
Not Multi-, but Many-Core: Designing Integral Parallel
Architectures for Embedded Computation

Mihaela Maliţa
St. Anselm College

Manchester, NH, USA
mmalita@anselm.edu

Gheorghe Ştefan
BrightScale Inc.

Sunnyvale, CA, USA
gstefan@brightscale.com

Dominique Thiébaut
Smith College

Northampton, MA, USA
thiebaut@cs.smith.edu

ABSTRACT
Recent embedded systems have switched to fully programmable
parallel architectures. To make sure all corner cases usually
present in real applications are supported and efficiently im-
plemented in this switch of implementation, new solutions
must be found. We introduce the integral parallel architec-
ture (IPA) as a solution supporting intensive data compu-
tation in System-on-a-chip (Soc) implementations, fitting in
a small area, and requiring low power. An IPA supports
naturally all three possible styles of parallelism: data, time,
and speculative.

As an illustrative example, we present the BA1024 chip,
a fully programmable SoC designed by BrightScale, Inc.
for HDTV codecs. Its main performance figures include
60 GOPS/Watt and 2 GOPS/mm2, representing an efficient
IPA approach for embedded computation.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Miscellaneous; C.3 [Special-
Purpose And Application-Based Systems]: Real-time
and Embedded Systems

Keywords
Parallel architectures, embedded systems, programmable sys-
tems, video processing

1. INTRODUCTION
Technology is currently going through some important evo-
lutionary trends that have been identified by several re-
searchers, including Borkar [2], and Asanovic [1]. One trend
is the slow-down of the increasing rate of the clock speed.
Another one is the switch from pure standard functionality
to more specific functionality in video, graphics, and perfor-
mance hungry applications requiring full programmability.
A third one is the replacement of Application Specific Inte-
grated Circuits (ASIC) by programmable Systems on a Chip

(Soc) due to development costs and increasing technological
difficulties associated with the former.

Borkar and Asanovic propose several new approaches for
computer architectures to respond to these changes and curb
their effects: application domain oriented architectures in
two versions: many- or multi-processors, or computation
type oriented architectures. Intel presents a good example of
the first type of architecture in its Recognition, Mining and
Synthesis (RMS) white paper [2], while Asanovic provides
an example of the second architecture in [1].

In this paper we propose two solutions to address some of the
limitations imposed by the current technology shifts. The
first is an optimized approach for low-power and small-area
embedded computation in SoC. The second is a way to re-
move some limitations categorized by Asanovic [1] as the
13th Dwarf, and qualified as an “automaton-style” compu-
tation.

The validity of the solutions we present here rests on two hy-
potheses. One is that programmable SoCs can compete with
ASICs only if a fully programmable parallel architecture is
used, because a circuit is an intrinsically parallel system.
The second hypothesis holds that the computational model
of partial recursive functions [4] must be able to treat equally
well both circuits, and parallel programmable systems.

Our approach naturally leads to two main results:

• the definition of an IPA1 for intensive computations in
embedded systems, and

• the proposal of a more nuanced taxonomy of parallel
computation as opposed to the more structural and
functional approach first introduced by Flynn [3].

Both results are exemplified in the BA1024 [7, 8, 9] which
we believe is the first embodiment of an IPA. The BA1024
is initially targeted to the HDTV market, but because of its
fully programmability can support other applications [11,
10, 5].

Parallel computation is becoming ever more ubiquitous, and

1The reader is invited to see our approach as being different
from the heterogeneous computing systems which are those
with a range of diverse computing resources that can be local
to one another or geographically distributed.

manifests itself in two extreme forms, one in complex com-
putation and the other in intense data-parallel computation.
Our paper deals with the second form. The remainder of this
paper is structured as follows. In Section 2 we introduce dif-
ferent views and trends of the parallel computing landscape
as seen by researchers at Intel and at Berkeley. In Section 3
we present partial recursiveness and show how it can be used
to identify different parallel constructs. Section 4 presents
a new taxonomy of computing, contrasting it with Flynn’s.
This leads us in Section 5 to the definition of integral paral-
lel architectures, and the two types of forms in which they
appear. Section 6 presents a state of the art circuit for video
decoding and shows how it embodies the different types of
parallelism we have presented. Section 7 concludes with per-
tinent remarks about current design trends, and how theyh
can achieve the performance levels required by tomorrow’s
applications.

2. INTEL’S RMS AND BERKLEY’S DWARF
APPROACHES

Intel’s approach makes the distinction between multi-core
era and many-core era, between scalar and parallel appli-
cations, and massively parallel applications. For embedded
systems a many-core approach seems to be the solution be-
cause we must substitute SoC implemented in ASIC tech-
nologies with SoC implemented as fully programmable so-
lutions. In this case, the functional granularity in ASICs
must have a counterpart in the granularity of the parallel
programmable system used in high-performance embedded
applications.

Many-core approaches also present low-power solutions where
simple processing elements (PEs) are fully utilized in each
clock cycle to perform either simple functions, one per clock
cycle, or complex functions composed of simpler ones.

In his paper describing the landscape of parallel computing
research as seen from Berkeley [1], Asanovic makes the fol-
lowing statement: We argue that these two ends of the com-
puting spectrum [embedded and high performance comput-
ing] have more in common looking forward than they did in
the past. First, both are concerned with power, Second,
both are concerned with hardware utilization, Third, . . .
the importance of software reuse must increase.

The architecture we propose here is mainly oriented to solve
the first two issues, low-power and hardware reuse, using
many small and simple programmable, though not reconfig-
urable elements. To define this architecture, we start from
the computational model which has a very direct circuit or
computing network implementation: the partial recursive
function model, which we present in the next section.

3. FROM PARTIAL RECURSIVENESS TO
PARALLEL COMPUTATION

We claim that the most suggestive classic computational
model for defining parallel architectures is the model of par-
tial recursive functions [4], because the rules defining it have
a direct correspondence with circuits, the intrinsic parallel
support for computation.

Composition and basic parallel structures

Figure 1: The physical structure associated to the
composition rule.

The composition of the function g with the functions

h0, . . . , hm−1 implies a two-level system. The first level,

performing in parallel m computations is serially connected

with the second level which performs a reduction function.

The first rule of composition provides the basic parallel struc-
tures to be used in defining all the forms of parallelism.

Assume we have m n-ary functions hi(x0, . . . xn−1), for i =
0, 1, . . . m− 1, along with an m-ary function g(y0, . . . ym−1).
We can define the composition rule by combining them as
follows: f(x0, . . . xn−1) = g(h0(x0, . . . xn−1), . . . hm−1(x0, . . . xn−1)).
The physical structure associated with this concept, con-
taining simple circuits or simple programmable machines is
illustrated in Figure 1.

This suggests the following four separate and meaningful
forms of parallelism, as illustrated in Figure 2:

1. data parallel composition: when n = m, each func-
tion hi = h depends on a single input variable xi, for
i = 0, 1, . . . n− 1, and g performs the identity function
(see Figure 2a). Given an input vector containing n
scalars:

X = {x0, x1, . . . , xn−1}
the result is another vector:

{h(x0), h(x1), . . . , h(xn−1)}

2. speculative composition: when n = 1, i.e. x0 = x,
(see Figure 2b), g performs the identity function. In
other words, it computes a vector of functions: H =
[h0, . . . hm−1] on the same scalar input x, generating
a vector of results:

H(x) = {h0(x), h1(x), . . . , hm−1(x)}

3. serial composition: This corresponds to the case
n = m = 1, as shown in Figure 2c. Here, a pipe of
different machines receives a stream of n scalars as
input:

< X >=< x0, x1, . . . , xn−1 >

Figure 2: The four simple forms of composition.
a. Data parallel composition. b. Speculative composition. c.

Serial composition. d. Reduction composition.

and provides another stream of scalars

< f(x0), f(x1), . . . , f(xn−1) >

In the general case, the function f(x) is a composi-
tion of more than two functions h and g. Thus, the
function f can be expressed as a vector of functions F
receiving as input a data stream < X >: F(< X >) =
[f0(x), . . . fp−1(x)]. In Figure 2c we have F(< X >) =
[h(x), g(x)]

4. reduction composition: In this last case, each hi

performs the identity function, as is illustrated in Fig-
ure 2d. The input is the vector {x0, . . . , xm−1} to the
block in which the function g transforms the stream of
vectors into a stream of scalars g(x0, . . . xm−1).

The composition rule provides the context for defining com-
putation using the following basic concepts:

scalar : x

vector : X = {x0, x1, . . . , xn−1}
stream : < X >=< x0, x1, . . . , xn−1 >

function : f(x)

vector of functions :

• F(< X >) = [f0(x), . . . fp−1(x)] applied on streams

• F(x) = [f0(x), . . . fp−1(x)] applied on scalars.

We now have all that is required to define the concepts of
primitive recursive rule and of minimalization in our context.

Primitive recursive rule
The primitive recursive rule computes the function f(x, y)
as follows: f(x, y) = h(x, f(x, y − 1)), where: f(x, 0) =
g(x). This rule can be translated in the following serial
composition:

f(x, y) = h(x, h(x, h(x, . . . h(x, g(x)) . . .))).

There are two ways to implement in parallel the primitive
recursive rule. In both cases we assume that a large amount
of data is available for the computation. This information
is in the form of vectors or streams of data ready for input
into a primitive recursive function.

If the function f(x, y) is to be computed for the vector of
scalars {X} = {y0, y1, . . . , yn−1}, then a data parallel struc-
ture is used. In this case each machine computes the func-
tion f(x, yi) using a local data loop. The resulting compu-
tation takes max(y0, y1, . . . , yn−1) cycles.

If, on the other hand, the function f(x, y) is to be computed
for a stream of scalars, then a time parallel structure is used.
A pipe of n machine is selected. The pipe receives in each
cycle a new scalar from the stream of scalars. In cases where
y > n, then a data loop can be added, connecting the output
of the pipe back to its input.

Minimalization
The minimalization rule assumes a function f(x) defined as
follows

f(x) = min(y) s.t. m(x, y) = 0

The value of f(x) is the minimum y for which m(x, y) = 0.

Here as well, two different parallel solutions are possible
for the minimalization problem: one that uses data parallel
structures and one that uses time parallel structures.

The first implementation of the minimilization function is
the brute-force approach, and uses the speculative structure.
This is illustrated in Figure 2b where each block computes
a function which returns a pair containing a predicate and
a scalar: hi = {(m(x, i) = 0), i}, for i = 1, 2, . . ., after which
a reduction step (using a structure belonging to the class
represented in Figure 2d) selects the smallest i from all pairs
having the form {1, i}, if any. These pairs were generated
on the previous speculative composition level. Note that all
pairs of the form {0, i} are ignored.

The second implementation of the minimalization operation
shows up in time-parallel environments where speculation
can be used to speed-up pipeline processing. Reconfig-
urable pipes can be conceived and implemented using spe-
cial reduction features distributed along a pipe. We formal-
ize this concept now.

We define a function pipe as the function vector:

P = [f0(x), . . . fp−1(x)]

where yi = fi(x), for i = 0, . . . p − 1. The associated
reconfigurable pipe transforms the original pipe character-
ized by P = [. . . fi(yi−1), . . .] into a pipe characterized by:
P = [. . . fi(yi−1, . . . yi−s), . . .] where: fi(yi−1, . . . yi−s) is a
function or a program that decides in each step, or cycle,
which variable to use in the current computation, selecting2

one of the {yi−1, . . . yi−s} variables with the help of an s-
input selector. The maximum degree of speculation in this
case is the index s.

Examples
We now present two typical examples of minimalization, and
how speculative composition can be used to solve them and
accelerate the computation.

1. Let f(x, y) be a function f : N2 → N, where N de-
notes the set of positive integers. We need to compute all
the successive positive values i and i + 1 for x = a where
sign(f(a, i)) 6= sign(f(a, i+1)) (if any). In other words, the
function finds indices associated with the different values of
x where f(x) has different signs for consecutive indices.

One solution involves a pool of machines performing specu-
lative composition, as illustrated in Figure 2b, where hi =
f(a, i), followed by an appropriate reduction composition,
illustrated in Figure 2d. ¦

2. Consider a pipeline in which we must compute the
following C-style conditional expressions in one of the middle
stages:

if (z[n-1]==1)

z = z + (x-c);

else

z = z + (x+c);

where c is a constant value, and z[n-1] is the most signifi-
cant bit of z.

To maximize speed, the pipeline must evaluate x − c and
x + c in parallel, but only one of the resulting values is fed
to the next stage.

The physical structure of the pipe must be dynamically re-
configured in order to accommodate the use of a 2-PE spec-
ulative composition array, as illustrated in Figure 2b.

If the variable x is computed in Stage i of the pipe (x = yi =
fi(. . .)), then Stage i + 1 computes x− c = yi+1 = fi+1(yi)
Stage i + 2 computes x + c = yi+2 = fi+2(yi) and Stage
i + 3 computes z = yi+3 = fi+3(yi+1, yi+2). The pipe is
configured as a “cross” using the stages i + 1 and i + 2 as
a speculative bar orthogonal to the pipe. The degree of
speculation in this case is s = 2. ¦
2selection is one of the simplest reduction function

In order to implement speculative execution there is no need
for any special features in a data-parallel environment. But
for the time-parallel environment simple reduction features,
or selection functions3, must be added in each pipeline stage.
This results in a 2-dimension n×s pipe, i.e. an n-stage pipe
where each stage is able to select its input from the output
of the one of the previous s stages. This 2-dimension pipe
has a maximum depth of n and the maximum degree of
speculation s.

In conclusion, we observe that the minimalization rule can
be implemented using all the simple parallel resources, each
one the embodiment of simple forms of composition.

Next we use the different forms of composition introduced
to propose a new taxonomy of parallel architectures.

4. FUNCTIONAL TAXONOMY OF PARAL-
LEL COMPUTING

The previously identified simple forms of compositions, all
summarized in Figure 2, yield a functional taxonomy of par-
allel computation which intersects with Flynn’s original tax-
onomy [3], and which we categorize as follows:

data-parallel computing : this form uses operators that
take vectors as arguments and returns vectors, scalars
(by reduction operations) or streams (input values for
time-parallel computations). This form is very similar
to Flynn’s SIMD machine.

time-parallel computing : this form uses operators that
take streams as arguments and return streams, scalars,
or vectors which can be used as input values for data-
parallel computations. This form is akin to MIMD
machines, but refers to the computation of a single
function (described by a vector of functions) instead
of multi-threading computation.

speculative-parallel computing : in this form, opera-
tors take scalars as arguments and return vectors re-
duced to scalars using selection. This form is used
mainly to speed up time-parallel computations, and it
contains a true MISD-like structure. This form has no
real implementations in Flynn’s taxonomy.

By positioning ourselves in the context of the partial recur-
sive functions model, we argue that we can devise a func-
tional taxonomy of parallel computing which better encom-
passes today’s architectures because it uses functions and
variables rather then instructions and data.

Since we now are in a new theoretical framework, we must
define what is an architecture in this context, and also what
the machines that implement this architecture are.

In the next section we present the concept of Integral Parallel
Architecture, or IPA, as a parallel architecture featuring a
multitude of the above mentioned parallel forms.

3This recursive function is called projection in the theory of
partial recursive functions.

5. IPAS AND LOW-POWER EMBEDDED
COMPUTATION

It today’s technology ring, hi-performance and low-power
embedded systems compete with ASICs. We believe that
the only way to compete with the ASIC approach is to re-
duce the granularity of the programmable computing ele-
ments to the level of the circuits performing the application
oriented functions. To this end, one must rely on small
multi-processor systems, rather than large many-processor
systems.

IPA: A Definition
Two opposite extreme versions of IPAs exist today:

• complex IPAs, with all types of parallel mechanisms
tightly interleaved.

• intensive IPAs, with parallel mechanisms that are
highly separated.

Current high-performance processors have a complex IPA,
because they implement all types of parallelism in a highly
integrated fashion. They are examples of the first type of
IPA. Indeed, a pipelined super-scalar machine with specu-
lative execution performs on the same structure – a super-
speculative pipe – time-parallel computations, data-parallel
computations, and speculative-parallel computations.

An intensive IPA, on the other hand, is implemented using
distinct hardware support for the simplified, special cases
of composition previously emphasized. Because demanding
applications cannot be implemented using a single type of
parallelism, intensive IPAs are the only solution for building
fully programmable, low-power, hi-performance systems-on-
a-chip.

We continue our exploration of the concept of Intensive IPAs
by looking at their implementation.

Intensive IPAs
Actual embedded applications demand intensive data-parallel
computation and/or intensive time-parallel computation, of-
ten requiring the support of speculative resources. As a re-
sult the machine implementation of an IPA must provide
resources for both. We coin such a machine an integral
parallel machine, or IPM, and observe that there are two
ways of designing them:

• with a unique physical support for both data- and
time-parallel computation, which we refer to it as a
monolithic IPM, or

• as two distinct structures for the two types of paral-
lelism, which we refer to as a segregated IPM.

We now briefly present each type of machine.

Monolithic integral parallel machine
The main structure of this IPM type is a linear array of
processing elements (PE) that operates in two modes: as

a data-parallel machine receiving instructions from a con-
troller, or as a pipeline of PEs executing their own locally
stored program [6], [10].

Note that the performance requirements of today’s applica-
tions will dictate the addition of speculative parallelism to
this array of PEs.

However, the simplest form of this type of IPM is a lin-
ear data-parallel array of n bidirectionally connected PEs,
adorned with mechanisms allowing constant time selection
(s-selectors) to allow s-degree speculative executions in pipeline
mode where each PE is connected to the previous s PEs.

Segregated integral parallel machine
Segregated IPMs, on the other hand, are chosen when the
cost of adding the speculative resources (the s-selectors) be-
comes too expensive for a very long pipe. If n, the number
of stages in the pipe, is in the order of several hundreds or
thousand, and if the degree of speculation s is larger than
2, the additional hardware is justified only if these very long
pipes are mandated by the overall design. When it is not,
a short pipe with fewer stages and a reasonably large s can
be added as a separate element in the overall design. In
cases where the amount of data parallelism is superior to
the amount of time parallelism present, a segregated IPM is
preferable.

In the video domain, for example, data parallelism dom-
inates the computation, but the time parallelism can not
be neglected or else performance is not maximized. There-
fore, both types of parallelism must be supported by the
hardware, and their design must account for the amount of
parallelism to be exploited.

Intensive IPMs: Accelerators for Complex IPA
Once the type of IPM needed is identified for a given applica-
tion, either monolithic or segregated, one important problem
remains: that of designing the application interface. While
the kernel of an application is usually solved by intense com-
putation, the application interface usually requires complex
computation. Therefore, a fully programmable SoC must
include the following:

• a complex operating-system oriented section, built around
one or a few controllers each having a complex IPA,
and

• an accelerator based on an uniform array of simple
PEs, each built with an intensive IPA.

The main benefit of the strong separation between complex
and intense IPAs is power saving. Complex computation
is usually power hungry, while intense computation, which
is simple in nature, involves uniform, small, and intensely
utilized structures.

Today’s designers must also deal with “leakage current ef-
fects”. Reusability of the physical structure is the main
weapon to fight against this new enemy. Only simple hard-
ware can be easily reused in a programmable environment.

“No multipliers or floating point units” become the design-
ers’ slogan, because the units’ transistors can not be reused.
Only simple PEs with elementary arithmetic and logic units
provide the ideal environment for intensive and low power
computing.

6. A CASE STUDY: BA1024
In this section we present a chip currently manufactured by
BrightScale, Inc., the BA1024, with at its core a segregated
IPM of parameters n = 1024, m = 8 and s = 4. The chip is
dimensioned to fully support the computation required by
dual HDTV codecs.

Chip’s Organization
The chip is a combination of many- and multi-processor ar-
chitectures. It contains an array of 1024 PEs, alongside an
array of 4 MIPS working as an MIMD machine. The chip is
implemented in 130nm standard process, runs at 200MHz,
and sports the following features:

• audio and video interfaces for two HD channels,

• four MIPS processors used as: host processor, video
processor, demultiplexing processor, and audio proces-
sor,

• a DDR interface sustaining data transfer rates of 3.2GB/sec,

• an interconnection “fabric” allowing transfers of 128-
bit words per clock cycle, and

• an accelerator with intensive IPA containing:

– 1024 16-bit PEs, each having an integer unit, a
boolean unit, and 256 16-bit words of data mem-
ory (the data parallel section),

– a global loop structure, used mainly to identify
the first PU having the selected predicate set to
true,

– a reduction tree, used to extract data from the
array, or to calculate the number of PEs with a
predicate set to true,

– a bidirectional I/O tree, which transfers data to
and from the array (the transfer is strictly paral-
lel and concurrent with the main computational
process),

– 8 16-bit PEs, each with its own program memory
and implementing the time parallel section.

Because codec implementation is data intensive, the data-
parallel section is very heavily used. The time-parallel sec-
tion is needed to accelerate purely sequential codec modules,
mainly for the H.264 video standard.

Performance
The performance measures of the BA1024 are summarized
in Tables 1 and 2. Note that our goal in presenting the
BA1024 data is solely to emphasize the significant differences
between complex and intensive IPAs, and by no means do
we claim any superiority of the BrightScale design over that
of other companies. The dot product operation in Table

1 refers to vectors having 1024 16-bit integer components.
Note also that the 200 GOPS figure does not include floating
point operations, which are emulated in software. In this
case 2 GFLOPS + 100 GOPS can be sustained. Also note
that the DCT operations in Table 2 are performed on 8× 8
arrays.

Operations Performance
16-bit operations 200 GOPS
Dot product 28 clock cycles

> 7 GDotProducts/sec
External bandwidth 3.2 GB/sec
Internal bandwidth 400 GB/sec
OPS/power > 60 GOPS/Watt

OPS/area > 2 GOPS/mm2

Table 1: Overall performance data for the BA1024.

Operations Performance
DCT 0.15 cycles/pixel
SAD 0.0025 cycles/pixel
deblocking filter 0.12 cycles/pixel
decoding of H.265 85% utilization
dual HD stream of accelerator

Table 2: Video performance data for the BA1024.

7. CONCLUDING REMARKS

Ubiquitous parallelism.. Parallelism is an integral part
of today’s medium and high performance processors. It is
exploited more and more in the two IPA variants that we
have presented: complex IPAs, where parallelism appears in
general purpose processors, and in intensive IPAs, such as
specialized accelerators. Chances are that the term “paral-
lel”may become obsolete in the near future, as technological
limitations are removed, and all computations end up imple-
menting parallelism in a “natural” way.

Complex versus intensive IPA.. There is a significant dif-
ference between the performance measures of standard pro-
cessors using complex IPAs and those of machines making
use of intensive IPAs, of which the Brightscale BA1024 is an
example. Typical values for today’s complex IPAs are

• 4 GIPS + 4 GFLOPS

• (0.04 GIPS + 0.04 GFLOPS)/Watt

• (0.016 GIPS + 0.016 GFLOPS)/mm2

where an instruction is a 32-bit operation. For intensive
IPAs, however, the measures are:

• 200 GOPS or 2 GFLOPS + 100 GOPS

• 60 GOPS/Watt or
(0.6 GFLOPS + 30 GOPS)/Watt

• 2 GOPS/mm2.

The most important difference appears in power saving of
more than 90% for the intensive computation performed by
an IPA.

Segregation of the complex IPA from the intensive IPA..
Segregation of IPAs is the best solution for optimizing both
price(area) versus performance and power versus performance.

High Performance Architecture=
complex IPA + intensive IPA.

Almost all demanding applications would benefit from the
use of a new kind of computing architecture. We claim that
in the case of such an architecture, the complex part must
be strongly segregated from the intensive part in or-
der to reach the target performance at a competitive price,
and with a minimum amount of dissipated energy. Maximiz-
ing the intensive part area is squeezed and power is saved.

8. ACKNOWLEDGMENTS
We would like to thank Emanuele Altieri, Lazar Bivolarski,
Frank Ho, Bogdan Mı̂ţu, Tom Thomson, and Dan Tomescu
for insightful discussions on the material presented here.

9. REFERENCES
[1] K. Asanovic. The landscape of parallel computing

research: A view from berkeley. Technical report, U.C.
Berkeley, December 2006.

[2] V. Borkar. Platform 2015: Intel processor and
platform evolution for the next decade. Intel
Corporation white paper, 2005.

[3] M. J. Flynn. Some computer organization and their
affectiveness. IEEE Trans. Comp., C21(9):948–960,
September 1972.

[4] S. C. Kleene. General recursive functions of natural
numbers. Journal of Symbolic Logic, 2, 1937.

[5] M. Malita, G. Stefan, and M. Stoian. Complex vs.
intensive in parallel computation. In International
Multi-Conference on Computing in the Global
Information Technology - Challenges for the Next
Generation of IT&C. ICCGI 2006, August 2006.

[6] B. Mitu. private communication, 2005.

[7] G. Stefan. The ca1024: A massively parallel processor
for cost-effective hdtv. SPRING PROCESSOR
FORUM: Power-Efficient Design, June 2006.

[8] G. Stefan. The ca1024: Soc with integral parallel
architecture for hdtv processing. In 4th International
System-on-Chip (SoC) Conference and Exhibit. SOC
Conference, November 2006.

[9] G. Stefan, A. Sheel, B. Mitu, T. Thomson, and
D. Tomescu. The ca1024: A fully programable
system-on-chip for cost-effective hdtv media
processing. In Hot Chips: A Symposium on High
Performance Chips. Stanford U., August 2006.

[10] D. Thiebaut and M. Malita. Pipelining the connex
array. In BARC 07. BARC, January 2007.

[11] D. Thiebaut, G. Stefan, and M. Malita. Dna search
and the connex technology. In International
Multi-Conference on Computing in the Global
Information Technology - Challenges for the Next
Generation of IT&C. ICCGI 2006, August 2006.

