Adders

Another usual digital functions is the sum. The circuit associated to this function can be also made
starting from a small elementary circuits, which adds two one-bit numbers, and looking for a simple
recursive definitions for n-bit numbers.

The elementary structure is the well known full adder which consists in two half adders and an OR2.
An n-bit adder could be done in a recursive manner as the following definition says.

Definition 2.7 The full adder, FA, is a circuit which adds three 1-bit numbers generating a 2-bit result:

FA(in1, in2, in3) = {out1,out0}

FA is used to build n-bit adders. For this purpose its connections are interpreted as follows:

40 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

• in1, in2 represent the i-th bits if two numbers

• in3 represents the carry signal generated by the i−1 stage of the addition process

• out0 represents the i-th bit of the result

• out1 represents the carry generated for the i+1-th stage of the addition process

Follows the Verilog description:

/ * **
F i l e name : f u l l a d d e r . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a f u l l adder
** * /

module f u l l a d d e r (output sum , c a r r y o u t , input in1 , in2 , c a r r y i n) ;
h a l f a d d e r ha1 (sum1 , c a r r y 1 , in1 , i n 2) ,

ha2 (sum , c a r r y 2 , sum1 , c a r r y i n) ;
a s s i g n c a r r y o u t = c a r r y 1 | c a r r y 2 ;

endmodule

/ * **
F i l e name : h a l f a d d e r . v
C i r c u i t name : Ha l f Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a h a l f adder
** * /

module h a l f a d d e r (output sum , c a r r y , input in1 , i n 2) ;
a s s i g n sum = i n 1 ˆ in2 ,

c a r r y = i n 1 & i n 2 ;
endmodule

⋄

Note: The half adder circuit is also an elementary increment circuit (see Figure 2.13a).

Definition 2.8 The n-bits ripple carry adder, (ADDn), is made by serial connecting on the carry chain
an ADDn−1 with a FA (see Figure 2.14). ADD1 is a full adder.

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 41

FA ADDn−1

A B

S
CC+ C+ C

? ? ? ?? ?

? ? ?

� ��
Cn C0

An−1 Bn−1 An−2 A0 Bn−2 B0
.

Sn−2 S0

. . .

Sn−1

Figure 2.14: The recursive defined n-bit ripple-carry adder (ADDn). ADDn is simply designed adding to
an ADDn−1 a full adder (FA), so as the carry signal ripples from one FA to the next.

/ * **
F i l e name : adder . v
C i r c u i t name : Adder
D e s c r i p t i o n : r e c u r s i v e s t r u c t u r a l d e s c r i p t i o n o f a n− b i t adder u s i n g

t h e c o n d i t i o n a l g e n e r a t e s t a t e m e n t
** * /

module a d d e r # (parameter n = 4) (output [n − 1 : 0] o u t ,
output c r y ,
input [n − 1 : 0] i n 1 ,
input [n − 1 : 0] i n 2 ,
input c i n) ;

wire [n : 1] c a r r y ;
a s s i g n c r y = c a r r y [n] ;
g e n e r a t e
i f (n == 1) f u l l A d d e r f i r s t A d e r (. o u t (o u t [0]) ,

. c r y (c a r r y [1]) ,

. i n 1 (i n 1 [0]) ,

. i n 2 (i n 2 [0]) ,

. c i n (c i n)) ;
e l s e begin a d d e r # (. n (n − 1)) p a r t A d d e r (. o u t (o u t [n − 2 : 0]) ,

. c r y (c a r r y [n −1]) ,

. i n 1 (i n 1 [n − 2 : 0]) ,

. i n 2 (i n 2 [n − 2 : 0]) ,

. c i n (c i n)) ;
f u l l A d d e r l a s t A d d e r (. o u t (o u t [n −1]) ,

. c r y (c a r r y [n]) ,

. i n 1 (i n 1 [n −1]) ,

. i n 2 (i n 2 [n −1]) ,

. c i n (c a r r y [n −1])) ;
end

endgenerate
endmodule

42 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : f u l l A d d e r . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a f u l l adder
** * /
module f u l l A d d e r (output out , c r y ,

input in1 , in2 , c i n) ;
a s s i g n c r y = i n 1 & i n 2 | (i n 1 ˆ i n 2) & c i n ;
a s s i g n o u t = i n 1 ˆ i n 2 ˆ c i n ;

endmodule

⋄

The previous definition used the conditioned generation block.3 The Verilog code from the previous
recursive definition can be used to simulate and to synthesize the adder circuit. For this simple circuit this
definition is too sophisticated. It is presented here only to provide a simple example of how a recursive
definition is generated.

A simpler way to define an adder is provided in the next example where a generate block is used.

Example 2.3 Generated n-bit adder:

/ * **
F i l e name : add . v
C i r c u i t name : Adder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a n−i n p u t adder u s i n g t h e

g e n e r a t e s t a t e m n t
** * /

module add #(parameter n = 8) (input [n − 1 : 0] in1 , in2 ,
input c I n ,
output [n − 1 : 0] o u t ,
output cOut) ;

wire [n : 0] c r ;
a s s i g n c r [0] = c I n ;
a s s i g n cOut = c r [n] ;
genvar i ;
g e n e r a t e f o r (i =0 ; i<n ; i = i +1) begin : S

f a a d d e r (. i n 1 (i n 1 [i]) ,
. i n 2 (i n 2 [i]) ,
. c I n (c r [i]) ,
. o u t (o u t [i]) ,
. cOut (c r [i + 1])) ; end

endgenerate
endmodule

3The use of the conditioned generation block for recursive definition was suggested to me by my colleague Radu Hobincu.

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 43

/ * **
F i l e name : f a . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a f u l l adder
** * /

module f a (input in1 , in2 , c I n ,
output out , cOut) ;

wire xr ;
a s s i g n xr = i n 1 ˆ i n 2 ;
a s s i g n o u t = xr ˆ c I n ;
a s s i g n cOut = i n 1 & i n 2 | c I n & xr ;

endmodule

⋄

Because the add function is very frequently used, the synthesis and simulation tools are able to
”understand” the simplest one-line behavioral description used in the following module:

/ * **
F i l e name : add . v
C i r c u i t name : Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an adder
** * /

module add #(parameter n = 8) (input [n − 1 : 0] in1 , in2 ,
input c I n ,
output [n − 1 : 0] o u t ,
output cOut) ;

a s s i g n {cOut , o u t } = i n 1 + i n 2 + c I n ;
endmodule

Carry-Look-Ahead Adder

The size of ADDn is in O(n) and the depth is unfortunately in the same order of magnitude. For improving
the speed of this very important circuit there was found a way for accelerating the computation of the
carry: the carry-look-ahead adder (CLAn). The fast carry-look-ahead adder can be made using a carry-
look-ahead (CL) circuit for fast computing all the carry signals Ci and for each bit an half adder and a
XOR (the modulo two adder)(see Figure 2.15). The half adder has two roles in the structure:

• sums the bits Ai and Bi on the output S

• computes the signals Gi (that generates carry as a local effect) and Pi (that allows the propagation
of the carry signal through the binary level i) on the outputs CR and P.

The XOR gate adds modulo 2 the value of the carry signal Ci to the sum S.
In order to compute the carry input for each binary order an additional fast circuit must be build: the

carry-look-ahead circuit. The equations describing it start from the next rule: the carry toward the level

44 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

HA

A B

S CR

.

?�

? ?

Ai Bi

GiPi
Ci

Si

�

Gn−1

C0

Carry-Lookahead Circuit

? ? ??

? ? ?

G0 Pn−1 P0
.

. . .

Cn Cn−1 C1

Figure 2.15: The fast n-bit adder. The n-bit Carry-Lookahead Adder (CLAn) consists in n HAs, n 2-input
XORs and the Carry-Lookahead Circuit used to compute faster the n Ci, for i = 1,2, . . .n.

(i+1) is generated if both Ai and Bi inputs are 1 or is propagated from the previous level if only one of
Ai or Bi are 1. Results:

Ci+1 = AiBi +(Ai +Bi)Ci = AiBi +(Ai ⊕Bi)Ci = Gi +PiCi.

Applying the previous rule we obtain the general form of Ci+1:

Ci+1 = Gi +PiGi−1 +PiPi−1Gi−2 +PiPi−1Pi−2Gi−3 + . . .+PiPi−1 . . .P1P0C0

for i = 0, . . . ,n.
Computing the size of the carry-look-ahead circuit results SCL(n) ∈ O(n3), and the theoretical depth

is only 2. But, for real circuits an n-input gates can not be considered as a one-level circuit. In Basic
circuits appendix (see section Many-Input Gates) is shown that an optimal implementation of an n-input
simple gate is realized as a binary tree of 2-input gates having the depth in O(log n). Therefore, in a real
implementation the depth of a carry-look ahead circuit has DCLA ∈ O(log n).

For small n the solution with carry-look-ahead circuit works very good. But for larger n the two
solutions, without carry-look-ahead circuit and with carry-look-ahead circuit, must be combined in many
fashions in order to obtain a good price/performance ratio. For example, the ripple carry version of ADDn

is divided in two equal sections and two carry look-ahead circuits are built for each, resulting two serial
connected CLAn/2. The state of the art in this domain is presented in [Omondi ’94].

It is obvious that the adder is a simple circuit. There exist constant sized definition for all the variants
of adders.

2.1.7 Arithmetic and Logic Unit

All the before presented circuits have had associated only one logic or one arithmetic function. Now is
the time to design the internal structure of a previously defined circuit having many functions, which can
be selected using a selection code: the arithmetic and logic unit – ALU. ALU is the main circuit in any
computational device, such as processors, controllers or embedded computation structures.

A generic version of a simple ALU is presented in the following example.

Example 2.4 The 8-function ALU working on 32-bit numbers is described by the following Verilog mod-
ule:

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 45

a+b a−b n×AND2 n×OR2

?

0

{carryOut, out[n-1:0]}

left[n-1:0]

right[n-1:0]

carryIn

?
n×XOR2

? ??? ?? ? ?

1 54

{2’b0, left[n-1:1]}

32 7

?

????????
(n+1)×MUX8

- sel

? ? ?

6

n×
NOT

func

Figure 2.16: The internal structure of the speculative version of an arithmetic and logic unit. Each
function is performed by a specific circuit and the output multiplexer selects the desired result.

/ * **
F i l e name : a l u . v
C i r c u i t name : a r i t h m e t i c and l o g i c u n i t
D e s c r i p t i o n : t h e c i r c u i t s e l e c t s , u s i n g t h e s e l e c t i o n code ’ func ’ , one

o f t h e 8 f u n c t i o n s
** * /
module ALU(input c a r r y I n ,

input [2 : 0] func ,
input [3 1 : 0] l e f t , r i g h t ,
output reg c a r r y O u t ,
output reg [3 1 : 0] o u t) ;

always @(*)
ca se (func)

3 ’ b000 : { ca r ryOu t , o u t } = l e f t + r i g h t + c a r r y I n ; / / add
3 ’ b001 : { ca r ryOu t , o u t } = l e f t − r i g h t − c a r r y I n ; / / sub
3 ’ b010 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t & r i g h t } ; / / and
3 ’ b011 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t | r i g h t } ; / / or
3 ’ b100 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t ˆ r i g h t } ; / / xor
3 ’ b101 : { ca r ryOu t , o u t } = {1 ’ b0 , ˜ l e f t } ; / / n o t
3 ’ b110 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t } ; / / l e f t
3 ’ b111 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t >> 1} ; / / s h r
d e f a u l t { ca r ryOu t , o u t } = 33 ’ b0 − 1 ’ b1 ;

endcase
endmodule

⋄

The ALU circuit can be implemented in many forms. One of them is the speculative version (see
Figure 2.16) described by the Verilog module from Example 2.4, where the case structure describes, in

46 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

fact, an 8-input multiplexor for 33-bit words. We call this version speculative because all the possible
functions are computed in order to be all available to be select when the function code arrives to the func
input of ALU. This approach is efficient when the operands are available quickly and the function to be
performed “arrives” lately (because it is usually decoded from the instruction fetched from a program
memory). The circuit “speculates” computing all the defined functions offering 8 results from which
the func code selects one. (This approach will be useful for the ALU designed for the stack processor
described in Chapter 10.)

The speculative version provides a fast version in some specific designs. The price is the big size of
the resulting circuit (mainly because the arithmetic section contains and adder and an subtractor, instead
a smaller circuit performing add or subtract according to a bit used to complement the right operand and
the carryIn signal).

An area optimized solution is provided in the next example.

Example 2.5 Let be the 32-bit ALU with 8 functions described in Example 2.8. The implementation will
be done using an adder-subtractor circuit and a 1-bit slice for the logic functions. Results the following
Verilog description:

n×MUXE
add sub

logic

n×MUXE

n×MUXE

? ?????

? ?

? ?

?

- - -

-

-

-

sub

��

out

carryIncarryOut

left

right

func[0]

func[1]

func[2]

Figure 2.17: The internal structure of an area optimized version of an ALU. The add sub module is
smaller than an adder and a subtractor, but the operation “starts” only when func[0] is valid.

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 47

/ * **
F i l e name : s t r u c t u r a l A l u . v
C i r c u i t name : ALU
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n f o r
** * /

module s t r u c t u r a l A l u (output [3 1 : 0] o u t ,
output ca r ryOu t ,
input c a r r y I n ,
input [3 1 : 0] l e f t , r i g h t ,
input [2 : 0] func) ;

wire [3 1 : 0] s h i f t , add sub , a r i t h , l o g i c ;

addSub addSub (. o u t (a d d s u b) ,
. c o u t (c a r r y O u t) ,
. l e f t (l e f t) ,
. r i g h t (r i g h t) ,
. c i n (c a r r y I n) ,
. sub (func [0])) ;

l o g i c l o g (. o u t (l o g i c) ,
. l e f t (l e f t) ,
. r i g h t (r i g h t) ,
. op (func [1 : 0])) ;

mux2 s h i f t Mu x (. o u t (s h i f t) ,
. i n 0 (l e f t) ,
. i n 1 ({1 ’ b0 , l e f t [3 1 : 1] }) ,
. s e l (f unc [0])) ,

a r i t hMux (. o u t (a r i t h) ,
. i n 0 (s h i f t) ,
. i n 1 (a d d su b) ,
. s e l (func [1])) ,

outMux (. o u t (o u t) ,
. i n 0 (a r i t h) ,
. i n 1 (l o g i c) ,
. s e l (f unc [2])) ;

endmodule

/ * **
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
** * /

module mux2 (input s e l ,
input [3 1 : 0] in0 , in1 ,
output [3 1 : 0] o u t) ;

a s s i g n o u t = s e l ? i n 1 : i n 0 ;
endmodule

48 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
** * /

module addSub (output [3 1 : 0] o u t ,
output c o u t ,
input [3 1 : 0] l e f t , r i g h t ,
input c in , sub) ;

a s s i g n { cout , o u t } = l e f t + (r i g h t ˆ {32{ sub }}) + (c i n ˆ sub) ;
endmodule

/ * **
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
** * /

module l o g i c (output reg [3 1 : 0] o u t ,
input [3 1 : 0] l e f t , r i g h t ,
input [1 : 0] op) ;

i n t e g e r i ;
wire [3 : 0] f ;
a s s i g n f = {op [0] , ˜ (˜ op [1] & op [0]) , op [1] , ˜ | op } ;
always @(l e f t or r i g h t or f)

f o r (i =0 ; i <32; i = i +1) l o g i c S l i c e (o u t [i] , l e f t [i] , r i g h t [i] , f) ;

ta sk l o g i c S l i c e ;
output o ;
input l , r ;
input [3 : 0] f ;
o = f [{ l , r }] ;

endtask
endmodule

The resulting circuit is represented in Figure 2.17. This version can be synthesized on a smaller area,
because the number of EMUXs is smaller, instead of an adder and a subtractor an adder/subtractor is
used. The price for this improvement is a smaller speed. Indeed, the add submodule “starts” to compute
the addition or the subtract only when the signal sub = func[0] is received. Usually, the code func

results from the decoding of the current operation to be performed, and, consequently, comes later. ⋄

We just learned a new feature of the Verilog language: how to use a task to describe a circuit used
many times in implementing a simple, repetitive structure.

The internal structure of ALU consists mainly in n slices, one for each input pair left[i],

rught[i] and a carry-look-ahead circuit(s) used for the arithmetic section. It is obvious that ALU
is also a simple circuit. The magnitude order of the size of ALU is given by the size of the carry-look-
ahead circuit because each slice has only a constant dimension and a constant depth. Therefore, the

2.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 49

fastest version implies a size in O(n3) because of the carry-look-ahead circuit. But, let’s remind: the
price for the fastest solution is always too big! For optimal solutions see [Omondi ’94].

2.1.8 Comparator

Comparing functions are used in decisions. Numbers are compared to decide if they are equal or to
indicate the biggest one. The n-bit comparator, COMPn, is represented in Figure 2.18a. The numbers
to be compared are the n-bit positive integers a and b. Three are the outputs of the circuit: lt out,
indicating by 1 that a < b, eq out, indicating by 1 that a = b, and gt out, indicating by 1 that a > b.
Three additional inputs are used as expanding connections. On these inputs is provided information
about the comparison done on the higher range, if needed. If no higher ranges of the number under
comparison, then these thre inputs must be connected as follows: lt in = 0, eq in = 1, gt in = 0.

COMP

-
-
-

-
-
-

lt in

eq in

gt in

lt out

eq out

gt out

? ?

a[n-1:0] b[n-1:0]

ECOMP

-
-
-

lt out

eq out

gt out

-
-
-

lt in

eq in

gt in

? ?

a[i] b[i]

a[n-1] b[n-1] a[n-2:0] b[n-2:0]

COMPn−1

a.

c.

b.

ECOMP

-
-
-

-
-
-

lt in

eq in

gt in

? ? -
-
-

lt out

eq out

gt out

? ?

Figure 2.18: The n-bit comparator, COMPn. a. The n-bit comparator. b. The elementary comparator. c. A
recursive rule to built an COMPn, serially connecting an ECOMP with a COMPn−1

The comparison is a numerical operation which starts inspecting the most significant bits of the
numbers to be compared. If a[n−1] = b[n−2], then the result of the comparison is given by comparing
a[n−2 : 0] with b[n−1 : 0], else, the decision can be done comparing only a[n−1] with b[n−1] (using
an elementary comparator, ECOMP =COMP1 (see Figure 2.18b)), ignoring a[n−2 : 0] and b[n−2 : 0].
Results a recursive definition for the comparator circuit.

Definition 2.9 An n-bit comparator, COMPn, is obtained serially connecting an COMP1 with a
COMPn−1. The Verilog code describing COMP1 (ECOMP) follows:

50 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : e comp . v
C i r c u i t name : E l e m e n t a r y Comparator
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an e l e m e n t a r y compara tor
** * /

module e comp (input a ,
b ,
l t i n , / / t h e p r e v i o u s e comp d e c i d e d l t
e q i n , / / t h e p r e v i o u s e comp d e c i d e d eq
g t i n , / / t h e p r e v i o u s e comp d e c i d e d g t

output l t o u t , / / a < b
e q o u t , / / a = b
g t o u t) ; / / a > b) ;

a s s i g n l t o u t = l t i n | e q i n & ˜ a & b ,
e q o u t = e q i n & ˜ (a ˆ b) ,
g t o u t = g t i n | e q i n & a & ˜ b ;

endmodule

⋄

The size and the depth of the circuit resulting from the previous definition are in O(n). The size is
very good, but the depth is too big for a high speed application.

An optimal comparator is defined using another recursive definition based on the divide et impera
principle.

Definition 2.10 An n-bit comparator, COMPn, is obtained using two COMPn/2, to compare the higher
and the lower half of the numbers (resulting {lt out high, eq out high, gt out high} and
{lt out low, eq out low, gt out low}), and a COMP1 to compare gt out low with lt out low

in the context of {lt out high, eq out high, gt out high}. The resulting circuit is represented in
Figure 2.19. ⋄

The resulting circuit is a log-level binary tree of ECOMPs. The size remains in the same order4, but
now the depth is in O(log n).

The bad news is: the HDL languages we have are unable to handle safely recursive definitions. The
good news is: the synthesis tools provide good solutions for the comparison functions starting from a
very simple behavioral description.

2.2 The many-output random circuit: Read Only Memory

The simple solution for the following many-output random circuits having the same inputs:

f (xn−1, . . .x0)

4The actual size of the circuit can be minimized takeing into account that: (1) the compared input of ECOMP cannot be
both 1, (2) the output eq out of one COMPn/2 is unused, and (3) the expansion inputs of both COMPn/2 are all connected to
fix values.

2.2. THE MANY-OUTPUT RANDOM CIRCUIT: READ ONLY MEMORY 51

COMPn/2

-

-
-

? ?
“1”

COMPn/2

-

-
-

? ?
“1”

ECOMP

-
-
-

? ? -
-
-

-

lt out

eq out

gt out

a[n-1:n/2] b[n-1:n/2] a[n/2-1:0] b[n/2-1:0]

Figure 2.19: The optimal n-bit comparator. Applying the divide et impera principle a COMPn is built using
two COMPn/2 and an ECOMP. Results a log-depth circuit with the size in O(n).

g(xn−1, . . .x0)

. . .

s(xn−1, . . .x0)

is to connect in parallel many one-output circuits. The inefficiency of the solution become obvious when
the structure of the MUX presented in Figure 2.9 is considered. Indeed, if we implement many MUXs
with the same selection inputs, then the decoder DCDn is replicated many time. One DCD is enough for
many MUXs if the structure from Figure 2.20a is adopted. The DCD circuit is shared for implementing
the functions f , g, . . .s. The shared DCD is used to compute all possible minterms (see Appendix C.4)
needed to compute an n-variable Boolean function.

Figure 2.20b is an example of using the generic structure from Figure 2.20a to implement a specific
many-output function. Each output is defined by a different binary string. A 0 removes the associated
AND, connecting the corresponding OR input to 0, and an 1 connects to the corresponding i-th input of
each OR to the i-th DCD output. The equivalent resulting circuit is represented in Figure 2.20c, where
some OR inputs are connected to ground and other directly to the DCD’s output. Therefore, we use a
technology allowing us to make “programmable” connections of some wires to other (each vertical line
must be connected to one horizontal line). The uniform structure is “programmed” with a more or less
random distribution of connections.

If De Morgan transformation is applied, the circuit from Figure 2.20c is transformed in the circuit
represented in Figure 2.21a, where instead of an active high outputs DCD an active low outputs DCD is
considered and the OR gates are substituted with NAND gates. The DCD’s outputs are generated using
NAND gates to decode the input binary word, the same as the gates used to encode the output binary
word. Thus, a multi-output Boolean function works like a trans-coder. A trans-coder works translating
all the binary input words into output binary words. The list of input words can by represented as an
ordered list of sorted binary numbers starting with 0 and ending with 2n −1. The table from Figure 2.22
represents the truth table for the multi-output function used to exemplify our approach. The left column
contains all binary numbers from 0 (on the first line) until 2n − 1 = 11 . . .1 (on the last line). In the
right column the desired function is defined associating to each input an output. If the left column is an
ordered list, the right column has a more or less random content (preferably more random for this type
of solution).

52 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

DCD

6n

fm−1 fm−2 f0 gm−1 gm−2 g0 sm−1 sm−2 s0

f (xn−1 , . . .x0) g(xn−1 , . . .x0) s(xn−1 , . . .x0)

xn−1 , . . .x0

DCD

Om−1

6n

0 0 0 01 1 1 1 1

f (xn−1 , . . .x0) g(xn−1 , . . .x0) s(xn−1 , . . .x0)

xn−1 , . . .x0

DCD

c.

b.

a.

Om−1

Om−2

O0

Om−1

Om−2

O0

Om−2

O0

6n

f (xn−1 , . . .x0) g(xn−1 , . . .x0) s(xn−1 , . . .x0)

xn−1 , . . .x0

Figure 2.20: Many-output random circuit. a. One DCD and many AND-OR circuits. b. An example. c.
The version using programmable connections.

2.2. THE MANY-OUTPUT RANDOM CIRCUIT: READ ONLY MEMORY 53

DCD

6

f g s

xn−1 , . . .x0

O′
m−1

O′
m−1

O′
0

a.

DCD

6
?xn−1 , . . .x0

O′
m−1

O′
m−1

O′
0

? ?
f g s

b.

VDD

Figure 2.21: The internal structure of a Read Only Memory used as trans-coder. a. The internal
structure. b. The simplified logic symbol where a thick vertical line is used to represent an m-input NAND gate.

Input Output

00 ... 00 11 ... 0

... ...

11 ... 10 10 ... 0

11 ... 11 01 ... 1

Figure 2.22: The truth table for a multi-output Boolean function. The input rows can be seen as ad-
dresses, from 00 . . .0 to 11 . . .1 and the output columns as the content stored at the corresponding addresses.

The trans-coder circuit can be interpreted as a fix content memory. Indeed, it works like a memory
containing at the location 00...00 the word 11...0, ... at the location 11...10 the word 10...0, and at the last
location the word 01...1. The name of this kind of programmable device is read only memory, ROM.

Example 2.6 The trans-coder from the binary coded decimal numbers to 7 segments display is a com-
binational circuit with 4 inputs, a,b,c,d, and 7 outputs A,B,C,D,E,F,G, each associated to one of the
seven segments. Therefore we have to solve 7 functions of 4 variables (see the truth table from Figure
2.24).

The Verilog code describing the circuit is:

/ * **
F i l e name : e v e n s e g m e n t s . v
C i r c u i t name : Seven −Segment T r a n s c o d e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e seven −segment t r a n s c o d e r
** * /

module s e v e n s e g m e n t s (output reg [6 : 0] o u t ,
input [3 : 0] i n) ;

always @(i n) case (i n)
4 ’ b0000 : o u t = 7 ’ b0000001 ;
4 ’ b0001 : o u t = 7 ’ b1001111 ;
4 ’ b0010 : o u t = 7 ’ b0010010 ;
4 ’ b0011 : o u t = 7 ’ b0000110 ;

54 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

4 ’ b0100 : o u t = 7 ’ b1001100 ;
4 ’ b0101 : o u t = 7 ’ b0100100 ;
4 ’ b0110 : o u t = 7 ’ b0100000 ;
4 ’ b0111 : o u t = 7 ’ b0001111 ;
4 ’ b1000 : o u t = 7 ’ b0000000 ;
4 ’ b1001 : o u t = 7 ’ b0000100 ;
d e f a u l t o u t = 7 ’ bxxxxxxx ;

endcase
endmodule

The first solution is a 16-location of 7-bit words ROM (see Figure 2.23a. If inverted outputs are
needed results the circuit from Figure 2.23b.

???????

DCD4

x3 x2 x1 x0

A B C D E F G

15

0

???????

DCD4

x3 x2 x1 x0

A’ B’ C’ D’ E’ F’ G’

15

0

6
6

666
a b c d

6
6

666
a b c d

a. b.

Figure 2.23: The CLC as trans-coder designed serially connecting a DCD with an encoder. Example:
BCD to 7-segment trans-coder. a. The solution for non-inverting functions. b. The solution for inverting functions.

⋄

2.3 Concluding about combinational circuits

The goal of this chapter was to introduce the main type of combinational circuits. Each presented circuit
is important first, for its specific function and second, as a suggestion for how to build similar ones. There
are a lot of important circuits undiscussed in this chapter. Some of them are introduced as problems at
the end of this chapter.

Simple circuits vs. complex circuits Two very distinct class of combinational circuits are emphasized.
The first contains simple circuits, the second contains complex circuits. The complexity of a circuit is
distinct from the size of a circuit. Complexity of a circuit is given by the size of the definition used
to specify that circuit. Simple circuits can achieve big sizes because they are defined using a repetitive
pattern. A complex circuit can not be very big because its definition is dimensioned related with its size.

2.3. CONCLUDING ABOUT COMBINATIONAL CIRCUITS 55

abcd ABCDEFG

0000 1111110

0001 0110000

0010 1101101

0011 1111001

0100 0110011

0101 1011011

0110 1011111

0111 1110000

1000 1111111

1001 1111011

1010 -------

....

1111 -------

Figure 2.24: The truth table for the 7 segment trans-coder. Each binary represented decimal (in the left
columns of inputs) has associated a 7-bit command (in the right columns of outputs) for the segments used for
display. For unused input codes the output is “don’t care”.

Simple circuits have recursive definitions Each simple circuit is defined initially as an elementary
module performing the needed function on the smallest input. Follows a recursive definition about how
can be used the elementary circuit to define a circuit working for any input dimension. Therefore, any
big simple circuit is a network of elementary modules which expands according to a specific rule. Unfor-
tunately, the actual HDL, Verilog included, are not able to manage without (strong) restrictions recursive
definitions neither in simulation nor in synthesis. The recursiveness is a property of simple circuits to be
fully used only for our mental experiences.

Speeding circuits means increase their size Depth and size evolve in opposite directions. If the speed
increases, the pay is done in size, which also increases. We agree to pay, but in digital systems the pay is
not fair. We conjecture the bigger is performance the bigger is the unit price. Therefore, the pay increases
more than the units we buy. It is like paying urgency tax. If the speed increases n times, then the size of
the circuit increases more than n times, which is not fair but it is real life and we must obey.

Big sized complex circuits require programmable circuits There are software tolls for simulating
and synthesizing complex circuits, but the control on what they generate is very low. A higher level
of control we have using programmable circuits such as ROMs or PLA. PLA are efficient only if non-
arithmetic functions are implemented. For arithmetic functions there are a lot of simple circuits to be
used. ROM are efficient only if the randomness of the function is very high.

Circuits represent a strong but ineffective computational model Combinational circuits represent
a theoretical solution for any Boolean function, but not an effective one. Circuits can do more than
algorithms can describe. The price for their universal completeness is their ineffectiveness. In the general
case, both the needed physical structure (a tree of EMUXs) and the symbolic specification (a binary
string) increase exponentially with n (the number of binary input variables). More, in the general case
only a family of circuits represents the solution.

56 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

To provide an effective computational tool new features must be added to a digital machine and some
restrictions must be imposed on what is to be computable. The next chapters will propose improvements
induced by successively closing appropriate loops inside the digital systems.

2.4 Problems

Gates

Problem 2.1 Determine the relation between the total number, N, of n-input m-output Boolean functions
(f : {0,1}n →{0,1}m) and the numbers n and m.

Problem 2.2 Let be a circuit implemented using 32 3-input AND gates. Using the appendix evaluate the
area if 3-input gates are used and compare with a solution using 2-input gates. Analyze two cases: (1)
the fan-out of each gate is 1, (2) the fan-out of each gate is 4.

Decoders

Problem 2.3 Draw DCD4 according to Definition 2.9. Evaluate the area of the circuit, using the cell
library from Appendis E, with the placement efficiency5 70%. Estimate the maximum propagation time.
The wires are considered enough short to be ignored their contribution in delaying signals.

Problem 2.4 Design a constant depth DCD4. Draw it. Evaluate the area and the maximum propagation
time using the cell library from Appendix E. Compare the results with the results of the previous problem.

Problem 2.5 Propose a recursive definition for DCDn using EDMUXs. Evaluate the size and the depth
of the resulting structure.

Multiplexors

Problem 2.6 Draw MUX4 using EMUX. Make the structural Verilog design for the resulting circuit.
Organize the Verilog modules as hierarchical as possible. Design a tester and use it to test the circuit.

Problem 2.7 Define the 2-input XOR circuit using an EDCD and an EMUX.

Problem 2.8 Make the Verilog behavioral description for a constant depth left shifter by maximum m−1
positions for m-bit numbers, where m = 2n. The “header” of the project is:

module l e f t s h i f t (output [2m− 2 : 0] o u t ,
input [m− 1 : 0] i n ,
input [n − 1 : 0] s h i f t) ;

. . .
endmodule

5For various reason the area used to place gates on Silicon can not completely used. Some unused spaces remain between
gates. Area efficiency measures the degree of area use.

2.4. PROBLEMS 57

Problem 2.9 Make the Verilog structural description of a log-depth (the depth is log216 = 4) left shifter
by 16 positions for 16-bit numbers. Draw the resulting circuit. Estimate the size and the depth comparing
the results with a similar shifter designed using the solution of the previous problem.

Problem 2.10 Draw the circuit described by the Verilog module leftRotate in the subsection Shifters.

Problem 2.11 A barrel shifter for m-bit numbers is a circuit which rotate the bits the input word a
number of positions indicated by the shift code. The “header” of the project is:

module b a r r e l s h i f t (output [m− 1 : 0] o u t ,
input [m− 1 : 0] i n ,
input [n − 1 : 0] s h i f t) ;

. . .
endmodule

Write a behavioral code and a minimal structural version in Verilog.

2.4.1 Recursive circuits
Problem 2.12 A comparator is circuit designed to compare two n-bit positive integers. Its definition is:

module c o m p a r a t o r (input [n − 1 : 0] i n 1 , / / f i r s t operand
input [n − 1 : 0] i n 2 , / / s econd operand
output eq , / / i n 1 = i n 2
output l t , / / i n 1 < i n 2
output g t) ; / / i n 1 > i n 2

. . .
endmodule

1. write the behavioral description in Verilog

2. write a structural description optimized for size

3. design a tester which compare the results of the simulations of the two descriptions: the behavioral
description and the structural description

4. design a version optimized for depth

5. define an expandable structure to be used in designing comparators for bigger numbers in two
versions: (1) optimized for depth, (2) optimized for size.

Problem 2.13 Design a comparator for signed integers in two versions: (1) for negative numbers rep-
resented in 2s complement, (2) for negative numbers represented a sign and number.

Problem 2.14 Design an expandable priority encoder with minimal size starting from an elementary
priority encoder, EPE, defined for n = 2. Evaluate its depth.

58 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

Problem 2.15 Design the Verilog structural descriptions for an 8-input adder in two versions: (1) using
8 FAs and a ripple carry connection, (2) using 8 HAs and a carry look ahead circuit. Evaluate both
solutions using the cell library from Appendix E.

Problem 2.16 Design an expandable carry look-ahead adder starting from an elementary circuit.

Problem 2.17 Design an enabled incrementer/decrementer circuit for n-bit numbers. If en = 1, then the
circuit increments the input value if inc = 1 or decrements the input value if inc = 0, else, if en = 0, the
output value is equal with the input value.

Problem 2.18 Design an expandable adder/subtracter circuit for 16-bit numbers. The circuit has a
carry input and a carry output to allow expandability. The 1-bit command input is sub. For sub = 0 the
circuit performs addition, else it subtracts. Evaluate the area and the propagation time of the resulting
circuit using the cell library from Appendix E.

2.4.2 Random circuits

Problem 2.19 The Gray counting means to count, starting from 0, so as at each step only one bit is
changed. Example: the three-bit counting means 000, 001, 011, 010, 110, 111, 101, 100, 000, ... Design
a circuit to convert the binary counting into the Gray counting for 8-bit numbers.

Problem 2.20 Design a converter from Gray counting to binary counting for n-bit numbers.

Problem 2.21 Write a Verilog structural description for ALU described in Example 2.3. Identify the
longest path in the resulting circuit. Draw the circuit for n = 8.

Problem 2.22 Design in Verilog the behavioral and the structural description of a multiply and accu-
mulate circuit, MACC, performing the function: (a×b)+ c, where a and b are 16-bit numbers and c is
a 24-bit number.

Problem 2.23 Design the combinational circuit for computing

c =
7

∑
i=0

ai ×bi

where: ai,bi are 16-bit numbers. Optimize the size and the depth of the 8-number adder using a technique
learned in one of the previous problem.

Problem 2.24 Exemplify the serial composition, the parallel composition and the serial-parallel com-
position in 0 order systems.

Problem 2.25 Write the logic equations for the BCD to 7-segment trans-coder circuit in both high active
outputs version and low active outputs version. Minimize each of them individually. Minimize all of them
globally.

Problem 2.26 Applying removing rules and reduction rules find the functions performed by 5-level uni-
versal circuit programmed by the following binary strings:

1. (0100)8

2.5. PROJECTS 59

2. (01000010)4

3. (0100001011001010)2

4. 024(01000010)

5. 00000001001001001111000011000011

Problem 2.27 Compute the biggest size and the biggest depth of an n-input, 1-output circuit imple-
mented using the universal circuit.

2.5 Projects

Project 2.1 Finalize Project 1.1 using the knowledge acquired about the combinational structures in
this chapter.

Project 2.2 Design a combinational floating point single precision (32 bit) multiplier according to the
ANSI/IEEE Standard 754-1985, Standard for Binary Floating Point Arithmetic.

60 CHAPTER 2. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

Chapter 3

MEMORIES:
First order, 1-loop digital systems

The magic images were placed on the wheel of the memory sys-
tem to which correspondent other wheels on which were remem-
bered all the physical contents of the terrestrial world – ele-
ments, stones, metals, herbs, and plants, animals, birds, and so
on – and the whole sum of the human knowledge accumulated
through the centuries through the images of one hundred and
fifty great men and inventors. The possessor of this system thus
rose above time and reflected the whole universe of nature and
of man in his mind.

Frances A. Yates1

A true memory is an associative one. Please do not confuse the
physical support – the random access memory – with the func-
tion – the associative memory.

According to the mechanisms described in Chapter 3 of this book, the step toward a new class of
circuits means to close a new loop. This will be the first loop which closed over the combinational circuits
already presented. Thus, a first degree of autonomy will be reached in digital systems: the autonomy of
the state of the circuit. Indeed, the state of the circuit will be partially independent by the input signals,
i.e., the output of the circuits do not depend on or not respond to certain input switching.

In this chapter we introduce some of the most important circuits used for building digital systems.
The basic function in which they are involved is the memory function. Some events on the input of a
memory circuit are significant for the state of the circuits and some are not. Thus, the circuit “memo-
rizes”, by the state it reaches, the significant events and “ignores” the rest. The possibility to have an
“attitude” against the input signals is given to the circuit by the autonomy induced by its internal loop.
In fact, this first loop closed over a simple combinational circuit makes insignificant some input signals
because the circuit is able to compensate their effect using the signals received back from its output.

The main circuits with one internal loop are:
1She was Reader in the History of the Renaissance at the University of London. The quote is from Giordano Bruno and the

Hermetic Tradition. Her other books include The Art of Memory.

61

62 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

• the elementary latch - the basic circuit in 1-OS, containing two appropriately loop-coupled gates;
the circuit has two stable states being able to store 1 bit of information

• the clocked latch - the first digital circuit which accepts the clock signal as an input distinct from
data inputs; the clock signal determines by its active level when the latch is triggered, while the
data input determines how the latch switches

• the master-slave flip-flop - the serial composition in 1-OS, built by two clocked latches serially
connected; results a circuit triggered by the active transition of clock

• the random access memory (RAM) - the parallel composition in 1-OS, containing a set of n
clocked elementary latches accessed with a DMUXlog2 n and a MUXlog2 n

• the register - the serial-parallel composition in 1-OS, made by parallel connecting master-slave
flip-flops.

These first order circuits don’t have a direct computational functionality, but are involved in support-
ing the following main processes in a computational machine:

• offer the storage support for implementing various memory functions (register files, stacks, queues,
content addressable memories, associative memories, ...)

• are used for synchronizing different subsystems in a complex system (supports the pipeline mech-
anism, implements delay lines, stores the state of automata circuits).

3.1 Stable/Unstable Loops

There are two main types of loops closed over a combinational logic circuit: loops generating a stable
behavior and loops generating an unstable behavior. We are interested in the first kind of loop that
generates a stable state inside the circuit. The other loop cannot be used to build anything useful for
computational purposes, except some low performance signal generators.

The distinction between the two types of loops is easy exemplified closing loops over the simplest
circuit presented in the previous chapter, the elementary decoder (see Figure 3.1a).

The unstable loop is closed connecting the output y0 of the elementary decoder to its input x0 (see
Figure 3.1b). Suppose that y0 = 0 = x0. After the time interval equal with tpLH

2 the output y0 becomes
1. After another time interval equal with tpHL the output y0 becomes again 0. And so on, the two outputs
of the decoder are unstable oscillating between 0 and 1 with a period of time Tosc = tpLH + tpHL, or the
frequency fosc = 1/(tpLH + tpHL).

The stable loop is obtained connecting the output y1 of the elementary decoder to the input x0 (see
Figure 3.1c). If y1 = 0 = x0, then y0 = 1 fixing again the value 0 to the output y1. If y1 = 1 = x0,
then y0 = 0 fixing again the value 1 to the output y1. Therefore, the circuit has two stable states. (For
the moment we don’t know how to switch from one state to another state, because the circuit has no input
to command the switching from 0 to 1 or conversely. The solution comes soon.)

2the propagation time through the inverter when the output switches from the low logic level to the high level.

3.2. ELEMENTARY STRUCTURES 63

y1

EDCD
x0

y0

y1

EDCD
x0

y0

x0

y0

y1

out1

out2

a.

b. c.

Figure 3.1: The two loops closed over an elementary decoder. a. The simplest combinational circuit: the
one-input, elementary decoder. b. The unstable, inverting loop containing one (odd) inverting logic level(s). c.
The stable, non-inverting loop containing two (even) inverting levels.

What is the main structural distinction between the two loops?

• The unstable loop has an odd number of inverting levels, thus the signal comes back to the output
having the complementary value.

• The stable loop has an even number of inverting levels, thus the signal comes back to the output
having the same value.

Example 3.1 Let be the circuit from Figure 3.2a, with 3 inverting levels on its internal loop. If the
command input C is 0, then the loop is “opened”, i.e., the flow of the signal through the circular way is
interrupted. If C switches in 1, then the behavior of the circuit is described by the wave forms represented
in Figure 3.2b. The circuit generates a periodic signal with the period Tosc = 3(tpLH +tpHL) and frequency
fosc = 1/3(tpLH + tpHL). (To keep the example simple we consider that tpLH and tpHL have the same value
for the three circuits.)⋄

In order to be useful in digital applications, a loop closed over a combinational logic circuit must
contain an even number of inverting levels for all binary combinations applied to its inputs. Else, for
certain or for all input binary configurations, the circuit becomes unstable, unuseful for implementing
computational functions. In the following, only even (in most of cases two) number of inverting levels
are used for building the circuits belonging to 1-OS.

3.2 Elementary Structures

3.2.1 Elementary Latches

This chapter is devoted to introduce the elementary structure used to build memory systems: flip-flops,
registers and random access memories. In order to be stable, all these elementary circuits have one loops
with even (zero or two) inverting levels.

The reset-only latch is the AND loop circuit represented in Figure 3.3a. The passive input value
forAND loop is 1 ((Reset)’ = 1), while the active input value is 0 ((Reset)’ = 0). If the passive
input value is applied, then the output of the circuits is not affected (the output depends only by the other

64 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

6

-
t

6

-
t

6

-
t

6

-
t

C

l1

out

- �

- �

tpHL

tpLH

b.

l2

l1

a.

C

l2

out

Figure 3.2: The unstable loop. The circuit version used for a low-cost and low-performance clock generator.
a. The circuit with a three (odd) inverting circuits loop coupled. b. The wave forms drawn takeing into account
the propagation times associated to the low-high transitions (tpLH) and to the high-low transitions (tpHL).

input of the AND circuit). It can be 0 or 1, depending by the previous values applied on the input. When
the active value is temporary applied, then the state of the circuit (the value of its output) switches in 0
and remains forever in this state, independent on the input value. We conclude that the circuit is sensitive
to the signal 0 temporarily applied on its input, i.e., it is able to memorize forever the event 0.

The set-only latch is the OR loop circuit represented in Figure 3.3b. The passive value for OR loop is
0 (Set = 0) while the active input value is 1 (Set = 1). If the passive input value is applied, then the
output of the circuits is not affected (the output depends only by the other input of the OR circuit). It can
be 0 or 1, depending by the previous values applied on the input. When the active value is temporary
applied, then the state of the circuit (the value of its output) switches in 1 and remains forever in this
state, independent on the input value. We conclude that the circuit is sensitive to the signal 1 temporarily
applied on its input, i.e., it is able to memorize forever the event 1.

The heterogenous set-reset latch results by combining the previous two latches (see Figure 3.3c). The
circuit has zero inverting levels on the loop and two inputs: one active-low (active on 0) input, R’, to
reset the circuit (out = 0) and another active-high (active on 1) input, S, to set the circuit (out = 0).
The value 0 must remain to the input R’ at least 2tpHL for a stable switching of the circuit into the state
0, because the loop depth in the state 1 is given by the propagation time through both gates that switch
from high to low. For a similar reason, the value 1 must remain to the input S at least 2tpLH when the
circuit must switch in 1.

The symmetric set-reset latch is obtained by applying De Morgan’s law to the heterogenous elemen-
tary latch. In the first version, the OR circuit is transformed by De Morgan’s law resulting the circuit
from Figure 3.3d. The second version (see Figure 3.3e) is obtained applying the same law to the AND
circuit. The passive input value for the NAND elementary latch is 1, while for the NOR elementary latch

3.2. ELEMENTARY STRUCTURES 65

andLoopOut

orLoopOut

setRestLatchOut

c.

(Reset)’

Set

andLoopOut

orLoopOut

Set

b.

a.

R’

S

(Reset)’

6

-

t

t

-

6

-

6

t
-

6

t
-

6

�

t

d.

- �

- �

�- -
tpLH

tpHL

tpLH

2tpHL
setRestLatchOut

Figure 3.3: The elementary latches. Using the stable non-inverting loop (even inverting levels) elementary
storage elements are built. a. AND loop provides a reset-only latch. b. OR loop provides the set-only version
of a storage element. c. The heterogeneous elementary set-reset latch results combining the reset-only latch with
the set-only latch. d. Symmetric elementary NAND latch with low-active commands S’ and R’. e. Symmetric
elementary NOR latch with high-active commands S and R.

it is 0. The avtive input value for the NAND elementary latch is 0, while for the NOR elementary latch
it is 1. The symmetric structure of these latches have two outputs, Q and Q’.

VeriSim 3.1 The Verilog description of NAND latch is:

module elementary_latch(output out, not_out,

input not_set, not_reset);

nand #2 nand0(out, not_out, not_set);

nand #2 nand1(not_out, out, not_reset);

endmodule

For testing the behavior of the NAND latch just described, the following module is used:

module test_shortest_input;

reg not_set, not_reset;

initial begin not_set = 1;

not_reset = 1;

#10 not_reset = 0; // reset

#10 not_reset = 1;

66 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

#10 not_set = 0; // set

#10 not_set = 1; // 1-st experiment

//#1 not_set = 1; // 2-nd experiment

//#2 not_set = 1; // 3-rd experiment

//#3 not_set = 1; // 4-th experiment

#10 not_set = 0; // another set

#10 not_set = 1;

#10 not_reset = 0; // reset

#10 not_reset = 1;

#10 $stop;

end

elementary_latch dut(out, not_out, not_set, not_reset);

endmodule

In the first experiment the set signal is activated on 0 during 10ut (ut stands for unit time). In the
second experiment (comment the line 9 and de-comment the line 10 of the test module), a set signal of 1ut
is unable to switch the circuit. The third experiment, with 2ut set signal, generate an unstable simulated,
but non-actual, behavior (to be explained by the reader). The fourth experiment, with 3ut set signal,
determines the shortest set signal able to switch the latch (to be explained by the reader). ⋄

In order to use these latches in more complex applications we must solve two problems.

The first latch problem : the inputs for indicating how the latch switches are the same as the inputs
for indicating when the latch switches; we must find a solution for declutching the two actions building
a version with distinct inputs for specifying “how” and “when”

The second latch problem : if we apply synchronously S’=0 and R’=0 on the inputs of NAND latch
(or S=1 and R=1 on the inputs of OR latch), i.e., the latch is commanded “to switch in both states
simultaneously”, then we can not predict what is the state of the latch after the ending of these two active
signals.

The first latch problem will be partially solved in the next paragraph introducing the clocked latch, but
the problem will be completely solved only by introducing the master-slave structure. The second latch
problem will be solved only in the next chapter with the JK flip-flop, because the circuit needs more
autonomy to “solve” the contradictory command that “says him” to switch in both states simultaneously.
And, as we already know, more autonomy means at least a new loop.

Application: debouncing circuit Interfacing digital systems with the real world involves sometimes
the use of mechanical switching contacts. The bad news is that this kind of contact does not provide an
accurate transition. Usually when it closes, a lot of parasitic bounces come with the main transition (see
wave forms S’ and R’ in Figure 3.4).

The debouncing circuit provide clean transitions when digital signals must generated by electro-
mechanical switches. In Figure 3.4 an RS latch is used to clear up the bounces generated by a two-
position electro-mechanical switch. The elementary latch latches the first transition from VDD to 0. The
bounces that follow have no effect on the output Q because the latch is already switched by the first
transition in the state they intend to lead the circuit.

3.2. ELEMENTARY STRUCTURES 67

.........................
.

I

	

Q
S’

R’

S’

Q

R’

VDD

VDD

-

-

-

6

6

6

time

time

time

Figure 3.4: The debouncing circuit.

3.2.2 Elementary Clocked Latches

In order to start solving the first latch problem the elementary latch is supplemented with two gates used
to validate the data inputs only during the active level of clock. Thus the clocked elementary latch is
provided.

Q Q’

S R
CK

a.

RSL

? ??

? ?

S RCK

Q Q’

active level
z

b.

S’ R’

Figure 3.5: Elementary clocked latch. The transparent RS clocked latch is sensitive (transparent) to the input
signals during the active level of the clock (the high level in this example). a. The internal structure. b. The logic
symbol.

The NAND latch is used to exemplify (see Figure 3.5a) the partial separation between how and when.
The signals R’ and S’ for the NAND latch are generated using two 2-input NAND gates. If the latch must
be set, then on the input S we apply 1, R is maintained in 0 and, only after that, the clock is applied, i.e.,
the clock input CK switches temporary in 1. In this case the active level of the clock is the high level.
For reset, the procedure is similar: the input R is activated, the input S is inactivated, and then the clock
is applied.

We said that this approach allows only a partial declutching of how by when because on the active
level of CK the latch is transparent, i.e., any change on the inputs S and R can modify the state of the
circuit. Indeed, if CK = 1 and S or R is activated the latch is set or reset, and in this case how and when

68 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

are given only by the transition of these two signals, S for set or R for reset. The transparency will be
avoided only when, in the next subsection, the transition of the output will be triggered by the active edge
of clock.

The clocked latch does not solve the second latch problem, because for R = S = 1 the end of the
active level of CK switches the latch in an unpredictable state.

VeriSim 3.2 The following Verilog code can be used to understand how the elementary clocked latch
works.

module clocked_nand_latch(output out, not_out,

input set, reset, clock);

elementary_latch the_latch(out, not_out, not_set, not_reset);

nand #2 nand2(not_set, set, clock);

nand #2 nand3(not_reset, reset, clock);

endmodule

⋄

3.2.3 Data Latch

In the first order circuits class the second latch problem can be only avoided, not removed, defining a
restriction on the input of the clocked latch. Indeed, introducing an inverter between the inputs of the RS
clocked latch, as is shown in Figure 3.6a, the ambiguous command (simultaneous set and reset) can not
be applied. We name the new input D (from Data). Now, the situation R = S = 1 is avoided. The output
is synchronized with the clock only if on the active level of CK the input D is stable.

RSL DL

?

? ? ? ?

? ?

a. b.

D

S R

Q Q’ Q Q’

D CK

c. QQ’

D

CK

Figure 3.6: The data latch. Imposing the restriction R = S′ to an RS latch results the D latch without non-
predictable transitions (R = S = 1 is not anymore possible). a. The structure. b. The logic symbol. c. An improved
version for the data latch internal structure.

The output of this new circuit, called D latch, follows all the time the input D. Therefore, the auton-
omy of this circuit is questionable because act only in the time when the clock is inactive (on the inactive
level of the clock). We say D latch is transparent on the active level of the clock signal, i.e, the output is
sensitive to any input change during the active level of clock.

VeriSim 3.3 The following Verilog code can be used to describe the behavior of a D latch.

module data_latch(output reg out,

output not_out,

input data, clock);

always @(data or clock) if (clock) out = data;

assign not_out = ~out;

endmodule

3.2. ELEMENTARY STRUCTURES 69

⋄

The main problem when data input D is separated by the timing input CK is the correlation between
them. When this two inputs change in the same time, or, more precisely, during the same small time
interval, some behavioral problems occur. In order to obtain a predictable behavior we must obey two
important time restrictions: the set-up time and the hold time.

In Figure 3.6c an improved version of the circuit is presented. The number of components are
minimized, the maximum depth of the circuit is maintained and the fan-in for the input D is reduced
from 2 to 1.

VeriSim 3.4 The following Verilog code can be used to understand how a D latch works.

module test_data_latch;

reg data, clock;

initial begin clock = 0;

forever #10 clock = ~clock;

end

initial begin data = 0;

#25 data = 1;

#10 data = 0;

#20 $stop;

end

data_latch dut(out, not_out, data, clock);

endmodule

module data_latch(output out, not_out,

input data, clock);

not #2 data_inverter(not_data, data);

clocked_nand_latch rs_latch(out, not_out, data, not_data, clock);

endmodule

The second initial construct from test data latch module can be used to apply data in different
relation with the clock. ⋄

The internal structure of the data latch (4 2-input NANDs and an inverter in Figure 3.6a) can be
minimized opening the loop by disconnecting the output Q from the input of the gate generating Q′, and
renaming it C. The resulting circuit is described by the following equation:

Q = ((D ·CK)′ · (C(D′ ·CK)′)′)′

which can be successively transformed as follows:

Q = ((D ·CK)+(C(D′ ·CK)′)

Q = ((D ·CK)+(C(D+CK′))

Q = D ·CK +C ·D+C ·CK′(anti−hasard redundancy)

Q = D ·CK +C ·CK′

70 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

EMUX

CK

D

Q

b. c.

CK

D

Q’ Q

in1

out

in0

sel

a.

.
..
..
..
..
..
..
...

C

Q Q’

D

CK

Figure 3.7: The optimized data latch. An optimized version is implemented closing the loop over an ele-
mentary multiplexer, EMUX. a. The resulting minimized structure for the circuit represented in Figure 3.6a. b.
Implementing the minimized form using only inverting circuits.

The resulting circuit is an elementary multiplexor (the selection input is CK and the selected inputs are
D, by CK = 1, and C, by CK = 0. Closing back the loop, by connecting Q to C, results the circuit
represented in Figure 3.7a. The actual circuit has also the inverted output Q′ and is implemented using
only inverted gates as in Figure 3.7b. The circuit from Figure 3.6a (using the RSL circuit from Figure
3.5a) is implemented with 18 transistors, instead of 12 transistors supposed by the minimized form Figure
3.7b.

VeriSim 3.5 The following Verilog code can be used as one of the shortest description for a D latch
represented in Figure 3.7a.

module mux_latch(output q ,

input d, ck);

assign q = ck ? d : q;

endmodule

In the previous module the assign statement, describing an elementary multiplexer, contains the loop.
The variable q depends by itself. The code is synthesisable. ⋄

The elementary decoder was used to start the discussion about latches (see Figure 3.1). We ended
using the elementary multiplexer to describe the most complex latch.

3.3 The Serial Composition: the Edge Triggered Flip-Flop

The first composition in 1-order systems is the serial composition, represented mainly by:

• the master-slave structure as the main mechanism that avoids the transparency of the storage struc-
tures

3.3. THE SERIAL COMPOSITION: THE EDGE TRIGGERED FLIP-FLOP 71

• the delay flip-flop, the basic storage circuit that allows to close the second loop in the synchronous
digital systems

• the serial register, the fist big and simple memory circuit having a recursive definition.

This class of circuits allows us to design synchronous digital systems. Starting from this point the
inputs in a digital system are divided in two categories:

• clock inputs for synchronizing different parts of a digital system

• data and control inputs that receive the “informational” flow inside a digital system.

3.3.1 The Master-Slave Principle

In order to remove the transparency of the clocked latches, disconnecting completely the how from the
when, the master-slave principle was introduced. This principle allows us to build a two state circuit
named flip-flop that switches synchronized with the rising or falling edge of the clock signal.

RSL

? ?
S R

Q Q’

CK

RSL

? ?
S R

Q Q’

CK

?

? ?

S R

Q Q’

CK

RSF-F

S R

Q Q’

? ?

? ?

?
active edge

9

a.

b.

RSF-F

S R

Q Q’

? ?

? ?

6

active edge

9

c.

Figure 3.8: The master-slave principle. Serially connecting two RS latches, activated with different levels of
the clock signal, results a non-transparent storage element. a. The structure of a RS master-slave flip-flop, active
on the falling edge of the clock signal. b. The logic symbol of the RS flip-flop.

The principle consists in serially connecting two clocked latches and in applying the clock signal in
opposite on the two latches (see Figure 3.8). In the exemplified embodiment the first latch is transparent
on the high level of clock and the second latch is transparent on the low level of clock. (The symmetric
situation is also possible: the first latch is transparent of the low level value of clock and the second no
the high value of clock.) Therefore, there is no time interval in which the entire structure is transparent.
In the first phase, CK = 1, the first latch is transparent - we call it the master latch - and it switches
according to the inputs S and R. In the second phase CK = 0 the second latch - the slave latch - is
transparent and it switches copying the state of the master latch. Thus the output of the entire structure
is modified only synchronized with the negative transition of CK. We say the RS master-slave flip-flop
switches with the falling (negative) edge of the clock. (The version triggered by the positive edge of
clock is also possible.)

The switching moment of a master-slave structure is determined exclusively by the active edge
of clock signal. Unlike the RS latch or data latch, which can sometimes be triggered (in the trans-
parency time interval) by the transitions of the input data (R, S or D), the master-slave flip-flop flips
only at the positive edge of clock (always @(posedge clock)) or at the negative edge of clock (always

72 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

@(negedge clock)) edge of clock, according with the values applied on the inputs R and S. The how is
now completely separated from the when. The first latch problem is finally solved.

VeriSim 3.6 The following Verilog code can be used to understand how a master-slave flip-flop works.

module master_slave(output out, not_out, input set, reset, clock);

wire master_out, not_master_out;

clocked_nand_latch master_latch(.out (master_out),

.not_out(not_master_out),

.set (set),

.reset (reset),

.clock (clock)),

slave_latch(.out (out),

.not_out(not_out),

.set (master_out),

.reset (not_master_out),

.clock (~clock));

endmodule

⋄

There are some other embodiments of the master-slave principle, but all suppose to connect latches
serially.

Three very important time intervals must catch our attention in designing digital systems with edge
triggered flip-flops:

set-up time – (tSU) – the time interval before the active edge of clock in which the inputs R and S must
stay unmodified allowing the correct switch of the flip-flop

edge transition time – (t+ or t−) – the positive or negative time transition of the clock signal (see Figure
??)

hold time – (tH) – the time interval after the active edge of CK in which the inputs R and S must be
stable (even if this time is zero or negative).

In the switching “moment”, that is approximated by the time interval tSU + t+ + tH or tSU + t− + tH
“centered” on the active edge (+ or −), the data inputs must evidently be stable, because otherwise the
flip-flop “does not know” what is the state in which “he” must switch.

Now, the problem of decoupling the how by the when is better solved. Although, this solution is not
perfect, because the ”moment” of the switch is approximated by the short time interval tSU + t+/−+ tH .
But the ”moment” does not exist for a digital designer. Always it must be a time interval, enough over-
estimated for an accurate work of the designed machine.

3.3.2 The D Flip-Flop

Another tentative to remove the second latch problem leads to a solution that again avoids only the
problem. Now the RS master-slave flip-flop is restricted to R = S′ (see Figure 3.9a). The new input is
named also D, but now D means delay. Indeed, the flip-flop resulting by this restriction, besides avoiding
the unforeseeable transition of the flip-flop, gains a very useful function: the output of the D flip-flop

3.3. THE SERIAL COMPOSITION: THE EDGE TRIGGERED FLIP-FLOP 73

follows the D input with a delay of one clock cycle. Figure 3.9c illustrates the delay effect of this kind of
flip-flop.

Warrning! D latch is a transparent circuit during the active level of the clock, unlike the D flip-flop
which is no time transparent and switches only on the active edge of the clock.

VeriSim 3.7 The structural Verilog description of a D flip-flop, provided only for simulation purpose,
follows.

module dff(output out, not_out,

input d, clock);

wire not_d;

not #2 data_inverter(not_d, d);

master_slave rs_ff(out, not_out, d, not_d, clock);

endmodule

c.

? ? ? ? ?

CK

D

Q

6
-

t

6
-

t

6
-

t

?D

a.

b.

RSF-F
S R

Q Q’

? ?Q Q’

DF-F
D

Q Q’

?

? ?

?

Figure 3.9: The delay (D) flip-flop. Restricting the two inputs of an RS flip-flop to D = S = R′, results an FF
with predictable transitions. a. The structure. b. The logic symbol. c. The wave forms proving the delay effect of
the D flip-flop.

The functional description currently used for a D flip-flop active on the negative edge of clock is:

module dff(output reg out ,

input d, clock);

always @(negedge clock) out <= d;

endmodule

⋄

The main difference between latches and flip-flops is that over the D flip-flop we can close a new
loop in a very controllable fashion, unlike the D latch which allows a new loop, but the resulting behavior
is not so controllable because of its transparency. Closing loops over D flip-flops result in synchronous
systems. Closing loops over D latches result asynchronous systems. Both are useful, but in the first kind
of systems the complexity is easiest manageable.

74 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

3.3.3 The Serial Register

Starting from the delay function of the last presented circuit (see Figure 3.9) a very important function
and the associated structure can be defined: the serial register. It is very easy to give a recursive definition
to this simple circuit.

Definition 3.1 An n-bit serial register, SRn, is made by serially connecting a D flip-flop with an SRn−1.
SR1 is a D flip-flop. ⋄

In Figure 3.10 is shown a SRn. It is obvious that SRn introduces a n clock cycle delay between its
input and its output. The current application is for building digital controlled “delay lines”.

DF-F

D

RSF-F

Q

Q’

S

R

Q

Q’-

- -

-
RSF-F

S

R

Q

Q’-

- -- . . .

. . .

. . .

IN

CK

OUT

Figure 3.10: The n-bit serial register (SRn). Triggered by the active edge of the clock, the content of each
RSF-F is loaded with the content of the previous RSF-F.

We hope that now it is very clear what is the role of the master-slave structure. Let us imagine a
“serial register built with D latches”! The transparency of each element generates the strange situation
in which at each clock cycle the input is loaded in a number of latches that depends by the length of the
active level of the clock signal and by the propagation time through each latch. Results an uncontrolled
system, useless for any application. Therefore, for controlling the propagation with the clock signal
we must use the master-slave, non-transparent structure of D flip-flop that switches on the positive or
negative edge of clock.

VeriSim 3.8 The functional description currently used for an n-bit serial register active on the positive
edge of clock is:

/ * **
F i l e name : s e r i a l r e g i s t e r . v
C i r c u i t name : S e r i a l r e g i s t e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n− b i t s e r i a l r e g i s t e r
** * /

module s e r i a l r e g i s t e r # (parameter n = 1024)
(output o u t ,

input in , enab l e , c l o c k) ;
reg [0 : n −1] s e r i a l r e g ;

a s s i g n o u t = s e r i a l r e g [n − 1] ;
always @(posedge c l o c k)

i f (e n a b l e) s e r i a l r e g <= { in , s e r i a l r e g [0 : n − 2]} ;
endmodule

⋄

3.4. THE PARALLEL COMPOSITION: THE RANDOM ACCESS MEMORY 75

3.4 The Parallel Composition: the Random Access Memory

The parallel composition in 1-OS provides the random access memory (RAM), which is the main storage
support in digital systems. Both, data and programs are stored on this physical support in different forms.
Usually we call these circuits improperly memories, even if the memory function is something more
complex, which suppose besides a storage device a specific access mechanism for the stored information.
A true memory is, for example, an associative memory (see the next subchapters about applications), or
a stack memory (see next chapter).

This subchapter introduces two structures:

• a trivial composition, but a very useful circuit: the n-bit latch

• the asynchronous random access memory (RAM),

both involved in building big but simple recursive structures.

3.4.1 The n-Bit Latch

The n-bit latch, Ln, is made by parallel connecting n data latches clocked by the same CK. The system
has n inputs and n outputs and stores an n-bit word. Ln is a transparent structure on the active level of the
CK signal. The n-bit latch must be distinguished by the n-bit register (see the next section) that switches
on the edge of the clock. In a synchronous digital system is forbidden to close a combinational loop over
Ln.

VeriSim 3.9 A 16-bit latch is described in Verilog as follows:

76 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : n l a t c h . v
C i r c u i t name : n−B i t La tch
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n− b i t l a t c h
** * /

module n l a t c h # (parameter n = 1 6) (output reg [n − 1 : 0] o u t ,
input [n − 1 : 0] i n ,
input c l o c k) ;

always @(i n or c l o c k)
i f (c l o c k == 1) / / t h e a c t i v e −h igh c l o c k v e r s i o n
/ / i f (c l o c k == 0) / / t h e a c t i v e −low c l o c k v e r s i o n

o u t = i n ;
endmodule

⋄

The n-bit latch works like a memory, storing n bits. The only deficiency of this circuit is due to the
access mechanism. We must control the value applied on all n inputs when the latch changes its content.
More, we can not use selectively the content of the latch. The two problems are solved adding some
combinational circuits to limit both the changes and the use of the stored bits.

3.4.2 Asynchronous Random Access Memory

Adding combinational circuits for accessing in a more flexible way an m-bit latch for write and read
operations, results one of the most important circuits in digital systems: the random access memory.
This circuit is the biggest and simplest digital circuit. And we can say it can be the biggest because it is
the simplest.

Definition 3.2 The m-bit random access memory, RAMm, is a linear collection of m D (data) latches par-
allel connected, with the 1-bit common data inputs, DIN. Each latch receives the clock signal distributed
by a DMUXlog2 m. Each latch is accessed for reading through a MUXlog2 m. The selection code is com-
mon for DMUX and MUX and is represented by the p-bit address code: Ap−1, . . . ,A0, where p = log2m.
⋄

The logic diagram associated with the previous definition is shown in Figure 3.11. Because no one
of the input signal is clock related, this version of RAM is considered an asynchronous one. The signal
WE ′ is the low-active write enable signal. For WE ′ = 0 the write operation is performed in the memory
cell selected by the address An−1, . . . ,A0.3 The wave forme describing the relation between the input
and output signals of a RAM are represented in Figure 3.12, where the main time restrictions are the
followings:

• tACC: access time - the propagation time from address input to data output when the read operation
is performed; it is defined as a minimal value

3The actual implementation of this system uses optimized circuits for each 1-bit storage element and for the access circuits.
See Appendix C for more details.)

3.4. THE PARALLEL COMPOSITION: THE RANDOM ACCESS MEMORY 77

DMUXp

O′
m−1E’

O′
1

O′
0

.

.

.

DL

CK D

Q

DL

CK D

Q

DL

CK D

Q

MUXp

i0
i1

im−1

? ? ?

�
�

�

.

.

.

. . .

. . .

? ? ?
6

?

Ap−1 . . .A0

DIN

DOUT�

-WE’

Figure 3.11: The principle of the random access memory (RAM). The clock is distributed by a DMUX
to one of m = 2p DLs, and the data is selected by a MUX from one of the m DLs. Both, DMUX and MUX use as
selection code a p-bit address. The one-bit data DIN can be stored in the clocked DL.

• tW : write signal width - the length of active level of the write enable signal; it is defined as the
shortest time interval for a secure writing

• tASU : address set-up time related to the occurrence of the write enable signal; it is defined as a
minimal value for avoiding to disturb the content of other than the storing cell selected by the
current address applied on the address inputs

• tAH : address hold time related to the end transition of the write enable signal; it is defined as a
minimal value for similar reasons

• tDSU : data set-up time related to the end transition of the write enable signal; it is defined as a
minimal value that ensure a proper writing

• tDH : data hold time related to the end transition of the write enable signal; it is defined as a minimal
value for similar reasons.

The just described version of a RAM represents only the asynchronous core of a memory subsystem,
which must have a synchronous behavior in order to be easy integrated in a robust design. In Figure
3.11 there is no clock signal applied to the inputs of the RAM. In order to synchronize the behavior of
this circuit with the external world, additional circuits must be added (see the first application in the next
subchapter: Synchronous RAM).

The actual organization of an asynchronous RAM is more elaborated in order to provide the storage
support for a big number of m-bit words.

VeriSim 3.10 The functional description of a asynchronous n = 2p m-bit words RAM follows:

78 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

-
6

-

t

6

t

-
6

t

-
6

t

DIN

DOUT -� -

� - � -�-

�-

� -

�tACC

tASU

tAH

tDSU tDH

� -tW

WE ′

a1 a2 a3

d(a1) d(a2) d(a3)

data in

data in

An−1 . . .A0

Figure 3.12: Read and write cycles for an asynchronous RAM. Reading is a combinational process of
selecting. The access time, tACC, is given by the propagation through a big MUX. The write enable signal must be
strictly included in the time interval when the address is stable (see tASU and tAH). Data must be stable related to
the positive transition of WE ′ (see tDSU and tDH).

/ * **
F i l e name : ram . v
C i r c u i t name : Asynchronous RAM
D e s c r i p t i o n : b e h a v i o r a l d e s c r i i p t i o n o f an a s y n c h r o n o u s random−a c c e s s

memory
** * /

module ram (input [m− 1 : 0] d i n , / / da ta i n p u t
input [p − 1 : 0] addr , / / a d d r e s s
input we , / / w r i t e e n a b l e
output [m− 1 : 0] dou t) ; / / da ta o u t

reg [m− 1 : 0] mem[(1 ’ b1<<p) − 1 : 0] ; / / t h e memory

a s s i g n dou t = mem[add r] ; / / r e a d i n g

always @(d i n or add r or we) i f (we) mem[add r] = d i n ; / / w r i t i n g
endmodule

⋄

The real structural version of the storage array will be presented in two stages. First the number of
bits per word will be expanded, then the e solution for a big number of words number of words will be
presented.

3.4. THE PARALLEL COMPOSITION: THE RANDOM ACCESS MEMORY 79

Expanding the number of bits per word

The pure logic description offered in Figure 3.11 must be reconsidered in order (1) to optimize it and
(2) to show how the principle it describe can be used for designing a many-bit word RAM. The circuit
structure from Figure 3.13 represents the m-bit word RAM. The circuit is organized in m columns, one
for each bit of the m-bit word. The DMUX structure is shared all by the m columns, while each column
has it own MUX structure. Let us remember that both, the DMUX and MUX circuits are structured
around a DCD. See Figure 2.6 and 2.9, where the first level in both circuits is a decoder, followed by
a linear network of 2-input ANDs for DMUX, and by an AND-OR circuit for MUX. Then, only one
decoder, DCDp, must be provided for the entire memory. It is shared by the demultiplexing function and
by the m multiplexors. Indeed, the outputs of the decoder, LINEn−1, ... LINE1, LINE0, are used to drive:

• one AND2 gate associate cu each line in the array, whose output clocks the DL latches associated
to one word; with these gates the decoder forms the demultimplexing circuit used to clock, when
WE = 1, the latches selected (addressed) by the current value of the address: Ap−1, . . .A0

• m AND2 gates, one in each column, selecting the read word to be ORed to the outputs DOUTm−1,
DOUTm−2, ... DOUT0; with the AND-OR circuit from each COLUMN the decoder forms the
multiplexor circuit associated to each output bit of the memory.

The array of lathes is organized in n and m columns. Each line is driven for write by the output
of a demultiplexer, while for the read function the addressed line (word) is selected by the output of a
decoder. The output value is gathered from the array using m multiplexors.

The reading process is a pure combinational one, while the writing mechanism is an asynchronous
sequential one. The relation between the WE signal and the address bits is very sensitive. Due to the
combinational hazard to the output of DCD, the WE’ signal must be activated only when the DCD’s
outputs are stabilized to the final value, i.e., tASU before the fall edge of WE’ or tH after the rise edge of
WE’.

Expanding the number of words by two dimension addressing

The factor form on silicon of the memory described in Figure 3.13 is very unbalanced for n >>> m.
Expanding the number of words for the a RAM in the previous, one block version is not efficient because
request a complex lay-out involving very long wires. We are looking for a more “squarish” version of
the lay-out for a big memory. The solution is to connect in parallel many m-column blocks, thus defining
a many-word from which to select one word using another level of multiplexing. The reading process
selects the many-word containing the requested word from which the requested word is selected.

The internal organization of memory is now a two dimension array of rows and columns. Each
row contains a many-word of 2q words. Each column contains a number of 2r words. The memory is
addressed using the (p = r+q)-bit address:

addr[p-1:0] = {rowAddr[r-1:0], colAddr[q-1:0]}

The row address rowAddr[r-1:0] selects a many-word, while from the selected many-word, the column
address colAddr[q-1:0] selects the word addressed by the address addr[p-1:0]. Playing with the
values of r and q an appropriate lay-out of the memory array can be designed.

In Figure 3.14 the block schematic for the resulting memory is presented. The second decoder –
COLUMN DECODE – selects from the s m-bit words provided by the s COLUMN BLOCKs the word
addressed by addr[p-1:0].

80 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

DL
QD

CK

DL
Q

DL
QD

6

D

DCDp

On−1

O1

DINm−1

LINEn−1

O0
ADDR

Ap−1 . . .A0

COLUMNm−2

m-COLUMN BLOCK

COLUMN0

DOUTm−2DINm−2

6

CK

CK

COLUMNm−1

DOUTm−1

6
DIN0 DOUT0

. . .

LINE1

LINE0

WE’

Figure 3.13: The asynchronous m-bit word RAM. Expanding the number of bits per word means to connect
in parallel one-bit word memories which share the same decoder. Each COLUMN contains the storing latches and
the AND-OR circuits for one bit.

While the size decoder for a one block memory version is in the same order with the number of words
(SDCDp ∈ 2p), the sum of the sizes of the two decoders in the two dimension version is much smaller,
because usually 2p >> 2r +2q, for p = r+q. Thus, the area of the memory circuit is dominated only by
the storage elements.

The second level of selection is based also on a shared decoder – COLUMN DECODER. It forms,
with the s two-input ANDs a DMUXq – the q-input DMUX in Figure 3.14 – which distributes the write
enable signals, we, to the selected m-column block. The same decoder is shared by the m s-input MUXs
used to select the output word from the many-word selected by ROW DECODE.

The well known principle of ”divide et impera” (divide and conquer) is applied when the address is
divided in two parts, one for selecting a row and another for selecting a column. The access circuits is
thus minimized.

Unfortunately, RAM has not the function of memorizing. It is only a storage support. Indeed, if we
want to “memorize” the number 13, for example, we must store it to the address 131313, for example,
and to keep in mind (to memorize) the value 131313, the place where the number is stored. And than,

3.4. THE PARALLEL COMPOSITION: THE RANDOM ACCESS MEMORY 81

ROW
DECODE

m-COLUMN
BLOCK (s-1)

WE

m-COLUMN

6
rowAddr[r-1:0]

dout[m-1;0]

m q-input MUXs

m 2-input m 2-input m 2-input

m s-input
ORs

-

WE

-

WE

-

colAddr[q-1:0]

-
--

-

m-COLUMN

addr[n-1:0]

din[m-1:0]

--

6 6 6
DOUT DOUT DOUT DINDINDIN

BLOCK (s-2) BLOCK (0)

.

6

s-input DMUX

we

COLUMN
DECODE

ANDs ANDs ANDs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.14: RAM version with two dimension storage array. A number of m-bit blocks are parallel
connected and driven by the same row decoder. The column decoder selects to outoput an m-bit word from the
(s×m)-bit row.

82 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

what’s the help provided us by a the famous RAM memory? No one. Because RAM is not a memory,
it becomes a memory only if the associated processor runs an appropriate procedure which allows us to
forget about the address 131313. Another solution is provided by additional circuits used to improve the
functionality (see the subsection about Associative Memories.)

3.5 The Serial-Parallel Composition: the Register

The last composition in 1-OS is the serial-parallel composition. The most representative circuit of this
class is the register. The main application of register is to support the synchronous processes in a digital
system. There are two typical use of the register:

• provides the pipeline connection between subsystems (see the subsections 2.5.1 Pipelined connec-
tions, and 3.3.2 Pipeline structures).

• stores the internal state of an automata (see the next chapter); the register is used to close of the
second loop in a digital system.

Unlike the parallel compositions that store asynchronously, the circuits resulting from the serial-
parallel compositions store synchronously the value applied on their inputs. The parallel compositions
are used for designing memory systems, instead of the serial-parallel compositions, used to support the
designing of the control structures in a digital system.

The skeleton of any contemporary digital design is based on registers, used to store, synchronously
with the system clock, the overall state of the system. The Verilog (or VHDL) description of a structured
digital design starts by defining the registers, and provides, usually, an Register Transfer Logic (RTL)
description. An RTL code describe a set of registers interconnected through (simple uniform or complex
random) combinational blocks. For a register is a non-transparent structure any loop configurations are
supported. Therefore, the design is freed by the care of the unstable loops.

DF-F

D

Q

?

?

DF-F

D

Q

?

?

DF-F

D

Q

?

?

. . .

. . .
CK

?

In−1 In−2 I0

On−1 On−2 . . . O0
a. b.

Rn

?

?

I

O

CK

Figure 3.15: The n-bit register. a. The structure: a bunch of DF-F connected in parallel. b. The logic symbol.

Definition 3.3 An n-bit register, Rn, is made by parallel connecting a Rn−1 with a D (master-slave)
flip-flop. R1 is a D flip-flop. ⋄

The register Rn, represented in Figure 3.15, is a serial-parallel composition in 1-OS because its el-
ementary component, the D flip-flops, are serial compositions in 1-OS. Another possible definition is
to build the register by serially connecting two n-bit latches. We know that the n-bit latch is a paral-
lel extension in 1-OS. The clock must be applied to the two n-bit latches avoiding the simultaneous
transparency.

3.6. APPLICATIONS 83

VeriSim 3.11 An 8-bit enabled and resetable register with 2 unit time delay is described by the following
Verilog module:

module register #(parameter n = 8)(output reg [n-1:0] out ,

input [n-1:0] in ,

input reset, enable, clock) ;

always @(posedge clock) #2 if (reset) out <= 0 ;

else if (enable) out <= in ;

else out <= out ;

endmodule

The time behavior specified by #2 is added only for simulation purpose. The synthesizable version
must avoid this unsinthesizable representation. ⋄

The main feature of the register assures its non-transparency, excepting an ”undecided transparency”
during a short time interval, tSU + tH , centered on the active edge of the clock signal. Thus, a new loop
can be closed carelessly over a structure containing a register. Due to its non-transparency the register
will be properly loaded with any value, even with a value depending on its own current content. This last
feature is the main condition to close the loop of a synchronous automata - the structure presented in the
next chapter.

3.6 Applications

Composing basic memory circuits with combinational structures result typical system configurations or
typical functions to be used in structuring digital machines. The pipeline connection, for example, is
a system configuration for speeding up a digital system using a sort of parallelism. This mechanism
is already described in the subsections 2.5.1 Pipelined connections, and 3.3.2 Pipeline structures. Few
other applications of the circuits belonging to 1-OS are described in this section. The first is a frequent
application of 1-OS: the synchronous memory, obtained adding clock triggered structures to an asyn-
chronous memory. The next is the file register – a typical storage subsystem used in the kernel of the
almost all computational structures. The basic building block in one of the most popular digital device,
the Field Programmable Gate Array, is also SRAM based structure. Follows the content addressable
memory which is a hardware mechanism useful in controlling complex digital systems or for designing
genuine memory structures: the associative memories.

3.6.1 Synchronous RAM

It is very hard to consider the time restriction imposed by the wave forms presented in Figure 3.12 when
the system is requested to work at high speed. The system designer will be more comfortable with a
memory circuit having all the time restrictions defined related only to the active edge of the system clock.
The synchronous RAM (SRAM) is conceived to have all time relations defined related to the active edge
of the clock signal. SRAM is the preferred embodiment of a storage circuit in the contemporary designs.
It performs write and read operations synchronized with the active edge of the clock signal (see Figure
3.16).

VeriSim 3.12 The functional description of a synchronous RAM (0.5K of 64-bit words) follows:

84 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

-
6

-

t

6

t

-
6

t

-
6

t

-

DOUT

6

t

WE ′

� � � � �

DIN

CLOCK

� -

-� �-

� -�-

-�

a1 a2 a3 a4

d(a1) d(a2)

data in

data in d(a4)

An−1 . . .A0

Figure 3.16: Read and write cycles for SRAM. For the flow-through version of a SRAM the time behavior
is similar to a register. The set-up and hold time are defined related to the active edge of clock for all the input
connections: data, write-enable, and address. The data output is also related to the same edge.

/ * **
F i l e name : sram . v
C i r c u i t name : Synchronous RAM
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a s y n c h r o n o u s RAM
** * /

module sram (input [6 3 : 0] d i n ,
input [8 : 0] addr ,
output reg [6 3 : 0] dout ,
input we , c l k) ;

reg [6 3 : 0] mem[5 1 1 : 0] ;
always @(posedge c l k) i f (we) d ou t <= d i n ;

e l s e dou t <= mem[add r] ; / / r e a d i n g
always @(posedge c l k) i f (we) mem[add r] <= d i n ; / / w r i t i n g

endmodule

⋄

The previously described SRAM is the flow-through version of a SRAM. A pipelined version is also
possible. It introduces another clock cycle delay for the output data.

3.6. APPLICATIONS 85

3.6.2 Register File

The most accessible data in a computational system is stored in a small and fast memory whose locations
are usually called machine registers or simply registers. In most usual embodiment they have actually
the physical structure of a register. The machine registers of a computational (processing) element are
organized in what is called register file. Because computation supposes two operands and one result in
most of cases, two read ports and one write port are currently provided to the small memory used as
register file (see Figure 3.17).

register file m n

-

-

-

-

-

-

?

write enable clock

left operand[m-1:0]

right operand[m-1:0]

left addr[n-1:0]

right addr[n-1:0]

dest addr[n-1:0]

result[m-1:0]

Figure 3.17: Register file. In this example it contains 2n m-bit registers. In each clock cycle any two registers
can be read and writing can be performed in anyone.

VeriSim 3.13 Follows the Verilog description of a register file containing 32 32-bit registers. In each
clock cycle any two pair of registers can be accessed to be used as operands and a result can be stored
in any one register.

86 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : r e g i s t e r f i l e . v
C i r c u i t name :
D e s c r i p t i o n :
** * /
module r e g i s t e r f i l e (output [3 1 : 0] l e f t o p e r a n d ,

output [3 1 : 0] r i g h t o p e r a n d ,
input [3 1 : 0] r e s u l t ,
input [4 : 0] l e f t a d d r ,
input [4 : 0] r i g h t a d d r ,
input [4 : 0] d e s t a d d r ,
input w r i t e e n a b l e ,
input c l o c k) ;

reg [3 1 : 0] f i l e [0 : 3 1] ;
a s s i g n l e f t o p e r a n d = f i l e [l e f t a d d r] ,

r i g h t o p e r a n d = f i l e [r i g h t a d d r] ;
always @(posedge c l o c k) i f (w r i t e e n a b l e) f i l e [d e s t a d d r] <= r e s u l t ;

endmodule

⋄

The internal structure of a register file can be optimized using m× 2n 1-bit clocked latches to store
data and 2 m-bit clocked latches to implement the master-slave mechanism.

3.7 Concluding About Memory Circuits

For the first time, in this chapter, both composition and loop are used to construct digital systems. The
loop adds a new feature and the composition expands it. The chapter introduced only the basic concepts
and the main ways to use them in implementing actual digital systems.

The first closed loop in digital circuits latches events Closing properly simple loops in small com-
binational circuits vey useful effects are obtained. The most useful is the “latch effect” allowing to store
certain temporal events. An internal loop is able to determine an internal state of the circuit which is
independent in some extent from the input signals (the circuit controls a part of its inputs using its own
outputs). Associating different internal states to different input events the circuit is able to store the input
event in its internal states. The first loop introduces the first degree of autonomy in a digital system: the
autonomy of the internal state. The resulting basic circuit for building memory systems is the elementary
latch.

Meaningful circuits occur by composing latches The elementary latches are composed in different
modes to obtain the main memory systems. The serial composition generates the master-slave flip-flop
which is triggered by the active edge of the clock signal. The parallel composition introduces the concept
of random access memory. The serial-parallel composition defines the concept of register.

3.8. PROBLEMS 87

Distinguishing between “how?” and “when?” At the level of the first order systems occurs a very
special signal called clock. The clock signal becomes responsible for the history sensitive processes
in a digital system. Each “clocked” system has inputs receiving information about “how” to switch
and another special input – the clock input acting on one of its edge called the active edge of clock –
and another special input indicating “when” the system switches. We call this kind of digital systems
synchronous systems, because any change inside the system is triggered synchronously by the same edge
(positive or negative) of the clock signal.

Registers and RAMs are basic structures First order systems provide few of the most important type
of digital circuits used to support the future developments when new loops will be closed. The register
is a synchronous subsystem which, because of its non-transparency, allows closing the next loop leading
to the second order digital systems. Registers are used also for accelerating the processing by designing
pipelined systems. The random access memory will be used as storage element in developing systems
for processing a big amount of data or systems performing very complex computations. Both, data and
programs are stored in RAMs.

RAM is not a memory, it is only a physical support Unfortunately RAM has not the function of
memorizing. It is only a storage element. Indeed, when the word W is stored at the address A we must
memorize the address A in order to be able to retrieve the word W . Thus, instead of memorizing W we
must memorize A, or, as usual, we must have a mechanism to regenerate the address A. In conjunction
with other circuits RAM can be used to build systems having the function of memorizing. Any memory
system contains a RAM but not only a RAM, because memorizing means more than storing.

Memorizing means to associate Memorizing means both to store data and to retrieve it. The most
“natural” way to design a memory system is to provide a mechanism able to associate the stored data
with its location. In an associative memory to read means to find, and to write means to find a free
location. The associative memory is the most perfect way of designing a memory, even if it is not
always the most optimal as area (price), time and power.

To solve ambiguities a new loop is needed At the level of the first order systems the second latch
problem can not be solved. The system must be more “intelligent” to solve the ambiguity of receiving
synchronously contradictory commands. The system must know more about itself in order to be “able”
to behave under ambiguous circumstances. Only a new loop will help the system to behave coherently.
The next chapter, dealing with the second level of loops, will offer a robust solution to the second latch
problem.

The storing and memory functions, typical for the first order systems, are not true computational
features. We will see that they are only useful ingredients allowing to make digital computational systems
efficient.

3.8 Problems

Stable/unstable loops

Problem 3.1 Simulate in Verilog the unstable circuit described in Example 3.1. Use 2 unit time (#2)
delay for each circuit and measure the frequency of the output signal.

88 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

Problem 3.2 Draw the circuits described by the following expressions and analyze their stability taking
into account all the possible combinations applied on their inputs:

d = b(ad)′+ c

d = (b(ad)′+ c)′

c = (ac′+bc)′

c = (a⊕ c)⊕b.

Simple latches

Problem 3.3 Illustrate the second latch problem with a Verilog simulation. Use also versions of the
elementary latch with the two gates having distinct propagation times.

Problem 3.4 Design and simulate an elementary clocked latch using a NOR latch as elementary latch.

Problem 3.5 Let be the circuit from Figure 3.18. Indicate the functionality and explain it.
Hint: emphasize the structure of an elementary multiplexer.

ck

d

c

c’

q

c

c

c’ c’

Figure 3.18: ?

Problem 3.6 Explain how it works and find an application for the circuit represented in Figure 3.19.
Hint: Imagine the tristate drivers are parts of two big multiplexors.

in

out1

out2

Figure 3.19: ?

3.8. PROBLEMS 89

Master-slave flip-flops

Problem 3.7 Design an asynchronously presetable master-slave flip-flop.
Hint: to the slave latch must be added asynchronous set and reset inputs (S’ and R’ in the NAND latch
version, or S and R in the NOR latch version).

Problem 3.8 Design and simulate in Verilog a positive edge triggered master-slave structure.

Problem 3.9 Design a positive edge triggered master slave structure without the clock inverter.
Hint: use an appropriate combination of latches, one transparent on the low level of the clock and
another transparent on the high level of the clock.

Problem 3.10 Design the simulation environment for illustrating the master-slave principle with em-
phasis on the set-up time and the hold time.

Problem 3.11 Let be the circuit from Figure 3.20. Indicate the functionality and explain it. Modify the
circuit to be triggered by the other edge of the clock.
Hint: emphasize the structures of two clocked latches and explain how they interact.

ck

d

c

c’c’

c’

cc c’ c’

c

c

q

Figure 3.20: ?

Problem 3.12 Let be the circuit from Figure 3.21. Indicate the functionality and explain it. Assign a
name for the questioned input. What happens if the NANDs are substituted with NORs. Rename the
questioned input. Combine both functionality designing a more complex structure.
Hint: go back to Figure 3.3c.

Enabled circuits

Problem 3.13 An n-bit latch stores the n-bit value applied on its inputs. It is transparent on the low
level of the clock. Design an enabled n-bit latch which stores only in the clock cycle in which the enable
input, en, take the value 1 synchronized with the positive edge of the clock. Define the set-up time and
the hold time related to the appropriate clock edge for data input and for the enable signal.

Problem 3.14 Provide a recursive Verilog description for an n-bit enabled latch.

90 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

c’

d

c c’

c

c’

c

?

c’

c

q

ck c

c’

Figure 3.21: ?

RAMs

Problem 3.15 Explain the reason for tASU and for tAH in terms of the combinational hazard.

Problem 3.16 Explain the reason for tDSU and for tDH .

Problem 3.17 Provide a structural description of the RAM circuit represented in Figure 3.11 for m =
256. Compute the size of the circuit emphasizing both the weight of storing circuits and the weight of the
access circuits.

Problem 3.18 Design a 256-bit RAM using a two-dimensional array of 16 × 16 latches in order to
balance the weight of the storing circuits with the weight of the accessing circuits.

Problem 3.19 Design the flow-through version of SRAM defined in Figure 3.16.
Hint: use additional storage circuits for address and input data, and relate the WE ′ signal with the clock
signal.

Problem 3.20 Design the register to latch version of SRAM defined in Figure 3.22.
Hint: the write process is identical with the flow-through version.

Problem 3.21 Design the pipeline version of SRAM defined in Figure 3.22.
Hint: only the output storage device must be adapted.

Registers

Problem 3.22 Provide a recursive description of an n-bit register. Prove that the (algorithmic) complex-
ity of the concept of register is in O(n) and the complexity of a ceratin register is in O(log n).

Problem 3.23 Draw the schematic for an 8-bit enabled and resetable register. Provide the Verilog envi-
ronment for testing the resulting circuit. Main restriction: the clock signal must be applied only directly
to each D flip-flop.
Hint: an enabled device performs its function only if the enable signal is active; to reset a register means
to load it with the value 0.

3.8. PROBLEMS 91

� � �
6

-

CLOCK

6
-

6
-

ADDRESS

DOUT

t

t

t

addr

-

-

data(addr)

data(addr)
6

DOUT

t

-

Register to Latch

Pipeline

Figure 3.22: Read cycles. Read cycle for the register to latch version and for the pipeline version of SRAM.

Problem 3.24 Add to the register designed in the previous problem the following feature: the content of
the register is shifted one binary position right (the content is divided by two neglecting the reminder)
and on most significant bit (MSB) position is loaded the value of the one input bit called SI (serial input).
The resulting circuit will be commanded with a 2-bit code having the following meanings:

nop : the content of the register remains unchanged (the circuit is disabled)

reset : the content of the register becomes zero

load : the register takes the value applied on its data inputs

shift : the content of the register is shifted.

Problem 3.25 Design a serial-parallel register which shifts 16 16-bit numbers.

Definition 3.4 The serial-parallel register, SPRn×m, is made by a SPR(n−1)×m serial connected with a
Rm. The SPR1×m is Rm. ⋄

Hint: the serial-parallel register, SPRn×m can be seen in two manners. SPRn×m consists in m parallel
connected serial registers SRn, or SPRn×m consists in n serially connected registers Rm. We prefer usually
the second approach. In Figure 3.23 is shown the serial-parallel SPRn×m.

Problem 3.26 Let be tSU , tH , tp, for a register and tpCLC the propagation time associated with the CLC
loop connected with the register. The maximal and minimal value of each is provided. Write the relations
governing these time intervals which must be fulfilled for a proper functioning of the loop.

Pipeline systems

Problem 3.27 Explain what is wrong in the following always construct used to describe a pipelined
system.

92 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

Rm - Rm - Rm --. . .-

. . .

IN OUT

CK

SPRn×m- -IN OUT

a.

b.
CK

Figure 3.23: The serial-parallel register. a. The structure. b. The logic symbol.

module p i p e l i n e # (parameter n = 8 , m = 16 , p = 20)
(output reg [m− 1 :] o u t p u t r e g ,

input wire [n − 1 : 0] in ,
c l o c k) ;

reg [n − 1 : 0] i n p u t r e g ;
reg [p − 1 : 0] p i p e l i n e r e g ;
wire [p − 1 : 0] ou t1 ;
wire [m− 1 : 0] ou t2 ;
c l c 1 f i r s t c l c (out1 , i n p u t r e g) ;
c l c 2 s e c o n d c l c (out2 , p i p e l i n e r e g) ;

always @(posedge c l o c k) begin i n p u t r e g = i n ;
p i p e l i n e r e g = ou t1 ;
o u t p u t r e g = ou t2 ;

end
endmodule
module c l c 1 (out1 , i n 1) ;

/ / . . .
endmodule
module c l c 2 (out2 , i n 2) ;

/ / . . .
endmodule

Hint: revisit the explanation about blocking and nonblocking evaluation in Verilog.

Register file

Problem 3.28 Draw register file 16 4 at the level of registers, multiplexors and decoders.

Problem 3.29 Evaluate for register file 32 5 minimum input arrival time before clock (tin reg),
minimum period of clock (Tmin), maximum combinational path delay (tin out) and maximum output re-
quired time after clock (treg out) using circuit timing from Appendix Standard cell libraries.

3.9. PROJECTS 93

3.9 Projects

Project 3.1 Let be the module system containing system1 and system2 interconnected through the
two-direction memory buffer module bufferMemory. The signal mode controls the sense of the transfer:
for mode = 0 system1 is in read mode and system2 in write mode, while for mode = 1 system2 is in
read mode and system1 in write mode. The module library provide the memory block described by the
module memory.

module sys tem (input [m− 1 : 0] i n 1 ,
input [n − 1 : 0] i n 2 ,
output [p − 1 : 0] ou t1 ,
output [q − 1 : 0] ou t2 ,
input c l o c k) ;

wire [6 3 : 0] memOut1 ;
wire [6 3 : 0] memIn1 ;
wire [1 3 : 0]] addr1 ;
wire we1 ;
wire [2 5 5 : 0] memOut2 ;
wire [2 5 5 : 0] memIn2 ;
wire [1 1 : 0] addr2 ;
wire we2 ;
wire mode ; / / mode = 0: s y s t e m 1 reads , s y s t e m 2 w r i t e s

/ / mode = 1: s y s t e m 2 reads , s y s t e m 1 w r i t e s
wire [1 : 0] com12 , com21 ;
sys tem1 sys tem1 (in1 , out1 , com12 , com21 ,

memOut1 ,
memIn1 ,
addr1 ,
we1 ,
mode ,
c l o c k) ;

sys tem2 sys tem2 (in2 , out2 , com12 , com21 ,
memOut2 ,
memIn2 ,
addr2 ,
we2 ,
c l o c k) ;

bufferMemory bufferMemory (memOut1 ,
memIn1 ,
addr1 ,
we1 ,
memOut2 ,
memIn2 ,
addr2 ,
we2 ,
mode ,
c l o c k) ;

endmodule

94 CHAPTER 3. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

module memory #(parameter n =32 , m=10)
(output reg [n − 1 : 0] d a t a O u t , / / da ta o u t p u t

input [n − 1 : 0] d a t a I n , / / da ta i n p u t
input [m− 1 : 0] readAddr , / / read a d d r e s s
input [m− 1 : 0] w r i t e A d d r , / / w r i t e a d d r e s s
input we , / / w r i t e e n a b l e
input e n a b l e , / / module e n a b l e
input c l o c k) ;

reg [n − 1 : 0] memory [0 : (1 << m) − 1] ;

always @(posedge c l o c k) i f (e n a b l e) begin
i f (we) memory [w r i t e A d d r] <= d a t a I n ;
d a t a O u t <= memory [readAddr] ;

end
endmodule

Design the module bufferMemory.

Project 3.2 Design a systolic system for multiplying a band matrix of maximum width 16 with a vector.
The operands are stored in serial registers.

Chapter 4

AUTOMATA:
Second order, 2-loop digital systems

The Tao of heaven is impartial.
If you perpetuate it, it perpetuates you.

Lao Tzu1

Perpetuating the inner behavior is the
magic of the second loop.

The next step in building digital systems is to add a new loop over systems containing 1-OS. This
new loop must be introduced carefully so as the system remains stable and controllable. One of the most
reliable ways is to build synchronous structures, that means to close the loop through a way containing a
register. The non-transparency of registers allows us to separate with great accuracy the current state of
the machine from the next state of the same machine.

This second loop increases the autonomous behavior of the system including it. As we shall see, in
2-OS each system has the autonomy of evolving in the state space, partially independent from the input
dynamics, rather than in 1-OS in which the system has only the autonomy of preserving a certain state.

The basic structure in 2-OS is the automaton, a digital system with outputs evolving according to two
variables: the input variable and a “hidden” internal variable named the internal state variable, simply
the em state. The autonomy is given by the internal effect of the state. The behavior of the circuit output
can not be explained only by the evolution of the input, the circuit has an internal autonomous evolution
that “memorizes” previous events. Thus the response of the circuit to the actual input takes into account
the more or less recent history. The state space is the space of the internal state and its dimension is
responsible for the behavioral complexity. Thus, the degree of autonomy depends on the dimension of
the state space.

An automaton is built closing a loop over a 1-OS represented by a collection of latches. The loop
can be structured using the previous two type of systems. Thus, there are two type of automata:

• asynchronous automata, for which the loop is closed over unclocked latches, through combina-
tional circuit and/or unclocked latches as in Figure 4.1a

1Quote from Tao Te King of Lao Tzu translated by Brian Browne Walker.

95

96 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

clock

b.a.

Unclocked Latch

CLC

Cloked Lathes

?
6

6 1-OS

1-OS

CLC

1-OS

?
6

6 0/1-OS

?

0-OS

Uncloked Lathes

?

1-OS

?

register

1-OS

0-OS

clock

Cloked Lathes

?

1-OS

6
clock

Figure 4.1: The two type of 2-OS. a. The asynchronous automata with a hazardous loop over a transparent
latch. b. The synchronous automata with a edge clock controlled loop closed over a non-transparent register.

• synchronous automata, having the loop closed through an 1-OS and all latches are clocked latches
connected on the loop in master-slave configurations (see Figure 4.1b).

Our approach will be focused on the synchronous automata, after considering only in the first subchapter
an asynchronous automaton used to optimize the internal structure of the widely used flip-flop: DFF.

4.1 Basic definitions in automata theory

Definition 4.1 An automaton, A, is defined by the following 5-uple:

A = (X ,Y,Q, f ,g)

where:

X : the finite set of input variables

Y : the finite set of output variables

Q : the set of state variables

f : the state transition function, described by f : X ×Q → Q

g : the output transition function, with one of the following definitions:

• g : X ×Q → Y for Mealy type automaton

• g : Q → Y for Moore type automaton

• g(q) = q for Y ≡ Q, where q ∈ Q for half-automaton, symbolized with A1/2.

At each clock cycle the state of the automaton switches and the output takes the value according to the
new state (and the current input, in Mealy’s approach). ⋄

Definition 4.2 A finite automaton, FA, is an automaton with Q a finite set. ⋄

4.1. BASIC DEFINITIONS IN AUTOMATA THEORY 97

FA is a complex circuit because the size of its definition depends by |Q|.

Definition 4.3 A recursively defined n-state automaton, n-SA, is an automaton with |Q| ∈ O(f (n)). ⋄

An n-SA has a finite (usually short) definition depending by one or many parameters. Its size will
depend by parameters. Therefore, it is a simple circuit.

Definition 4.4 An initial state is a state having no predecessor state. ⋄

Definition 4.5 An initial automaton is an automaton having a set of initial states, Q′, which is a subset
of Q, Q′ ⊂ Q. ⋄

Definition 4.6 A strict initial automaton is an automaton having only one initial state, Q′ = {q0}. ⋄

A strict initial automaton is defined by:

A = (X ,Y,Q, f ,g;q0)

and has a special input, called reset, used to led the automaton in the initial state q0. If the automaton is
initial only, the input reset switches the automaton in one, specially selected, initial state.

Definition 4.7 The delayed (Mealy or Moore) automaton is an automaton with the output values gener-
ated through a (delay) register, thus the current output value corresponds to the previous internal state
of the automaton, instead of the current value of the state, as in non-delayed version. ⋄

The half automaton is an automaton with identity function as the output function (see Figure 4.2a,b)
defined for two reasons:

• many optimization techniques are related only with the loop circuits of the automaton. The main
feature of an automaton is the autonomy and the associated half-automaton, concept which de-
scribes especially this type of behavior

• there are applications that use directly the state as outputs.

All kind of automata can be described starting from a half-automaton, adding only combinational
(no loops) circuits and/or memory (one loop) circuits. In Figure 4.2 are presented all the four types of
automata:

Mealy automaton : results connecting to the “output” of an A1/2 the output CLC that receives also the
input X (Figure 4.2c) and computes the output function g; a combinational way occurs between
the input and the output of this automaton allowing a fast response, in the same clock cycle, to the
input variation

Moore automaton : results connecting to the “output” of an A1/2 the output CLC (Figure 4.2d) that
computes the output function g; this automaton reacts to the input signal in the next clock cycle

delayed Mealy automaton : results serially connecting a register, R, to the output of the Mealy au-
tomaton (Figure 4.2e); this automaton reacts also to the input signal in the next clock cycle, but
the output is hazard free because it is registered

98 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

Y Y

- ?
stateReg

loopCLC

?

? ?

CK

X

Q

a.

halfAut

-

b.

CKX

halfAut

- CKX

? ?

halfAut

- CKX

? ?

outCLC outCLC-

c.

halfAut

d.

- CKX

? ?

halfAut

- CKX

? ?

outCLC outCLC-

outReg

?
Y

outReg

?
Yf.e.

Figure 4.2: Automata types. a. The structure of the half-automaton (A1/2), the no-output automaton: the state is
generated by the previous state and the previous input. b. The logic symbol of half-automaton. c. Immediate Mealy
automaton: the output is generated by the current state and the current input. d. Immediate Moore automaton: the
output is generated by the current state. e. Delayed Mealy automaton: the output is generated by the previous state
and the previous input. f. Delayed Moore automaton: the output is generated by the previous state.

delayed Moore automaton : results serially connecting a register, R, to the output of the Moore au-
tomaton (Figure 4.2f); this automaton reacts to the input signal with a two clock cycles delay.

Real applications use all the previous type of automata, because they react with different delay to the
input change. The registered outputs are preferred if possible.

Theorem 4.1 The time relation between the input value and the output value is the following for the four
types of automata:

1. for Mealy automaton the output to the moment t, y(t) ∈ Y depends on the current input value,
x(t) ∈ X, and by the current state, q(t) ∈ Q, i.e., y(t) = g(x(t),q(t))

2. for delayed Mealy automaton and Moore automaton the output corresponds with the input value
from the previous clock cycle:

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 99

• y(t) = g(x(t −1),q(t −1)) for Mealy delayed automaton

• y(t) = g(q(t)) = g(f (x(t −1),q(t −1)) for Moore automaton

3. for delayed Moore automaton the input transition acts on the output transition delayed with two
clock cycles:

y(t) = g(q(t −1)) = g(f (x(t −2),q(t −2)).⋄

Proof The proof is evident starting from the previous two definitions. ⋄
The possibility emphasized by this theorem is that we dispose of automata with different time re-

action to the input variations. The Mealy automaton follows immediate the input transitions, delayed
Mealy and Moore automata react with one clock cycle delay to the input transitions and delayed Moore
automaton delays with two cycles the response to the input.

The symbols from the sets X , Y , and Q are binary coded using bits specified by X0,X1, . . . for X ,
Y0,Y1, . . . for Y , Q0,Q1, . . . for Q.

Actually, all implementable automata are finite. Traditionally, the term finite automaton is used to
distinguish a subset of automata whose behavior is described using a constant number of states. Even if
the input string is infinite, the behavior of the automaton is limited to a trajectory traversing a constant
(finite) number of states. A finite automaton will be an automaton having a random combinational
function for its transition functions f and g. Therefore, a finite automaton is a complex structure.

A “non-finite” automaton that is an automaton designed to evolve in a state space proportional with
the length of the input string. Now, if the input string is “infinite” the number of states must be also
“infinite”. Such an automaton can be defined only if its transition function is simple. Its combinational
loop is a simple circuit even if it can be a big one. The “non-finite” automaton has a number of states
that does not affect the definition (see the following examples of counters, for sum prefix automaton, ...).
We classify the automata in two categories:

• “non-finite”, recursive defined, simple automata, called functional automata, or simply automata

• non-recursive defined, complex automata, called finite automata.

We continue this chapter with an example of asynchronous circuit, because of its utility and because
we intend to show how complex is the management of its behavior. We will continue presenting only
synchronous automata, starting with small automata having only two states (the smallest state space).
We will continue with simple, recursive defined automata and we will end with finite automata, that are
the most complex automata.

4.2 Finite Automata: the Complex Automata

After presenting the elementary small automata and the large and simple functional automata it is the
time to discuss about the complex automata. The main property of these automata is to use a random
combinational circuit, CLC, for computing the state transition function and the output transition function.
Designing a finite automaton means mainly to design two CLC: the loop CLC (associated to the state
transition function f) and the output CLC (associated to the output transition function g).

4.2.1 Representing finite automata

A finite automaton is represented by defining its transition functions f , the state transition function, and
g, the output transition function. For a half-automaton only the function f defined.

100 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

Flow-charts

A flow-chart contains for each state a circle and for each type of transition an arrow. In each clock cycle
the automaton “runs” on an arrow going from the current state to the next state. In our simple model the
“race” on arrow is done in the moment of the active edge of the clock.

The flow-chart for a half-automaton The first version is a pure symbolic representation, where the
flow chart is marked on each circle with the name of the state, and on each arrow with the transition
condition, if any. The initial states can be additionally marked with the minus sign (-), and the final states
can be additionally marked with the plus sign (+).

R R

I

�

�

q0 , - q1

q2 , +

a

a

b

b

X0

X0

q1

q2

q0

0

0

1

1

a. b.

reset

Figure 4.3: Example of flow-chart for a half-automaton. The machine is a “double b detector”. It stops
when the first bb occurs.

The second version is used when the input are considered in the binary form. Instead of arches are
used rhombuses containing the symbol denoting a binary variable.

Example 4.1 Let be a finite half-automaton that receives on its input strings containing symbols from
the alphabet X = {a,b}. The machine stops in the final state when the first sequence bb is received. The
first version of the associated flow-chart is in Figure 4.3a. Here is how the machine works:

• the initial state is q0; if a is received the machine remains in the same state, else, if b is received,
then the machine switch in the state q1

• in the state q1 the machine “knows” that one b was just received; if a is received the half-
automaton switch back in q0, else, if b is received, then the machine switch in q2

• q2 is the final state; the next state is unconditionally q2.

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 101

The second version uses tests represented by a rhombus containing the tested binary input variable (see
(Figure 4.3b). The input I takes the binary value 0 for the the symbol a and the binary value 1 for the
symbol b. ⋄

The second version is used mainly when a circuit implementation is envisaged.

The flow-chart for a Moore automaton When an automaton is represented the output behavior must
be also included.

The first, pure symbolic version contains in each circle besides, the name of the sate, the value of
the output in that sates. The output of the automaton shows something which is meaningful for the user.
Each state generates an output value that can be different from the state’s name. The output set of value
are used to classify the state set. The input events are mapped into the state set, and the state set is
mapped into the output set.

R R

I

�

�

q0/0, - q1/0

q2/1, +

a

a

b

b

0

0

10

01

1

X0

X0

reset

a. b.

q0

q1

q2

Figure 4.4: Example of flow-chart for a Moore automaton. The output of this automaton tells us: “bb was
already detected”.

The second uses for each pair state/output one rectangle. Inside of the rectangle is the value of the
output and near to it is marked the state (by its name, by its binary code,, or both).

Example 4.2 The problem solved in the previous example is revisited using an automaton. The output
set is Y = {0,1}. If the output takes the value 1, then we learn that a double b was already received. The
state set Q = {q0,q1,q2} is divided in two classes: Q0 = {q0,q1} and Q1 = {q2}. If the automaton stays
in Q0 with out = 1, then it is looking for bb. If the automaton stays in Q1 with out = 1, then it stopped
investigating the input because a double b was already received.

The associated flow-chart is in, in the first version represented by Figure 4.4a. The states q0 and q1
belong to Q0 because in the corresponding circles we have q0/0 and q1/0. The state q2 belongs to Q1

because in the corresponding circle we have q2/1. Because the evolution from q2 does not depend by
input, the arrow emerging from the corresponding circle is not labelled.

The second version (see Figure 4.4b) uses three rectangles, one for each state. ⋄

102 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

A meaningful event on the input of a Moore automaton is shown on the output with a delay of a clock
cycle. All goes through the state set. In the previous example, if the second b from bb is applied on the
input in the period Ti of the clock cycle, then the automaton points out the event in the period Ti+1 of the
clock cycle.

The flow-chart for a Mealy automaton The first, pure symbolic version contains on each arrow be-
sides, the name of the condition, the value of the output generated in the state where the arrow starts with
the input specified on the arrow.

The Mealy automaton reacts on its outputs more promptly to a meaningful input event. The output
value depends on the input value from the same clock cycle.

The second, implementation oriented version uses rectangles to specify the output’s behavior.

R R

I

�

�

q0 , - q1

q2 , +

a/0

a/0

b/0

b/1

a/1, b/1 = -/1

a. b.

q0

0

X0
0 1

X0
1

q1

q2

01

1

reset

0

Figure 4.5: Example of flow-chart for a Mealy automaton. The occurrence of the second b from bb is
detected as fast as possible.

Example 4.3 Let us solve again the same problem of bb detection using a Mealy automaton. The re-
sulting flow-chart is in Figure 4.5a. Now the output is activated (out = 1) when the automaton is in the
state q1 (one b was detected in the previous cycle) and the input takes the value b. The same condition

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 103

triggers the switch in the state q2. In the final state q2 the output is unconditionally 1. In the notation
−/1 the sign − stands for “don’t care”.

Figure 4.5b represents the second representation. ⋄

We can say the Mealy automaton is a “transparent” automaton, because a meaningful change on its
inputs goes directly to its output.

Transition diagrams

Flow-charts are very good to offer an intuitive image about how automata behave. The concept is very
well represented. But, automata are also actual machines. In order to help us to provide the real design
we need different representation. Transition diagrams are less intuitive, but they work better for helping
us to provide the image of the circuit performing the function of a certain automaton.

Transition diagrams uses Vetch-Karnaugh diagrams, VKD, for representing the transition functions.
The representation maps the VKD describing the state set of the automaton into the VKDs defining the
function f and the function g.

Transition diagrams are about real stuff. Therefore, the symbols like a,b,q0, . . . must be codded
binary, because a real machine work with bits, 0 and 1, not with symbols.

The output is already codded binary. For the input symbols the code is established by “the user”
of the machine (similarly the output codes have been established by “the user”). Let say, for the input
variable, X0, was decided the following codification: a → X0 = 0 and b → X0 = 1.

Because the actual value of the state is “hidden” from the user, the designer has the freedom to
assign the binary values according to its own (engineering) criteria. Because the present approach is a
theoretical one, we do not have engineering criteria. Therefore, we are completely free to assign the
binary codes. Two option are presented:

option 1: q0 = 00, q1 = 01, q2 = 10

option 2: q0 = 00, q1 = 10, q2 = 11

For both the external behavior of the automaton must be the same.

Transition diagrams for half-automata The transition diagram maps the reference VKD into the next
state VKD, thus defining the state transition function. Results a representation ready to be used to design
and to optimize the physical structure of a finite half-automaton.

Example 4.4 The flow-chart from Figure 4.3 has two different correspondent representations as transi-
tion diagrams in Figure 4.6, one for the option 1 of coding (Figure 4.6a), and another for the option 2
(Figure 4.6b).

In VKD S1,S0 each box contains a 2-bit code. Three of them are used to code the states, and one
will be ignored. VKD S+1 ,S

+
0 represents the transition from the corresponding states. Thus, for the first

coding option:

• from the state codded 00 the automaton switch in the state 0x, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 01 (q1)

104 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

S1

S0

S1

S0

S1 ,S0 S+1 ,S+0

1 1

1

10

0 0 0

{S+1 ,S+0 }= f (X0 ,S1 ,S0)

a.

- -

1 0 0

0

X0

X0

R

{S+1 ,S+0 }= f (X0 ,S1 ,S0)

S1

S0

S1

S0

S1 ,S0 S+1 ,S+0

1 1

1

10

0 0 0

b.

1 1

0

- -

X0 X0 X0

R

Figure 4.6: Example of transition diagram for a half-automaton. a. For the option 1 of coding. b. For
the option 2 of coding.

• from the state codded 01 the automaton switch in the state x0, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 10 (q2)

• from the state codded 10 the automaton switch in the same state, 10 that is the final state

• the transition from 11 is not defined.

If in the clock cycle Ti the state of the automaton is S1,S0 (defined in the reference VKD), then in the next
clock cycle, Ti+1, the automaton switches in the state S+1 ,S

+
0 (defined in the next state VKD).

For the second coding option:

• from the state codded 00 the automaton switch in the state X00, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 10 (q1)

• from the state codded 10 the automaton switch in the state X0X0, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 11 (q2)

• from the state codded 11 the automaton switch in the same state, 11 that is the final state

• the transition from 01 is not defined.

⋄

The transition diagram can be used to extract the Boolean functions of the loop of the half-automaton.

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 105

Example 4.5 The Boolean function of the half-automaton working as “double b detector” can be ex-
tracted from the transition diagram represented in Figure 4.6a (for the first coding option). Results:

S+1 = S1 +X0S0

S+0 = X0S′1S′0
⋄

Transition diagrams Moore automata The transition diagrams define the two transition functions
of a finite automaton. To the VKDs describing the associated half-automaton is added another VKD
describing the output’s behavior.

Example 4.6 The flow-chart from Figure 4.4 have a correspondent representation in the transition dia-
grams from Figure 4.7a or Figure 4.7b. Besides the transition diagram for the state, the output transition
diagrams are presented for the two coding options.

For the first coding option:

• for the states coded with 00 and 01 the output has the value 0

• for the state coded with 10 the output has the value 1

• we do not care about how works the function g for the state coded with 11 because this code is
not used in defining our automaton (the output value can 0 or 1 with no consequences on the
automaton’s behavior).

⋄

S1

S0

a.

b.

S1 ,S0

1 1

1

10

0 0 0

	

	

R

RS1

S0

S1 ,S0

{S+1 ,S+0 }= f (X0 ,S1 ,S0)

1

{S+1 ,S+0 }= f (X0 ,S1 ,S0)

out = g(S1 ,S0)

out = g(S1 ,S0)

1

1

10

0 0 0

S1

S0

S+1 ,S+0

S1

S1

S0

S+1 ,S+0

- -

1 0 0

0

X0

S0

X0

S1

S0 -

1

0

0

out

1

0 0

out

- 1 1

0

- -

X0 X0 X0

Figure 4.7: Example of transition diagram for a Moore automaton.

Example 4.7 The resulting output function is:

out = S1.

Now the resulting automaton circuit can be physically implemented, in the version resulting from the first
coding option, as a system containing a 2-bit register and few gates. Results the circuit in Figure 4.8,
where:

106 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

• the 2-bit register is implemented using two resetable D flip-flops

• the combinational loop for state transition function consists in few simple gates

• the output transition function is so simple as no circuit are needed to implement it.

When reset = 1 the two flip-flops switch in 0. When reset = 0 the circuit starts to analyze the stream
received on input symbol by symbol. In each clock cycle a new symbol is received and the automaton
switches according to the new state computed by three gates. ⋄

S+1

DFF

D

Q

DFF

D

QQ’

R

S+0

S1

-
Q’

R-

S0
2-bit register

loop combinational circuit

*

�

-

clock

reset

out

in = X0

Figure 4.8: The Moore version of “bb detector” automaton.

Transition diagrams Mealy automata The transition diagrams for a Mealy automaton are a little
different from those of Moore, because the output transition function depends also by the input variable.
Therefore the VKD defining g contains, besides 0s and 1s, the input variable.

Example 4.8 Revisiting the same problem result, in Figure 4.9 the transition diagrams associated to the
flow-chart from Figure 4.5.

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 107

S1

S0

a.

b.

S1 ,S0

1 1

1

10

0 0 0

R

RS1

S0

S1 ,S0

1 1

	

1

	

{S+1 ,S+0 }= f (X0 ,S1 ,S0)

{S+1 ,S+0 }= f (X0 ,S1 ,S0)

out = g(X0 ,S1 ,S0)

out = g(X0 ,S1 ,S0)

10

0 0 0

S1

S0

S+1 ,S+0

S1

S0 1

S1

S0

S+1 ,S+0

- -

1 0 0

0

X0

X0

X0

S1

S0 -

1

X0

0

out

-

0

out

1 1

0

- -

X0 X0 X0

Figure 4.9: Example of transition diagram for a Mealy automaton.

The two functions f are the same. The function g is defined for the first coding option (Figure 4.9a)
as follows:

• in the state coded by 00 (q0) the output takes value 0

• in the state coded by 01 (q1) the output takes value x

• in the state coded by 10 (q2) the output takes value 1

• in the state coded by 11 (unused) the output takes the “don’t care” value

Extracting the function out results:
out = S1 +X0S0

a more complex from compared with the Moore version. (But fortunately out = S+1 , and the same circuits
can be used to compute both functions. Please ignore. Engineering stuff.)

⋄

Procedures

In the description and synthesis of finite automata, we will directly use the representations in HDL (in our
case Verilog), avoiding the descriptions that use graphs, charts or Veitch-Karnaugh diagrams. We will
start from the symbolic description of the sets X ,Y,Q converted into a binary form (see defines.hv),
and we will continue with the description of the associated semiautomaton (see halfAutomaton.v)
followed by the description of the output function in the 4 possible forms given by the Mealy-Moore and
immediate-delayed distinctions.

Defines The problem solved by the finite automaton used as example is the detection of the sequence
bb in the stream of symbols belonging to the set {a,b}.

The file describing the variables is the following:

108 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

/ * ***
F i l e name : d e f i n e s . vh
C i r c u i t name :
D e s c r i p t i o n :
*** * /
/ / i n p u t codes

‘ d e f i n e a (1 ’ b0)
‘ d e f i n e b (1 ’ b1)

/ / i n t e r n a l s t a t e
‘ d e f i n e i n i t s t a t e (2 ’ b00) / / i n i t i a l s t a t e
‘ d e f i n e o n e b s t a t e (2 ’ b01) / / one b r e c e i v e d
‘ d e f i n e f i n a l s t a t e (2 ’ b10) / / f i n a l s t a t e

/ / o u t p u t codes
‘ d e f i n e no (1 ’ b0) / / no bb y e t r e c e i v e d
‘ d e f i n e yes (1 ’ b1) / / bb have been r e c e i v e d

The binary codes associated to the input and output set are defined by the used of the design, while
the binary codes associated to the internal states of the automaton are defined by the designer. It is very
important that the designer has the freedom to associate the binary code according to its criteria. Designer
criteria take into account, as we will see in the ?? section, optimization or even physical realizability
criteria.

Half-Automaton Solving the problem of detecting the sequence bb is done at the level of the semiau-
tomaton and is independent of the way the automaton reports the result on the outputs. For this reason,
the semiautomaton can receive a separate description, which will be used in the final form of the design
by inserting it into one of the 4 forms that the automaton can take depending on the user’s requirements.

/ * ***
F i l e name : h a l f A u t o m a t o n . v
C i r c u i t name : HA f o r d ou b l e b d e t e c t o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e h a l f −automaton

d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am
o f symbo l s b e l o n g i n g t o t h e s e t {a , b}

*** * /
‘ i n c l u d e ” d e f i n e s . vh ”
module ha l fAu toma ton (output reg [1 : 0] s t a t e ,

input i n ,
input r e s e t ,
input c l o c k) ;

/ / f : t h e s t a t e t r a n s i t i o n f u n c t i o n
always @(posedge c l o c k)

i f (r e s e t) s t a t e <= ‘ i n i t s t a t e ;
e l s e

case (s t a t e)
‘ i n i t s t a t e : i f (i n == ‘b) s t a t e <= ‘ o n e b s t a t e ;

e l s e s t a t e <= ‘ i n i t s t a t e ;

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 109

‘ o n e b s t a t e : i f (i n == ‘b) s t a t e <= ‘ f i n a l s t a t e ;
e l s e s t a t e <= ‘ i n i t s t a t e ;

‘ f i n a l s t a t e : s t a t e <= ‘ f i n a l s t a t e ;
d e f a u l t : s t a t e <= ‘ i n i t s t a t e ;

endcase
endmodule

For safety in operation, but also for an easy validation of the project, the automaton has an initial
state, i.e., it is a strictly initial automaton in the init state state.

Note the ”friendly” way in which the description is made. The automaton’s behavior can be read very
easily due to the way in which we represented the behavior symbolically. We can make the following
reading:

At reset = 1 the automaton goes into init state. In init state if b is received, then
the automaton goes to the state in which a b was received: one b state, if not it remains
in init state. In one b state, if the same symbol b is received on the input, then the
automaton goes to the final recognition state, final state, if not then it returns to init

state to restart the search. In final state it automatically remains blocked until a new
signal reset reinitializes the search.

Immediate Moore To complete the project of the finite automaton, we must include the two previously
defined files in the topmodule that provides the output signal. A first form is the one in which the
automaton responds immediately strictly according to its internal state. The transition function of the
output does not depend on the folded value of the input. It is the form of an immediate Moore type
automaton whose description follows:

/ * ***
F i l e name : immediateMooreAutomaton . v
C i r c u i t name : Double b d e t e c t o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Moore f i n i t e

automaton d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am
o f symbo l s b e l o n g i n g t o t h e s e t {a , b}

*** * /
‘ i n c l u d e ” d e f i n e s . vh ”
module immediateMooreAutomaton (output reg o u t ,

input i n ,
input r e s e t , c l o c k) ;

wire [1 : 0] s t a t e ;

ha l fAu toma ton ha (s t a t e , in , r e s e t , c l o c k) ;

/ / g : t h e o u t p u t c o m b i n a t i o n a l t r a n s i t i o n f u n c t i o n
always @(s t a t e) case (s t a t e)

‘ i n i t s t a t e : o u t = ‘no ;
‘ o n e b s t a t e : o u t = ‘no ;
‘ f i n a l s t a t e : o u t = ‘ y e s ;

110 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

d e f a u l t : o u t = 1 ’ bx ;
endcase

endmodule

In the Moore form, the automaton immediately responds with a latency of one clock cycle, signaling
the appearance of the second b. This method of implementation is the simplest, having the disadvantage
of an output signal that can be loaded by parasitic transitions due to the hazard phenomenon. Sometimes,
the latency of a cycle can be a problem.

Delayed Moore The output signal will be able to be cleaned in a radical way from the phenomena
of combinational hazard by opting for the delayed Moore version. The output register will work as a
pipeline register and allow a ”clean” signal synchronized with the system clock. The price paid for this
advantage is the increase in latency by one more unit. For the delayed version there is the following
code:

/ * ***
F i l e name : de layedMooreAutomaton . v
C i r c u i t name : An example o f Moore−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e d e l a y e d Moore

f i n i t e au tomaton d e s i g n e d t o d e t e c t ’ bb ’ i n
s t r e a m s o f symbo l s b e l o n g i n g t o t h e s e t {a , b}

*** * /
‘ i n c l u d e ” d e f i n e s . vh ”
module delayedMooreAutomaton (output reg o u t ,

input i n ,
input r e s e t , c l o c k) ;

wire [1 : 0] s t a t e ;

ha l fAu toma ton ha (s t a t e , in , r e s e t , c l o c k) ;

/ / g : t h e d e l a y e d t r a n s i t i o n f u n c t i o n
always @(posedge c l o c k) case (s t a t e)

‘ i n i t s t a t e : o u t <= ‘no ;
‘ o n e b s t a t e : o u t <= ‘no ;
‘ f i n a l s t a t e : o u t <= ‘ y e s ;
d e f a u l t : o u t <= 1 ’ bx ;

endcase
endmodule

The delayed Moore version is the simplest and the more robust implementation of the detector we
design. the output circuit is simple, because it do not depend by input, and the output signal is easy to
use because i fast and clean. It is recommended if the two-cycle latency can be ”absorbed” in the system
design.

Immediate Mealy If we are looking for the fastest response of the automaton, the Mealy immediate
version is the solution. But the price we will pay is not negligible:

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 111

• the output signal depends on the temporal behavior of the circuit that generates the input of the
automaton we are designing

• the combinational hazard cannot be eliminated

• the circuit that calculates the output function, g, is larger and more complex.

Whenever possible, this version should be avoided. We have an extra chance when we use it if we control
the whole system in which the machine works.

/ * ***
F i l e name : immedia teMealyAutomaton . v
C i r c u i t name : An example o f Mealy−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Mealy f i n i t e

automaton d e s i g n e d t o d e t e c t ’ bb ’ i n a
s t r ea m o f symbo l s b e l o n g i n g t o t h e s e t {a , b}

*** * /
‘ i n c l u d e ” d e f i n e s . vh ”

module immediateMealyAutomaton (output reg o u t ,
input i n ,
input r e s e t , c l o c k) ;

wire [1 : 0] s t a t e ;

ha l fAu toma ton ha (s t a t e , in , r e s e t , c l o c k) ;

/ / g : t h e o u t p u t c o m b i n a t i o n a l t r a n s i t i o n f u n c t i o n
always @(*)

case (s t a t e)
‘ i n i t s t a t e : o u t = ‘no ;
‘ o n e b s t a t e : i f (i n == ‘b) o u t = ‘ y e s ;

e l s e o u t = ‘no ;
‘ f i n a l s t a t e : o u t = ‘ y e s ;
d e f a u l t : o u t = 1 ’ bx ;

endcase
endmodule

The set-up time of the input signal is defined only for the state transition function, f, because for the
output transition function it is not possible because of the combinational nature of the function g.

Delayed Mealy The situation starts to become more controllable in the case of the delayed Mealy
version. There still remains the problem of the set-up time, which must be defined both with respect to
the state register and with respect to the output pipeline register.

/ * ***
F i l e name : m e a l y d e l a y e d a u t o m a t o n . v
C i r c u i t name : An example o f Mealy−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Mealy f i n i t e

112 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

automaton d e s i g n e d t o d e t e c t ’ bb ’ i n a
s t r ea m o f symbo l s b e l o n g i n g t o t h e s e t {a , b}

*** * /
‘ i n c l u d e ” d e f i n e s . vh ”
module delayedMealyAutomaton (output reg o u t ,

input i n ,
input r e s e t , c l o c k) ;

wire [1 : 0] s t a t e ;

ha l fAu toma ton ha (s t a t e , in , r e s e t , c l o c k) ;

/ / g : t h e d e l a y e d t r a n s i t i o n f u n c t i o n
always @(posedge c l o c k)

case (s t a t e)
‘ i n i t s t a t e : o u t <= ‘no ;
‘ o n e b s t a t e : i f (i n == ‘b) o u t <= ‘ y e s ;

e l s e o u t <= ‘no ;
‘ f i n a l s t a t e : o u t <= ‘ y e s ;
d e f a u l t : o u t <= 1 ’ bx ;

endcase
endmodule

From the point of view of latency, this version behaves the same as the immediate Moore automaton,
but has the advantage of a synchronous output with the system clock.

4.2.2 Designing Finite Automata

Preliminary Examples

The behavior of a finite automaton can be defined in many ways. Graphs, transition tables, flow-charts,
transition V/K diagrams or HDL description are very good for defining the transition functions f and
g. All this forms provide non-recursive definitions. Thus, the resulting automata has the size of the
definition in the same order with the size of the structure. Therefore, the finite automata are complex
structures even when they have small size.

In order to exemplify the design procedure for a finite automaton let be two examples, one dealing
with a 1-bit input string and another related with a system built around the multiply-accumulate circuit
(MAC) previously described.

Example 4.9 The binary strings 1n0m, for n ≥ 1 and m ≥ 1, are recognized by a finite half-automaton
by its internal states. Let’s define and design it. The transition diagram defining the behavior of the
half-automaton is presented in Figure 4.10, where:

• q0 - is the initial state in which 1 must be received, if not the the half-automaton switches in q3, the
error state

• q1 - in this state at least one 1 was received and the first 0 will switch the machine in q2

• q2 - this state acknowledges a well formed string: one or more 1s and at least one 0 are already
received

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 113

q0

q1

q2

q3

1

1

0

0

�^

-

}

�

�U

1

0

w

reset

[10]

[11]

[01]

[00]

Figure 4.10: Transition diagram. The transition diagram for the half-automaton which recognizes strings of
form 1n0m, for n ≥ 1 and m ≥ 1. Each circle represent a state, each (marked) arrow represent a (conditioned)
transition.

• q3 - the error state: an incorrect string was received.

Q1

Q0

Q1

Q01 1

1

10

0 0 0 00

0X0

X0 X0

X ′
01

*
f (Q1 ,Q0 ,X0) = {Q+

1 ,Q+
0 }

Q1 ,Q0 Q+
1 ,Q+

0

a.

Q1

Q0

Q1

Q0X0

X0

0 1

X00 0

X ′
0

Q+
1 Q+

0
b. c.

Figure 4.11: VK transition maps. The VK transition map for the half-automaton used to recognize 1n0m, for
n ≥ 1 and m ≥ 1. a. The state transition function f . b. The VK diagram for the next most significant state bit,
extracted from the previous full diagram. c. The VK diagram for the next least significant state bit.

The first step in implementing the structure of the just defined half-automaton is to assign binary
codes to each state.

In this stage we have the absolute freedom. Any assignment can be used. The only difference will be
in the resulting structure but not in the resulting behavior.

For a first version let be the codes assigned int square brackets in Figure 4.10. Results the transition
diagram presented in Figure 4.11. The resulting transition functions are:

Q+
1 = Q1 ·X0 = ((Q1 ·X0)

′)′

114 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

D-FF1

D

QQ’

-�

Q1

resetclock X0

Q+
1

SR
D-FF0

D

QQ’

Q0

Q+
0

SR

Figure 4.12: A 4-state finite half-automaton. The structure of the finite half-automaton used to recognize
binary string belonging to the 1n0m set of strings.

Q+
0 = Q1 ·X0 +Q0 ·X ′

0 = ((Q1 ·X0)
′ · (Q0 ·X ′

0))
′

(The 1 from q+0 map is double covered. Therefore, it is taken into consideration as a “don’t care”.) The
circuit is represented in Figure 4.34 in a version using inverted gated only. The 2-bit state register is
designed by 2 D flip-flops. The reset input is applied on the set input of D-FF1 and on the reset input
of D-FF0.

The Verilog behavioral description of the automaton is:

/ * **
F i l e name : r e c a u t . v
C i r c u i t name : R e c o g n i z i n g Automaton f o r s t r e a m s o f form a ˆ nb ˆm
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e automaton used t o r e c o g n i z e

s t r e a m s o f symbo l s o f form a ˆ nb ˆm
** * /
module r e c a u t (output reg [1 : 0] s t a t e ,

input i n ,
input r e s e t ,
input c l o c k) ;

always @(posedge c l o c k)
i f (r e s e t) s t a t e <= 2 ’ b10 ;

e l s e case (s t a t e)
2 ’ b00 : s t a t e <= 2 ’ b00 ;
2 ’ b01 : s t a t e <= {1 ’ b0 , ˜ i n } ;
2 ’ b10 : s t a t e <= { in , i n } ;
2 ’ b11 : s t a t e <= { in , 1 ’ b1} ;

endcase
endmodule

⋄

Example 4.10 Let us revisit the previous example in a more accurate implementation. Now a stream

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 115

of characters to be recognized is delimited by the empty character e. Therefore an actual stream to be
recognized has the form:

q0

q1

q2

q3

b/search

a/nnot

a/search

b/search

�^

-

}

�

�U
a/search

e/yes

e/wait

reset

[000]

[010]

[011]

)?

q4

�

�

b/not

not
yes[100][001]

je/not

Figure 4.13:

. . .eeaa . . .abb . . .bee . . .

The stream is considers recognized only when it ends. The graph describing the automaton has one state
more compared with the previous approach, without the delimiting symbol e. It is represented in Figure
4.13. The automaton has the following 5 states:

q0 : the initial state in which the automaton goes by reset, and if

in = a the automaton switches in q1 signaling that it entered in the search state

in = b the automaton switches in q3 signaling that the stream started wrong and the search process
failed

in = e the automaton remains in q0 waiting the start of an input stream of as and bs

q1 : the state waiting the flow of as

q2 : the state waiting the flow of bs

q3 : the state indicating that the string does not belong to the set 1n0m|n,m ≥ 1

q4 : the state indicating that the string belongs to the set 1n0m|n,m ≥ 1

The symbols used to describe the automaton are binary codded as follows:

X = {a, b, e} = {01, 10, 00}

Y = {wait, search, not, yes} = {00, 11, 01, 10}

Q = {q0, q1, q2, q3, q4} = {000, 001, 010, 011, 100}

116 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

q2 q1 q0 x1 x0 q2+ q1+ q0+ y1 y0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 1
0 0 0 1 0 0 1 1 0 1
0 0 0 1 1 - - - - -
0 0 1 0 0 0 1 1 0 1
0 0 1 0 1 0 0 1 1 1
0 0 1 1 0 0 1 0 1 1
0 0 1 1 1 - - - - -
0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 1 1 0 1
0 1 0 1 0 0 1 0 1 1
0 1 0 1 1 - - - - -
0 1 1 0 0 0 1 1 0 1
0 1 1 0 1 0 1 1 0 1
0 1 1 1 0 0 1 1 0 1
0 1 1 1 1 - - - - -
1 0 0 0 0 1 0 0 1 0
1 0 0 0 1 1 0 0 1 0
1 0 0 1 0 1 0 0 1 0
1 0 0 1 1 - - - - -
1 0 1 0 0 - - - - -
...

...
...

...
... - - - - -

Table 4.1: The truth table for the transition functions.

The sets X and Y are defined by the user (the one who proposed the design), while the state coding is at
the discretion of the designer. Then, the Table 4.1 describing the state transition function and the output
transition function.

We have to solve 5 functions of 5 variables. Let us use V-K diagrams for 4 variables (q2, q1, q0,

x1) and the 5th variable, x0, will be used to define the value of some boxes belonging to the diagrams.
In Figure 4.14, we represented first the reference diagram to help us in defining the diagrams for f and
g. We will explain at length how the diagram for the function q2+ is built:

• in the box 0 is filled with 0, because for {q2, q1, q0, x1} = {0 0 0 0} the output q2+ does
not depend on x0 and takes the value 0

• in the box 1 in filled with 0, because for {q2, q1, q0, x1} = {0 0 0 1} the output q2+ could
be considered 0 if we decide to select for the don’t care value the value 0

• in the box 2 we fill up as in the box 0

• in the box 3 we fill up as in the box 1

• in the box 4 is filled with x0’, because for {q2, q1, q0, x1} = {0 1 0 0} the output q2+
takes the value 1, if x0 = 0 and the value 0 if x0 = 1

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 117

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1
1

1

1

1

1

1

1

-

-
1

1

1

1

-

-

-

-
1

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

x0 x0

x0

x0’

x0’

q2+ q1+ q0+

q2

q1

q0

x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

1

-

-

-

-

-

-

-

-

-

-

-

- 1

1

1

x0 x0 x0

x0x0’

y1 y0

Figure 4.14: The V-K diagrams for the state and output transition functions.

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

1

1

-

-
1

1

1

1

-

-

-

-
1

1

1

1

1

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- 1

1

1

x0 x0

x0

x0 x0 x0

x0

x0’

x0’

x0’

q2 q1 q0 q2’ x1

q1’ q0 x1 q2’ x1

q0 x1’q1 q0

q0

q2+ q1+ q0+

y1 y0

q2 q1 q0’ x1

Figure 4.15: The first stage in the extracting algebraic expressions from V-K diagrams: the functions
included in diagrams are ignored.

118 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

1

1

-

-
1

1

1

1

-

-

-

-
1

1

1

1

1

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- 1

1

1

x0 x0

x0

x0 x0 x0

x0

x0’

x0’

x0’

q1 q0’ x1’ x0’ q1 x0 q0 x0’ q2’ x1’ x0

q1 q0’ x0’ q1’ x1’ x0 q2’ x0

q2+ q1+ q0+

y1 y0

Figure 4.16: The second stage in the extracting algebraic expressions from V-K diagrams: the 1s are
considered “don’t care”s.

• in the boxes 5 and 7 we do as for the box 1

• in the box 6 we do as for the box 0

• in the box 8 in the box 1, because for {q2, q1, q0, x1} = {1 0 0 0} the output q2+ does not
depend on x0 and takes the value 1

• in the box 9 in filled with 1, because for {q2, q1, q0, x1} = {1 0 0 1} the output q2+ could
be considered 1 if we decide to select for the don’t care value the value 1

• in the boxes 10 to 15 we fill up with don’t cares

The 5 function are extracted from the V-K diagrams in two stages. The first stage (which consider
only the 1s from the diagram) is represented in Figure 4.15. The second stage (which considers the 1s as
“don’t care”s) is represented in Figure 4.16 The resulting expressions are the following:

q2+ = q2 + q1 q0’ x1’ x0’

q1+ = q2’ x1 + q1 q0 + q0 x0’ + q1 x0

q0+ = q1 q0 + q0 x1’ + q2’ q1’ q0’ x1 + q2’ x1’ x0

y1 = q2 + q1’q0 x1 + q1 q0’ x1 + q1 q0’ x0’ + q1’ x1’ x0

y0 = q0 + q2’ x1 + q2’x0

Until now we minimized each of the 5 functions independently. Each function is minimal, but what
about the whole circuit? The global minimization supposes the maximization of the number of gates
shared in the implementation of the 5 functions. Therefore, we must try to define the surfaces in the
V-K diagram so as to maximize the number of identical surfaces, even if we will be pushed to avoid the
minimal form for some functions.

In Figure 4.17 the diagram for y0 is modified: instead of the surface q0, emphasize in Figure 4.15,
here we have a smaller one, q0 x1’, because this surface is selected also in the diagram for q0+. The
impact on the final circuit is minimal: the fan-out of the D-FF0 is reduced.

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 119

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

1

1

-

-
1

1

1

1

-

-

-

-
1

1

1

1

1

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- 1

1

1

x0 x0

x0

x0 x0 x0

x0

x0’

x0’

x0’

q2 q1 q0 q2’ x1

q1’ q0 x1

q0 x1’q1 q0

q0 x1’

q2+ q1+ q0+

y1 y0

q2 q1 q0’ x1 q2’ x1

Figure 4.17: The first stage in the extracting algebraic expressions from V-K diagrams.

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

1

1

-

-
1

1

1

1

-

-

-

-
1

1

1

1

1

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- 1

1

1

x0 x0

x0

x0 x0 x0

x0

x0’

x0’

x0’

q1 q0’ x1’ x0’ q1 x0 q0 x0’ q2’ x1’ x0

q1 q0’ x1’ x0’ q1’ x1’ x0 q2’ x1’ x0

q2+ q1+ q0+

y1 y0

Figure 4.18: The second stage in the extracting algebraic expressions from V-K diagrams.

120 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

D-FF2
D

Q Q’
D-FF1

D

Q Q’
D-FF0

D

Q Q’

clock
x1 x0

q2 q1 q0

q1+

q2+

q0+

y1

y0

Figure 4.19: The resulting circuit.

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 121

The impact of this approach in the second stage is more important: the NAND circuit for q2’ q1’

x0 is shared for the implementation of q0+ and y0, and the NAND circuit for q1 q0’ x1’ x0’ is shared
for the implementation of q2+ and y1.

The resulting expressions are (with various brackets are emphasized the shared logic products):

q2+ = q2 + [q1 q0’ x1’ x0’]

q1+ = q2’ x1 + <q1 q0> + q0 x0’ + q1 x0

q0+ = <q1 q0> + (q0 x1’) + q2’ q1’ q0’ x1 + {q2’ x1’ x0}

y1 = q2 + q1’q0 x1 + q1 q0’ x1 + [q1 q0’ x1’ x0’] + q1’ x1’ x0

y0 = (q0 x1’) + q2’ x1 + {q2’ x1’ x0}

In Figure 4.19 is represented the resulting circuit, where the state register is implemented using 3
delay-flip-flops (D-FF) with their pair of outputs, one for Q and another for Q’. Thus, we do not need
inverters for the bits codding the state. The circuit is implemented using NAND gates by applying the de
Morgan law which transforms the AND-OR structure in a NAND-NAND configuration.

⋄

Example 4.11 Let us revisit the previous example using another state coding:

Q = {q0, q1, q2, q3, q4} = {000, 001, 111, 011, 010}

Then, the Table ?? describes the state transition function and the output transition function for the new
coding.

The transition functions are represented with 3-variable V-K diagrams in Figure 4.20

0 x1 (x1 + x0)

0 0

(x1 + x0)

0

x0’x1x1 1

1 1

1

1-

- -

-

-

- -- -

q2

q1

q0q2+ q1+ q0+

q2

q1

q0y1 y0

(x1 + x0)x0’ (x1 + x0) (x1 + x0) x0

0 01

1

1-

-

-

-

- -

Figure 4.20:

From V-K diagrams result the following expressions :

q2+ = q1’ q0 x1

q1+ = q2 + q1 + q0 x0’ + q0’ x1

q0+ = q2’ q0 + q1 (x1 + x0)

y1 = q1 q0’ + q2 x0’ + q0’ x0 + q2’ q1’ q0 (x1 + x0)

y0 = q2’ q0 + q1’ (x1 + x0) = q0+

The resulting circuit is represented in Figure 4.21

122 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

D-FF2
D

Q Q’
D-FF2

D

Q Q’
D-FF2

D

Q Q’

clock
x0

q2 q1 q0

x1

q0+

q1+

q2+

y0

y1

Figure 4.21: The circuit for the codding dominated by the reduce dependency coding style.

The size of the combinational circuits is only 70% from the previous solution. This reduction was
obtained only by changing the state coding.

⋄

The finite automaton has two distinct parts:

• the simple, recursive defined part, that consists in the state register; it can be minimized only by
minimizing the definition of the automaton

• the complex part, that consists in the PLA that computes functions f and g and this is the part
submitted to the main minimization process.

Our main goal in designing finite automaton is to reduce the random part of the automaton, even if the
price is to enlarge the recursive defined part. In the current VLSI technologies we prefer big size instead
of big complexity. A big sized circuit has now a technological solution, but for describing very complex
circuits we have not yet efficient solutions (maybe never).

State Coding

The function performed by an automaton does not depend by the way its states are encoded, because the
value of the state is a “hidden variable”. But, the actual structure of a finite automaton and its proper
functioning are very sensitive to the state encoding.

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 123

The designer uses the freedom to code in different way the internal state of a finite automaton for
its own purposes. A finite automaton is a concept embodied in physical structures. The transition from
concept to an actual structure is a process with many traps and corner cases. Many of them are avoided
using an appropriate codding style.

Example 4.12 Let be a first example showing the structural dependency by the state encoding. The
automaton described in Figure 4.22a has three state. The first codding version for this automaton is:
q0 = 00, q1 = 01, q2 = 10. We compute the next state Q1, Q+

0 , and the output Y1, Y0 using the first two
VK transition diagrams from Figure 4.22b:

Q+
1 = Q0 +X0Q′

1

Q+
0 = Q′

1Q′
0X ′

0

Y1 = Q0 +X0Q′
1

Y0 = Q′
1Q′

0.

The second codding version for the same automaton is: q0 = 00, q1 = 01, q2 = 11. Only the code
for q2 is different. Results, using the last two VK transition diagrams from Figure 4.22b:

q0

q1 q2

0
X0

1

0

0 0 0

1

1

1 1

00

01
10

(11)

Q1

Q1 Q1

Q1 Q1

Q1

Q0

Q0

Q0 Q0

Q0 Q0

Q+
1

Q+
1

Q+
0

Q+
0

Y1

Y1

Y0

Y0

00

0

0

0

00

0

00

0 0 0 0 0

111

1

1 1

1

1 1

1

1

1

- - - -

- - - -

X0 X0

X0 X0

b.a.

X ′
0

Figure 4.22: A 3-state automaton with two different state encoding. a. The flow-chart describing the
behavior. b. The VK diagrams used to implement the automaton: the reference diagram for states, two transition
diagrams used for the first code assignment, and two for the second state assignment.

Q+
1 = Q′

1Q0 +X0Q′
1 = (Q1 +(Q0 +X0)

′)′

Q+
0 = Q′

1

124 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

D-FF1
D

QQ’
D-FF0

D

QQ’

X0

CK

Y1

Y0

Q+
1

Q+
0

Figure 4.23: The resulting circuit It is done for the second state assignment of the automaton defined in Figure
4.22a.

Y1 = Q′
1Q0 +X0Q′

1 = (Q1 +(Q0 +X0)
′)′

Y0 = Q′
0.

Obviously the second codding version provides a simpler and smaller combinational circuit associ-
ated to the same external behavior. In Figure 4.23 the resulting circuit is represented. ⋄

Minimal variation encoding Minimal variation state assignment (or encoding) refers to the codes
assigned to successive states.

Definition 4.8 Codding with minimal variation means successive state are codded with minimal Ham-
ming distance. ⋄

qi

q j

qk ql

X0

000

001

101 011

a. b.

X0

qi

q j

qk

ql

000

001 010

?

Figure 4.24: Minimal variation encoding. a. An example. b. An example where the minimal variation
encoding is not possible.

Example 4.13 Let be the fragment of a flow chart represented in Figure 4.24a. The state qi is followed
by the state q j and the assigned codes differ only by the least significant bit. The same for qk and ql
which both follow the state q j. ⋄

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 125

Example 4.14 Some times the minimal variation encoding is not possible. An example is presented in
Figure 4.24b, where qk can not be codded with minimal variation. ⋄

The minimal variation codding generates a minimal difference between the reference VK diagram
and the state transition diagram. Therefore, the state transition logical function extracted form the VK
diagram can be minimal.

Reduced dependency encoding Reduced dependency encoding refers to states which conditionally
follow the same state. The reduced dependency is related to the condition tested.

Definition 4.9 Reduced dependency encoding means the states which conditionally follow a certain state
to be codded with binary configurations which differs minimal (have the Hamming distance minimal). ⋄

qi

q j

qi

q j qk

010

011 111

X0

X0

X1

1 0

0 1

qk ql

000

001

100

0

101

1

(001)

(011)
(101)

b.a.

Figure 4.25: Examples of reduced dependency encoding. a. The transition from the state is conditioned
by the value of a single 1-bit variable. b. The transition from the state is conditioned by two 1-bit variables.

Example 4.15 In Figure 4.25a the states q j and qk follow, conditioned by the value of 1-bit variable
X0, the state qi. The assigned codes for the first two differ only in the most significant bit, and they are
not related with the code of their predecessor. The most significant bit used to code the successors of qi

depends by X0, and it is X ′
0. We say: the next states of qi are X ′

011, for X0=0 the next state is 111, and for
X0=1 it is 011. Reduced dependency means: only one bit of the codes associated with the successors of
qi depends by X0, the variable tested in qi. ⋄

Example 4.16 In Figure 4.25b the transition from the state qi depends by two 1-bit variable, X0 and
X1. A reduced dependency codding is possible by only one of them. Without parenthesis is a reduced
dependency codding by the variable X1. With parenthesis is a reduced dependency codding by X0. ⋄

The reader is invited to provide the proof for the following theorem.

Theorem 4.2 If the transition from a certain state depends by more than one 1-bit variable, the reduced
dependency encoding can not be provided for more than one of them. ⋄

The reduced dependency encoding is used to minimize the transition function because it allows to
minimize the number of included variables in the VK state transition diagrams. Also, we will learn soon
that this encoding style is very helpful in dealing with asynchronous input variables.

126 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

Incremental codding The incremental encoding provides an efficient encoding when we are able to
use simple circuits to compute the value of the next state. An incrementer is the simple circuit used to
design the simple automaton called counter. The incremental encoding allows sometimes to center the
implementation of a big half-automaton on a presetable counter.

Definition 4.10 Incremental encoding means to assign, whenever it is possible, for a state following qi

a code determined by incrementing the code of qi. ⋄

Incremental encoding can be useful for reducing the complexity of a big automaton, even if some-
times the price will be to increase the size. But, as we more frequently learn, bigger size is a good price
for reducing complexity.

One-hot state encoding The register is the simple part of an automaton and the combinational cir-
cuits computing the state transition function and the output function represent the complex part of the
automaton. More, the speed of the automaton is limited mainly by the size and depth of the associated
combinational circuits. Therefore, in order to increase the simplicity and the speed of an automaton we
can use a codding stile which increase the dimension of the register reducing in the same time the size
and the depth of the combinational circuits. Many times a good balance can be established using the
one-hot state encoding.

Definition 4.11 The one-hot state encoding associates to each state a bit, and consequently the state
register has a number of flip-flops equal with the number of states. ⋄

All previous state encodings used a log-number of bits to encode the state. The size of the state reg-
ister will grow, using one-hot encoding, from O(log n) to O(n) for an n-state finite automaton. Deserves
to pay sometimes this price for various reasons, such as speed, signal accuracy, simplicity,

Minimizing finite automata

There are formal procedure to minimize an automaton by minimizing the number of internal states. All
these procedures refer to the concept. When the conceptual aspects are solved remain the problems
related with the minimal physical implementation. Follow a short discussion about minimizing the size
and about minimizing the complexity.

Minimizing the size by an appropriate state codding There are some simple rules to be applied in
order to generate the possibility to reach a minimal implementation. Applying all of these rules is not
always possible or an easy task and the result is not always guarantee. But it is good to try to apply them
as much as possible.

A secure and simple way to optimize the state assignment process is to evaluate all possible codding
versions and to choose the one which provide a minimal implementation. But this is not an effective way
to solve the problem because the number of different versions is in O(n!). For this reason are very useful
some simple rules able to provide a good solution instead of an optimal one.

A lucky, inspired, or trained designer will discover an almost optimal solution applying the following
rule in the order they are enounced.

Rule 1 : apply the reduced dependency codding style whenever it is possible. This rule allows a minimal
occurrence of the input variable in the VK state transition diagrams. Almost all the time this

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 127

minimal occurrence has as the main effect reducing the size of the state transition combinational
circuits.

Rule 2 : the states having the same successor with identical test conditions (if it is the case) will have
assigned adjacent codes (with the Hamming distance 1). It is useful because brings in adjacent
locations of a VK diagrams identical codes, thus generating the conditions to maximize the arrays
defined in the minimizing process.

Rule 3 : apply minimal variation for unconditioned transitions. This rule generates the conditions in
which the VK transition diagram differs minimally from the reference diagram, thus increasing
the chance to find bigger surfaces in the minimizing process.

Rule 4 : the states with identical outputs are codded with minimal Hamming distance (1 if possible).
Generates similar effects as Rule 2.

To see at work these rules let’s take an example.

Example 4.17 Let be the finite automaton described by the flow-chart from Figure 4.26. Are proposed
two codding versions, a good one (the first), using the codding rules previously listed, and a bad one (the
second with the codes written in parenthesis), ignoring the rules.

For the first codding version results the expressions:

Q+
2 = Q2Q′

0 +Q′
2Q1

Q+
1 = Q1Q′

0 +Q′
2Q′

1Q0 +Q′
2Q0X0

Q+
0 = Q′

0 +Q′
2Q′

1X ′
0

Y2 = Q2 +Q1Q0

Y1 = Q2Q1Q′
0 +Q′

2Q′
1

Y0 = Q2 +Q′
1 +Q′

0

the resulting circuit having the size SCLCver1 = 37.
For the second codding version results the expressions:

Q+
2 = Q2Q1Q′

0 +Q′
1Q0 +Q′

2Q0X0 +Q1Q′
0X ′

0

Q+
1 = Q′

1Q0 +Q′
2Q′

1 +Q′
2X ′

0

Q+
0 = Q′

1Q0 +Q′
2Q′

1 +Q′
2X0

Y2 = Q2Q′
0 +Q2Q1 +Q′

2Q′
1Q0 +Q1Q′

0

Y1 = Q′
2Q0 +Q′

2Q′
1

Y0 = Q2 +Q′
1 +Q0

the resulting circuit having the size SCLCver2 = 50. ⋄

128 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

011

011

X0

0 1

100 001

X0

101 111

101 101

000

(000)

001

(011)

010

(101)

011

(010)

100

(110)

101

(100)

110

(001)

111

(111)

Q1

Q1

Y2Y1Y0

Q2

Q1

Q0

000001

010011

100 101

110 111

Q2Q1Q0

Version 2

Q2

Q0

Q2

Q0
Y2Y1Y0

111

111

101 101

101

101 101

101

001

001

100

100

011 011

011

011

Version 1

Q2

Q1

Q0

Q+
2 Q+

1 Q+
0

Q2

Q0

Q+
2 Q+

1 Q+
0

111 111

111 111

000

000

000

000

1X00

101 01X ′
0 001

100 X0X ′
0X0 X ′

0X ′
0X0

011

Q1

0 1

Figure 4.26: Minimizing the structure of a finite automaton. Applying appropriate codding rules the
occurrence of the input variable X0 in the transition diagrams can be minimized, thus resulting smaller Boolean
forms.

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 129

Minimizing the complexity by one-hot encoding Implementing an automaton with one-hot encoded
states means increasing the simple part of the structure, the state register. It is expected at least a part
of this additional structure to be compensated by a reduced combinational circuit used to compute the
transition functions. But, for sure the entire complexity is reduced because of a simpler combinational
circuit.

Example 4.18 Let be the automaton described by the flow-chart from Figure 4.27, for which two codding
version are proposed: a one-hot encoding using 6 bits (Q6 . . .Q1), and a compact binary encoding using
only 3 bits (Q2Q1Q0).

Y1=1

X0
0 1

Y2=1 Y3=1

X0
0 1

X0
0 1

Y4=1 Y5=1 Y6=1

Q1 = 1

Q2 = 1 Q3 = 1

Q5 = 1 Q6 = 1Q4 = 1

000

011 111

010 110

100

Figure 4.27: Minimizing the complexity using one-hot encoding.

The outputs are Y6, . . . ,Y1 each active in a distinct state.

Version 1: with ”one-hot” encoding The state transition functions, Q+
i , i = 1, . . . ,Q+

6 , can be written
directly inspecting the definition. Results:

Q+
1 = Q4 +Q5 +Q6

Q+
2 = Q1X ′

0

Q+
3 = Q1X0

Q+
4 = Q2X ′

0

Q+
5 = Q2X0 +Q3X ′

0

Q+
6 = Q3X0

Because in each state only one output bit is active, results:

Yi = Qi, pentru i = 1, . . . ,6.

The combinational circuit associated with the state transition function is very simple, and for outputs no
circuits are needed. The size of the entire combinational circuit is SCLC,var1 = 18, with the big advantage
that the outputs come directly from a flip-flop without additional unbalanced delays or other parasitic
effects (like different kinds of hazards).

130 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

Version 2: compact binary codding The state transition functions for this codding version (see Figure
4.27 for the actual binary codes) are:

Q+
2 = Q2Q0 +Q0X0 +Q′

2Q′
1X0

Q+
1 = Q′

2Q0 +Q′
2Q′

1 +Q0X ′
0

Q+
0 = Q′

2Q′
1

For the output transition function an additional decoder, DCD3, is needed. The resulting combinational
circuit has the size SCLC,var2 = 44, with the additional disadvantage of generating the outputs signal
using a combinational circuit, the decoder. ⋄

4.2.3 Control Automata (CROM)

When we are faced with problems that require a complex automaton of large dimensions, there is the
possibility of segregating in its structure simple substructures that allow the total compactness of the sys-
tem to be reduced. This is the case of some automatic control devices used, for example, as subsystems
in microprogrammed systems.

A control automaton is included in a system using three main connections (see Figure 4.28):

• the p-bit input operation[p-1:0] selects the control sequence to be executed by the control
automaton (it receives the information about “what to do”); it is used to part the ROM in 2p parts,
each having the same dimension; in each part a sequence of maximum 2n operation can be “stored”
for execution

• the m-bit command output, command[m-1:0], the control automaton uses to generate “the com-
mand” toward the controlled subsystem

• the n-bit input flags[q-1:0] the control automaton uses to receive information, represented by
some independent bits, about “what happens” in the controlled subsystems commanded by the
output command[m-1:0].

generic CLC(ROM)

R

”What to do”
�

-
”What happens”

�

?

state[n-1:0]

flags[q-1:0]

�command[m-1:0]

?

operation[p-1:0]

Q+

”The command”

Figure 4.28: Control Automaton. The functional definition of control automaton. Control means to issue
commands and to receive back signals (flags) characterizing the effect of the command.

Since, as we know, the maximum theoretical size of a random (complex) combinational circuit de-
pends exponentially on the number of inputs, we must treat the number of inputs of the system in the
generic version of Figure 6.3 very carefully. Some very useful observations can be made that allow the
drastic reduction of the complex combinational circuit:

4.2. FINITE AUTOMATA: THE COMPLEX AUTOMATA 131

• the input operation[p-1:0] is considered only when a sequence of micro-instructions is initi-
ated

• the inputs flags[q-1:0] have independent meaning and are considered independently at different
times of the generation of microinstruction sequences

• an important share of the transitions of this automaton generates linear sequences of microinstruc-
tions, so the next state can be coded by incrementing the current one

optimized CLC(ROM) R nMUX4

INC

?
?

MUXT TC

� �

-
--

-

0
1
2
3
�
�

�
�

-
� 66

command[m-1:0]

T
flags[q-1:0]

CROM
TEST

MOD

n

t n 2

S1 S0

6reset

operation[n-1:0]

commands

flags

operation
?

-
�

a. b.

- reset

Figure 4.29: The simplest Controller with ROM (CROM). a. The Moore form of control automaton is
optimized using an incremented circuit (INC) to compute the most frequent next address for ROM. b. The logic
symbol for CROM.

In Figure 4.29 is represented an optimized form of the control automaton in which a series of simple
circuits have been introduced that allow the minimization of the large and complex circuit represented
by the combinational logic circuit, CLC, which can be implemented in the form of a ROM (Read - Only
Memory). The role of these circuits is as follows:

MUXT : is used to select in each state only one flag from the set of q, because the current use of such a
system thought us that the sequence of microinstructions depends, in most o f cases, only by one
flag in any cycle

nMUX4 : selects the transition mode of the automaton:

S1S0 = 00 : the system is initialised in state 00 . . .0

S1S0 = 01 : the system takes one of its initial state corresponding to the microprogram

S1S0 = 10 : the next state of the system is selected from the output of the random CLC

S1S0 = 11 : the next state of the system is obtained by incrementing the value of the current state

INC : is the simple circuit of an increment circuit used to determine the next state of the system for the
linear sequence of the microprogram

132 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

TC : is a very simple and small combinational circuit used to select the transition mode of the automaton
according to the current state and of the flag selected by MUXT.

The size of optimized CLC(ROM) is dramatically reduced compared to the size of generic

CLC(ROM) because, as we know, each remove of an input of a CLC reduces its theoretical size to half.
CROM is a very good example for using, whenever possible, the segregation of simplicity from an

apparently very complex reality. With this circuit, we approach the class of automata circuits whose loop
is mainly closed by simple, functional circuits.

4.3 Functional Automata: the Simple Automata

The smallest automata before presented are used in recursively extended configuration to perform similar
functions for any n. From this category of circuits we will present in this section only the binary counters.
The next circuit will be also a simple one, having the definition independent by size. It is a sum-prefix
automaton. The last subject will be a multiply-accumulate circuit built with two simple automata serially
connected.

4.3.1 The Smallest Automaton: the T Flip-Flop

The size and the complexity of an automaton depends at least on the dimension of the sets defining it.
Thus, the smallest (and also the simplest) automaton has two states, Q = {0,1} (represented with one
bit), one-bit input, T = {0,1}, and Q = Y . The associated structure in represented in Figure 4.30, where
is represented a circuit with one-bit input, T, having a one-bit register, a D flip-flop, for storing the 1-bit
coded state, and a combinational logic circuit, CLC, for computing the function f .

What can be the meaning of an one-bit “message”, received on the input T, by a machine having only
two states? We can “express” with the two values of T only the following things:

no op : T = 0 - the state of the automaton remains the same

switch : T = 1 - the state of the automaton switches.

DF-F

?

D

Q

T

6

DF-F

D

Q

CLC

??

?

T

?Q Qa. b.

TF-F

?

?

T

Q

c.

CK CK CK

Figure 4.30: The T flip-flop. a. It is the simplest automaton because: has 1-bit state register (a DF-F), a 2-input
loop circuit (one as automaton input and another to close the loop), and direct output from the state register. b. The
structure of the T flip-flop: the XOR2 circuits complements the state is T = 1. c. The logic symbol.

4.3. FUNCTIONAL AUTOMATA: THE SIMPLE AUTOMATA 133

The resulting automaton is the well known T flip-flop. The actual structure of a T flip-flop is obtained
connecting on the loop a commanded invertor, i.e., a XOR gate (see Figure 4.30b). The command input
is T and the value to be inverted is Q, the state and the output of the circuit.

This small and simple circuit can be seen as a 2-modulo counter because for T = 1 the output “says”:
01010101... Another interpretation of this circuit is: the T flip-flop is a frequency divider. Indeed, if the
clock frequency is fCK , then the frequency of the signal received to the output Q is fCK/2 (after each
clock cycle the circuit comes back in the same state).

4.3.2 Counters

The first simple automaton is a composition starting from one of the function of T flip-flop: the counting.
If one T flip-flop counts modulo-21, maybe two T flip-flops will count modulo-22 and so on. Seems to
be right, but we must find the way for connecting many T flip-flops to perform the counter function.

For the synchronous counter2 built with n T flip-flops, Tn−1, . . . ,T0, the formal rule is very simple:
if INC0, then the first flip-flop, T0, switches, and the i-th flip-flop, for i = 1, . . . ,n− 1, switches only if
all the previous flip-flops are in the state 1. Therefore, in order to detect the switch condition for i-th
flip-flop an ANDi+1 must be used.

Definition 4.12 The n-bit synchronous counter, COUNTn, has a clock input, CK, a command input,
INC0, an n-bit data output, Qn−1, . . .Q0, and an expansion output, INCn. If INC0 = 1, the active edge of
clock increments the value on the data output (see Figure 4.31). ⋄

There is also a recursive, constructive, definition for COUNTn.

Definition 4.13 An n-bit synchronous counter, COUNTn is made by expanding a COUNTn−1 with a T
flip-flop with the output Qn−1, and an ANDn+1, with the inputs INC0, Qn−1, . . . ,Q0, which computes INCn

(see Figure 4.31). COUNT1 is a T flip-flop and an AND2 with the inputs Q0 and INC0 which generates
INC1. ⋄

Tn−1 COUNTn−1

T

Q

INC0

Q0Qn−2

Qn−1

? ?

? ?

. . .

?

CK

INC0

INCn

. . .

Qn−2 Q0. . .

. . .

INCn−1

Figure 4.31: The synchronous counter. The recursive definition of a synchronous counter has SCOUNT (n) ∈
O(n2) and TCOUNT (n) ∈ O(log n), because for the i-th range one TF-F and one ANDi are added.

Example 4.19 ∗The Verilog description of a synchronous counter follows:

2There exist also asinchronous counters. They are simpler but less performant.

134 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : s y n c c o u n t e r . v
C i r c u i t name : Synchronous Counter
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a s y n c h r o n o u s c o u n t e r as a

T−t y p e r e g i s t e r l oo p c o n n e c t e d w i t h an AND p r e f i x ne twork
** * /

module s y n c c o u n t e r # (parameter n = 8) (output [n − 1 : 0] o u t ,
output i n c n ,
input i n c 0 ,

r e s e t ,
c l o c k) ;

t r e g t r e g (. o u t (o u t) ,
. i n (p r e f i x o u t [n − 1 : 0]) ,
. r e s e t (r e s e t) ,
. c l o c k (c l o c k)) ;

a n d p r e f i x a n d p r e f i x (. o u t (p r e f i x o u t) ,
. i n ({ out , i n c 0 })) ;

a s s i g n i n c n = p r e f i x o u t [n] ;
endmodule

/ * **
F i l e name : t r e g . v
C i r c u i t name : T−t y p e R e g i s t e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a r e g i s t e r b u i l t u s i n g T−t y p e

f l i p − f l o p s i n s t e a d o f D−t y p e f l i p f l o p s
** * /
module t r e g # (parameter n = 8) (output reg [n − 1 : 0] o u t ,

input [n − 1 : 0] i n ,
input r e s e t ,

c l o c k) ;
always @(posedge c l o c k) i f (r e s e t) o u t <= 0 ;

e l s e o u t <= o u t ˆ i n ;
endmodule

The reset input is added because it is used in real applications. Also, a reset input is good in simulation
because makes the simulation possible allowing an initial value for the flip-flops (reg[n-1:0] out in module
t reg) used in design. ⋄

It is obvious that CCOUNT (n) ∈ O(1) because the definition for any n has the same, constant size (in
number of symbols used to write the Verilog description for it or in the area occupied by the drawing
of COUNTn). The size of COUNTn, according to the Definition 4.4, can be computed starting from the
following iterative form:

SCOUNT (n) = SCOUNT (n−1)+(n+1)+ST

4.3. FUNCTIONAL AUTOMATA: THE SIMPLE AUTOMATA 135

and results:
SCOUNT (n) ∈ O(n2)

because of the AND gates network used to command the T flip-flop. The counting time is the clock
period. The minimal clock period is limited by the propagation time inside the structure. It is computed
as follows:

TCOUNT (n) = tpT + tpANDn + tSU ∈ O(log n)

where: tpT ∈ O(1) is the propagation time through the T flip-flop, tpANDn ∈ O(log n) is the propagation
time through the ANDn (in the fastest version it is implemented using a tree of AND2 gates) gate and
tSU ∈ O(1) is the set-up time at the input of T flip-flop.

In order to reduce the size of the counter we must find another way to solve the function performed
by the network of ANDs. Obviously, the network of ANDs is an AND prefix-network. Thus, the problem
could be reduced to the problem of the general form of prefix-network. The optimal solution exists and
has the size in O(n) and the time in O(log n) (see in this respect the section 8.2).

Finishing this short discussion about counters must be emphasized the autonomy of this circuit which
consists in switching in the next state according to the current state. We “tell” simply to the circuit
“please count”, and the circuit know what to do. The loop allow “him to know” how to behave.

Real applications uses more complex counters able to be initialized in any states or the count in both
ways, up and down. Such a counter is described by the following code:

/ * **
F i l e name : f u l l c o u n t e r . v
C i r c u i t name : F u l l Counter
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a c o u n t e r w i t h a l l t h e p o s s i b l e

f e a t u r e s (r e s e t , load , up−count , down−c o u n t)
** * /

module f u l l c o u n t e r # (parameter n = 4) (output reg [n − 1 : 0] o u t ,
input [n − 1 : 0] i n ,
input r e s e t ,

l o a d ,
down ,
c o u n t ,
c l o c k) ;

always @(posedge c l o c k)
i f (r e s e t) o u t <= 0 ;

e l s e i f (l o a d) o u t <= i n ;
e l s e i f (c o u n t) i f (down) o u t <= o u t − 1 ;

e l s e o u t <= o u t + 1 ;
e l s e o u t <= o u t ;

endmodule

The reset operation has the highest priority, and the counting operations have the lowest priority.

Program Counter (PC)

Program Counter (PC) is a special counter can be used as a logic block in the structure of a processor. It
control the evolution of the program execution. A version of a simple PC is represented in Figure 4.32,
where:

136 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

• a 4-input multiplexor selects to the input of a register:

– the incremented value of the PC stored in register in order to provide the address for the next
instruction on the linear part of the program

– the value of PC added with the jump address in order to allow program to perform a uncon-
ditioned or a conditioned jump

– the address of an absolute jump provided by the current instruction

– the address for an absolute jump when a call or a return instruction is executed

• a zero detector combinational circuit provide the jump condition to

• a small random combinational circuit which generate the selection code for the multiplexor and
the increment command for the increment circuit according the command next generated by one
field of the instruction and according to the condition provided by zero and the interrupt signal
int.

reg[n-1:0]
3

6 -

-
incPC

reset

-

selNextPC

incadd
??? ?

�012

inta

?

zero�

?

retAddr

jmpAddr

nextPC

next

Figure 4.32: Program Counter

The transition set this circuit is controlled by the selNextPC combinational circuit described as
follows::

/ * ***
F i l e : se lNex tPC . v
Name :
D e s c r i p t i o n :
*** * /
module se lNextPC (output reg [1 : 0] s e l ,

output reg i n c ,
input [2 : 0] nex t ,
input zero ,
input i n t) ;

always @(*)
i f (i n t) { inc , s e l } = 3 ’ bx11 ;

e l s e

4.3. FUNCTIONAL AUTOMATA: THE SIMPLE AUTOMATA 137

case (n e x t)
/ / i n c r e m e n t PC

3 ’ b000 : { inc , s e l } = 3 ’ b100 ;
/ / u n c o n d i t i o n a l r e l a t i v e jump

3 ’ b001 : { inc , s e l } = 3 ’ bx01 ;
/ / u n c o n d i t i o n a l a b s o l u t e jump

3 ’ b010 : { inc , s e l } = 3 ’ bx10 ;
/ / r e t u r n from s u b r o u t i n e

3 ’ b011 : { inc , s e l } = 3 ’ bx11 ;
/ / branch i f z e r o

3 ’ b100 : { inc , s e l } = z e r o ? 3 ’ bx01 : 3 ’ b100 ;
/ / branch i f n o t z e r o

3 ’ b101 : { inc , s e l } = ! z e r o ? 3 ’ bx01 : 3 ’ b100 ;
/ / h a l t

3 ’ b110 : { inc , s e l } = 3 ’ b000 ;
d e f a u l t :{ inc , s e l } = 3 ’ b100 ;

endcase
endmodule

In a real system, the connection of this circuit will be done taking into account the temporal relation-
ships that must be optimized. As a rule, such relationships are established using pipeline registers.

4.3.3 Structured State Space Automaton(S3A)

Definition 4.14 The function:
P(i,n,x0,x1, . . . ,xn−1) = xi

is the projection (selection) function which returns the i-th element from a set of n elements.
⋄

Definition 4.15 A 3-port S3A is defined by: S3A = (F ×X ×D×L×R;Y ;S ; f ,g) where:

• S = (S0 ×S1 × . . . ,×Sm−1) with Si = {0,1}n for i = 0, . . . ,m−1 is the structured state space

• H = {0,1}log2 p is used to select a function from the set {h0,h1, . . . ,hp}

• X = {0,1}n is the finite set of inputs binary represented on n bits

• Y = ({0,1}n ×{0,1}n) is the finite set of outputs binary represented by two n-bit words

• D = L = R = {0,1}log2 m are sets of pointers in the Cartesian product S

• g : (L×R)→ (SL ×SR) is the output transition function

• f : (H ×X ×D×L×R×S)→ SD is the state transition function of form hH : (X ,SL,SR)→ SD.

⋄

138 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

An S3A is implemented using a synchronous RAM to store the state. The inputs D,L,R are the
address which select the elements of the Cartesian product stored in the m locations of the RAM. The
efficiency of this approach could be evaluated as follows. The execution time for a full transition of
S3A is m times bigger than for the equivalent standard automaton, because only one element of the
Cartesian product can be computed in one cycle. Therefore the time performance is 1/m. The size of the
combinational circuit for f belongs, in the worst case, to O(22n+log2 p), while for the standard automaton
it belongs, in the worst case, to Omn+log2 p. Results a decrease in size belonging to O(2n(m−2)). The time
performance decreases linearly with m, while the size decreases exponentially with m. There is no room
for debate: when possible, the S3A is the solution.

4.3.4 Multi-port S3A

Because the binary functions dominate the class of arithmetic and logic functions, multi-port S3As are
used in designing the executing core of any processing element. The most frequently used multi-port
S3A is a 3-port S3A. Two ports are used to fetch the operands and the third for selecting the destination
of the result. The following definition refers only the the half-automaton, because only the way the
loop is closed in important. We can get the output of the system in various ways, depending on the
application.gg

Definition 4.16 A 3-port Structured State Space Half-Automaton, S3HA is defined as following:

S3HA = (X ×DA×LA×RA,Q, f)

where:

• Q= (Q0×Q1× . . . ,×Qs−1) : is the structured state space described as a Cartesian set of elements
binary represented on m bits

• X : the finite set of inputs binary represented on p bits

• DA : the finite set of codes used to select the element of the set Q to be modified (is the destination
of the change) in the current state transition

• LA : the finite set of codes used to select the element of the set Q to be used as left operand in the
current state transition

• RA : the finite set of codes used to select the element of the set Q to be used as right operand in
the current state transition

• f : (X ×LA×RA×Q) = (X ×P(i,s,Q)×P(j,s,Q)) = (X ×Qi ×Q j) → P(k,s,Q) = Qk is the
state transition function where i ∈ LA, j ∈ RA, k ∈ DA

⋄

Example 4.20 Let be a RALU designed with two modules already presented in the previous sections:
the ALU exemplified in Example 2.4 and the register file presented in Simulation 3.13. In Figure 4.33 is
represented the schematic of a 32-bit RALU.

4.3. FUNCTIONAL AUTOMATA: THE SIMPLE AUTOMATA 139

� write enable

�
�
�

dest addr

left addr

right addr

?

register file

?
MUX

? ?

-
-

in left out

right out

ALU

?

�
��

func

carryIncarryOut

clock

out

-load

Figure 4.33: 32-bit RALU.

/ * **
F i l e : RALU . v
C i r c u i t name : RALU: R e g i s t e r f i l e w i t h A r i t h m e t i c and Log ic Un i t
D e s c r i p t i o n : r e g i s t e r f i l e w i t h 16 32− b i t r e g i s t e r and an ALU w i t h 8

g e n e r i c a r i t h m e t i c and l o g i c f u n c t i o n s .
** * /
module RALU(output [3 1 : 0] l e f t o u t ,

output [3 1 : 0] r i g h t o u t ,
output c a r r y O u t ,
input l o a d ,
input [3 : 0] l e f t a d d r ,
input [3 : 0] r i g h t a d d r ,
input [3 : 0] d e s t a d d r ,
input w r i t e e n a b l e ,
input [3 1 : 0] i n ,
input c a r r y I n ,
input [2 : 0] func ,
input c l o c k) ;

wire [3 1 : 0] o u t ;

r e g i s t e r f i l e r f (. l e f t o p e r a n d (l e f t o u t) ,
. r i g h t o p e r a n d (r i g h t o u t) ,
. r e s u l t (o u t) ,
. l e f t a d d r (l e f t a d d r) ,
. r i g h t a d d r (r i g h t a d d r) ,
. d e s t a d d r (d e s t a d d r) ,
. w r i t e e n a b l e (w r i t e e n a b l e) ,

140 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

. c l o c k (c l o c k)) ;

ALU a l u (. c a r r y I n (c a r r y I n) ,
. f unc (func) ,
. l e f t (l o a d ? i n : l e f t o u t) ,
. r i g h t (r i g h t o u t) ,
. c a r r y O u t (c a r r y O u t) ,
. o u t (o u t)) ;

endmodule

⋄

4.4 Concluding about automata

A new step is made in this chapter in order to increase the autonomous behavior of digital systems. The
second loop looks justified by new useful behaviors.

Synchronous automata need non-transparent state registers The first loop, closed for gain the stor-
ing function, is applied carefully to obtain stable circuits. Tough restrictions can be applied (even number
of inverting levels on the loop) because of the functional simplicity. The functional complexity of au-
tomata rejects any functional restrictions applied for the transfer function associated to loop circuits. The
unstable behavior is avoided using non-transparent memories (registers) to store the state3. Thus, the
state switches synchronized by clock. The output switches synchronously for delayed version of the
implementation. The output is asynchronous for the immediate versions.

The second loop means the behavior’s autonomy Using the first loop to store the state and the second
to compute any transition function, a half-automaton is able to evolve in the state space. The evolution
depends by state and by input. The state dependence allows an evolution even if the input is constant.
Therefore, the automaton manifests its autonomy being able to behave, evolving in the state space, under
constant input. An automaton can be used as “pure” generator of more or less complex sequence of
binary configuration. the complexity of the sequence depends by the complexity of the state transition
function. A simple function on the second loop determine a simple behavior (a simple increment circuit
on the second loop transforms a register in a counter which generate the simple sequence of numbers in
the strict increasing order).

Simple automata can have n states When we say n states, this means n can be very big, it is not
limited by our ability to define the automaton, it is limited only by the possibility to implement it using the
accessible technologies. A simple automata can have n states because the state register contains logn flip-
flops, and its second loop contains a simple (constant defined) circuit having the size in O(f (logn)). The
simple automata can be big because they can be specified easy, and they can be generated automatically
using the current software tools.

3Asynchronous automata are possible but their design is restricted by to complex additional criteria. Therefore, asyn-
chronous design is avoided until stronger reason will force us to use it.

4.5. PROBLEMS 141

Complex automata have only finite number of states Finite number of states means: a number of
states unrelated with the length (theoretically accepted as infinite) of the input sequence, i.e., the number
of states is constant. The definition must describe the specific behavior of the automaton in each state.
Therefore, the definition is complex having the size (at least) linearly related with the number of states.
Complex automata must be small because they suppose combinational loops closed through complex
circuits having the description in the same magnitude order with their size.

Control automata suggest the third loop Control automata evolve according to their state and they
take into account the signals received from the controlled system. Because the controlled system receives
commands from the same control automaton a third loop prefigures. Usually finite automata are used as
control automata. Only the simple automata are involved directly in processing data.

An important final question: adding new loops the functional power of digital systems is expanded
or only helpful features are added? And, if indeed new helpful features occur, who is helped by these
additional features?

4.5 Problems

Problem 4.1 Draw the JK flip-flop structure (see Figure ??) at the gate level. Analyze the set-up time
related to both edges of the clock.

Problem 4.2 Design a JK FF using a D flip-flop by closing the appropriate combinational loop. Com-
pare the set-up time of this implementation with the set-up time of the version resulting in the previous
problem.

Problem 4.3 Design the sequential version for the circuit which computes the n-bit AND prefixes. Fol-
low the approach used to design the serial n-bit adder (see Figure ??).

Problem 4.4 Write the Verilog structural description for the universal 2-input, 2-state programmable
automaton.

Problem 4.5 Draw at the gate level the universal 2-input, 2-state programmable automaton.

Problem 4.6 Use the universal 2-input, 2-state automaton to implement the following circuits:

• n-bit serial adder

• n-bit serial subtractor

• n-bit serial comparator for equality

• n-bit serial comparator for inequality

• n-bit serial parity generator (returns 1 if odd)

Problem 4.7 Define the synchronous n-bit counter as a simple n-bit Increment Automaton.

Problem 4.8 Design a Verilog tester for the resetable synchronous counter from Example 4.1.

142 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

Problem 4.9 Evaluate the size and the speed of the counter defined in Example 4.1.

Problem 4.10 Improve the speed of the counter designed in Example 4.1 designing an improved version
for the module and prefix.

Problem 4.11 Design a reversible counter defined as follows:

module s m a r t e s t c o u n t e r # (parameter n = 16)
(output [n − 1 : 0] o u t ,

input [n − 1 : 0] i n , / / p r e s e t v a l u e
input r e s e t , / / r e s e t c o u n t e r t o z e r o
input l o a d , / / l oad c o u n t e r w i t h ’ in ’
input down , / / c o u n t s down i f (c o u n t)
input c o u n t , / / c o u n t s up or down
input c l o c k) ;

/ / . . .
endmodule

Problem 4.12 Simulate a 3-bit counter with different delay on its outputs. It is the case in real world
because the flop-flops can not be identical and their load could be different. Use it as input for a three
input decoder implemented in two versions. One without delays and another assigning delays to the
inverters and the the gates used to implement the decoder. Visualize the outputs of the decoder in both
cases and interpret what you will find.

4.5. PROBLEMS 143

Solution:

/ * **
F i l e name : d e c s p y k e . v
C i r c u i t name : S i m u l a t i o n module t o emphas i z e t h e s p y k e t o t h e o u t p u t o f

decoder d r i v e n by a c o u n t e r
D e s c r i p t i o n : d e s c r i b e s a s y s t e m w i t h a c l o c k g e n e r a t o r , a c o u n t e r and

a decoder , i n two v e r s i o n s : w i t h d e l a y s and w i t h o u t
d e l a y s a s s o c i a t e d t o t h e g a t e s

** * /
module d e c s p y k e ;

reg c lock ,
e n a b l e ;

reg [2 : 0] c o u n t e r ;
wire out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 ;

i n i t i a l begin c l o c k = 0 ;
e n a b l e = 1 ;
c o u n t e r = 0 ;
f o r e v e r #20 c l o c k = ˜ c l o c k ;

end

i n i t i a l #400 $ s t o p ;

always @(posedge c l o c k)
begin c o u n t e r [0] <= #3 ˜ c o u n t e r [0] ;

i f (c o u n t e r [0]) c o u n t e r [1] <= #4 ˜ c o u n t e r [1] ;
i f (& c o u n t e r [1 : 0]) c o u n t e r [2] <= #5 ˜ c o u n t e r [2] ;

end

dmux dmux (. ou t0 (ou t0) ,
. ou t1 (ou t1) ,
. ou t2 (ou t2) ,
. ou t3 (ou t3) ,
. ou t4 (ou t4) ,
. ou t5 (ou t5) ,
. ou t6 (ou t6) ,
. ou t7 (ou t7) ,
. i n (c o u n t e r) ,
. e n a b l e (e n a b l e)) ;

i n i t i a l $vw dumpvars ;

endmodule

144 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

/ * **
F i l e name : dmux . v
C i r c u i t name : DMUX
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a DMUX w i t h and w i t h o u t d e l a y s

a s s o c i a t e d t o t h e g a t e s
** * /

module dmux (out0 , out1 , out2 , out3 , out4 , out5 , out6 , out7 , in , e n a b l e) ;

input e n a b l e ;
input [2 : 0] i n ;
output out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 ;

/ / w i t h no d e l a y v e r s i o n
/ *

a s s i g n { out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 } = 1 ’ b1 << i n ;
/ / * /
/ / w i t h d e l a y s v e r s i o n
/ / *

not #1 no t0 (nin2 , i n [2]) ;
not #1 no t1 (nin1 , i n [1]) ;
not #1 no t2 (nin0 , i n [0]) ;
not #1 no t3 (in2 , n in2) ;
not #1 no t4 (in1 , n in1) ;
not #1 no t5 (in0 , n in0) ;

nand #2 nand0 (out0 , nin2 , nin1 , nin0 , e n a b l e) ;
nand #2 nand1 (out1 , nin2 , nin1 , in0 , e n a b l e) ;
nand #2 nand2 (out2 , nin2 , in1 , nin0 , e n a b l e) ;
nand #2 nand3 (out3 , nin2 , in1 , in0 , e n a b l e) ;
nand #2 nand4 (out4 , in2 , nin1 , nin0 , e n a b l e) ;
nand #2 nand5 (out5 , in2 , nin1 , in0 , e n a b l e) ;
nand #2 nand6 (out6 , in2 , in1 , nin0 , e n a b l e) ;
nand #2 nand7 (out7 , in2 , in1 , in0 , e n a b l e) ;

/ / * /
endmodule

Problem 4.13 Justify the reason for which the LIFO circuit works properly without a reset input, i.e.,
the initial state of the address counter does not matter.

Problem 4.14 How behaves simple stack .

Problem 4.15 Design a LIFO memory using a synchronous RAM (SRAM) instead of an asynchronous
one as in the embodiment represented in Figure ??.

Problem 4.16 Some applications ask the access to the last two data stored into the LIFO. Call them
tos, for the last pushed data, and prev tos for the previously pushed data. Both accessed data can
be popped from stack. Double push is allowed. The accessed data can be rearranged swapping their
position. Both, tos and prev tos can be pushed again in the top of stack. Design such a LIFO defined
as follows:

4.5. PROBLEMS 145

module t w o h e a d l i f o (output [3 1 : 0] t o s ,
output [3 1 : 0] p r e v t o s ,
input [3 1 : 0] i n ,
input [3 1 : 0] s e c o n d i n ,
input [2 : 0] com , / / t h e o p e r a t i o n
input c l o c k) ;

/ / t h e s e m a n t i c s o f ’com ’
parameter nop = 3 ’ b000 , / / no o p e r a t i o n

swap = 3 ’ b001 , / / swap t h e f i r s t two
pop = 3 ’ b010 , / / pop t o s
pop2 = 3 ’ b011 , / / pop t o s and p r e v t o s
push = 3 ’ b100 , / / push i n as new t o s
push2 = 3 ’ b101 , / / push ’ in ’ and ’ s e c o n d i n ’
p u s h t o s = 3 ’110 b , / / push ’ t o s ’ (d ou b l e t o s)
p u s h p r e v = 3 ’ b111 ; / / push ’ p r e v t o s ’

/ / . . .
endmodule

Problem 4.17 Write the Verilog description of the FIFO memory represented in Figure ??.

Problem 4.18 Redesign the FIFO memory represented in Figure ?? using a synchronous RAM (SRAM)
instead of the asynchronous RAM.

Problem 4.19 There are application asking for a warning signal before the FIFO memory is full or
empty. Sometimes full and empty come to late for the system using the FIFO memory. For example,
no more then 3 write operation are allowed, or no more than 7 read operation are allowed are very
useful in systems designed using pipeline techniques. The threshold for this warning signals is good
to be programmable. Design a 256 8-bit entries FIFO with warnings activated using a programmable
threshold. The interconnection of this design are:

module t h f i f o (output [7 : 0] o u t ,
input [7 : 0] i n ,
input [3 : 0] w r i t e t h , / / w r i t e t h r e s h o l d
input [3 : 0] r e a d t h , / / read t h r e s h o l d
input w r i t e ,
input r e a d ,
output w warn , / / w r i t e warning
output r w a r n , / / read warning
output f u l l ,
output empty ,
input r e s e t ,
input c l o c k) ;

/ / . . .
endmodule

146 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

Problem 4.20 A synchronous FIFO memory is written or read using the same clock signal. There are
many applications which use a FIFO to interconnect two subsystems working with different clock signals.
In this cases the FIFO memory has an additional role: to cross from the clock domain clock in into
another clock domain, clock out. Design an asynchronous FIFO using a synchronous RAM.

Problem 4.21 A serial memory implements the data structure of a fix length circular list. The first
location is accessed, for write or read operation, activating the input init. Each read or write operation
move the access point one position right. Design an 8-bit word serial memory using a synchronous RAM
as follows:

module s e r i a l m e m o r y (output [7 : 0] o u t ,
input [7 : 0] i n ,
input i n i t ,
input w r i t e ,
input r e a d ,
input c l o c k) ;

endmodule

Problem 4.22 A list memory is a circuit in which a list can be constructed by insert, can be accessed
by read forward, read back, and modified by insert, delete. Design such a circuit using two
LIFOs.

Problem 4.23 Design a sequential multiplier using as combinational resources only an adder, a multi-
plexors.

Problem 4.24 Write the behavioral and the structural Verilog description for the MAC circuit repre-
sented in Figure ??. Test it using a special test module.

Problem 4.25 Redesign the MAC circuit represented in Figure ?? adding pipeline register(s) to improve
the execution time. Evaluate the resulting speed performance using the parameters form Appendix E.

Problem 4.26 How many 2-bit code assignment for the half-automaton from Example 4.2 exist? Revisit
the implementation of the half-automaton for four of them different from the one already used. Compare
the resulting circuits and try to explain the differences.

Problem 4.27 Ad to the definition of the half-automaton from Example 4.2 the output circuits for: (1)
error, a bit indicating the detection of an incorrectly formed string, (2)ack, another bit indicating the
acknowledge of a well formed sting.

Problem 4.28 Multiplier control automaton can be defined testing more than one input variable in some
states. The number of states will be reduced and the behavior of the entire system will change. Design
this version of the multiply automaton and compare it with the circuit resulted in Example 4.3. Reevaluate
also the execution time for the multiply operation.

Problem 4.29 Revisit the system described in Example 4.3 and design the finite automaton for multiply
and accumulate (MACC) function. The system perform MACC until the input FIFO is empty and end =

1.

4.5. PROBLEMS 147

Problem 4.30 Design the structure of TC in the CROM defined in 4.4.3 (see Figure 4.29). Define the
codes associated to the four modes of transition (jmp, cjmp, init, inc) so as to minimize the num-
ber of gates.

Problem 4.31 Design an easy to actualize Verilog description for the CROM unit represented in Figure
4.29.

Problem 4.32 Generate the binary code for the ROM described using the symbolic definition in Example
4.4.

Problem 4.33 Design a fast multiplier converting a sequential multiplier into a combinational circuit.

Problem 4.34 Let be the finite automaton defined in Figure 4.34. Do the following:

10

10

00

11

00

01

A

reset

0 1

Figure 4.34:

1. assign the sate codes in two versions:

(a) according priority to the reduce dependency coding style

(b) according priority to the minimal variation coding style

2. implement the finite automaton in the resulting two versions by:

• drawing the transition VK diagrams

• extracting the logic functions for Q+
2 ,Q

+
1 ,Q

+
0 ,Y2,Y1,Y0

• drawing the logic schematic of the resulting automaton

Problem 4.35 Describe in Verilog the automaton defined in Problem 4.34 and simulate it.

148 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

4.6 Projects

Project 4.1 Finalize Project 1.2 using the knowledge acquired about the combinational and sequential
structures in this chapter and in the previous two.

Project 4.2 The idea of simple FIFO presented in this chapter can be used to design an actual block
having the following additional features:

• fully buffered inputs and outputs

• programmable thresholds for generating the empty and full signals

• asynchronous clock signals for input and for output (the design must take into consideration that
the two clocks – clockIn, clockOut – are considered completely asynchronous)

• the read or write commands are executed only if the it is possible (reads only if not-empty, or
writes only if not-full).

The module header is the following:

module asyncFIFO #(‘ i n c l u d e ” f i f o P a r a m e t e r s . v ”)
(output reg [n − 1 : 0] o u t ,

output reg empty ,
output reg f u l l ,
input [n − 1 : 0] i n ,
input w r i t e ,
input r e a d ,
input [m− 1 : 0] inTh , / / i n p u t t h r e s h o l d
input [m− 1 : 0] outTh , / / o u t p u t t h r e s h o l d
input r e s e t ,
input c l o c k I n ,
input c l o c k O u t) ;

/ / . . .
endmodule

The file fifoParameters.v has the content:

parameter n = 16 , / / word s i z e
m = 8 / / number o f l e v e l s

Project 4.3 Design a stack execution unit with a 32-bit ALU. The stack is 16-level depth (stack0,
stack1, ... stack15) with stack0 assigned as the top of stack. ALU has the following functions:

• add: addition
{stack0, stack1, stack2, ...} <= {(stack0 + stack1), stack2, stack3,...}

• sub: subtract
{stack0, stack1, stack2, ...} <= {(stack0 - stack1), stack2, stack3,...}

4.6. PROJECTS 149

• inc: increment
{stack0, stack1, stack2, ...} <= {(stack0 + 1), stack1, stack2, ...}

• dec: decrement
{stack0, stack1, stack2, ...} <= {(stack0 - 1), stack1, stack2, ...},

• and: bitwise AND
{stack0, stack1, stack2, ...} <= {(stack0 & stack1), stack2, stack3,...}

• or: bitwise OR
{stack0, stack1, stack2, ...} <= {(stack0 | stack1), stack2, stack3,...}

• xor: bitwise XOR
{stack0, stack1, stack2, ...} <= {(stack0 ⊕ stack1), stack2, stack3,...}

• not: bitwise NOT
{stack0, stack1, stack2, ...} <= {(∼stack0), stack1, stack2, ...}

• over:
{stack0, stack1, stack2, ...} <= {stack1, stack0, stack1, stack2, ...}

• dup: duplicate
{stack0, stack1, stack2, ...} <= {stack0, stack0, stack1, stack2, ...}

• rightShift: right shift one position (integer division)
{stack0, stack1, ...} <= {({1’b0, stack0[31:1]}), stack1, ...}

• arithShift: arithmetic right shift one position
{stack0, stack1, ...} <= {({stack0[31], stack0[31:1]}), stack1, ...}

• get: push dataIn in top of stack
{stack0, stack1, stack2, ...} <= {dataIn, stack0, stack1, ...},

• acc: accumulate dataIn
{stack0, stack1, stack2, ...} <= {(stack0 + dataIn), stack1, stack2, ...},

• swp: swap the last two recordings in stack
{stack0, stack1, stack2, ...} <= {stack1, stack0, stack2, ...}

• nop: no operation
{stack0, stack1, stack2, ...} <= {stack0, stack1, stack2, ...}.

All the register buffered external connections are the following:

• dataIn[31:0] : data input provided by the external subsystem

• dataOut[31:0] : data output sent from the top of stack to the external subsystem

• aluCom[3:0] : command code executed by the unit

• carryIn : carry input

• carryOut : carry output

150 CHAPTER 4. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

• eqFlag : is one if (stack0 == stack1)

• ltFlag : is one if (stack0 ¡ stack1)

• zeroFlag : is one if (stack0 == 0)

Project 4.4

Chapter 5

PROCESSORS:
Third order, 3-loop digital systems

The soft overcomes the hard in the world
as a gentle rider controls a galloping horse.

Lao Tzu1

The third loop allows the softness of symbols to act im-
posing the system’s function.

In order to add more autonomy in digital systems the third loop must be closed. Thus, new effects
of the autonomy are used in order to reduce the complexity of the system. One of them will allow us to
reduce the apparent complexity of an automaton, another, to reduce the complexity of the sequence of
commands, but, the main form of manifesting of this third loop will be the control process.

The third loop can be closed in three manners, using the three types of circuits presented in the
previous chapters.

• The first 3-OS type system is a system having the third loop closed through a combinational circuit,
i.e., over an automaton or a network of automata the loop is closed through a 0-OS (see Figure
5.1a).

• The second type (see Figure 5.1b) has on the loop a memory circuit (1-OS).

• The third type connects in a loop two automata (see Figure 5.1c). This last type is typical for 3-OS,
having the processor as the main component.

All these types of loops will be exemplified emphasizing a new and very important process appearing
at the level of the third order system: the segregation of the simple from the complex in order to
reduce the global (apparent) complexity.

1Quote from Tao Te King of Lao Tzu translated by Brian Browne Walker.

151

152 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

Automaton

? ?

? ?

?

6
2-OS

Automaton

? ?

? ?

?

6
2-OS

Automaton

? ?

? ?

?

6
2-OS

CLC

Memory

Automaton

0-OS

1-OS

2-OS

a.

b.

c.

simpler (& smalleer)

Processor

easier to control

automaton

automaton

Figure 5.1: The three types of 3-OS machines. a. The third loop is closed through a combinational circuit
resulting less complex, sometimes smaller, finite automaton. b. The third loop is closed through memories allowing
a simplest control. c. The third loop is closed through another automaton resulting the Processor: the most
complex and powerful circuit.

5.1 Automata using counters as registers

Are there ways to “extract” more “simplicity” by segregation from the PLA associated to an automaton?
For some particular problems there is at least one more solution: to use a synchronous setable counter,
SCOUNTn. The synchronous setable counter is a circuit that combines two functions, it is a register
(loaded on the command L) and in the same time it is a counter (counting up under the command U).
The load has priority before the count.

Instead of using few one-bit counters, i.e. JK flip-flops, one few-bit counter is used to store the state
and to simplify, if possible, the control of the state transition. The coding style used is the incremen-
tal encoding (see E.4.3), which provides the possibility that some state transitions to be performed by
counting (increment).

Warning: using setable counters is not always an efficient solution!
Follows two example. One is extremely encouraging, and another is more realistic.

Example 5.1 The half-automaton associated to the codes assignment written in parenthesis in Figure ??
is implemented using an SCOUNTn with n = 2. Because the states are codded using increment encoding,
the state transitions in the flow-chart can be interpreted as follows:

• in the state q0 if empty = 0, then the state code is incremented, else it remains the same

• in the state q1 if empty = 0, then the state code is incremented, else it remains the same

• in the state q2 if done = 1, then the state code is incremented, else it remains the same

5.2. LOOPS CLOSED THROUGH MEMORIES 153

• in the state q3 if f ull = 0, then the state code is incremented, else it remains the same

SCOUNT2

I1 I0
resetup

load

MUX w

0

1

2

3
S1S0

-

66

? ?

O1 O0

� reseet

clock

-
-
-
-

empty’

load

full’

Q1 Q0

Half-automaton

Figure 5.2: Finite half-automaton implemented with a setable counter. The last implementation of the
half-automaton associated with FA from Figure ?? (with the function defined in Figure ?? where the states coded
in parenthesis). A synchronous two-bit counter is used as state register. The simple four-input MUX commands
the counter.

Results the very simple (not necessarily very small) implementation represented in Figure 5.2, where
a 4-input multiplexer selects according to the state the way the counter switches: by increment (up = 1)
or by loading (load = 1).

Comparing with the half-automaton part in the circuit represented in Figure ??, the version with
counter is simpler, eventually smaller. But, the most important effect is the reducing complexity. ⋄

5.2 Loops closed through memories

Because the storage elements do not perform logical or arithmetical functions - they only store - a loop
closed through the 1-OS seems to be unuseful or at least strange. But a selective memorizing action is
used sometimes to optimize the computational process! The key is to know what can be useful in the
next steps.

The previous two examples of the third order systems belongs to the subclass having a combinational
loop. The function performed remains the same, only the efficiency is affected. In this section, because
automata having the loop closed through a memory is presented, we expect the occurrence of some
supplementary effects.

In order to exemplify how a trough memory loop works an Arithmetic & Logic Automaton – ALA
– will be used (see Figure 5.3a). This circuit performs logic and arithmetic functions on data stored in
its own state register called accumulator – ACC –, used as left operand and on the data received on its
input in, used as right operand. A first version uses a control automaton to send commands to ALA,
receiving back one flag: crout.

A second version of the system contains an additional D flip-flop used to store the value of the CRout

signal, in each clock cycle when it is enabled (E = 1), in order to be applied on the CRin input of ALU.
The control automaton is now substituted with a command automaton, used only to issue commands,
without receiving back any flag.

Follow two example of using this ALA, one without an additional loop and another with the third
loop closed trough a simple D flip-flop.

154 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

crout

Arithmetic & Logic Automaton

Arithmetic & Logic Automaton

ACC

6

CRout

ALU

Left Right

<carry>

�
�

<func>

CRin

6

??

-

CONTROL

AUTOMATON

in

D-FF

clock

ACC

6
?

CRout

ALU

Left Right

<carry>

?
<func>

CRin

The second

6

�

loop

COMMAND

AUTOMATON

in

clock

)

out

loop

)
The second

out

-

�

1
The third loop

D Q

b.
clock

a.

E

Figure 5.3: The third loop closed over an arithmetic and logic automaton. a. The basic structure: a
simple automaton (its loop is closed through a simple combinational circuit: ALU) working under the supervision
of a control automaton. b. The improved version, with an additional 1-bit state register to store the carry signal.
The control is simpler if the third loop “tells” back to the arithmetic automaton the value of the carry signal in the
previous cycle.

Version 1: the controlled Arithmetic & Logic Automaton

In the first case ALA is controlled (see Figure 5.3a) using the following definition for the undefined
fields of < microinstruction> specified in 8.4.3:

<command> ::= <func> <carry>;

<func> ::= and | or | xor | add | sub | inc | shl | right;

<test> ::= crout | -;

Let be the sequence of commands that controls the increment of a double-length number:

inc cjmp crout bubu // ACC = in + 1

right jmp cucu // ACC = in

bubu inc // ACC = in + 1

cucu ...

The first increment command is followed by different operarion according to the value of crout. If
crout = 1 then the next command is an increment, else the next command is a simple load of the upper
bits of the double-length operand into the accumulator. The control automaton decides according to the
result of the first increment and behaves accordingly.

5.2. LOOPS CLOSED THROUGH MEMORIES 155

Version 2: the commanded Arithmetic & Logic Automaton

The second version of Arithmetic & Logic Automaton is a 3-OS because of the additional loop closed
through the D flip-flop. The role of this new loop is to reduce, to simplify and to speed up the routine
that performs the same operation. Now the microinstruction is actualized differently:

<command> ::= <func>;

<func> ::= right | and | or | xor | add |

sub | inc | shl | addcr | subcr | inccr | shlcr;

<test> ::= - ;

The field <test> is not used, and the control automaton can be substituted by a command automaton.
The field <func> is codded so as one of its bit is 1 for all arithmetic functions. This bit is used to enable
the switch of D-FF. New functions are added: addcr, subcr, inccr, shlcr. The instructions xxxcr
operates with the value of carry F-F. The set of operations are defined now on in, ACC, carry with
values in carry, ACC, as follows:

right: {carry, ACC} <= {carry, in}

and: {carry, ACC} <= {carry, ACC & in}

or: {carry, ACC} <= {carry, ACC | in}

xor: {carry, ACC} <= {carry, ACC ^ in}

add: {carry, ACC} <= ACC + in

sub: {carry, ACC} <= ACC - in

inc: {carry, ACC} <= in + 1

shl: {carry, ACC} <= {in, 0}

addcr: {carry, ACC} <= ACC + in + carry

subcr: {carry, ACC} <= ACC - in - carry

inccr: {carry, ACC} <= in + carry

shlcr: {carry, ACC} <= {in, carry}

The resulting difference in how the system works is that in each clock cycle CRin is given by the
content of the D flip-flop. Thus, the sequence of commands that performs the same action becomes:

inc // ACC = in + 1

inccr // ACC = in + Q

In the two previous use of the arithmetic and logic automaton the execution time remains the same,
but the expression used to command the structure in the second version is shorter and simpler. The
explanation for this effect is the improved autonomy of the second version of the ALA. The first version
was a 2-OS but the second version is a 3-OS. A significant part of the random content of the ROM from
CROM can be removed by this simple new loop. Again, more autonomy means less control. A small
circuit added as a new loop can save much from the random part of the structure. Therefore, this kind of
loop acts as a segregation method.

Specific for this type of loop is that adding simple circuits we save random, i.e., complex, structured
symbolic structures. The circuits grow by simple physical structure and the complex symbolic structures
are partially avoided.

In the first version the sequence of commands are executed by the automaton all the time in the same
manner. In the second version, a simpler sequence of commands are executed different, according to
the processed data that impose different values in the carry flop-flop. This “different execution” can be
thought as an “interpretation”.

156 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

In fact, the execution is substituted by the interpretation, so as the apparent complexity of the sym-
bolic structure is reduced based on the additional autonomy due to the third structural loop. The au-
tonomy introduced by the new loop through the D flip-flop allowed the interpretation of the commands
received from the sequencer, according to the value of CR.

The third loop allows the simplest form of interpretation, we will call it static interpretation. The
fourth loop allows a dynamic interpretation, as we will see in the next chapter.

5.3 Processors

Third-order systems are mainly represented by processing circuits. By processing we understand the
modification of the symbolic structure of data in a way described by the symbolic structure of programs.
Both data and programs are stored in RAM memories. The processing involves the following operations:

FETCH : reading from memory the current instruction

OPERATION : operation according to the current instruction which may consist of

• changing the internal state of the processor

– using only the processor’s internal salt
– data fetched from memory

• modification of the data contained in the memory

NEXT : calculating the address of the next instruction

In the last 80 years, two extreme forms of implementing a processor have been imposed:

• the CISC processor (Complex Instruction Set Computer)

• the RISC processor (Reduction Instruction Set Computer)

derived from two abstract models configured in the 1940s:

• the von Neumann abstract model

• the Harvard abstract model

The distinction between these models materialized in hardware structures that were differentiated into
two clearly distinct categories:

• processors that operated on the data by interpreting the instructions, which involves decomposing
each instruction, usually complex, from the program into a sequence of microinstructions

• processors that operate on data by executing instructions, which involves the operation of a simple
instruction in a single clock cycle

In the set of instructions of a RISC processor, only those instructions will be found that are simple,
frequent and allow the realization of any instruction from the set of a CISC processor through a sequence
of instructions.

5.3. PROCESSORS 157

5.3.1 Interpretive Processor: CISC Processor (RALU & CROM)

Generic structure of a CISC processor is represented in FIgure 5.4, where:

-

-

-

flag

?

?

6

1

CROM

1

rightAddr

we

zero

reset

Instruction Register

?

memOut

Ops

6

?

6

3rd

load

-

addr
dataOut

value

leftAddr

destAddr-

func

Register File

result

leftOp rightOp

0

? ?
-

ALU

2

RALU (2-O)

2nd
loop

loop

2-OS

0

�

� 6

�
int
inta

�read
write

Figure 5.4: Hardware structure of a simple CISC.

Instruction Register : stores the current instruction during the interpretation which is a multi-cycle
process

RALU : plays a role similar to the one in the EP structure (see ??); additionally has the role of mem-
orizing the address of the subroutine run as a result of accepting the interrupt signal (inta), to
which it adds a register for saving the return address from the subroutine

CROM : controls all the stages in the interpretation process by generating the enable signals for In-
struction Register, Register File, and external memory; the inta signal is managed according to
its internal state (in some cases a inta can be managed by a small and simple additional automaton
serially connected in CROM.)

Multiplexor : allows, under the control of CROM, to use the command fields directly form Instruction
Register or generated by CROM

The too high complexity that the CROM units reached in the economy of a processor and the statistics
regarding the frequency with which the complex instructions were operated, led to the abandonment of
this path of evolution. But history sometimes has surprising cycles. So the CISC approach also deserves
a little attention.

5.3.2 Executive Processor: RISC Processor (RALU & PC)

Generic structure of a RISC processor is represented in FIgure 5.5, where:

158 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

-

-

-

read

?

-

6

-

write

PC

-

2

rightAddr

?

we

}
incPC

6

dataOut
value

leftAddr

destAddr-

func

Register File

result

leftOp rightOp

0

? ?
ALU

3

RALU (2-O)

2nd
loop

�nextPC

{
instruction

- addr
dataIn to/from

data memory

program memory
to/from

DCD 1

loop
3rd

6

-
?

�
-

inta 6

?
int

reset

Figure 5.5: Hardware structure used for defining the architecture of a simple RISC.

RALU : plays a role similar to the one in the EP structure (see ??), but we can give up locating the PC
here, for which we promote a specific structure

PC : it operates on the PC in parallel with the RALU that operates on the data content of the Register
File, a fact that allows the execution of each instruction in a single cycle (of course, if we have
separate and fast enough memories for program and data)

DCD : it is a complex circuit but of very small size if we design an efficient coding of the instructions

The structure of the RISC processor is very simple, because the size of the DCD is insignificant. Instead
of the very complex and large combinational circuit (or ROM) in CROM, we now have a simple circuit.
From the size point of view, we can afford to increase the size of some resources because they are
simple. For example, we can have a larger Register File or/and an ALU with much more and more
complex functions.

Next, we will delve deeper into issues related to RISC processors.

5.4 Case Study: toyRISC Processor

We will present in detail the RISC version of the processor through a case study of a simple but elaborate
enough structure to illustrate the processor concept. We call toyRISC the processor that we will define,
design and simulate.

5.4.1 The Concept of Processor’s Architecture

We will define the concept of architecture with a small historical introduction. At the beginning of
the 1960s, the company IBM (International Business Machine) had already launched several computer
versions on the market, enough to highlight an unpleasant effect: for each new computer, the entire
software development had to be reconsidered due to the hardware structure that justifiably suffered major

5.4. CASE STUDY: TOYRISC PROCESSOR 159

changes. As a consequence, on the occasion of the launch of a new series in [?] [?], the concept of the
architecture of a computing system is proposed.

By the architecture of a processor we understand the structural resources by which the internal state
of the processor is defined and the set of instructions by which this internal state evolves. Nothing about
the way the structural resources are designed, or about their performance. The internal structure and its
performance are at the discretion of the hardware designer. On the other hand, the way in which the set
of instructions is used by the software designers is not the object of the architectural definition.

The architecture is, consequently, an interface between the hard and soft designers so that for long
periods of time (in which several versions of the hard can be implemented) the already written software
can be run on any new hard version . The assumed high cost of software development imposed this
”inheritance” mechanism.

The architectural approach proves very useful for a limited number of hardware generations, but
becomes a burden when technological conditions and market requirements change significantly.

The representation from Figure 5.5 represents the first stage in defining the architecture of a simple
RISC processor, let’s call it toyRISC. The next stage will be the micro-architectural definition used to
specify the one-cycle micro-operations performed by each blocks. Finally, the Instruction Set Architec-
ture (ISA) defined the instructions used to assembly the programs loaded in the program memory of the
system.

5.4.2 toyRISC Micro-architecture

The micro-architecture of the processor toyRISC exemplified in Figure 5.5 is defined by the following
storage resources:

pc[15:0] : the register used as program counter

ei : the state of an automaton used to enable the action of the interrupt signal int

rf[0:31][31:0] : the register file

while in Figure ?? there is the file DEFINES.vh with the micro-operations executed by PC (the control
operations), RALU (the arithmetic and logic operations) and DCD (memory transfer commands). The
defined micro-operations represent only a part of what can be defined on the physical support provided
by the structure represented in Figure 5.5. The reader can add additional operations using the following
defined mechanisms.

/ * ***
F i l e name : DEFINES . vh

MICROARCHITECTURE
*** * /
/ / CONTROL
‘ d e f i n e nop 6 ’ b00 0000 / / no o p e r a t i o n : pc<=pc +1;
‘ d e f i n e r jmp 6 ’ b00 0001 / / r e l a t i v e jump : pc<=pc+v ;
‘ d e f i n e z b r 6 ’ b00 0010 / / pc<=(r f [l]=0) ? pc+v : pc+1
‘ d e f i n e nzb r 6 ’ b00 0011 / / pc<=!(r f [l]=0) ? pc+v : pc+1
‘ d e f i n e r e t 6 ’ b00 0101 / / r e t u r n : pc<=r f [l] [1 5 : 0] ;
‘ d e f i n e h a l t 6 ’ b00 0110 / / h a l t u n i t i l i n t e r r u p t

160 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

‘ d e f i n e e i n t 6 ’ b00 1000 / / s e t e n a b l e i n t e r r u p t
‘ d e f i n e d i n t 6 ’ b00 1001 / / s e t d i s a b l e i n t e r r u p t
/ / ARITHMETIC & LOGIC , f o r t h e s e i n s t r u c t i o n s : pc<=pc +1;
‘ d e f i n e add 6 ’ b11 0000 / / r f [d]<= r f [l]+ r f [r] ;
‘ d e f i n e sub 6 ’ b11 0001 / / r f [d]<= r f [l]− r f [r] ;
‘ d e f i n e addv 6 ’ b11 0010 / / r f [d]<= r f [l]+v ;
‘ d e f i n e mul t 6 ’ b11 0011 / / r f [d]<= r f [l]* r f [r] ;
‘ d e f i n e mul tv 6 ’ b11 0100 / / r f [d]<= r f [l]* v ;
‘ d e f i n e addc 6 ’ b11 0101 / / r f [d]<=(r f [l]+ r f [r] } [3 2] ;
‘ d e f i n e subc 6 ’ b11 0110 / / r f [d]<=(r f [l]− r f [r]) [3 2] ;
‘ d e f i n e addvc 6 ’ b11 0111 / / r f [d]<=(r f [l]+v) [3 2] ;
‘ d e f i n e l s h 6 ’ b11 1000 / / r f [d]<= r f [l] >> 1;
‘ d e f i n e ash 6 ’ b11 1001 / / r f [d]<=

/ / <={ r f [l] [3 1] , r f [l] [3 1 : 1] } ;
‘ d e f i n e move 6 ’ b11 1010 / / r f [d]<= r f [l] ;
‘ d e f i n e swap 6 ’ b11 1011 / / r f [d]<=

/ / <={ r f [l] [1 5 : 0] , r f [l] [3 1 : 1 6] } ;
‘ d e f i n e bwnot 6 ’ b11 1100 / / r f [d]<=˜ r f [l] ;
‘ d e f i n e bwand 6 ’ b11 1101 / / r f [d]<= r f [l]& r f [r] ;
‘ d e f i n e bwor 6 ’ b11 1110 / / r f [d]<= r f [l] | r f [r] ;
‘ d e f i n e bwxor 6 ’ b11 1111 / / r f [d]<= r f [l] ˆ r f [r] ;
/ / MEMORY, f o r t h e s e i n s t r u c t i o n s : pc=pc +1;
‘ d e f i n e r e a d 6 ’ b10 0000 / / read from dataMemory [r f [l]] ;
‘ d e f i n e l o a d 6 ’ b10 0111 / / r f [d]<=dataOut ;
‘ d e f i n e s t o r e 6 ’ b10 1000 / / dataMemory [r f [l]]<= r f [r] ;
‘ d e f i n e v a l 6 ’ b01 0111 / / r f [d]<={{16*{v [1 5]}} , v } ;

The signal reset acts in PC (pc <= -1) and in DCD by initializing the enable interrupt

automaton ei (ei <= 0, which means disable). Nothing in RALU is submitted to the initialization.
The PC block, controls the evolution of the program counter register pc. The content of this register

evolves:

• by increment with 1 on the linear part of the program

• by increment with the immediate value provided by the instruction code

• by set to a value provided by the content of a register from the register file

• by set to a value provided by the instruction code (can be used to expand the set of operations
already defined in Figure ??).

The RALU block, is mainly under the direct and full control of the instruction code instr provided
directly from the output of the program memory. Onlu the write back signal we is provided by DCD.

There are two instruction formats:

instr[31:0] = {opCode[5:0],d[4:0],l[4:0],r[4:0],noUse[10:0]} |

{opCode[5:0],d[4:0],l[4:0],v[15:0]}

where:

5.4. CASE STUDY: TOYRISC PROCESSOR 161

opCode : is the operation code which specifies three types of operations:

• control operations acting on:

– the value of the program counter, PC, which can be incremented of set to values accord-
ing to the jumps or branches executed in program unconditionally or conditionally (in
our simple processor, the only condition tested is if the value of the left operand is zero

– the state of the interrupt automaton used to enable the action of the interrupt signal
intIn

• arithmetic-logic operations modify the content the register file according to the operations
performed by ALU

• data transfer operations modify the content of the register file loading the immediate data or
the memory data; the content of the external data memory is modified according to address
and data stored in register file

d : specifies the destination of result provided by the ALU

l : specifies the left operand of the current operation

r : specifies the right operand of the current operation

v : is the immediate value used as right operand in the current operation

The first format of instruction operate only with the content of registers, while the second operate with
the content of registers and an immediate value provided in the code of instruction: v.

5.4.3 toyRISC Instruction Set Architecture

The micro-architecture generates ISA by associating each micro operation of the operands and the des-
tination located in the file register. In Figure ?? is listed an inital form of ISA (it can be expanded by
adding micro-operations in the file DEFINE.hv).

/ * ***
toyRISC ’ S ARCHITECTURE

*** * /
NOP / / no o p e r a t i o n
RJMP(l b) / / r e l a t i v e jumpto l a b e l ’ lb ’
ZBR(l , l b) / / branch i f r f [l]= z e r o a t l a b e l ’ lb ’
NZBR(l , l b) / / branch i f r f [l]!= z e r o a t l a b e l ’ lb ’
RET(l) / / r e t u r n from s u b r o u t i n e : pc<=r f [l]
HALT / / h a l t u n t i l i n t e r r u p t i s r e c e i v e d , pc = pc

/ / f o r t h e f o l l o w i n g i n s t r u c t i o n s : pc<=pc +1;
EINT / / s e t e n a b l e i n t e r r u p t
DINT / / s e t d i s a b l e i n t e r r u p t
ADD(d , l , r) / / r f [d]<= r f [l]+ r f [r] ;
SUB(d , l , r) / / r f [d]<= r f [l]− r f [r] ;
ADDV(d , l , v) / / r f [d]<= r f [l]+v ;
MULT(d , l , r) / / r f [d]<= r f [l]* r f [r] ;
MULTV(d , l , v) / / r f [d]<= r f [l]* v ;

162 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

ADDC(d , l , r) / / r f [d]<=(r f [l]+ r f [r] } [3 2] ;
SUBC(d , l , r) / / r f [d]<=(r f [l]− r f [r]) [3 2] ;
ADDVC(d , l , v) / / r f [d]<=(r f [l]+v) [3 2] ;
LSH(d , l) / / r f [d]<= r f [l] >> 1;
ASH(d , l) / / r f [d]<={ r f [l] [3 1] , r f [l] [3 1 : 1] } ;
MOVE(d , l) / / r f [d]<= r f [l] ;
SWAP(d , l) / / r f [d]<={ r f [l] [1 5 : 0] , r f [l] [3 1 : 1 6] } ;
NOT(d , l) / / r f [d]<=˜ r f [l] ;
AND(d , l , r) / / r f [d]<= r f [l]& r f [r] ;
OR(d , l , r) / / r f [d]<= r f [l] | r f [r] ;
XOR(d , l , r) / / r f [d]<= r f [l] ˆ r f [r] ;
READ(l) / / read from dataMemory [r f [l]] ;
LOAD(d) / / r f [d]<=dataOut ;
STORE(l , r) / / dataMemory [r f [l]]<= r f [r] ;
VAL(d , v) / / r f [d]<={{16*{v [1 5]}} , v } ;

5.4.4 toyRISC Implementation

The toyRISC processor will be implemented using a behavioral description in what follows, to provide
a first picture of how circuits and information ”work together” to provide complex functionality using a
hardware structure dominated by simple structures and a complex software program. Indeed, the majority
of the physical structure is made up of RALU and PC which are structures made up of simple circuits,
and the DCD is made up of some complexly configured circuits, in the sense that their definition is in the
same range as their size. On the other hand, the program that uses the toyRISC processor is a complex
binary configuration, in the sense that it does not allow a lossy compression that, alone, could provide a
compact representation. The program is what it is: a complex binary configuration.

The advantage of the combination between simple circuits and complex programs is at the functional
level. We can build large circuits, because they are simple and we can afford complex programs because
their design is done in a flexible environment where the error is tolerable because it is easily corrected.
It is not so easy to correct a circuit error. In this way, the functionality of digital systems can reach very
high levels of complexity.

We intend to test the competence of the toyRISC processor ignoring, at this stage, the performance
that does not represent the target we are pursuing. For performance, hardware and software techniques
are applied that exceed the circuit level to which we limit ourselves in this book. The next level of
performance is extensively addressed in [?] [?].

Behavioral description

Because the project that we describe below emphasizes only the functional aspects leaving aside the
aspects related to the performance, the description used for the main blocks are behavioral.

toyRISC.sv file looks at it is structurally described because the three files included are associated to
the three main blocks represented in Figure 5.5: DCD, PC, RALU.

5.4. CASE STUDY: TOYRISC PROCESSOR 163

/ * ***
F i l e name : toyRISC . sv

toyRISC
*** * /

‘ i n c l u d e ”DEFINES . vh ”
module toyRISC (input [3 1 : 0] i n s t r ,

output [1 5 : 0] nextPC ,
input i n t I n ,
output i n t a ,
input [3 1 : 0] d a t a I n ,
output [3 1 : 0] d a t a O u t ,
output [1 5 : 0] a dd r ,
output reg r e a d ,
output reg w r i t e ,
input r e s e t ,
input c l o c k) ;

reg [1 5 : 0] pc ;
reg e i ;
reg [3 1 : 0] r f [0 : 3 1] ;
wire [5 : 0] opCode ;
wire [4 : 0] d , l , r ; / / d e s t , l f t , r i g h t
wire [3 1 : 0] v ; / / immed ia t e v a l u e
reg we ;
reg [1 : 0] muxSel ;
a s s i g n opCode = i n s t r [3 1 : 2 6] ;
a s s i g n d = i n s t r [2 5 : 2 1] ;
a s s i g n l = i n s t r [2 0 : 1 6] ;
a s s i g n r = i n s t r [1 5 : 1 1] ;
a s s i g n v = {{16{ i n s t r [1 5]}} , i n s t r [1 5 : 0] } ;

‘ i n c l u d e ”DCDtoyRISC . sv ”
‘ i n c l u d e ” PCtoyRISC . sv ”
‘ i n c l u d e ”RALUtoyRISC . sv ”

endmodule

A design for a real product is designed more carefully in terms of speed. For example, there are
some places where pipe registers are needed to increase the clock frequency. We are content in our
approach to illustrate the processing function as an important turning point in the structural evolution of
digital systems towards structure-information symbiosis. Only the functional competence of the mixture
circuit-program is considered in our approach. The performance is minimally considered or completely
ignored.

DCDtoyRISC.sv file is the first file that we include in the top module (see Figure ??) describes the
behavior of the decoder. It contains the 2-state interrupt automaton and the circuit which decodes the
signals sent to the data memory.

/ * ***

164 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

F i l e name : DCDtoyRISC . sv
toyRISC ’ s DCD

*** * /
always @(posedge c l o c k)

i f (r e s e t) e i <= 0 ;
e l s e begin i f (opCode == ‘ e i n t) e i <= 1 ;

i f (opCode == ‘ d i n t) e i <= 0 ;
i f (i n t I n & e i) e i <= 0 ;

end

a s s i g n i n t a = i n t I n & e i ;

always @(*)
casex (opCode)

‘ r e a d : r e a d = 1 ’ b1 ;
‘ s t o r e : w r i t e = 1 ’ b1 ;
d e f a u l t : { read , w r i t e } = 2 ’ b0 ;

endcase

The interrupt automaton is designed to manage the acceptance of the action of the interrupt signal.
Initially, the automaton is set on the state disable interrupt (ei = 0), because the program decides
when the interrupt can be accepted, not before the register rf[31] is loaded with the address where the
program associated to the interrupt is loaded. When the interrupt is accepted (inta = 1), the automaton
switched in the state disable interrupt protecting the program from the action of another interrupt
before the current one does it work. At the end of the program launched by the interrupt the interrupt
automaton can be switched in the enable interrupt.

Important note: if the halt instruction runs and the interrupt automaton is in the disable state,
then the entire system is blocked and the only solution to enable its behavior is to reset it.

PCoyRISC.sv file is the second file included in the toyRISC.sv file. It describes a simple automaton,
the automaton whose state register in the program counter, pc. The automaton is an initial one. It can be
initialized by the reset signal in the state -1 to allow the evolution immediately after the end of reset
starting with the instruction stored ar the address 0 in the program memory. The PC automaton can also
be initialized with the value stored in rf[l]; mechanism that allows the return of the program execution
from the execution of the program associated with the interruption.

/ * ***
F i l e name : PCtoyRISC . sv

toyRISC ’ s PC
*** * /

always @(posedge c l o c k) i f (r e s e t) pc <= −1 ;
e l s e i f (i n t a) pc <= r f [3 1] ;

e l s e pc <= nextPC ;
always @(*)

case (opCode)
‘ r j m p : nextPC = pc + v ;

5.4. CASE STUDY: TOYRISC PROCESSOR 165

‘ z b f : nextPC = (r f [l] == 0) ? pc + v : pc + 1 ;
‘ n z b f : nextPC = (r f [l] != 0) ? pc + v : pc + 1 ;
‘ r e t : nextPC = r f [l] ;
‘ h a l t : nextPC = pc ;

d e f a u l t : nextPC = pc + 1 ;

Otherwise, the automaton evolves depending on the state it is in, pc, the command received via
opCode and depending on the value of the left operand which is tested if it is or not zero.

RALUtoyRISC.sv file is the third file included in the toyRISC.sv file. It describes also a simple
automaton. Its structured state, stored in a memory organized as a register file, is submitted to the
processing defined as the sequence of the arithmetic and logic operations performed by a simple circuit:
ALU.

The signal inta it also acts here, as in the case of the PC, having priority over the operation code
received from the program memory: register rf[30] takes the return value (pc+1) from the program
(subroutine) run as a result of the interruption.

The always form describes a half-automaton with the input:

{instr, inta, dataIn, pc}

and the internal state as the following Cartesian product:

RF = {rf[0], rf[1], ..., rf[31]}

/ * ***
F i l e name : RALUtoyRISC . sv

toyRISC ’ s RALU
*** * /

always @(posedge c l o c k)
i f (i n t a) r f [3 0] <= pc + 1 ;

e l s e
case (opCode)

‘ add : r f [d] <= r f [l]+ r f [r] ;
‘ s u b : r f [d] <= r f [l] − r f [r] ;
‘ addv : r f [d] <= r f [l]+ v ;
‘ m u l t : r f [d] <= r f [l]* r f [r] ;
‘ m u l t v : r f [d] <= r f [l]* v ;
‘ a d d c : r f [d] <= ((r f [l]+ r f [r]) & 2ˆ32 == 0)

? 0 : 1 ;
‘ s u b c : r f [d] <= ((r f [l] − r f [r]) & 2ˆ32 == 0)

? 0 : 1 ;
‘ a dd vc : r f [d] <= ((r f [l]+ v) & 2ˆ32 == 0)

? 0 : 1 ;
‘ l s h : r f [d] <= r f [l] >> 1 ;
‘ a s h : r f [d] <= { r f [l] [3 1] , r f [l] [3 1 : 1] } ;
‘move : r f [d] <= r f [l] ;
‘swap : r f [d] <= { r f [l] [1 5 : 0] , r f [l] [3 1 : 1 6] } ;

166 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

‘bwnot : r f [d] <= ˜ r f [l] ;
‘bwand : r f [d] <= r f [l]& r f [r] ;
‘bwor : r f [d] <= r f [l] | r f [r] ;
‘bwxor : r f [d] <= r f [l] ˆ r f [r] ;
‘ l o a d : r f [d] <= d a t a I n ;
‘ v a l : r f [d] <= v ;
d e f a u l t : r f [0] <= r f [0] ;

endcase
a s s i g n add r = r f [l] [9 : 0] ;
a s s i g n d a t a O u t = r f [r] ;

The outputs associated to the half-automaton are described by the last two assign form which take
the address and data for data memory from directly form the register file’s output.

5.5 Concluding about the third loop

The third loop is closed through simple automata avoiding the fast increasing of the complexity in
digital circuit domain. It allows the autonomy of the control mechanism.

”Intelligent registers” ask less structural control maintaining the complexity of a finite automaton
at the smallest possible level. Intelligent, loop driven circuits can be controlled using smaller complex
circuits.

The loop through a storage element ask less symbolic control at the micro-architectural level. Less
symbols are used to determine the same behavior because the local loop through a memory element
generates additional information about the recent history.

Looping through a memory circuit allows a more complex “understanding” because the controlled
circuits “knows” more about its behavior in the previous clock cycle. The circuit is somehow “conscious”
about what it did before, thus being more “responsible” for the operation it performs now.

Looping through an automaton allows any effective computation. Using the theory of computation
(see chapter Recursive Functions & Loops in this book) can be proved that any effective computation
can be done using a three loop digital system. More than three loops are needed only for improving the
efficiency of the computational structures.

The third loop allows the symbolic functional control using the arbitrary meaning associated to
the binary codes embodied in instructions or micro-instructions. Both, the coding and the decoding
process being controlled at the design level, the binary symbols act actualizing the potential structure of
a programmable machine.

Real processors use circuit level parallelism discussed in the first chapter of this book. They are:
data parallelism, time parallelism and speculative parallelism. How all these kind of parallelism are used
is a computer architecture topic, beyond the goal of these lecture notes.

5.6. PROBLEMS 167

5.6 Problems

Problem 5.1 Interrupt automaton with asynchronous input.

Problem 5.2 Solving the second degree equations with an elementary processor.

Problem 5.3 Compute y if x, m and n is given with an elementary processor..

Problem 5.4 Modify the unending loop of the processor to avoid spending time in testing if a new in-
struction is in inFIFO when it is there.

Problem 5.5 Define an instruction set for the processor described in this chapter using its microarchi-
tecture.

Problem 5.6 Our CISC Processor: how must be codded the instruction set to avoid FUNC MUX?

5.7 Projects

Project 5.1 Design a specialized elementary processor for rasterization function.

Project 5.2 Design a system integrating in a parallel computational structure 8 rasterization processors
designed in the previous project.

Project 5.3 Design a floating point arithmetic coprocessor.

Project 5.4 Design the RISC processor defined by the following Verilog behavioral description:

module risc_processor(

);

endmodule

Project 5.5 Design a version of Stack Processor modifying SALU as follows: move MUX4 to the output
of ALU and the input of STACK.

168 CHAPTER 5. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

Chapter 6

COMPUTING MACHINES:
≥4–loop digital systems

Software is getting slower more rapidly than hardware
becomes faster.

Wirth’s law1

To compensate the effects of the bad behavior of software
guys, besides the job done by the Moore law a lot of ar-
chitectural work must be added.

The last examples of the previous chapter emphasized a process that appears as a ”turning point” in
3-OS: the function of the system becomes lesser and lesser dependent on the physical structure and the
function is more and more assumed by a symbolic structure (the program or the microprogram). The
physical structure (the circuit) remains simple, rather than the symbolic structure, “stored” in program
memory of in a ROM, that establishes the functional complexity. The fourth loop creates the condition
for a total functional dependence on the symbolic structure. By the rule, at this level an universal circuit -
the processor - executes (in RISC machines) or interprets (in CISC machines) symbolic structures stored
in an additional device: the program memory.

6.1 Types of fourth order systems

There are four main types of fourth order systems (see Figure 6.1) depending on the order of the system
through which the loop is closed:

1. P & ROM is a 4-OS with loop closed through a 0-OS - in Figure 6.1a the combinational circuit is
a ROM containing only the programs executed or interpreted by the processor

1Niklaus Wirth is an already legendary Swiss born computer scientist with many contributions in developing various pro-
gramming languages. The best known is Pascal. Wirth’s law is a sentence which Wirth made popular, but he attributed it to
Martin Reiser.

169

170 CHAPTER 6. COMPUTING MACHINES: ≥4–LOOP DIGITAL SYSTEMS

2. P & RAM is a 4-OS with loop closed through a 1-OS - is the computer, the most representative
structure in this order, having on the loop a RAM (see Figure 6.1b) that stores both data and
programs

3. P & LIFO is a 4-OS with loop closed through a 2-OS - in Figure 6.1c the automaton is represented
by a push-down stack containing, by the rule, data (or sequences in which the distinction between
data and programs does not make sense, as in the Lisp programming language, for example)

4. P & CO-P is a 4-OS with loop closed through a 3-OS - in Figure 6.1d COPROCESSOR is also
a processor but a specialized one executing efficiently critical functions in the system (in most of
cases the coprocessor is a floating point arithmetic processor).

The representative system in the class of P & ROM is the microcontroller the most successful circuit
in 4-OS. The microcontroller is a “best seller” circuit realized as a one-chip computer. The core of a
microcontroller is a processor executing/interpreting the programs stored in a ROM.

The representative structure in the class of P & RAM is the computer. More precisely, the struc-
ture Processor - Channel - Memory represents the physical support for the well known von Neumann
architecture. Almost all present-day computers are based on this architecture.

The third type of system seems to be strange, but a recent developed architecture is a stack oriented
architecture defined for the successful Java language. Naturally, a real Java machine is endowed also
with the program memory.

The third and the fourth types are machines in which the segregation process emphasized physical
structures, a stack or a coprocessor. In both cases the segregated structures are also simple. The con-
sequence is that the whole system is also a simple system. But, the first two systems are very complex
systems in which the simple is net segregated by the random. The support of the random part is the ROM
physical structure in the first case and the symbolic content of the RAM memory in the second.

The actual computing machines have currently more than order 4, because the processors involved
in the applications have additional features. Many of these features are introduced by new loops that
increase the autonomy of certain subsystems. But theoretically, the computer function asks at least four
loops.

6.2 The computer – support for the strongest segregation

The ROM content is defined symbolically and after that it is converted in the actual physical structure
of ROM. Instead, the RAM content remains in symbolic form and has, in consequence, more flexibil-
ity. This is the main reason for considering the PROCESSOR & RAM = COMPUTER as the most
representative in 4-OS.

The computer is not a circuit. It is a new entity with a special functional definition, currently called
computer architecture. Mainly, the computer architecture is given by the machine language. A program
written in this language is interpreted or executed by the processor. The program is stored in the RAM
memory. In the same subsystem are stored data on which the program “acts”. Each architecture can have
many associated computer structures (organizations).

Starting from the level of four order systems the behavior of the system is controlled mainly by the
symbolic structure of programs. The architectural approach settles the distinction between the physical
structures and the symbolic structures. Therefore, any computing machine supposes the following triadic
definition (suggested by [”Milutinovic” ’89]):

6.2. THE COMPUTER – SUPPORT FOR THE STRONGEST SEGREGATION 171

PROCESSOR ROM

6 66 6

WAIT

DATA

ADDRESS

PROCESSOR RAM

66 66 6

WAIT

DATA

ADDRESS

READ

PROCESSOR

66 66

2

WAIT

DATA

2

{READ, WRIT E, −}

PROCESSOR

66 66

Functions

WAIT

DATA

)

LIFO

3-OS

2-OS

CO-PROCESSOR

COMMANDS

{PUSH, POP, −}

d.

c.

Data

)

b.

Data & Programs

)

a.

Programs

)

3-OS 1-OS

0-OS

3-OS

3-OS

3-OS

Figure 6.1: The four types of 4-OS machines. a. Fix program computers usual in embedded computation. b.
General purpose computer. c. Specialized computer working working on a restricted data structure. d. Accelerated
computation supported by a specialized co-processor.

172 CHAPTER 6. COMPUTING MACHINES: ≥4–LOOP DIGITAL SYSTEMS

• the machine language (usually called architecture)

• the storage containing programs written in the machine language

• the machine that interprets the programs, containing:

– the machine language ...

– the storage ...

– the machine ... containing:

* ...

and so on until the machine executes the programs.

Does it make any sense to add new loops? Yes, but not too much! It can be justified to add loops
inside the processor structure to improve its capacity to interpret fast the machine language by using
simple circuits. Another way is to see PROCESSOR & COPROCESSOR or PROCESSOR & LIFO as
performant processors and to add over them the loop through RAM. But, mainly these machines remain
structures having the computer function. The computer needs at least four loops to be competent, but
currently it is implemented on system having more loops in order to become performant.

6.2.1 Four-Loop Circuits (4-OS) & Controlling by Information

In the previous subsection, the information interacts directly with the physical structure. All the infor-
mation is executed or interpreted by the circuits. The next step disconnects partially the information
from circuits. In a system, having four loops the information can be interpreted by another information
acting to the lower level in the system. The typical 4-OS is the computer structure (see Chapter ??). This
structure is more than we need for computing. Indeed, as we said in subsection ??, the partial recursive
functions can be computed in 3-OSs. Why are we interested in using 4-OS for performing computations?
The answer is: for segregating more the simple circuits from random (complex) informational structure.
In a system having four loops the simple and the complex are maximal segregated, the first in circuits
and the second in information.

At the 3-OS level, the information also interacts, and thereby acts, with the structure of the circuits
through the flags. The control performed depends on what happens directly in the controlled circuits. At
the 4-OS level, the control is taken over by the information in an imperative way, a way that no longer
depends at all on the signals coming directly from the circuits.

Starting from the level of the fourth order systems the functional aspects of a digital system is im-
posed mainly by the information. The role of the circuits decreases. Circuits become simple even if they
gain in size. The complexity of the computation switches from circuits to information.

6.3. PROBLEMS 173

CISC

Processor

Data & Program

Memory

3-OS 1-OS

-addr

-dataOut

memOut

-

loop
4th

�
6

-

read

write

Figure 6.2: von Neumann abstract model for computer.

6.2.2 Five-Loop Circuits (5-OS): Computer with RISC Processor

RISC

Processor

Data

Memory

3-OS 1-OS

�

loop

nextPC -addr

-dataOut

dataIn

-

loop
4th

�
6

-

read

write

5th

-instruction

6

Memory

Program

1-OS

Figure 6.3:

6.3 Problems

Problem 6.1 Interpretative processor with distinct program counter block.

6.4 Projects

Project 6.1

174 CHAPTER 6. COMPUTING MACHINES: ≥4–LOOP DIGITAL SYSTEMS

ANNEXES

175

Appendix A

Binary Arithmetic

A.1 Binary representations

A.1.1 Positive integers

Positive integer denoted by Z+, and they are the solution to the simple linear recurrence equation an =
an−1 +1 with a1 = 1.

A n-bit number:

Bn−1Bn−2 . . .B1B0 ⇒ Bn−1 ×2n−1 +Bn−2 ×2n−2 + . . .+B1 ×21 +B0 ×20

where Bi ∈ {0,1} for i = 0,1, . . .n−1.

A.1.2 Decimal to binary conversion

The algorithm of converting the decimal number D in a n-bit binary form is:

step 1 D0 = ⌊D/2⌋ // the whole part of D divided by 2
B0 = D−⌊D/2⌋×2 // the remainder of dividing D by 2

step 2 D1 = ⌊D0/2⌋
B1 = D0 −⌊D0/2⌋×2

. . .

step n Dn−1 = ⌊Dn−2/2⌋
Bn−1 = Dn−2 −⌊Dn−2/2⌋×2

A.1.3 Signed integers

Sign-magnitude representation

{sign, magnitude}

0_0000 => +0

0_0001 => +1

0_0010 => +2

177

178 APPENDIX A. BINARY ARITHMETIC

...

0_1111 => +15

1_0000 => -0

1_0001 => -1

1_0010 => -2

...

1_1111 => -15

Ones’ complement representation

Ones’ complement is bitwise negation.

{sign, magnitude}

0_0000 => +0

0_0001 => +1

0_0010 => +2

...

0_1111 => +15

1_0000 => -15

1_0001 => -14

1_0010 => -13

...

1_1111 => -0

Two’s complement representation

Two’s complement is ones’ complement plus 1

{sign, magnitude}

0_0000 => +0

0_0001 => +1

0_0010 => +2

...

0_1111 => +15

1_0000 => -16

1_0001 => -15

1_0010 => -14

...

1_1111 => -1

A.1.4 Fix point fractionary numbers

Bn−1 . . .B1B0 . F1F2 . . .⇒ Bn−1 ×2n−1 + . . .+B1 ×21 +B0 ×20 +F1 ×2−1 +F2 ×2−2 + . . .

where Bi,Fi ∈ {0,1} for i = 0,1,

A.2. ADDING/SUBSTRACTING 179

A.1.5 Floating point numbers

{sign, exponent, fraction}

sgn 1. f raction×2exponent−127

IEEE half-precision 16-bit float: deep learning artificial intelligence

{sign, exponent[4:0], fraction[9:0]}

Google’s brain float bfloat16 is a 16-bit float:

{sign, exponent[7:0], fraction[6:0]}

NVidia’s TensorFloat 19-bit float:

{sign, exponent[7:0], fraction[9:0]}

AMD’s fp24 24-bit float:

{sign, exponent[6:0], fraction[14:0]}

Pixar’s PXR24 24-bit float:

{sign, exponent[7:0], fraction[14:0]}

IEEE 754 single-precision 16-bit float:

{sign, exponent[7:0], fraction[22:0]}

Example A.1 In IEEE 754 single-precision, the number:

0_10000010_11000000000000000000000

corresponds to:
+(1+(0.5+0.25))×2130−127 = 14

⋄

A.2 Adding/Substracting

The most efficient representation for add/sub is twos complement.

180 APPENDIX A. BINARY ARITHMETIC

A.2.1 Adding positive integers

Carry represents the overflow for positive integer addition. We consider integers represented on 4 bits.
A first example with no carry:

+1 0001

+6 0110

-- ----

+5 0111

An example with carry:

+10 1010

+8 1000

-- ----

(1)+16 (1)0010

A.2.2 Adding signed integers

Simply add the numbers and ignore any carry out of the highest bit.

-1 1_1111

+6 0_0110

-- ------

+5 (1)0_0101

+1 0_0001

-4 1_1100

-- ------

-3 (0)1_1101

A.2.3 Subtracting

A-B means A+(2s compl of B)

3-2 => 0_0011+NOT(0_0010)+1 => 0_0011+1_1101+1 => (1)0_0001 = 0_0001

A.2.4 Overflow

In signs of the operands, sgn1 and sgn2, are different, overflow is not possible. It they are the same
overflow is possible if the sign of the result, sgnR, is different from the common signs of operands.

overflow = (sgn1 ^ sgn0)’ & (sgn1 ^ sgnR)

A.3 Multiply/Divede

A.3.1

A.3.2

Appendix B

Boolean functions

Searching the truth, dealing with numbers and behaving automatically are all based on logic. Starting
from the very elementary level we will see that logic can be “interpreted” arithmetically. We intend to
offer a physical support for both the numerical functions and logical mechanisms. The logic circuit is
the fundamental brick used to build the physical computational structures.

B.1 Short History
There are some significant historical steps on the way from logic to numerical circuits. In the following some of
them are pointed.

Aristotle of Stagira (382-322) a Greek philosopher considered as founder for many scientific domains. Among
them logics. All his writings in logic are grouped under the name Organon, that means instrument of scientific
investigation. He worked with two logic values: true and false.

George Boole (1815-1864) is an English mathematician who formalized the Aristotelian logic like an algebra.
The algebraic logic he proposed in 1854, now called Boolean logic, deals with the truth and the false of complex
expressions of binary variables.

Claude Elwood Shannon (1916-2001) obtained a master degree in electrical engineering and PhD in math-
ematics at MIT. His Master’s thesis, A Symbolic Analysis of Relay and Switching Circuits [Shannon ’38], used
Boolean logic to establish a theoretical background of digital circuits.

B.2 Elementary circuits: gates

Definition B.1 A binary variable takes values in the set {0,1}. We call it bit.

The set of numbers {0,1} is interpreted in logic using the correspondences: 0 → f alse,1 → true in
what is called positive logic, or 1 → f alse,0 → true in what is called negative logic. In the following we
use positive logic.

Definition B.2 We call n-bit binary variable an element of the set {0,1}n.

Definition B.3 A logic function is a function having the form f : {0,1}n →{0,1}m with n≥ 0 and m> 0.

181

182 APPENDIX B. BOOLEAN FUNCTIONS

In the following we will deal with m = 1. The parallel composition will provide the possibility to
build systems with m > 1.

B.2.1 Zero-input logic circuits

Definition B.4 The 0-bit logic function are f 0
0 = 0 (the false-function) which generates the one bit

coded 0, and f 0
1 = 1 (the true-function) which generate the one bit coded 1.

They are useful for generating initial values in computation (see the zero function as basic function
in partial recursivity).

B.2.2 One input logic circuits

Definition B.5 The 1-bit logic functions, represented by true-tables in Figure B.1, are:

• f 1
0 (x) = 0 – the false function

• f 1
1 (x) = x′ – the invert (not) function

• f 1
2 (x) = x – the driver or identity function

• f 1
3 (x) = 1 – the true function

x f 1
0 f 1

1 f 1
2 f 1

3
0 0 1 0 1

1 0 0 1 1

a.

-

b. c.

x x’
-

“1” = VDD

x

d.

x

e.

Figure B.1: One-bit logic functions. a. The truth table for 1-variable logic functions. b. The circuit for “0”
(false) by connecting to the ground potential. c. The logic symbol for the inverter circuit. d. The logic symbol for
driver function. e. The circuit for “1” (true) by connecting to the high potential.

Numerical interpretation of the NOT circuit: one-bit incrementer. Indeed, the output represents the
modulo 2 increment of the inputs.

B.2.3 Two inputs logic circuits

Definition B.6 The 2-bit logic functions are represented by true-tables in Figure B.2.

Interpretations for some of 2-input logic circuits:

• f 2
8 : AND function is:

– a multiplier for 1-bit numbers

– a gate, because x opens the gate for y:
if (x = 1) output = y; else output = 0;

• f 2
6 : XOR (exclusiv OR) is:

B.3. HOW TO DEAL WITH LOGIC FUNCTIONS 183

x y f 2
0 f 2

1 f 2
2 f 2

3 f 2
4 f 2

5 f 2
6 f 2

7 f 2
8 f 2

9 f 2
A f 2

B f 2
C f 2

D f 2
E f 2

F
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

a.

x

y

x

y

x

y

x

y

x

y

x

y

f 2
8 = xy f 2

7 = (xy)′

f 2
E = x+ y f 2

1 = (x+ y)′

f 2
6 = x⊕ y f 2

9 = (x⊕ y)′

b. c.

d. e.

f. g.

Figure B.2: Two-bit logic functions. a. The table of all two-bit logic functions. b. AND gate – the original
gate. c. NAND gate – the most used gate. d. OR gate. e. NOR gate. f. XOR gate – modulo2 adder. g. NXOR gate
– coincidence circuit.

– the 2-modulo adder

– NEQ (not-equal) circuit, a comparator pointing out when the two 1-bit numbers on the input
are inequal

– an enabled inverter:
if x = 1 output is y′; else output is y;

– a modulo 2 incrementer.

• f 2
B : the logic implication is also used to compare 1-bit numbers because the output is 1 for y < x

• f 2
1 : NOR function detects when 2-bit numbers have the value zero.

All logic circuits are gates, even if a true gate is only the AND gate.

B.2.4 Many input logic circuits

For enumerating the 3-input function a table with 8 line is needed. On the left side there are 3 columns
and on the right side 256 columns (one for each 8-bit binary configuration defining a logic function).

Theorem B.1 The number of n-input one output logic (Boolean) functions is N = 22n
. ⋄

Enumerating is not a solution starting with n = 3. Maybe the 3-input function can be defined using
the 2-input functions.

B.3 How to Deal with Logic Functions

The systematic and formal development of the theory of logical functions means: (1) a set of elementary
functions, (2) a minimal set of axioms (of formulas considered true), and (3) some rule of deduction.

Because our approach is a pragmatic one: (1) we use an extended (non-minimal) set of elementary
functions containing: NOT, AND, OR, XOR (a minimal one contains only NAND, or only NOR), and
(2) we will list a set of useful principles, i.e., a set of equivalences.

184 APPENDIX B. BOOLEAN FUNCTIONS

Identity principle Even if the natural tendency of existence is becoming, we stone the value a to be
identical with itself: a = a. Here is one of the fundamental limits of digital systems and of computation
based on them.

Double negation principle The negation is a “reversible” function, i.e., if we know the output we can
deduce the input (it is a very rare, somehow unique, feature in the world of logical function): (a′)′) = a.
Actually, we can not found the reversibility in existence. There are logics that don’t accept this principle
(see the intuitionist logic of Heyting & Brower).

Associativity Having 2-input gates, how can be built gates with much more inputs? For some
functions the associativity helps us.
a+(b+ c) = (a+b)+ c = a+b+ c
a(bc) = (ab)c = abc
a⊕ (b⊕ c) = (a⊕b)⊕ c = a⊕b⊕ c.

Commutativity Commutativity allows us to connect to the inputs of some gates the variable in any
order.
a+b = b+a
ab = ba
a⊕b = b⊕a

Distributivity Distributivity offers the possibility to define all logical functions as sum of products or
as product of sums.
a(b+ c) = ab+ac
a+bc = (a+b)(a+ c)
a(b⊕ c) = ab⊕ac.
Not all distributions are possible. For example:

a⊕bc ̸= (a⊕b)(b⊕ c).

The table in Figure B.3 can be used to prove the previous inequality.

a b c bc a ⊕ bc a⊕b a⊕c (a⊕b)(a⊕c)
0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 0 0

1 1 0 0 1 0 1 0

1 1 1 1 0 0 0 0

Figure B.3: Proving by tables. Proof of inequality a⊕bc ̸= (a⊕b)(b⊕ c).

B.3. HOW TO DEAL WITH LOGIC FUNCTIONS 185

Absorbtion Absorbtion simplify the logic expression.
a+a′ = 1
a+a = a
aa′ = 0
aa = a
a+ab = a
a(a+b) = a
Tertium non datur: a+a′ = 1.

Half-absorbtion The half-absorbtion allows only a smaller, but non-neglecting, simplification.
a+a′b = a+b
a(a′+b) = ab.

Substitution The substitution principles say us what happen when a variable is substituted with a
value.
a+0 = a
a+1 = 1
a0 = 0
a1 = a
a⊕0 = a
a⊕1 = a′.

Exclusion The most powerful simplification occurs when the exclusion principle is applicable.
ab+a′b = b
(a+b)(a′+b) = b.

Proof. For the first form:
ab+a′b = b

applying successively distribution, absorbtion and substitution results:

ab+a′b = b(a+a′) = b1 = b.

For the second form we have the following sequence:

(a+b)(a′+b) = (a+b)a′+(a+b)b = aa′+a′b+ab+bb =

0+(a′b+ab+b) = a′b+ab+b = a′b+b = b.

De Morgan laws Some times we are interested to use inverting gates instead of non-inverting gates,
or conversely. De Morgan laws will help us.
a+b = (a′b′)′ ab = (a′+b′)′

a′+b′ = (ab)′ a′b′ = (a+b)′

186 APPENDIX B. BOOLEAN FUNCTIONS

B.4 Minimizing Boolean functions

Minimizing logic functions is the first operation to be done after defining a logical function. Minimizing
a logical function means to express it in the simplest form (with minimal symbols). To a simple form a
small associated circuit is expected. The minimization process starts from canonical forms.

B.4.1 Canonical forms

The initial definition of a logic function is usually expressed in a canonical form. The canonical form is
given by a truth table or by the rough expression extracted from it.

Definition B.7 A minterm associated to an n-input logic function is a logic product (AND logic func-
tion) depending by all n binary variable. ⋄

Definition B.8 A maxterm associated to an n-input logic function is a logic sum (OR logic function)
depending by all n binary variable. ⋄

Definition B.9 The disjunctive normal form, DNF, of an n-input logic function is a logic sum of
minterms. ⋄

Definition B.10 The conjunctive normal form, CNF, of an n-input logic function is a logic product of
maxterms. ⋄

Example B.1 Let be the combinational multiplier for 2 2-bit numbers described in Figure B.4. One
number is the 2-bit number {a,b} and the other is {c,d}. The result is the 4-bit number {p3, p2, p1, p0}.
The logic equations result direct as 4 DNFs, one for each output bit:
p3 = abcd
p2 = ab’cd’ + ab’cd + abcd’
p1 = a’bcd’ + a’bcd + ab’c’d + ab’cd + abc’d + abcd’
p0 = a′bc′d +a′bcd +abc′d +abcd.
Indeed, the p3 bit takes the value 1 only if a = 1 and b = 1 and c = 1 and d = 1. The bit p2 is 1 only
one of the following three 4-input ADNs takes the value 1: ab′cd′, ab′cd, abcd′. And so on for the other
bits.

Applying the De Morgan rule the equations become: p3 = ((abcd)′)′

p2 = ((ab′cd′)′(ab′cd)′(abcd′)′)′

p1 = ((a′bcd′)′(a′bcd′(ab′c′d)′(ab′cd)′(abc′d)′(abcd′)′)′

p0 = ((a′bc′d)′(a′bcd)′(abc′d)′(abcd)′)′.

These forms are more efficient in implementation because involve the same type of circuits (NANDs),
and because the inverting circuits are usually faster.

The resulting circuit is represented in Figure B.5. It consists in two layers of ADNs. The first layer
computes only minterms and the second “adds” the minterms thus computing the 4 outputs.

The logic depth of the circuit is 2. But in real implementation it can be bigger because of the fact
that big input gates are composed from smaller ones. Maybe a real implementation has the depth 3. The
propagation time is also influenced by the number of inputs and by the fan-out of the circuits.

The size of the resulting circuit is very big also: Smult2 = 54. ⋄

B.4. MINIMIZING BOOLEAN FUNCTIONS 187

ab cd p3 p2 p1 p0

00 00 0 0 0 0

00 01 0 0 0 0

00 10 0 0 0 0

00 11 0 0 0 0

01 00 0 0 0 0

01 01 0 0 0 1

01 10 0 0 1 0

01 11 0 0 1 1

10 00 0 0 0 0

10 01 0 0 1 0

10 10 0 1 0 0

10 11 0 1 1 0

11 00 0 0 0 0

11 01 0 0 1 1

11 10 0 1 1 0

11 11 1 0 0 1

Figure B.4: Combinatinal circuit represented a a truth table. The truth table of the combinational circuit
performing 2-bit multiplication.

a

b

c

d

p2

p0

p1

p3

Figure B.5: Direct implementation of a combinational circuit. The direct implementation starting from
DNF of the 2-bit multiplier.

B.4.2 Algebraic minimization

Minimal depth minimization

Example B.2 Let’s revisit the previous example for minimizing independently each function. The least
significant output has the following form:

p0 = a′bc′d +a′bcd +abc′d +abcd.

We will apply the following steps:

p0 = (a′bd)c′+(a′bd)c+(abd)c′+(abd)c

to emphasize the possibility of applying twice the exclusion principle, resulting

p0 = a′bd +abd.

188 APPENDIX B. BOOLEAN FUNCTIONS

Applying again the same principle results:

p0 = bd(a′+a) = bd1 = bd.

The exclusion principle allowed us to reduce the size of the circuit from 22 to 2.
We continue with the next output:

p1 = a′bcd′+a′bcd +ab′c′d +ab′cd +abc′d +abcd′ =

= a′bc(d′+d)+ab′d(c′+ c)+abc′d +abcd′ =
= a′bc+ab′d +abc′d +abcd′ =
= bc(a′+ad′)+ad(b′+bc′) =
= bc(a′+d′)+ad(b′+ c′) =
= a′bc+bcd′+ab′d +ac′d.
Now we used also the half-absorbtion principle reducing the size from 28 to 16.

Follows the minimization of p2:

p2 = ab′cd′+ab′cd +abcd′ =

= ab′c+abcd′ =
= ab′c+acd′

The p3 output can not be minimized. De Morgan law is used to transform the expressions to be imple-
mented with NANDs.

p3 = ((abcd)′)′

p2 = ((ab′c)′(acd′)′)′

p1 = ((a′bc)′(bcd′)′(ab′d)′(ac′d)′)′

p1 = ((abcd)′)′.
Results the circuit from Figure B.6. ⋄

a

b

c

d

p3

p2

p1

p0

Figure B.6: Minimal depth minimiztion The first, minimal depth minimization of the 2-bit multiplier.

B.4. MINIMIZING BOOLEAN FUNCTIONS 189

Multi-level minimization

Example B.3 The same circuit for multiplying 2-bit numbers is used to exemplify the multilevel mini-
mization. Results:

p3 = abcd

p2 = ab′c+acd′ = ac(b′+d′) = ac(bd)′

p1 = a′bc+bcd′+ab′d +ac′d = bc(a′+d′)+ad(b′+ c′) = bc(ad)′+ad(bc)′ = (bc)⊕ (ad)
p0 = bd.
Using for XOR the following form:

x⊕ y = ((x⊕ y)′)′ = (xy+ x′y′)′ = (xy)′(x′y′)′ = (xy)′(x+ y)

results the circuit from Figure B.7 with size 22. ⋄

a
b
c
d

p3 p1 p2 p0

Figure B.7: Multi-level minimization. The second, multi-level minimization of the 2-bit multiplier.

Many output circuit minimization

Example B.4 Inspecting carefully the schematics from Figure B.7 results: (1) the output p3 can be
obtained inverting the NAND’s output from the circuit of p2, (2) the output p0 is computed by a part of
the circuit used for p2. Thus, we are encouraged to rewrite same of the functions in order to maximize
the common circuits used in implementation. Results:

x⊕ y = (xy)′(x+ y) = ((xy)+(x+ y)′)′.

p2 = ac(bd)′ = ((ac)′+bd)′

allowing the simplified circuit from Figure B.8. The size is 16 and the depth is 3. But, more important:
(1) the circuits contains only 2-input gates and (2) the maximum fan-out is 2. Both last characteristics
led to small area and high speed. ⋄

B.4.3 Veitch-Karnaugh diagrams

In order to apply efficiently the exclusion principle we need to group carefully the minterms. Two
dimension diagrams allow to emphasize the best grouping. Formally, the two minterms are adjacent if
the Hamming distance in minimal.

190 APPENDIX B. BOOLEAN FUNCTIONS

a
b
c
d

p3 p2p1 p0

Figure B.8: Multiple-output minimization. The third, multiple-output minimization of the 2-bit multiplier.

Definition B.11 The Hamming distance between two minterms is given by the total numbers of binary
variable which occur distinct in the two minterms. ⋄

Example B.5 The Hamming distance between m9 = ab′c′d and m4 = a′bc′d′ is 3, because only the
variable b occurs in the same form in both minterms.

The Hamming distance between m9 = ab′c′d and m1 = a′b′c′d is 1, because only the variable which
occurs distinct in the two minterms is a. ⋄

Two n-variable terms having the Hamming distance 1 are minimized, using the exclusion principle,
to one (n−1)-variable term. The size of the associated circuit is reduced from 2(n+1) to n−1.

A n-input Veitch diagram is a two dimensioned surface containing 2n squares, one for each n-value
minterm. The adjacent minterms (minterms having the Hamming distance equal with 1) are placed in
adjacent squares. In Figure B.9 are presented the Veitch diagrams for 2, 3 and 4-variable logic functions.
For example, the 4-input diagram contains in the left half all minterms true for a = 1, in the upper half
all minterms true for b = 1, in the two middle columns all the minterms true for c = 1, and in the two
middle lines all the minterms true for d = 1. Results the lateral columns are adjacent and the lateral line
are also adjacent. Actually the surface can be seen as a toroid.

a. b. c.

m0m1

m2m3

m4 m5

m6 m7

m0

m1

m2

m3

a

b

c

a

b

m0

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m13

m12 m14

m15

a

b

c

d

Figure B.9: Veitch diagrams. The Veitch diagrams for 2, 3, and 4 variables.

Example B.6 Let be the function p1 and p2, two outputs of the 2-bit multiplier. Rewriting them using
minterms results::

p1 = m6 +m7 +m9 +m11 +m13 +m14

p2 = m10 +m11 +m14.

B.4. MINIMIZING BOOLEAN FUNCTIONS 191

In Figure B.10 p1 and p2 are represented.
⋄

1 1

1

11

1

1

1

a.

1

b.

a

b

c

d

a

b

c

d

p1 p2

Figure B.10: Using Veitch diagrams. The Veitch diagrams for the functions p1 and p2.

The Karnaugh diagrams have the same property. The only difference is the way in which the
minterms are assigned to squares. For example, in a 4-input Karnaugh diagram each column is asso-
ciated to a pair of input variable and each line is associated with a pair containing the other variables.
The columns are numbered in Gray sequence (successive binary configurations are adjacent). The first
column contains all minterms true for ab= 00, the second column contains all minterms true for ab= 01,
the third column contains all minterms true for ab = 11, the last column contains all minterms true for
ab = 10. A similar association is made for lines. The Gray numbering provides a similar adjacency as in
Veitch diagrams.

00 01 11 10

00 01 11 10

0

1

00

01

11

10

ab

ab

c

cd

m0 m1 m2m3

m4 m5 m6m7

m0 m1 m2m3

m4 m5 m6m7

m8 m9 m10m11

m12 m13 m14m15

Figure B.11: Karnaugh diagrams. The Karnaugh diagrams for 3 and 4 variables.

In Figure B.12 the same functions, p1 and p2, are represented. The distribution of the surface is
different but the degree of adjacency is identical.

In the following we will use Veitch diagrams, but we will name the them V-K diagrams to be fair
with both Veitch and Karnaugh.

Minimizing with V-K diagrams

The rule to extract the minimized form of a function from a V-K diagram supposes:

• to define:

– the smallest number

192 APPENDIX B. BOOLEAN FUNCTIONS

00 01 11 10

00

01

11

10

ab
cd 00 01 11 10

00

01

11

10

ab
cd

p1 p2

1

1

1

1

1

1 1

1

1

Figure B.12: Using Karnaugh diagrams. The Karnaugh diagrams for the functions p1 and p2.

– of rectangular surfaces containing only 1’s

– including all the 1’s

– each surface having a maximal area

– and containing a power of two number of 1’s

• to extract the logic terms (logic product of Boolean variables) associated with each previously
emphasized surface

• to provide de minimized function adding logically (logical OR function) the terms associated with
the surfaces.

1 1

1

11

1

1

1

a.

1

b.

a

b

c

d

a

b

c

d

p1 p2

bcd′

N

a′bc

=
ac′d -

ab′d

1

acd′

)

/

ab′c -

Figure B.13: Minimizing with V-K diagrams. Minimizing the functions p1 and p2.

Example B.7 Let’s take the V-K diagrams from Figure B.10. In the V-K diagram for p1 there are four
2-square surfaces. The upper horizontal surface is included in the upper half of V-K diagram where
b = 1, it is also included in the two middle columns where c = 1 and it is included in the surface formed
by the two horizontal edges of the diagram where d = 0. Therefore, the associated term is bcd′ which is
true for: (b = 1)AND(c = 1)AND(d = 0).

Because the horizontal edges are considered adjacent, in the V-K diagram for p2 m14 and m10 are
adjacent forming a surface having acd′ as associated term.

The previously known form of p1 and p2 result if the terms resulting from the two diagrams are
logically added. ⋄

B.4. MINIMIZING BOOLEAN FUNCTIONS 193

Minimizing incomplete defined functions

There are logic functions incompletely defined, which means for some binary input configurations the
output value does not matter. For example, the designer knows that some inputs do not occur anytime.
This lack in definition can be used to make an advanced minimization. In the V-K diagrams the corre-
sponding minterms are marked as “don’t care”s with “-”. When the surfaces are maximized the “don’t
care”s can be used to increase the area of 1’s. Thus, some “don’t care”s will take the value 1 (those which
are included in the surfaces of 1’s) and some of “don’t care”s will take the value 0 (those which are not
included in the surfaces of 1’s).

a

b

c

d

a

b

c

d

1

1

1

1 1

1

1

1

1

1 1

1

-

-

-

--

-

a′b

a′c

i

b

c

^

:

a. b.

Figure B.14: Minimizing incomplete defined functions. a. The minimization of y (Example 1.8) ignoring
the “don’t care” terms. b. The minimization of y (Example 1.8) considering the “don’t care” terms.

Example B.8 Let be the 4-input circuit receiving the binary codded decimals (from 0000 to 1001) indi-
cating on its output if the received number is contained in the interval [2,7]. It is supposed the binary
configurations from 1010 to 1111 are not applied on the input of the circuit. If by hazard the circuit
receives a meaningless input we do not care about the value generated by the circuit on its output.

In Figure B.14a the V-K diagram is presented for the version ignoring the “don’t care”s. Results the
function: y = a′b+a′c = a′(b+ c).

If “don’t care”s are considered results the V-K diagram from Figure B.14b. Now each of the two
surfaces are doubled resulting a more simplified form: y = b+ c. ⋄

V-K diagrams with included functions

For various reasons in a V-K diagram we need to include instead of a logic value, 0 or 1, a logic function
of variables which are different from the variables associated with the V-K diagram. For example, a
minterm depending on a,b,c,d can be defined as taking a value which is depending on another logic
2-variable function by s, t.

A simplified rule to extract the minimized form of a function from a V-K diagram containing included
functions is the following:

1. consider first only the 1s from the diagram and the rest of the diagram filed only with 0s and extract
the resulting function

2. consider the 1s as “don’t care”s for surfaces containing the same function and extract the resulting
function “multiplying” the terms with the function

194 APPENDIX B. BOOLEAN FUNCTIONS

3. “add” the two functions.

a. b c.

a

b

c

d

1 1

11

1

1 1e

e′ e′

- -

-

- -

-

-

a’bc’

U

bc’d

b’c

�

c’de’

U

acde

U

a

b

c

d

1 1

11

1

1 1

a

b

c

d

e

e′ e′

Figure B.15: An example of V-K diagram with included functions. a. The initial form. b. The form
considered in the first step. c. The form considered in the second step.

Example B.9 Let be the function defined in Figure B.15a. The first step means to define the surfaces of
1s ignoring the squares containing functions. In Figure B.15b are defined 3 surfaces which provide the
first form depending only by the variables a,b,c,d:

bc′d +a′bc′+b′c

The second step is based on the diagram represented in Figure B.15c, where a surface (c′d) is defined
for the function e′ and a smaller one (acd) for the function e. Results:

c′de′+acde

In the third step the two forms are “added” resulting:

f (a,b,c,d,e) = bc′d +a′bc′+b′c+ c′de′+acde.

⋄

Sometimes, an additional algebraic minimization is needed. But, it deserves because including func-
tions in V-K diagrams is a way to expand the number of variable of the functions represented with a
manageable V-K diagram.

B.5 Problems

Problem B.1

Appendix C

Introduction in ADC & DAC Convertors

This appendix contains a brief introduction to AD conversion and DA conversion. The aim is to give
a preliminary picture of what it means to convert from analog to digital and vice versa. Presentation
involves knowledge of the concept of operational amplifier and how it is used to deal with a comparator
and a voltage amplifier. Also, the function of the digital priority encoder circuit must be known (see
subsection 2.1.4).

C.1 Analog circuits

The operational amplifier is a concept that refers to an ideal circuit that is quite well approximated by
real circuits.

Figure C.1 shows the symbol used for the operational amplifier. In the ideal case the amplification
A is infinite (in reality it is very large, usually 10,000+). Another important characteristic of operational
amplifiers is that they have a high input impedance Zin. Input impedance is measured between the
negative and positive input terminals, and its ideal value is infinity, which minimizes loading of the
source. Also, an operational amplifier ideally has zero output impedance, Zout .

+

+

-

-

V1

V2

Zin ∼ Vout

+V

−V

Zout
A(V2 −V1)

-

+

Figure C.1: Operational amplifier

We will use the operational amplifier in two established configurations: to implement the analog

195

196 APPENDIX C. INTRODUCTION IN ADC & DAC CONVERTORS

comparison function and to perform the amplification used for the analog summation.
The operation of an analog comparator (see Figure C.2a) is the generation of binary-valued voltages

that switch between the two levels when an analog input crosses a threshold voltage, Vth. Because

+

-

6

6

6
6

Vin Vout

R1

R2 Vth

A
+

A
-

R1

R2

Vin
Vout

a. b.

Figure C.2: Operational amplifier applications. a. Analog comparator. b. Amplifier.

Vout = A(Vin −Vth)

a practical approximate model for the comparator is given by:

Vout =Vz for Vin >Vth
Vout ≃ 0 for Vin <Vth

where Vz is the Zener voltage. Because A is infinite (actually very big) the output switches as soon as the
input value reaches the threshold value, ensuring a very accurate threshold detection.

An inverting operational amplifiers (see Figure C.2b) is based on the fat that the operational ampli-
fiers forces the negative terminal to equal the positive terminal, which is connected to ground. Indeed,
the very high value of A generates an appropriate value on the output for a very small, practically zero,
value of V1 −V2. Thus, V2, the inverting input, is practically connected to zero. Therefore the currents
flowing through the resistors R1 and R2 are identical. Results:

Vin

R1
=−Vout

R2

and the transfer function of the inverting amplifier is:

a =
Vout

Vin
=−R2

R1

C.2. ADC 197

C.2 ADC

The analog-digital conversion is based on the use of comparators and a resistor network. The accuracy
with which the conversion is performed depends on the accuracy with which the resistance of the resistors
is ensured and on the accuracy with which the comparators work.

For Vin = 0 all comparators have zero output. For Vin > 0 a number of comparators are activated and
the encoder inputs are active from I0 to Ii. Then the output of the encoder will generate the number i
represented in binary code.

+
-C1

R R R R R R R R

+
-C2

+
-C3

+
-C4

+
-
C5

+
-
C6

+
-C7

Priority
Encoder

-
-
-

Vre f

Vin

B0

B1

B2

I1

I2

I3

I4

I5

I6

I7

I0

Figure C.3: ADC

C.3 DAC

For digital-to-analog conversion, a multi-input amplifier is used that allows the summation of several
currents passing through resistors subjected to the same potential. The size of the resistors is inversely
proportional to the associated binary order. Figure C.4 shows a DAC that converts 3-bit binary numbers.
MSB is associated with the lowest resistance, of R value. The middle bit controls the current through a
2R value resistor, and the LSB commands a 4R value resistor. The sum of the currents passing through
these resistors is equal to the current flowing through the reaction resistor R connected from the output
of the operational amplifier to its reversing input.

If Bi, for = 0,1,2, takes value in the set {0,1} and the truth value 0 is represented by 0 V and the truth

198 APPENDIX C. INTRODUCTION IN ADC & DAC CONVERTORS

value 1 is represented by VDD, then because the input current on the inverting input of the operational
amplifier is zero we can write:

B0

22 +
B1

21 +
B2

20 =−Vout

R
and the output of the circuit represented in Figure C.4 results:

Vout =−VDD(B2/20 +B1/21 +B0/22)

B2

B1

B0
Vout

20 ×R

21 ×R

22 ×R

R

-

+
A

Figure C.4: DAC

For example, if {B2,B1,B0}= 101, then the value on the output of the amplifier is: 1.25VDD.

Bibliography

[Alfke ’73] Peter Alfke, Ib Larsen (eds.): The TTL Applications Handbook. Prepared by the Digital Application
Staff of Fairchild Semiconductor, August 1973.

[Alfke ’05] Peter Alfke: “Metastable Recovery in Virtex-II Pro FPGAs”, Application Note: Virtex-II Pro Fam-
ily, http://www.xilinx.com/support/documentation/application notes/xapp094.pdf, XILINX,
2005.

[Andonie ’95] Rǎzvan Andonie, Ilie Gârbacea: Algoritmi fundamentali. O perspectivǎ C++, Ed. Libris, Cluj-
Napoca, 1995. (in Roumanian)

[Ajtai ’83] M. Ajtai, et al.: “An O(n log n) sorting network”, Proc. 15th Ann. ACM Symp. on Theory of Comput-
ing, Boston, Mass., 1983.

[Batcher ’68] K. E. Batcher: “Sorting networks and their applications”, in Proc. AFIPS Spring Joint Computer
Conference, vol. 32, 1968.

[Benes ’68] Václav E. Beneš: Mathematical Theory of Connecting Networks and Telephone Traffic. New York:
Academic, 1968.

[1] T. R. Blakeslee: Digital Design with Standard MSI and LSI, John Wiley & Sons, 1979.

[Booth ’67] T. L. Booth: Sequential Machines and Automata Theory, John Wiley & Sons, Inc., 1967.

[Bremermann ’62] H. G. Bremermann: “Optimization through Evolution and Recombination”, in Self-Organizing
Systems, ed.: M. C. Yovits, S. Cameron, Washington DC, Spartan, 1962.

[Calude ’82] Cristian Calude: Complexitatea calculului. Aspecte calitative (The Complexity of Computation.
Qualitative Aspects), Ed. Stiintifica si Enciclopedica, Bucuresti, 1982.

[Calude ’94] Cristian Calude: Information and Randomness, Springer-Verlag, 1994.

[Casti ’92] John L. Casti: Reality Rules: II. Picturing the World in Mathematics - The Frontier, John Wiley &
Sons, Inc., 1992.

[Cavanagh ’07] Joseph Cavanagh: Sequential Logic. Analysis and Synthesis, CRC Taylor & Francis, 2007.

[Chaitin ’66] Gregory Chaitin: “On the Length of Programs for Computing Binary Sequences”, J. of the ACM,
Oct., 1966.

[Chaitin ’70] Gregory Chaitin: “On the Difficulty of Computation”, in IEEE Transactions of Information Theory,
ian. 1970.

[Chaitin ’77] Gregory Chaitin: “Algorithmic Information Theory”, in IBM J. Res. Develop., Iulie, 1977.

[Chaitin ’87] Gregory Chaitin: Algorithmic Information Theory, Cambridge University Press, 1987.

[Chaitin ’90] Gregory Chaitin: Information, Randomness and Incompletness, World Scientific,1990.

[Chaitin ’94] Gregory Chaitin: The Limits of Mathematics IV, IBM Research Report RC 19671, e-print chao-
dyn/9407009, July 1994.

199

200 BIBLIOGRAPHY

[Chaitin ’06] Gregory Chaitin: “The Limit of Rason”, in Scientific American, Martie, 2006.

[Chomsky ’56] Noam Chomsky, “Three Models for the Description of Languages”, IEEE Trans. on Information
Theory, 2:3 , 1956.

[Chomsky ’59] Noam Chomsky, “On Certain Formal Properties of Grammars”, Information and Control, 2:2,
1959.

[Chomsky ’63] Noam Chomsky, “Formal Properties of Grammars”, Handbook of Mathematical Psychology, Wi-
ley, New-York, 1963.

[Church ’36] Alonzo Church: “An Unsolvable Problem of Elementary Number Theory”, in American Journal of
Mathematics, vol. 58, pag. 345-363, 1936.

[Clare ’72] C. Clare: Designing Logic Systems Using State Machines, Mc Graw-Hill, Inc., 1972.

[Cormen ’90] Thomas H. Cormen, Charles E. Leiserson, Donsld R. Rivest: Introduction to Algorithms, MIT
Press, 1990.

[Dascǎlu ’98] Monica Dascǎlu, Eduard Franţi, Gheorghe Ştefan: “Modeling Production with Artificial Societies:
the Emergence of Social Structure”, in S. Bandini, R. Serra, F. Suggi Liverani (Eds.): Cellular Automata:
Research Towars Industry. ACRI ’98 - Proceedings of the Third Conference on Cellular Automata for Research
and Industry, Trieste, 7 - 9 October 1998, Springer Verlag, 1998. p 218 - 229.

[Dascǎlu ’98a] Monica Dascǎlu, Eduard Franţi, Gheorghe Ştefan: “Artificial Societies: a New Paradigm for Com-
plex Systems’ Modeling”, in IFAC Conference on Supplemental Ways for Improving International Stability -
SWIIIS ’98, May 14-16, Sinaia, 1998. p.62-67.

[Drǎgǎnescu ’84] Mihai Drǎgǎnescu: “Information, Heuristics, Creation”, in Plauder, I. (ed): Artificial Inteligence
and Information Control System of Robots, Elsevier Publishers B. V. (North-Holland), 1984.

[Drǎgǎnescu ’91] Mihai Drǎgǎnescu, Gheorghe Ştefan, Cornel Burileanu: Electronica functionalǎ, Ed. Tehnicǎ,
Bucureşti, 1991 (in Roumanian).

[Einspruch ’86] N. G. Einspruch ed.: VLSI Electronics. Microstructure Science. vol. 14 : VLSI Design, Academic
Press, Inc., 1986.

[Einspruch ’91] N. G. Einspruch, J. L. Hilbert: Application Specific Integrated Circuits (ASIC) Technology, Aca-
demic Press, Inc., 1991.

[Ercegovac ’04] Miloš D. Ercegovac, Tomás Lang: Digital Arithmetic, Morgan Kaufman, 2004.

[Flynn ’72] Flynn, M.J.: “Some computer organization and their affectiveness”, IEEE Trans. Comp. C21:9 (Sept.
1972), pp. 948-960.

[Gheolbanoiu ’14] Alexandru Gheolbanoiu, Dan Mocanu, Radu Hobincu, Lucian Petrica: “Cellular Automaton
pRNG with a Global Loop for Non-Uniform Rule Control”, 18th International Conference on Ciruits, Systems,
Communications and Computers (CSCC 2014), Santorini Island, Greece, July 17-21, 2014, vol. II, 415-420.
http://www.europment.org/library/2014/santorini/bypaper/COMPUTERS/COMPUTERS2-15.pdf

[Glushkov ’66] V. M. Glushkov: Introduction to Cybernetics, Academic Press, 1966.

[Gödels ’31] Kurt Gödel: “On Formally Decidable Propositions of Principia Mathematica and Related Systems
I”, reprinted in S. Fefermann et all.: Collected Works I: Publications 1929 - 1936, Oxford Univ. Press, New
York, 1986.

[Hartley ’95] Richard I. Hartley: Digit-Serial Computation, Kulwer Academic Pub., 1995.

[Hascsi ’95] Zoltan Hascsi, Gheorghe Ştefan: “The Connex Content Addressable Memory (C2AM)”, Proceedings
of the Twenty-first European Solid-State Circuits Conference, Lille -France, 19-21 September 1995, pp. 422-
425.

BIBLIOGRAPHY 201

[Hascsi ’96] Zoltan Hascsi, Bogdan Mı̂ţu, Mariana Petre, Gheorghe Ştefan, “High-Level Synthesis of an En-
chanced Connex memory”, in Proceedings of the International Semiconductor Conference, Sinaia, October
1996, p. 163-166.

[Head ’87] T. Head: “Formal Language Theory and DNA: an Analysis of the Generative Capacity of Specific
Recombinant Behaviours”, in Bull. Math. Biology, 49, p. 737-759, 1987.

[Helbing 89’] Walter A. Helbing, Veljko M. Milutinovic: “Architecture and Design of a 32-bit GaAs Micropro-
cessor”, in [Milutinovic 89’].

[Hennessy ’07] John L. Hennessy, David A. Patterson: Computer Architecture: A Quantitative Approach, Fourth
Edition, Morgan Kaufmann, 2007.

[Hennie ’68] F. C. Hennie: Finite-State Models for Logical Machine, John Wiley & Sons, Inc., 1968.

[Hillis ’85] W. D. Hillis: The Connection Machine, The MIT Press, Cambridge, Mass., 1985.

[Kaeslin ’01] Hubert Kaeslin: Digital Integrated Circuit Design, Cambridge Univ. Press, 2008.

[Keeth ’01] Brent Keeth, R. jacob Baker: DRAM Circuit Design. A Tutorial, IEEE Press, 2001.

[Kleene ’36] Stephen C. Kleene: “General Recursive Functions of Natural Numbers”, in Math. Ann., 112, 1936.

[Karim ’08] Mohammad A. Karim, Xinghao Chen: Digital Design, CRC Press, 2008.

[Knuth ’73] D. E. Knuth: The Art of Programming. Sorting and Searching, Addison-Wesley, 1973.

[Kolmogorov ’65] A.A. Kolmogorov: “Three Approaches to the Definition of the Concept “Quantity of Informa-
tion” “, in Probl. Peredachi Inform., vol. 1, pag. 3-11, 1965.

[Kung ’79] H. T. Kung, C. E. Leiserson: “Algorithms for VLSI processor arrays”, in [Mead ’79].

[Ladner ’80] R. E. Ladner, M. J. Fischer: “Parallel prefix computation”, J. ACM, Oct. 1980.

[Lindenmayer ’68] Lindenmayer, A.: ”Mathematical Models of Cellular Interactions in Development I, II”, Jour-
nal of Theor. Biology, 18, 1968.

[Maliţa ’06] Mihaela Maliţa, Gheorghe Ştefan, Marius Stoian: “Complex vs. Intensive in Parallel Computation”,
in International Multi-Conference on Computing in the Global Information Technology - Challenges for the
Next Generation of IT&C - ICCGI, 2006 Bucharest, Romania, August 1-3, 2006

[Maliţa ’07] Mihaela Maliţa, Gheorghe Ştefan, Dominique Thiébaut: “Not Multi-, but Many-Core: Designing
Integral Parallel Architectures for Embedded Computation” in International Workshop on Advanced Low Power
Systems held in conjunction with 21st International Conference on Supercomputing June 17, 2007 Seattle, WA,
USA.

[Maliţa ’13] Mihaela Maliţa, Gheorghe M. Ştefan: “Control Global Loops in Self-Organizing Systems”,
ROMJIST, Volume 16, Numbers 2–3, 2013, 177-191.
http://www.imt.ro/romjist/Volum16/Number16 2/pdf/05-Malita-Stefan2.pdf

[Markov ’54] Markov, A. A.: ”The Theory of Algorithms”, Trudy Matem. Instituta im V. A. Steklova, vol. 42,
1954. (Translated from Russian by J. J. Schorr-kon, U. S. Dept. of Commerce, Office of Technical Services, no.
OTS 60-51085, 1954)

[Mead ’79] Carver Mead, Lynn Convay: Introduction to VLSI Systems, Addison-Wesley Pub, 1979.

[MicroBlaze] *** MicroBlaze Processor. Reference Guide. posted at:
http://www.xilinx.com/support/documentation/sw manuals/xilinx14 1/mb ref guide.pdf

[Milutinovic 89’] Veljko M. Milutinovic (ed.): High-Level Language Computer Architecture, Computer Science
Press, 1989.

[Mindell ’00] Arnold Mindell: Quantum Mind. The Edge Between Physics and Psychology, Lao Tse Press, 2000.

202 BIBLIOGRAPHY

[Minsky ’67] M. L. Minsky: Computation: Finite and Infinite Machine, Prentice - Hall, Inc., 1967.

[Mı̂ţu ’00] Bogdan Mı̂ţu, Gheorghe Ştefan, “Low-Power Oriented Microcontroller Architecture”, in CAS 2000
Proceedings, Oct. 2000, Sinaia, Romania

[Moto-Oka ’82] T. Moto-Oka (ed.): Fifth Generation Computer Systems, North-HollandPub. Comp., 1982.

[Omondi ’94] Amos R. Omondi: Computer Arithmetic. Algorithm, Architecture and Implementation, Prentice
Hall, 1994.

[Palnitkar ’96] Samir Palnitkar: Verilog HDL. AGuide to Digital Design and Synthesis, SunSoft Press, 1996.

[Parberry 87] Ian Parberry: Parallel Complexity Theory. Research Notes in Theoretical Computer science. Pitman
Publishing, London, 1987.

[Parberry 94] Ian Parberry: Circuit Complexity and Neural Networks, The MIT Presss, 1994.

[Patterson ’05] David A. Patterson, John L.Hennessy: Computer Organization & Design. The Hardware / Soft-
ware Interface, Third Edition, Morgan Kaufmann, 2005.

[Pǎun ’95a] Pǎun, G. (ed.): Artificial Life. Grammatical Models, Black Sea University Press, 1995.

[Pǎun ’85] A. Pǎun, Gh. Ştefan, A. Birnbaum, V. Bistriceanu, “DIALISP - experiment de structurare necon-
ventionala a unei masini LISP”, in Calculatoarele electronice ale generatiei a cincea, Ed. Academiei RSR,
Bucuresti 1985. p. 160 - 165.

[Post ’36] Emil Post: “Finite Combinatory Processes. Formulation I”, inThe Journal of Symbolic Logic, vol. 1, p.
103 -105, 1936.

[Prince ’99] Betty Prince: High Performance Memories. New architecture DRAMs and SRAMs evolution anad
function, John Wiley & Sons, 1999.

[Rafiquzzaman ’05] Mohamed Rafiquzzaman: Fundamentals of Digital Logic and Microcomputer Design, Fifth
Edition, Wiley – Interscience, 2005.

[Salomaa ’69] Arto Salomaa: Theory of Automata, Pergamon Press, 1969.

[Salomaa ’73] Arto Salomaa: Formal Languages, Academic Press, Inc., 1973.

[Salomaa ’81] Arto Salomaa: Jewels of Formal Language Theory, Computer Science Press, Inc., 1981.

[Savage ’87] John Savage: The Complexity of Computing, Robert E. Krieger Pub. Comp., 1987.

[Shankar ’89] R. Shankar, E. B. Fernandez: VLSI Computer Architecture, Academic Press, Inc., 1989.

[Shannon ’38] C. E. Shannon: “A Symbolic Annalysis of Relay and Switching Circuits”, Trans. AIEE, vol. 57,
p.713-723, 1938.

[Shannon ’48] C. E. Shannon: “A Mathematical Theory of Communication”, Bell System Tech. J., Vol. 27, 1948.

[Shannon ’56] C. E. Shannon: “A Universal Turing Machine with Two Internal States”, in Annals of Mathematics
Studies, No. 34: Automata Studies, Princeton Univ. Press, pp 157-165, 1956.

[Sharma ’97] Ashok K. Sharma: Semiconductor Memories. Techology, Testing, and Reliability, Wiley – Inter-
science, 1997.

[Sharma ’03] Ashok K. Sharma: Advanced Smiconductor Memories. Architectures, Designs, and Applications,
Whiley-Interscience, 2003.

[Solomonoff ’64] R. J. Solomonoff: “A Formal Theory of Inductive Inference”, in Information and Control, vol.
7, pag. 1- 22 , pag. 224-254, 1964.

[Spira ’71] P. M. Spira: “On time-Hardware Complexity Tradeoff for Boolean Functions”, in Preceedings of
Fourth Hawaii International Symposium on System Sciences, pp. 525-527, 1971.

BIBLIOGRAPHY 203

[Stoian ’07] Marius Stoian, Gheorghe Ştefan: “Stacks or File-Registers in Cellular Computing?”, in CAS, Sinaia
2007.

[Streinu ’85] Ileana Streinu: “Explicit Computation of an Independent Gödel Sentence”, in Recursive Functions
Theory Newsletter, June 1985.

[Ştefan ’97] Denisa Ştefan, Gheorghe Ştefan, “Bi-thread Microcontroller as Digital Signal Processor”, in CAS ’97
Proceedings, 1997 International Semiconductor Conference, October 7 -11, 1997, Sinaia, Romania.

[Ştefan ’99] Denisa Ştefan, Gheorghe Ştefan: “A Procesor Network without Interconnectio Path”, in CAS 99
Proceedings, Oct., 1999, Sinaia, Romania. p. 305-308.

[Ştefan ’80] Gheorghe Ştefan: LSI Circuits for Processors, Ph.D. Thesis (in Roumanian), Politechnical Institute
of Bucharest, 1980.

[Ştefan ’83] Gheorghe Ştefan: “Structurari neechilibrate in sisteme de prelucrare a informatiei”, in Inteligenta
artificiala si robotica, Ed. Academiei RSR, Bucuresti, 1983. p. 129 - 140.

[Ştefan ’83] Gheorghe Ştefan, et al.: Circuite integrate digitale, Ed. Did. si Ped., Bucuresti, 1983.

[Ştefan ’84] Gheorghe Ştefan, et al.: “DIALISP - a LISP Machine”, in Proceedings of the ACM Symposium on
LISP and Functional Programming, Austin, Texas, Aug. 1984. p. 123 - 128.

[Ştefan ’85] Gheorghe Ştefan, A. Pǎun, “Compatibilitatea functie - structura ca mecanism al evolutiei arhitec-
turale”, in Calculatoarele electronice ale generatiei a cincea, Ed. Academiei RSR, Bucuresti, 1985. p. 113 -
135.

[Ştefan ’85a] Gheorghe Ştefan, V. Bistriceanu, A. Pǎun, “Catre un mod natural de implementare a LISP-ului”,
in Sisteme cu inteligenta artificiala, Ed. Academiei Romane, Bucuresti, 1991 (paper at Al doilea simpozion
national de inteligenta artificiala, Sept. 1985). p. 218 - 224.

[Ştefan ’86] Gheorghe Stefan, M. Bodea, “Note de lectura la volumul lui T. Blakeslee: Proiectarea cu circuite MSI
si LSI”, in T. Blakeslee: Prioectarea cu circuite integrate MSI si LSI, Ed. Tehnica, Bucuresti, 1986 (translated
from English by M. Bodea, M. Hancu, Gh. Stefan). p. 338 - 364.

[Ştefan ’86a] Gheorghe Stefan, “Memorie conexa” in CNETAC 1986 Vol. 2, IPB, Bucuresti, 1986, p. 79 - 81.

[Ştefan ’91] Gheorghe Ştefan: Functie si structura in sistemele digitale, Ed. Academiei Romane, 1991.

[Ştefan ’91] Gheorghe Ştefan, Drǎghici, F.: “Memory Management Unit - a New Principle for LRU Implemen-
tation”, Proceedings of 6th Mediterranean Electrotechnical Conference, Ljubljana, Yugoslavia, May 1991, pp.
281-284.

[Ştefan ’93] Gheorghe Ştefan: Circuite integrate digitale. Ed. Denix, 1993.

[Ştefan ’95] Gheorghe Ştefan, Maliţa, M.: “The Eco-Chip: A Physical Support for Artificial Life Systems”, Arti-
ficial Life. Grammatical Models, ed. by Gh. Pǎun, Black Sea University Press, Bucharest, 1995, pp. 260-275.

[Ştefan ’96] Gheorghe Ştefan, Mihaela Maliţa: “Chaitin’s Toy-Lisp on Connex Memory Machine”, Journal of
Universal Computer Science, vol. 2, no. 5, 1996, pp. 410-426.

[Ştefan ’97] Gheorghe Ştefan, Mihaela Maliţa: “DNA Computing with the Connex Memory”, in RECOMB 97
First International Conference on Computational Molecular Biology. January 20 - 23, Santa Fe, New Mexico,
1997. p. 97-98.

[Ştefan ’97a] Gheorghe Ştefan, Mihaela Maliţa: “ The Splicing Mechanism and the Connex Memory”, Proceed-
ings of the 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, April 13 - 16,
1997. p. 225-229.

[Ştefan ’98] Gheorghe Ştefan, “Silicon or Molecules? What’s the Best for Splicing”, in Gheorghe Pǎun (ed.):
Computing with Bio-Molecules. Theory and Experiments. Springer, 1998. p. 158-181

204 BIBLIOGRAPHY

[Ştefan ’98a] Gheorghe Ştefan, “ “Looking for the Lost Noise” ”, in CAS ’98 Proceedings, Oct. 6 - 10, 1998,
Sinaia, Romania. p.579 - 582.
http://arh.pub.ro/gstefan/CAS98.pdf

[Ştefan ’98b] Gheorghe Ştefan, “The Connex Memory: A Physical Support for Tree / List Processing” in The
Roumanian Journal of Information Science and Technology, Vol.1, Number 1, 1998, p. 85 - 104.

[Ştefan ’98] Gheorghe Ştefan, Robrt Benea: “Connex Memories & Rewrieting Systems”, in MELECON ’98, Tel-
Aviv, May 18 -20, 1998.

[Ştefan ’99] Gheorghe Ştefan, Robert Benea: “Experimente in info cu acizi nucleici”, in M. Drǎgǎnescu, Ştefan
Trǎusan-Matu (eds): Natura realitatii fizice si a informatiei, Editura Tempus, 1999.

[Ştefan ’99a] Gheorghe Ştefan: “A Multi-Thread Approach in Order to Avoid Pipeline Penalties”, in Proceed-
ings of 12th International Conference on Control Systems and Computer Science, Vol. II, May 26-29, 1999,
Bucharest, Romania. p. 157-162.

[Ştefan ’00] Gheorghe Ştefan: “Parallel Architecturing starting from Natural Computational Models”, in Proceed-
ings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science, vol.
1, no. 3 Sept-Dec 2000.

[Ştefan ’01] Gheorghe Ştefan, Dominique Thiébaut, “Hardware-Assisted String-Matching Algorithms”, in WABI
2001, 1st Workshop on Algorithms in BioInformatics, BRICS, University of Aarhaus, Danemark, August 28-31,
2001.

[Ştefan ’04] Gheorghe Ştefan, Mihaela Maliţa: “Granularity and Complexity in Parallel Systems”, in Proceedings
of the 15 IASTED International Conf, 2004, Marina Del Rey, CA, ISBN 0-88986-391-1, pp.442-447.

[Ştefan ’06] Gheorghe Ştefan: “Integral Parallel Computation”, in Proceedings of the Romanian Academy, Series
A: Mathematics, Physics, Technical Sciences, Information Science, vol. 7, no. 3 Sept-Dec 2006, p.233-240.

[Ştefan ’06a] Gheorghe Ştefan: “A Universal Turing Machine with Zero Internal States”, in Romanian Journal of
Information Science and Technology, Vol. 9, no. 3, 2006, p. 227-243

[Ştefan ’06b] Gheorghe Ştefan: “The CA1024: SoC with Integral Parallel Architecture for HDTV Processing”,
invited paper at 4th International System-on-Chip (SoC) Conference & Exhibit, November 1 & 2, 2006, Radis-
son Hotel Newport Beach, CA

[Ştefan ’06c] Gheorghe Ştefan, Anand Sheel, Bogdan Mı̂ţu, Tom Thomson, Dan Tomescu: “The CA1024: A Fully
Programmable System-On-Chip for Cost-Effective HDTV Media Processing”, in Hot Chips: A Symposium on
High Performance Chips, Memorial Auditorium, Stanford University, August 20 to 22, 2006.

[Ştefan ’06d] Gheorghe Ştefan: “The CA1024: A Massively Parallel Processor for Cost-Effective HDTV”, in
SPRING PROCESSOR FORUM: Power-Efficient Design, May 15-17, 2006, Doubletree Hotel, San Jose, CA.

[Ştefan ’06e] Gheorghe Ştefan: “The CA1024: A Massively Parallel Processor for Cost-Effective HDTV”, in
SPRING PROCESSOR FORUM JAPAN, June 8-9, 2006, Tokyo.

[Ştefan ’07] Gheorghe Ştefan: “Membrane Computing in Connex Environment”, invited paper at 8th Workshop
on Membrane Computing (WMC8) June 25-28, 2007 Thessaloniki, Greece

[Ştefan ’07a] Gheorghe Ştefan, Marius Stoian: “The efficiency of the register file based architectures in OOP
languages era”, in SINTES13 Craiova, 2007.

[Ştefan ’07b] Gheorghe Ştefan: “Chomsky’s Hierarchy & a Loop-Based Taxonomy for Digital Systems”, in Ro-
manian Journal of Information Science and Technology vol. 10, no. 2, 2007.

[Ştefan ’14] Gheorghe M. Stefan, Mihaela Malita: “Can One-Chip Parallel Computing Be Liberated From Ad Hoc
Solutions? A Computation Model Based Approach and Its Implementation”, 18th International Conference on
Ciruits, Systems, Communications and Computers (CSCC 2014), Santorini Island, Greece, July 17-21, 2014,
582-597.
http://www.inase.org/library/2014/santorini/bypaper/COMPUTERS/COMPUTERS2-42.pdf

BIBLIOGRAPHY 205

[Sutherland ’02] Stuart Sutherland: Verilog 2001. A Guide to the New Features of the Verilog Hardware Descrip-
tion Language, Kluwer Academic Publishers, 2002.

[Tabak ’91] D. Tabak: Advanced Microprocessors, McGrow- Hill, Inc., 1991.

[Tanenbaum ’90] A. S. Tanenbaum: Structured Computer Organisation third edition, Prentice-Hall, 1990.

[Thiébaut ’06] Dominique Thiébaut, Gheorghe Ştefan, Mihaela Maliţa: “DNA search and the Connex technol-
ogy” in International Multi-Conference on Computing in the Global Information Technology - Challenges for
the Next Generation of IT&C - ICCGI, 2006 Bucharest, Romania, August 1-3, 2006

[Tokheim ’94] Roger L. Tokheim: Digital Principles, Third Edition, McGraw-Hill, 1994.

[Turing ’36] Alan M. Turing: “On computable Numbers with an Application to the Eintscheidungsproblem”, in
Proc. London Mathematical Society, 42 (1936), 43 (1937).

[Vahid ’06] Frank Vahid: Digital Design, Wiley, 2006.

[von Neumann ’45] John von Neumann: “First Draft of a Report on the EDVAC”, reprinted in IEEE Annals of the
History of Computing, Vol. 5, No. 4, 1993.

[Uyemura ’02] John P. Uyemura: CMOS Logic Circuit Design, Kluver Academic Publishers, 2002.

[Ward ’90] S. A. Ward, R. H. Halstead: Computation Structures, The MIT Press, McGraw-Hill Book Company,
1990.

[Wedig ’89] Robert G. Wedig: “Direct Correspondence Architectures: Principles, Architecture, and Design” in
[Milutinovic ’89].

[Waksman ’68] Abraham Waksman, ”A permutation network,” in J. Ass. Comput. Mach., vol. 15, pp. 159-163,
Jan. 1968.

[webRef 1] http://www.fpga-faq.com/FAQ_Pages/0017_Tell_me_about_metastables.htm

[webRef 2] http://www.fpga-faq.com/Images/meta_pic_1.jpg

[webRef 3] http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx

[webRef 4] https://techdocs.altium.com/display/FPGA/Reducing+Metastability+in+FPGA+Designs

[Weste ’94] Neil H. E. Weste, Kamran Eshraghian: Principle of CMOS VLSI Design. ASystem Perspective, Second
Edition, Addisson Wesley, 1994.

[Wolfram ’02] Stephen Wolfram: A New Kind of Science, Wolfram Media, Inc., 2002.

[Zurada ’95] Jacek M. Zurada: Introductin to Artificial Neural network, PWS Pub. Company, 1995.

[Yanushkevich ’08] Svetlana N. Yanushkevich, Vlad P. Shmerko: Introduction to Logic Design, CRC Press, 2008.

