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1. Introduction 
 

The development of efficient parallel computation is 
now limited because we do not have yet true parallel 
architectures. Nowadays parallel computation involves 
a bad mixture between parallel structures and parallel 
algorithms. The effect of a good boundary between the 
machines and the algorithms lacks. The main reason 
for this lack is due to the sequential models of 
computation that ground our architectural approach. In 
order to have true parallel architectures we must start 
from parallel models of computation. Many natural 
facts suggest us computational mechanisms. The 
current computer machines mimic only the external 
manifestation of the mind computational activity. The 
computation is an attribute of almost any physical 
process. Only the suggestions that come from 
computational aspects of physics can ground efficient 
parallel structures and real parallel architectures. 
Context-driven architectures are proposed starting 
from natural models of computation and based on 
actual parallel structures. Three case studies, about 
parallel architectures based on molecular and 
membrane computing, are presented. 
  
2. The Architecturing Process 
 
Structuring, i.e., making of structures is the main goal 
of current research in computation. Architecturing, 
i.e., defining architectures will be the main way to 
improve the performance in computation. 
 
2.1 The Definition of Architecture 
 
An architecture has two users because it is an inter-
face which implies the ``two faces". The first user is 
the machine designer and the second user is the 
machine user. Therefore, two definitions for the same 
concept appear. 
 
Definition 1 An architecture offers of the machine 
designer (the first user) a set of functions to be 
implemented without any care about how these 
functions will be used. 
 
Definition 2 An architecture offers of the machine user 
(the second user) a set of functions and makes 
transparent the organization and the dimension of the 

computational structure which performs that set of 
functions. 
 
The second definition is important for our approach. 
John von Neumann architecture and all related 
architectures are all sequential [von Neumann '45]. 
Parallel computation is made now without the 
"protection" offered by a true architecture. The user of 
a parallel machine must know too many things about 
the organization and the size of the physical structure. 
We cannot now hide the physical details to the user, 
because he uses these details in order to try to improve 
the efficiency of computation.  
 
The motivation for this impossibility consists in the 
sequential models of computation which ground our 
computational approach.  
 
2.2 Sequential Models of Computation  
 
The year 1936 was very important for the history of 
computing. A strange synchronization triggered the 
occurrence of all basic models of computation:   
• Allan Turing proposed his famous machine 

[Turing '36] 
• Alonzo Church proposed the lambda calculus 

[Church '36] 
• Stephan Kleene proposed the use of recursive 

functions [Kleene '36]  
• Emil Post proposed independently a similar model 

of Turing [Post '36]. 
All these models are equivalent and have a common 
feature: they are sequential. The sequentially of the 
basic models are obvious. The Turing machine is 
controlled by a finite automaton, lambda calculus 
requires a progressive evaluation of lambda 
expressions and the recursive functions are based on 
the composition rule which requires an ordered 
evaluation of functions.  
 
The main concept dominating these initial models is 
the algorithm. The computation is a sequentially 
controlled process. The algorithm allows us to 
construct the result. This common feature and the 
previously emphasized synchronization must have an 
explanation. 
 
 
 



2.3 Gödelian Constructive Paradigm 
 
We believe that the triggering signal for the 
computational events from 1936 was the paradigmatic 
incompleteness theorem [Gödel '31] proved by Kurt 
Gödel in 1931. The kernel of the Gödel's proof is based 
on the mechanism that allows building of a correct un-
decidable form. In this approach originates the idea of 
computing seen as reaching a result using an 
algorithmic construct.  
 
All the five computational models above mentioned 
define the computation as an algorithmic process. The 
result is constructed sequentially under an algorithmic 
control. Thus, Gödel imposed a constructive 
paradigm with the main consequence of sequentially. 
 
2.4 Mind and Computation 
 
Mind offered the main suggestion for computation.  
More precisely, the external behavior of mind 
operating with numbers is now modeled by 
computation and simulated in computing machines. 
Peano's arithmetic is the system in which Gödel 
developed his famous theorem. Indeed, computation 
can be reduced to the arithmetic of positive integers, 
but in the same time the computation is limited to 
remain what can be sequentially constructed using 
positive integers.  
 
In the same time, we make another enormous mistake 
believing that the mind is a computational process. We 
get many advantages from this point of view. The 
simplicity of the model allows us to obtain a 
tremendous technological growing in the last half of 
century. But now we must change the paradigm in 
order to have the chance to overpass obvious limits. 
 
"A simplified view of the history of computing shows 
that computing was thought of mainly as mental 
processes in the 19th century; it is thought of mainly as 
machine processes in the 20th century, and will be 
thought of mainly as Nature processes in the 21st 
century." [Gruska '99] 
 
Computation seems to be the natural process of 
computation filtered by mind. But there is the chance 
that the computation is more than that, remaining in 
the limits of the formal. We believe that the formal was 
restricted to computational by mind. The extended 
formal is suggested by the structural diversity of nature 
which can not be captured in computational forms. 
Natural forms strict include computational forms, thus 
offering a chance for an extended paradigm of 
computation. 
 
2.5 Physics and Computation 
 
Maybe the computation is more general and not 
limited as a specific mind process. Maybe, the real 

computation is hidden behind the superficial behaviors 
of our mind. The computation as mental process is 
overloaded with too many "side effects" induced by the 
communication ``interface" used by the human being 
in community.  
 
Our opinion is that computation is a natural process 
distributed on each physical level of reality, including 
the mental level, but not exclusively at this level. 
More, the natural process of computation is 
inefficiently and, maybe partially, modeled by mental 
computation. Many scientists believe that any real 
process contains a computational aspect, some of them 
say (exaggerating): "physics is computation". Physics 
is more than computation, but in its structural part is 
mainly computation.  
 
Until now we use the theory of computation according 
with the Church-Turing thesis. We do not exclude the 
possibility of computation beyond this thesis 
maintaining the computation as a formal-structural 
process. Physics can expand the formal computation, 
removing limits introduced by the obstinate approach 
performed starting from mind as exclusive site of 
computation. 
 
3 "Parallel Architectures" 
 
The term ``parallel architecture" is not consistent in the 
world of computing machinery. In order to be efficient 
in parallel computing we must renounce to the 
transparency of the physical structure. Thus, 
architecture disappears. 
 
A parallel machine consist in a structure having the 
size in O(n) with constant complexity, C(n) ∈ O(1), 
and execution time in O(f(n)). Engineers imagined 
many and sophisticated parallel machines, but they 
didn't find yet an efficient way to use these wonder-
working buildings. The reason for this helplessness: 
the languages used for these machines are too close to 
the assembly languages.  
 
The main limit comes from the computational models. 
Let be, for example, only the Kleene's model. The 
composition rule allows us to understand the limit of 
parallelism in a computational paradigm that uses this 
model or the related models. Indeed, for  
 

f(x1, ... , xn) = g(h1(x1, ... , xn), ... , hm(x1, ... , xn)) 
 
 the parallelism is limited by the value of m in different 
stages of computation.   
  
The standard models can be reformulated to ground the 
parallel approach. For example, there is a probabilistic 
variant of Turing machine, PTM. Each state of the 
machine can be quitted on many ways, each way 
having its own probability. The number of states, in 
which such a machine can be, grows exponentially.  



  
There are two kinds of interpretation for PTM. In the 
first, a single PTM evolve randomly, according with 
the probabilities associated with the transitions from 
each state. In the second, in each cycle the machine is 
multiplied according to the number of transitions 
defined from the current state, simulating a non-
deterministic computation. 
 
A possible ``real" structure consists in putting together 
n PTM working in the first variant. The speed of 
computation increases O(n) times, because the control 
is minimal, but the architecture is not defined at the 
system level. In this case we have many ``local" 
architectures working almost efficient because do not 
interact.  
 
We maintain in this point the idea of less control which 
helps us to improve the performance. 
 
4. Natural Models of Computing 
 
The mind is not the single possible suggestion for 
computation. Gradually, starting from the '60th years, 
scientists start to understand the power of others 
natural mechanisms in performing computation. The 
main distinction of these models in comparison with 
the standard models (in the meantime appears the 
model of Markov's algorithms [Markov '54]) is the 
possibility to really ground the parallel computation. 
 
My hope is that starting from these new, natural 
models, the computation gets supplementary features, 
remaining in the limit of formal-structural approach. 
My opinion is that the formal is extended over the 
Church-Turing computability based on control 
algorithm and sequentiality. Hypothesis: the super-
Turing compatibility can be expected from a 
paradigm of computation in which the context allows 
many applying of rules belonging to a finite set of 
rules. 
 
The first problem rising related with the previous 
hypothesis is how much is expanded the domain of 
formal over the domain of Turing-computable. A very 
well known, but very little disseminated fact is that the 
space of the formal is huge in comparison with the 
space of Turing-computable (see Appendix). Thus, 
there is space for expanding the computable! One way 
in this respect is to understand the lesson of Nature 
regarding the parallelism. 
 
4.1 Lindenmayer Grammars 
 
A Lindenmayer grammar consists mainly in a set of 
productions parallel applied starting from an initial 
symbol. In each stage all the rules which can be 
applied are applied. This approach is one of the first in 
which the parallel actions are not restricted. The degree 
of parallelism is similar with the natural process of 

cellular growing, because these grammars are designed 
to model this natural process. Applying the rule is 
driven by the context. The control is minimal because 
all can be done is done. At each step important is the 
stage reached by the symbolic structure in the 
evolution of the generating process. The actual content 
of the symbolic structure triggers the rules to be 
applied. Thus, the control is almost completely 
substituted by a context driven process. 
  
4.2 Genetic Algorithms 
 
Genetic algorithms represent a style of designing 
algorithms when the space in which we must find the 
solution is too large. Instead of a systematic, very 
controlled, process of searching, there is proposed an 
apparent chaotic way of running through the space of 
solutions. "Crossing" conveniently possible solutions 
and adding an appropriate number of random 
mutations the searching process avoids the exhaustive 
crossing of all possible solutions, offering a better 
solution, eventually the best.  
 
The genetic approach is very suitable for parallel 
computation, because many independent computations 
can be started simultaneously. The searching process 
can be developed independently in many points in the 
same time and the chance to find a good solution 
grows almost proportionally. Because there is no 
necessary a global control of the process, genetic 
algorithms offer a very interesting suggestion for 
parallel architecturing. 
 
4.3 Molecular Computing 
 
After the Adleman experiment [Adleman '94], the 
molecular computing, a domain initiated starting from 
'70 years, offers a very promising basic theoretical 
result: a new computational model was established 
[Paun '95] based on the splicing mechanism [Head 
'94]. The splicing mechanism consists in identifying in 
the elements of a set of strings substrings that define 
cutting points, in cutting the strings in identified points 
and after that in recombining the obtained substrings in 
order to form new strings.  
 
Because in a "soup" of DNA molecules we can have a 
huge number of ``strings", a big number of splicing 
can independently performed in a short time interval. 
The parallelism of this approach is obvious.  
 
This model can be used also in defining "silicon 
splicing machine" [Stefan '97], [Stefan '98]. 
 
4.4 Membrane Computation 
 
Recently, a new proposal holds the attention of many 
researchers: the membrane computation [Paun '99]. 
Starting also from a natural suggestion this kind of 
computation offers the possibility to involve in the 



computational process some chaotic aspects starting 
from the ``swimming effects" of objects inside a 
membrane. The set of rules defined over a super-set 
are applied also depending on a evolving context until 
no rule can be applied. The lack of any direct control 
offers maybe super-Turing features of this kind of 
computation. 
 
4.5 Quantum Computing 
 
The quantum computation is only a theoretical 
approach, but it is very useful in the discussion about 
the relation between the naturally founded computation 
and the mind founded computation. Mind filtered the 
natural computation offering the Church-Turing based 
computation. The quantum computation offers a more 
complex environment for computing. The difference 
can be easy proved using a PTM and a quantum Turing 
machine (QTM).  
 
The maximum power of a PTM is reached when it is 
used for modeling a non-deterministic computation. A 
QTM achieve the same degree of parallelism but has in 
addition possibilities offered by the play between the 
positive interferences and the negative interferences of 
the complex aptitudes, α1, … , αk, at each level of 
computation. 
 
Because "the nature does not make jumps" we must 
avoid to referring to two types of worlds, a classic 
world and/or a quantum world. All we can do is to use 
two type of languages. One is restricted to the Church-
Turing computability and another, more actual, is the 
language of quantum computing. The first leads us to 
the actual sequential architecture and is seducing us 
with parallel structure. The second offers us the 
possibility of a parallel architecture. 
 
5 Context-Driven Architectures 
 
A possible way of architecturing in the context offered 
by natural models of computation is to use the context 
to drive the computational process. The conventional 
computation uses the more restricted mechanism of 
control. There are proposal of true parallel 
architectures starting from the conventional models of 
computation (reduction architecture and data-flow 
architecture), but they are strictly Turing compatible. 
We hope that starting from natural models of 
computing to be able to find super-Turing 
architectures.  
 
One of the main features, common to almost all natural 
models of computation is the context-driven 
mechanism used to "control" the computation. This 
mechanism can be found also in sequential models of 
computation. The Markov algorithms use many 
sequential applications of a finite set of rules, 
depending on the content of the string to be processed. 
But in each step only one production can be applied.  

 
The Lindenmayer grammars allow any number of rules 
to be applied in each step in many places of the 
previously generated structure. In molecular 
computing many splicings are performed 
simultaneously the soup of DNA molecules. Each 
super-set offers the context of many productions to be 
applied in the model of membrane computation. In all 
these cases, and maybe in others, the context selects 
the actions to be performed, so as a part of a finite set 
of rules are applied in all the place where the 
application is possible. Thus, the parallelism is 
extended in many places according to local decisions 
being not imposed by a centralized control.  
 
There are  mainly two way to use these new Nature 
inspired models. One is to find specific technologies 
for each of them and another is to try to use now a day 
Silicon technology and appropriate intermediate 
models. The second will be illustrated in the next 
section. 
 
6. Case Studies 
 
Three case studies will be shortly presented. All the 
three are experiments on the way to define parallel 
architectures. The architecturing process intends also 
to disclose super-Turing features of computation in the 
true parallel variants. 
 
6.1 Molecular computing on Connex Memory 
 
The molecular computing is a challenge also for the 
Silicon based machines. An interesting experiment was 
done using as physical support for the Connex memory 
(CM) [Stefan '98a]. The facility to find a string in time 
related with the size of string, offered by the CM, 
allowed the performing a splicing operation in 
constant time, independently of the number of strings 
involved in computation. It was a good result, because 
in the actual DNA computation a splicing operation is 
performed in time O(n1/3) due to the spatial distribution 
of molecules. 
 
6.2 The Eco-Chip and Molecular Computing 
 
In the actual ``in vitro" systems are performed many 
splicings in the same time. In order to catch this aspect, 
the functions of the CM were spread over the area of a 
bi-dimensional cellular automaton. Results the, so 
called, Eco-chip (EC) [Stefan '98].  Using as physical 
support the EC, many splicings can be done in the 
same time, each being performed in time O(n1/2). 
Using a simulator an "in info" experiment was done. 
Also, the Adleman's experiment was re-made [Stefan 
'98] using the same simulator.  
 
Because the size of EC is in O(n) and the complexity is 
in O(1), the circuit is obtainable in current 
technologies. In this case, based on computational 



model and a realizable structure we can start to define 
a parallel architecture. 
 
6.3 Chaotic Membrane Computing on Cellular 
Automata 
 
The promising model of membrane computation can 
also ground a parallel architecture, based on the 
structural support offered by the concept of cellular 
automaton and on the framework of the chaotic 
understanding of the self-organizing processes [Stefan 
'00].  
 
A super-cell system can be represented on the 
"surface" of a cellular automaton. A membrane is a 
closed string of cells, having the same value, that 
closes an area of cells and, many of the enclosed cells 
have values belonging to a super-set. The dimension 
and the position of the membrane fluctuate randomly. 
Also, the elements of a super-set inside of a membrane, 
have a chaotic motion. If the elements of the super-set 
meet each other in this chaotic motion and if there is an 
appropriate rule, then the two elements are replaced 
according to the rule. Thus, this approach catches also 
the chaotic "swimming effect" of the process in a 
certain membrane of an actual cell. The simulation of 
this mechanism is under development.  
 
Based on the chaotic interaction between the 
membrane and the elements it contains are expected 
"super-Turing" formal effects.  
 
7 Final Comments} 
 
This communication is a preliminary presentation of 
the intended future research activity plan of the Center 
for New Electronics Architectures. The main idea is 
that parallel computation can be, maybe, more than 
computation established by Church-Turing thesis. 
In this case, a parallel architecture is more than a better 
way to make computation. A parallel architecture 
offers also a way to deeply understand physics and 
reality. It is another improved way to make science, to 
enlarge the domain of the formal in order to reach the 
boundary with the phenomenon and with the 
phenomenological approach.   
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Appendix: Formal / Turing-computable 
 
Any function g: Nn→ N having the form 

g(x1, … , xn) 
with xi  ∈ N for i = 1, … , p, can be expressed as  

f(x1, … , xn) 
where: f:{0,1}n → {0,1}, with xi ∈ {0,1} for i = 1, … , 
n. Thus any function g,  has a Boolean form f. 
  
Definition 3 A function f(x1,  , xn) is a formal function 
if the form of f can be defined using a string of 
symbols d1, … , dq. 
  
Theorem 1 If the definition of any formal function f(x1, 
… , xn) is given by the binary string d1, … , dq with with 
xi ∈ {0,1} for i = 1, … , m, then the length of definition, 
m, has the value: m = 2n.  
  
Proof The circuit for the Boolean function  f can be 
described by: 

 f(x1, … , xn)= xn f1(x1, … , xn-1) + xn' f0(x1, … , xn-1) 
the resulting n-input circuit containing an elementary 
multiplexer, EMUX, and two circuits with n-1 inputs, 
one for  f1(x1, … , xn-1) and one for  f0(x1, … , xn-1). 
EMUX is an elementary selector circuit described by 
the following equation: 

out = sel input_1 + sel' input_0 
the output out takes the value of the selected input 
(input_1 or input\_0) selected by the value of the 
selection input sel. 
In the next step, the two (n-1)-input circuits are each 
similarly described with an EMUX and two (n-2)-input 
circuits. The same is the procedure applied to the four 
resulted circuits and so on until the ending step in 
which occur 2n-1 EMUXs, each having connected on 
the selected inputs 2n only two kind of functions, the 
functions of zero variables: the values 0 and 1. 
The final circuit is a binary tree of n levels, containing 
2n-1 EMUXs and having connected to the 2n inputs of 
the last level of EMUXs a 2n-bit binary configuration. 
Shortly, we have a simple, uniform circuit (the tree of 
EMUXs, the same for any Boolean function of $n$ 
variable) and a binary configuration of 2n bits that 
personalizes the circuit for a certain f.  
It is obvious that for any n ∈ N, the function f has 
associated a family of circuits. 
   
Attention: families of circuits do more than Turing 
machines! Of course, because they are random 
(defined) parallel structure. But, unfortunately they are, 
in the same time, too complex. The solution to the 
problem of how to deal with this kind of complexity 
could be the actual self-organizing processes.  
  
Theorem 2 The algorithmic complexity of a formal 
function f(x1, … , xn), is in O(m). 
  
Proof  The program which describes the string d1 … dm 
has the form  

p d1 … dm 

where p is a constant length preamble syntactically 
imposed. Therefore, the maximum length of program 
for a certain machine is in O(m).   
  
Theorem 3 If the function f(x1, … , xn) is Turing-
computable, then it has the algorithmic complexity in 
O(1). 
 
Proof A Turing machine accepts only functions having 
constant descriptions, in O(1) (independent of n), 
because the control automaton is a finite automaton.  
  
The main question is: what is the weight of Turing-
computable functions in the set of   formal functions? 
  
Theorem 4 The weight, w, of Turing-computable 
functions, of n binary variables, in the set of formal 
functions decreases exponentially with n. 
  
Proof   Let be a given n. The number of formal n-input 
function is N = 2p, with p = 2m, because the definition 
are expressed with 2n bits. Some of these functions are 
Turing-computable. These functions can be defined by 
compressed m-bit strings. The value of m depends on 
the actual function, but is realized the condition that 
max(m) < n and m does not depends by n. Each 
compressed form of m bits corresponds only to one n-
bit uncompressed form. Thus, the ratio between the 
Turing-computable function of and the formal 
function, both of n variables, is smaller than 
   

max(w) = 2-(n-max(m)). 
 

And, because max(m) does not depends by n, the ratio 
has the same form for no matter how big becomes n. 
Results:  

max(w ) = const/2n. 
 
 
If we say that almost all the formal is not computable 
we are wrong in a very small extent. It is a miracle that 
the computable is useful in this condition. A strange, to 
be studied, "mechanism" maybe leads the human being 
to be efficient using only the effective, Turing-
computable functions.  
 
What is the reason for which we do not use family 
of circuits for computing functions? Because this 
approach is complex and oversized. Most 
(tremendous most) of strings used for defining 
functions are algorithmic random, i.e., useless for 
building universal machines. Thus, we remain 
still limited to the simple functions performed by 
Turing machine under the control of finite 
automata. The option for the simplicity is 
awarded by the spectacular development of 
computers but is punished by the simplicity of 
problems resolved by these, too promising, 
machines.


