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Abstract — We say multi-processor if there is more
than one processor, while many-processor is used to
designate a system with big-n processors. We claim
that the theoretical foundation for the two kinds of par-
allel machines is different and is meaningful for under-
standing the evolution of computer science in the emerg-
ing parallel computing era. While a multi-processor is
seen as a construct starting from Turing’s model, a
many-processor is better explained in a different concep-
tual environment. We propose Kleene’s computational
model as a theoretical framework for the many-processor
paradigm. The many-processor approach is exempli-
fied by the architecture of Connex Core part of the
BA102) chip, o fully programmable SoC delivered by
BrightScale, Inc. for the HDTV market.
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1 Introduction

This paper provides a way to understand how we can
conceive a computation involving n actors, with n any
big number, that is a many-processor architecture.
We exemplify the distinction between multi and many
using two machines: Intel Core 2, and Connex Core.

Intel Core 2: a typical multi-processor Tn In-
tel Core 2 each CPU independently implements var-
ious forms of transparent parallelism, such as: super-
scalar execution (data-parallelism), pipelining (time-
parallelism), speculative executions (supporting time-
parallelism). Both machines support independently
multi-threaded executions. A system with 2 or more
cores is able to effectively execute more threads con-
currently. The multi-processor implemented as a multi-
core machine controls the parallel execution mainly at
the program level. Few additional physical resources are
needed to support the multi-threaded parallelism actu-
ally performed on multi-processors. For this reason the
computational model used to support mono-processors
works very well for the multi-processor paradigm.

Connex Core: a typical many-processor Figurel
represents the block diagram of the BA 1024 chip with
emphasis on Connexr Core, a many-processor engine.
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Figure 1: The BA 1024 chip. The many-processor as-
pects are: ConnezArray™™ and StreamAccelerator.

One thousand ezecution wunits, EU, execute condi-
tionally (according to their internal states) the instruc-
tion issued in each clock cycle by the Sequencer. All
data intensive computations are done by this linear ar-
ray called ConnexArray™™ (CA). Eight processing el-



ements, PE, are devoted to accelerate pure sequential
computations. The array, called stream accelerator, SA,
is dynamically reconfigured by the interconnection net-
work to solve problems like arithmetic coding. The
Interfaces € Standard Controllers block contains gen-
eral purpose interfaces (DDR, PCI, ...), specific inter-
faces (audio and video), and general purpose controllers
(MIPS machines). (More details in section 4.)

The gap between “multi” and “many” The dif-
ference between “multi” and “many” is rather qualita-
tive than quantitative. The multi-threaded execution
takes few of almost independent processes, while the
data-parallel or time-parallel computation refers to n
interdependent ones.

There are well established techniques to deal with
the multi-threaded approach, all developed for mono-
cores, but equally useful for multi-cores.

Because we are in the infancy of the many-core ap-
proach, the programming techniques are far to be es-
tablished. One main reason for this weakness is the
theoretical framework which hosts the research in this
too new domain.

Another difference evident in this early stage of the
split between “multi” and “many” refers to intensity
vs. complexity. Multi-processors deal with complex
computations, while many-processors are comfortable
with the intense ones.

Thus, there are a lot of reasons to have a specific the-
oretical background for the many-processor paradigm.
The envisaged computational model must have an ex-
plicit reference to n, the degree of parallelism involved
in computation.

2 Two Computational Models

All computational models proposed starting from 1936
are equivalent. However, they are not equal in providing
enough “expressive” backgrounds for different styles of
computation. Regarding the “multi-many” distinction
we mention here two models: Turing’s and Kleene’s.

Turing’s model The architecture of the standard
mono-processor computer derives almost directly from
the structure associated with Turing’s computational
model [10]. The classic representation of the Turing
Machine (TM) can be reformulated in terms of real cir-
cuits, where the infinite tape is an infinite random access
memory, the access head is an up-down counter with a
two-directional data connection, and the control section
is a finite automaton (FA) (see Figure 2).

Optimizing the structure of the FA and the Up-
Down Counter for an Universal TM (UTM) we ob-

tain what we now call the processor structure, used to
work on data stored in a memory, according to the pro-
gram stored in the same memory. Thus, the sequential
computing machines are supported directly by Turing’s
model. There is also a way to expand this model to
the multi-processor paradigm using the multi-threaded
programming style.
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Figure 2: Turing Machine with circuit compo-
nents.
memory, addressed by an infinite up-down counter, which

The infinite tape is implemented as an infinite

performs in each cycle a read-modify-write operation under
the control of a finite antomaton.

Turing’s model cannot be used “directly” to found
many-processors. We prefer to start with a model which
“naturally” fits the description of a machine with thou-
sands components: Kleene’s computational model [2].

Partial recursive functions In the year Turing pub-
lished his paper, Kleene published the partial recursive
functions model. He defines computation using basic
functions (zero, increment, projection), and rules ( com-
position, primitive recursiveness, and minimalization).
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Figure 3: The structure associated to composi-
tion.



For implementing the basic functions there are
small, simple and fast circuits. The increment cir-
cuit is an optimal one (polynomial size and poly-log
time). The multiplezor used for the projection func-
tion is also optimal. The composition rule is actually
the main rule. Tn Figure 3 is shown the structure as-
sociated with the composition rule: f(zg,...xp—1) =
g(ho(l‘o, .. .mn_l), P hm_l(xo, .. .J,‘n_l)).

Both, the first level of computing m functions
(hoy---hm—1), and the second of the reduction of m
variables to one variable, are parallel processes. The
only restriction in this process is that the reduction
can’t start before the end of computation on the first
level. This is the inherent sequentiality of composition.

Two different starting points Turing’s model is
about one sequential process. The composition rule in
Kleene’s model is about m processes evolving in parallel
with the reduction operation. Tn Kleene’s model there
are considered at least two kinds of parallel processes.
The h; functions are independent, and g can be inde-
pendent if it works, in pipeline mode, on different input
data zg,...Tn_1. An UTM can be seen as a sequential
composition of TMs functions h; and g. But the parallel
aspects of computation are lost.

If an actual structure is directly associated with the
composition rule, then results a many-structure as a
consistent starting point. The elementary components
of this structure are execution circuits or programmable
machines. We take off from the beginning in Kleene’s
model with a parallel configuration! The number n, re-
lated with the degree of parallelism, is from start in-
volved in the theoretical approach. It is about an n-
guided development environment.

3 From Partial Recursiveness to
Many-Processors

The general form of composition has particular, simpli-
fied forms able to express the other rules.
Data-parallel composition (Figure 4a) computes
n = m functions, each applied to a component
of the vector [zg,...zn—1], and generates the vector
[ho(z0), ... hn_1(zn_1)]. Here g is the identity function.
There is a particular, real structure associated to
the data-parallel composition going back to the organi-
zation of the BA1024 chip (see Figure 1). If hg = hy =
.. = hp_1 = h, then CA from Connex Core is a sys-
tem executing data-parallel composition for the same
function h, whose execution is controlled by Sequencer.
Serial composition (see Figure 4b) is defined for
multiple applications of the composition with n = 1.

Results a pipe of p functions, kg,...kp_1, that com-
putes f(z) = kp—1(kp—2(... ko(x))...). In each cycle a
new value from the input stream, < zg,...Ts_1 >, i
inserted. After a latency of p cycles the result stream
< f(xo),... f(ws—1) > is extracted. The circuit com-
putes in s+p cycles p values of the function f. This kind
of parallel computation is very eflicient when s >> p,
where s is the length of the input stream and p the num-
ber of functions composed in order to compute f(x).
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Figure 4: The basic forms of composition. a. Data
parallel composition. b. Serial composition, working in par-
allel on successive input data. d. Reduction composition.

An example of serial composition occurs in Connex
Core of the BA1024 chip. Connecting serially the 8
processors PE, from StreamAccelerator, results a pipe
of p = 8 functions able to execute a pure sequential com-
putation. Each processor has its own program defining
one stage of the pipe.

Reduction composition (see Figure 4c¢) occurs
when h;(z;) = z; for any i. The input vector
[Zo,...Zn_1] is reduced to a scalar. This function is
performed in poly-log time and the structure has a lin-
ear size. In CA of the BA1024 chip the data is extracted
for Sequencer using a reduction tree.

3.1 Applying Primitive Recursion

The primitive recursion computes f(z,y) using
f(z,y) = g(z,y, f(z,y — 1)), where f(z,0) = h(z). The



theoretical infinite circuit which computes f is in Figure
5. It has an infinite pipe of identical circuits (excepting
the first), and a reduction network, distributed along
the pipe, used to select the result.
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Figure 5: The primitive recursive circuit. An infi-
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reduction circuit, R, are used to apply the primitive recur-

nite pipe of machines, H,G1,Ga,. .. and an infinite

sive rule.

The function performed by the circuit His H(x,y) =
{z,y, f(z,0),(y == 0)}. Module H sends to the first
input of the reduction network rqg = {f(z,0), (y == 0)},
a pair {scalar,predicate}, and to the next level in
pipe sends {z,y, f(z,0)}. The module G; computes
Gi(z,y, f(z,i — 1)) = {z,y, f(z,i),(y == i)}. The
module G; sends r; = {f(x,i),{y == i)} to the cor-
responding reduction network input, and to the next
stage {z,y, f(z,1)}.

The function of R is defined on the theoretically in-
finite vectors of pairs {scalar, predicate}, and returns
for sure (the function f(z,y) is total) the scalar which
is paired by the predicate having the value 1.

3.2 Applying Minimalization

The minimalization rule computes the function
f(z) to the wvalue of the minimal y for which
glz,y) = 0. See the associated circuit in Fig-
ure 6, where the function performed by each mod-
ule G; returns a pair {scalar,predicate}: G;(z) =
{i,(g(z,i) == 0)} = r;. The reduction function
R selects, from the input vector {ro,...7;,...} =
{0, P(0)}, {1, P(1)},... {3, P(i)},...}, the scalar from
the first pair for which the predicate P(i) = 1, if any
(f(z) is a partial function) and shows it at the out-
put accompanied by another predicate used to validate

the result. The output is {scalar, predicate}, where the
predicate is 1 if the output is valid. The predicate is
needed because by minimalization partiel functions are
computed.
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Figure 6: Minimalization circuit. Each circuit G;
computes the function g(z,1), and the reduction circuit se-
lects the minimal ¢ for which g(z,7) = 0.

flx) = miny[g(x

The data parallel composition performs a specula-
tive computation. It computes g for z and “all” the
values of y starting with 0. The reduction selects to
the output, if any, the first result. A special feature is
provided for the reduction network: the function first,
FRT(< B>)=<0,...0,10r0,...0 >, where < B >
is any n-bit binary stream. The function FRT indi-
cates, by a single (if any) 1 in an n-bit binary stream,
the position of the first 1, if any, in the input binary
stream < B >.

In BA1024 chip the function FRT is used by CA, in
conjunction with the reduction function, to select the
scalar sent back to Sequencer.

3.3 Many-Processor Architecture

The model presented above can be translated into an
actual universal machine in a few ways. The main
problems to be considered are: (1) how to allow the ex-
ecution of a sequence of many rules, (2) how to reuse
as much as possible the hardware resources, i.e., how to
make a programmable system, (3) what are the most
efficient programming styles for the many-processor ar-
chitecture. Because the domain of many-processor ar-
chitecture is yet in its infancy, we are not ready to an-
swer very well all the previous questions. Therefore,
only some suggestions and a case study are provided.

For a many-processor architecture two data packages
must be added to allow the description of the basic fea-
tures. It is about vectors, [X] = [zo,%1,...Zp-1],
and streams, < X > = < xg,%1,..-Tn—1 >, where x;
are scalars or Booleans.

Data parallel composition means to receive vectors
and to generate vectors. Serial composition supposes
inserting streams and extracting streams. Reduction



composition receives vectors and outputs scalars or
Booleans.

Data parallel composition can be used efficiently in
vector operations and speculative computation. Serial
composition is imposed by sequential algorithms. Some-
times, serial composition asks for speculative computa-
tion. Reduction composition is involved with both, data
parallel and serial composition. Therefore, it seems to
be useful to define a computing system having the pos-
sibility to combine in a very flexible way all kinds of
compositions.

3.3.1 A Data Parallel Many-Processor

There are domains characterized by intensive data par-
allel computation and where the weight of the inher-
ent serial computations is very small. Then, a minimal
system is implemented by three parallel processing re-
sources: (1) the data parallel array, (2) the loop closed
over the data parallel array through a two-directional
FRT network, and (3) the reduction tree. To each h;
an execution unit (EU) is associated (it contains only
ALU & registers & data memory). The reduction com-
position is a tree structure which performs simple func-
tions.
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Figure 7: Data parallel many-processor architec-
ture. Many execution units (EU) are interconnected in a
two-direction ring. The reduction tree (R) closes the loop
back to Sequencer (IS). The F'RT network closes a Boolean
loop over the Data-Parallel ETJ.

In order to link vector operations, in each EU; is
built a local scalar memory. All the components 4 of the
vectors involved in computation are processed in EU;.
Another additional feature is the constant distance com-
munication between EUs. The execution model is:

e in each clock cycle an instruction sequencer
(IS) broadcasts one instruction to be executed by

each EU (see Figure 7)

e cach EU executes the instruction according to its
internal state, for example:

where (bool_vect_q == 1)
vector_n = f(vector_m, vector_p);
elsewere
vector_n = g(vector_m, vector_p);

e the instruction operates on data stored in each EU
and, sometimes, on data stored in a small neigh-
borhood (usually EU;_1 and EU;11)

e the sequence of instructions evolves according to
the IS internal state and according to the data
provided by the reduction tree.

The minimal structure of a data parallel architec-
ture is in Figure 7. A very important feature, imposed
for solving the partial recursiveness, is the small and
simple loop, closed over the entire n-EU array through
the FRT network [5]. It classifies the EUs, depending
on the actual values of a selected Boolean vector, as fol-
lows: (1) the first EU (FEU) with the selected Boolean
on 1, (2) the EUs positioned before FEU, and (3) the
EUs following FUE.

An example of Data Parallel Many-Processor is the
module ConnezArray™ in BA1024 (Figure 1).

3.3.2 An Integral Many-Processor

There are applications where the data intensive and the
intensive inherent sequential computations are balanced
and interleaved. Then, both, data parallel composition
and serial composition must be supported by the same
hardware [4] [9] [3]. The resulting structure is topo-
logically similar with the previous, with the important
difference that the EUs are substituted by processing
units (PU). An EU executes only the instruction re-
ceived from IS, while PU executes also its own locally
stored program.

Tf conditioned pipeline executions are needed, then
the interconnection neighborhood must be expanded to
allow speculative evaluations. If no more than m con-
ditions are involved at any stage in the pipelined execu-
tion, then each PU; must be able to select data from the
previous 2™ PUs. Thus, an Asymmetric Interconnec-
tion Fabric, AIF, is added. Figure 8 shows the resulting
Integral-Parallel PU, where each PU is allowed to select
as left input data from the previous 8 PUs (m = 3).
The AIF’s outputs, connected to the left inputs of each
PU are selected according to the following expression:

ini+1 = S(Sl, Outi_(), outi_l, .. ) = outi_si
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Figure 8: Integral-Parallel PU. The left connection of
each PU is selected, by the 3-bit code s;, one out of the 8
previous PUs.

The selection code, s; is the condition code computed
by each PU. The condition is used to select the result of
the speculation performed by the previous up to 8 PUs.
Programming the serial composition part of this
machine is done defining the vector of functions,
F ={[fo,... fp—1], where f; represents the local program
executed by PE; on data received from the previous
PEs. For no conditional operation each PU; receives its
input data from PU; . If the m-condition execution is
performed, then PU; selects its input from the output
of PU;_om,...PU;_1 ad-hoc involved in a speculative
computation as a data parallel array of 2™ PUs.

3.3.3 Segregated Many-Processors

If the data intensive computations and the inherent se-
quential intensive computations are grouped in clearly
distinct stages of the application, then they deserve spe-
cialized hardware units. Thus, advanced optimizations
are allowed, because the number of EUs and of PUs are
stated independently.

The structure consists in two subsystems: (1) a Data
Parallel Many-Processor Architecture (see Figure 7),
connected with (2) a Data-Parallel PU (see Figure 8)
which has the inter-connectivity limited by the maxi-
mum value of m (the maximum number of conditions
required by the programs f;).

An actual implementation of a Segregated Many-
Processor Parallel Architecture is done in BA1024 chip,
where the tandem ConnezArray”™™ & StreamAccelera-
tor represents the Connex Core.

4 Case Study: Connex Core

This section provides an exemplification of what is
a many-processor, using an actual segregated many-
processor machine. The figures provided will allow us
better understand the differences between multi- and

many-processors. It is a sort of quantitative proof that
starting from Turing’s model or from Kleene’s model
makes a lot of difference.

The BA 102/ chip is a SoC designed by BrightScale,
Inc. to implement a platform for the HDTV market.
It is a Segregated Many-Processor. The chip, imple-
mented in 130nm standard process, works at 200MHz.
It contains the audio and video interfaces for two HD
channels, the multi-threaded section of 4 MIPS proces-
sors, the DDR interface (3.2GB/sec), an 128-bit inter-
connection fabric, and the intensive parallel machine
containing:

Sequencer: a 32-bit controller with stack architecture,
used to issue in each clock cycle an instruction to
be broadcasted into the data-parallel processing
array

Input-Output Controller: another 32-bit controller
with a stack architecture which communicates
with the previous using interrupts; it is used to
manage the transfers between the array and the
rest of the system

ConnexArray’™ (CA) a linear data-parallel array of
1024 16-bit EUs, where each EU has: (1) 16-bit
integer ALU (support functions for speeding the
multiplication), (2) Boolean machine for 8 boolean
variables, (3) a local data memory for 256 16-bit
words. It receives in each cycle an instruction,
issued by Sequencer, which is executed according
to the value of the selected local Boolean

global loop: closed over CA, used mainly to find the
first EU with the selected predicate 1

reduction: tree to extract data and some critical pa-
rameters from CA

I/OPlan: a two-dimension array which transfers data
between CA and the rest of the chip under the
control of Input-Output Controller; the I/O pro-
cess is transparent, to the processing performed by
CA

StreamAccelerator: a serial composition engine of 8
16-bit PUs, each having its own program memory
with m = 4.

One of the main design decisions was to keep the
CA’s interconnection network as simple as possible,
while I/OPlan was designed to perform complex re-
arrangement of data during the transfer. This compro-
mise works in the video processing domain.

Another important design choice was to perform in
each EU ouly simple functions (no multiplications, no
floats). Evaluating the frequency of the multiplication



operation we decided to add only a small set of simple
support functions.
General performances of the Connex Core:

e 200 GOPS (OP means 16-bit simple operations,
no multiplication, no FP)

e 3.2 GB/sec external bandwidth, 400 GB/sec in-
ternal bandwidth

e > 60 GOPS/W and > 2 GOPS/mm?

Some video specific performances:
e DCT: 0.15 clockCycles/pixel (on 8 x 8 arrays)
e SAD: 0.0025 clockCycle/pixel

¢ decoding H.265 dual HD stream: 85% of the com-
putational power.

The previous figures resulted running on BA 102/ pro-
grams written in Connex Programming Language, de-
veloped by BrightScale.

Because the HDTV domain requests data intensive
computations, CA is used in its full power. The current
implementation is I/O bounded. SA is needed to accel-
erate the pure sequential part of the codec (mainly for
the H.264 standard).

5 Concluding Remarks

Partial recursive functions are computed using
only various forms of composition.

Multi-processing for complex computation and
many-processing for intense computation While
the multi-processor solution remains to optimize com-
plex applications, the many-processor solution applies
where the intensity prevails complexity.

Complex versus intensive by numbers For
multi-processors (0.08 GIPS + 0.08 GFLOPS)/Waitt
and (0.02GIPS + 0.02GFLOPS)/mm? are usual
performances. For the intensive many-processor
machine BA1024 60GOPS/Watt or (30GOPS +
0.6 GFLOPS)/Watt and 2GOPS/mm? are obtained.
The two classes of architecture are perfectly differen-
tiated by two order of magnitude. Turing’s model
manages complezity, while Kleene’s model supports in-
tensity.

Thus, segregating complex multi-processor architec-
tures from intensive many-processor architectures is the
best solution for optimizing both price(area) versus per-
formance and power versus performance. Let be the
slogan:

High Performance Architecture —
mono/multi-processor + many-processor
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