No-State Universal Turing Machine

Gheorghe Stefan*

Abstract

The aim of this paper is to emphasize the possibility to build the
simplest Universal Turing Machine (UTM). Results a no-state machine
containing only structures having constant sized simple definitions. Any
random structure can be avoided, the resulting structure of machine has
only uniform circuits. Removing the finite automaton from the def-
inition of UTM is the main structural effect of this approach. The state
of the computational process is stored only on the “tape”, in contrast with
the current versions of UTM in which the state of the machine is given
by the state of the finite automaton and by the content of the “tape”. In
the current UTMs, the automaton interprets the description of a certain
Turing Machine (TM), but in the proposed, no-state UTM, the descrip-
tion of a certain TM is ezecuted by some uniform, simple circuits. Thus,
the segregation between the simple (physical structure of the machine)
and the complex (symbolic description of the computation stored on the
“tape”) becomes maximal.

1 Introduction

The 0-state UTM we propose in this paper is important mainly for its simplic-
ity. The reduced number of states is only a side effect. But, what does it mean
a simple physical or symbolic structure? It is or not important the number of
states of the control automaton that interprets any TM’s description? Claude
Shannon reduced this number to two [Shannon ’56]. Did he obtain a simple or
a complex machine? Our first goal is now to obtain a simple machine and only
the second to have a no-state machine. Therefore, we must state precisely the
meaning of complexity.

Definition 1 The apparent complezity of a structure is given by the size of its
definition. ©

Definition 2 The (actual) complexity of a structure is given by the size of its
minimally expressed definition. <

*Politehnica University of Bucharest, Faculty of Electronics & Telecommunications. Email:
stefan@agni.arh.pub.ro

The previous definitions are suggested by Chaitin’s algorithmic complexity
[Chaitin *77]. (In this approach we will ignore the “user” who must “understand”
the definition. Many times the “user” is a machine, having its own complexity to
be taken into account. But this is another story.) According with this definition
we will define what does it mean a simple or a complex structure.

Definition 3 Let be a (physical or symbolic) structure, M, its size, Spr(n), and
its complexity, Cpr(n). We say that M is simple if

SM(n) >> CM(H),
and we say that M is complex if

Sm(n) ~ Cu(n).

According to the previous definitions we will prove that the complexity of
a TM is given only by the complexity of the combinational circuit connected
on the loop of the control automaton, that computes the output and the next
state. The rest of the machine, the “head” and the “tape”, are both simple. In
order to minimize the complexity of the UTM we will start with an actualized
representation for the TM and we continue presenting a 0-state UTM.

2 A New “Image” for Turing Machine

The standard definition of TM, using the oldest suggestions of the storage “tape”
and of the access “head”, hides some essential feature of the concept. In order
to emphasize aspects related to the complexity of TM we give an equivalent up
to date definition. Instead of “tape” accessed through a “head” will be used a
random access memory (RAM) addressed with an up-down counter (U/DC).

Definition 4 Turing Machine (TM) is a finite automaton (FA) loop connected
with an infinite RAM (see Figure 1) addressed by an infinite U/DC commanded
by FA. The automaton performs in each clock cycle the following operations:

e receives from the output DOUT of RAM the content of the current accessed
cell

e according to its own state and to the received symbol:

1. computes a new symbol to be stored in RAM at the same address and
applies it on the input DIN of RAM

2. determines the accessing mode of the next cell selecting one of the
following actions:

— incrementing the counter (U)
— decrementing the counter (D)

{ve, poWN, -} [~~~ 7
U/DCOUNTER
ADDRESS
DIN RESS
FA Infinite RAM
DOUT

Figure 1: The structure of a Turing Machine

— maintaining the counter to the same value (-)

3. computes the next state of the automaton.

All changes are triggered with the following active clock transition. More formal:

TM = (Iu Q?f;q07#)

where: I is the finite alphabet of the machine, Q) is the finite state set, gy € Q
is the initial state of the automaton, # € I is a symbol stored in the non active
cell of memory and f is the transition function of the entire machine:

f=IxQ—1IxQx{U, D, —-}.

In the initial state the automaton is in qq, the infinite memory contains a finite
string to be processed, ended on both sides by # € I, the accessed symbol from
the string to be processed is the first. ¢

3 The Complexity of the Turing Machine

A detailed structure of TM is presented in Figure 2 in order to emphasize its
main components with the associated size and complexity:

1. a finite automaton containing;:

e a finite REGISTER: a simple structure

e a combinational logic circuit (CLC): a complex structure

2. an infinite automaton that is the reversible counter, a simple recursive
defined device containing:

INC/DEC
CK INFINITE REGISTER
DIN ADDRESS
— CLC INFINITE RAM
DOUT

— -

REGISTER [|— CK

T

Figure 2: The detailed structure of a Turing Machine

e INFINITE REGISTER: a big sized but simple structure

e an infinite incrementer/decrementer (INC/DEC): a big sized but
simple structure

3. an INFINITE RAM, also a big sized but simple structure.

The single complex, random in Chaitin’s sense, structure is CLC that “con-
tains” the algorithm ran by the machine. All the others components of TM
have the complexity in O(1). Therefore, we can say that Crys is in the same
order with Corc.

Proposition 1 Let be TM = (1,Q, f;qo0,7#). Then:
Cru € O((dim(I) + dim(Q)) x log (dim(I) + dim(Q))).
o
Proof: Our TM is characterized by:
n = |loga(dim(I))| + 1

m = |loga(dim(Q))] + 1.

The complexity of TM, C7yy, is given by the sum of the complexity associated
of each component added with the complexity of their interconnections. Ex-
cepting CLC, all the others components and the interconnections have constant
descriptions that not depends by n (the number of bits used to encode the al-
phabet I) and m (the number of bits used to encode the state set Q). The CLC
has n+m inputs and n+m + 2 outputs (see Figure 2). Therefore, its definition
in the worst case is a random (uncompressible) table of binary symbols having
2"t™ rows and n + m + 2 columns. Therefore:

Cry(n,m) ~ Corc(n+m,n+m+2) € O((n +m)2"t™).

Substituting the value of n and m results the proposition. ¢

4 0-State Universal Turing Machine:
the Simplest Structure

We will prove that the structural complexity of TM can be reduced only imple-
menting it as an Universal Turing Machine (UTM).

Early theoretical studies where devoted to reduce the number of states of the
finite automaton, that control UTM, with a minimal increasing of the number
of symbols in the alphabet I [Shannon ’56]. But we believe that the more
important thing is to reduce the structural complexity of UTM. In this respect
we will present the simplest UTM built only with simple, recursive defined
constant sized circuits.

The problem leading to UTM is to define a machine whose structure can
remain unchanged when the executed function changes. In this case we need a
machine with:

e an abstract representation for the needed TM, as a string of symbols stored
in the memory

e an automaton, useful for all computable functions, that ”understands” and
”executes” by interpretation the abstract representation of any automaton
associated to a TM stored on the tape.

Interpretation is a process that acts on a string encoded representation of an
abstract machine, to emulate the behavior of that machine. It allows us to deal
with representations of machines rather than with the machine themselves.

Let be a machine M with the initial content of the tape T: M(T). An
interpreter of M (T') will be the machine

U< e(M), T >)

where e(M) is the string that describes the machine M. On the tape of the
machine U there is the description of M and the string, T', to be processed by
the machine M.

Definition 5 An UTM is a TM, U(< e(M),T >), that has a finite automaton
that interprets any TM’s description, e(M), stored in the same memory with T,
the string to be processed. ¢

In order to implement an UTM we start from the fact that the transition
function f from the state g; can be reduced to a set of the pair of transitions
having the next form:

f(qiax) = (Qjayacl)
f((Ii77é ZL') = (Qk,Z,Cm)

where: ¢;,q; € Q, z,y,z € I, and ¢,¢, € {U, D, —} having the following
meaning:

if out of RAM=x
then the next state is g;
the stored symbol is y
the access head command is ¢
else the next state is g
the stored symbol is z
the access head command is ¢,

Each such a pair will be associated with a state of the automaton. Therefore,
any state can be represented as a string of nine symbols having the form:

&qizqiyciqrzem

where & is a symbol indicating the beginning of the string associated with the
state g;.

A TM can be completely described by specifying the function f, associated
to the random structure of the machine, using the above defined strings to
compose a ’program” P.

Example 1 Let be a TM that computes the parity of an 1-ary represented num-
ber. If the final state is q3, then the number is even, else it is odd. The initial
value of T (the content of “tape”) is:

CLHOLLL. 14 ..,

the “head” points the first 0 and the unstructured description of the function f
18:

f(go,—) = (q1,0,U) /The head points the beginning of 1’s/

(
(q1,1) = (g2, 1,U) /Passes over the 1’s switching between q; and g2/
(q1,# 1) = (g3,0,—) /The end of 1’s is found and the number is even/
(g2, 1

(

q2,1) = (q1,1,U) /Passes over the 1’s switching between g2 and q,/

f
f
f
flg2,# 1) = (q4,0,—) /The end of 1’s is found and the number is odd/

flgs,—) = (g5,0,—) /Final state for an even number/
flqs,—) = (q4,0,—) /Final state for an odd number/

The correspondent representation as a string e(M) is:
P = &qo — 10U q10U&q11g21Uq30, —&q21q11U 40 — &q3 — 30 — q30 — &q4 —
G40 — q40 — .

°

The tape of UTM will be divided in two sections, one for the string 7" to be pro-
cessed by the machine M, and one containing the description P of the machine
M. The content of the tape will be

. HPQTH ...

where:
e @ is a special symbol which delimits the ”program” from the ”data”

e the string P € (JUQU{D, U, —}U{&})* is the "program” that describes
the algorithm

e the string T € I* represents the ”data”.

The automaton of UTM ”knows” how to interpret the string P in order to
process the string 7. It is the only physical random structure in UTM. The
question is: what are the possibilities to minimize this random structure in
UTM? The answer is: performing a strong functional segregation.

For simplicity, we will use a TM having two “tapes”, one for P and one for
T. This machine has an actual implementation using a RAM with two ports
for read and a port for write.

The previous form of P must be translated in P' that uses for each state,
instead of the string &gq;xq;jyciqrzcm stored in 9 successive memory cells, the
next form, as a single entity stored in one cell:

rAqjyc Aqrzen

where: Ag; and Agy represents the finite distance in memory between the
current location and the locations that store the descriptions for the states g;
and ¢i. Each program P has a P’ form.

Example 2 Looking back to the previous example, the string P, with the next
form:

&qo—q10U 10U &q11¢g21U g30, —& @211 1U q40— & g3 — 30— 30— & g4 —q40— 40—

stored in 45 successive cells can be translated in a string of P' type, stored in
five larger successive memory cells:

-,+1,0,U,+1,0,U

1,+1,1,U,+2,0, -

1,-1,1,U,+2,0,—
_70707 _70707 -
_70707 _70707 -

<

The structure of UTM in the most segregated form is presented in Figure
3, where the counters are detailed and some simple combinatorial circuits are
added. The program P’ is stored in RAM starting with the address n where
the description of the state qg is loaded. In the following cells are stored the
descriptions for ¢;,...,q4. The string to be processed, in our case the 1l-ary
represented number, is stored starting with the address m, greater than the
address in which the symbol @ is located. The initial value of the first address
"counter” (ADD & R1) is n, and for the second counter (Inc/Dec & R2) the
initial value is m. The multiplexer MUX selects (see Figure 3), according to
the output of Comp, the appropriate values for:

e the value (y or z) to be written in RAM to the current address generated
by Inc/Dec & R2 (the value to be written on the tape in the current cycle
of the simulated TM)

e the signed number to be added to the current value of ”program counter”
implemented by ADD & R1 (the relative address of the cell that stores
the description of the next state: the next ”instruction”)

e the command applied to the counter (Inc/Dec & R2) that points in the
data part of the tape

(The latch connected to DOUT?2 has only an electrical role, avoiding the trans-
parency on the loop closed through the RAM built by latches. If the RAM
would have been built with master-slave flip-flops (a possible, but a very ineffi-
cient practical solution) the latch on DOUT2 output is not necessary.)

This strong functional segregation in UTM, between the simple and complex,
implies a machine with no random circuits. The randomness of the machine
is totally shifted into the content of the memory, where a "random” string
describes a certain algorithm. Instead of random circuits we have random string
of symbols. The hard random structure of the circuits is completely converted
into the soft random structure of the string describing the function executed by
the machine.

In this last UTM version the interpretation of e(M) is substituted with
the execution of e(M). The interpretation is a controlled process that involves
a finite automaton. The execution is made by simple circuits (in this case,
combinational). Comp, MUX, ADD, Inc/Dec are simple circuits that execute.
The size of their definition do not depend on the dimension of I and @ sets.
Removing the finite automaton from the structure of UTM the machine
substitutes the interpretation of P with the ezecution of P’.

— ADD Inc/Dec
R1 R2
Addrl Addr2
Infinite RAM
— DIN
DOUTI1 DOUT2
x Latch
MUX Comp
EQ
y/z
Agj [Dgr
ci/em

Figure 3: The structure of a recursive defined Universal Turing Machine

In order to use only the simplest structure for implementing the machine
associated with any formal language it is evident that the best solution is UTM.
The random part of its structure can be null.

Proposition 2 The 0-state UTM is a simple machine. ¢

Proof There is no random part in UTM. The combinational circuit on the
loop of a finite automaton is always random and all the structures previously
associated to the UTM contain at least a finite automaton. Therefore, only the
O-state UTM is completely built with simple (see Definition 3) circuits. The
finite automaton is avoided and the interpretation is substituted with the
direct execution using simple circuits. ¢

5 Conclusions

The reason of reducing the number of states of an UTM now, in 1Gtransis-
tor/chip era, is completely different from the reason to make the same thing in
the 50s (in no-chip era).

1. The complexity of a computation performed by a 0-state UTM depends
only on the algorithmic complexity of the string e(M). The structural com-
plexity of the TM is completely converted in the complexity of the symbolic
description of the computation that will be executed (not interpreted) in 0-
state UTM. A hard complexity is converted into a soft complexity even for the
problem having solutions with a less powerful machine than TM.

2. The present day technological evolutions offer the possibility to design
machines having bigger and bigger sizes but the complexity of this structure
can not follow this tremendous growing process. When the size of machines
start to grow quickly, the complexity must grow slowly. Else, because of
their complexity machines become uncontrolable, more, they become unutter-
able. Imagine us, a random, complex, circuit containing 10° gates! We have no
any solution to “express” it in order to be “understood” by an automatic design
process. The simplicity of the 0-state UTM supports our steps toward using the
new technologies for building powerful machines maintaining their complexity
at a low level. Thus, we have a theoretical support to declutch the complexity
of the computation by the complexity of machine. Is this a good or a bad way?
This is another problem that surpass the aim of this paper.

3. The segregation between the simple machine and the complex symbolic
description of computation is the main process in order to avoid the appar-
ent complexity of computation. In this way we reach the actual complexity
preserving the competence. In order to reach the performance we must add
the architectural approach, as a process that offers a good balance between the
physical structures and the symbolic structures involved in computation.

References

[Chaitin ’77] Gregory Chaitin: “Algorithmic Information Theory”, in IBM J.
Res. Develop., Tulie, 1977.

[Shannon ’56] C. E. Shannon: “A Universal Turing Machine with Two Internal
States”, in Annals of Mathematics Studies, No. 84: Automata Studies,
Princeton Univ. Press, pp 157-165, 1956.

10

