
Fitting FFT onto an Energy Efficient Massively Parallel
Architecture

István Lőrentz
Electronics and Computers

Department
Transylvania University of

Braşov, Romania
and

Splash Software, Braşov,
Romania

istvan@splash.ro

Mihaela Maliţa
Computer Science

Department
Saint Anselm College
Manchester, NH, USA

mmalita@anselm.edu

Răzvan Andonie
Computer Science

Department
Central Washington University

Ellensburg, WA, USA
and

Electronics and Computers
Department

Transylvania University of
Braşov, Romania

andonie@cwu.edu

ABSTRACT
We present novel implementations of the Fast Fourier Transform on
the massively parallel Connex ArrayTM(CA) circuit. The estimated
performance is 19 GFlops (BenchFFT metric) of parallel comput-
ing 64 FFTs of size 1024, using 5 Watts. We compare the CA and
NVIDIA’s GTX 285 GPU performance. The CA is not a direct
NVIDIA competitor, targeting a different application area. Consid-
ering its low power dissipation, the CA is an excellent solution for
low cost mobile computing equipment, including sensors.

1. INTRODUCTION
Because of its importance, the Fast Fourier Transform (FFT) is used
as a standard benchmark for parallel computers such as the HPC
challenge and the NAS parallel benchmarks. Parallel FFT algo-
rithms and implementations vary widely in theoretical and practi-
cal performance as a function of the computing architecture. How-
ever, these elegant algorithms lack robustness, as they usually do
not map with equal efficiency onto interconnection structures dif-
ferent from those for which they were designed [4]. Optimal par-
allel algorithms (with respect to sequential bounds) are known for
some processor topologies, but not for others.

With the advent of new many-core and graphical processors, the
parallel FFT algorithms have to be adapted to fully exploit their
architecture. A FFT implementation has to address all following
aspects:i) data access pattern and strided access;ii) calculation/dis-
tribution of sin/cos twiddle tables; andiii) numerical precision.

We present several FFT implementations on a recent parallel pro-
cessor, the Connex ArrayTM(CA), and compare the results to CU-
FFT (NVIDIA’s FFT library for GPU).

The CA, developed by BrightScale (formerly Connex Technology,

Inc.), is a low power consumption, data-parallel architecture of
1024 processing elements. The main motivation for this work is
our believe that the CA is a good candidate for low cost wireless
computing equipment, due to its low power dissipation and cost.

The CA is a Single Instruction Multiple Data (SIMD) parallel in-
memory device with thousands of cells that permits fast general
purpose computations. It contains standard RAM circuitry at the
higher level of the hierarchy, and a specialized memory circuit at
the lower level, the Connex Memory, that permits parallel search
at the memory-cell level and shift operations. A controller over-
sees the exchange of data between the two levels. Just as regular
memory circuits, the operations supported by the CA can be per-
formed in well-defined cycles whose duration is controlled by the
current memory technology, which in today’s technology is in the
2.5 ns range. Several computational intensive applications have
been developed on this machine: data compression [22], alignment
of DNA sequences [23], DNA search [18], massive computation of
polynomials [19], frame rate conversion for HDTV [14], real-time
packet filtering for detection of illegal activities [20], and neural
computation [1].

The CA can perform vector operations in a small number of cycles.
Addition, subtraction, multiplication, search can be performed in
one cycle. The resulted execution times are very competitive. For
instance, the present CA implementation can perform 25 million
scalar products of 1024-tupled vectors per second.

The novelty of our work is the FFT implementation on the CA. The
code is executed on a simulation of the CA.

After a brief overview of FFT implementations on NVIDIA’s GPU
(Section 2), in Section 3 we introduce the main characteristics of
the newest CA circuit, the BA1024. Sections 4 - 7 present our CA
FFT implementations, starting with the standard sequential algo-
rithm. In Section 8, we perform several tests and compare the CA
FFT implementations with the one obtained on NVIDIA’s recent
GTX 285 GPU. We evaluate the performance for 1D, 2D and mul-
tiple 1D transformations. Section 9 contains the final remarks.

2. RELATED WORK: FFT ON GPU

Most FFT implementations on GPU use graphics APIs such as cur-
rent versions of OpenGL or DirectX [8, 13]. These APIs do not
directly support scatters, access to shared memory, or fine-grained
synchronization available on modern GPUs [8]. Access to these
features is currently provided only by vendor specific APIs.

NVIDIA’s development of CUDA for its GPUs opened new plat-
forms for FFT computation. Probably the most general FFT imple-
mentation for GPUs available today is NVIDIA’s CUFFT library,
written in CUDA. It operates by taking a user-defined plan as in-
put which specifies the parameters of the transform. It then opti-
mally splits the transform into more manageable sizes if necessary.
CUFFT employs a Radix-n algorithm and can handle FFTs of vary-
ing sizes on both real and complex data [24].

In 2008, Volkov and Kazin optimized the FFT implementation adapt-
ing it to the GeForce 8800GTX hardware capabilities, such as the
massive vector register files and small on-chip local storage [24].
Since then, NVIDIA released the improved CUFFTv3 and new
GPUs.

Govindarajuet al.[8] developed FFT algorithms for a broader range
of input sizes and dimensions, using a combination of Radix-2,
mixed radix, and prime factor methods to build FFT implementa-
tions. They also present algorithms that contrast different memory
access models. For power-of-two-length inputs, they give three ver-
sions: a global memory version for large problems, a shared mem-
ory version for problems that fit in the GPU’s shared memory, and
a hierarchical version that wraps the FFT into multiple dimensions
so that it can compute the result using shared memory computa-
tions. In each case, they tweak the implementations to leverage the
memory structure of the GPU.

For the time being, the [8, 24] approaches appear to be the best
GPU implementation developed. However, they are very architec-
ture oriented and these results will most likely be obsolete in the
near future.

3. THE CA BA1024 CIRCUIT
BA1024 is the latest CA chip, implemented in 2008 by BrightScale
Inc., a start-up in Silicon Valley, and is described in [10,12,14,15,
21]. We aim to review here its main performances and the Vector-C
library (used Section 8).

The CA is a parallel programmable VLSI chip which consists of
an array of processors. Functionally, it is an array/vector processor.
It is not a dedicated, custom-designed (ASIC) chip, but a general
purpose architecture. It is a fast, very cheap device, with low power
consumption.

The CA operates on 1024-component vectors. Several CA chips
can be integrated on the same board. Thus, the length of the pro-
cessed vectors can be extended in increments of 1024, while re-
ceiving instructions and data from only one controller.

The 1024 cells are individually addressable as in a regular RAM,
but can also receive broadcast/instructions or data on which they
operate in parallel at a peak rate of 1 operation per cycle. This gen-
eral concept fits the Processor-In-Memory paradigm. The cells are
connected by a linear chain network, allowing fast shifting of data
between the cells, as well as the insertion or deletion of data from
cells while maintaining the relative order of all the data. All these
operations are performed in a single memory cycle. The perfor-

0 j

s7

1023

s0

Vi[j]

V0

Vi

V511

Figure 1: The internal state of Connex data parallel machine.
There are 512 vectors, each having 1024 components, and 8 se-
lection vectors, each having 1024 Booleans. (Reproduced from
[12])

.

mances of BA1024 are:

• Memory cycle: 2.5 ns.

• Computation: 400 GOPS at 400 MHz (peak performance)

• External bandwidth: 6.4 GB/sec (peak performance)

• Internal bandwidth: 800 GB/sec (peak performance)

• Power:≈ 5 Watt

• Area:≈ 50 mm2 (1024-EU array, including 1Mbyte of mem-
ory and the two controllers).

• 65nm implementation

Using a 16-bit arithmetic, the BA1024 computes the scalar product
of a 1024-toupled vector in 37.5 ns (26 millions scalar product-
s/sec), and performs1024 × 1024 matrix multiplications in 40 ms
(25 operations/sec). Adding up to 1024 numbers is done in 5 cy-
cles. Multiplication is done in 10 cycles.

TheP = 1024 processing elements, each containing 512 registers,
are interconnected in a ring. From an algorithmic point of view,
the chip can be considered as an array ofP = 1024 columns and
M = 512 rows (Fig. 1). By convention, we represent it as an
array of horizontal vectors. In C-style row-major notation,A[i][j]
denotes thei’th register inside thej-th processing element.

We use the Vector-C library [11]. Vectors are represented horizon-
tally, with fixed sizeP = 1024 (see Fig. 1), and are declared as

v e c t o r A, B , C ;

The operationA = A + B ∗ C means:Ak = Ak + Bk ∗ Ck, k =
0, . . . , P − 1. Using Vector-C and operator overloading, this can
be written as:

A += B ∗ C;

Each processing element supports predicated execution. From a
vectorial point of view, an operation (assignment, arithmetic)A∗B

is performed only for positionsAk ∗ Bk, k = 0, . . . , P − 1 where
k ∈ selectionset.

Vector-C has a construct for "parallel-if":

WHERE(s u b s e t)
A = B + C

ENDW

This is equivalent to the serial pseudo-code:

push s e l e c t i o n
s e l e c t i o n = s u b s e t
f o r (k = 0 ; k <1024; k++)

i f (s e l e c t i o n [k])
A[k] = B[k] + C[k] ;

pop s e l e c t i o n

The WHERE ... ENDW blocks are nestable. Each WHERE saves
the previous selection to a stack and the current selection becomes
the disjunction of the previous set and the set given as argument.
At the end of ENDW the previous selection set is restored. The
outermost operations (not inside any WHERE... blocks) perform
on the full set {0,..., 1023}. We use the term "complex vector"
for brevity, which is stored by two vectors, holding the real and
imaginary parts.

4. THE SERIAL FFT
The starting point for our CA FFT implementations is the serial
FFT code. We use the basic Radix-2 Complex-to-Complex algo-
rithm (see [5]). For the forward transform we use theDecimation
in Frequencymethod. For the inverse transform we use theDec-
imation in Timemethod. The bit-reversal permutation needed for
the in-place transform is done as a final stage of the forward trans-
form, and as an initial stage for the inverse transform.

For certain applications (for example, convolution), the signals are
transformed, multiplied and inverse-transformed. In this case, there
is no need to re-order the FFT, and the bit-reversal step can be
skipped (Fig. 2).

Below is the forward transform code for a complex data vector of
lengthN with decimation in frequency:

complex d a t a [N]
f o r (n=N; n >=2; n / = 2)

f o r (k =0; k<n / 2 ; k++)
complex w (cos (2∗ p i ∗k / n) ,

−s i n (2∗ p i ∗k / n)) ;
f o r (j =0; j <N; j +=N)

b u t t e r f l y (d a t a [j +k] ,
d a t a [j +k+n / 2]) ;

d a t a [j +k+n / 2] ∗= w;
permute (d a t a) ;

We use a simplified C-code representation, extracted from the real
code, by omitting braces. Vectors are represented by uppercase
letters. The Vector-C library functions will appear in the parallel
code snippets, later.

The permute(data) function re-orders in-place data, using bit-
reversal permutation, i.e.:data[k] < − > data[bitrev(k)].

This algorithm takes2N log2 N multiplications and3N log2 N
additions. Several techniques allow to reduce the number of mul-
tiplications [5]: avoid trivial multiplications by±1,±i; use higher
radix2r algorithms; or trade multiplications for an increased num-
ber of additions. All retain the asymptoticO(N log N) complexity.

0

4

2

6

1

5

3

7

W^0/2
 1

W^0/2
 1

W^0/2
 1

W^0/2
 1

W^0/4
 1

W^0/4
 1

W^1/4
 +1i

W^1/4
 +1i

W^0/8
 1

W^1/8
0.71+0.71i

W^2/8
 +1i

W^3/8
-0.71+0.71i

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

W^0/8
 1

W^1/8
0.71-0.71i

W^2/8
 -1i

W^3/8
-0.71-0.71i

W^0/4
 1

W^0/4
 1

W^1/4
 -1i

W^1/4
 -1i

W^0/2
 1

W^0/2
 1

W^0/2
 1

W^0/2
 1

0

4

2

6

1

5

3

7

S
ca

le
 b

y
1/

N
, p

ro
ce

ss
 fr

eq
ue

nc
y

da
ta

, e
tc

.

Figure 2: Data flow for a FFT of size 8, followed by an IFFT.
Bit reversal not included: notice that the output order of the
FFT matches the input order of the IFFT

5. VERTICAL FFT
The outer loop of the serial FFT code represents stages of smaller
FFTs to be computed, whereas the innerj, k loops are the ’butter-
fly’ loops. Since there is no data dependency in the inner loops,
we can parallelize them. The outer loop has to be executed sequen-
tially. In the following sections, we will describe several parallel
FFT implementations on the CA. The parallel algorithms behind
them are from the literature (see [5]). The implementations on the
CA architecture are novel, adapted to the hardware characteristics
of this chip.

The vertical FFT is the straightforward parallelization of the serial
FFT code. Each processing element computes FFTs of sizeM over
its internal registers, thus, havingN processing elements, we can
compute in parallelN FFTs of sizeM . No inter-processor data
movement is needed.

5.1 The vertical butterfly
The building block of the vertical FFT computes the sum and dif-
ference of two complex vectors (Yr,Yi) and (Zr,Zi), using T for
temporary vector:

T = Zr ; Zr = Yr − T ;
Yr = Yr + T ;
T = Zi ; Zi = Yi − T ;
Yi = Yi + T ;

If inputs are placed in vector arrays RE[] and IM[], each of sizeM ,
the forward transform is:

v e c t o r T1 , T2 ;
f o r (n=M; n >=2; n / = 2)

f o r (k =0; k < (n / 2) ; k++)
wre=cos (2∗ p i ∗k / n) ;
wim= s i n (2∗ p i ∗k / n) ;
f o r (i n t j =0; j <N; j +=n)

i x = j +k ;
i z = i x + n / 2 ;

b u t t e r f l y _ v e r t (RE[i x] , IM[i x] ,
RE[i z] , IM[i z] , T1) ;

m u l t i p l y (RE[i z] , IM[i z] ,
Wre , Wim, T1 , T2 , −1);

i f (r e o r d e r)
pe rmuteVer t (RE , IM , M) ;

The results will replace the input data RE[], IM[]. Notice that
the complex multiplication operates on the result of the operation
(Gentleman-Sande butterfly [7]).

The multiply() function executes the complex multiplication, which
requires four real multiplications and two real additions, unless the
following special cases:

• if k = 0, then skip multiplication

• if n >= 4 andk = n/4, then take the complex conjugate

• if n >= 8 andk = n/8, then the real and imaginary part
of the twiddle factors are equal, the complex multiplication
is done only in2C∗ and2C+.

• if (n >= 8 andk = 3∗n/8), then we haveWre = −Wim,
which is similar to the previous case.

Each stage (loopn) consists ofM/2 butterfly operations andM/2
complex multiplications. Each butterfly operation consists of 4 vec-
tor additions. If using four real multiplications and two additions
per complex multiplication, we get a total of:(4 multiplications+
6 additions)M/2. Having log2 M stages, the parallel execution
time is:

Tvert(M) = (3C+ + 2C∗scal)M log2 M (1)

where

C+ = cycles needed for vector addition.

C∗scal = cycles needed for vector - scalar multiplication.

During the vertical FFT execution, the chip, consisting of 1024 pro-
cessing elements, computes in parallel a batch ofN = 1024 FFTs,
we can compute the cycles/FFT ratio as

cycles/FFT =
Tvert(M)

N
. (2)

5.2 Computation vs IO throughput
In batch mode, where allN = 1024 FFTs are computed, in total
2MN scalar values are processed (real/imag parts ofMN complex
scalars). Thus, the number of cycles required to bring the data from
external memory into the chip’s vectors, and transfer the results
back to external memory is:

Ti/o = 4MNCi/o (3)

whereN = P = 1024 andCi/o = (average) number of cycles
needed to bring one scalar value from external memory to chip.

The computation is not I/O bounded ifTi/o < Tvert(M).

0 2 4 61 3 5 7

Figure 3: Stage n=4 for a Radix-2 FFT. The groups can be ex-
tended horizontally until all processing elements are filled

The vertical size,M , is bounded by the number of registers of a
processing element. Thus, a complex element takes up to two reg-
isters (or four in floating point mode). Also, a slack space of 6
vectors must be kept for temporary storage of current twiddle fac-
tors, multiplications.

Observation: in the vertical FFT, each processor multiplies syn-
chronously with the same twiddle factor. This can be viewed as a
vector by scalar multiplication. For a givenM , a source code can
be generated where twiddle factors are scalar constants embedded
in the code.

6. HORIZONTAL FFT
The horizontal FFT is a true vectorial FFT. The complex data to
be transformed is brought from external memory into two vectors
(real and imaginary parts). To compute FFT of sizeN , the data is
distributed toN processing elements. However, ifN < 1024, we
can use the remaining processors to compute additional FFTs in the
same time, as seen below.

Recall that in computing FFT of sizeN , each stage can be consid-
ered as computingN/n subproblems of sizen. In serial code this
is done by the two inner loops:

complex d a t a [N]
f o r (k =0; k<n / 2 ; k++)

complex w = (cos (2∗ p i ∗k / n) ,
s i n (2∗ p i ∗k / n)) ;

f o r (j =0; j <N; j +=N)
d a t a [j +k+n / 2] ∗= w;
b u t t e r f l y (d a t a [j +k] ,

d a t a [j +k+n / 2]) ;

On the CA, both loops are parallelized at once. Due to the butter-
fly pattern, vectors must be shifted (rotated) horizontally, that is a
nearest-neighbor communications among processing elements.

6.1 The horizontal butterfly
To compute horizontal butterflies, data must be aligned for sum-
mation and subtraction. Note that the chip does vector operations
element-wise on the same indices of vectors. We perform the align-
ment by left/right shifting ofn/2 positions (code fragment and Fig-
ures 3 and 4). Note that allN = 1024 processing elements can be
filled with data. Thus, for a stagen, we compute in parallelN/n
butterflies.

b u t t e r f l y 2 _ h o r i z (
v e c t o r Dre , v e c t o r Dim ,
c o n s t v e c t o r Are , c o n s t v e c t o r Aim ,
i n t n)

{
v e c t o r Lre , Lim , Rre , Rim ; / / temp
Lre = r o t a t e A l l L e f t (Are , n / 2) ;

Lim = r o t a t e A l l L e f t (Aim , n / 2) ;
Rre = r o t a t e A l l R i g h t (Are , n / 2) ;
Rim = r o t a t e A l l R i g h t (Aim , n / 2) ;
WHERE (s e l e c t F i r s t H a l f (n))

Dre = Are + Lre ;
Dim = Aim + Lim ;

ENDW
WHERE (s e l e c t S e c o n d H a l f (n))

Dre = Are − Rre ;
Dim = Aim − Rim ;

ENDW
}

FunctionselectF irstHalf(n) sets a predicate vector in the for-
mat: first group ofn/2 elements of a vectors are selected for oper-
ation, second group ofn/2 elements are not selected. The pattern
is repeated over the entire length of a vector.

Similarly, selectSecondHalf(n) selects the second half of each
group. In set notation, the two subsets are defined as

selectF irstHalf(n) = {k : (k mod n) < n/2}

selectSecondHalf(n) = {k : (k mod n) >= n/2}

over k = 0...N − 1

wheren is the stage (subproblem) size andN is the total vector
size.

index 0 1 2 3 4 5 6 7
first half 1 1 0 0 1 1 0 0

second half 0 0 1 1 0 0 1 1

Table 1: Example selection for N=8 and n=4

Now, in the longest case whenn = 1024 (the entire machine vec-
tor length) we have the identity rotateLeft (V, 512) = rotateRight
(V, 512). By exploiting this property, it is enough to execute rota-
tion in a single direction instead of both (of 512 positions), saving
512 cycles.

Step 1. - Shift vectors to left and right

A

R

L

@
@R
@

@R

@
@I

@
@I

Step 2. - Add/Subtract selected elements

A’

L

R

A

????

r r r r

r r

r r

⊕ ⊕ ⊖ ⊖

Figure 4: Horizontal butterfly calculation steps for n=4.
A=input vector, R=right rotated, L=left rotated, A’ = result vec -
tor. The entire vector is rotated, the arrows indicate only the
data that will be used later. • indicates operand for addition
or subtraction, selected using WHERE.. ENDW. The operation
of groups of 4 elements are repeated (in parallel) over entire
vector length of 1024.

k 0 . n
2
− 1 n

2
n/2 + 1 . n- 1

cos . . . 1 cos 2π
n

. cos
2π n

2
−1

n

sin . . . 0 sin 2π
n

. sin
2π n

2
−1

n

Table 2: Vectors of twiddle factors for a given n. The table is re-
peated horizontally N/n times. Values noted with (.) represent
empty positions which do not take part in multiplications

6.1.1 Twiddle multiply
For the forward transform (isign=-1) we choose the decimation-in-
frequency flow, with Sande-Gentleman style butterfly, where the
multiplication is done after the add/subtraction. For the reverse
transform (isign=+1) we used decimation-in-time, where the mul-
tiplication is done before the add/subtraction.

Only the ’right wing’ of each butterfly needs to be multiplied, so
we can use the same selection pattern as selectSecondHalf. Denote
that in the serial code, the twiddle factor depends only on k and n,
and same value used fork, k+n, k+2n, . . . For a givenn, we need

distinct values fore
i2π0

n , e
i2π1

n , . . . , e
i2π(n/2−1)

n . Note that we fill
the entire vector repeatedly, so we can compute multiple stages of
samen in parallel (Fig. 4):

f o r (i =0; i <N; ++ i)
i f ((i % n) >= n / 2)
k = (i % n) − n / 2 ;
h o r i z _ c o s [i] = cos (2∗ PI∗k / n) ;
h o r i z _ s i n [i] = s i n (2∗ PI∗k / n) ;

e l s e
h o r i z _ c o s [i] = 1 . 0 ;
h o r i z _ s i n [i] = 0 ;

Note that we store sin/cos values for isign=+1. For the forward
transform, where we need isign=-1, we used the same sin/cos ta-
bles, but multiply with complex conjugate.

By isign we denoted the sign of i which appears ine
±i2πk

n . By
convention, -1 is used for the forward FFT and +1 for the inverse
FFT.

For a stage of lengthn, we needn/2 complex twiddle factors, all
stored in two vectors. Since we havelog2 N stages, the total num-
ber of vectors required to compute FFT of sizeN is 2 log2 N . For
example, forN = 1024 we get 20 vectors, which can be loaded
once in the CA and re-used for several computations.

We see that butterfly operations in a stage of the horizontal FFT are
done in parallel. The butterfly code requires 4 vector multiplica-
tions and 6 vector additions. In addition to that, each stage requires
4 rotations byn/2 positions (real and imaginary vectors rotated
each to the left and right).

Thstage(n) = 4C∗ + 6C+ + 2nCshift (4)

The execution time of a horizontal FFT is1:

1In this analysis, we did not count the reduction of trivial multipli-
cations.

index 0 ... 511 512 .. 1023
2 vectors real, imag FFT(512) FFT(512)

Thoriz(N) =

log2N∑

r=1

(4C∗ + 6C+ + 2r+1Cshift) (5)

becomes

Thoriz(N) = (4C∗ + 6C+) log2 N + 2NCshift (6)

From this formula, it is clear that for largeN , the shift operations
becomes the dominant factor. However, having 1024 processing
elements, we are constrained forN <= 1024.

If we compute horizontal FFTs for smaller sizes than the machine
vector length, we can pack multiple FFTs in the same vector. For
example, we can compute 4 FFTs of size 256, or 2 FFTs of size
512. The average cycles per computing horizontal FFTs of sizeN ,
usingP processors(N ≤ P) becomes:

cycles/FFTh = Thoriz(N)/(1024/N) (7)

The timings of horizontal FFTs are presented in Table 8.

6.2 Horizontal permutation
In order to obtain results in the correct order, the output of the
Decimation-in-frequency FFT must be bit-reversal permuted. On
vertical mode this is trivial, since it involves data exchange between
the registers of the same processing element, however in horizontal
mode we must use rotations. We rotate the data vector in both di-
rections, and at each step we select those elements from the rotated
vectors that are aligned with the bit-reversed index of the original
vector. The code to permute a vector D of sizeN is:

v e c t o r L=D, R=D; / / temp
f o r (k =1; k<N; ++k)

L = r o t a t e A l l L e f t (L) ;
R = r o t a t e A l l R i g h t (R) ;
WHERE(s e l e c t B i t R e v (k ,N))

D = L ;
ENDW
WHERE(s e l e c t B i t R e v (−k ,N))

D = R;
ENDW

the result is placed into D vector. The function selectBitRev(k,N)
is defined as

sel[i] = (i mod n) + k >= 0 and

(i mod n) + k < n and

(i mod n) = bitrevn(p, r)

wherei = 0, . . . , 1023, r = log2 N andbitrev(p, r) returns the
integerp (r bits long) with bit order reversed.

6.3 Horizontal vs Vertical
Each method has it’s own strengths and weaknesses. In Table 3 it
is shown that for a given FFTsize <= 1024 the fastest way to
solve a single FFT is by the horizontal method. However, consid-
ering batch mode (cycles/FFT), the vertical arrangement is more

efficient. The horizontal FFT can use pre-computed twiddle factors
and load them in a number of2 log2 N vectors while the vertical
FFT uses constant scalar multiplicators.

In this table we useN as FFT size,M as the number of FFTs
being computed in parallel,R as the number of registers, andP as
the number of processing elements.

7. 2D FFT
One of the nicest properties of the multidimensional Fourier trans-
form is the separability that is, a 2D transform can be performed
using 1D transforms on each row, then over the result, 1D trans-
forms over each column. Having implemented the basic blocks
for horizontal and vertical FFTs, we compute, onM rows andN
columns:

vo id FFT2D (N,M) {
f f t _ v e r t (re , im ,M) ;
f o r (v =0; v<M; ++v)

f f t _ h o r i z (r e [v] , im [v]) ;
}

The for loop contains the horizontal transform. This is because we
use the batch feature of the vertical transform: allN columns are
computed in parallel. Adding the execution times of vertical FFT
of sizeM andM horizontal FFTs of sizeN , we get

T2D(N, M) = (2C∗ + 3C+)M log2 M +

M((4C∗ + 6C+) log2 N + 2NCsh)

ForN = M this becomes

T2D(N, N) = 3(2C∗ + 3C+)N log2 N + 2N2Csh

To perform 2D transform, twiddle transforms for both horizontal
and vertical are needed. The overall data requirements are:

• 2M data vectors (real + imaginary parts)

• 2 log2 N vectors holding horizontal twiddle factors

• four vectors for temporary usage

On the chip having 512 vectors, we can perform 2D transforms
of at most 128 rows and 1024 columns, for complex 2D arrays

Routine Vertical Horizontal

ConstrainsN < R/2, M = P N ≤ P, M = P/N

Cycles (2C∗ +3C+)N log2 N
(4C∗ +6C+) log2 N +
2NCsh

Cycles
/ FFT

(2C∗+3C+)N log2 N

P

(4C∗+6C+) log2 N+2NCsh

P/N

Data
vectors

2N 2

Twiddle
factors

N , scalar constants 2 log2 N vectors

Table 3: Comparing the vertical vs horizontal algorithm

(2 × 128 data + 14 twiddle + 4 temporary vectors, while some
vectors remains unused).

If N < 1024, the above routine actually computes1024/N two
dimensional transforms in parallel. For example, we can compute
16 complex FFTs of64 × 64 in parallel, by partitioning a data
matrix of 1024 columns and 64 rows into16 blocks of size64×64.

7.1 Computing large 1D FFT using the 2D FFT
We have not discussed yet the case of FFTs for data larger than the
machine vector length, 1024. For this, we have an ingenious solu-
tion which will be described in the following. However, it is not
a silver bullet and should be used with care, because two factors
limit the practical maximum size of FFT. First, similar to the 2D
case discussed before, the maximum 1D FFT size computable in-
core is1024 × 128 (for complex data). For even larger FFTs data
must be brought in and partial results out of core sequentially, but
this is not the scope of our work. The second issue is the numerical
accuracy: it was shown in [9,17] that the relative RMS error grows
proportional tolog N . This puts an upper bound of FFT sizes com-
puted using fixed-point 16-bit arithmetic and another bound using
floating-point 32-bit.

The principle of the Cooley-Tukey algorithm [3] is to compute a
FFT of composite sizeN = N1 × N2 in terms of FFTs of sizeN1

andN2. We can reuse the same structure of the 2D algorithm, with
a twiddle multiplication between the vertical and horizontal stages.

We have to compute 1D FFT of sizeN × M in three steps:

1. ComputeN vertical FFTs of sizeM .

2. Multiply the array with twiddle factorse
i2π(1:NM)

NM .

3. ComputeM horizontal FFTs of sizeN .

Note that the results are in transposed order.

The twiddle multiply requiresN×M twiddle factors, which means
an additional storage ofM complex vectors. These factors are dif-
ferent from the factors used by horizontal or vertical computation,
since they represent roots of unity of orderN × M instead ofN
or M . If there is no space for store allM vectors, they must be
considered "on the fly", using a recursive procedure. However, we
have to be cautious, because this technique potentially amplifies
numerical inaccuracy [17].

The composite FFT results are shown in Table 11. For example,
a FFT of size 4096 can be factored as different combinations of
horizontal (N) and vertical (M) sizes:1024 × 4, 256 × 16, ..., a
FFT of size 1024 can be computed as32 × 32 and so on (Table
8). If horizontal size is less than 1024, we can compute in parallel
1024/N transforms. When computing the performance in Table 8,
we take into account the number of parallel FFTs computed.

8. EXPERIMENTAL RESULTS
For all CA FFT computations, we use the Vector-C emulator library
to determine the following values:

C the number of cycles used in the computation,not taking into
account the cycles needed to read/write data from/to external
memory.

C/data samples the number of cycles divided by total number of
data samples that were processed.

MOps measures scaled performance. This metric was defined by
BenchFFT [6]:

MOps = M
5N log2 N

T
(8)

whereM is the number of FFTs computed,N is the FFT
size,T = measured execution time, inµsec. The MOps is
a FFT-specific measure, it is an estimate of the actual arith-
metic operations/sec. This translates to MFlops when using
32-bit floating point.

Bandwidth is theoretical memory bandwidth, in MBytes/sec, re-
quired to fill the machine with data, and store the results
back to external memory. The chip has an I/O plane capa-
ble of communicating with external memory in parallel while
the array’s processing elements are performing calculations.
This plane must sustain the following data rate:

BW [MBytes/sec] = 2NT S/time[µsec] (9)

whereNT is the total number of data samples (vector size×
number of used vectors). The 2 factor appears because each
sample is transferred twice: once as an input and once as a
result.S = sample size in bytes. For complex 16-bit numbers
S = 4 and for 32-bit numbersS = 8. The calculation is I/O
bounded if the required bandwidth given by the formula (9) is
greater than the physical transfer rate of the device’s external
memory bus.

The emulator library uses the cycle counts of vector operations
described in Table 4. For the vertical FFT, twiddle factors incor-
porated as constants for scalar× vector multiplication. Also the
optimizations to avoid trivial multiplications were done. Table 6
depicts the results.

Vector operation C+ C∗

16-bit fixed point 1 10
32-bit floating point 12 19

Table 4: Cycle counts of vector operations

A core frequency of 400 MHz is used to estimate execution time.

M N cycles
cycles/
sample

MOps
Bandwidth
[MB/sec]

4 1024 33 0.008 496484.8 397187.9
16 1024 553 0.03 237019.9 94808.0
64 1024 4997 0.07 157380.8 41968.2

Table 5: Vertical 1D FFT, with reordering. M=FFT size,
N=batch size, 16-bit fixed point

The results show that, for executing FFTs up to size 1024 the hor-
izontal mode offers the fastest solution, whereas the vertical mode
is best to compute multiple FFTs of same size. Also, in the vertical
mode offers the lowest cycles/sample ratio, since it calculates 1024
FFTs in parallel.

M N cycles
cycles/
sample

MFlops
Bandwidth
[MB/sec]

4 1024 220 0.1 74472.7 59578.2
16 1024 2510 0.2 52219.9 20888.0
64 1024 18930 0.3 41544.2 11078.5

Table 6: Vertical 1D FFT, with reordering. M=FFT size,
N=batch size, 32-bit floating point

N M cycles
cycles/
sample

MOps
Bandwidth
[MB/sec]

4 256 43 0.04 95255.8 76204.7
16 64 259 0.3 31629.3 12651.7
64 16 835 0.8 14716.2 3924.3
256 4 2851 2.8 5746.8 1149.4
1024 1 6532 6.4 3135.3 501.7

Table 7: Horizontal 1D FFT, with reordering. N=FFT size,
M=batch size, 16-bit fixed point

N M cycles
cycles/
sample

MOps
Bandwidth
[MB/sec]

4 256 142 0.1 28845.1 23076.1
16 64 562 0.5 14576.5 5830.6
64 16 1342 1.3 9156.5 2441.7
256 4 3562 3.5 4599.7 919.9
1024 1 7447 7.3 2750.1 440.0

Table 8: Horizontal 1D FFT, with reordering. N=FFT size,
M=batch size, 32-bit floating point

N
(horiz)

M
(vert)

nFFTs cycles
cycles/
sample

MFlops
Bandwidth
[MB/sec]

256 4 4 15076 3.68 5433.8 869.4
64 16 16 27014 1.65 12130.0 1940.8
32 32 32 41402 1.26 15829.2 2532.7
16 64 64 67626 1.03 19381.9 3101.1

Table 9: Computing 1D-FFT of size 1024, as different combi-
nations of N (horizontal) × M (vertical) sizes (32-bit floating-
point)

N
M 4 16 64 256 1024

2 180 612 1764 5796 13158
4 465 1329 3633 11697 26421
8 1085 2813 7421 23549 52997
16 2533 5989 15205 47461 106357
32 5809 12721 31153 95665 213457
64 13169 26993 63857 192881 428465

Table 10: Cycles of compositeN × M 1D FFT (N=horizontal,
M=vertical size), 16-bit fixed point

For an application of fixed FFT size, one can choose the most suit-
able algorithm, either horizontal, vertical or the combined. The
combined horizontal-vertical method allows in-core computing of

N
M 4 16 64 256 1024

2 538 1378 2938 7378 15148
4 1396 3076 6196 15076 30616
8 3330 6690 12930 30690 61770
16 7814 14534 27014 62534 124694
32 17978 31418 56378 127418 251738
64 40746 67626 117546 259626 508266

Table 11: Cycles of compositeN × M 1D FFT (N=horizontal,
M=vertical size), 32-bit floating point

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

22 23 24 25 26 27 28 29 210

cy
cl

es
 (

lo
g

sc
al

e)

FFT size

fft horiz c2c radix2
fft horiz c2c radix2 shuffled

fft vert c2c radix2
fft vert c2c radix2 shuffled

Figure 5: Cycle counts for 1D FFT (16-bit)

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 524288

 1.04858e+06

22 23 24 25 26 27 28 29 210

’M
F

lo
ps

’

FFT size

fft horiz c2c radix2
fft horiz c2c radix2 shuffled

fft vert c2c radix2
fft vert c2c radix2 shuffled

Figure 6: Batch MOps performance for 1D FFT (16-bit)

1D FFTs of sizes up to1024 × 128 or 2D FFTs up to 1024 (hori-
zontal)× 128 (vertical), for complex numbers.

One of the key features of the CA chip is the power dissipation:
using 5 Watts, we estimated that can compute 64 1D FFT-s of size
1024 in 67 Kcycles that’s 169µsec, at 400 MHz. Every second,
the chip can compute 378552 FFTs of size 1024. For this setup,
using the BenchFFT metric, we measured 19GFlops, that is 3.8
GFlops/Watt.

For comparison, we performed a test on NVIDIA’s GTX 285, us-
ing CUFFTv3, and the same BenchFFT benchmark. We obtained
around 340GFlops at 204 Watts, using a plan to compute 16K FFTs

of size 1024, with CUFFT library functions:

cufftPlan1d(1024,CUFFT_C2C,16384);
cufftExecC2C(plan,data,data,CUFFT_FORWARD);

The comparison must be treated very carefully, since the general-
purpose graphical processor is a chip of different category and com-
plexity (Table 12).

Parameter CA BA1024 NVIDIA GTX 285

Freq (MHz) 400 1476 (shader clock)
Power (Watt) 5 204
Area (mm2) 50 470
Technology 65 nm 55 nm
Bandwidth
(GBytes/sec)

6.4 160

Bus width 128 bit 512 (32x16) bit
Processing Units 1024 240:80:32
Year 2009 2009 January
Transistors 120 Million 1.4 Billion

Table 12: Characteristics of CA and NVIDIA GTX 285. Infor-
mation retrieved from [16]

9. CONCLUSIONS
The CA is not a direct competitor to existent GPUs, since it is tar-
geting different application areas. We are at the debut of energy-
conscious computing, with a great deal of the industry’s attention
being given to the introduction and use of power-management mech-
anisms and controls in individual hardware components. There is
some evidence [2] that the amount of energy consumed by mobile
and desktop computing equipment is of roughly the same magni-
tude as that used by servers in data centers, although. Considering
its low power dissipation, the CA is an excellent solution for low
cost mobile computing equipment, including sensors.

We choosed the NVIDIA GPU comparison because this is a stan-
dard circuit. Certainly, a one-to-one comparison is almost impossi-
ble. In the future, we plan to compare the CA FFT with implemen-
tations on other parallel architectures.

10. REFERENCES
[1] R. Andonie and M. Maliţa. The Connex ArrayTM as a neural

network accelerator. InCI ’07: Proceedings of the Third
IASTED International Conference on Computational
Intelligence, pages 163–167, Anaheim, CA, USA, 2007.
ACTA Press.

[2] D. J. Brown and C. Reams. Toward energy-efficient
computing.Queue, 8(2):30–43, 2010.

[3] J. W. Cooley and J. W. Tukey. An algorithm for the machine
calculation of complex fourier series.Mathematics of
Computation, 19(90):297–301, 1965.

[4] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E.
Santos, K. E. Schauser, R. Subramonian, and T. von Eicken.
Logp: a practical model of parallel computation.Commun.
ACM, 39(11):78–85, 1996.

[5] A. G. Eleanor Chu.Inside the FFT Black Box: Serial and
Parallel Fast Fourier Transform Algorithms (Computational
Mathematics). CRC Press, 1999.

[6] M. Frigo and S. G. Johnson. BenchFFT.
http://www.fftw.org/benchfft/.

[7] G. M. Gentleman and G. Sande. Fast Fourier transforms for
Fun and Profit. In1966 Fall Joint Computer Conference,
volume 29, pages 563–578. AFIPS Proc, 1966.

[8] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and
J. Manferdelli. High performance discrete fourier transforms
on graphics processors. InSC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12.
IEEE Press, 2008.

[9] P. Kabal and B. Sayar. Performance of fixed-point FFT’s:
Rounding and scaling considersations.IEEE ICASSP,
1:221–224, 1986.

[10] M. Maliţa, G. Ştefan, and D. Thiébaut. Not multi-, but
many-core: designing integral parallel architectures for
embedded computation.SIGARCH Comput. Archit. News,
35(5):32–38, 2007.

[11] M. Malita. Vector-C library.
http://www.anselm.edu/homepage/mmalita/
ResearchS07/WebsiteS07/.

[12] M. Malita and G. Stefan. Integral parallel architecture &
berkeley’s motifs. InASAP ’09: Proceedings of the 2009
20th IEEE International Conference on Application-specific
Systems, Architectures and Processors, pages 191–194. IEEE
Computer Society, 2009.

[13] K. Moreland and E. Angel. The FFT on a GPU. InHWWS
’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 112–119, 2003.

[14] G. Ştefan. The CA1024: SoC with integral parallel
architecture for HDTV processing. In4th International
System-on-Chip (SoC) Conference & Exhibit, November 1-2,
Radisson Hotel Newport Beach, California, 2006.

[15] G. Ştefan, A. Sheel, B. Mitu, T. Thomson, and D. Tomescu.
The CA1024: a fully programmable system-on-chip for
cost-effective HDTV media processing. InHot Chips: A
Symposium on High Performance Chips, August 20-22,
Memorial Auditorium, Stanford University, 2006.

[16] NVIDIA Corporation. NVidia GeForce GTX 285.
http://www.nvidia.com/object/product_
geforce_gtx_285_us.html.

[17] J. C. Schatzman. Accuracy of The Discrete Fourier
Transform And The Fast Fourier Transform.SIAM J. Sci.
Comput, 17:1150–1166, 1996.

[18] D. Thiebaut, G. Ştefan, and M. Maliţa. DNA search and the
Connex technology. InProceedings of the International
Multi-Conference on Computing in the Global Information
Technology (ICCGI’06), Bucharest, Romania, 2006.

[19] D. Thiebaut and M. Maliţa. Fast polynomial computation on
Connex Array. Technical Report 303, Smith College,
November 2006.

[20] D. Thiebaut and M. Maliţa. Real-time packet filtering with
the Connex Array. InProceedings of the International
Conference on Complex Systems, pages 501–506, Boston,
MA, 2006.

[21] M. Thiebaut and G. Ştefan. Memory engine for the
inspection and manipulation of data. U.S. Patent No.
6,760,821, July 2004.

[22] M. Thiebaut and G. Ştefan. Ziv-Lempel compression with
the Connex Engine. Tech. Rep. 077, Dept. Computer
Science, Smith College, Northampton, MA, 01063, January
2002.

[23] M. Thiebaut and G. Ştefan. Local alignment of DNA
sequences with the Connex Engine. InThe First Workshop
on Algorithms in BioInformatics WABI 2001, BRICS Univ.
of Aarus, Denmark, August 2001.

[24] V. Volkov and B. Kazian. Fitting FFT onto the G80
architecture. UC Berkeley CS258 Project Report, May 2008.

