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A B S T R A C T  

High performance facilities to interpret 
LISP represent an ever increasing request 
even for minis. 

This paper presents a LISP hardware 
structure conceived to be implemented in a 
general purpose mini system called 
DIAGRAM. 

The LISP structure had to be adapted to 
the system technological requirements and 
size. 

The data structure and the instruction 
set concerning the basic machine are also 
presented. 

l. Introduction 
The system comprising the LISP machine 

is shown in Fig.l, where: 
- IOM is a microcomputer controlling the 

system input-output devices; 
- MPMI is a minicomputer on a PCB, ope- 

rating as the system central unit, running 
high level languages (Fortran, Basic, a.s. 
o.). It operates with a general purpose 
arithmetic processor; 

- MPM0 is a physical structure identical 
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with MPMI, controlling the alphanumeric and 
graphic display on a black and white or co- 
lor CRT monitor. It can operate with a nu- 
merical processor specialized in bi- and 
tridimensional graphic transformations; 

- DIALISP, the topic of this paper, is 
the LISP hardware interpreter. 

2.General structure of LISP Hardware Inter- 
preter (DIALISP) 

201.Structural Options 
The acces time of the available memory 

devices used in high capacity memory ar - 
rays is 300-500 ns. 

Using TTL devices, processing structures 
(RALU, CROM,...) having cycle time between 
150 and 300 ns can be obtained. 

Hence, using a cache memory the effici - 
ency may be rather poor even when the pro- 
cesses associated to the LISP interpreta - 
tion frequently access the memory. 

Hardware facilities offered by bit-slices 
controlled by a stack state-machine (SSM) 
have been used to optimize DIALISP cost and 
size. Thus the whole structure is built on 
a single PCB, but the operating speed is 

MPM1 
1 6 - b i t  word 
128 - 640  KB 

m e m o r y  

1 
i - 

IOM I 
Z 80 - C PU 

64 KB memory 

DIA L _TSP 

! 
1 

I 
IOM - BUS 

Fig. I 

Permission to copy without fee all or part o f  this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title o f  the 
publication and its date appear, and notice is given that copying is by 
permission of  the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1984  ACM0-89791-142-3 84,008 0123 $00.75 

limited due to the small number of fast re- 
gisters and to the use of arithmetic compa- 
ring functions instead of logic ones, as in 
a dedicated structure. 

Using a SSM to control the structure in- 
stead of a typical CROM configuration per- 
mits higher speed and the implementation oC 
a large micro-stack. 

2.2.Duality 
An important option for DIALISP takes 
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account of the following facts: 
- the memory access time is approximately 

two times larger than the execution cycle 
time; 

- the memory accesses are frequent, re - 
quiring waiting states for the data proce - 
ssing unit; 

- LISP implementation may imply parallel 
processes to the main evaluation one (e.g. 
GC, stack memory, tree structure functions 
etc.). 

Consequently, a physical configuration a- 
llowing parallel running of two processes 
has been conceived, so that the speed of 
either process is only slightly affected. 

The waveforms of Fig.2 represent the time 
sharing of the physical resources between 
both processes. 

PI 
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The clock cycle is 250 ns. 
When @ = 0 the P0 process uses the pro - 

cessing unit (RALU and SSM), and the P1 
process reads its own memory M1. 

When ~ : i the P1 process uses the pro - 

cessing unit, and Po reads Mo. 

2.3.The Stack State-Machine (SSM) 
The SSM block-diagram is shown in Fig.4, 

where: 
- SM (Stack Memory) closes the state- 

-machine loop along with the LATCH; 
- SPo and SP] are counters used as stack 

pointers for Po and P1; 

- MUXS selects the stack pointer (SPo or 
SP1) according to @; 

- MUXF multiplexes the flag that deter - 
mines the state-machine transition. 

The state-machine can thus control two 
independent processes switching to Po or 
P1, relative to 0. The trace of either 
process is stored in the SM location indi- 
cated by SPo and SP1. 

LATCH+SM form a master-slave structure 
with a master (LATCH) and several slaves 
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(SM). The current slave is indicated by 
SPo or SPI. The succesive number or CALLs 
may thus significantly increase. 

2.4.Functional Distribution in DIALISP 
The DIALISP structure of Fig.3 is equi- 
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During one memory access time two RALU 
microoperations are performed, allowing 
the preparation of a new memory cycle or 
the end of a read-modify-write cycle. 

Therefore, two processes may be run by 
the structure: the access to the RALU and 
SSM is made while the other process waits 
during the memory access time. 

Under these conditions, the DIALISP 
block diagram is that of Fig.3. The RALU 
is implemented with 16 Intel 3oo2 ICs; Mo 
and M1 have 256 KB each and use Intel 
2164-25 chips. The RALU registers are 
shared by both processes. 

Fig. 3 
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valent to two 32 bits minicomputers, acce- 
sing o.25 MB of memory each. The two 
structures may operate independently; they 
communicate by interrupts and some inter - 
nal registers of RALU. 

Several ways of task distribution bet - 
ween Po and P1 are considered in interpre- 
ting LISP. 

A possible solution, now implemented, is 
when Po is the main evaluation process and 
P1 is a large stack with very short access 
time. P1 ensures the stack extension, if 
necessary, over 256 KB, on the external 
magnetic memory. 
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This solution has the disadvantage of the 
unbalanced use of the structure especially 
when PI controls a common stack. 

Another more balanced solution is when PI 
is a complex stack. 

Because Po and PI processes are not al - 
ways symetrical a hardware facility allows 
"cycle stealing" when Po or PI is time do- 
minant. 

Tbe present implementation uses I bit for 
garbage collector (GC) and the other 7 for 
identifying up to 128 data types. 

Hardware data types (a subset in the 
current version) are shown in Fig.5. 

There are only four data types, but la- 
ter they will be extended with vectors, a- 

long rrays, long integers, short and 
floating-point numbers. 

ROM / R A M  
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Fig.  

Such an example is evaluating a LISP va - 
riable when Po is working searching on the 
stack while Po is waiting the value. Thus 
PI is "stealing" Po's time which otherwise 
would be lost. 

3.Data Structures and Address Space 
The standard word structure consists of 

32 bits: 
- IB (8 bits) used as tag; 
- 3B (24 bits) used for addresses and for 

short integers. 

] 

10 

4.The Instruction Set 
Software is three-level structured as 

follows: 
1.microprogramming level; 
2.assembly level; 
3.LISP level. 

4.1.Microprogramming Level 
Taking into account the position of the 

present machine in the range of LISP ma - 
chines, a iKx72 bit ROM has been chosen;it 
contains aproximately 80 microprogrammed 
functions. They are: 

a) initializing functions S - expression 

I number 
I 

doff!d-pair I atom 

I I identifier constant 
1 

I string 

Fig. 5 

b) I/O functions 
c) pure LISP functions 
d) stack functions 
e) all assembly functions many of them 

being supported by b), c) and d). 
A micro-translator has been written in 

LISP on a PDP 11/45; it generates microco~e 
in three passes. The micro-translator may 
be used later, on the present machine for 
new microprogrammed functions. 

The address space is 16 Mwords, the me- 
mory being extended on a cartridge disk. 
The virtual space is logically divided 
into three subspaces: 

- binary code space (BS), used for a - 
ssembled functions; 

- cell space (CS). 
In the version now implemented Po process 

short -integer 
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<Rj> 
<addr> 

<dec> 

~<hex> 

~<const> 

<offset> 

4.2.1.Basic instructions. 

is driving BS and CS and P1 the stack 
space. 

4.2.Assembly Level 
On this level there are those functions 

belonging to binary space (BS), which ~m - 
plement other useful LISP functions (hand- 
-coded or compiled ones). READ, EVAL, 
PRINT and most of LISP system functions are 
hand-coded using the assembler. The a - 
ssembly language instructions have 8 bit 
op-code and o up to 4 24-bit operands. 

The operands may be constants, registers 
(up to five Ro-R4) or jump addresses. 

Because the assembler-code provides the 
control of evaluation choosing a good in - 
struction set improves LISP speed. 

Thus we have considered two methods: 
a) DIALISP is register-like oriented 
b) DIALISP is stack-like. 

The first option results in a small set 
of pure LISP functions which must be mi 
cro-coded and hence an economical use of 
control memory. However this solution is 
slower than b) regarding evaluation time. 

Option b) is dealing with an asymetrical 
and redundand set of instructions. Most of 
them are stack-oriented hence there are 
less pure microprogrammed LISP functions. 

On the other hand some of LISP functions 
such CAR, CDR, C...R send explicitly their 
values on the stack but others like CONS, 
NCONS implicitly. 

Type cheking is done on the stack or u- 
sing LISP values which have not been sent 
yet to their destination slot. 

Method b) does not allow a good use of 
the small microprogrammed space but is a 
fast evaluating one. 

There are made the following assumptions 
regarding the assembly instructions: 
<op> - denotes the mnemonic of the 

instruction 
- denotes any register (o~j~4) 
- denotes any jump address in 

the range -224+1;  224-1 
- denotes any decimal constant 

in the range -215+1; 215-i 
- denotes any hexadecimal con- 

stant in the range 

-215+1; 215-1 
- d e n o t e s  any LISP c o n s t a n t  

like NIL, QUOTE,... 
- denotes any slot from the top 

of the stack. 

Method a) 
The register-like machine instruction set 

consists of five classes o to 4. 
Class o includes instructions without 

operands: 
<op> 

Such functions are: TERPRI, SAV, RES 
(saves/restores stack pointers) etc. 

Class i includes instructions like: 
< op> <Rj~ 
<op> <addr> 
< op > <dec > 
< op> ~<hex> 
<op> ~4const> 

Such functions are: stack ones (PUSHN , 
PUSHV, POPV, RET) or control ones like JUMP 
input/output (OPENI, OPENO, PATOM) and fi- 
nally error-handling primitives ( FATALT, 
ERRDT ).  

Class 2 includes instructions like: 
<op~ <Rj>, <Ri> 
<op> ~<const~<Rj> 
<op) <Rj>, <addr> 
Such functions are: LISP functions ( CAR, 

CDR, C...R), transfer ones (MOVE), type che- 
king (JLIS, JATOM, JNSTR). 

Class 3 includes instructions like: 
<op> <Rj> , <Ri> , <Rk> 
<op> <Rj> , ~¢const>, 4Rk> 
<op> ~<const>, <Ri> 4Rk> 
<op~ Z<const>, $<const>: <Rk> 
4op> <Rj> , <Ri> , 4 addr > 
<op> ~const>, <Ri~ <addr> 
Cop> 4Rj> ~< const>, 4addr>. 
Examples: LISP functions (ASSOC, RPLACA, 

RPLACD, CONS, EQ) and control ones like 
JNEQ. 

Class 4 includes instructions like 
4op> <Rj~ , <Ri> , <Rk> , <RI>. 
Such functions are: GET, PAIRLIS. 

4.2.2.Basic instructions. Method b) 
The stack-like machine instructions set 

consist of four classes o to 3. 
There are many LISP functions without 

explicit operands (the arguments being on 
top of the stack) and there are also type- 
-cheking ones with explicit operands (they 
are considered by the offset from the top 
of the stack) or without operands (they are 
usually LISP function values being deposi- 
ted in an internal register reserved for 
this special purpose). 

Class o includes operations like: 
<op~ 

Such operations are: LISP functions (CAR, 
CDR, RPLACA, RPLACD, C...R etc.), stack 
functions (LOOK, SEND, NEXT, SAVE-ED, 
LINK-D, RET, RETS, SEND etc.). 

Class I includes operations like: 
4op> 4offset~ 
fop> <addr> 
fop> ~4const> 
<op> ~<hex>. 
Such operations are: stack functions 

(SEND, CALL, CALLI), LISP functions (CAR, 
CDR, C...R, SET-CAR, SET-CDR, SET-C...R). 
control functions (JNREC), type cheking 
ones(JLIS, JATOM, JNSTR, JNNUM) or error 
handling (FATALT, ERRDT etc.). 

Class 2 includes operations like: 
<op> (offset>, <offset> 
<op> 4dec> ~4const> 
<op> <offset>~ 4addr>. 
Such operations are: stack functions 

(ALLOCN), LISP functions (RPLACA, RPLACD, 
CONS), type-cheking ones (JLIS, JATOM, 
JNSTR, JNNUM) etc. 

Class 3 includes operations like: 
<op> <offset>, @offset>, < addr> 
<op> <offset>, ~<const>, <addr> 
4op> ~<const>, <offset>, <a~dr>. 
Examples: RPLACA, RPLACD, CONS etc. 
The assembler is one-pass and has also 

been implemented in LISP on a PDP ii/45. 
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5.Estimating performances 
On a machine with a little main memory 

(2x64 Kw) we had to provide compatibility 
with MacLisp since there are many AI appli- 
cations using this LISP dialect. 

Our measurments suggest the use of a 
larger main memory reducing the paging 
overhead. 

Data structures do not implement CDR-co- 
ding; our machine is based upon a simple 
design to be carried out with minimum of 
microcode. 

On the other hand DIALISP has a small 
number of fast register (3002"s) so our 
stack-like design (method b)) is better 
than register-like one. 

The conclusions listed above are show - 
~ng the same problems as with Alto's 

design. 
Finally DIALISP is using Baker's reroo- 

ting scheme for method a) and a deep bin- 
ding one for method b). 

The dual processor was good idea for 
speeding LISP evaluation with a full use 
of hardware resources. 

The table below shows some execution 
times for pure LISP functions: 

Execution time 
Function microsec. 

CAR 4.5 
CDR 5 
RPLACA 12 
RPLACD 14 
CAAR 7 
CADR 7.5 

A variable evaluation takes (10+9~n) mi- 
crosec, where n represents the depth from 
the current top context. 

Next there is the LAST LISP function 
written in assembly: 

Method a) 

Recursion 

LAST CDR RI, Ro 
JT Ro, LST1 
CAR RI, Ro 
PUSHV Ro 
RET 1 

LSTI PUSBN 1 
CDR RI, R1 
CALL LAST 
RET 1 

Iteration 

LAST CDR RI, Ro 
JT Ro, LSTI 
CAR RI~ Ro 
PUSHV Ro 
RET 1 

LSTI CDR RI, R1 
JUMP LAST 

LAST 

LSTI 

Method b) 

Recursion 

CDR 
JNREC ~NIL. 
CAR 
SEND 
RET 
SAVE-END 
ALLOCN i, 
CDR 
SEND 
LINK-D 
CALL LAST 
RET 

LSTI 

~LAST 

Iteration 

LAST CDR 
JNREC ~ NIL, 
CAR 
SEND 
RET 

LST1 SET-CDR 4 
JUMP LAST 

LSTI 

6.Further Development 
Two possible development directions are 

considered by the authors. 
Firstly, the machine can be improved 

starting from the structure presented 
above, by using more efficient functional 
blocks, e.g.: 

- a purely logic structure having a lar- 
ger number of registers may be used in - 
stead RALU. Th~s would permit a clock 
cycle shorter than 200 ns; 

the memory is to be implemented on se- 
veral PCBs, each having 1-4 MB, thus 
allowing a maximum internal memory capaci- 
ty of 16 MB; 

- a large Stack-Memory (SM) (up to 4 
Mlevels) allowing microprogramed recursion 

- a larger microprogram memory (at Least 
8 Kwords). 

Secondly a RISC LISP oriented processor 
can be conceived. This option allow soft- 
ware level to be reduced to: 

- RISC implemented level; 
- LISP level. 

This permits LISP level implementation 
using a large but not very fast memory (e. 
g. 64K DRAM). 
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