
“Looking for the Lost Noise”

Gheorghe Ştefan
Department of Electronics, Polytechnica University of Bucharest,

E-mail: stefan@agni.arh.pub.ro

Abstract

The noise can be very well approximated using a
simple circuit and a sophisticated rule. We propose
a simple, recursively defined, big circuit that, start-
ing from own autonomy, generates pseudo-noise.
To the well known method of using cellular automa-
ton in order to generate pseudo-random sequences
some new features are added in order to improve
the “random” behavior. The randomness results in
a chaotic process, very sensible to the initial state
of a simple machine working after a strange rule.
The proposed structure claims a huge amount of
work in order to find an appropriate initial state
according to the noise “characteristics”. The ini-
tial state must be selected from a space having 2256

points. Only the genetic algorithms offers us the
illusion of finding the best point in this huge space.

1 Introduction

Generating the noise is a paradoxical action. Sim-
ulating the noise can be an interesting process in
which the rule is simple but must be hidden to the
“noise receiver”. A simple rule can act generating
an apparent complex behavior that hide the rule.
A very good example is a fractal rule generating a
geometrical form without any suggestion about the
simple rule that grounds the process.

The cellular automata (CA) are also a very spec-
tacular support for simulating noise. S. Wolfram
was the first who used CA as pseudo-noise gener-
ator [Wolfram ’86]. He used a uniform linear CA
having two states cells. The CA is initialized with
one cell in the state 1 and the rest in the state 0.
The transition function of each cell is the same: f30
(the 30-th three input logic function). Another vari-
ant, consists in a non-uniform CA, is presented in
[Hortensius ’89] where two types of cell are used ar-
ranged in a specific order. The next step was made
by J. R. Koza by his evolutionary approach [Koza
’92]. He used genetic programming to the evolution
of a LISP expression representing the rule for an
uniform CA. M. Sipper and M. Tomassini studied
two state non-uniform CA. An evolutionary process

is performed on this CA in a completely local man-
ner. Each genetic operator is applied only between
directly connected cells. They used this approach
for building well performant pseudo-noise genera-
tors [Sipper ’96].

Our proposal is to use, for a pseudo-random se-
quence generator, a uniform programmable CA con-
sists in 256 two state cells over which a global loop
is closed. The initial state of this system is the
main responsible for the randomness. Genetic al-
gorithms are used in order to find the appropriate
initial states. This paper is a “programmatic” one
because proposes only the structure, some system
configurations and the investigation way. Indeed,
because “The Solution” sunk in an exponentially
expanded space, the path toward the ”real” noise
(the lost noise) is long, difficult and, maybe, round-
about.

2 The Structure

The proposed system is characterized by two struc-
tures: the circuit structure and the structure of the
initial state. The first is a physical structure and the
second is an informational structure. The first is a
big sized simple circuit and the second is an algo-
rithmic complex binary sequence must be selected
from an exponentially expanded space.

2.1 The simplest two-input pro-
grammable automaton

The simplest automaton has two states. If it must
be connectable in the simplest network, then it has
two one bit inputs. In order to be programmable all
the 256 three input combinational function must be
selectable to perform the state transition function.
Finally, the output and the state are the same.

Definition 1 The simplest two input pro-
grammable automaton is defined by:

SPA2 = (X × P, Y,Q, f, g)

where:

1

I7

p7 p6 . . .

D

??

-

p0

-
-

?

Q

S0

S2

p

x0

x1

CK

CK D

Y

Q

I6 I0

MUX8

? ??

S1

. . .

8

Figure 1: The simplest two-input programmable
automaton.

• X × P is the input set, where:

– X, the input variable, is codified by x1x0,
with x1, x0 ∈ {0, 1}

– P , the program, is codified by
p7, p6, . . . , p0, with pi ∈ {0, 1}, for
i = 0, . . . , 7

• Y = Q is the output set coded by q ∈ {0, 1}

• Q is the state set coded by q

• f(q, x1, x0, p7, . . . , p0) = qx1x0p7 + qx1x
′
0p6 +

. . .+ q′x′
1x

′
0p0 is the programmable state tran-

sition function

• g(q) = q is the output function.

The structure of SPA2 is presented in Figure 1. ⋄

2.2 The simplest programmable cel-
lular automaton

Using a linear network of the simplest pro-
grammable automata, the simplest programmable
CA is obtained. The program of the CA is given
by the code P that selects the transition function
of each automata.

Definition 2 The simplest programmable cellular
automaton PCAn consists in n SPAi

2 units, i =
0, . . . , n, linearly connected, so as for each cell i,

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

C0

C1

Ci

C255

(
255∑
i=0

qi)mod 256

-

-

-
-

-

-

-

-

.................

.............

Register

6

6
CK

..

..

..

.

..

..

..

.
...............

...............

-
CK

p

6
p′

Figure 2: One of the simplest programmable cellu-
lar automaton with a global loop closed through an
adder.

x0 = q(i−1)mod n, x1 = q(i+1)mod n. The state of the
cellular automaton is given by the n bits binary code
qn−1qn−2 . . . q0. The program is given by the code
P (see the previous definition). ⋄

The evolution of this structure is controlled by: the
initial state of cells and by the transition function P
that can be modified in each clock cycle, if needed.

2.3 Adding a global loop over a cel-
lular automaton

The first new feature added to a programmable CA
is a global loop. This loop “says something” about
the global state of CA improving the circuit au-
tonomy. Our expectance is that the “positive feed-
back” of the added loop improves the random be-
havior of the system.

Definition 3 Let be a PCAn with the global state
Q, codified by qn−1qn−2 . . . q0, and the program P .
The global loop is introduced through the circuit

2

that perform the function F : Q → P. The resulting
system is a PCA with a global loop (PCAL). ⋄

The loop function makes a partition of Q in a very
small number of equivalence classes. Thus the “pos-
itive feedback” is very weak, because the dimension
of P is much smaller than the dimension of Q. The
formal experiments made by simulations will con-
firm or not if this loop is useful in order to improve
the random behavior.

Depending on the particular form of the func-
tion F there are many actual PCALs.

Example 1 Let be PCA256 with the global state
q255q254 . . . q0 and the program P given as an eight
bit number p. The global loop is introduced using a
256 one bit numbers adder so as

p = (
255∑
i=0

qi)mod 256.

The resulting system is presented in Figure 2. ⋄

Example 2 Let be PCA256 with the global state
Q given as the 256 bits number q, codified by
q255q254 . . . q0, and the program P given as the eight
bit number p. The global loop is introduced by the
function:

p =

{
log2 q for q ̸= 0
0 for q = 0

⋄

2.4 Adding the input

The previous defined class of circuits have no input,
evolving on the output as pure generators. In order
to add an input the structure is modified so as the
value from P is related with the input value from a
set M .

Definition 4 The cellular noise generator,
CNGlog2 n, is defined starting from a PCAn with
the global state Q and the program P , over which
a global loop is introduced through the circuit that
perform the function F : Q ×M → P, where M is
the input set. ⋄

The program executed by each cell depends by the
global state of CNG and by the input value. A new
source of unpredictable behavior can be introduced
in system on this way.

Example 3 Let be the system from Exemple 1. If
M consists in eighth bits numbers m then a variant
of PCA with input is presented in Figure 3 where
an eight bit mod 256 adder is added on the system
presented in Figure 2. ⋄

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

C0

C1

Ci

C255

(
255∑
i=0

qi)mod 256

-

-

-
-

∑
mod 256

-

-

-

-

.................

.............

6

6
CK

..

..

..

.

..

..

..

.
...............

...............

6

Register

6

m

6

p

-
CK

p′

Figure 3: The cellular noise generator with 8 bits
input CNG8.

CNG8

m

p′

?

CNG8

m

p′

?

?

a.

Constant

CNG8

m

p′

?

CNG8

m

p′

?

?

b.

Figure 4: Interconnecting CNG8 units. a. Serial
connection with Constant on the input. b. Loop
connecting two units.

3

2.5 Interconnecting the simplest big
autonomous circuits

The main utility of the input is due to the possi-
bility to interconnect two or more CNGs in order
to improve the “noise quality”. In figure 4 are sug-
gested two possible interconnections. The first is
a serial connection. The second CNG8 “amplifies”
the noise generated by the first CNG8. The second
connection is a loop closed over two serial connected
CNG8. The loop acts as a “positive feedback” gen-
erating conditions for long cycles. (An interesting
variant is a loop closed over a single CNG8.)

The role of the output Register is now obvious:
allows to close properly the loops or ensures the
pipeline path on the serial connection.

If more complex interconnections are needed
supplementary modulo 256 adder can be used.
Thus two input CNGs can be built.

A very interesting question arises: two ”com-
posed” pseudo-noises have the chance to manifest
a tendency toward order? If have, then the physi-
cal structure of the generator must remains simple
and the key is only the initial state of CA, else we
have at disposal a strange deterministic method to
improve the noise quality.

3 The Noise Generator

The behavior of a CNG hide the simplicity of the
own structure. Because we have no formal methods
to describe simply the output behavior the system
seems to behave chaotically. In fact we are faced
only with an apparent complexity.

There are formal methods to evaluate the qual-
ity of the resulting noise. Some of few initial CA’s
states provide a very good random behavior to the
CNG’s output. The noise can be received in many
forms from the CHG’s output. The entire num-
ber p′ or only one bit of the CA can be received
at each clock cycle, thus generating a random se-
quence. There are standard testing procedure, de-
scribed in [Knuth ’81], for estimating the random
characteristics of the generated sequences.

4 The Maine Problem:
the Initial State

Because the transfer function on the loop is very
simple, the random behavior depends only by the
initial state of the CA. In the design process the
main step is to find a “noisy” initial state.

The maximal expected length of a cycle in a
CNG8 has 22

8 −1 states. It is too much for current

applications. We can be content in most of the ap-
plications with shortest sequences. For example, a
sequence having “only” 264 elements generated with
the frequency of 1MHz has the length of many thou-
sand century. This means that we are not interested
in finding the optimal solutions. It is enough to find
a locally optimal solution.

The only way to look for an appropriate initial
state in this huge space is to use genetic algorithms.
The chromosomes consist in a set of random cho-
sen initial state of CA, i.e., a set of 256 bits num-
bers. The fitness function results applying stan-
dard testes for randomness. The searching process
efficiency is due to the ability to imagine efficient
cross-over rules.

5 Conclusions

This paper is only a programmatic one, maybe
a challenging one, because starts an unending re-
search process in order to find the best noise gener-
ator, if exists.

We have no formal methods to describe the ac-
tual evolution of the proposed machine. The only
way to present the behavior of this machine is to
put them to work using a simulator. The formal
method to be used is the experimental mathemat-
ics.

References

[Hortensius ’89] P. D. Hortensius, R. D. McLeod,
H. C. Card: “Parallel Random Number
Generator for VLSI Systems Using Cellu-
lar Automata”, IEEE Trans. on Comp.,
38(10): 1466-1473, October 1989.

[Koza ’92] J. R. Koza: Genetic Programming, The
MIT Press, 1992.

[Knuth ’81] D. E. Knuth: The Art of Computer
Programming: Volume 2, Seminumerical
algorithms. Addison-Wesley, 1981.

[Sipper ’96] M. Sipper, M. Tomassini: “Co-
evolving Parallel Random Number Gen-
erator” in H. M. Voigt, W. Embeling,
I. Rechenberg, H. P. Schwefel (editors):
Parallel Problem Solving from Nature IV
(PPSN IV), volume 1141 of Lecture Notes
in Computer Science, Heidelberg, 1996.
Springer-Verlag.

[Wolfram ’86] S. Wolfram: “Random Sequence
Generation by Cellular Automata”, Ad-
vances in Applied Mathematics, 7:123
169, June 1996.

4

