
DIALISP - A LISP MACHINE

G.Stefan
A.Paun
V.Bistriceanu
A.Birnbaum

Functional Electronics Laboratory
Polytechnical Institute of Bucharest
ROMANIA

A B S T R A C T

High performance facilities to interpret
LISP represent an ever increasing request
even for minis.

This paper presents a LISP hardware
structure conceived to be implemented in a
general purpose mini system called
DIAGRAM.

The LISP structure had to be adapted to
the system technological requirements and
size.

The data structure and the instruction
set concerning the basic machine are also
presented.

l. Introduction
The system comprising the LISP machine

is shown in Fig.l, where:
- IOM is a microcomputer controlling the

system input-output devices;
- MPMI is a minicomputer on a PCB, ope-

rating as the system central unit, running
high level languages (Fortran, Basic, a.s.
o.). It operates with a general purpose
arithmetic processor;

- MPM0 is a physical structure identical

MPMo
16- bit word
128 -640 KB

m e m o r y ! '
COT j

m o n i t o r

with MPMI, controlling the alphanumeric and
graphic display on a black and white or co-
lor CRT monitor. It can operate with a nu-
merical processor specialized in bi- and
tridimensional graphic transformations;

- DIALISP, the topic of this paper, is
the LISP hardware interpreter.

2.General structure of LISP Hardware Inter-
preter (DIALISP)

201.Structural Options
The acces time of the available memory

devices used in high capacity memory ar -
rays is 300-500 ns.

Using TTL devices, processing structures
(RALU, CROM,...) having cycle time between
150 and 300 ns can be obtained.

Hence, using a cache memory the effici -
ency may be rather poor even when the pro-
cesses associated to the LISP interpreta -
tion frequently access the memory.

Hardware facilities offered by bit-slices
controlled by a stack state-machine (SSM)
have been used to optimize DIALISP cost and
size. Thus the whole structure is built on
a single PCB, but the operating speed is

MPM1
1 6 - b i t word
128 - 640 KB

m e m o r y

1
i -

IOM I
Z 80 - C PU

64 KB memory

DIA L _TSP

!
1

I
IOM - BUS

Fig. I

Permission to copy without fee all or part o f this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title o f the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM0-89791-142-3 84,008 0123 $00.75

limited due to the small number of fast re-
gisters and to the use of arithmetic compa-
ring functions instead of logic ones, as in
a dedicated structure.

Using a SSM to control the structure in-
stead of a typical CROM configuration per-
mits higher speed and the implementation oC
a large micro-stack.

2.2.Duality
An important option for DIALISP takes

123

account of the following facts:
- the memory access time is approximately

two times larger than the execution cycle
time;

- the memory accesses are frequent, re -
quiring waiting states for the data proce -
ssing unit;

- LISP implementation may imply parallel
processes to the main evaluation one (e.g.
GC, stack memory, tree structure functions
etc.).

Consequently, a physical configuration a-
llowing parallel running of two processes
has been conceived, so that the speed of
either process is only slightly affected.

The waveforms of Fig.2 represent the time
sharing of the physical resources between
both processes.

PI

CK r - - I r ' - - i l" I

The clock cycle is 250 ns.
When @ = 0 the P0 process uses the pro -

cessing unit (RALU and SSM), and the P1
process reads its own memory M1.

When ~ : i the P1 process uses the pro -

cessing unit, and Po reads Mo.

2.3.The Stack State-Machine (SSM)
The SSM block-diagram is shown in Fig.4,

where:
- SM (Stack Memory) closes the state-

-machine loop along with the LATCH;
- SPo and SP] are counters used as stack

pointers for Po and P1;

- MUXS selects the stack pointer (SPo or
SP1) according to @;

- MUXF multiplexes the flag that deter -
mines the state-machine transition.

The state-machine can thus control two
independent processes switching to Po or
P1, relative to 0. The trace of either
process is stored in the SM location indi-
cated by SPo and SP1.

LATCH+SM form a master-slave structure
with a master (LATCH) and several slaves

m o

I I

P1
J I
i L _ . J ' t r ' -

Fig. 2

(SM). The current slave is indicated by
SPo or SPI. The succesive number or CALLs
may thus significantly increase.

2.4.Functional Distribution in DIALISP
The DIALISP structure of Fig.3 is equi-

RALU I

I I o]
I

Control BUS

Flogs

I nterface I
T

During one memory access time two RALU
microoperations are performed, allowing
the preparation of a new memory cycle or
the end of a read-modify-write cycle.

Therefore, two processes may be run by
the structure: the access to the RALU and
SSM is made while the other process waits
during the memory access time.

Under these conditions, the DIALISP
block diagram is that of Fig.3. The RALU
is implemented with 16 Intel 3oo2 ICs; Mo
and M1 have 256 KB each and use Intel
2164-25 chips. The RALU registers are
shared by both processes.

Fig. 3
I O M - B US

valent to two 32 bits minicomputers, acce-
sing o.25 MB of memory each. The two
structures may operate independently; they
communicate by interrupts and some inter -
nal registers of RALU.

Several ways of task distribution bet -
ween Po and P1 are considered in interpre-
ting LISP.

A possible solution, now implemented, is
when Po is the main evaluation process and
P1 is a large stack with very short access
time. P1 ensures the stack extension, if
necessary, over 256 KB, on the external
magnetic memory.

124

This solution has the disadvantage of the
unbalanced use of the structure especially
when PI controls a common stack.

Another more balanced solution is when PI
is a complex stack.

Because Po and PI processes are not al -
ways symetrical a hardware facility allows
"cycle stealing" when Po or PI is time do-
minant.

Tbe present implementation uses I bit for
garbage collector (GC) and the other 7 for
identifying up to 128 data types.

Hardware data types (a subset in the
current version) are shown in Fig.5.

There are only four data types, but la-
ter they will be extended with vectors, a-

long rrays, long integers, short and
floating-point numbers.

ROM / R A M

REGISTER l

Control l ~

FIags

Fig.

Such an example is evaluating a LISP va -
riable when Po is working searching on the
stack while Po is waiting the value. Thus
PI is "stealing" Po's time which otherwise
would be lost.

3.Data Structures and Address Space
The standard word structure consists of

32 bits:
- IB (8 bits) used as tag;
- 3B (24 bits) used for addresses and for

short integers.

]

10

4.The Instruction Set
Software is three-level structured as

follows:
1.microprogramming level;
2.assembly level;
3.LISP level.

4.1.Microprogramming Level
Taking into account the position of the

present machine in the range of LISP ma -
chines, a iKx72 bit ROM has been chosen;it
contains aproximately 80 microprogrammed
functions. They are:

a) initializing functions S - expression

I number
I

doff!d-pair I atom

I I identifier constant
1

I string

Fig. 5

b) I/O functions
c) pure LISP functions
d) stack functions
e) all assembly functions many of them

being supported by b), c) and d).
A micro-translator has been written in

LISP on a PDP 11/45; it generates microco~e
in three passes. The micro-translator may
be used later, on the present machine for
new microprogrammed functions.

The address space is 16 Mwords, the me-
mory being extended on a cartridge disk.
The virtual space is logically divided
into three subspaces:

- binary code space (BS), used for a -
ssembled functions;

- cell space (CS).
In the version now implemented Po process

short -integer

125

<Rj>
<addr>

<dec>

~<hex>

~<const>

<offset>

4.2.1.Basic instructions.

is driving BS and CS and P1 the stack
space.

4.2.Assembly Level
On this level there are those functions

belonging to binary space (BS), which ~m -
plement other useful LISP functions (hand-
-coded or compiled ones). READ, EVAL,
PRINT and most of LISP system functions are
hand-coded using the assembler. The a -
ssembly language instructions have 8 bit
op-code and o up to 4 24-bit operands.

The operands may be constants, registers
(up to five Ro-R4) or jump addresses.

Because the assembler-code provides the
control of evaluation choosing a good in -
struction set improves LISP speed.

Thus we have considered two methods:
a) DIALISP is register-like oriented
b) DIALISP is stack-like.

The first option results in a small set
of pure LISP functions which must be mi
cro-coded and hence an economical use of
control memory. However this solution is
slower than b) regarding evaluation time.

Option b) is dealing with an asymetrical
and redundand set of instructions. Most of
them are stack-oriented hence there are
less pure microprogrammed LISP functions.

On the other hand some of LISP functions
such CAR, CDR, C...R send explicitly their
values on the stack but others like CONS,
NCONS implicitly.

Type cheking is done on the stack or u-
sing LISP values which have not been sent
yet to their destination slot.

Method b) does not allow a good use of
the small microprogrammed space but is a
fast evaluating one.

There are made the following assumptions
regarding the assembly instructions:
<op> - denotes the mnemonic of the

instruction
- denotes any register (o~j~4)
- denotes any jump address in

the range -224+1; 224-1
- denotes any decimal constant

in the range -215+1; 215-i
- denotes any hexadecimal con-

stant in the range

-215+1; 215-1
- d e n o t e s any LISP c o n s t a n t

like NIL, QUOTE,...
- denotes any slot from the top

of the stack.

Method a)
The register-like machine instruction set

consists of five classes o to 4.
Class o includes instructions without

operands:
<op>

Such functions are: TERPRI, SAV, RES
(saves/restores stack pointers) etc.

Class i includes instructions like:
< op> <Rj~
<op> <addr>
< op > <dec >
< op> ~<hex>
<op> ~4const>

Such functions are: stack ones (PUSHN ,
PUSHV, POPV, RET) or control ones like JUMP
input/output (OPENI, OPENO, PATOM) and fi-
nally error-handling primitives (FATALT,
ERRDT).

Class 2 includes instructions like:
<op~ <Rj>, <Ri>
<op> ~<const~<Rj>
<op) <Rj>, <addr>
Such functions are: LISP functions (CAR,

CDR, C...R), transfer ones (MOVE), type che-
king (JLIS, JATOM, JNSTR).

Class 3 includes instructions like:
<op> <Rj> , <Ri> , <Rk>
<op> <Rj> , ~¢const>, 4Rk>
<op> ~<const>, <Ri> 4Rk>
<op~ Z<const>, $<const>: <Rk>
4op> <Rj> , <Ri> , 4 addr >
<op> ~const>, <Ri~ <addr>
Cop> 4Rj> ~< const>, 4addr>.
Examples: LISP functions (ASSOC, RPLACA,

RPLACD, CONS, EQ) and control ones like
JNEQ.

Class 4 includes instructions like
4op> <Rj~ , <Ri> , <Rk> , <RI>.
Such functions are: GET, PAIRLIS.

4.2.2.Basic instructions. Method b)
The stack-like machine instructions set

consist of four classes o to 3.
There are many LISP functions without

explicit operands (the arguments being on
top of the stack) and there are also type-
-cheking ones with explicit operands (they
are considered by the offset from the top
of the stack) or without operands (they are
usually LISP function values being deposi-
ted in an internal register reserved for
this special purpose).

Class o includes operations like:
<op~

Such operations are: LISP functions (CAR,
CDR, RPLACA, RPLACD, C...R etc.), stack
functions (LOOK, SEND, NEXT, SAVE-ED,
LINK-D, RET, RETS, SEND etc.).

Class I includes operations like:
4op> 4offset~
fop> <addr>
fop> ~4const>
<op> ~<hex>.
Such operations are: stack functions

(SEND, CALL, CALLI), LISP functions (CAR,
CDR, C...R, SET-CAR, SET-CDR, SET-C...R).
control functions (JNREC), type cheking
ones(JLIS, JATOM, JNSTR, JNNUM) or error
handling (FATALT, ERRDT etc.).

Class 2 includes operations like:
<op> (offset>, <offset>
<op> 4dec> ~4const>
<op> <offset>~ 4addr>.
Such operations are: stack functions

(ALLOCN), LISP functions (RPLACA, RPLACD,
CONS), type-cheking ones (JLIS, JATOM,
JNSTR, JNNUM) etc.

Class 3 includes operations like:
<op> <offset>, @offset>, < addr>
<op> <offset>, ~<const>, <addr>
4op> ~<const>, <offset>, <a~dr>.
Examples: RPLACA, RPLACD, CONS etc.
The assembler is one-pass and has also

been implemented in LISP on a PDP ii/45.

126

5.Estimating performances
On a machine with a little main memory

(2x64 Kw) we had to provide compatibility
with MacLisp since there are many AI appli-
cations using this LISP dialect.

Our measurments suggest the use of a
larger main memory reducing the paging
overhead.

Data structures do not implement CDR-co-
ding; our machine is based upon a simple
design to be carried out with minimum of
microcode.

On the other hand DIALISP has a small
number of fast register (3002"s) so our
stack-like design (method b)) is better
than register-like one.

The conclusions listed above are show -
~ng the same problems as with Alto's

design.
Finally DIALISP is using Baker's reroo-

ting scheme for method a) and a deep bin-
ding one for method b).

The dual processor was good idea for
speeding LISP evaluation with a full use
of hardware resources.

The table below shows some execution
times for pure LISP functions:

Execution time
Function microsec.

CAR 4.5
CDR 5
RPLACA 12
RPLACD 14
CAAR 7
CADR 7.5

A variable evaluation takes (10+9~n) mi-
crosec, where n represents the depth from
the current top context.

Next there is the LAST LISP function
written in assembly:

Method a)

Recursion

LAST CDR RI, Ro
JT Ro, LST1
CAR RI, Ro
PUSHV Ro
RET 1

LSTI PUSBN 1
CDR RI, R1
CALL LAST
RET 1

Iteration

LAST CDR RI, Ro
JT Ro, LSTI
CAR RI~ Ro
PUSHV Ro
RET 1

LSTI CDR RI, R1
JUMP LAST

LAST

LSTI

Method b)

Recursion

CDR
JNREC ~NIL.
CAR
SEND
RET
SAVE-END
ALLOCN i,
CDR
SEND
LINK-D
CALL LAST
RET

LSTI

~LAST

Iteration

LAST CDR
JNREC ~ NIL,
CAR
SEND
RET

LST1 SET-CDR 4
JUMP LAST

LSTI

6.Further Development
Two possible development directions are

considered by the authors.
Firstly, the machine can be improved

starting from the structure presented
above, by using more efficient functional
blocks, e.g.:

- a purely logic structure having a lar-
ger number of registers may be used in -
stead RALU. Th~s would permit a clock
cycle shorter than 200 ns;

the memory is to be implemented on se-
veral PCBs, each having 1-4 MB, thus
allowing a maximum internal memory capaci-
ty of 16 MB;

- a large Stack-Memory (SM) (up to 4
Mlevels) allowing microprogramed recursion

- a larger microprogram memory (at Least
8 Kwords).

Secondly a RISC LISP oriented processor
can be conceived. This option allow soft-
ware level to be reduced to:

- RISC implemented level;
- LISP level.

This permits LISP level implementation
using a large but not very fast memory (e.
g. 64K DRAM).

7.References
Henry G. Baker, Jr., "Shallow Binding
in LISP 1.5", CACM, Vol.21, No.7, 1978

2) Henry G. Baker, Jr., "List Processing
in Real Time on a Serial Computer",
CACM, Voi.21, No.4, 1978

3) R.R. Burton et al., "Overview and Sta-
tus of Dorado LISP" Conf. Record of the
198o Lisp Conference, 1980

4) E. Goto eta., "Design of a Lisp Ma -
chine-Flats", Conf.Record of the 1982
Lisp Conference, 1982

127

5) R. Greenblatt, "The LISP Machine", Wor-
king Paper 79, MIT Artificial Intelli -
gence Lab., Camb., Mass., 1979

6) D. Moon, "Maclisp Reference Manual",
Revision O., Proj. MAC, MIT, Artificial
Intelligence Lab., Camb., Mass., 1974

7) G. Stefan, "Unbalanced Structures in In-
formation Processing Systems", Artifi -
cial Intelligence and Robotics, Ed. A-
cademiei 1983, Buch.

8) D. Weinreb et al., "Lisp Machine Manual",
MIT Artificial Intelligence Lab., Camb.,
Mass., 1981

128

