
Stereo Vision for Automotive Industry

on

Connex Architecture

Bogdan Mîţu, Gheorghe M. Ştefan

Abstract

A stereo vision engine implemented on the Connex Architecture is presented. The

Connex architecture refers to a many-processor data parallel machine. The resulting

real-time 65nm standard cell design ASIC solution for 50 frames/second stereo

vision has area < 50 mm2, power < 1Watt. Because the problem is solved using a

programmable system, additional functionality is easy to be added with no

additional costs.

Introduction
This paper is related to the stereo vision engine presented in [1], where the semi-global matching (SGM)

algorithm is used to perform the stereo vision function. The solution we propose is to use a programmable

parallel many-processor with Connex Architecture (CA) to perform the data intense computation

requested by the SGM algorithm. The first embodiment of CA was used in the HDTV domain for the

H.264 decoding and for the frame rate conversion [2], [3], [4]. The efficiency already proved in solving

the previous functions qualifies CA as a promising candidate for providing a very efficient programmable

solution for the SGM algorithm. Indeed, motion estimation, the core of SGM algorithm, is the most

computationally intensive part of the algorithms used in both, H.264 codec and frame rate conversion

performed for 1080p HDTV.

Connex many-processor is programmed in VectorC, a C language extension for parallel processing [5].

The extension is made by adding new primitive data types and by extending the existing operators to

accept the new data types. In the VectorC programming language the conditional statements have become

predication statements.

Connex Architecture
The main challenges for the high performance embedded computing are performance per area (price) and

performance per power. The mandatory solution for data intense computing application domains is a data-

parallel processor with high GOPS/mm2 and GOPS/Watt (GOPS: Giga Operations Per Second).

The Connex computational structure performing data parallel computation is a fine-grain network of

small & simple execution units (EU) working as a many-cell machine. It consists in a linear array of n

EUs (in the current embodiment n = 1024). It provides the spatial dimension of the array. Each EU is a

16-bit machine, with a m 16-bit local data memory (m = 512 in the present embodiment). This memory

allows storage of m n-component vectors, generating the temporal dimension of the array. The

processing array works in parallel with an IO plane, a 2-dimension shift register used to transfer data

between the array and the external memory (see Fig. 1).

The array is controlled by CONTR which works as an instruction sequencer for CONNEX ARRAY,

while the IO Plane transfers data under the control of a specialized hardware configured by the same

controller. Thus, data processing and data transfer are two independent processes performed in parallel.

Data exchange between the processing array and IO Plane is performed in one clock cycle (the IO Plane

control “watches” for a clock cycle when CONTR do not issues a data exchange between the local data

memory and the register file in the EUs, and then performs the transfer between the local data memory

and IO Plane).

Fig. 1: The Connex System. The processing array is paralleled by the IO Plane which performs

data transfers transparent to the processing performed by CONNEX ARRAY.

The core of the system is CONNEX ARRAY, a linearly connected network of EUs and a reduction

network (Reduction Net) used to perform vector-to-scalar operations (see Fig. 2). Each EU receives from

CONTR in each clock cycle a new instruction which is executed according to its internal state. The

controller receives back data from the EUs through the reduction network. Each EU communicates only

with its left and right EU.

Fig. 2: The Connex Array

The user's view of the data parallel machine is represented in Fig. 3. The linear cellular machine

containing n EUs performs parallel on randomly accessed vectors. Operations are performed in a

constant, small fixed number of cycles. Some generic operations are exemplified in the following:

 PROCESSING OPERATIONS performed in the processing array under the control of

CONTR:

o full vector operation:
{carry, v5} = v4 + v3;

the corresponding scalar components of the two scalar vectors (v4 and v3) are added, and

the result is stored in the result vector v5 and in the Boolean vector carry

o Boolean operation:
s3 = s3 & s5;

the corresponding Boolean components of the two Boolean vectors are ANDed and the result

is stored in the result Boolean vector

o predicated execution (see Fig. 4):
v1 = s2 ? v3 - v2 : v1;

in any positions where s2 = 1 the corresponding components are operated, while in the

rest (i.e., elsewhere) the content of the result vector remains unchanged (it is a ``spatial if”

statement)

o vector rotate:
v7 = v7 rot n;

the scalars of vector v7 is rotated n positions right: v7[i] = v7[(i+n)mod_n]

Fig. 3: The Connex Architectural Space: the content of the local data memories. It is an m n-component vectors

domain allowing the following type of constant time operations: vect_j = vect_i OP vect_k

 INPUT-OUTPUT OPERATIONS performed in IO Plan:

o strided load:
load v5 address burst stride;

the content of v5 is loaded with data from the external memory accessed starting from

the address: address, using the bursts burst, and the stride stride.

Example:
load v5 5000 128 458;

means to load the vector v5[0:127] (the first 128 bytes of the vector v5), distributed

in the local data memories inside each EU, with 128 bytes read starting from the address

5000 in the external memory, then to continue loading with others 128 bytes read

starting from the address 5458 in the external memory, then to continue loading with

others 128 bytes read starting from the address 5918 in the external memory, and so on.

If
burst = stride,

then the vector in the external memory is stored in a contiguous space.

o gathered load:
gath v3 burst v9 stride;

which is a sort of indirect load using the vector v9 to generate the request addresses for

loading in v3 data from the external memory.

Example:
gath v3 64 v9 32;

means to load the vector v3 with 64 bytes read starting from the address v9[0:3] (the

first 4 bytes of the vector v9) in the external memory, then to continue loading with

others 64 bytes read starting from the address v9[0+32:3+32] in the external

memory, then with others 64 bytes read starting from the address

v9[0+32+32:3+32+32] in the external memory, and so on. (Now the stride refers to

how the content of the address vector v9 is used.)

o strided store:

store v7 address burst stride;

o scattered store:
scatt v4 burst v13 stride;

which is a sort of indirect store using the vector v13 to generate the destination addresses.

Fig. 4: Operating on selected components of the vectors. The operation vect_j = vect_i OP vect_k is

applied only on the selected components.

In the CONNEX SYSTEM are implemented both, strided addressing and gathered/scattered addressing

because the same data structure must almost all the times transferred in the CONNEX ARRAY in

different uniform forms, or in randomly selected shapes. For example, a 2-dimension array of data in

some stages of the computations must be loaded in the Connex Architectural Space associating to each

line a vector or, in other stages of computation associating to each column a vector (the array is rotated).

Thus, the strided addressing become very useful, because for the first case the load is performed with

stride = 1, while for the second case the stride is set equal with the length of the line. The

gathered/scattered addressing is used when some “data blocks” are randomly selected to be processed in

CONNEX ARRAY.

Fig. 5: Log-time reduction operations. For example, all the selected components of the vector k are added and

stored as one component of the vector j.

The reduction network is used to perform vector-to-scalar functions, such as addition, maximum, OR, … .

The result is stored in the register file of CONTR or it can be stored back as a scalar component of a

vector (see Fig. 5).

The last version of the CA is BA1024B - a SoC for the HDTV market, containing CA1024 (a

ConnexArray of 1024 EUs running at 400 MHz) - was produced at TSMC (65 nm standard process) with

the following performances:

 400 GOPS (Giga 16-bit OPerations per Second)

 >120 GOPS/Watt

 >6.25 GOPS/mm2.

SGM algorithm on CA
The main components of the SGM algorithm are ZSAD correlation and cost calculation. ZSAD

calculation is inherently parallel and appropriate for large-scale SIMD processing. Cost calculation is

performed along 8 directions. Along each path operations are sequential but parallel paths can be

calculated in parallel. Similar to the FPGA implementation detailed in [1] the 8 paths are computed in 2

passes (see Fig. 4 in [1]). During the 1st pass, accumulated costs for the 4 paths will be stored in external

DDR2 memory. In the second pass the costs for the last 4 paths are calculated and combined with the

stored costs to make the final decision about pixel disparity.

The rough evaluation of the implementation on Connex Architecture of the algorithm presented in [1]

provides the following figures for 50 frames/sec real-time stereo vision:

 number of EUs: n = 340 (because the computing is performed on a 640x400 pixels image

reduced by a factor of 2 in both dimensions, the biggest dimension of the array involved in

computation is 340)

 the clock frequency for Connex Array: fconnex_CK = 200 MHz (the number of computational

steps estimated for 50 frames /sec is less than 200,000,000)

 the external bandwidth: 1GB/sec (because the accumulated costs estimated in the first pass

must be stored in external memory and reloaded for the second pass).

Results that the SGM algorithm is performed using less than 20% of the computational power of the

BA1024B chip already designed, implemented, tested and used for writing HDTV applications.

Using the Target1 design environment the CA (instruction set) can be “tuned” in order to offer for this

specific application domain (stereo vision and related computations) additional computational power,

optimizing in the same time both, the area of the chip and the power use.

1 http://www.retarget.com/

The Connex solution for SGM
The proposed solution for running the previously described algorithm is the organization presented in Fig.

6, where the CONNEX SYSTEM is dimensioned for n = 352 (organized as 32x11 EUs) and m = 256.

SRAM BUFFERS are used for fast and flexible data exchange between the CONNEX SYSTEM’s

internal data memory and the external memory accessed using a p-bit DDR2 CONTR.

Fig. 6: The Connex Engine for SGM algorithm

The proposed solution can be organized in four stages: (1) evaluation (2) prototype on FPGA, (3) small

production on eASIC technology, (4) mass production on ASICs.

Stage 1: Using the existing tools and board built for the frame rate conversion algorithm the SGM

algorithm is run on the last version of the CONNEX CHIP in order to evaluate the actual performances of

this technology.

Stage 2: The prototype can be developed using Virtex-6 FPGA Embedded Kit2. In order to implement the

basic algorithm, described in [1], the clock frequency for CONNEX SYSTEM will be no more than

fconnex_CK = 200 MHz, while the clock frequency of DDR2 CONTR will be fDDR2_CK = 250 MHz for p=16.

The CA can be easy adapted to execute specific instructions for accelerating the real-time SGM

algorithm. We already identified specific instructions to be added to the EUs instruction set which allows

additional 20% performance improvement in execution. The saved computational resources can be used

to improve the accuracy of the algorithm or to approach new, more detailed aspects of the stereo vision.

Stage 3: The technology offered by eASIC3 can be used to provide a solution 2 times faster, consuming

10 times less power than the FPGA solution. Because the price of the development and the price of the

resulting chip are estimated to be also significantly reduced compared to the FPGA, the small production

can be considered in this stage.

Stage 4: For mass production, the ASIC 65nm implementation of the resulting system is estimated (based

on the already implemented CONNEX CHIPS) to have area < 50 mm2, power < 1Watt for the clock

frequencies above defined. But, take note of the additional computational resources resulting from the

possibility to drive easy the resulting CONNEX SYSTEM & DDR2 interface up to 500 MHz.

2 http://www.xilinx.com/products/devkits/EK-V6-EMBD-G.htm
3 http://www.easic.com/

Because the proposed solution is a programmable one, additional functionality is easy to be integrated on

the same system (for example, full resolution computation on critical surfaces of the frames).

A specific research project will be able to identify additional ways to adapt the CONNEX approach to the

whole project regarding an intelligent driver assistant.

References
[1] Stefan K. Gehring, Felix Eberli, and Thomas Meyer: “A Real-Time Low-Power Stereo Vision Engine Using

Semi-Global Matching”, in M. Fritz, B. Schiele, and J. H. Piater (Eds.): Computer Vision Systems, LNCS 5815, pp.

134-143, 2009.

 [2] Gheorghe Stefan, Anand Sheel, Bogdan Mitu, Tom Thomson, Dan Tomescu: "The CA1024: A Fully

Programmable System-On-Chip for Cost-Effective HDTV Media Processing", in Hot Chips: A Symposium on High

Performance Chips, Memorial Auditorium, Stanford University, August, 2006.

[3] Mihaela Malita, Gheorghe Stefan, Dominique Thiebaut: "Not Multi-, but Many-Core: Designing Integral Parallel

Architectures for Embedded Computation", in ACM SIGARCH Computer Architecture News, Volume 35 , Issue 5,

Dec. 2007, Special issue: ALPS '07 - Advanced low power systems; communication at International Workshop on

Advanced Low Power Systems held in conjunction with 21st International Conference on Supercomputing June 17,

2007 Seattle, WA, USA.

[4] Gheorghe Stefan: "One-Chip TeraArchitecture", in Proceedings of the 8th Applications and Principles of

Information Science Conference, Okinawa, Japan on 11-12 January 2009.

[5] Bogdan Mîţu: “C Language Extension for Parallel Processing”, research report, BrightScale, 2008. (click here to

find it: http://arh.pub.ro/gstefan/Vector\%20C.ppt)

http://arh.pub.ro/gstefan/Vector/%20C.ppt

