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Abstract

Architectural deficiencies in symbolic processing systems are generated
by the lack of an appropriate implementation of their memory functions.
There are many well-defined memory functions, but there is not yet an
adequate structural implementation for any of them. The main memory
functions are usually software implemented as data structures, using RAM
as hardware support, but having low performance in applications because
all implementations rely on sequential mechanisms. Our proposal, the
conner memory (CM), involves a base-level structural parallelism that
would increase the performance in tree/list processing. This paper sug-
gests, also, the architecture and the structure of a computation model:
the automaton with connexr memory (ACM), which we consider a supe-
rior alternative for sequential memory in the design of tree/list oriented
architectures.

Keywords: computation models, automata, tree, list, architecture, data struc-
ture, memory functions, fine grain parallelism, content addressable memory.

1 Introduction: Why Another Model?

Computer architectures were developed promoting mainly the numerical fea-
tures of the basic computation models, such as Turing machine or Kleene’s
recursive functions. This orientation has dominated for a long period the com-
puter science evolution. The first proposal for concrete computer architecture
was the von Neumann’s model, strongly oriented toward numerical applications
[Neumann ’45]. Lambda-calculus, the computation model proposed by Church,
has been used later, initially only in the theoretical approach to computation
and, after that, for developing the large class of the non-numerical (symbolical)
applications. There are many incompatibilities between von Neumann architec-
ture and the mechanisms used in symbolic processing; as a consequence they
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can’t be used efficiently in concrete applications. Because tree / list are the
most common data structures used in symbolic-oriented applications, new ar-
chitectures are required that accommodate better to the tree/list processing. In
this paper the connex memory (CM) [Stefan ’85] is considered, as a support for
such new architectures.
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Fig. 1 An example of tree

Starting from the technological limitations and conceptual restrictions, com-
puter science has developed, preponderantly, serial accessed data structures as
queues, stacks, lists ... . All these memory functions are implemented like pipes
(queue, stack) or combinations of pipes (the list that can be seen as two stacks),
in such a manner that almost all the stored content is hidden from the user all
the time. In this condition, it seems that the first function of a usual memory
structure is to hide and only the second function is to store. This is the main
disfunctionality of the actual approach.

The main feature of a new memory function must be to allow a less restricted
access to the stored configuration. Starting from this point of view we define,
in this paper, a new memory function: the connex memory. Instead of “pipe
oriented” implementation procedures we promote “eaves oriented” mechanisms
to build memory functions (waiting for the moment when “plane oriented” phi-
losophy will be possible).

1.1 The first goal: a global accessed memory

Our proposal introduces a memory device for solving the contradiction between
the list, as a serial accessed data structure, and the necessity to access in a
global manner the content of a list, as a usual mechanism involved by symbolic
processing.

Let us explain. As we know, the tree is a complex general data structure,
which has the list as its best symbolic representation. The power of the tree
representation is due to its spatial suggestion in the graphic representation. We
loose this suggestion in list representation because, in the common implemen-
tation, the list is a serial accessed data structure. In this sense, we introduce a



base-level parallelism in symbolic processing, “opening” the pipes and so gener-
ating eaves implemented memories.
First Example. Let be the list representation of the tree from figure 1:

(john(mary mike(george(anne stephenson)dan irine)))

If we want to find George’s successors, using a list implementation as a
dynamic data structure on a standard computer, the processing time is O(f(n)),
where n is the number of tree’s nodes. A global access to the list allows us to
find the desired information in O(1), using parallel facilities developed in an
appropriate implementation of a new memory structure. The first thought led
us to the well-known memory function: the circuit that implements the content
addressable memory (CAM) [Kohonen '87].0
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Fig. 2 The image of the tree in CAM

But this approach is not sufficient because it doesn’t handle efficiently the
following important situations:

1. We want to maintain the list associated to the tree in the “natural” form,
as a string that occupies a minimum space on the memory support, having a
connex representation. Unfortunately, in a standard CAM this tree has the form
represented in the figure 2 (or an equivalent other one).

A big amount of space is lost in the standard CAM circuit, due to the
inflexibility of the storage cell dimension and of the access mechanisms [Hascsi
'94]. In a CAM circuit, for n-ary trees, are allocated O(n?) storage cells, instead
of O(n) storage cells in a “natural” form. Only for binary trees in CAM the
space has the dimension O(n), the same as in a “natural” form, requiring always
the translation from n-ary trees to binary trees.

2. The relation between names is not so evident as in the “natural” form.
For example, we can’t answer easily, using the CAM circuit as a support for
the tree representation, the question “what is the imbrication level of the name
George?”.



3. Another problem is the fixed dimension of the storage cell used for each
name. In CAM circuit implementation we must use the same dimensioned
cell for each name, loosing, in consequence, a big amount of elementary cells
(each cell stores one symbol). Indeed, for the name Anne and for the name
Stephenson we must use two memory cells having the same dimension, equal
to the length of the greatest name expected to be memorized.

4. A final objection: if a CAM circuit is used as a storage support,then
a string of symbols having certain length can be found only using complicated
procedures. Indeed, if we want to check whether the subtree

(mike(george(anne stephenson)dan irine))

exists in our representation or not, then a very complex procedure must be used
because in CAM circuits the list associated to the tree has not a “natural” form.
In CAM each atom can be searched very easily, but it is not the same for a list.

Therefore, starting from the CAM facilities, we must enhance this circuit
with the functions that allow us to extend the possibilities to operate with atoms
(names) toward the facilities to operate with lists and trees. In other words, we
must replace the local access (limited to symbolic strings with O(1) length) with
the global access that allows us to operate over strings having unspecified length.
In the same time, we want to define and implement a circuit that maintains an
internal “natural” representation of lists in a connez form that assures a better
internal space management (each list uses a number of cells equal to its own
number of symbols). The pointers (in RAM oriented implementation) or the
additional cells (in CAM oriented implementation) are avoided in the connex
memory philosophy.

With the connex memory we try to introduce a memory circuit very useful
in the list oriented operations, instead of the old CAM that is efficient only in
the atom oriented operations.

1.2 The second goal: declutching of data processing from
data structuring

In the current computer architectures the main subsystems, the processor and
the memory, have an unbalanced role in computation. Indeed, the processor
performs, in the same time, two basic actions:

e data structuring (the processor organizes the content of the random access
memory in data structures)

e data structure processing

and the memory is only a passive storage support.
The second goal of our model is to offer a physical device that helps to
the declutching of data processing from data structuring as processes developed



strictly at the level of the processor. If we have an “appropriate” memory device,
we can promote an efficient independent implementation for data structures at
the storage support level.

A computer architecture, built on the Processor + Channel + RAM
structure, implies strong dependencies between languages, their implementa-
tion, data structures and applications. A good example is the correlation be-
tween the Lisp language, the role of the functions CAR, CDR and CONS in the
implementation and the list data structure based on the two pointers mecha-
nism that implies the prevalence of the binary trees instead of n-ary trees. Even
if we add the structural facilities of CAM, we can’t avoid, without a big price,
the necessity to convert the trees in binary form.

For an independent list implementation in a Lisp or Prolog oriented architec-
ture we can use an appropriate memory circuit, having a set of functions oriented
toward list data structures. We propose this circuit as the connex memory (CM).

1.3 The third goal: parallelism oriented toward the mem-
ory function instead of the processing function

The usually spread solution for parallelism is to multiply the processing units
and to build an appropriate storage system. In this case the processing func-
tion is parallelized. The simplicity of the memory function does not stimulate
its possible expansion in parallel processes. But, if we add some processing
functions at the storage system level, then an implicit parallelizing process is
started. Indeed, if we add to each storage cell some simple processing functions,
then these functions will be executed in each cell at the same time. Therefore,
a natural parallelism appears. More than that, for these simple functions we
avoid the communications through “von Neumann’s bottleneck” [Backus ’78].

Our main problem is to find a simple and efficient function set to be exe-
cuted at the storage cell level. Functions must be simple, allowing only a small
increasing of the cell size, and, at the same time, they must be efficient in large
scale applications. Our proposal tries to find a memory function set and its
related structure so as the cell size should increase only 10-20 times. Therefore,
the performance of the system that uses such a memory must increase “much
more” than O(1) times.

Our approach supposes that some processing functions migrate from the
processing unit into the storage unit. Each stored bit must gain its own small
“processing unit”. The memory becomes “smart” and a very fine grain paral-
lelism can be started in the system.

2 What is the Connex Memory?

Let us imagine a line of soldiers walking on a narrow bridge one after the other.
Above them flies a helicopter with their commanding officer. Each soldier has a



phone that connects him with the officer. The soldiers have important different
missions, and the order in which they step out from the narrow bridge is of the
utmost importance. The officer can pick up on the helicopter any soldier and
drop any soldier in any place. But the helicopter has only one rope that can be
in one place only on the bridge. Suppose the officer has to move the soldiers
having the best guns in front of the line. He commands all the soldiers having
good guns raise their hands. He goes to the first with hands up and drops the
rope to haul him. Then he goes to the first in line (he always knows where the
first and last soldiers are) and drops the soldier there. And so on.

Now let’s imagine another scenario, in which the officer wants to identify a
sequence of three soldiers, the first having a gun G1, the second a gun G2 and
the third a gun G3, and to put, with the helicopter, in front of this small team,
a soldier having a gun G. To achieve this goal the commands must be in the
order:

1. Only the soldiers having a gun G1: raise their hands!

2. Only the soldiers being preceded by a soldier with hands up and having a
gun G2: raise their hands!

3. Only the soldiers being preceded by a soldier with hands up and having a
gun G3: raise their hands!

After these commands the officer can “insert” a new soldier, dropping from
the helicopter a soldier equipped with the gun G before the first soldier having
raised hands, if this soldier exists, using the command:

Insert the soldiers with the gun G.

With the first three commands the officer selects the first occurrence of the
desired subsequence (team) of soldiers in the “string” of soldiers and with the
last command he modifies the content of the string by inserting a new soldier.

We cannot imagine such operations with a line of soldiers walking in a tunnel.
This is the main difference between the pipe oriented and the eaves oriented
mechanisms used in memory implementation, when looking for global access to
the content of the data structure in a parallel mode. The distinction between
our proposal and the standard implementation of usual data structures (i.e.,
queues, stacks, lists, trees, ... ) is best illustrated by the distinction between a
narrow bridge and a tunnel.

2.1 Informal Definitions of CM

An informal description of the CM can be the following: the physical support
for a symbolic string in which we can find any substring, thus identifying any
place in the string, for reading, inserting or deleting a symbol or a substring of
symbols.

The CM is a sort of CAM, structured as a bi-directional shift register in
which a significant point is marked, as a consequence of an associative sequential
mechanism (see Second Ezample in subsection 2.2) used to find a name in a
number of steps equal to the length of the name. In the marked place, read,



insert and delete can be performed. Theoretically, the CM is unlimited at the
right end, and, consequently, can be used for simulating or emulating efficiently
any number of registers having an unspecified length (theoretically infinite).

Informal Definition. The connex memory CM has the following descrip-
tion: a physical support of an unlimited string of variables (figure 3), having
values from a finite set of symbols and two states: nonmarked or marked, over
which we can apply the following set of functions:
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Fig. 3 The content of the CM

e RESET s: all the variables after the first marked variable take the value s

e FIND s: all the variables that follow a variable having the value s switch
to the marked state and the rest switch to the nonmarked state

e CONDITIONALFIND s : all the variables that follow a marked vari-
able having the value s switch to the marked state and the rest switch to
the nonmarked state

o INSERT s : the value s is inserted before the first marked variable

e READ up|down|— : the output has the value of the first marked variable
and the marker moves one position to right (up) or to left (down) or
remains unchanged (-)

e DELETE : the value stored in the first marked position is deleted, the
position remains marked (in the current cycle the output has the value
of the deleted variable) and the symbols from the right are moved one
position left.

All these functions are executed in time O(1) (one clock cycle).O

2.2 The Formal Definition of CM

The connex memory is a parallel non-deterministic automaton defined by the
following quintuple:

CM:(X,YaQO XQI X "‘xQn7f7g)

where:



X = S x F'is the input set
S = {s1,82,...,5m} the finite set of input symbols

F is the set of functions executed by the CM:
RESET s, INSERT s, FIND s, CONDITIONALFIND s, READ,
READ up, READ down, DELETE

Y = S is the set of output symbols

Q =Qp xQ1 %x...xQ, is the state of the automaton, with:
Q;=SUS' where 8" = {s,sh,...,s),},fori=0,1,...,n

f is the state transition function
g is the output transition function.

The functions f and g will be defined, through the action of the functions
from F', in procedures written using the following conventions:

(qo,---,Gr) is the instantaneous configuration of variables in CM, ¢; € SU S’

¢; = s means: the g; element of the instantaneous configuration has the value
s € S and the state non-marked

q; = s' : the ¢; element of the string has the value s and is marked

p = min(ilvalueof ¢; € S'): ¢, is the first marked variable in the string

q; < s : the variable ¢; takes the value s and the non-marked state

q; < s' : the variable ¢; takes the value s and the marked state

gi < ¢, : the state of ¢; switches in the marked state without changing the value
q; < ¢; : q; switches in a non-marked state, without changing the value

¢; < ¢; : the variable g; takes the value and the state of variable g;.

The set of functions, F', executed by CM is described in the following;:

Procedure RESET s / reset to s all the values in CM /
RESETys|...|RESET, s | parallel non-deterministic behaviour /
end RESET s



Procedure RESET;s [ fori=0,1,...n—1/
ifi > p
then ¢; < s/ the variable takes the value s/
else noop
endif
end RESET; s

Procedure INSERT' s / insert s in the place of the first marked variable /
INSys|[INSys|...|INSys
end INSERT s

Procedure INS;s / fori=0,1,...,n /
case : ¢ < p: noop / no operation /
c1=p: g < s|g; < q;i /qp takes the value s/
else g;+1 < ¢; /all ¢; are right shifted one position /
endcase
end INS; s

Procedure FIND s / unconditional find of value s/
UF_1s|UFys|{UFy s|...[UFp_1s
end FIND s

Procedure UF;s [ fori=0,1,...,n—1/
ifg;=s
then ¢;;1 « ¢,/ the next variable is marked /
else ¢; 11 < ¢i+1 / the next in non-marked state /
endif
end UF;s

Procedure UF_; s

do < qo
end UF_;s

Procedure CONDITIONALFIND s / conditioned find of value s/
CFO S|CF1 S| . |0Fn_1 S
end CONDITIONALFIND s

Procedure CF;s [ fori=0,1,...,n—1/
ifg; = ¢
then ¢i11 < q; 1,
else ¢it1 < it
endif
end CF;s



Procedure READ /q, is sent to the output OUT/
OUT < q,
end READ

Procedure READup /| READ and the marker moves one position right /

OUT < qplap < Gplgp+r1 < Qpiy
end READ up

Procedure READ down | READ and marker moves one position left /
OUT < gplap < aplap—1 < ¢4
end READ down

Procedure DELETE / delete and read the value of ¢,/
OUT < qy|DEL\|DEL,|...|DEL,
end DELETE

Procedure DEL; / the value of g, is deleted but the state is preserved /
case : 1 =n : nop
: 4 < p:nop
CE=D g Qi1|g < g
else gi < qi+1
endcase
end DEL;

2.3 Utility of the Connex Memory Functions

Let us see two examples illustrating the main abilities of the CM [Stefan *96].
Second Example Using the CM we can find any substring in a string.
Suppose that we have in a CM the following string:

...(bubu (bad butcher))...(bulgaria(...))...

and we want to select the list of bubu’s properties (i.e., (bad butcher) ). The
following sequence of functions is executed:

FIND ¢
CONDITIONAL FIND b
CONDITIONAL FIND u
CONDITIONAL FIND b
CONDITIONAL FIND u
CONDITIONAL FIND blank
loop

READ up

until )’
repeat

10



The content of the CM becomes successively (the marked places are indicated
by oversigned symbols):

..(bubu (bad butcher))...(bulgaria (...))...
...(biibu (bad butcher))...(btllgaria (...))...
..(bubu (bad butcher))...(bulgaria (...))...
...(bubii (bad butcher))...(bulgaria (...))...
...(bubu”(bad butcher))...(bulgaria (...))...
..(bubu (bad butcher))...(bulgaria (...))...
..(bubu (bad butcher))...(bulgaria (...))... / out = ( /
...(bubu (bad butcher))...(bulgaria (...))... / out =b /
..(bubu (bad butcher))...(bulgaria (...))... / out =a /

...(bubu (bad"butcher))...(bulgaria (...))

and so on, until:

..(bubu (bad butcher))...(bulgaria (...))... / out =) /. O

Third Example. Let us suppose that we want to change the first property
of bubu with the value good. The sequence of functions will be:

Jout=d /

FIND ¢
CONDITIONAL FIND b
CONDITIONAL FIND u
CONDITIONAL FIND b
CONDITIONAL FIND u
CONDITIONAL FIND blank
READ up
loop

DELETE

until blank
repeat
INSERT g
INSERT o
INSERT o
INSERT d
INSERT blank

Now the new content of the CM becomes:
...(bubu (good butcher))...(bulgaria (...))... O

2.4 The Structure of the Connex Memory

In this paper we present only a brief description of the CM internal structure
for illustrating the basic idea of the CM family chips. More details about the
structure of CM and other CM chips are presented in [Stefan ’94]. The internal
structure of a cell, associated to one symbol, is presented in the figure 4, where:

11
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Fig. 4 The structure of the CM’s cell

R is a p-bits register that stores the value of the variable v;

D is a D (delay) flip-flop that stores the value m; of the marker

MUX, is a multiplexer that selects in each clock (CK) cycle, according
to the bits ¢l and 2, the value to be stored in the register R

MUX, is a multiplexer, selected by ¢3 and c4, which allows storing the
current value of the marker in D, in each clock cycle

COMP is a comparator that shows by the output E; if v; is equal with
the value applied to the input DIN

CLC is a combinational circuit that generates the control bits c0, c1, ..., ¢5,
according to: the command received from COMP, the bits F;_1, m;_1,
received from the previous cell, and the bit m; generated by a Transcoder

(see Fig. 5)

c0 is the value of the locally generated marker

e ¢5 is the enable input for the tristate circuit that drives the output DOUT.

We can represent the whole structure of the CM as in the figure 5, where:

e Ci, for i =1,2,...,n, represents the i-th cell

12



e Transcoder is a combinational circuit that receives from each cell (X means
don’t care value) the markers

momyq...m, = 00...01 X X...X

and generates
mgm)...m,, = 00...011...1

substituting with 1 all the symbols after the first occurrence of 1.

Transcoder

CK

co i i i i
DIN
DOUT

Fig. 5 The functional structure of the CM

In consequence, the cells of the CM can be divided in three classes:
e the class of cells before the first cell having the marker (m; = 1)
e the first marked cell

o the class of cells after the first marked cell.

Using the signals m}, E;_; and m;_1, according to the current command (COM),
each cell has enough information to switch into the next state. The size of this
structure is O(n) for the string of the cells and is O(n log n) for Transcoder. In
order to reduce the size of CM to O(n) we must find another solution for the
Transcoder. This solution (see Fig. 6) is a bi-dimensional array, for cells, and
two transcoders (TCX and TCY), having the size O(y/nlog n). This second
solution allows us to define a CM with O(n) complexity.

The actual size of CM depends on the cell dimension. A classical approach
using dynamic latches leads us to around 20 MOS transistor per bit. Using a
bucket-brigate technology the transistor number can be reduced to 10. Smallest
area can be used when a CCD technology is adopted. A standard CAM can be
built with around 10 transistor per cell. The additional features of CM justify
a small size increasing. But is very important that we remain in the same
magnitude order.

13
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Fig. 6 The CM organized as a bi-dimensional array of cells

Because the depth of transcoder is O(1) for a theoretical model (one chip
approach) [Stefan ’94], the execution time for each CM’s function is O(1). (In
real applications, for n cells, if we use constant sized CM chips, then the depth of
the expanded transcoder becomes O(log n) and the execution time increases at
O(log n). But we can assume that the execution time for each function remains
“almost” O(1), as in systems that use RAM chips.)

3 The Connex Memory at Work

3.1 Automaton with Connex Memory

The simplest system configuration using CM is the Automaton with Connex
Memory (ACM). At the same time, ACM can be seen as a computability model.

Definition 1. An ACM (see Fig. 7) is structured using a CM and a finite
automaton defined as follows:

A = (S,S X F,meag;qo)
where:

e the sets S and F are defined in the formal definition of CM (see subsection
2.2 in this paper)

e () is the finite set of internal states of the automaton

e f is the state transition function, defined in @ x S, with values in @
(generates the new state according to the present state and sometimes to
the present output of the CM, if DATA of the CM (see Fig. 7) is in output
mode)

14



g is the output function of the automaton, defined in ) x S, with values
in S x F, if DATA (see Fig. 7) is in input mode, or else, in F'

Qo is the initial state of the finite automaton.

The ACM starts from ¢gp having in CM an initial string of symbols and stops in
a final state with a string of symbols, as result, in CM.O

COM

AUTOMATON CM
DATA

Fig. 7 Automaton with Connex Memory (ACM)

Obviously, all the partial recursive functions can be computed using an ACM.
Indeed, each action performed by the Turing machine can be performed with
an ACM.

Proposition 1. The ACM can expand the function set of the First Non-
formal Definition, defined on symbols, adding similar functions on strings of
symbols, defining in this way a List Oriented Reduced Architecture (LORA).
The additional new functions are:

RESET < string > : the variables of the CM take, after the first marked
variable, the values of < string > and the first symbol of the < string >
is repeated, after < string >, until the end of the CM

FIND < string > : the marker is set to the end of all substrings having
the value < string >

INSERT < string > : the string of symbols < string > is inserted in
front of the first occurrence of the marker

READ s|— : the first marked s-expression, if s, or the first marked symbol
are read executing READ up

WRITE < string > : the string of symbols < string > substitutes a
string having the same length starting with the first marked symbol

SKIP up|down, s|— : the next (up) or previous (down) s-expression (s)
or symbol (-) is skipped with the first marker

DELETE s|— : the s-expression that starts with the first marked variable
(s) or the first marked symbol (-) is deleted

END : executes READ.

15



By s we understand a Lisp object (atom or list). All these new functions are
executed in a number of cycles equal with the length of the string < string >
or of the s-expression s. O

We can prove immediately this proposition by defining the procedures that
describe the automaton evolution for each function.

3.2 Functions Defined on Trees/Lists

In applications we can introduce a Bus Connected ACM (BCACM), see figure
8, as the smallest complete system configuration, in which the INT (interface)
interconnects an ACM having, for example, associated LORA, with a standard
computer system, to implement a powerful coprocessing function in the list
oriented jobs.

In the next examples we suppose that:

e in CM there is only one list, representing a tree (see First Ezample), with
n symbols, followed by an unending sequence of #

e the symbols #, @, $ are used only by the system, they do not appear in
the initial form of the list.

Fourth Example Using LORA, in a BCACM configuration, we can answer,
with the procedure SUBTREE < name >, the question: is there a subtree with
a root < name >?

Procedure SUBTREE < name >
FIND < name >
SKIP down
if out = blank
then SKIP up
if out = (
then FIND #
INSERT yes
else FIND #
INSERT onlyleaf
endif
else FIND #
INSERT no
endif
end SUBTREE

16
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Fig. 8 Bus connected ACM, as a tree/list coprocessor

At the end of the list, after the first # the procedure SUBTREE inserts
the answer: mo, onlyleaf or yes. The execution time is T'(n) = O(1) =
number of symbols of the name + constant.

For example, if in the CM we have the list from the first example (see section
1.1) and we call SUBTREE george, then at the end of the execution the content
of CM becomes:

(john(mary mike(george(anne stephenson)dan irine)))#yes#3 . ..
If we call SUBTREE dan, then the answer will be:
(john(mary mike(george(anne stephenson)dan irine)))#onlyleaf#3 . ..
and for SUBTREE johny the answer will be:
(john(mary mike(george(anne stephenson)danirine)))#no## . .. .

O
Fifth Example Using LORA we can solve the problem of counting the
levels of the tree by procedure DEPTH.

Procedure DEPTH
FIND ¢
while out = blank
do SKIP down

WRITE @
FIND #
INSERT $
FIND ‘(
repeat
FIND @

while out = blank

17



repeat

end DEPTH

The answer is stored in 1-ary representation after the first # using the symbol
$. In the first while loop all ‘(’ are substituted by @ and are 1-ary counted. The
second loop restores the list substituting all @ with ‘(’.
tree representation is n and the depth of tree is m, then the execution time is

do SKIP down

WRITE ¢(’
FIND @

T(n) = O(m), independent of n. O

Sixth Example Another problem is: what is the level on which the string

< string > s positioned.

Procedure LEVEL < string >
FIND < string >
SKIP down
if out = blank
then READ up

else

endif
end LEVEL

The answer can be no or a l-ary number after the first #. Unfortunately, the
O(n) because SKIP up s is executed symbol by
symbol going through over s-expressions with the function READ up. O

execution time is T'(n) =

while out # )’

do SKIP up s-ex

repeat

loop WRITE @
FIND #
INSERT $
FIND @
until out # ¢)’

repeat

FIND @

SKIP down

loop WRITE ‘)’
SKIP up
until out # Q@

repeat

FIND #

INSERT no
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4 Conclusions

This paper presented only the basic idea of a class of logic-in-memories: connex
memories. Some preliminary conclusions will be enumerated.

1. The connex memory allows a base-level parallelism (all the soldiers receive
and can execute a command) in a surface sequential process (the strategy applied
by the officer using a string of commands). Our mind generates, often, an
inherent sequential algorithm to be executed. In this situation the parallelism
can be initiated only at a base-level in the computer structure. One solution is to
use a connex memory as a circuit for storing and manipulating data structures.

A small amount of processing functions were shifted near each stored bit.
This is one of the main idea of CM. Therefore, there are some simple functions
that can be parallel performed avoiding the communication through the “von
Neumann’s bottleneck”. There are many functions in symbolic computation
that imply simple local performed actions. These facilities allow us to trigger
parallel processes at the base level in the structure of the computing machine.
For example, search operations in dynamic data structure have better solutions
in systems with CM.

2. If we use a parallel approach with multiprocessors or multicomputers,
then our best expectation is to multiply the execution speed only with a constant
value. Elsewhere, when a base-level parallelism is initiated, as in CM approach,
the magnitude order of the processing time will be affected for some functions.

For example, the environment in a Lisp program interpretation is a dy-
namical data structure in which finding a pair name-value can be performed
in constant time instead of O(f(n)) time in system that uses large RAMs and
sophisticated algorithms. In this case compilation techniques can not be used
because of the dynamic growth of the structure (for static data structure the
compiler translates the algorithm to low level without significant loss of effi-
ciency).

3. Our belief is that a good architectural approach, supported by a well-
adapted memory device, will help us to find better solutions for the problems
generated by the circuit complexity. Instead of large RAM and sophisticated al-
gorithms running on powerful processors we propose a new architectural facility:
the connex memory (CM), hardware set-up as a simple device. Therefore,
new functions instead of large structures.We think that the architectural
flexibility is more efficient than the structural flezibility for solving the problem
of size and of time in computing complexity.

In [Stefan "96] where presented (subsection 4.4) comparisons between a CM
architecture and other models concerning basic operations on strings. The ar-
chitecture with CM has the better theoretical time performances thanks to the
functions performed by CM in one cycle.

4. The connex memory can be a very good choice for standard content
addressable memory, because it can execute the same functions with a smaller
structure (see First example). Also, memory functions as stacks, queues, and
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data structures as vectors, arrays, trees or graphs that are implemented with
CAM [Potter ’94], are better implemented in CM. The connez representation in
CM allows a very good management of this memory.

5. CM, as a CAM with some additional features, can improve all earlier asso-
ciative processing approaches (such as Staran machine [Batcher *74]), because it
optimizes content-addressability and it adds new possibilities, for dynamic data
structures, such as insert, delete and string matching. CM’s functions satisfy,
almost completely, the requirements specified [Potter '94] for some advanced
applications (such as genome sequencing): “Genome sequencing requires inte-
gration of knowledge retrieval, efficient insertion and deletion of data elements,
and efficient manipulation of matrices for the heuristic matching of sequences.”

6. DNA computing by the splicing operation opens new ways for CM ap-
plication. Paun and Salomaa proved [Paun ’95, '96] that the splicing operation
grounds a computational model and in [Stefan ’96a] are presented the facilities
offered by a CM architecture for implementing a “splicing machine”.

7. The future work on this subject will be focused on developing new ap-
plication oriented functions, starting from the main idea of the CM. At the
same time new functions will be added to the basic definitions starting from the
experience with the first variant of CM used in applications.

For example, because the time performance of the function SKIP up|down, s|—
depends on the length of the s-expression, we must look for new facilities in the
next versions of the CM, such as functions on predefined “windows”. See more
on new functions of CM in [Mitu '94].

8. The idea of the CM can be valued in developing useful specific applica-
tions, such as coprocessors for accelerating Lisp language interpretation [Stefan
'96], [Mitu ’96] or Prolog execution [Mitu ’96a] (the wunification mechanism is
very difficult to be implemented on conventional machines because the ineffi-
ciency of searching techniques (such as searching trees or hashing techniques) on
dynamic data structures). Nowadays, the architectures oriented toward Lisp or
Prolog language pay attention mainly for the processing unit. CM offers a sup-
port for a memory oriented approach in solving the critical functions involved
by Lisp interpretation or Prolog execution.

9. Architectures based on the rewriting systems represent another domain
in which the systems with CM are fery useful. In [Stefan ’98] are investigated
systems based on the Markov algorithms and the Lindermeyer grammars.

10. Functions defined on not disjoint sets are very well performed with a
connex memory oriented architecture [Mitu '95]. Also, theoretical studies can
be written starting from the idea of the CM [Paun ’94].
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