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Abstract

We present in this paper the main ideas concerning the implementa-
tion in the solid state circuits of some molecular mechanism: the splicing
operation and insert/delete operation. The physical support for these
operations is based on the Conner Memory concept first introduced in
[Stefan ’85(91)]. We promote this solution because a pure biological pro-
cess is very hard to be interfaced with machines in nowadays technolo-
gies. In the same time we believe that the mechanisms emphasized in
the molecular process of computation are very good suggestions for sili-
con based machines devoted to perform a fine grain parallelism. Using a
Connex Memory the splicing operation or the insert/delete operation is
performed in linear time related to the length of the rules; the time does
not depend on the length of the processed strings. In order to perform
in parallel all possible applications of a rule in a set of strings, the func-
tion of the Connex Memory is extended over a cellular automaton, thus
defining the Eco-Chip.

1 Introduction

The molecular computing is a very exciting theoretical approach from the "70s.
M. Conrad is a pioneer in this domain [Conrad ’85]. T. Head emphasizes a ba-
sic operation named splicing [Head ’87,’92] that can be used as model for some
aspects of molecular processes involved in computation. At the end of 1994,
L. M. Adleman performed his successful experiment of solving the Hamiltonian
problem in a graph by manipulating DNA sequences [Adleman '94]. All scien-
tists believe that these approaches will generate maybe in short time ”biological
computing machines”.

In the same time these results suggest us two new directions in computer
science research.

e The first is to investigate the possibility of using the main molecular op-
erations as basic generative rules in the formal language theory and in
the theory of computation. In the last few years, the formal language



theory enriches by new formal systems devoted for modeling the typical
mechanisms of molecular computing.

e The second is to implement efficiently these operations using an appropri-
ate hardware support. The degree of parallelism is very high in a system
that uses these new strange operations. We believe that an adequate
”smart memory” device can give full value of using these strange ”molec-
ular rules” in computation.

Starting from the first direction, opened by papers like [Paun ’95b, 96,
'97], our approach is related with the second by the aim of putting together
the operations suggested by the molecular computing and the Connex Memory
(CM) concept or the Eco-Chip (EC) model.

The first step is to prove that a system based upon the CM circuit performs
these operations in a time related with the size of the rules instead of the
standard system with RAM that performs the same operations in a time related
to the storage space used for all the strings involved.

The second step uses the CM concept to build the EC as a cellular automa-
ton. On this new circuit the insert and delete functions of the CM can be
performed in many points in each clock cycle, rather than on the CM circuit
that allows only one insert or delete function per clock cycle. Using the EC
circuit, the similarity, between molecular computing and the computation per-
formed on this silicon machine, becomes maximal because many operations can
be parallel performed.

2 DNA Based Computing Mechanisms

Gh. Paun emphasized [Paun ’97] three distinct basic operations on DNA (and
RNA) that can be used for molecular computation:

e the matching, the basic operation in P-systems, introduced in [Kari ’96a]
starting from the famous Adleman’s experiment

e the splicing operation, defined by Tom Head, is the main mechanism in
H-systems

e the insertion/deletion operation [Kari ’96b] can be used to define genera-
tive mechanisms in I-systems.

All the three operations lead toward universal computability models, which
are equivalent with the Turing Machine. For our purposes, it is enough to
present only the second and the third operations because, from the point of
view of the CM concept applications, the first two operations are very similar.

2.1 The Splicing Mechanism and H-Systems

A formal definition of the splicing operation is to be found in [P&un *96]. Follow-
ing this definition, we specify one of the basic mechanism from DNA computing
that can be borrowed for a silicon based machines.



Definition 1 Let be the finite alphabet V' and two special symbols # and § not
in V. A splicing rule over V is specified by (xz,y) b, z where,
r = ui FusSus#uy with z,y,z,u; € V* and acts as follows:

if T = T1UU2T2, Y = Y1U3ULY2
then 2z = x1ui1U4yo

for some x;,y; € V*. o

Starting from two strings = and y a new string z is obtained. The sites of the
splicing are the places defined by the substrings ujus and usus. A machine
must find the sites of the splicing, cut the two strings x and y in the sites of the
splicing and concatenate the left part of x with the right part of y. The rests of
x and y are added to V* and will be considered again in the next splicing.

Definition 2 A H-system is a pair o = (V,R) where V is an alphabet and
R CV*#V*$V*#V™* is a set of splicing rules.o

For each rule r a solid-state machine can be imagined. In the same time each
H-system o has an associated machine.

Definition 3 The splicing machine SM = (V,a,) has a random accessed mem-
ory (RAM) containing S C V* and a finite automaton that performs the rule r
on S. o

Definition 4 A H machine is defined by HM = (V, Ag) where S C V* is stored
in a memory and Ag is a set of automata each performing r; € R on the same
S.o

Definition 5 The Universal Splicing Machine is
USM = (V,a) in which the memory contains both S C V* and R, the automaton
a having the role of applying the rules from R on S.o

Our line of thought follows the conclusion of Pdun & Salomaa: ”The splicing
operation, essentially different from other language-theoretic operations, turns
out to be surprisingly powerful. Easy characterizations of recursively enumer-
able languages (exhibiting Turing machine competence) are obtained in this
framework. This, on the one hand, proves again the complexity of the DNA
structure and the power of the mechanisms manipulating it, on the other hand,
suggests that universal ”computers” can be constructed on this basis.”

2.2 The Insert/Delete Mechanism and I-Systems

Another main molecular mechanism that has a simple mathematical model
refers to the local mutations occurred in a DNA or RNA string. A mutation can
be assimilated to an insertion or a deletion. In same places defined by specific
substrings, a new substring can be inserted or a substring can be deleted. Two
distinct set of rules, one for insert and another for delete, characterize a class of
systems called I-systems [Paun ’97).



Definition 6 An I-System is a construct:
’y = (V7 T? A7 I7 'D)

where: V is a finite alphabet, T C V is the terminal alphabet, A C V* is the
finite set of the axioms, I,D C V* x V* x V* are finite subsets of the insertion
rules and of the deletion rules having the form (u, z,v) and acting as follows:

1. & = zyuvxs becomes y = x1uzvxs, for r1,15 € V* and (u,z,v) € I, thus
performing an insertion

2. & = xyuzvxs becomes y = xiuves, for x1,x2 € V* and (u, z,v) € D, thus
performing a deletion,

so as for x,y € V* we can write x = y. ©
Let be =* the reflexive and transitive closure of =.

Definition 7 The language generated by the I-system = is
L(y)={w € T|z =* w, forz € A}. ¢

The basic action in a I-system is to find all the places where the substrings
uv or uxv are located. After that, the substring z is inserted between the
substrings u and v or is deleted from among the substrings u and v.

3 The Connex Memory
3.1 The Definition

The CM is a physical support for a string in which we can find any substring,
identifying, in such a manner, any place for reading, inserting or deleting a sym-
bol or a substring. The CM is a sort of CAM (Content Addressable Memory),
structured as a bi-directional shift register in which a significant point is marked,
as a consequence of an associative sequential mechanism used to find a name in
a number of steps equal to the length of the name.

Definition 8 The connex memory CM is a physical support of a string of vari-
ables (see Figure 1) having values from a finite set of symbols and two states:
non-marked or marked, over which we can apply the following set of functions
(CM’s commands):

CMCOM = {RESET s, FIND s, CFIND s, INSERT s, READup, READdown,
READ, DELETE} where:

e RESET s : all the variables take the value s

e FIND s : all the variables that follow a variable having the value s switch
to the marked state and the rest switch to the non-marked state
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Figure 1: The content of the Connex Memory. Each cell contains the value v;
of a variable and the state bit, m;, named marker.

e CFIND s : (conditioned find) all the variables that follow a variable hav-
ing the value s and being in the marked state switch in the marked state
and the rest switch in the non-marked state

e INSERT s : the value s is inserted before the first marked variable

¢ READup | down | — : the output has the value of the first marked variable
and the marker moves one position to right (up) or to left (down) or
remains unchanged (-)

e DELETE : the value stored in the first marked position is deleted, the
position remains marked (the output has the value of the first marked
variable) and the symbols from the right are moved one position left

All these functions are executed in time O(1) (one clock cycle). <

3.2 How Does Each Function Work?

We shall answer to the question: how does each function work? giving a set of
examples in which: S(t) is the string stored in the memory in the current clock
cycle when a certain function is applied, OUT PUT (t) is the value of the output
of the memory in the current cycle, S(¢t + 1) is the content of the memory as a
result of the function applied in the previous clock cycle. The marked variables
are bolded.



RESET p
S(t) = roivndkgotrun...
S(t+1) = ppppp....p-.-

FIND b
S(t) = ...(bubu(big brother’s gun))...
S(t+1) = ...(bubu(big brother’s gun))...

CFIND u
S(t) = ...(bubu (big brother’s gun))...
S(t+1) = ...(bubu(big brother’s gun))...

INSERT c
S(t) = ...(bubu(big brother’s gun))...
S(t+1) = ...(bucbu(big brothe’s gun))...

READ

S(t) = ...(bubu(big brother’s gun))...
OUTPUT(t) = b

S(t+1) = ...(bubu(big brother’s gun))...

READ up

S(t) = ...(bubu(big brother’s gun))...
OUTPUT(t) = b

S(t+1) = ...(bubu(big brother’s gun))...

READ down

S(t) = ...(bubu(big brother’s gun))...
OUTPUT(t) = b

S(t+1) = ...(bubu(big brother’s gun))...

DELETE

S(t) = ...(bubu(big brother’s gun))...
OUTPUT(t) = b

S(t) = ...(buu(big brother’s gun))...

3.3 The Application Domains of the Connex Memory

The main domain of applications for CM based architecture is the string oriented
symbolic processing. Some of them were presented in other papers and some

represent working in progres.

1. The paper [Stefan ’96] is an exercise of using CM for implementing a Lisp

Oriented Machine.



2. In [Stefan ’97] and in the present paper is offered a solution for a silicon-
based machine that performs efficiently the splicing mechanism empha-
sized in molecular computing.

3. In the present paper we describe a very eflicient system for the insert/delete
mechanism, also characteristic for molecular computing.

4. The work [Stefan ’95] presents an application of the CM concept in im-
plementing eco (grammar) systems [Csuhaj-Vard ’93].

5. Another domain is the implementation of the unification mechanism in
the Prolog language.

6. Expanding the CM functions over the cells of a cellular automaton the Lin-
denmayer grammars [Lindenmayer '68] gain a very good physical support
for their parallel-executed substitutions.

7. We have in progress a work in which we will present applications of CM
in implementing Markov rewriting systems [Markov ’54].

4 Molecular Mechanisms on Connex Memory

In order to explain how CM works in finding strings of symbols having differ-
ent length it is useful to expand the function FIND s to the macro-function
SFIND S (string find), where: S = s182...s, is a string of symbols. The se-
quence of commands that emphasizes the end of all occurrences of the S string,
marking the variables that immediately follow the last symbol s, is:

SFIND S = FIND s;,CFIND s5,CFIND ss,...,CFIND s,.

Thus, all occurrences of the string .S in CM are found and marked in time
Tsrinp s € O(n), i.e., the searching space dimension does not matter. In order
to find the string S, having the length I(S) = n, it is enough to waste only the
time nedeed to utter it.

4.1 Implementing Splicing with CM

For explaining the efficiency of the CM in performing the splicing operations
we use a SM only. The expansion towards HM or USM is obvious and the
efficiency in performing the splicing operation is not affected.
If the splicing rule is:
r = uiFusHusFfug

and the initial content of the CM is:
cLSTiuus oS . L Syt usuays$ . .

($ is used for delimiting the strings in the memory), then an intermediate form
is:
cSziu &usws$ . Sy usugya$ ..



after identifying the first cutting point (emphasized with the special symbol &
inserted between the substrings u; and us) and the final content of the CM is:

< STiugugya Susas$ L L L Sy ush . ..
The next procedure describes this mechanism.

Prprocedure SPLICING
if the string ujus is found [step 1]
then back before us [step 2]
insert & before uy [step 3]
if the string usuy is found [step 4]
then back before uy [step 5]
move uyys before & [step 6]
substitute & with $ [step 7]
else delete &
endif
endif
end SPLICING

Definition 9 A splicing machine with CM is SMCM = (V,a), see Figure 2,
where CM contains a set of strings S C V*, FA is a finite automaton that
executes the procedure SPLICING. On the Input tape is stored the splicing
rule. The current symbols accessed on the input tape and/or from the CM,
together with the current state of the automaton generate, in each clock cycle,
the next state of the automaton. In each state the automaton can move, if
needed, left or right the input tape head, or commands CM using one of their
functions. o

Indeed, executing the macro-function SFIND S the first marked variable in
the CM is the variable after the first occurrence of the string S. The time for
finding the string S in CM is in O(I(S)). More precisely, I(S) is the number
of clock cycles needed to find S. Using this "macro” the behavior of the finite
automaton associated with the procedure SPLICING becomes clear and the
execution time for each main step is:

step 1 : T € O(I(u1) + I(uz))
step 2 : T € O(l(u»))

step 3 : T € O(1)

step 4 : T € O(I(us) + I(u4))
step 5 : T € O(I(u2))

step 6 : T € O(I(uq) + 1(y2))
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Figure 2: The splicing machine with CM

step7 : T € O(1)

Comparing SM and the SMCM we observe that the size for both is in the
same order: O(XI(S;)) where XI(S;) is the total length of the strings S; € S.
But, there is a significant difference between the execution time for the splicing
operations in the two approaches. In the first machine, which uses a standard
RAM memory, we have Tsy € O(f(X1(S;))) but the second solution has a
better performance: Tsyronm € O(max(1(S;))).

Although the actual size of CM is bigger than the size of the RAM memory
(around 20 times), the gain in the speed justifies using CM because the time
is proportional only with the biggest string .S; stored in the memory instead of
the sum of the length of all strings from the memory.

4.2 Implementing Insert/Delete Operations with CM

Starting from Definition 6, the Insert/Delete operations are described by the
following procedures.

Prprocedure INSERT
if the string uv is found (applying SFIND wuv) [step 1]
then back before v [step 2]
insert the string z [step 3]
endif
end INSERT



Prprocedure DELETE
if the string wzv is found (applying SFIND uzv) [step 1]
then back before z [step 2]
delete the string z [step 3]
endif
end DELETE

The execution time for both procedures in a system build with CM is
Tr/p € O(l(uzv))
because:

step 1 is executed in TsprnD wo/uze € O(1(uv))/O(l(uzv))

step 2 is executed in Tpack v/z0 € O(I(v))/O(l(2v)) or in O(1) if a simple
trick is used (inserting a special symbol after the string u)

step 3 is executed in T;/4 € O(I(2)).

It is obvious that the machine that executes Insert/Delete operations has the
same structure as the machine for the splicing mechanism (see Figure 2).

4.3 Limits to Be Removed

In the previous two approaches, for the splicing operation and for insert/delete
operations, the rule is performed with a partial efficiency only, because the
operation can be completed in only one place. Indeed, the places where the rule
must be applied are all identified in parallel, but the effective concatenation
or effective insert/delete is performed in only one place because the structure
of CM that consists in a sort of the shift register. For example, an insert in
two distinct points in the string stored in the CM implies that a part of the
internal register of CM is shifted one position and another part is shifted with
two positions.

5 A Cellular Automaton as Support for Connex
Memory Functions

5.1 Definition

In order to add the possibility to access all marked points of the stored string,
we adopt a two-dimensional support for CM. Instead of the one-dimensional
structure of a shift register we use a two-dimensional CA. The string length can
be now modified synchronously in many points by insert or delete. This new
feature is enabled by the liberty of adding more new symbols in any places on
the two-dimensional area of a CA.

10



Each symbol of the string is stored in the state of a cell and the link is
done by the adjacency in the CA area. Because in our CA each cell has eight
neighbors, it is very easy to add a new adjacency in the string.

The CA consists of active cells and of inactive cells. The first contain the
string and are linked by three-bit pointers in the eight cells neighborhood. In
each cell two processes are performed:

e the process of executing operations implied by the CM function:

— the subset that does not modify the length of the string, only in the
active cells

— the subset that modifies the length of the string

e the self-organizing process of cells toward the state of each active cell to
be surrounded by a maximum number (i.e., 6 if possible) of inactive cells.

The self-organizing process generates the conditions in which all the time we
have enough space to insert in many places synchronously the same symbol.
The same process removes, step by step in a sequential way, the inactivated
cells.

5.2 An Algorithm for the Multiple Access CM
Specific for the Multiple Access CM (MACM) are three types of actions:
1. the insert function from the function set of CM
2. the delete function from the function set of CM
3. the self-organizing process offering space for new insert actions.

In this paper, only the case of dispersed marked points is studied.

5.2.1 INSERT s in MACM

There are two typical situations in which a new symbol is inserted in a stored
string. In Figure 3a, the marked cell (containing the arrow) has as the next
cell the pointed cell (containing a circle). The second situation is presented in
Figure 3b. These two configurations can be rotated three times for obtaining
all the cases.

In the first case the next marked positions can be the cells labeled by a, b,
c and d. In Table 1 is presented the algorithm for selecting the new active cell.

11
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Figure 3: Insert configurations

| abcd | The cell used for expanding the string

000 | randomly a or b
0001 |a
0010 |5
0011 |if cand d do not point to the marked symbol (the arrow)
then randomly a or b deadlock; if ¢ points the marked
symbol then b; if d points the marked symbol then a; if ¢
and d point the marked symbol then deadlock
0100 |a
0101 a
0110 | if ¢ does not point the marked symbol then a, else d
0111 | ifcdoesnot point the marked symbol then a, else deadlock

1000 | b
1001 | if d does not point the marked symbol then b, else ¢
1010 |5b

1011 | ifd does not point the marked symbol then b, else deadlock
1100 | if a and b are not connected with the target of the marked
symbol (the circle), then randomly ¢ or d; if a and b are
connected with ”circle”, then deadlock; if a is not con-
nected with ”circle”, then ¢; if b is not connected with
7circle”, then d

1101 | if a is not connected with ”circle”, then c, else deadlock
1110 | if bis not connected with ”circle”, then d, else deadlock
1111 | deadlock

Table 1. The algorithm for finding the new active cell when the
marked cell points horizontal or vertical.

In the second case the next marked position can be selected between the
positions e and f. The corresponding algorithm is presented in the next table.

12



Figure 4: The reference cells for DELETE

| ef | Action |
00 | random e or f
01 |e
10| f
11 | deadlock

Table 2. The algorithm for finding the new active cell when the
marked cell points diagonal.

Deadlock situations are solved as a consequence of the self-organizing process
below described.

5.2.2 DELETE in MACM
The CM’s function DELETE is performed in two steps:

1. inactivate the content of the marked cell but maintains the cell connected
in the string as an empty cell

2. eliminate the empty cell by shifting them:

e until the string form allows to point over, inactivating the empty cell

e or until the end of the string is reached.

The point over algorithm is the main problem. In Figure 4 we present the
typical situations (all the rest is reducible to rotating this representation). The
symbol (o) represents the empty cell.

1. a - ¢ — d, e, no points over
2. b — o — d, e, no points over
3. ¢ = ¢ —=d= c— d, points over

4. ¢ — o — e = ¢ — e, points over

13
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Figure 5: Self-Organizing process

5.2.3 Self-Organizing in MACM

Many inserts in the same marked place generate deadlocks that can be solved
only by reorganizing the string over the CA’s cells. Our aim is to emphasize
a set of local rules that solve this global problem. An example of deadlock is
presented in Figure 5a, where in the cell 14 is stored the marked symbol. Any
insert is impossible in this configuration. The string must be expanded on the
CA’s surface, so allowing new insertions.

The self-organizing algorithm consists in applying two rules:

1. moving the active cells in new positions so as to minimize the number of
neighbors.

2. generating ”"fluctuations” of some cells in equivalent positions.

The effects of the moving cells are presented in Figure 5b-d and Figure 6. In
Figure 6h the process of spacing the string can not be continued without apply-
ing the second rule, generating a ”fluctuation” of the 12th cell in a new position
in which the number of neighbors is the same. But in this new configuration
the first rule can be used in two steps again (Figure 7j and Figure 7k). New
"fluctuations” are needed in Figure 71 and Figure 8m. The dispersing process
ends when each cell has no more than two neighbors.

14
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Figure 6: Self-Organizing process (cont.)
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Figure 7: Self-Organizing process (cont.)
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Figure 8: Self-Organizing process (cont.)

6 The Eco-Chip: a Cellular Automaton with
CM'’s Features

6.1 The Definition

In order to perform the two molecular mechanisms, previously described, on
the EC the CM function set must be adapted redefining a few simple functions.
The main new features introduced by these new functions is related to the
possibility to act in all the marked places on the string or on the strings stored
in the cellular automaton.

Definition 10 The Eco-Chip (EC) is a bi-dimensional cellular automaton each
cell having two states:

e the inactive state in which the cell is unconnected with any other cell

e the active state in which the cell is connected in a string with other cells
and stores a string of variables, each having a value and two states: marked
and non marked.

Qwer the strings stored in the active cells the following functions can be executed:

e RESET s : all the cells from the first diagonal become active, take the
value s and switch in the state non-marked

16



e FIND s : all the variables that follow a variable having the value s switch
in the marked state and the rest switch in the non-marked state

e CFIND s : (conditioned find) all the variables that follow a variable hav-
ing the value s and being in the marked state switch in the marked state
and the rest switch in the non-marked state

e INSERT As : the value s is inserted before the all marked variables

e LEFT |RIGHT : all the markers move one position to the left or to the
right

e DELETEA : the values stored in the all marked position are deleted, the
positions remain marked and the symbols from the right are moved one
position left

e CUT : in all marked points the strings are divided (the link is removed)
in two independent substrings

e PASTE s,t : all the strings move over the area of the cellular automaton
and when an end of a string having the value s meets another end having
the end with the value t, the two strings become one and the symbols s and
t are deleted. ©

Excepting the last function all are executed in a single clock cycle. The function
PASTE s,t depends by a random process and the end can be tested waiting for
the disappearance of all the symbols s or of all the symbols ¢. A very important
parameter in this process is the string’s "mobility”. The work is in progress
for a simulator for experimenting algorithms that offer a lot of "mobility” to
the strings stored over the cellular automaton. Many algorithms can be used,
but the efficiency in performing the PASTE function must be measured only in
some formal experiments using a simulator.

The previous definition describes only a theoretical model. For an actual
circuit must be added some simple input-output functions.

6.2 The Full Parallel Insert/Delete Operation on the EC

The Insert/Delete operation described in Subsection 2.2 by the procedures IN-
SERT and DELETE as such can be performed using the EC function set. The
input data consists in many strings stored in the active cellular automata’s cells.
All the occurrences of the substrings uv or uzv are marked in the same time
as for the CM applications, but now the insert or the delete of the string z is
parallel performed in all marked points, rather than in the previous case when
the operation was performed only in the first marked point.

The execution time for all insert or delete operations that can be performed
over the content of EC depends only by the length of the (u,z,v) € I'| D, thus:

Touryp € O(l(uzv)).

17



The size of the structure that performs these operations is in O(n), where n is
the number of cellular automata’s cells.

6.3 The Full Parallel Splicing Operation on the EC

The algorithm for performing splicing operations over strings stored in EC starts
similar as in the case of the system using CM, but is completed different because
all the splicing operations that can be performed will be performed in parallel.
The main steps are the following:

1. all the occurrences of the substring ujus (see Definition 1) are found and
the special symbol « is inserted between u; and us

2. all the occurrences of the substring uszu, (see Definition 1) are found and
the special symbol § is inserted between uz and u4

3. perform the sequence: FIND a, CUT, thus generating a set of strings
having the form z;u;a (and another set of strings having the form wusx2)

4. perform the sequence: FIND 3, LEFT, LEFT, CUT, thus generating
a set of strings having the form Su4y> (and another set of strings having
the form yjus)

5. perform PASTE «, 8 until all as or all s disappear.

The first four steps are performed in time related with the length of the rule r,
T € O(I(r)). The execution time in the last step depends on the ”mobility” of
the strings stored in EC.

7 Conclusions

In this paper we have presented two solutions for performing molecular oper-
ations: the Connex Memory and its extension over a cellular automaton: the
Eco-Chip. Both can be used to perform the splicing operation, the insert/delete
operations or the matching operations (the last was ignored in this approach).
All the three operations have two main steps:

1. identifying the places where the operations can be applied
2. performing the proper operation.

The first step parallel performed in CM or in EC, but the second can be parallel
executed only with EC.

The performances of the system built around the CM circuit are the follow-
ings:

1. The execution time for each splicing operation is

Ts € O(maz. length of a string)
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for any number of strings stored in the Connex Memory. For the insert/delete
operations the execution time for one insert or delete operation is T7,p €
O(l(uzv)).

2. The size of the structure of Connex Memory is: Scp € O(n) where n is
the number of cells.

3. Therefore: using an O(n) sized data structure (containing many strings)
we can perform on it only one splicing operation or insert/delete operation in
o(1).

4. Instead of the von Neumann architecture:
Processor - Channel - RAM
We propose a new one:
Processor - Channel - CM

in which a very fine grain parallelism, performed by the CM, avoids the
main effect of the channel’s bottleneck.

5. Substituting the RAM with the Connex Memory the area on the silicon
is multiplied only by a constant and the time decreases from O(n) to O(1) for
a system executing one splice, delete or insert at a time. Thus, the proposed
architecture has a concrete, economic and performant solution.

The performances of the system built around the EC circuit are the follow-
ings:

1. The execution time for any number of insert or delete operations asso-
ciated to one applications of the operations is in O(l(uzv)). For the splicing
operations the time depends on the "mobility” of the strings that wind over the
cellular automaton.

2. The size of EC is proportional with n, the number of cells.

3. An EC can be used as a performant co-processor for specific applications.

At the end of this paper we make a suggestion. In order to improve the
"mobility” of the snakes of symbols that wind over the cellular automaton sur-
face, a multi-level cellular automaton is proposed. Thus, an additional level
of cells can be used to propagate the ”smell” of the arguments of the function
PASTE. Each cell on the basic level is connected with a correspondent cell in
the second layer, used to propagate the ”smells”. The snakes of symbols will be
oriented after the ”smells” received from the second layer. We hope that using
this model the strings ziu1a will meet as soon as possible the strings Suqys.
The experiments made with a simulator will decide on the opportunity to use
”smells” to accelerate the splicing operation.

We believe that implementing in silicon the molecular mechanisms is a real
challenge for the implementation in molecules.

1. The interface with a silicon machine is simpler.

2. The size of the silicon machine has the smallest dimension.

3. The time for the insert/delete operation the smallest possible: is the time
to express the rule.
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4. The time for the splicing operation is in the same order on the silicon
and on the molecules, being related to the ”mobility” of strings/molecules on
the physical support.

5. But the molecular computing has a definitive advantage: it is an amazing
suggestion for silicon based computing.
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APPENDIX

The Structure of the Connex Memory

The whole structure of the CM is represented in Figure 9, where:
e Ci, for i =1,2,...,n, represents the i-th cell

e Transcoder is a combinational circuit that receives from each cell the mark-

ers
momyq...my = 00..01XX... X

(X € {0,1}) and generates:
mym/...m,, = 00...011...1

substituting with 1 all the symbols after the first occurrence of 1 and
mgmy...m!" = 00...010...0

emphasizing the first occurrence of a marked symbol.
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Figure 9: The structure of CM. The cells C;, each storing a variable, are serially
connected. All are externally connected through the bi-directional DATA bus
and by the FUNC bus. In addition, each cell generates the marker m; toward
TRANSCODER and receives signals that classify them.

In consequence, the cells of the CM can be divided in three classes:
e the class of cells before the first cell having the marker (m; = 1)
o the first marked cell

o the class of cells after the first marked cell.

Using the signals m},m!, E;_1 and m;_, according to the current command
(COM), each cell has enough information to switch into the next state. The
size of this structure is O(n) for the string of the cells and is O(n log n) for
Transcoder. In order to reduce the size of CM to O(n) we must use a bi-
dimensional solution for the cell array. It follows that the transcoder is sub-
stituted by two transcoders, each having the size O(y/n log n). This second
solution allows us to define a CM with O(n) complexity.

Beside the connections with the transcoder, each cell is connected with the
previous and the next cell. In addition, each cell is connected to the two buses:
the bi-directional DATA bus and the FUNC bus. The cell structure is presented
in Figure 10, where:

e R is a p-bits register that stores the value of the variable v;
e D is a D (delay) flip-flop that stores the value m; of the marker

e MUX, is a multiplexer that selects in each clock cycle, according to the
bits ¢; and c¢o, the value to be stored in the register R
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Figure 10: The organization of a CM cell.

MUX, is a multiplexer, selected by c3 and ¢4, which allows storing the
current value of the marker in D, in each clock cycle

CP is a comparator that shows by the output FE; if v; is equal with the
value applied to the input DIN

CLC is a combinational circuit that generates the control bits ¢, ¢1, ..., ¢s,
according to: the command received from COMP, the bits F;_1, m;_1,
received from the previous cell, and the bits m}, m}, generated by the
Transcoder (see Figure 9)

co is the value of the locally generated marker

¢s5 is the enable input for the tristate circuit that drives the bi-directional
bus DATA.
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