One-Chip TeraArchitecture

Gheorghe Stefan
BrightScale, Sunnyvale, CA
gstefan@brightscale.com

Abstract

The distinction between the complex computation
and the intense computation is presented in order to
introduce TeraArchitecture, a high-performance
architecture which integrates all kinds of parallelism
in order to optimize area & power. Multi-processors
are efficient for multi-threaded complex computa-
tions, while many-processors are efficient in data
intense computations. Combining them results an
efficient solution for the “Tera Computing Era”.

Keywords: parallel computing,
architecture, multi-processors,
power-aware design.

computer
many-processors,

1 Introduction

Computation manifests in two very distinct ways:
as complex computation and as intense compu-
tation. In the mono-processor era this distinction
generated two kinds of very different machines: the
general purpose complex processors and the sim-
pler specialized, but very efficient, signal processors.
In the parallel computing era the relation between
the complex computation and intense computation
changes, and more, it can and must be used to op-
timize the parallel computing machines.

We introduce here an optimal parallel architec-
ture for the “Tera Computing Era”, based on the
strongest segregation between the compler par-
allel computation component and the intense par-
allel computation component. Tera Power means:
the sum of floats and integer (word, half-word,
byte) instructions (mean weight of floats are 10%,
but no bigger than 25%) to be in the range of
240 ~ 1.1 x 10'2.

We start emphasizing the distinctions between
“complex” and “intense” parallel computation and
continue with the new proposed architecture and
the associated organization. Results a computer or-
ganization which optimizes area, power, price, per-

formance and programmability. The last section will
present details about the intense part of the archi-
tecture and the associated organization.

2 Complex vs. Intense

The actual trend in the parallel computing
R&D must make the fundamental distinction be-
tween multi-processors and many-processors
[2]. Roughly speaking:

e a multi-processor consists in more than one
big & complex processor (no more than few
dozens) performing multi-threaded ezecutions

e a many-processor is an array of thousands
of small & simple machines performing ef-
ficiently wector and/or stream processing.

Multi-processors are efficient performing com-
plex parallel computations, while many-processors
are good in solving data intensive problems. In [8]
is presented how the size of the processors decrease
when the number of processors increase in order to
keep area efficient a network of processing machines.

Complex computation is characterized by the
following features and figures (we use as a case
study a 65nm Intellike implementation):

e mono or multi big & complex processor orga-
nization

o multi-threaded programming model
e operating system oriented design
e memory hierarchy is cache-based

o peak performance! for a super-scalar mono-
processor (with: 1.5em?2, 50Watt, ~ 2GH z):
4 GIPS + 2 GFLOPS

1GIPS stands for Giga 32-bit Instruction Per Second,

and GFLOPS stands for Giga 32-bit FLoating point
Operations Per Second




o (0.027 GIPS + 0.013 GFLOPS)/mm?®
e (0.08 GIPS + 0.04 GFLOPS)/Watt

Intense computation is characterized by the
following features and figures (based on the 65nm
BrightScale implementation):

e many small & simple cell organization

e array (vector and/or stream) computing

high-latency functional pipe oriented system

the memory hierarchy is multi-bufler oriented

peak performance? (with: 0.64cm?, 10Watt,
0.4 GHz):

400 GOPS

which can be distributed between inte-
ger operations and floating-point operations
(loating-point, operations are performed exe-
cuting 30 16-bit operations), for example as:
(220 GOPS + 6 GFLOPS)

for the low-intensive float (the weight of
floating-point operations is 3%), or as

(40 GOPS + 12 GFLOPS)

for the high-intensive float (the weight of
floating-point operations is 23%)

e 6.25 GOPS/mm?
or
(5.44 GOPS + 0.094 GFLOPS)/mm?
for the low-intensive float, or as
(0.625 GOPS + 0.19 GFLOPS) /mm?
for the high-intensive float

e J0 GOPS/Watt
or
(22 GOPS + 0.6 GFLOPS)/Watt
for the low-intensive float, or as
(4 GOPS + 1.2 GFLOPS)/Watt
for the high-intensive float

Intense vs. complex by numbers It is obvi-
ous that the two kinds of computation are separated
by more than one order of magnitude when perfor-
mances, per mm? or per Watt, are compared. See
Table 1 for the area use by an intense architecture
versus the area use by a complex architecture. See
Table 2 for the power use by an intense architecture
versus the power use by a complex architecture.

2(where: GOPS stands for Giga 16-bit Operations Per
Second)

Type (intPerf/mm?)/(compPerf/mm?)
no float 116

low float 52

high float 13

Table 1: Intense computation vs. complex
computation in area use. The performance per
mm? for intense computation (intPerf/mm?) is com-
pared against the performance per mm? for complex
computation (compPerf/mm?).

Type (intPerf/Watt)/(compPerf/ Watt)
no float 250

low float 110

high float 26

Table 2: Intense computation vs. complex
computation in power use. The performance per
Watt for intense computation (intPerf/Watt) is com-
pared against the performance per Watt for complex
computation (compPerf/Watt).

Because the “price” of complexity is very high,
separating “the complex” from “the intense”
results to be the best way to optimize a com-
puting system. Reducing “the complex” to "the
intense” is not possible because of the big difference
in the programming model (multi-threaded com-
pared against array-oriented). Reducing “the in-
tense” to “the complex” is already performed with
very costly (big area and huge power) solutions (see,
for example, the Intel & NVIDIA mixture).

Because, by programming, GOPS can be con-
verted in GFLOPS, a many-processor architecture
can be adapted to different weights of flops. The
relation

n=t(1+w(k—-1))

tells us how many GOPS, n, are needed to a tar-
geted sum ¢, of flops and simple operations, when
the weight of flops is w, and a float operation is
performed by k simple, one cycle, operations.

Example 1 Let be an intense float application with
the weight of floats w = 0.2, in a many-processor
executing only simple, one-cycle operations. For
a floating-point operation, each processing element
uses a sequence of k = 20 simple operations. How
big must be the performance, n, erpressed in sim-
ple, one-cycle TOPS in order to obtain an overall
performance of t = 1 T(OP + FLOP)S, composed



by 0.8 TOPS of one-cycle simple operations and 0.2
TFLOPS?

n=1(1+02(20— 1)) TOPS = 48 TOPS

Therefore, if the application domain is float-intense,
then a Tera Machine must have the “brute force”
performance of 4.8 TOPS.

S

Example 2 Let us evaluate w and t for the intense
float application domain of graphics, using the well
known “graphics Bible” of Foley & van Dam [5] (see
section 18.3.9). We consider the following case: av-
erage coverage per triangle: 100 pizels; one-half of
the pizels of all the triangles are obscured by some
other triangles; we assume (together with [5]) no
primitives needed for clipping (minimizes the calcu-
lation for clipping but mazimize the work required
in the succeeding stages); ambient and diffuse illu-
mination models; 1920 by 1080 display; 80 frames
per second.

The resulting requirements are: (370 flop + 4 x
370 op)/triangle + (4.25 add + 4 x 4.25 op)/pixel
+ 2 memOp/pizel, where: flop stands for floating-
point operations, op stands for simple, one-cycle
arithmetic, logic or control operations, add stands
for one-cycle integer addition, and memOp stands
for the frame-buffer access operation.

For these requirements results: w = 0.195, for
10% triangles. If the many-processor architecture
asks for 30 cycle/float (k = 30), and the graphic
application manages 10° triangles per frame, results

n = 366 GOPS.

Then, with a 400 GOPS machine the graphics above
defined can be performed.
o

3 TeraArchitecture

The proposed parallel computing machine consists
of:

e a coarse grain network of m big & com-
plex processors (P), called Coarse-Grain
Multi-Processor (CiP); that performs multi-
threaded execution;

e a fine grain cellular machine, having n small
and simple execution units (EU) or process-
ing elements (PE), called Fine-Grain Many-
Processor (FyP), working under the control
of at least one of the following mechanisms:

— centralized control: the n EUs are con-
trolled by an instruction sequencer (IS)

— global control: the EUs or PEs are in-
cluded in a simple global loop

— local control: all or some of the n PEs
are controlled by their own programs

with:

— no operating system (the network per-
forms a pipe of functions)

— no cache memory system (the network
uses a multiple bullers system)

performing array and/or stream processing

e an interconnection fabric & memory & pe-
ripherals controllers

interconnected as in Figure 1, where: n >> m.

Tera-Processor

Fine-Grain Coarse-Grain
any-Processor Multi-Processor

FyP CiP

e t ,,,,,,,,,,,,,,,,,,,,,,, ¢ ,,,,,,,,,,,,,

Interconnection Fabric

] {

Peripherals

Memory |

Figure 1: The Tera-Processor Organization.

Because n >> m, the few P processors are
designed to have good or very good performance,
while the many EU and PE machines are designed
to be only competent. In P is usual to have multipli-
ers, floating-point units, while EU and PE has hard-
ware resources only for the most frequently used op-
erations, because all the complex operations (mul-
tiplication, floats, ...) are done by sequencing sim-
ple operations. This means: keep small and simple
what s many times multiplied.

The network FyP works like an accelerator for
the network CiP. FyP is a functionally oriented ma-
chine, better programmed using a functional lan-
guage, while CiP is an object-oriented structure de-
signed to manage big complexities.



Both, general purpose computation and embed-
ded computation are best supported by the previ-
ously described architecture, let us call it TeraAr-
chitecture. The associated organization is a Tera-
Processor (TP).

We estimate that in the 65 nm technology a
TP organization with n = 1024 and m = 4 can be
implemented on a 2.5¢m? silicon die. Because FyP
is on the same die with CiP the size and complexity
of each of the 4 Ps can be reduced. For the same
reason the clock frequency can be 1 GHz for the CiP
network and 0.4 GHz for the FyP network, resulting
an area & energy saving design.

4 The Preferred Embodiment

In the current stage of technological development
the preferred embodiment for TP is:

e for CiP an Intellike multi-core, with 2 to 8
cores, is the most appropriate

e for FyP there are three BrightScale solutions:

— a linear array, of 256-4096 EUs with a
centralized control performed by an IS,
an 10 Controller, and global control, if
needed (EU contains: data memory, file
register, arithmetic and logic unit, and a
Boolean machine)

— besides the linear array of EUs, a pipe of
PEs is added for stream processing (PE
is an EU with its own program memory)

— a linear array of 256-1024 PEs for both,
vector processing and stream processing.

5 Concluding Remarks

1. The functional aspects of computation in the
“Tera Computing Era” are defined by recognition,
mining and synthesis (RMS) [3]. Intel introduced
the terminology of “multi” and “many” [2], but
their plan is to promote many-processors only as fol-
lowers for multi-processors. Our way to TOPS uses
the symbiotic approach which integrates “many”
with “multi”. The theoretical aspects which cover
RMS are synthesized in the Berkeley’s 18 motifs [1].

2. TP is a solution for TOPS, due to of the seg-
regation between the complex computation and in-
tense computation [7]. Indeed, using an array of

n = 4096 EUs for FyP and an array of m = 4 cores
for CiP, in the 45 nm technology at 1 GHz, results
a machine strong enough to open the “Tera Com-
puting Era” on one-chip.

3. The complex computation is supported by the
standard Turing model used by Flynn [4] to provide
its taxonomy. This taxonomy works pretty well in
classifying CiP as a MIMD machine.

The intense computation is described by the
Kleene’s [6] model [7]. FyP contains a data-parallel
machine, sometimes a time-parallel machine (fea-
tured with speculative-parallel resources) is added,
and an array of cells able to perform all types of
intense parallel computations can be also possible.

Acknowledgments The authors got a lot of sup-
port from the main technical contributors to the
development of the BrightScale technology, the
BA1024 chip, the associated language, and its first
application (frame rate conversion): Emanuele Al-
tieri, Frank Ho, Bogdan Mitu, Marius Stoian, Do-
minique Thiebaut, Dan Tomescu, Tom Thomson.

References

[1] K. Asanovic, et al.: “The Landscape of Parallel
Computing Research: A View from Berkeley,” Tech-
nical Report No. UCB/EFECS-2006-183, 2006.

[2] Shekar Y. Borkar, et al.: Platform 2015: Intel Pro-
cessor and Platform Evolution for the Next Decade,
edited by R. M. Ramanathan and Vince Thomas,
Intel Corporation, 2005.

[3] Pradeep Dubey: “A Platform 2015 Workload
Model: Recognition, Mining and Synthesis Moves
Computers to the Era of Tera”, Technology@Intel
Magazine, Feb. 2005.

[4] Michael J. Flynn: “Very High-Speed Computing
Systems”, in Proceeding of the IEEE, 54(12), De-
cember 1966, p. 1901-1909

[5] James D. Foley, et al.: Computer Graphics. Princi-
ples and Practice, Addison-Wesley, 1997.

[6] Stephen C. Kleene: “General Recursive Functions
of Natural Numbers”, in Math. Ann., 112, 1936.

[7] Mihaela Malita, Gheorghe Stefan: ”On the Many-
Processor Paradigm”, Proceedings of the 2008
World Congress in Computer Science, Computer
Engineering and Applied Computing, 2008.

[8] Gheorghe Stefan, M. Malita: ”Granularity and
Complexity in Parallel Systems”, in Proceedings of
the 15 TASTED International Conf, 2004, Marina
Del Rey, CA, ISBN 0-88986-391-1, pp.442-447.



