A Multi-Thread Approach in Order to Avoid
Pipeline Penalties

Gheorghe Stefan
Politehnica University of Bucharest, Dept. of Electronics and Tec.
stefan@agni.arh.pub.ro

Abstract

The simplest and smallest pipeline structure is pro-
posed to be used in the design of a multithread ma-
chine that runs without pipeline’s penalties. The
proposed structure implies two kinds of parallelism.
The trivial solution is to see the resulting structure
as a cluster of four processors. Another way, our
way, is to find a specific architecture. The master-
slave architecture proposes a hierachy of threads col-
laborating in running a computation. Some topics
of application are suggested.

1 Introduction

One of the first machines which was able to exe-
cute many threads on the same physical structure
is described in [Smith ’78]. Many functional units
and queues are put together in order to perform a
multithread computation. This approach and oth-
ers that follow it [Hirata ’92] are characterized by
the multiplication of resources and by their appro-
priate scheduling. A complex control mechanism is
the main function that assures the system’s perfor-
mance.

The pipelined RISC approach offers a new per-
spective for a small and simple multithread ma-
chine. Thus, the first goal of this work is to pro-
pose a solution with minimal structural resources
and simplest control.

The main idea is: each stage in an usual pipeline
structure can be used to perform a distinct step in
the execution of an instruction belonging to a dis-
tinct thread of instructions. If the successive in-
structions belong to distinct thread of instructions
then all the penalties regarding data dependencies
or branch execution will be avoided. Starting from
this point of view, in [Stefan ’84], [Nikhil ’89] and
[Farrens ’91] are presented solutions related with
the proposal contained in this paper.

In [Stefan ’84] is presented a two-stage pipelined
machine, in which two microprograms run, as two
threads collaborating for implementing a LISP in-

terpreter. The second thread was associated to a
performant stack that supported the first thread,
the main thread, that interpreted LISP programs.
This approach introduces a bi-thread machine in
which only the storage resources are multiplied,
functional units remaining the same as in a single
thread machine.

In [Nikhil '89] the Smith’s approach is associ-
ated with a RISC pipeline machine. An additional
queue, as in the Smith’s machine, is needed to con-
trol the processing flow.

In order to avoid the dependencies between in-
structions in a RISC structure, Farrnes proposes
the interleaving of a second stream of instructions
in the pipeline, thus a machine with two threads
free of hazards is obtained.

Nowadays there are more and more applications
of the multi-thread philosophy. One of the most
important is in data-flow applications [Nikhil "89],
[Papadopoulos '91]. In parallel symbolic compu-
tation the multi-thread machine offers performant
solutions [Halstead '88]. New concepts in operat-
ing systems need a multi-thread approach [Stallings
'92].

The resulting structure can be used simply as a
low-cost cluster of four processors tightly coupled.
But,it deserves to look for a new architectural per-
spective offered by this specific structure. Thus, the
second goal of this work is to offer a specific ar-
chitectural support for this multi-thread structure.
We believe and hope that the proposed master-slave
architecture will be imposed as an efficient architec-
tural style for the next trends in designing comput-
ing machines.

2 The Structure

D. A. Patterson answerd to the question "how to
use 1000 registers?” [Sites ’79] introducing the con-
cept of register windows. An other answer can be:
register windows and multi-thread execution on the
same functional units [Stefan 79, 84]. Now we are
interested in promoting only the multi-thread exe-

Int Addr
>
[Pc]
INC
Program
Memory
i 0]
Decode REG
&
Test
- 9., fe
R | L |[R]||PC |
RAM ALU
I ¢
| IR” | D || PC??’ |
l »d

Figure 1: The smallest and simplest four-thread
pipeline RISC machine.

cution on a single processor that has multiplied only
the internal storage capability. Each thread has ac-
cess to all registers and share the same functional
units and the pipeline registers.

Let be the simplest and smallest pipeline struc-
ture of a RISC processor (see Figure 1). The sim-
plicity of control and the minimal structure are al-
lowed by the compilation and the cost is: a lot of
”bubbles” in the pipeline execution. The content
of the program counter (PC) must be delayed (with
PC’) one clock cycle in order to be synchronized
with a value from the instruction register (IR). For
saving the PC in registers (REG) the two registers,
PC” and PC”’, must be added. Our machine has
an usual four-stage pipeline containing: FETCH ,
DECODE, EXECUTE, WRITE BACK.

| PC |

Program

Memory

i e]
Decode REG

&
Test

. .

w | L|R || PO |
RAM ALU [INC |
9.
| IR” | D || PC”’
l » R

IntAddr

Figure 2: The multi-thread RISC structure: a low-
cost cluster of four processors networkless intercon-
nected

Starting from this pipeline structure a multi-
thread machine is defined changing only the posi-
tion of the incrementer (INC). The resulting pro-
cessor (see Figure 2) performs in each clock cycle
(T;) on each stage an operation (OF) for a distinct
thread (the O action for the i-th instruction of the
thread j). The following table shows the sequence
of operations associated with the four threads.

EFAFAAFFAF D
FO| FI| F2| F?| FO| FI| F2| F| F9| F}
DY DI DI D3| DY| DI DI D3| DY
B0l B B2 EF| EQ| EL| E2| B3
WY Wl W W WY WA W2

Table 1: The interleaved execution.

This approach avoids the pipeline penalties, cur-
rent in the single thread pipeline machines. Indeed,
the successive operations on the pipe are uncorre-
lated, because they belong to the distinct thread
of instructions. We obtain a cluster of tightly cou-
pled four processors that share the same structural
resources. The main problem to be solved is to asso-
ciate to this structure an appropriate architecture.

3 Architectural Implications

We propose two distinct types of architectures to be
associated to the four-processor cluster. The first
supposes that the four threads are weak coupled
and the second uses closely coupled threads.

3.1 A Cluster Architecture of Paral-
lel Processors

The trivial architecture associated with the pro-
posed structure is a MIMD parallel architecture.
The four machines are physically connected without
any interconnection path and share the same mem-
ory which can be used for communication. Each
program runs without any pipeline penalties, thus
the entire structure is maximally used in compu-
tation. Results a low-cost cluster. The processors
communicate between them using messages stored
in the shared memory.

The simplicity of the structure allows a physical
implementation at a very high speed.

3.2 Master-Slave Architecture

The second architectural approach we propose is
more sophisticated. It starts conceiving the pro-
cessing as computation on data which must be struc-
tured. Any code associated with a program can be
seen as a ”coroutine” in which the control ”jumps”
between the two ”threads”:

e the main ”"thread” that performs the compu-
tation on one or more data structures

e the ”co-thread” or the ”co-threads” used for
data structuring.

In the usual approach, the architecture of the com-
puting system does not emphasize enough this dis-
tinction due to the fact that the von Neumann ap-
proach is centered on a single thread machine. But,
if we have a good solution for a multi-thread struc-
ture, in which the communication between threads
is performed by an efficient mechanism, then a spe-
cial kind of architecture can be defined and imple-
mented. We will call it: master-slave architec-
ture.

A master-slave architecture consists in:

e a master thread that performs the main com-
putation aided by

e one or more slave threads that manage one or
more data structures implied in computation.

All the threads work in parallel and must communi-
cate between them using a very performant mecha-
nism.

There is a possibility that, for a good imple-
mentation and a lucky selected problem, the system
performances grows more than n times, where 7 is
the number of threads.

For example, in a Lisp Machine, the main thread
computes the function EVAL and the co-threads
are used for: stack management, lists management,
garbage collector, compacting the free space. (A
first experiment in this respect can be found in
[Stefan ’84], where a single co-thread was used to
implement the evaluation stack.)

3.3 The Cartezian Instruction Set

The first proposed cluster architecture does not
need special communication instructions because
the four thread are weak coupled and the commu-
nication time does not impose strong restrictions.
But, in order to be efficient, the master-slave ar-
chitecture needs a special approach in designing the
communication mechanisms.

The master-slave architecture asks for a commu-
nication mechanism at the level of the instructions.
For example, a slave-thread performing the stack
function must receive a command from the master-
thread in the machine cycle in which a PUSH or
a POP is performed by the master-thread. In the
same instruction the master-thread stores a number
in the top of stack (TOS) and announces the slave
to manage it. Therefore, we must design an instruc-
tion set which allows two synchronous commands.
In the previous exemple the pair of commands is:

(storeinTOS)&(PUSH).

The first is executed by the master-thread and the
second is received by the slave-thread and executed
with a minimal number of instructions.

Let wus call this kind of instruction set
Cartezian Instruction Set, because it presumes
the cartesian product between two sets of instruc-
tions: a main instruction set and a communication
instruction set.

We propose as the communication instruction
set the following instructions, where b = 0,...,7
represents the bits of the first byte of the register
n + t from REG (see Figure 2) and ¢t = 0,...,3
represents the thread’s number.

SET b,t : set the bit b for the thread ¢
RST b,t : reset the bit b for the thread ¢
TSTZ b,t : if the bit b of the thread ¢ is zero then

performs the main instruction, else the main
instruction is ignored and PC + PC

TSTNZ b,t : if the bit b of the thread ¢ is not zero
then performs the main instruction, else the
main instruction is ignored and PC < PC

TZ&C b,t : if the bit b of the thread ¢ is zero then
complement it and performs the main instruc-
tion, else the main instruction is ignored and
PC «+ PC

TNZ&C b,t : if the bit b of the thread ¢ is not
zero then complement it and performs the
main instruction, else the main instruction is
ignored and PC « PC

INT t : generates interrupt for the thread ¢
NOP

: no operation.

The main instruction set, besides the standard
RISC instructions contains two special instructions,
devoted to the communication between the threads:

WCOM r : PC « (r)+PC (wait for a command)

CLD r,v : if (r) = 0, then (r) < v, else PC
PC (conditioned load)

Of course, the main instruction set contains jumps
to the address contained in an internal register
(JMP r). This instruction, used in conjunction
with instructions from the communication set al-
lows a fast command of the slave-threads. For
example, if the result of the addition of the con-
tent of the registers 2 and 7 must be pushed into
a stack managed by a slave thread, then the next
chartezian instruction must be performed by the
master-thread:

ADD 2,7,28 TZ&C 5,2

where, the register 28 is TOS and the thread 2 is de-
voted to manage the stack. The bit 5 must be tested
because the previous PUSH (triggered also by this
bit) must be finished before the current PUSH is
performed. The slave-thread ”wait” with:

IMP (n+2)

where, the register n+ 2 contains the address where
the instruction is stored having the bit 5 equal
with 0. When the communication instruction on
the master-thread complement the bit 5, the slave-
thread starts to run the routine that executes the
PUSH function (that reset the bit 5 at its end).

4 Applications

We mentioned already a trivial application: a clus-
ter of four processors working as a MIMD machine.
The main feature of this approach is given by the
simplicity and by the loss of the network that inter-
connects the processors.

Another application can be a most sophisticated
one: a Java Machine. The Java architecture is
well suited for a multi-thread implementation. The
main reason is the stack oriented architecture asso-
ciated with the Java language. The proposed struc-
ture (see Figure 3) is a four-thread machine which
has a suplemental loop closed over a microprogram
ROM. The resulting structure can switch between
two working operation modes:

e RISC-mode with the microprogram loop
opened, C'/R = 0 (see Figure 3)

e CISC-mode with the microprogram loop
closed, C/R = 1.

Program Memory contains 8-bit words and
RAM contains 32-bit words. DCD/mP ROM works
as decoder in RISC-mode and in CISC-mode works
as a microprogram memory. The INC circuit is en-
abled in RISC-mode and is disabled in CISC-mode.
Any thread can switch independently between the
two working modes.

The master-thread is devoted to run on the Java
architecture. The slave-threads support the master-
thread in managing, for example, the stack. Also,
functions of the operating system can be performed
by one of the slave-threads.

Program Memory contains some ROM modules
for some fixed programs associated to the slave-
threads. Thus, only the master-thread accesses pro-
grams stored in RAMs.

5 Conclusions

1. The pipeline multithread structure proposed
by this paper is small and simple, well fitted
for low-cost applications.

2. A cluster of five MIMD parallel machines
tightly coupled is defined. These machines
can share the same resources using a very fast
communication mechanism. The interconnec-
tion network loss.

3. The concept of Master-Slave Architecture of-
fers a large class of applications for our multi-
thread structure. The distinction between
the computation and the management of data
structures is the main application of this kind
of architecture.

Program loop

Microprogram
loop PC
Program
Memory
;
| mR | IR || PO
1 0
on
DCD/mP ROM
REG
TEST
> e
:
| mwm [L | R || PO |
RAM ALU [INC]
>
| mm» | D || PO |
Y i
—> > |
IntAddr

Figure 3: The organization of a quadro C/RISC
machine with ¢nterleaved multi-thread execution.

4. The Cartesian Instruction Set and its imple-
mentation offers a very efficient mechanism
for connecting all the four machines realized
on the same physical structure. The commu-
nication is performed at the instruction level.

5. The symbolic computation is a very good ap-
plication for the proposed machine because
the degree of parallelism estimated for this
domain is maximum five [Hwang ’93].

References

[Farrens 91] M. K. Farrens, A. R. Pleszkun:
”Strategies for achieving Improved Pro-
cessor Throughput”, The 18th Annual In-
ternational Symposium on Computer Ar-
chitecture, 1991. p. 362-369.

[Halstead ’88] R.H. Halstead, Jr., T Fujita:
"MASA: A Multithreaded Processor
Architecture for Parallel Symbolic Com-
puting”, The 15th Annual International
Symposium on Computer Architecture,
1988. p 443-451.

[Hennessy ’81] J. Hennessy, et all: ”MIPS: A VLSI
Processor Architecture”, Proc. CMU
Conf. on VLSI Systems and Computa-
tion, Computer Science Press, 1981.

[Hennessy ’90] J. Hennessy, D. A. Patterson: Com-
puter Architecture. A Quantitative Ap-
proach, Morgan Kaufmann Pub., Inc.,
1990.

[Hirata ’92] H. Hirata, et all: ” An Elementary Pro-
cessor architecture with Simultaneous In-
struction Issuing from Multiple Threads”,
The 19th Annual International Sympo-
sium on Computer Architecture, 1992. p.
136-145.

[Hwang '93] K. Hwang: Advanced Computer Ar-
chitecture: Parallelism, Scalability, Pro-
grammability, Mc. Graw-Hill, 1993.

[Jones '92] F. Jones: ”A New Era of Fast Dynamic
RAMSs”, in IEEE Spectrum, pp. 43-49,
October 1992.

[Murakami ’89] K. Murakami, et all: ”SIMP
(Single Instructiun stream/Multiple in-
struction Pipelining): A Novel High-
Speed Single Processor architecture”,
The 16th Annual International Sympo-
sium on Computer Architecture, 1989. p.
78-85.

[Nikhil ’89] R.S. Nikhil, Arvind: ” Can Dataflow
Subsume von Neumann Computing?”,
The 16th Annual International Sympo-
sium on Computer Architecture, 1989. p.
262-272.

[Papadopoulos '91] G. M. Papadopoulos, K. R.
Traub: ”Multithreading: A Revision-
ist View of Dataflow Architecture”, The
18th Annual International Symposium on
Computer Architecture, 1991. p. 342-351.

[Patterson '80] D. A. Patterson, D. R. Ditzel:
"The Case of the Reduced Instruction
Set Computer”, Computer Architecture
News, 8:6, (October), 1980.

[Patterson '85] D. A. Patterson: ”Reduced Instruc-

tion Set Computer”, Communications of
the ACM, 28:1 (January), 1985. p. 8-21.

[Radin '82] G. Radin: ”The 801 Minicomputer”,
Proc. Symposium Architectural Support
for Programming Languages and Operat-
ing Syatems, Palo Alto, 1982.

[Sites '79] R. L. Sites: "How to use 1000 registers”,
Caltech Conf. on VLSI, January, 1979.

[Smith 78] B.G. Smith: ”A Pipelined, Shared Re-
source MIMD Computer”, Proc. Interna-
tional Conference on Parallel Processing,
1978. p. 6-8.

[Stallings '92] W. Stallings: Operating Systems,
Macmillan Pub. Comp., 1992.

[Stefan *79] G. Stefan: LSI Circuits for Processors,
Ph. D. Thesis in Polytechnical Institute
of Bucharest, 1979. (in Roumanian)

[Stefan ’84] G. Stefan, et all: "DIALISP - A LISP
Machine”, The 1984 ACM Symposium on
LISP and Functiunal Programming, 1984.
p. 123-128.

[Stefan '96] G. Stefan: Five Stage Multithread Ma-
chine with Dual RISC Arhitecture, re-
search report, Center for New Electronic
Architectures, 1996.

[Tabak '91] D. Tabak: Advanced Microprocessors,
McGraw-Hill, Inc., 1991.

[Thistle ’88] M. R. Thistle, B. J. Smith: ”A Pro-
cessor Architecture for Horizon”, in Proc.
of 1988 Supercomputing Conf., pp. 35-41,
November 1988.

