
Parallel Architecturing
Starting from Natural Computational Models1

Gheorghe Stefan2

1 Communication held in 23rd of October 2000 in the 14th Section of the Romanian Academy.
2 Politehnica University of Bucharest, Dept. of Electronics, Bd. Iuliu Maniu 1-3, Bucharest 6, Romania, stefan@agni.arh.pub.ro

1. Introduction

The development of efficient parallel computation is
now limited because we do not have yet true parallel
architectures. Nowadays parallel computation involves
a bad mixture between parallel structures and parallel
algorithms. The effect of a good boundary between the
machines and the algorithms lacks. The main reason
for this lack is due to the sequential models of
computation that ground our architectural approach. In
order to have true parallel architectures we must start
from parallel models of computation. Many natural
facts suggest us computational mechanisms. The
current computer machines mimic only the external
manifestation of the mind computational activity. The
computation is an attribute of almost any physical
process. Only the suggestions that come from
computational aspects of physics can ground efficient
parallel structures and real parallel architectures.
Context-driven architectures are proposed starting
from natural models of computation and based on
actual parallel structures. Three case studies, about
parallel architectures based on molecular and
membrane computing, are presented.

2. The Architecturing Process

Structuring, i.e., making of structures is the main goal
of current research in computation. Architecturing,
i.e., defining architectures will be the main way to
improve the performance in computation.

2.1 The Definition of Architecture

An architecture has two users because it is an inter-
face which implies the ``two faces". The first user is
the machine designer and the second user is the
machine user. Therefore, two definitions for the same
concept appear.

Definition 1 An architecture offers of the machine
designer (the first user) a set of functions to be
implemented without any care about how these
functions will be used.

Definition 2 An architecture offers of the machine user
(the second user) a set of functions and makes
transparent the organization and the dimension of the

computational structure which performs that set of
functions.

The second definition is important for our approach.
John von Neumann architecture and all related
architectures are all sequential [von Neumann '45].
Parallel computation is made now without the
"protection" offered by a true architecture. The user of
a parallel machine must know too many things about
the organization and the size of the physical structure.
We cannot now hide the physical details to the user,
because he uses these details in order to try to improve
the efficiency of computation.

The motivation for this impossibility consists in the
sequential models of computation which ground our
computational approach.

2.2 Sequential Models of Computation

The year 1936 was very important for the history of
computing. A strange synchronization triggered the
occurrence of all basic models of computation:
• Allan Turing proposed his famous machine

[Turing '36]
• Alonzo Church proposed the lambda calculus

[Church '36]
• Stephan Kleene proposed the use of recursive

functions [Kleene '36]
• Emil Post proposed independently a similar model

of Turing [Post '36].
All these models are equivalent and have a common
feature: they are sequential. The sequentially of the
basic models are obvious. The Turing machine is
controlled by a finite automaton, lambda calculus
requires a progressive evaluation of lambda
expressions and the recursive functions are based on
the composition rule which requires an ordered
evaluation of functions.

The main concept dominating these initial models is
the algorithm. The computation is a sequentially
controlled process. The algorithm allows us to
construct the result. This common feature and the
previously emphasized synchronization must have an
explanation.

2.3 Gödelian Constructive Paradigm

We believe that the triggering signal for the
computational events from 1936 was the paradigmatic
incompleteness theorem [Gödel '31] proved by Kurt
Gödel in 1931. The kernel of the Gödel's proof is based
on the mechanism that allows building of a correct un-
decidable form. In this approach originates the idea of
computing seen as reaching a result using an
algorithmic construct.

All the five computational models above mentioned
define the computation as an algorithmic process. The
result is constructed sequentially under an algorithmic
control. Thus, Gödel imposed a constructive
paradigm with the main consequence of sequentially.

2.4 Mind and Computation

Mind offered the main suggestion for computation.
More precisely, the external behavior of mind
operating with numbers is now modeled by
computation and simulated in computing machines.
Peano's arithmetic is the system in which Gödel
developed his famous theorem. Indeed, computation
can be reduced to the arithmetic of positive integers,
but in the same time the computation is limited to
remain what can be sequentially constructed using
positive integers.

In the same time, we make another enormous mistake
believing that the mind is a computational process. We
get many advantages from this point of view. The
simplicity of the model allows us to obtain a
tremendous technological growing in the last half of
century. But now we must change the paradigm in
order to have the chance to overpass obvious limits.

"A simplified view of the history of computing shows
that computing was thought of mainly as mental
processes in the 19th century; it is thought of mainly as
machine processes in the 20th century, and will be
thought of mainly as Nature processes in the 21st
century." [Gruska '99]

Computation seems to be the natural process of
computation filtered by mind. But there is the chance
that the computation is more than that, remaining in
the limits of the formal. We believe that the formal was
restricted to computational by mind. The extended
formal is suggested by the structural diversity of nature
which can not be captured in computational forms.
Natural forms strict include computational forms, thus
offering a chance for an extended paradigm of
computation.

2.5 Physics and Computation

Maybe the computation is more general and not
limited as a specific mind process. Maybe, the real

computation is hidden behind the superficial behaviors
of our mind. The computation as mental process is
overloaded with too many "side effects" induced by the
communication ``interface" used by the human being
in community.

Our opinion is that computation is a natural process
distributed on each physical level of reality, including
the mental level, but not exclusively at this level.
More, the natural process of computation is
inefficiently and, maybe partially, modeled by mental
computation. Many scientists believe that any real
process contains a computational aspect, some of them
say (exaggerating): "physics is computation". Physics
is more than computation, but in its structural part is
mainly computation.

Until now we use the theory of computation according
with the Church-Turing thesis. We do not exclude the
possibility of computation beyond this thesis
maintaining the computation as a formal-structural
process. Physics can expand the formal computation,
removing limits introduced by the obstinate approach
performed starting from mind as exclusive site of
computation.

3 "Parallel Architectures"

The term ``parallel architecture" is not consistent in the
world of computing machinery. In order to be efficient
in parallel computing we must renounce to the
transparency of the physical structure. Thus,
architecture disappears.

A parallel machine consist in a structure having the
size in O(n) with constant complexity, C(n) ∈ O(1),
and execution time in O(f(n)). Engineers imagined
many and sophisticated parallel machines, but they
didn't find yet an efficient way to use these wonder-
working buildings. The reason for this helplessness:
the languages used for these machines are too close to
the assembly languages.

The main limit comes from the computational models.
Let be, for example, only the Kleene's model. The
composition rule allows us to understand the limit of
parallelism in a computational paradigm that uses this
model or the related models. Indeed, for

f(x1, ... , xn) = g(h1(x1, ... , xn), ... , hm(x1, ... , xn))

 the parallelism is limited by the value of m in different
stages of computation.

The standard models can be reformulated to ground the
parallel approach. For example, there is a probabilistic
variant of Turing machine, PTM. Each state of the
machine can be quitted on many ways, each way
having its own probability. The number of states, in
which such a machine can be, grows exponentially.

There are two kinds of interpretation for PTM. In the
first, a single PTM evolve randomly, according with
the probabilities associated with the transitions from
each state. In the second, in each cycle the machine is
multiplied according to the number of transitions
defined from the current state, simulating a non-
deterministic computation.

A possible ``real" structure consists in putting together
n PTM working in the first variant. The speed of
computation increases O(n) times, because the control
is minimal, but the architecture is not defined at the
system level. In this case we have many ``local"
architectures working almost efficient because do not
interact.

We maintain in this point the idea of less control which
helps us to improve the performance.

4. Natural Models of Computing

The mind is not the single possible suggestion for
computation. Gradually, starting from the '60th years,
scientists start to understand the power of others
natural mechanisms in performing computation. The
main distinction of these models in comparison with
the standard models (in the meantime appears the
model of Markov's algorithms [Markov '54]) is the
possibility to really ground the parallel computation.

My hope is that starting from these new, natural
models, the computation gets supplementary features,
remaining in the limit of formal-structural approach.
My opinion is that the formal is extended over the
Church-Turing computability based on control
algorithm and sequentiality. Hypothesis: the super-
Turing compatibility can be expected from a
paradigm of computation in which the context allows
many applying of rules belonging to a finite set of
rules.

The first problem rising related with the previous
hypothesis is how much is expanded the domain of
formal over the domain of Turing-computable. A very
well known, but very little disseminated fact is that the
space of the formal is huge in comparison with the
space of Turing-computable (see Appendix). Thus,
there is space for expanding the computable! One way
in this respect is to understand the lesson of Nature
regarding the parallelism.

4.1 Lindenmayer Grammars

A Lindenmayer grammar consists mainly in a set of
productions parallel applied starting from an initial
symbol. In each stage all the rules which can be
applied are applied. This approach is one of the first in
which the parallel actions are not restricted. The degree
of parallelism is similar with the natural process of

cellular growing, because these grammars are designed
to model this natural process. Applying the rule is
driven by the context. The control is minimal because
all can be done is done. At each step important is the
stage reached by the symbolic structure in the
evolution of the generating process. The actual content
of the symbolic structure triggers the rules to be
applied. Thus, the control is almost completely
substituted by a context driven process.

4.2 Genetic Algorithms

Genetic algorithms represent a style of designing
algorithms when the space in which we must find the
solution is too large. Instead of a systematic, very
controlled, process of searching, there is proposed an
apparent chaotic way of running through the space of
solutions. "Crossing" conveniently possible solutions
and adding an appropriate number of random
mutations the searching process avoids the exhaustive
crossing of all possible solutions, offering a better
solution, eventually the best.

The genetic approach is very suitable for parallel
computation, because many independent computations
can be started simultaneously. The searching process
can be developed independently in many points in the
same time and the chance to find a good solution
grows almost proportionally. Because there is no
necessary a global control of the process, genetic
algorithms offer a very interesting suggestion for
parallel architecturing.

4.3 Molecular Computing

After the Adleman experiment [Adleman '94], the
molecular computing, a domain initiated starting from
'70 years, offers a very promising basic theoretical
result: a new computational model was established
[Paun '95] based on the splicing mechanism [Head
'94]. The splicing mechanism consists in identifying in
the elements of a set of strings substrings that define
cutting points, in cutting the strings in identified points
and after that in recombining the obtained substrings in
order to form new strings.

Because in a "soup" of DNA molecules we can have a
huge number of ``strings", a big number of splicing
can independently performed in a short time interval.
The parallelism of this approach is obvious.

This model can be used also in defining "silicon
splicing machine" [Stefan '97], [Stefan '98].

4.4 Membrane Computation

Recently, a new proposal holds the attention of many
researchers: the membrane computation [Paun '99].
Starting also from a natural suggestion this kind of
computation offers the possibility to involve in the

computational process some chaotic aspects starting
from the ``swimming effects" of objects inside a
membrane. The set of rules defined over a super-set
are applied also depending on a evolving context until
no rule can be applied. The lack of any direct control
offers maybe super-Turing features of this kind of
computation.

4.5 Quantum Computing

The quantum computation is only a theoretical
approach, but it is very useful in the discussion about
the relation between the naturally founded computation
and the mind founded computation. Mind filtered the
natural computation offering the Church-Turing based
computation. The quantum computation offers a more
complex environment for computing. The difference
can be easy proved using a PTM and a quantum Turing
machine (QTM).

The maximum power of a PTM is reached when it is
used for modeling a non-deterministic computation. A
QTM achieve the same degree of parallelism but has in
addition possibilities offered by the play between the
positive interferences and the negative interferences of
the complex aptitudes, α1, … , αk, at each level of
computation.

Because "the nature does not make jumps" we must
avoid to referring to two types of worlds, a classic
world and/or a quantum world. All we can do is to use
two type of languages. One is restricted to the Church-
Turing computability and another, more actual, is the
language of quantum computing. The first leads us to
the actual sequential architecture and is seducing us
with parallel structure. The second offers us the
possibility of a parallel architecture.

5 Context-Driven Architectures

A possible way of architecturing in the context offered
by natural models of computation is to use the context
to drive the computational process. The conventional
computation uses the more restricted mechanism of
control. There are proposal of true parallel
architectures starting from the conventional models of
computation (reduction architecture and data-flow
architecture), but they are strictly Turing compatible.
We hope that starting from natural models of
computing to be able to find super-Turing
architectures.

One of the main features, common to almost all natural
models of computation is the context-driven
mechanism used to "control" the computation. This
mechanism can be found also in sequential models of
computation. The Markov algorithms use many
sequential applications of a finite set of rules,
depending on the content of the string to be processed.
But in each step only one production can be applied.

The Lindenmayer grammars allow any number of rules
to be applied in each step in many places of the
previously generated structure. In molecular
computing many splicings are performed
simultaneously the soup of DNA molecules. Each
super-set offers the context of many productions to be
applied in the model of membrane computation. In all
these cases, and maybe in others, the context selects
the actions to be performed, so as a part of a finite set
of rules are applied in all the place where the
application is possible. Thus, the parallelism is
extended in many places according to local decisions
being not imposed by a centralized control.

There are mainly two way to use these new Nature
inspired models. One is to find specific technologies
for each of them and another is to try to use now a day
Silicon technology and appropriate intermediate
models. The second will be illustrated in the next
section.

6. Case Studies

Three case studies will be shortly presented. All the
three are experiments on the way to define parallel
architectures. The architecturing process intends also
to disclose super-Turing features of computation in the
true parallel variants.

6.1 Molecular computing on Connex Memory

The molecular computing is a challenge also for the
Silicon based machines. An interesting experiment was
done using as physical support for the Connex memory
(CM) [Stefan '98a]. The facility to find a string in time
related with the size of string, offered by the CM,
allowed the performing a splicing operation in
constant time, independently of the number of strings
involved in computation. It was a good result, because
in the actual DNA computation a splicing operation is
performed in time O(n1/3) due to the spatial distribution
of molecules.

6.2 The Eco-Chip and Molecular Computing

In the actual ``in vitro" systems are performed many
splicings in the same time. In order to catch this aspect,
the functions of the CM were spread over the area of a
bi-dimensional cellular automaton. Results the, so
called, Eco-chip (EC) [Stefan '98]. Using as physical
support the EC, many splicings can be done in the
same time, each being performed in time O(n1/2).
Using a simulator an "in info" experiment was done.
Also, the Adleman's experiment was re-made [Stefan
'98] using the same simulator.

Because the size of EC is in O(n) and the complexity is
in O(1), the circuit is obtainable in current
technologies. In this case, based on computational

model and a realizable structure we can start to define
a parallel architecture.

6.3 Chaotic Membrane Computing on Cellular
Automata

The promising model of membrane computation can
also ground a parallel architecture, based on the
structural support offered by the concept of cellular
automaton and on the framework of the chaotic
understanding of the self-organizing processes [Stefan
'00].

A super-cell system can be represented on the
"surface" of a cellular automaton. A membrane is a
closed string of cells, having the same value, that
closes an area of cells and, many of the enclosed cells
have values belonging to a super-set. The dimension
and the position of the membrane fluctuate randomly.
Also, the elements of a super-set inside of a membrane,
have a chaotic motion. If the elements of the super-set
meet each other in this chaotic motion and if there is an
appropriate rule, then the two elements are replaced
according to the rule. Thus, this approach catches also
the chaotic "swimming effect" of the process in a
certain membrane of an actual cell. The simulation of
this mechanism is under development.

Based on the chaotic interaction between the
membrane and the elements it contains are expected
"super-Turing" formal effects.

7 Final Comments}

This communication is a preliminary presentation of
the intended future research activity plan of the Center
for New Electronics Architectures. The main idea is
that parallel computation can be, maybe, more than
computation established by Church-Turing thesis.
In this case, a parallel architecture is more than a better
way to make computation. A parallel architecture
offers also a way to deeply understand physics and
reality. It is another improved way to make science, to
enlarge the domain of the formal in order to reach the
boundary with the phenomenon and with the
phenomenological approach.

Bibliography

[Adleman '94] Adleman, L. M.: "Molecular
Computation of Solutions to Combinatorial Problems",
Science, 226 (Nov. 1994).
[Church '36] Alonzo Church: "An Unsolvable
Problem of Elementary Number Theory", in American
Journal of Mathematics, vol. 58 345-363, 1936.
[Gödels '31] Kurt Gödel: "On Formally Decidable
Propositions of \ Principia Mathematica and Related
Systems I", in S. Fefermann et all.: Collected Works I:
Publications 1929 - 1936, Oxford Univ. Press, New
York, 1986.

[Gruska '99] Jozef Gruska: Quantum Computing,
McGraw-Hill, 1999.
[Head '92] Head, T.: "Splicing Schemes and DNA",
Lindenmayer Systems: Impacts on Theoretical
Computer Science and Developmental Biology (G.
Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin,
1992, pp. 371 - 383.
[Kleene '36] Stephen C. Kleene: "General Recursive
Functions of Natural Numbers", in Math. Ann., 112,
1936.
[Lindenmayer '68] Lindenmayer, A.: "Mathematical
Models of Cellular Interactions in Development I, II",
Journal of Theor. Biology, 18, 1968.
[Markov '54] Markov, A. A.: "The Theory of
Algorithms", Trudy Matem. Instituta im V. A.
Steklova}, vol. 42, 1954. (Translated from Russian by
J. J. Schorr-kon, U.S. Dept. of Commerce, Office of
Technical Services, no. OTS 60-51085, 1954)
[P`un '95] P`un, G. : "On the Power of the Splicing
Operation", in Intern. J. Computer Math., Vol. 59, pp
27-35, 1995.
[Paun '99] Gh. Paun: "Computing with membranes.
An introduction", Bulletin of EATCS, 68 Feb. 1999, pp.
139-152.
[Post '36] Emil Post: "Finite Combinatory Processes.
Formulation I", in The Journal of Symbolic Logic,
vol.1, p. 103 -105, 1936.
[Stefan '96] Stefan, G., Malita, M. : "Chaitin's Toy-
Lisp on Connex Memory Machine", Journal of
Universal Computer Science, vol. 2, no. 5, 1996, pp.
410-426.
[Stefan '97] Stefan, G., Malita, M. : "The Splicing
Mechanism and the Connex Memory", Proceedings of
the 1997 IEEE International Conference on
Evolutionary Computation, Indianapolis, April 13 - 16,
1997. p. 225-229.
[Stefan '98] Stefan, G., Benea, R.: "Connex Memories
& Rewriting Systems", in MELECON '98, Tel-Aviv,
May 18 -20, 1998.
[Stefan '98a] Stefan, G.: "The Connex Memory: A
Physical Support for Tree / List Processing" in The
Romanian Journal of Information Science and
Technology, Vol., Number 1, 1989, p. 85 - 104.
[Stefan '98] Stefan, G.: "Silicon or Molecules? What's
the Best for Splicing", in Gh. P`un (ed.): Computing
with Bio-Molecules. Theory and Experiments,
Springer, 1998. p. 158-181.
[Stefan '00] Stefan, G.: "Chaotic Membrane
Computation with Cellular Automata", in progress.
[Turing '36] Alan M. Turing: ``On Computable
Numbers with an Application to the
Eintscheidungsproblem", in Proc. London
Mathematical Society, 42 (1936), 43 (1937).
[von Neumann '45] John von Neumann: "First Draft
of a Report on the EDVAC", reprinted in IEEE Annals
of the History of Computing, Vol. 5, No. 4, 1993.

Appendix: Formal / Turing-computable

Any function g: Nn→ N having the form

g(x1, … , xn)
with xi ∈ N for i = 1, … , p, can be expressed as

f(x1, … , xn)
where: f:{0,1}n → {0,1}, with xi ∈ {0,1} for i = 1, … ,
n. Thus any function g, has a Boolean form f.

Definition 3 A function f(x1, , xn) is a formal function
if the form of f can be defined using a string of
symbols d1, … , dq.

Theorem 1 If the definition of any formal function f(x1,
… , xn) is given by the binary string d1, … , dq with with
xi ∈ {0,1} for i = 1, … , m, then the length of definition,
m, has the value: m = 2n.

Proof The circuit for the Boolean function f can be
described by:

 f(x1, … , xn)= xn f1(x1, … , xn-1) + xn' f0(x1, … , xn-1)
the resulting n-input circuit containing an elementary
multiplexer, EMUX, and two circuits with n-1 inputs,
one for f1(x1, … , xn-1) and one for f0(x1, … , xn-1).
EMUX is an elementary selector circuit described by
the following equation:

out = sel input_1 + sel' input_0
the output out takes the value of the selected input
(input_1 or input_0) selected by the value of the
selection input sel.
In the next step, the two (n-1)-input circuits are each
similarly described with an EMUX and two (n-2)-input
circuits. The same is the procedure applied to the four
resulted circuits and so on until the ending step in
which occur 2n-1 EMUXs, each having connected on
the selected inputs 2n only two kind of functions, the
functions of zero variables: the values 0 and 1.
The final circuit is a binary tree of n levels, containing
2n-1 EMUXs and having connected to the 2n inputs of
the last level of EMUXs a 2n-bit binary configuration.
Shortly, we have a simple, uniform circuit (the tree of
EMUXs, the same for any Boolean function of n
variable) and a binary configuration of 2n bits that
personalizes the circuit for a certain f.
It is obvious that for any n ∈ N, the function f has
associated a family of circuits.

Attention: families of circuits do more than Turing
machines! Of course, because they are random
(defined) parallel structure. But, unfortunately they are,
in the same time, too complex. The solution to the
problem of how to deal with this kind of complexity
could be the actual self-organizing processes.

Theorem 2 The algorithmic complexity of a formal
function f(x1, … , xn), is in O(m).

Proof The program which describes the string d1 … dm
has the form

p d1 … dm

where p is a constant length preamble syntactically
imposed. Therefore, the maximum length of program
for a certain machine is in O(m).

Theorem 3 If the function f(x1, … , xn) is Turing-
computable, then it has the algorithmic complexity in
O(1).

Proof A Turing machine accepts only functions having
constant descriptions, in O(1) (independent of n),
because the control automaton is a finite automaton.

The main question is: what is the weight of Turing-
computable functions in the set of formal functions?

Theorem 4 The weight, w, of Turing-computable
functions, of n binary variables, in the set of formal
functions decreases exponentially with n.

Proof Let be a given n. The number of formal n-input
function is N = 2p, with p = 2m, because the definition
are expressed with 2n bits. Some of these functions are
Turing-computable. These functions can be defined by
compressed m-bit strings. The value of m depends on
the actual function, but is realized the condition that
max(m) < n and m does not depends by n. Each
compressed form of m bits corresponds only to one n-
bit uncompressed form. Thus, the ratio between the
Turing-computable function of and the formal
function, both of n variables, is smaller than

max(w) = 2-(n-max(m)).

And, because max(m) does not depends by n, the ratio
has the same form for no matter how big becomes n.
Results:

max(w) = const/2n.

If we say that almost all the formal is not computable
we are wrong in a very small extent. It is a miracle that
the computable is useful in this condition. A strange, to
be studied, "mechanism" maybe leads the human being
to be efficient using only the effective, Turing-
computable functions.

What is the reason for which we do not use family
of circuits for computing functions? Because this
approach is complex and oversized. Most
(tremendous most) of strings used for defining
functions are algorithmic random, i.e., useless for
building universal machines. Thus, we remain
still limited to the simple functions performed by
Turing machine under the control of finite
automata. The option for the simplicity is
awarded by the spectacular development of
computers but is punished by the simplicity of
problems resolved by these, too promising,
machines.

