
Can One-Chip Parallel Computing Be Liberated From Ad Hoc
Solutions? A Computation Model Based Approach and Its

Implementation

Gheorghe M. Ştefan and Mihaela Maliţa

In July 2010 David Patterson said in IEEE Spectrum that “the
semiconductor industry threw the equivalent of a Hail Mary pass
when it switched from making microprocessors run faster to putting
more of them on a chip – doing so without any clear notion of how
such devices would in general be programmed” warning us that
one-chip parallel computing seems to be in trouble. Faced with
the problems generated by all those ad hoc solutions, we propose
a fresh restart of parallel computation based on the synergetic
interaction between: (1) a parallel computing model (Kleene’s
model of partial recursive functions), (2) an abstract machine
model, (3) an adequate architecture and a friendly programming
environment (based on Backus’s FP Systems) and (4) a simple
and efficient generic structure. This structure is featured with an
Integral Parallel Architecture, able to perform all the five forms
of parallelism (data-, reduction-, speculative-, time- and thread-
parallelism) which result from Stephen Kleene’s model and is
programmed as John Backus dreamed. Our first embodiment
of a one-chip parallel generic structure is centered on the
cellular engine ConnexArrayTM which is part of the SoC BA1024
designed for HDTV applications. On real chips we measured
6GOPS/mm2 and 120GOPS/Watt peak performance.

Index Terms—Parallel computing, recursive functions, parallel
architecture, functional programming, integral parallel compu-
tation.

I. INTRODUCTION

IT seems that the emergence of parallelism brings difficult
times for computer users who lack a friendly environment

to develop their applications. But the situation is not new.
In 1978 John Backus complained in a similar manner, in
[4], telling us that “programming languages appear to be in
trouble”. In the following fragment he coined the term “von
Neumann bottleneck”, trying to explain the main limitation of
the sequential programming model, dominant in his time:

“Von Neumann programming languages use vari-
ables to imitate the computer’s storage cells; control
statements elaborate its jump and test instructions;
and assignment statements imitate its fetching, stor-
ing, and arithmetic. The assignment statement is the
von Neumann bottleneck of programming languages
and keeps us thinking in word-at-a-time terms in
much the same way the computer’s bottleneck does.”

In his seminal paper John Backus proposes two impor-
tant things: (1) the main limitation of sequential computing,

Gheorghe M. Ştefan is with the Department of Electronic Devices, Circuits
and Architectures, Politehnica University of Bucharest, Bucharest, Romania,
e-mail: gstefan@arh.pub.ro

Mihaela Maliţa is with Department of Computer Science, Saint Anselm
College, Manchester, NH, e-mail: mmalita@anselm.edu

proposing its PF Systems, a new programming style, and
(2) a formal definition of a generic parallel architecture.
Removing the “von Neumann bottleneck” means not only
freeing the programming style from parasitic control actions,
but also opens the way for triggering parallel actions on large
amount of data avoiding explicit cumbersome data and code
manipulations.

The history of parallel computing ignored the second sug-
gestion offered by Backus. The parallel computation already
begun wrong, with ad hoc, speculative constructs, considering
that more than one machine, more or less sophisticatedly
interconnected, will have the force to solve the continuously
increasing hunger for computing power. The scientific com-
munity was from the beginning too much focused on parallel
hardware and parallel software, instead of solving first the
computational model and architectural issues. In fact our
computing community started from building too early parallel
hardware and then learned quickly that we are not able to
program it efficiently. There are few errors in this approach.

First of all, putting together 4, 8 or 128 processors does not
mean necessarily that we built a parallel machine. A parallel
machine must be thought as a n-cell system, where n is a
however large number. Scalability must be the main feature
of a parallel engine.

Second, a number of n Turing-based sequential machines,
interconnected in a certain network can not offer a starting
point in designing a parallel computer, because the role of the
interconnections could be more important and complex than
the effects of the cells they interconnect.

Third, while the mono-processor computer is theoretically
grounded in a computing model1, is based on an abstract
machine model2 and is supported by an appropriate archi-
tectural approach3, the multi- or many-processor approach is
not yet based on an appropriate computational model, there is
no a validated abstract machine model or a stabilized archi-
tectural environment which refers to a n-sized computational
mechanism. Indeed, the sequential, mono-processor computer
was backed, by turn, by Turing’s (or equivalent) computing

1A computing model is a mathematical definition for automatic computing
provided by the theory of computation originated during the 1930s from the
seminal ideas triggered by Kurt Gödel in the works of Alonzo Church, Stephen
Kleene, Emil Post and Alan Turing.

2An abstract machine model is a structural definition which provides
the computer organization able to implement the computation defined by a
computing model.

3An architecture provides a clear segregation between the hardware and
software, using the interface offered by the functionality of an appropriate
instruction set.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 582

model, by the von Neumann or Harvard abstract machine
model, and later by an appropriate architectural approach
when the complexity of hardware-software interaction became
embarrassing.

We believe that considering a parallel machine as an ad hoc
collection of already known sequential machines “appropri-
ately” interconnected is the worst way to start thinking about
parallel computation. Maybe, parallel computing is the natural
way to make computation and the sequential computation is an
early stage of computation we were obliged to accept because
of obvious technological limitations, and now is the time
to restart the process in the current, improved technological
conditions.

A. What is Wrong with Parallel Computing?

There is a big difference between the history of how the
sequential computing domain emerged and what happened
with the parallel computing domain in the last half century. In
the first case there is a coherent sequence of events leading to
the current stage of sequential computation, while for parallel
computation the history looks like a chaotic flow of events.
Let us schematize the emergence of the two sub-domains of
computing. First, for sequential computation we have:

• 1936 – computational models : four equivalent models
are published [33] [7] [14] [23] (all reprinted in [9]), out
of which the Turing Machine offered the most expressive
and technologically appropriate suggestion for future
developments

• 1944-45 – abstract machine models : MARK 1 com-
puter, built by IBM for Harvard University, consecrated
the term Harvard abstract model, while von Neumann’s
report [34] introduced what we call now the von Neumann
abstract model; these two concepts backed the RAM
(random access machine) abstract model used to evaluate
algorithms for sequential machines

• 1953 – manufacturing in quantity : IBM launched IBM
701, the first large-scale electronic computer

• 1964 – computer architecture : in [6] the concept of
computer architecture (low level machine model) is intro-
duced to allow independent evolution for the two different
aspects of computer design, which have different rate of
evolution: software and hardware; thus, there are now on
the market few stable and successful architectures, such
as x86, ARM, PowerPC.

Thus, in a quarter of century, from 1936 to the early 1960s,
the sequential computer domain evolved coherently from the-
oretical models to mature market products.

Let’s see now what happened in the parallel computing
domain:

• 1962 – manufacturing in quantity : the first symmetrical
MIMD engine is introduced on the computer market by
Burroughs

• 1965 – architectural issues : Edsger W. Dijkstra for-
mulates in [10] the first concerns about specific parallel
programming issues

• 1974-76 – abstract machine models : proposals of the
first abstract models (bit vector models in [24], [25], and

PRAM models in [11], [12]) start to come in after almost
two decades of non-systematic experiments (started in the
late 1950) and too early market production

• ? – computation model : no one yet considered it,
although it is there waiting for us (it is about Kleene’s
model [14]).

Now, in the second decade of the 3rd millennium, after more
than half century of chaotic development, it is obvious that the
history of parallel computing is distorted by missing stages
and uncorrelated evolutions4. The domain of what we call
parallel computation is unable to provide a stable, efficient
and friendly environment for a sustainable market.

In the history of parallel computation the stage of defining
the parallel computational model is skipped, the stage of
defining the abstract machine model is too much delayed
and confused with the definition of the computation model,
while we do not have yet a stable solution for a parallel
architecture. Because of this incoherent evolution even the
parallel abstract models, by far the most elaborated topics in
parallel computation, are characterized by a high degree of
artificiality, due to their too speculative character.

B. Parallel Abstract Machine Models
What we call today parallel computation models are in fact

a sort of abstract machine models, because true computational
models are about how computable functions are defined, not
(unrealistic) hardware constructs which interconnect sequential
computing engines. Let us take a look in the world of parallel
abstract machine models.

1) Parallel Random Access Machine – PRAM
The PRAM abstract model is considered, in [13], a “nat-

ural generalization” of the Random Access Machine (RAM)
abstract model. It is proposed in [11] and in [12], and consists
of n processors and a m-module shared memory, with both,
n and m of unbounded size. Each processor has its own local
memory. A memory access is executed in one unit time, and
all the operations are executed in one unit time. The access
type a processor has to the shared memory differentiates four
types of PRAMs: EREW (exclusive read, exclusive write),
CREW (concurrent read, exclusive write), ERCW (exclusive
read, concurrent write), CRCW (concurrent read, concurrent
write). The flavor of this taxonomy is too structural, somehow
speculative and artificial, unrelated directly with the idea of
computation, besides it refers to unrealistic mechanisms. The
model is a collection of machines, memories and switches,
instead of a functionally oriented mechanism as we have in the
Turing Machine, lambda-calculus, recursive functions models.
More, as an abstract machine model it is unable to provide:

• accurate predictions about the effective performances
related to time, space, energy, because of the unrealistic
structural suppositions it takes into account

• a lead to programming languages, because of the frag-
mented cellular approach which associates a program-
ming language only at the cell level, without any projec-
tion to the system level

4In this paper the economical, social, psychological aspects are completely
ignored, not because they are irrelevant, but because we concentrate only on
the pure technical aspects of the problem.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 583

• any realistic embodiment suggestion, because it ignores
any attempt to provide details about memory hierarchy,
interconnection network, communication,

Ignoring or treating superficially details about communication
and memory hierarchy is deceptive. For example: pure theo-
retic model for RAM says n × n matrix multiplication time
is in O(n3), but real experiments (see [26]) provide O(n4.7).
If for such a simple model and algorithm the effect is so big,
then we can imagine the disaster for the PRAM model on
really complex problems!

2) Parallel Memory Hierarchy – PHM
The PHM model is also a “generalization”, but this time

of the Memory Hierarchy model applied to the RAM model.
This version of the PRAM model is published in [2]. The
computing system is hierarchically organized on few levels and
in each node the computation is broken in many independent
tasks distributed to the children nodes.

3) Bulk Synchronous Parallel – BSP
The BSP model divides the program in super-steps [35].

Each processor executes a super-step, which consists of a
number of computational steps using data stored in their
own local memories. At the end of the super-step processors
synchronize data by message passing mechanisms.

4) Latency-overhead-gap-Processors – LogP
The LogP model is designed to model the communication

cost in a parallel engine [8]. The parameters used to name and
to define the model are: latency – L – time for a message to
move from a processor to another; overhead – o – time any
processor spends for sending or receiving a message; gap –
g – is the minimum time between messages; the number of
processors – P –, each having a big local memory. The first
three parameters are measured in clock cycles. The model is
able to provide an evaluation which takes into account the
communication costs in the system.

The last three models are improved forms of the PRAM
model; they provide a more accurate image about parallel
computation, but all of them inherit the main limitation of the
mother model, the too speculative and artificial PRAM model.
The general opinions about PRAM are not very favorable:

“Although the PRAM model is a natural parallel
extension of the RAM model, it is not obvious that
the model is actually reasonable. That is, does the
PRAM model correspond, in capability and cost, to
a physically implementable device? Is it fair to al-
low unbounded numbers of processors and memory
cells? How reasonable is it to have unbounded size
integers in memory cells? Is it sufficient to simply
have a unit charge for the basic operations? Is it
possible to have unbounded numbers of processors
accessing any portion of shared memory for only
unit cost? Is synchronous execution of one instruc-
tion on each processor in unit time realistic?” ([13],
p. 26)

Maybe even the authors of the previous quotation are somehow
wrong, because parallel computation modelled by PRAM is
not a natural extension of the sequential computation, on
the contrary, we believe that the sequential computation is a
special case of parallel computation.

We are obliged to assert that the PRAM model, and its
various versions5, have little, if any, practical significance. In
addition, the delayed occurrence of these models, after real
improvised parallel machines were already on the market,
have a negative impact on the development of the parallel
computation domain.

C. What Must be Done?

The question What must be done? is answered by We must
restart as we successfully started for sequential computing.
And we have also good news: a lot of stuff we need is there
waiting to be used. There is a computational model which is a
perfect match for the first step in the emergence of the parallel
computation: the partial recursive functions model proposed
by Stephen Kleene in 1936, the same year in which Turing,
Church and Post made their proposals. It can be used, in a
second step, to derive from it an abstract machine model
for parallel computation. For the third step, the FP Systems,
proposed in 1978 by John Backus, are waiting to be used in
order to provide the architecture or the low level model for
parallel computation.

However, we learned a lot from the work already done
for developing abstract models for parallelism. The evaluation
made in [17] provides the main characteristics to be considered
in the definition of any abstract machine model:

• Computational Parallelism must be performed using the
simplest and smallest cells; in order to increase the area
and energy efficiency, the structural granularity must
decrease with the number of cells (see [27])

• Execution Synchronization can be maintained simple
only if the computational granularity is small, preferably
minimal

• Network Topology is suggested by the parallel compu-
tational model and must be kept as simple as possible;
communication depends on many other aspects and the
optimization is a long and complex process which will
provide only in time insights about how the network
topology must be structured and tuned

• Memory Hierarchy is a must, but the initial version of
the abstract model is preferably to have only a minimal
hierarchy; it can be detailed only as a consequence of an
intense use in various application domains; the question
caches or buffers? has not yet an unanimously accepted
answer

• Communication Bandwidth being very costly, in size and
energy, must be carefully optimized taking into account
all the other six characteristics

• Communication Latency can be hidden by carefully
designed algorithms and by disconnecting, as much as
possible, the computation processes by the communica-
tion processes

5Besides the discussed ones there are many others, like: Asynchronous
PRAM, XPRAM (performs periodic synchronization), LPRAM (includes
memory latency costs), BPRAM (block transfer oriented), DRAM (adds the
level of distributed local memory), PRAM(m) (limits the size of the globally
shared memory to m).

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 584

• Communication Overhead has a small impact only for
simple communication mechanisms involving simple net-
work, simple synchronization, simple cells, small hierar-
chy.

Obviously, the complexity can not be avoided eventually, but
the way complexity manifests can not be predicted, it must be
gradually discovered after a long time use of a simple generic
model.

Unfortunately, the emergence of parallel computing oc-
curred in a too dynamic and hurried world, with no time to
follow the right path. A new restart is required in order to
define a simple generic parallel machine, subject to organic
improvements in a long term evaluation process. Our proposal
is a five-stage approach:

1) use Kleene’s partial recursive functions as the parallel
computational model to provide the theoretical frame-
work

2) define the abstract machine model using meaningful
forms derived from Kleene’s model

3) put on top of the abstract machine model a low level
(architectural) model description based on Backus’s FP
Systems

4) provide the simplest generic parallel structure able to
run the functions requested by the low level model

5) evaluate the options made in the previous three steps in
the context of the computational motifs highlighted by
Berkeley’s View in [3], looking mainly for systematic or
local weaknesses of the architectural model or generic
structure in implementing typical algorithms.

The first two steps will be completed in the next two sections,
followed by a section used to sketch only the third stage. For
the fourth stage an already implemented engine is presented.
The fifth step will be only shortly reviewed; it is left for
future work. Only after the completion of this 5-stage project
the discussion on parallel programming models can be started
based on a solid foundation.

II. KLEENE’S MODEL IS A PARALLEL COMPUTATIONAL
MODEL

Kleene’s model of partial recursive functions contains the
parallel aspects of computation in its first rule – the composi-
tion rule –, while the next two rules – primitive recursion
and minimalization – are elaborated forms of composition
(see [18]). Thus, composition captures directly the process of
parallel computing in a number of p+ 1 functions by:

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hp(x1, . . . , xn))

where, there are involved, at the first level, p functions –
h1, . . . , hp – and a p-variable reduction function g (sometimes
implementable as a (log p)-depth binary tree of p − 1 func-
tions).

In Figure 1 the circuit embodiment of the composition
rule is represented. It consists of a layer of p cells (each
performs the function hi, for i = 1, 2, . . . , p) and a module
which performs the reduction function g. In the general case
the values of the input variables are sent to all the p cells
performing functions hi and the resulting p-component vector

{h1(x1, . . . , xn), . . . , hp(x1, . . . , xn)} is reduced to a scalar
by the module g.

h1(x) h2(x) hp(x)

? ? ?

? ? ?

x = {x1, . . . , xn}

g(h1(x), . . . hp(x))

?
f({x1, . . . , xn})

Fig. 1. The circuit structure associated to composition.

Two kinds of parallelism are foreseen at this level of our
approach: a synchronic parallelism – on the first layer of cells
– and a diachronic (pipeline) parallelism – between the two
levels of the structure.

The partial recursive functions model uses two other rules:
the primitive recursive rule and the minimalization rule. We
will prove that both can be defined composing special forms
of the composition rule. Thus, we will conclude that the com-
position rule could be the only mechanism to be considered
in describing the parallel computation.

A. Reducing Primitive Recursion to Composition

In this subsection is proved that the second rule of the partial
recursive model of computation, the primitive recursive rule,
is reducible to the repeated application of specific forms of
composition rule. Let be the composition:

Ci(x1, . . . , xi) = g(f1(x1, . . . , xi), . . . , fi+1(x1, . . . , xi))

If g is the identity function g(y1, . . . , yi+1) = {y1, . . . , yi+1}
and f1(x1, . . . , xi) = hi(x1), f2(x1, . . . , xi) = x1, . . .,
fi+1(x1, . . . , xi) = xi, then

Ci(x1, . . . , xi) = {hi(x1), x1, x2, . . . , xi}

The repeated application of Ci (see Figure 2a), starting from
i = 1 with x1 = x allows us to compute the pipelined function
P (see Figure 2b):
P (x) = {h1(x), h2(h1(x)), h3(h2(h1(x))), . . .
. . . , hk(hk−1(. . . (h1(x) . . .)), . . .}

The function P (x) is a total function if the functions hi

are total functions and it is computed using only the repeated
application of the composition rule.

The primitive recursion rule defines the function f(x, y)
using the expression

f(x, y) = g(x, f(x, (y − 1)))

where f(x, 0) = h(x). The iterative evaluation of the function
f is done using the following expression:

f(x, y) = g(x, g(x, g(x, . . . g︸ ︷︷ ︸
y times

(x, h(x)) . . .)))

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 585

h1

??

?

??

h2

hk

?

?

x

C1

a.

C2

Ck

x
h1 h2

- - - hk
- -

? ? ? ?

b.

Fig. 2. The pipeline structure as a repeated application of the composition
Ci. a. The explicit application of Ci. b. The resulting multi-output
pipelined circuit structure P .

In Figure 3 is represented the iterative version of the struc-
ture associated to the primitive recursive rule. The functions
used in the iterative evaluation are:

f(x, y)

G
x
y
i

pi
f(x,i)f(x,i-1)

y
x

H

?

G

?

x
y
i

pi

??

i+1

?

f(x,i)f(x,i-1)

y
x

i+1

R
?

x
0
x
y y

i

pi
f(x,i)

y
x

i+1

?

Fig. 3. The circuit which performs the partial recursive computation.

• H(i, x, y) = {(i+1), x, y, f(x, 0), pi}, receives the index
i = 0 and the two input variables, x and y, and returns:
the incremented index, i + 1, the two input variables,
f(x, i), which is h(x), and the predicate pi = p0 =
(y == 0). The predicate and the value of the function are
used by the reduction function R, while the next function
in pipe, G1, receives {(i+ 1), x, y, f(x, 0)}.

• G(i, x, y, f(x, (i − 1))) = {(i + 1), x, y, f(x, i), pi}
receives the index i, the two input variables, x and
y, f(x, (i − 1)), and returns: the incremented index,
i + 1, the two input variables, f(x, i), and the predicate
pi = (y == i).

• R({{p0, f(x, 0)}, {p1, f(x, 1)}, . . . , {pi, f(x, i)}, . . .}) =
IP (trans({{p0, f(x, 0)}, {p1, f(x, 1)}, . . .
. . . , {pi, f(x, i)}, . . .})) =
IP ({p0, p1, . . . , pi, . . .}, {f(x, 0), f(x, 1), . . .
. . . , f(x, i), . . .}) = f(x, y)
is a reduction function; it receives a vector of pairs

predicate-value, of form {(y == i), f(x, i)}, and returns
the value whose predicate is true. Function R is a
composition of two functions: trans (transpose), and
IP (inner product). Both are simple functions computed
by composition.

The two stage computation just described, as a structure
indefinitely extensible to the right, is a theoretical model,
because the index i takes values no matter how large, similar
with the indefinitely extensible (“infinite”) tape of Turing’s
machine. But, it is very important that the algorithmic com-
plexity of the description is in O(1), because the functions H ,
G and R have constant size descriptions.

B. Reducing Minimalization to Composition
In this subsection is proved that the third rule of the partial

recursive model of computation, the minimalization rule, is
also reducible to the repeated application of specific forms of
the composition rule.

The minimalization rule computes the value of f(x) as the
smallest y for which g(x, y) = 0. The algorithmic steps used
in the evaluation of function f(x) consist of 4 reduction-less
compositions and a final reduction composition, as follows:

1) f1(x) = {h1
0(x), . . . h

1
i (x), . . .} = X1, with h1

i (x) =
{x, i}

2) f2(X1) = {h2
0(X1), . . . h

2
i (X1), . . .} = X2, with

h2
i (X1) = {i, pi}, where

pi = (g(sel(i,X1)) == 0) is the predicate indicating
if g(x, i) = 0, and sel is the basic function selection
in Kleene’s definition; provides pairs index-predicate
having the predicate equal with 1 where the function
g takes the value 0

3) f3(X2) = {h3
0(X2), . . . h

3
i (X2), . . .} = X3, with

h3
i (X2) = {i, prefi}, where

{pref0, . . . prefi, . . .} = prefixOR(p0, . . . pi, . . .);
in [15] is provided a O(log n) steps optimal recursive
algorithm for computing the prefix function for n inputs

4) f4(X3) = {h4
0(X3), . . . h

4
i (X3), . . .} = X4, with

h4
i (X3) = {i, ADN(prefi, NOT (prefi−1))} =

{i, firsti}; provides pairs index-predicate where only
the first occurrence, if any, of {i, 1} is maintained, all
the others take the form {i, 0}

5) f5(X4) = R({{first0, 0}, . . . , {firsti, i}, . . .}) =
{OR({first0, . . . , firsti, . . .}), IP ({first0, . . .
. . . , firsti, . . .}, {0, . . . , i, . . .})} =
{p, f(x)} = p ? f(x) : −
is a reduction function; it receives a vector of pairs
predicate-value, of form {(y == i), f(x, i)}, and returns
the value whose predicate is true, if any. If p = 0, then
the function has no value.

The computation just described is also a theoretical model,
because the index i has an indefinitely large value. But, the size
of algorithmic description remains O(1), because the functions
fj are completely defined by the associated generic functions
hj
i , for j = 1, 2, 3, 4.

C. Concluding about Kleene’s Model
In this section we proved that the model of partial recursive

functions can be expressed using only the composition rule,

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 586

because the other two rules – primitive recursion and mini-
malization – are reducible to multiple applications of specific
compositions. The resulting computational model is an intrin-
sic parallel model of computation. The only rule defining it –
the composition rule – provides two kinds of parallelism: the
synchronic parallelism on the first stage of hi(x) functions,
and a diachronic parallelism between the first stage and the
reduction stage. (The reduction stage can be expressed in turn
using log-stage applications of the composition rule.)

Thus, Kleene’s model of parallel computation is described
by the circuit construct represented in Figure 1, where p has
value no matter how large. For a theoretical model it does not
hurt. The abstract model of parallel computation, introduced
in the next section, aims to remove the theoretical freedom
allowed by the “infinite” physical resources.

The theoretical degree of parallelism, δ, emphasized for the
two-level function

f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hp(x1, . . . , xn))

is p for the first level of computation, if hi(x1, . . . , xn) are
considered atomic functions for i = 1, . . . p, while for the sec-
ond level δ is given by the actual description of the p-variable
function g. The theoretical degree of parallelism depends on
the possibility to provide the most detailed description as a
composition using atomic functions.

Informally, we conjecture that the degree of parallelism for
a given function f , δf , is the sum of the degree o parallelism
found on each level divided by the number of levels. Therefore,
theoretically the function f can be computed in parallel only
if δf > 1.

For example, if f(x1, . . . , xn) =
∑n

i=1 x
2
i is the inner

product of a vector with itself, then the first level of com-
putation is data-parallel with hi = x2

i and the second level of
computation, the function g, is a reduction-parallel function
computed by a log-depth binary tree of two-input adders. If
multiply and add are considered atomic operations and n a
power of 2, then the value of δ for f is:

δf = (n+ n/2 + n/4 + . . .+ 1)/(1 + log2n) =

(2n− 1)/(1 + log2n) ∈ O(n/log n)

It seems that a degree of parallelism δ ∈ O(n/log n) is the
lower limit for what we can call a reasonable efficient parallel
computation.

The composition rule will be considered as the starting
point, in the next section, for defining an abstract parallel
machine model.

III. AN ABSTRACT PARALLEL MACHINE MODEL

The distance from Turing’s model to Harvard or von
Neumann models is the distance between a mathematical
computational model and an abstract machine model. The first
model is mainly about What is computation? and the second is
more about How computation is done?. Our abstract machine
model takes into consideration some meaningful simplified
forms of the composition rule. We claim that the following
five forms of composition provide the structural requirements
for a reasonable efficient parallel engine.

A. Meaningful Simplified Forms of Compositions

1) Data-parallel
The first simplified composition distributes along the func-

tionally identical cells the input sequence of data {x1, . . . , xp},
and considers that the second level executes the identity
function, i.e., hi(x1, . . . , xp) = h(xi) and g(y1, . . . , yp) =
{y1, . . . , yp}. Then,

f(x1, . . . , xp) = {h(x1), . . . , h(xp)}

where xi = {xi1, . . . , xim} are sequences of data, is a data-
parallel computation.

A more complex data-parallel operation is the conditioned
(predicated) execution:
f({x1, . . . , xp}, {b1, . . . , bp}) =
{(b1 ? hT (x1) : hF (x1)), . . . , (bp ? hT (xp) : hF (xp))}
where: bi are Boolean variables.

The circuit associated with the data-parallel computation is
a cellular structure (see Figure 4a), where each cell receives
its own component xi from the input sequence. The execution
is unconditioned – each cell executes: h(xi) –, or it is condi-
tioned by the state of the cell, expressed by locally computed
Booleans, and each cell executes: bi ? hT (xi) : hF (xi).
Each cell must have local memory for storing the sequence
xi, for the working space and data buffers. The sequence of
operations performed by the array of cells is stored in the
program memory of the associated control circuit.

2) Reduction-parallel
While the first type of parallelism assumes that the reduction

function is the identity function, the second form makes
the opposite assumption: the first layer, of the synchronous
parallelism, contains the identity functions: hi(xi) = xi. Thus
the general form becomes:

f(x1, . . . , xp) = g(x1, . . . , xp)

which reduces the input sequence of variables to a single
variable (see Figure 4b). The circuit organization of the
reduction is tree-like. It consists of a repeated application of
various compositions. The size of the associated structure is
in the same range as for the data-parallel, while the depth is
in O(log p).

Because, in the current applications there are only few
meaningful reduction functions, the reduction-parallel oper-
ations are usually performed using circuits instead of pro-
grammable structures.

3) Speculative-parallel
The third simplified composition is somehow complemen-

tary to the first: the functionally different cells – hi – receive
the same input variable – x – while the reduction section is
the same. Then,

f(x) = {h1(x), . . . , hp(x)}

where: x is a sequence of data. The function returns a sequence
of sequences.

There are two ways to differentiate the functions hi(x):
1) hi(x): represents a specific sequence of operation for

each i. Then, the local memory in each cell contains,
besides data, the sequence of operations

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 587

? ?

parallel

b.

?

x1

x1 xp

Reduction-
parallel

g(x1, . . . , xp)

Time-parallel

f1 f2- - -

h1(x1)

-- fp

hp(xp)

?

? ?

x

h1(x) hp(x)

?

xp

? ?

? ?Thread-parallel

Speculative-

e.

x

?

c.

d.

?

? ?
a.

xp

h(x1) h(xp)

x1

Data-parallel

Fig. 4. Five types of parallelism as particular forms of composition (see
Figure 1)

2) hi(x) = g(i, x): the sequence of operations are identical
for each i, but the function has the parameter i. Then,
the local memory contains only data, and the execution
takes into account the index of the cell to differentiate
the local execution of the sequence of operations stored
in the memory of the associated control device.

The circuit associated to the speculative-parallel computa-
tion is a cellular structure (see Figure 4c), each cell receiving
the same input variable – x – which is used to compute
different functions. The general case of speculative-parallel
computation requests local data and program memory. While
the data-parallel cell is an execution unit, the speculative-
parallel cell is sometimes a processing unit.

4) Time-parallel
There is the special case when the functions are defined for

p = 1, i.e., f(x) = g(h(x)). Then, here is no synchronous
parallelism. Only time (diachronic), pipelined parallelism is
possible if in each “cycle” a new value is applied to the input.
Thus, in each “cycle” the function h is applied to x(t) (which
is x at the “moment” t) and g is applied to h(x(t−1)) (where
x(t−1) is the value applied to the input at the “moment” t−1).
The system delivers in each “cycle” the result of a computation
supposed to be performed in 2 “cycles”, or we say that the
system works in parallel for computing the function f for 2
successive values.

Many applications of f(x) = g(h(x)) result in the m-level
“pipe” of functions:

f(x) = fm(fm−1(. . . f1(x) . . .))

where: x is an element in a stream of data. The resulting
structure (see Figure 4d) is a parallel one if in each “cycle” a
new value for x is inserted in the pipe, i.e., it is applied to f1.

This type of parallelism comes with a price: the latency
time, expressed in number of cycles, between the insertion of
the first value and the occurrence of the corresponding result.

5) Thread-parallel
The last simplified form of composition, we consider for

our abstract machine model, is the most commonly used in
current real products. It is in fact the simplest parallelism,
applied when the solution of a function is a sequence of objects
computed completely independent. If hi(x1, . . . , xn) = hi(xi)
and g(h1, . . . , hp) = {h1, . . . , hp}, then the general form of
composition is reduced to:

f(x1, . . . , xp) = {h1(x1), . . . , hp(xp)}

where: xi is an sequence of data. Each hi(xi) represents a
distinct and independent thread of computation performed in
distinct and independent cells (see Figure 4e). Each cell has
its own data and program memory.

B. Integral Parallelism

We make the assumption that the previously described
particular forms of composition – the only rule that we showed
is needed for the calculation of any partial recursive function
– cover the features requested for a parallel abstract machine
model. This assumption remains to be (at least partially)
validated in the fifth stage of our proposal, which evaluates
the model against all the known computational motifs.

1) Complex vs. Intense in Parallel Computation
The five forms of parallelism previously emphasized per-

form two distinct types of computation:
• intense computation : the algorithmic complexity of the

function f(x1, . . . , xn) is constant, while the size of data
is in O(F (n))

• complex computation : the algorithmic complexity of
the function is in O(F (n)).

Revisiting the types of parallel computation we find that:
• data-parallel computation is intense, because it is defined

by one function, h, on many data, {x1, . . . , xp}

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 588

• reduction-parallel computation is intense because the
function is simple (constant size definition) and the size
of data is in O(p)

• speculative-parallel computation most of time is intense
while sometimes is complex, because:

– when hi(x) = g(i, x) the resulting computation
is intense, because the functional description has
constant size, while the data is {x, 0, 1, . . . , p}; we
call it intense speculative-parallel computation

– when hi ̸= hj for i, j ∈ {0, 1, . . . , p} the functional
description has the size in O(p) and the size of data
is in O(1); we call it complex speculative-parallel
computation.

• time-parallel computation is most of the time complex,
because the definition of the m functions fi has the size
in O(m), while sometimes is intense, when the pipe
of functions is defined using only a constant number of
different functions

• thread-parallel computation is complex because the size
of the description for hi ̸= hj for i, j ∈ {1, . . . , p} is in
O(p).

2) Many-Core vs. Multi-Core
For a general purpose computational engine all the five

forms must be supported by an integrated abstract model. We
call the resulting model: integral parallel abstract machine
model (see Figure 5).

In Figure 5 there are emphasized two sections, called
MANY-CORE and MULTI-CORE. The first section contains
the cells c1, . . . cp and the log-depth network redLoopNet
(which performs reduction functions and closes a global loop
responsible for performing scan functions). They are used for
data-, speculative-, reduction- and time-parallel computation
(sometimes for thread-parallel computation). The second sec-
tion, contains the cells C1, . . . Cq , mainly used for thread-
parallel computation. Each cell ci is a minimalist implemen-
tation of a processing element or of an execution unit, while
each Cj can be a strong and complex processing element. One
Ci core is used as controller (C1 in our representation) for the
MANY-CORE array. In real applications the system is optimal
for p >> q.

The MANY-CORE section is involved mainly in intense
computations (characterized by: many-core, sequence comput-
ing, high-latency functional pipe, buffer-based memory hier-
archy), while the MULTI-CORE section is mainly responsible
for complex computations (characterized by: mono/multi-
core, multi-threaded programming model, cache-based mem-
ory hierarchy) (details in [31]).

The main differences between complex and intense com-
putation at this level of description are: (1) p >> q and (2)
the access to the system memory through the cache memory
for complex computation and through an explicitly controlled
(multi-level) buffer for intense computation.

3) Vertical vs. Horizontal Processing
The buffer-based memory hierarchy allows two kinds of

intense computation in the MANY-CORE section. Because the
first level Buffer module stores m p-element sequences which
can be seen as a two-dimension array, the computation can

c1 c2�- �- cp�-
?6 ?6 ?6

MANY-CORE

C1 Cq

?

(Multi-level) Buffer Cache

6
?

6

redLoopNet
MULTI-CORE

?
666 6

?

6

?

6

?

Memory
6? 6?

Fig. 5. The integral parallel abstract machine model.

be organized horizontally or vertically. Let us consider the
following m sequences stored in the first level Buffer.

s1 =< x11, . . . , x1p >
s2 =< x21, . . . , x2p >

. . .
sm =< xm1, . . . , xmp >

Horizontal computing means to consider a function defined
on the sequence si. For example, FFT on si which returns as
result the sequences si+1 and si+2. Vertical computing means
to compute p times the same function on the sequences

< x1i, x2i, . . . xji >

for i = 1, 2, . . . p. For the same example, p FFT computations
can be performed on

< x1i, x2i, . . . xji >

for i = 1, 2, . . . p, with results in

< x(j+1)i, x(j+2)i, . . . x(2j)i >

< x(2j+1)i, x(2j+2)i, . . . x(3j)i >

for i = 1, 2, . . . p. If p = j, the same computation is performed
on the same amount of data, but organizing the data for vertical
computing has, in this case of the FFT computation, some
obvious advantages. Indeed, the “interconnection” between xij

and xik depends on the value of |j − k| in si, while the
“interconnection” between xji and xki does not depend on
the value of |j − k| because the two atoms are processed in
the same cell ci. For other kinds of computations maybe the
horizontal computing must be chosen.

The capability of organizing data on two dimensions, ver-
tically or horizontally, allows the use of a p-cell organization
to perform computation on data sequences of size different
from p. The job to adapt the computation on n-component
sequences into a p-cell system organization is left to the
compiler. If n > p, then the actual sequence will be loaded as
few successive p-sized sequences in the two-dimension array
< s1, . . . , sm >. If n < p, then few n-component sequences
are accommodated in one p-sized system sequence.

Thus, the MANY-CORE section emulates the computation
on a two-dimension network of atoms with a very restrictive
but inexpensive horizontal interconnection (due to the linear

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 589

interconnection between the cells ci) and a very flexible
vertical interconnection (because of the random access in the
first level Buffer).

C. Recapitulation

A synthetic representation of our abstract model for parallel
computation is in Figure 6, where processing is done in the fine
grain array MANY-CORE and the coarse grain array MULTI-
CORE.

6
6 6

Processor

? ??

MANY-CORE -�

Data
Cache

Program
Cache

Scalar cache memoryL1 Memory

MULTI-
CORE

Sequence
Buffer

Fig. 6. Parallel abstract machine model. Between Processor and the first
level memory hierarchy there are three channels: for program, atoms and
sequences.

The first level of memory hierarchy, L1 Memory, consists of
Data Cache for the scalar part of the computation performed
mainly by MULTI-CORE, while Sequence Buffer is for the
sequence computation performed in MANY-CORE. For the
code, executed by both, MANY- and MULTI-CORE, there is
the Program Cache. Due to its high “predictability” the data
exchange for the intense computation is supported by a buffer-
based memory hierarchy, unlike the complex computation
which requests a cache-based memory hierarchy.

The “bottleneck” incriminated by John Backus, for slowing
down and making more complex the computation, is not
completely avoided. It is substituted only by an enlarged
“jarneck”, which allows a higher bandwidth between Proces-
sor and L1 Memory. But, while p, the number of cells in
MANY-CORE, increases easily from hundreds to thousands,
the bandwidth between L1 Memory and the system memory
is more drastically limited by technological reasons (number
of pins, power, technological incompatibilities between logic
and DRAMs, ...). The only way to mitigate the effect of this
limitation is to design the on-chip Sequence Buffer as big
as possible in order to avoid frequent data exchange with the
off-chip system memory.

There are many possible forms of implementing the ab-
stract model, depending on the targeted application domain.
For most of the applications, the use of data-parallel, in-
tense speculative-parallel and reduction-parallel computations
covers all the intense computational aspects needed to be
accelerated by parallel computation. A good name for this
case could be MapReduce abstract machine model.

IV. BACKUS FP SYSTEMS AS LOW LEVEL,
ARCHITECTURAL DESCRIPTION

Although Backus’s concept of Functional Programming
Systems (FPS) was introduced as an alternative to the von
Neumann style of programming in [4], we claim that they
can be seen also as a low level description for the parallel
computing paradigm. In the following we use a FPS-like
form to provide a low level functional description for the
abstract model defined in the previous section. Thus, we obtain
the virtual machine description of a parallel computer, i.e.,
the description defining the transparent interface between the
hardware system and the software system in a real parallel
computer. Starting from this virtual machine, the actual in-
struction set architecture could be designed for the physical
embodiment of various parallel engines.

This section provides, following [4], the low level descrip-
tion for what we call Integral Parallel Machine (IPM). It
contains functions which map objects into objects, where an
object could be:

• atom, x; special atoms are: T (true), F (false), ϕ (empty
sequence)

• sequence of objects, < x1, . . . , xp >, where xi are atoms
or sequences

• ⊥: undefined object
The set of functions contains:

• primitive functions: the functions performed atomically,
which manage:

– atoms, using functions defined on constant length se-
quences of atoms, returning constant length sequence
of atoms

– p-length sequences, where p is the number of cells
of the MANY-CORE section

• functional forms for:
– expanding to sequences the functions defined on

atoms
– defining new functions

• definitions: the programming tool used for developing
applications.

A. Primitive Functions

An informal and partial description of a set of primitive
functions follows.

• Atom : if the argument is an atom, then T is returned,
else F is returned.

atom : x ≡ (x is an atom) → T ;F

The function is performed by the controller or at the level
of each ci cell if the function is applied to each element
of a sequence (see apply to all in the next subsection).

• Null : if the argument is the empty sequence, it returns
T, else F.

null : x ≡ (x = ϕ) → T ;F

It is a reduction-parallel function performed by the re-
duction/loop network, redLoopNet (see Figure 5), which
returns a predicate to the controller.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 590

• Equals : if the argument is a pair of identical objects,
then returns T, else F.

eq : x ≡ ((x =< y, z >) & (y = z)) → T ;F

If the argument contains two atoms, then the function is
performed by the controller, else, if the argument contains
two sequences, the function is performed in the cells ci,
and the final results is delivered to the controller through
redLoopNet.

• Identity : is a sort of no operation function which returns
the argument.

id : x ≡ x

• Length : returns an atom representing the length of the
sequence.

length : x ≡ (x =< x1, . . . , xi >) → i; (x = ϕ) → 0;⊥

If the sequence is distributed in the MANY-CELL array,
then a Boolean sequence, < b1, . . . , bp >, with 1 on
each position containing a component xj is generated
and redLoopNet provides

∑p
1 bj for the controller.

• Selector : if the argument is a sequence with no less than
i objects, then the i-th object is returned.

i : x ≡ ((x =< x1, . . . , xp >) & (i ≤ p)) → xi

The function is performed composing an intense
speculative-parallel search operation with a data-parallel
mask operation and the reduction-parallel OR operation
which sends to the controller the selected object.

• Delete : if the first argument, k, is a number no bigger
than the length of the second argument, then the k-th
element in the second argument is deleted.
del : x ≡ (x =< k,< x1, . . . , xp >>)& (k ≤ p) →
< x1, . . . , xk−1, xk+1, . . . >
The ORprefix circuit included in the redLoopNet subsys-
tem selects the sequence < xk, xk+1, . . . >, then the
left-right connection in the MANY-CELL array is used
to perform a one position left shift in the selected sub-
sequence.

• Insert data : if the second argument, k, is a number no
bigger than the length of the third argument, then the
first argument is inserted in the k-th position in the last
argument.
ins : x ≡ (x =< y, k,< x1, . . . , xp >>)& (k ≤ p) →
< x1, . . . , xk−1, y, xk, . . . >
The ORprefix function performed in the redLoopNet
subsystem selects the sequence < xk, xk+1, . . . >, then
the left-right connection in the MANY-CELL array is
used to perform one position right shift in the selected
sub-sequence and write y in the freed position.

• Rotate : if the argument is a sequence, then it is returned
rotated one position left.

rot : x ≡ (x =< x1, . . . , xp >) →< x2, . . . , xp, x1 >

The redLoopNet subsystem and the left-right connection
in the MANY-CELL array allows this operation.

• Transpose : the argument is a sequence of sequences
which can be seen as a two-dimension array. It returns a

sequence of sequences which represents the transposition
of the argument matrix.
trans : x ≡
(x =<< x11, . . . , x1m >, . . . , < xn1, . . . , xnm >>) →
<< x11, . . . , xn1 >, . . . , < x1m, . . . , xnm >>
There are two possible implementations. First, it is natu-
rally solved in the MANY-CELL section because, loading
each component of x “horizontally”, as a sequence in
Buffer, we obtain, associated to each cell ci, the n-
component final sequences on the “vertical” dimension
(see paragraph 3.2.3):

< x11, . . . , xn1 > accessed by c1
< x12, . . . , xn2 > accessed by c2

. . .
< x1m, . . . , xnm > accessed by cm

where each initial sequence is a m-variable “line” and
each final sequence is n-variable “column” in Buffer.
Second, using rotate and inter sequence operations.

• Distribute : returns a sequence of pairs; the i-th element
of the returned sequence contains the first argument and
the i-th element of the second argument.
distr : x ≡ (x =< y,< x1, . . . , xp >>) →
<< y, x1 >, . . . , < y, xp >>
The function is performed in two steps: (1) generates
the p-length sequence < y, . . . , y >, then (2) performs
trans << y, . . . , y >,< x1, . . . , xp >>.

• Permute : the argument is a sequence of two equally
length sequences; the first defines the permutation, while
the second is submitted to the permutation.
perm : x ≡
(x =<< y1, . . . , yp >,< x1, . . . , xp >>) →
< xy1 , . . . , xyp >
With no special hardware support it is performed in time
O(p). An optimal implementation, in time belonging to
O(log p), involves a redLoopNet containing a Waksman
permutation network, with < y1, . . . , yp > used to
program it.

• Search : the first argument is the searched object, while
the second argument is the target sequence; returns a
Boolean sequence with T on each match position.
src : x ≡ (x =< y,< x1, . . . , xp >>) →
< (y = xi), . . . , (y = xp) >
It is an intense speculative-parallel operation. The scalar
y is issued by the controller and it is searched in each
cell generating a Boolean sequence, distributed along the
cells ci in MANY-CELL, with T on each match position
and F on the rest.

• Conditioned search : the first argument is the searched
object, the second argument is the target sequence, while
the third argument is a Boolean sequence (usually gen-
erated in a previous search or conditioned search); the
search is performed only in the positions preceded by
T in the Boolean sequence; returns a Boolean sequencer
with T on each conditioned match position.
csrc : x ≡
(x =< y,< x1, . . . , xp >,< b1, . . . , bp >>) →
< c1, . . . , cp >

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 591

where: ci = ((y = xi) & bi−1) ? T : F .
The combination of src or csrc allows us to define
a sequence_search operation (an application is de-
scribed in [32]).

• Arithmetic & logic operations :

op2 : x ≡ ((x =< y, z >) & (y, z atoms)) → y op2 z

where: op2 ∈ {add, sub,mult, eq, lt, gt, leq, and, or, ...}
or

op1 : x ≡ ((x = y) & (y atom)) → op1 y

where: op1 ∈ {inc, dec, zero, not}. These operations
will be applied on sequences of any length using the
functional forms defined in the next sub-section.

• Constant : generates a constant value.

x̄ : y ≡ x

B. Functional Forms

A functional form is made of functions that are applied to
objects. They are used to define complex functions, for an
IPM, starting from the set of primitive functions.

• Apply to all : represents the data-parallel computation.
The same function is applied to all elements of the
sequence.

αf : x ≡ (x =< x1, . . . , xp >) →< f : x1, . . . , f : xp >

Example:
αadd :<< x1, y1 >, . . . , < xp, yp >>→
< add :< x1, y1 >, . . . , add :< xp, yp >>
expands the function add, defined on atoms, to be ap-
plied on sequences, << x1, . . . , xp >< y1, . . . , yp >>,
transposed in a sequence of pairs < xi, yi >.

• Insert : represents the reduction-parallel computation.
The function f has as argument a sequence of objects
and returns an object. Its recursive form is:
/f : x ≡ ((x =< x1, . . . , xp >)& (p ≥ 2)) →
f :< x1, /f :< x2, . . . , xp >>
The resulting action looks like a sequential process exe-
cuted in O(p) cycles, but on the Integral Parallel Abstract
Model (see Figure 5) it is executed as a reduction function
in O(log p) steps in the redLoopNet circuit.

• Construction : represents the speculative-parallel com-
putation. The same argument is used by a sequence of
functions.

[f1, . . . , fn] : x ≡< f1 : x, . . . , fn : x >

• Composition : represents time-parallel computation if
the computation is applied to a stream of objects. By
definition:
(fq ◦ fq−1 ◦ . . . ◦ f1) : x ≡
fq : (fq−1 : (fq−2 : (. . . : (f1 : x) . . .)))
The previous form is:

– sequential computation, if only one object x is con-
sidered as input variable

– pipelined time-parallel computation, if a stream of
objects, |xn, . . . , x1|, are considered to be inserted,

starting with x1, in c1 in the MANY-CORE section
(see Figure 5) so as in each successive two cells, ci
and ci+1, are performed

fi(fi−1 : (fi−2 : (. . . : (f1 : xj) . . .)))

fi+1(fi : (fi−1 : (. . . : (f1 : xj−1) . . .)))

Thus, the array of cells c1, . . . , cp can be involved to
compute in parallel the function

f(x) = (fq ◦ fq−1 ◦ . . . ◦ f1) : x
for maximum q values of x.

• Threaded construction : is a special case of construction
for: fi = gi ◦ i which represents the thread-parallel
computation:
θ[f1, . . . , fp] : x ≡
(x =< x1, . . . , xp >) →< g1 : x1, . . . , gp : xp >
where: g1 : x1 represents an independent thread.

• Condition : represents a conditioned execution.
(p → f ; g) : x ≡
((p : x) = T) → f : x; ((p : x) = F) → g : x

• Binary to unary : is used to express any function as an
unary function.

(bu f x) : y ≡ f :< x, y >

This function allows the algebraic manipulation of pro-
grams.

C. Definitions
Definitions are used to write programs conceived as func-

tional forms.

Def new function symbol ≡ functional form

Example : Let be the following definitions used to compute
the sum of absolute difference (SAD) of two sequence of
numbers:

Def SAD ≡ (/+) ◦ (αABS) ◦ trans
Def ABS ≡ lt → (sub ◦REV); sub
Def REV ≡ (bu perm < 2̄, 1̄ >)

D. Recapitulation
The beauty of the relation between the abstract machine

components resulting from Kleene’s model and the FPS
proposed by Backus is that all the five meaningful forms
of composition correspond to the main functional forms, as
follows:

Kleene’s parallelism ↔
data-parallel ↔

reduction-parallel ↔
speculative-parallel ↔

time-parallel ↔
thread-parallel ↔

Backus’s functional forms
apply to all
insert
construction
composition
threaded construction

Let us agree that Kleene’s model, and the FPS proposed by
Backus represent a solid foundation for parallel computing,
avoiding risky ad hoc constructs. The generic parallel structure
proposed in the next section is a promising start in saving us
from saying ”Hail Mary” (see [22]) when we decide what to
do in order to improve our computing machines with parallel
features.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 592

V. A GENERIC PARALLEL ENGINE

The fourth step in trying to restart the parallel compu-
tation domain (see subsection I.C) is to propose a simple
and, as much as possible, efficient generic embodiment, able
to provide both, a good use of energy and area, and an
easy to program computing engine. This section describes
the simplest one-chip generic parallel engine, already imple-
mented in silicon: the Connex System chip. The next four
subsections present the organization, the programming style,
rough estimates for the 13 Berkeley’s motifs, and the physical
performances of this first embodiment, which will be, for sure,
the subject of many successive improvements.

A. The Organization

The Connex System, centered on the many-cell engine
ConnexArrayTM , is the first, partial embodiment (see [30]) of
the integral parallel abstract machine model (see Figure 5). It
is proposed as a possible initial version for a generic parallel
engine. While the Cache module in Figure 5 is by default a
hidden physical resource, the Buffer module is an explicit part
of the architecture that differentiates strongly Connex System
from a standard architecture. Let’s start by representing the
content of the Buffer by A =< v1, v2, . . . , vm >, a two-
dimension array containing m p-scalar vectors:

v1 =< x11, . . . , x1p >
v2 =< x21, . . . , x2p >

. . .
vm =< xm1, . . . , xmp >

where: each “column”, < x1i, . . . , xmi >, is a “vertical”
vector of scalars associated to the computational cell ci in
Figure 5. In the first embodiment, represented in Figure 7,
Linear ARRAY of CELLS is a linear array of p Connex
cells, cc1, . . . , ccp. Each cci contains ci (see Figure 5) and the
local memory which stores the associated “vertical” vector.
The set of local memories represents the first level of (Multi-
level) Buffer which allows the engine to work as a stream
processor, not as a simple vector processor. Each cell is
connected only to the left and to the right cell.

In the data-parallel mode each Connex cell, cci, receives,
trough the Broadcast net, the same instructions issued by one
of the threads, called the control thread, running on the Multi-
Threaded Processor.

The reduction-parallel mode sends, to the control thread
running on the Multi-Threaded Processor, scalars returned
by functions performed, in the log-depth Reduction circuit,
on sequences of atoms distributed over the array of cells cci.
The reduction net is a pipelined tree circuit because there are
only a small number of meaningful reduction functions in the
current applications.

In speculative-parallel mode the difference between hi and
hj can be done in two ways: (1) by some local parameters
specific for each cell (example: its index), or (2) by a specific
program loaded in the local memory of each cell. The process
is triggered by the control thread, while the variable x is issued
by the same thread.

??instruction, atom

Linear

CONNEX SYSTEM

instruction,
atom, address

sequence

ARRAY

6 6
of CELLS

Processor

6

Interconnection Fabric

PCI

6?-�
External Memory

6?

atom
flag

ConnexArrayTM

Multi-Threaded

?

?

Trans

�-�-

�-

-�-�

-�

?? ?

?? ?

Broadcast

Reduction

�Scan

Fig. 7. The Connex System. It is centered on ConnexArrayTM , a linear
array of p execution units, each with its own local memory, connected to
the external memory through the Trans network. The array has two loops,
an external one through Reduction net, Multi-Threaded Processor and
Broadcast net, and an internal one through the Scan net.

The time-parallel mode uses the linear interconnection
network to configure a pipe of p machines, each controlled
by the program stored in the local memory. The resulting
pipeline machine receives a stream of data and processes it
with a latency in O(p). The i-th cell computes function fi (see
subsection 3.1.4). Cell 1 receives rhythmic a new component
of the input stream x.

The thread-parallel mode can be implemented in two ways:
(1) each cell works like an independent processor running the
locally stored program on local data, or (2) Multi-Threaded
Processor is used to run, usually, 4 to 16 threads, including
the threads used to control the array of cells and the IO
process. The second way is more frequently used in the current
application domains.

The Trans module connects the array to the external mem-
ory. It is controlled by one thread running on the Multi-
Threaded Processor, and works transparent to the compu-
tation done in the array.

The global loop closed over the array through Scan takes
from each cell an atom and computes global functions sending
back in the array a sequence of atoms. One example is the
function first defined on a sequence of Booleans (see sub-
section 2.2). Another example is the permutation function for
which the Scan network is programmed with (−1+2× log2p)
p-length Boolean sequences.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 593

B. Machine Level Programming for the Generic Parallel
Engine

A low level programming environment, called Backus-
Connex Parallel FP system – BC for short –, was defined
in Scheme for this generic parallel engine (see [19]). Some
of the most used functions working on the previously defined
array A are listed below:

(SetVector a v); a: address, v: vector content
(UnaryOp x) ; x: scalar|vector
(BinaryOp x y) ; (x,y): scalar | vector
(Cond x y) ; (x,y): scalar | vector
(RedOp v) ; RedOp = {RedAdd, RedMax,...}
(ResetActive) ; activate all cells
(Where b) ; active where vector b is 1
(ElseWhere) ; active where vector b was 0
(EndWhere) ; return to previous active

Let us take as example the function conditioned reduction
add, CRA, which returns the sum of all the components
of the sequence s1 =< x11, . . . , x1p> corresponding
to the positions where the element in the sequence
s2 =< x21, . . . , x2p > is less or equal than the element of
the sequence s3 =< x31, . . . , x3p >:

CRA(s1, s2, s3) =

p∑
i=1

(x2i ≤ x3i) ?x1i : 0

The computation of this function is expressed as follows:

Def CRA ≡ (/+)◦(α((leq◦(bu del1)) → (id◦1); 0̄))◦trans

where the argument must be a sequence of three sequences:

x =< s1, s2, s3 >

and the result is returned as an atom. For

x =<< 1, 2, 3, 4 >,< 5, 6, 7, 8 >,< 8, 7, 6, 5 >>

the evaluation is the following:
CRA : x ⇒
(/+) ◦ (α((leq ◦ (bu del 1)) → (id ◦ 1); 0̄)) ◦ trans :
<< 1, 2, 3, 4 >,< 5, 6, 7, 8 >,< 8, 7, 6, 5 >>⇒
(/+) ◦ (α((leq ◦ (bu del 1)) → (id ◦ 1); 0̄)) :<< 1, 5, 8 >,<
2, 6, 7 >,< 3, 7, 6 >< 4, 8, 5 >>⇒
(/+) :<
((leq ◦ (bu del 1)) → (id ◦ 1); 0̄) :< 1, 5, 8 >,
((leq ◦ (bu del 1)) → (id ◦ 1); 0̄) :< 2, 6, 7 >,
((leq ◦ (bu del 1)) → (id ◦ 1); 0̄) :< 2, 6, 7 >,
((leq ◦ (bu del 1)) → (id ◦ 1); 0̄) :< 4, 8, 5 >>⇒
(/+) :< ((leq :< 5, 8 >) → (id : 1); 0̄), . . . , ((leq :< 8, 5 >) →
(id : 4); 0̄) >⇒
(/+) :< ((leq :< 5, 8 >) → 1; 0̄), . . . , ((leq :< 8, 5 >) →
4; 0̄) >⇒
(/+) :< (T → 1; 0), (T → 2; 0), (F → 3; 0), (F → 4; 0) >⇒
(/+) :< 1, 2, 0, 0 >⇒ 3

At the level of machine language the previous program
is translated into the following BC code:

(define (CRA v0 v1 v2 v3)
(Where (Leq (Vec v2) (Vec v3)))

(SetVector v0 (Vec v1))
(ElseWhere)

(SetVector v0 (MakeAll 0))
(EndWhere)
(RedAdd (Vec v0))

)

The function CRA returns a scalar and has as side effect the
updated content of the vector v0.

C. Short Comments about Application Domains

The efficiency of Connex System in performing all the
aspects of intense computation remains to be proved. In this
subsection we sketch only the complex process of evaluation
using the report “A View from Berkeley” [3]. Many decades
just an academic topic, ”parallelism” becomes an important
actor on the market after 2001 when the clock rate race
stopped. This research report presents 13 computational motifs
which cover the main aspects of parallel computing. Short
comments follows about how the proposed architecture and
generic parallel engine work for all of the 13 motifs.

For dense linear algebra the most used operation is the
inner product (IP) of two vectors. It is expressed in FP System
as follows:

Def IP ≡ (/+) ◦ (α×) ◦ trans

while the BC code is:

(define (IP v0 v1)
(RedAdd (Mult v0 v1))

)

allowing a linear acceleration of the computation.
For sparse linear algebra the band arrays are first trans-

posed using the function Trans in a number of vectors equal
with the width w of the band. Then the main operations
are naturally performed using the appropriate RotLeft and
RotRight operations. Thus, the multiplication of two band
matrices is done on Connex System in O(w).

For spectral methods the typical example is FFT. The
vertical and horizontal vectors defined in the array A help
the programmer to adapt the data representation to obtain
an almost linear acceleration [5], because the Scan module
is designed to hide the performance of the matrix transpose
operation. In order to eliminate the slowdown caused by the
rotate operations, the stream of samples are operated as vertical
vectors (see also [16], where for example: FFT for 1024
floating point samples is done in less than 1 clock cycle per
sample).

N-Body method fits perfect on the proposed architecture,
because for j = 0 to j = n − 1 the following equation is
computed:

U(xj) =
∑
i

F (xj , Xi)

using one cell for each function F (xj , Xi), followed b the
sum (a reduction operation).

Structured grids are distributed on the two dimensions of
the array A. Each processor is assigned a column of nodes.
Each node has to communicate only with a small, constant
number of neighbor nodes on the grid, exchanging data at the
end of each step. The system works like a cellular automaton.

Unstructured grids problems are updates on an irregular
grid, where each grid element is updated from its neighbor
grid elements. Parallel computation is disturbed by the non-
uniformity of the data distribution. In order to solve the

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 594

non-uniformity problem a preprocessing step is required to
generate an easy manageable representation of the grid. Slow-
downs are expected compared with the structured grid.

The typical example of mapReduce computation is the
Monte Carlo method. This method is highly parallel because it
consists in many completely independent computations work-
ing on randomly generated data. It requires the add reduction
function. The computation is linearly accelerated.

For combinational logic a good example is AES encryption
which works in 4×4 arrays of bytes. If each array is loaded in
one cell, then the processing is pure data-parallel with linear
acceleration.

For graph traversal in [21] are reported parallel algorithms
achieving asymptotically optimal O(|V | + |E|) work com-
plexity. Using sparse linear algebra methods, the breadth-first
search for graph traversal is expected to be done on a Connex
System in time belonging to O(|V |).

For dynamic programming the Viterbi decoding is a
typical example. The parallel strategy is to distribute the states
among the cells. Each state has its own distinct cell. The inter-
cell communication is done in a small neighborhood. Each
cell receives the stream of data which is thus submitted to a
speculative computation. The work done on each processor
is similar. The last stage is performed using the reduction
functions. The degree of parallelism is limited to the number
of states considered by the algorithm.

Parallel back-track is exemplified by the SAT algorithm
which runs on a p-cell engine by choosing log2 p literals,
instead of one on a sequential machine, and assigning for them
all the values from 00 . . . 0 to 11 . . . 1 = p − 1. Each cell
evaluates the formula for one value. For parallel branch &
bound we use the case of the Quadratic Assignment Problem.
The problem deals with two N × N matrices: A = (aij),
B = (bkl). The global cost function:

C(p) =
n∑
i

n∑
j

aij × bp(i)p(j)

must be minimized finding the permutation p of the set
N = {1, 2, . . . , n}. Dense linear algebra methods, efficiently
running on our architecture, are involved here.

Graphical models are well represented by parallel hidden
Markov models. The architectural features reported in research
papers refers to fine-grained data-parallel processor arrays
connected to each node of a coarse-grained PC-cluster. Thus,
our engine can be used efficiently as an accelerator for general
purpose sequential engines.

For finite state machine (FSM) the authors of [3] claim
that ”nothing helps”. But, we consider that the array of cells
with their local memory loaded with non-deterministic FSM
descriptions work very efficient as a speculative engine for
applications such as deep packet inspection, for example.

At the end of this superficial introductory analysis, which
must be deepened by future investigations, we claim that for
almost all the computational motifs the Connex System, in its
simple generic form, perform at least encouraging if not pretty
well.

D. About the First Implementation

Actual versions of the Connex System have already been
implemented as part of a SoC designed for HDTV market:
BA1024 (see [28], [29] and [31]). The 90nm version of
BA1024, with 1024 16-bit EUs, is in Figure 8. The last
version, implemented in 65nm, provides a peak performance
of 400GOPS6, which translates in:

• area efficiency: > 6GOPS/mm2

• power efficiency: > 120GOPS/Watt

Fig. 8. The Connex Chip. The 90nm version of BA1024 chip. The Connex
System uses 60% of the total area.

Compared with a standard sequential processor imple-
mented in 65nm results 20× in area use and 100× in power
use (the evaluation was made for applications involving 32-bit
integer and float operations). For integer (no-float) applications
the previous improvements are around 4 times higher (the
actual measurements were made for programs running HDTV
frame rate conversion on the 65nm version of the BA1024
chip). This first implementation of a generic parallel system
suggests that genuine parallelism is naturally green.

The performances of this first embodiment of a generic
parallel structure looks so good because the architecture is
focused on intense computation, starting from the idea, largely
exposed in [31], that only the strong segregation between
intense computation and complex computation allows a good
use of area and power. The standard sequential processors
perform on the same hardware both, complex and intense
computation, but they are designed and optimized only for
complex computation. More, the multi-core systems are ad-
hoc constructs gathering together few standard sequential
processors able to perform efficiently no more than complex
multi-threaded computations. Many-core GPU systems, like
ATI or NVIDIA, do not obey to the golden rule “small is
beautiful” stated in [3] (see pag. 20), to which we must add that
“simple is efficient”. Thus, the main GPUs do not obey (our
version of) the “kiss principle”: keep it small & simple. Unlike
the Connex approach, they have complex hardware (hardware
multipliers, float units), cache memories (why caches for a
very predictable flow of data and programs!?), hierarchical
organization (unrequested by any computational model), most
of them imposed unfortunately by oppressive legacies.

VI. CONCLUSION

The intrinsic parallel computational model of Kleene
fits perfect as theoretical foundation for parallel computation.
Because, as we proved, primitive recursion and minimalization

6GOPS: Giga 16-bit Operations Per Second

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 595

are particular forms of compositions, only the composition
rule is used to highlight the five forms of parallelism: data-,
speculative-, reduction-, time-, thread-parallelism.

Integral Parallel Abstract Machine Model is defined as
the model of the simplest generic parallel engine. Real embed-
ded computation frequently involves all forms of parallelism
for running efficiently complex applications.

Both, Kleene’s model and Backus’s programming style
promote one-dimension arrays, thus supporting the simplest
hardware configuration for the initial architectural proposal.
If needed, a more complex solution will be adopted. But, till
then we must struggle in this initial context inventing new
algorithms by keeping the hardware as small & simple as
possible. The linear array of cells is complemented by four
log-depth networks – Broadcast, Reduction, Trans and Scan –
in order to compensate its simplicity.

Segregation between intense computation and complex
computation is the golden rule for increasing the computa-
tional power lowering in the same time both, cost (silicon area)
and energy.

Parallelism is meaningful only if it is “green”. The
one-chip solution for parallelism provides a low power com-
putational engine if it is developed starting from genuine
computational and abstract models. The Connex Chip proves
that our proposal for a generic one-chip solution provides two
magnitude orders improvement in reducing energy per compu-
tational task compared with standard sequential computation,
while GPGPU-like chips, an ad hoc solution for parallelism,
are unable to provide the expected reduction of energy per
computational task (they consume hundreds of Watts per chip
and are unable to achieve, on average, more than 25% of their
own peak performance running real applications [1]).

Programming the generic parallel structure is simple
because of the simplicity of its organization, easy to hide
behind a well defined architecture. Backus’s FP Systems
capture naturally the main features of a parallel engine and
provide a flexible environment for designing an appropriate
generic parallel architecture. In this paper we didn’t touch
the problem of a programming model, because it must be
based, in our opinion, on the insights provided in the fifth
stage of our approach – the algorithmic evaluation of the
generic parallel structure against the 13 Berkeley’s compu-
tational motifs (see 1.3). All the current programming models
(such as Intel TBB, Java Concurrency, .Net Task Parallel
Library, OpenMP, Clik++, CnC, X10) are basically focused on
the multi-threading computation because the current market
provides the multi-core hardware support for this kind of
parallelism, while the scalable programming models presented
in [20] are focused on the current many-core market products
(such as AMD/ATI, NVIDIA).

Future work refers to the last stage of our approach (see
subsection I.C). Preliminary evaluations tell us that almost
all the 13 computational motifs, highlighted by Berkeley’s
view in [3], are reasonable well supported by the proposed
generic parallel structure initially programmed in a sort of FP
System programming language (for example BC). During this
evaluation a lot of new features will be added to the simple

generic engine described in the present paper. The resulting
improvement process will allow a gradual maturation of the
concept of parallelism, because Nihil simul inventum est et
perfectum (Marcus Tullius Cicero).

ACKNOWLEDGMENT

The authors got a lot of support from the main technical
contributors to the development of the ConnexArrayTM tech-
nology, the BA1024 chip, the associated language, and its first
application: Emanuele Altieri, Frank Ho, Bogdan Mı̂ţu, Marius
Stoian, Dominique Thiebaut, Tom Thomson, Dan Tomescu.
The comments received from Bogdan Niţulescu helped a lot
the improvement of the paper.

REFERENCES

[1] ***, http://www.siliconmechanics.com/files/c2050benchmarks.pdf. Sili-
con Mechanics, 2012.

[2] B. Alpern, L. Carter, and J. Ferrante, Modeling parallel computers as
memory hierarchies. In Giloi, W. K. et al. eds. Programming Models for
Massively Parallel Computers, IEEE Press, 1993.

[3] K. Asanovic, et al., The landscape of parallel com-
puting research: A view from Berkeley, 2006. At:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf.

[4] J. Backus, Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Communications of the
ACM 21, 8 (August) 1978. 613641.

[5] C. Bı̂ra, L. Gugu, M. Maliţa, G. M. Ştefan: Maximizing the SIMD
Behavior in SPMD Engines, in Proceedings of the World Congress on
Engineering and Computer Science 2013 Vol I WCECS 2013, 23-25
October, 2013, San Francisco, USA. 156-161.

[6] G. Blaauw, and F.P. Brooks, The structure of System/360, part I - Outline
of the logical structure. IBM Systems Journal 3, 2, 1964. 119135.

[7] A. Church, An unsolvable problem of elementary number theory. The
American Journal of Mathematics 58, 1936. 345363.

[8] D. Culler, et al., LogP: Toward a realistic model of parallel computation.
Proc. of the ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming, 1991. 112.

[9] M. Davis, The Undecidable. Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. Dover Publications,
Inc., Mineola, New-York, 2004.

[10] E. W. Dijkstra, Co-operating sequential processes. Programming Lan-
guages Academic Press, New York, 43112. Reprinted from: Technical
Report EWD-123, Technological University, Eindhoven, the Netherlands,
1965.

[11] S. Fortune, and J. C. Wyllie, Parallelism in random access machines.
Conference Record of the Tenth Annual ACM Symposium on Theory of
Computing, 1978. 114118.

[12] L. M. Goldschlage, A universal interconnection pattern for parallel
computers. Journal of the ACM 29, 4, 1982. 10731086.

[13] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel
Computation. Oxford University Press, 1995.

[14] S. Kleene, General recursive functions of natural numbers. Mathematis-
che Annalen 112, 5, 1936. 727742.

[15] R. E. Ladner, and M. J. Fischer, Parallel prefix computation. Journal of
the ACM 27, 4, 1980. 831838.

[16] I. Lorentz, M. Maliţa, R. Andonie Fitting fft onto an energy efficient
massively parallel architecture. The Second International Forum on Next
Generation Multicore / Manycore Technologies, 2010

[17] B. M. Maggs, L. R. Matheson, and R. E. Tarjan, Models of parallel
computation: a survey and synthesis. Proceedings of the Twenty-Eighth
Hawaii International Conference on System Sciences, 2, 1995. 6170.

[18] M. Maliţa, and G. Ştefan, On the many-processor paradigm. Proceedings
of the 2008 World Congress in Computer Science, Computer Engineering
and Applied Computing, Las Vegas, vol. PDPTA08, 2008. 548554.

[19] M. Maliţa, and G. Ştefan, Backus language for functional nano-devices.
CAS 2011, vol. 2, 331334.

[20] M. D. McCool, Scalable programming models for massively multicore
processors. Proceedings of the IEEE 96, 5 (May), 2008. pp. 816831.

[21] D. Merrill, M. Garland, and A. Grimshaw, High Performance and Scal-
able GPU Graph Traversal, Technical Report CS-2011-05, Department of
Computer Science, University of Virginia, Aug, 2011.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 596

[22] D. Patterson, The trouble with multicore. IEEE Spectrum, July 1, 2010.
[23] E. Post, Finite combinatory processes. formulation I. The Journal of

Symbolic Logic 1, 1936. 103105.
[24] V. R. Pratt, M. O. Rabin, and L. J. Stockmeyer, A characterization of

the power of vector machines. Proceedings of STOC1974, 1974. 122134.
[25] V. R. Pratt, and L. J. Stockmeyer, A characterization of the power of

vector machines. Journal of Computer and System Sciences 12, 2 (April),
1976. 198221.

[26] V. Sakar, Parallel computation model, 2008. At: http://www.cs.rice.edu/
vs3/comp422/lecture-notes/comp422-lec20-s08-v1.pdf.

[27] G. Ştefan, and M. Maliţa, Granularity and complexity in parallel sys-
tems. Proceedings of the 15 IASTED International Conf, 2004. 442447.

[28] G. Ştefan, The CA1024: A massively parallel processor for cost-effective
HDTV. Spring Processor Forum: Power-Efficient Design, May 15-17,
Doubletree Hotel, San Jose, CA.

[29] G. Ştefan, et al., The CA1024: A fully programmable system-on-chip
for cost-effective HDTV media processing. Hot Chips: A Symposium on
High Performance Chips. Memorial Auditorium, Stanford University.

[30] G. Ştefan, Integral parallel architecture in system-on-chip designs. The
6th International Workshop on Unique Chips and Systems, Atlanta, GA,
USA, December 4, 2010, pp. 2326.

[31] G. Ştefan, One-chip TeraArchitecture. Proceedings of the 8th Applica-
tions and Principles of Information Science Conference. Okinawa, Japan,
2009.

[32] D. Thiebaut and M. Maliţa, “Real-time Packet Filtering with the
Connex Array” The 33rd Annual International Symposium on Computer
Architecture, Boston, MA, USA June 17-21, 2006, pp. 17-21.

[33] A. M. Turing, On computable numbers with an application to the
Eintscheidungsproblem. Proceedings of the London Mathematical Society
42, 1936.

[34] J. von Neumann, First draft of a report on the EDVAC. IEEE Annals of
the History of Computing 5, 4, 1993.

[35] L. G. Valiant, A bridging model for parallel computation. Communica-
tions of the ACM 33, 8 (Aug.), 1990. 103111.

Gheorghe M. Ştefan teaches digital design in
Politehnica University of Bucharest. Its scientific
interests are focused on digital circuits, computer
architecture and parallel computation. In the 1980s,
he led a team which designed and implemented the
Lisp machine DIALISP. In 2003-2009 he worked
as Chief Scientist and co-founder in Brightscale, a
Silicon Valley start-up which developed the BA1024,
a many-core chip for the HDTV market. More at
http://arh.pub.ro/gstefan/.

Mihaela Maliţa teaches computer science at Saint
Anselm College, US. Her interests are program-
ming languages, computer graphics, and parallel
algorithms. She wrote and tested different sim-
ulators for the Connex parallel chip. More at
http://www.anselm.edu/mmalita.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 597

