
Maximizing the SIMD Behavior in SPMD Engines
Cǎlin Bı̂ra, Liviu Gugu, Mihaela Maliţa, Gheorghe M. Ştefan

Abstract—Almost all one-chip parallel architectures are un-
able to reach a maximum degree of parallelism in performing
real applications, mainly due to their weak or too costly
support for interconnections between the computational cells.
Minimizing or “hiding” the inter-cell communication, totally or
partially, is the way we use to improve the degree of parallelism.
Few typical algorithms – AES encryption, FFT, Batcher’s
mergesort – are adapted for this purpose. Our approach is
supported by a fine grain cellular structure – implemented
as the Connex system – featured with enough big local data
memory. A high level architectural description for the SPMD
system Connex, and a simulator in SCHEME are used to write
and evaluate our approach.

Index Terms—parallel computing, parallel algorithms, AES,
FFT, Batcher’s sort.

I. INTRODUCTION

FLYNN’S taxonomy makes the life difficult for now
a days parallel machine designers. A really efficient

architecture always falls in the interval between categories.
It is the case for one of the most used parallel style of
computation: SPMD (Single-Program-Multiple-Data). Some
people consider it as a generalized SIMD, other people claim
it is a subcategory of MIMD. In this paper, we consider the
cellular system Connex, designed as a generalized SIMD able
to perform predicated SPMD executions. It is implemented
as a linear array, of small and simple cells1.

For the purpose of our approach we defined the functional
high level architectural description Connex High Level Ar-
chitecture (CHLA), described in SCHEME. CHLA allows
different low level organizations, each having its own ISA.
CHLA is also justified by a specific feature of the Connex
approach: between the register level and the main memory
level a large vector buffer is considered. Thus, the Connex
architecture is an actual update of SWAR (SIMD Within
A Register) architecture [4]. Let us call it SWAM – SIMD
Within A Memory.

A many-cell organization is the premise for accelerating
data intense computations, but such an organization does not
guarantee the performance without a special care for how
data is exchanged between cells in the array or between
the array and the external memory. For example, a many-
cell engine is able to solve very efficiently the problem of
performing a big number of arithmetic operations requested
by the FFT algorithm, but how the intermediary results

Manuscript received July 23, 2013.
Cǎlin Bı̂ra is with the Politehnica University of Bucharest, Bucharest,

Romania, e-amil: bcalin1984@yahoo.com.
Liviu Gugu is with On Semiconductor, Bucharest, Romania, e-amil:

liviu_02051987@yahoo.com.
Mihaela Maliţa is with the Saint Anselm College, Manchester, NH, USA,

e-mail: mmalita@anselm.edu.
Gheorghe M. Ştefan is with the Politehnica University of Bucharest,

Bucharest, Romania, e-amil: gstefan@arh.pub.ro.
1A version, called ConnexArrayTM , designed and implemented in

silicon for HDTV applications, is described in [8], [9].

are exchanged between cells, according to the “butterfly
connections”, is a non-trivial problem.

More generally, when SPMD is supported by an improved
SIMD organization, efficiency is obtained only maximizing
the pure SIMD execution. The goal of this paper is to provide
simple tricks for hiding the costly inter-cell data exchange
operations or inefficient predicated executions.

Fig. 1. BA1024 chip

The CHLA is developed and evaluated based on a previous
actual implementations of the one chip parallel engine – the
1024-cell Connex system BA1024 (see Figure 1) – designed
for HDTV applications [10] [8] [9] [6].

II. Connex HIGH LEVEL ARCHITECTURE

The high level architectural view of the Connex p-cell
system is expressed and simulated using a functional lan-
guage (we selected a restricted version of SCHEME). The
user’s image of the system consists of two arrays defining
two distinct memory domains:

• S domain: an array of scalars S =< s0, s1, . . . , sn−1 >,
the external memory

• V domain: an array of vectors as the internal vector
buffer V =< v0, v1, . . . , vm−1, ix >, a two-dimension
array containing m p-scalar horizontal vectors dis-
tributed along the linear array of cells:

v0 =< x00, . . . , x0 p−1 >
v1 =< x10, . . . , x1 p−1 >

. . .
vm−1 =< xm−1 0, . . . , xm−1 p−1 >

and the index vector ix =< 0, 1, ..., p− 1 >.

Each “column” in the array V , wi =< x0i, . . . , xm−1 i >,
is a vertical vector of scalars associated to cell i.

CHLA hides to the user the vector register level and
the scalar register level operations. Three independent sub-
architectures are defined in CHLA:

• data processing sub-architecture: functions defined on
V and S returning values in V or S

• data transfer sub-architecture: functions used to transfer
data between V and S

• inter-cell communication sub-architecture: functions
used to perform specific data transfers in V .

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

A. Data processing sub-architecture

Data processing sub-architecture defines functions per-
formed on vectors, scalars or specific scalar-vector combi-
nations. The main functions are:

• (ResetActive): activates all the components of the
vectors involved in the operation that will be executed

• (Where x): keep active, from the active vector com-
ponents, only the vector components where the Boolean
vector x returns 1

• (ElseWhere): keep active only the vector compo-
nents where the Boolean vector x returned 0 in the
previously executed Where function

• (EndWhere): restore the configuration of active com-
ponents before the execution of the previous Where

• (Test x y): where Test ∈ {Lt, Gt, ...}, and
x and y are combinations of scalar and/or vector
operands; returns a Boolean vector

• (SetVector x y): where x is the vector’s address
in V , and y is the vector’s content

• (SetStream x y): where x is the start address in
S and y is the stream’s content

• (UnaryOp x): where UnaryOp ∈ {Inc, Dec,
Abs, ...}, and x is the scalar or vector operand

• (BinaryOp x y): where BinaryOp ∈ {Add,
Sub, Mult, ...}, and x, y are any combination
of scalar and/or vector operands

• (RedOp x): where RedOp ∈ {RedAdd, RedMax,
RedOr, ...} are the reduction operations, x is the
vector’s content, while RedOp returns a scalar

• (Search x y): search the scalar x in the active cells
of the vector y; only the cells where the vector y has
the value x remain active

• (SearchCond x y): condition search the scalar x
in the vector y; the search operation is performed only
in cells preceded by an active cell; only the cells where
the match is accomplished remain activated

• (Insert x y): x is inserted in the active part of
vector y in the position of the first active position

• (Delete x): the first scalar from the active part of
the vector x is deleted.

• . . .

B. Data transfer sub-architecture

The data transfer sub-architecture defines the transfer
functions between the two memory domains, S and V . The
main functions are:

• (StoreVector many vAddr sAddr): stores
many vectors from V , starting at the address vAddr,
in S starting with the address sAddr

• (LoadVector many vAddr sAddr): loads
many vectors in V , starting at the address vAddr,
from S starting with the address sAddr

• (StoreVectorStrided many vAddr sAddr
burst stride): performs StoreVector in bursts
of size burst strided in S with stride stride

• (LoadVectorStrided many vAddr sAddr
burst stride): performs LoadVector in bursts
of size burst strided in S with stride stride

• . . .

The previous functions are performed sharing with the
other two sub-architectures the internal vector memory V .
These functions compete very little with the main user of the
shared resource – the processing sub-architecture. Indeed, the
function (LoadVector vAddr sAddr), for example,
reads in one clock cycle an entire vector from V and requires
ttrans ∈ O(p) cycles for the whole transfer.

C. Inter-cell communication sub-architecture

The inter-cell communication sub-architecture supports
data exchanges between vertical vectors in V . The main
functions are:

• (ShiftOp x y): with ShiftOp ∈ {ShiftLeft,
ShiftRight, ...}, x is the vector address in V ,
and y is the size of the shift operation; the operation is
executed in time belonging to O(y)

• (Transpose x y): transpose the square matrices of
y × y elements from V , stored in V starting at the
address x, in y vectors

• (Permute x y): permutes the vector x according to
the vector of indexes y

• . . .

These functions use more intense the shared resource V .
A shift operation, for example, accesses two times the vector
memory V . For small shifts the share of the vector memory
use could be important. In order to be able to optimize
the execution, the access to the vector memory V could be
dynamically prioritized.

D. Parallel execution in the three sub-architectures
The previously defined sub-architectures request a special

function which allow the parallel execution of up to three
threads of program: data processing, data transfer, and inter-
cell communication thread. The function ParallelEval
has two or three arguments, as follows:

(ParallelEval Prog1 Prog2)
(ParallelEval Prog1 Prog2 Prog3)

where, for example, Prog1 is a data processing program
and Prog2 is a data transfer program, or an inter-cell
communication program.

The two or the three program threads interact by flags.
The following functions are defined to use the flags:

(define (Set f)(define f true))
(define (Reset f)(define f false))
(define (Wait cond)(do()(cond)))

III. ALGORITHMS WITH MAXIMUM DEGREE OF
PARALLELISM

The working hypothesis is that an efficiently implemented
and transparently executed matrix transpose operation pro-
vides the main tool to maximize the degree of parallel
execution in our architecture. The appropriate use of the
two dimensions of the vector memory V allows us to avoid
the main limitation of our architecture: the simplicity of
the interconnections between cells. In-vector operations are
inefficient when applied on horizontal vectors, while the
same operations applied on vertical vectors are executed
very efficient. Indeed, adding xij with xik is a very costly
operation if |j − k| is big, because the communication
between cell j and cell k is performed by shift operations in

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

time O(|j − k|), while adding xji with xki is performed in
constant time because both operands are stored in the local
memory of the same cell. The solution: a horizontal vector
or sub-vector is transformed in a vertical vector or sub-vector
by the transpose operation.

In this section three typical algorithms are investigated.
The first one, AES encryption, uses the translation from
horizontal vectors to vertical ones, performed through a
transpose operation, only at the beginning and at the end
of the process. The second function, FFT, calls the transpose
in the middle of the process and at the end, while in the last
example, Batcher’s sort, the transpose operation is performed
tightly interleaved with the sorting operations.

The algorithms designed for the previous three functions
are evaluated on programs tested on Connex Simulator [7]
written in Dr.Racket, a version of the SCHEME language.

A. AES

The AES algorithm is performed on fix sized 128-bit
blocks organized in 16 8-bit words. Each block is stored
as a stream of 4 32-bit scalars in the external memory S.
The algorithm on a p-cell engine is executed in three steps:

• load & transpose blocks which means:
– p blocks of data to be encrypted are loaded from

S memory domain into V memory domain as
four successive vectors, each vector containing p/4
successive blocks

– on the loaded data perform (Transpose vAddr
4), so as the p horizontal sub-vectors, p/4 in each
vector, become p vertical sub-vectors, one per cell

and is performed by the function:
(define (LoadTrans vAddr sAddr)

(LoadVector 4 vAddr sAddr)
(Transpose vAddr 4)

)

• encrypt blocks, working in a pure SIMD mode, per-
forms the AES encryption of p blocks with a maximum
degree of parallelism, because no inter-cell commu-
nication is required; the function defined as (AES
sAddr), which computes sequentially AES on one
block from S starting at sAddr, will be performed in
parallel as

(AES vAddr)

on p blocks in V starting from vAddr
• transpose & store blocks which means:

– re-organize the result as p horizontal sub-vectors
– store back in the external memory the result as a

stream of 4-element sub-vectors
performed by the function:

(define (TransStore vAddr sAddr)
(Transpose vAddr 4)
(StoreVector 4 vAddr sAddr)

)

The computation performed in the second step – encrypt
blocks – is accelerated p times.

But, the first step – load blocks – and the last step – store
blocks – add, because of the transpose operations, a certain
overload. The overload is avoided making it transparent
because load, store and transpose operations do not belong to
the processing sub-architecture, thus they can be performed
in a sort of multi-threaded execution associated to two

distinct buffers organized in V . Let us define the vector
buffer vb1 starting at the address vAddr1 in V , and the
vector buffer vb2 starting at the address vAddr2 in V . We
define also the addresses sAddr1, ... sAddr4, in S,
where super-blocks of p successive blocks start. Two parallel
executed routines – TRANS_AES and ENC_AES – can be
now defined using two flags for synchronizing them. The
two-thread program performing the AES encryption for 4×p
128-bit blocks is the following:

(define (AES)
(Reset f1)(Reset f2)
(ParallelEval(TRAN_AES)(ENC_AES))

)

The two threads executed in parallel are defined as follows:
(define (TRAN_AES) |(define (ENC_AES)
(LoadTrans vAddr1 sAddr1) | (Wait f1)
(Set f1) | (AES vAddr1)
(LoadTrans vAddr2 sAddr2) | (Reset f1)
(Set f2)(Wait(not f1)) | (Wait f2)
(TransStore vAddr1 sAddr1) | (AES vAddr2)
(LoadTrans vAddr1 sAddr3) | (Reset f2)
(Set f1)(Wait(not f2)) | (Wait f1)
(TransStore vAddr2 sAddr2) | (AES vAddr1)
(LoadTrans vAddr2 sAddr4) | (Reset f1)
(Set f2)(Wait(not f1)) | (Wait f2)
(TransStore vAddr1 sAddr3) | (AES vAddr2)
(Wait(not f2)) | (Reset f2)
(TransStore vAddr2 sAddr4) |)
)

Because the sequence of operations

(LoadTrans vAddr sAddr)(Set f)
(Wait(not f))(TransStore vAddr sAddr)

is executed faster than the sequence of operations

(Wait f)(AES vAddr)(Reset f)

the transfer & transpose operations are transparent,
and the execution time is provided only by the execution of
the (AES vAddr) operations.

The case of the AES algorithm is a simple one, because
the process of rearranging data in the vector memory V is
done in constant and short time. (In the next two examples
more complex situations must be solved.) We conclude that,
for this simple case, the parallel program works on vectors
like a sequential program on scalars accessed from a local
buffer.

Time, area and power performances for the AES encryp-
tion: In order to compare CHLA architecture with a standard
sequential architecture we will consider a Connex system
implementation, with 64 16-bit cells each having 0.5 KB
local static memory – Connex64 – which has the area and
the power consumption of a Cortex A9 ARM core when
both are synthesized to run in the same technology and at
the same frequency.

The direct implementation of the AES algorithm on
Cortex A9 provided 173 cycle/byte performance. Because,
TRAN AES function works in less than 1/4 cycles than the
function ENC AES, the overall execution time is the time
for ENC AES function. It is measured to 2.1 cycle/byte on
Connex64. Results the use of area & power is 173/2.1 =
82 times higher on Connex64 than on Cortex A9. The
improvement is more than 64x on a 64-cell engine, because
on the Connex Architecture the transfer and transpose opera-
tions can be performed transparently, and, fortunately, for the
AES algorithm these operations are performed transparently,
because the size of each block is small and constant.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

B. FFT

Any parallel implementation for the FFT algorithm dis-
tributes very efficiently the arithmetic operations over the
computational cells, but is confronted with the “butterfly
interconnections” between the cells. The difficulties are max-
imal because of the inter-cell communication time, which is
determined by the way the shift operations are executed.

Let us take, for example, a 16-cell engine and a 16-sample
FFT. The 16 samples are distributed, one in each cell as
the horizontal vector V1 =< x0, x1, . . . x15 >. In the first
stage, each cell performs an addition/subtract between the
local component of the vector, xi and the component received
from the cell i + 8 or i − 8. Then, in the last 8 cells the
result is multiplied with the twiddle number wi = real(wi)+
j × im(wi). The second stage is similar, only the spatial
distance in the linear array of cells is smaller. In the third
stage the data must move only 2 cells, while in the last stage,
the numbers to be added/subtracted are located in adjacent
cells. It is obvious that, for a big number of samples, n, the
time is dominated by the data move in the array. Indeed, the
time involved in performing the arithmetic operations is in
O(log n) (with 75% degree of parallelism), while the time
for inter-cell data movement is in O(n). From O(n log n), for
the sequential execution, we are now at O(n), obtaining an
O(log n) acceleration with p cells. Maybe we can do more.

We will continue to minimize the execution time and
the degree of parallelism in two steps. First, the arithmetic
computation is segregated from the data move, building a
“compact” algorithmic section for data move (see also [5]), in
order to obtain 100% degree of parallelism, then computation
and data move will be performed transparent to each other.

1) Segregating computation by data move: The limitation
to be removed is due to the fact that we process horizontal
vectors or sub-vectors. If the horizontal vectors or sub-
vectors can be translated into vertical sub-vectors, then
the problem should have a solution similar to the AES
encryption. Unlike AES encryption, where the blocks are
fix sized, the number of samples in FFT computation can
have any size. Thus, for a small n an AES-like solution
works, providing a p times acceleration. But, unfortunately,
a solution for big n must be provided also.

If one vertical sub-vector is not big enough to include
all the n samples, more than one sub-vectors are used,
organizing the samples in a two-dimension array of r rows
and c columns. In the vector memory V in r vectors are
loaded the samples for p/c FFTs, having for each FFT c
vertical sub-vectors stored in c successive cells. The resulting
algorithm has three stages:

• compute in parallel p r-sample FFTs, in the time for
one r-sample FFT, with 100% degree of parallelism

• make 2×(r/c)×p/c (Transpose vAddr c) oper-
ations, in the time for 2×(r/c) (Transpose vAddr
c) operations

• compute r/c × p c-sample FFTs, in the time for r/c
c-sample FFTs, with 100% degree of parallelism.

Going back to our example of 16-sample FFT, instead
of performing 1 FFT by distributing one vector of samples
along the 16 cells of the parallel engine, we will compute,
for example, 4 16-sample FFTs organizing the input data in
r × c = 4× 4 arrays. The 4 sequences of samples are:

< a0, a1, . . . a15 >
< b0, b1, . . . b15 >
< c0, c1, . . . c15 >
< d0, d1, . . . d15 >

each loaded in the 16-cell engine, Connex16, as two-
dimension 4× 4 arrays in the following 4 vectors:
V0 = < a0, a1, a2, a3, b0, b1, . . . d0, d1 d2, d3 >
V1 = < a4, a5, a6, a7, b4, b5, . . . d4, d5 d6, d7 >
V2 = < a8, a9, a10, a11, b8, b9, . . . d8, d9 d10, d11 >
V3 = < a12, a13, a14, a15, b12, b13, . . . d12, d13d14, d15 >
Let be:

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

the generic array used to describe the algorithm, where, the
symbol x stands for a, b, c or d. Any operation applied to
x5, for example, applies simultaneously to a5, b5, c5 and d5.

The previous 3-stage algorithm for p/c (r × c)-sample
FFTs, translates in three functions, as follows:

• (FFT1): compute 16 4-sample FFTs on the vertical
real vectors < a0, a4, a8, a12 >, ..., < d3, d7, d11, d15 >
stored in v1, v2, v3, v4; this stage provides the
result in v0, v1, v2, v3, for the real part, and v4,
v5, v6, v7, for the imaginary part

• (TRANSPFFT): the 4 4×4 arrays stored in v0, v1,
v2, v3 (containing the real components) and the 4
4× 4 arrays stored in v4, v5, v6, v7 (containing
the imaginary components) are transposed

• (FFT2): continue by the 16 4-sample FFTs on the
vertical complex vectors stored in v0, ... v7.

Thus, the program for computing 16-sample FFT is (see for
details [7]):

(define(FFT16)
(FFT1)
(TRANSPFFT)
(FFT2)

)

The functions FFT1 and FFT2 are executed with maxi-
mum degree of parallelism using the engine with maximum
efficiency. On the other hand the function TRANSPFFT is
defined using transpose operations (Transpose x y),
which are performed, unfortunately, in O(y2) time, while
the functions FFT1 and FFT2 are performed in O(y log y).
Therefore, there is a y0 so as for y > y0 the computation
time of FFTn, where n = y2, is dominated by the execution
time of the function TRANSPFFT.

2) Performing transparently the computation and the data
move: Because the Connex system is featured with a rela-
tively large memory at the level of each cell, a double buffer
approach will help to hide the transpose operations for a
reasonable big n, while for bigger n > n0 the computation
time will remain to be determined by the transpose time.

The computation is performed on two sets of vectors.
Revisiting the previous example, besides the initial set of 8
vectors VA = {v0, ... v7}, another set of 8 vectors, VB
= {v16, ... v23} is considered in order to interleave
two sets of FFTs. The algorithm will run as two threads
synchronized with two flags: f1, f2. The functions work-
ing on VA are suffixed with A, while the functions working
on VB are suffixed with B. The two-thread program is:

(define (FFT2T) ; FFT on 2 threads

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

(Reset f1)(Reset f2)
(ParallelEval(COMPUTE_FFT)(TRANPOSE_FFT))

)

where the two threads are defined as follows:

(define(COMPUTE_FFT) | (define(TRANPOSE_FFT)
(FFT1A)(Set f1) | (Wait f1)(TRANSPFFTA)
(FFT1B)(Set f2) | (Reset f1)
(Wait (not f1))(FFT2A)| (Wait f2)(TRANSPFFTB)
(Wait (not f2))(FFT2B)| (Reset f2)

) |)

3) Time, area and power performances for FFT:
Let be tTRANSP the execution time for (TRANSPFFTA)
or (TRANSPFFTB), and tCOMP the execution time for
(FFT1A) or (FFT2A) or (FFT1B) or (FFT2B). As long as

tCOMP ≥ tTRANSP

the running time for computing p/c (r× c)-sample FFTs is:

tFFT = 2× tCOMP

and the parallel acceleration is in O(p).
But, there is a n = n0 starting from which tTRANSP >

tCOMP , because tTRANSP ∈ O(n), while tCOMP ∈ O(r×
log r), and the worst case, when n0 is minimal, is for r = c =√
n, because tCOMP ∈ O(

√
n × log n). Then, the running

time for computing p/
√
n n-sample FFTs is:

tFFT = tCOMP + tTRANSP

and the parallel acceleration is in O(p × log n√
n
), because

n-sample FFTs are computed in parallel p/
√
n in time

belonging to O(n) instead of O(n log n). We can keep us
away from the worst case by increasing the value of m (the
size of the vector space), thus allowing big values for the
ratio r/c.

The threshold value for n, n0, depends also on the actual
execution time for the arithmetic functions performed in
the cells. For small and simple cells the execution time for
integer multiplication is around 10 cycles, for example. But,
in this case the value for n0 is higher and on the same silicon
area more cells can be accommodated. The optimal value for
an actual design will be established taking into account the
parameters imposed by the application domain.

Because for computing FFT 32-bit computation is re-
quested, a 32 32-bit cell engine, called Connex32, is used
to evaluate the performance. It has the size and the power
consumption of a Cortex A9 core. If n < n0, then a 18.8x
improvement in area and power use is obtained for FFT
execution. The Connex32 engine does not have hardware
multipliers in its cell. Therefore, the multiplication is per-
formed in 10 cycles, resulting less than 32x improvement.

C. The Batcher sort

The Batcher sorter [1] has a twice recursive definition.
Loading the sequence to be sorted, < x0, x1, . . . x15 >, as a
horizontal vector, the execution time will be dominated by
the shift operations requested to gather, in the appropriate
cells, the pairs to be sorted. As in the previous two examples,
AES and FFT, the vertical dimension of the CHLA must be
smartly involved.

1) Using transpose to rearrange data for pure SIMD
computation: If the sequences of numbers to be sorted are
short enough, then each cell will be loaded with one sequence
and the sequential algorithm is applied in parallel on p
sequences. But in real applications we must consider also
the less friendly case when the length of the sequence is
too big to be loaded in one cell. Therefore, the case of a
two-dimension array loaded in more than one cell must be
considered. Let us consider that each n length sequence is
loaded as a r × c array, as r-length vertical vectors in c
successive cells. Then, the first (log2r)(1 + log2r)/2 stages
of the sorting algorithm are performed in a pure SIMD mode
on p r-length sequences of numbers. For the next stages
appropriate transpose operations must be performed, in order
to rearrange each sequence of numbers in vertical sub-vectors
allowing pure SIMD operations.

Let us consider again an example with a 16-cell engine
processing the following 8 16-scalar sequences:

< a0, a1, . . . a15 >
< b0, b1, . . . b15 >

. . .
< h0, h1, . . . h15 >

each loaded in the 16-cell engine as a two-dimension 8× 2
arrays in the following 8 vectors:

V0 = < a0, a8, b0, b8, . . . h0, h8 >
V1 = < a1, a9, b1, b9, . . . h1, h9 >
. . .
V7 = < a7, a15, b7, b15, . . . h7, h15 >

Thus, eight sequences are sorted in parallel. Let be

x0 x8
x1 x9
x2 x10
x3 x11
x4 x12
x5 x13
x6 x14
x7 x15

the generic sequence, organized as a 8× 2 array, considered
for explaining the algorithm. Such a data structure is loaded
in each group of 2 cells starting with cell0, cell1 and ending
with cell14, cell15. The sub-sequence x0 . . . x7 belongs to the
vertical vector w0, the sub-sequence x8 . . . x15 belongs to the
vertical vector w1, and so on.

For n = 16, the algorithm has 10 stages. The first 6 stages
involve variables contained in the same vertical vectors. For
the next stages, appropriate transpose operations will be
performed. Thus, in each of the following stages the 8 × 2
arrays are reconfigured by transpose operations, if needed,
and the elementary sorting operations, S, are performed in
each activated cells. The program is (see for details [7]):

(define(SORT)
(Sort1to6) ; stages 1 to 6 of sort
(Trans0to6) ; 4 2x2 transpose
(Sort7to9) ; stages 7 to 9 of sort
(Trans0to6) ; back to the initial form
(Sort10first) ; first sorts of stage 10
(Trans0) ; one 2x2 transpose
(Sort10last) ; last sort of stage 10
(Trans0) ; back to the initial form

)

For this algorithm also, as for the FFT algorithm, a big r
is requested for minimizing the execution time. For big c the

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

weight of the transpose operation increases. Fortunately, for
the same size, m, of the vector memory V , the value for r
is bigger than the value used in the FFT algorithm, because
for performing the sorting operation no extra space is needed
than the space used to load the sorted sequence.

Because for big c the weight of the transpose operation
increases, we must provide a solution for hiding as much as
possible the effect of the transpose operation.

2) Interleaving Sort with Trans: For interleaving
Sort with Trans, the working space in V is divided in two
sub-spaces, VA and VB, in order to accept two sets of streams
to be sorted. The functions working on VA are suffixed with
A, while the functions working on VB are suffixed with B.
One thread performs the function COMPUTE_SORT, while
the other performs the function TRANSPOSE_SORT. The
two threads are synchronized using the flags f1 and f2.
The two functions are defined as follows:

(define(COMPUTE_SORT) |(define(TRANSPOSE_SORT)
(Wait(not f1)) | (Wait f1)(Trans0to6A)
(Sort1to6A)(Set f1) | (Reset f1)
(Wait(not f2)) | (Wait f2)(Trans0to6B)
(Sort1to6B)(Set f2) | (Reset f2)
(Wait(not f1)) | (Wait f1)(Trans0to6A)
(Sort7to9A)(Set f1) | (Reset f1)
(Wait(not f2)) | (Wait f2)(Trans0to6B)
(Sort7to9B)(Set f2) | (Reset f2)
(Wait(not f1)) | (Wait f1)(Trans0A)
(Sort10firstA)(Set f1)| (Reset f1)
(Wait(not f2)) | (Wait f2)(Trans0B)
(Sort10firstB)(Set f2)| (Reset f2)
(Wait(not f1)) | (Wait f1)(Trans0A)
(Sort10lastA)(Set f1) | (Reset f1)
(Wait(not f2)) | (Wait f2)(Trans0B)
(Sort10lastB)(Set f2) | (Reset f2)

) |)

and the resulting program is:

(define (SORT2T); sort on two threads
(Reset f1)(Reset f2)
(ParallelEval(COMPUTE_SORT)(TRANSPOSE_SORT))

3) Time, area and power performances for Batcher sort:
The previously described algorithm for parallel sort of 64/2
16-number sequences provides an acceleration of 84x on our
Connex64 compared with ARM’s Cortex A9. But, in this case
the computing time is provided almost exclusively by the run
of the COMPUTE SORT thread. For bigger n and another
ratio r/c, the weight of TRANSPOSE SORT is expected
to increase. It is hard to predict how will evolve the play
between Sort and Trans for various n = r × c. But, for
the worst case, the (Trans v i) operations will dominate
the (Sort v w) operations. Then, our estimation is that
for an hypothetical limit case (when instead of (Sort v
w) operations, (Trans v i) operations are counted) the
acceleration is 70x. Therefore, a conservative estimate is a
linear acceleration of sorting using the Connex technology.

IV. CONCLUDING REMARKS

The three sub-architectures of CHLA – data processing
sub-architecture, data transfer sub-architecture and inter-cell
communication sub-architecture – provide a programming
and execution environment well fitted for hiding the limits
introduced by the simplest interconnection network used to
organize our cellular engine.

An efficiently implemented transpose operation, which
is executed transparently to the operations of the data sub-

architecture, allows the pure SIMD operations to dominate
the execution time for many real applications.

The investigated algorithms – AES, FFT, Batcher’s sort
– proved to be accelerated at least linearly in our architecture
as long as there is enough space in the V domain.

Big sized local memory in each cell is the first require-
ment for designing a multi-buffer computation which allows
to hide both, the data transfer between V domain and S
domain, and the inter-cell communication in V domain.

SPMD is general, but SIMD is efficient. A SIMD
organization able to perform predicated execution becomes a
fairly efficient SPMD system, but, the degree of parallelism
is damaged. In order to maintain the degree of parallelism
as high as possible, the weight of pure SIMD operations
are increased by the play, between horizontal and vertical
vectors, based on a transparent transpose operation.

Playing with horizontal and vertical vectors by using
transpose operation, could open a wide algorithmic research
domain. Our SWAM architecture stimulates the transpose
game in order to maximize the pure SIMD behavior.

Using a functional language for simulating and program-
ming an engine working as accelerator is a good solution.
Data intense computations have a pronounced functional as-
pect which is efficiently expressed by a functional language,
in our case the SCHEME programming language. In [6] we
already have emphasized the advantages of defining parallel
architectures by using Backus’s FP forms.

ACKNOWLEDGMENT

The authors got a lot of support from the main technical
contributors to the development of the ConnexArrayTM

technology, the BA1024 chip, the associated language, and
its first application: E. Altieri, F. Ho, B. Mı̂ţu, M. Stoian, D.
Thiebaut, T. Thomson, D. Tomescu.

REFERENCES

[1] Kenneth E. Batcher: “Sorting networks and their applications”, in Proc.
AFIPS Spring Joint Computer Conference, vol. 32, 1968.

[2] Eleanor Chu, Alan George: Inside the FFT Black Box: Serial and
Parallel Fast Fourier Transform Algorithms. CRC Press, 2000.

[3] James W. Cooley and John W. Tukey. “An algorithm for the machine
calculation of complex fourier series”. Mathematics of Computation,
19(90):297301, 1965.

[4] Randall J. Fisher, All J. Fisher, Henry G. Dietz: “Compiling For
SIMD Within A Register” in 11th Annual Workshop on Languages
and Compilers for Parallel Computing, 1998.

[5] Istvan Lorentz, Mihaela Maliţa, Rǎzvan Andonie: “Fitting FFT onto an
Energy Efficient Massively Parallel Architecture”, in The Second Inter-
national Forum on Next Generation Multicore/ Manycore Technologies,
June, 2010.

[6] Mihaela Maliţa, Gheorghe M. Ştefan: ”Parallel RISC Architecture. A
Functional Approach Based on Backus’s FP language”, in Proceedings
of the 2011 International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, 2011, pp 492-498.

[7] Mihaela Maliţa, Liviu Gugu, Cǎlin Bı̂rǎ: Connex Simulator, posted at:
http://www.anselm.edu/internet/compsci/Faculty_
Staff/mmalita/HOMEPAGE/research.html

[8] Gheorghe Ştefan, Anand Sheel, Bogdan Mı̂ţu, Tom Thomson, Dan
Tomescu: “The CA1024: A Fully Programmable System-On-Chip for
Cost-Effective HDTV Media Processing”, in Hot Chips: A Symposium
on High Performance Chips, Memorial Auditorium, Stanford Univer-
sity, August 20 to 22, 2006.

[9] Gheorghe Ştefan: “One-Chip TeraArchitecture”, in Proceedings of the
8th Applications and Principles of Information Science Conference,
Okinawa, Japan on 11-12 January 2009. Posted at:
http://arh.pub.ro/gstefan/teraArchitecture.pdf

[10] Gheorghe Ştefan: The Connex Project, posted at:
http://arh.pub.ro/gstefan/Connex.html.

Proceedings of the World Congress on Engineering and Computer Science 2013 Vol I
WCECS 2013, 23-25 October, 2013, San Francisco, USA

ISBN: 978-988-19252-3-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2013

