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Executive summary

General Purpose Parallel Processing Unit (X3PU) that we propose as accelerator is thought of as part
of a heterogeneous computing system where it is necessary to accelerate critical functions (for AI, auto-
motive, blockchain, protein folding, ...) in terms of execution time and energy consumption. Equally
important is the area occupied on silicon (because the manufacturing price increases super-linearly with
the area) if the aim is to create an integrated circuit. No less important is the programmability that is
realized at the user’s level in the currently used languages (C, C++, Python) that call on function li-
braries implemented in hardware by our accelerator (off-the-shelf solutions use complex environments;
for example CUDA in the case of nVIDIA) .

Our proposal is compared with current solutions on the market and results, for functions frequently used
in current applications, in an approximately 11-fold reduction in energy and 3-fold reduction in area for
the same amount of computation.

The technology we have developed can be exploited in at least three ways: (1) implementation in FPGA,
(2) implementation in silicon and (3) delivery of IPs.

The solution was implemented in a Silicon Valley start-up. The last version, in 2008, was an application
in the video field (1024 processing elements, in 65 nm technology, to speed up the frame rate conversion
operation).

The current solution is a much improved one, implemented in FPGA. The initial financing is necessary to
develop the Software Development Kit (SDK) and the kernel of some function libraries from the category
of those currently used. The SDK is necessary to convince users to use the technology and a meaningful
kernel will allow understanding the advantages offered.

Our X3PU is the accelerator component of a heterogenous computing system (see Figure 1. It is designed to
execute intense parts of an application (the most time, energy and area consuming) while the complex part is executed
by the HOST computer part of the system. X3PU is a configurable & parameterizable many-cell computational
system.
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Figure 1: Heterogenous system.

1



Why such a solution? Many of the currently used applications require particularly intensive calculations in the sense
of the simplicity of the description accompanied by a very large number of operations, which leads to prohibitive exe-
cution times and energy. A solution is required that accelerates the computation and minimizes the energy consumed.
The solution proposed by the scientific community and accepted by the corporate space is heterogeneous computing.

Where does our solution come in? We propose a general-purpose accelerator (X3PU) because the main weakness
of the current parallel solution for intense computations are due to:

• the use of ad-hoc hardware structures designed more from geometrical considerations than from the considera-
tion of computational aspects,

• using specific accelerators to solve general-purpose computational issues (the oxymoronic example of GPGPU
is typical).

The structural and architectural inadequacy of current solutions leads to high consumption of energy and silicon area
(the manufacturing price of a chip increases super-linearly with the area).

X3PU programming is carried out at several levels as follows:

• level 1: in assembly language at the accelerator level for the development of function libraries using data struc-
tures limited by the hardware structure, called elementary libraries,

• level 2: in a high-level language, using elementary libraries to develop libraries of dedicated or user-defined
functions,

• level 3: in a high-level language, using the libraries developed on level 2, for developing applications.

In Appendix 1 is shown a subset of functions developed at the level 1. The functions a used for writing program for
matrix-matrix multiplication at the level 2 (see Appendix 2). Programming level 1 is accessible to internal developers,
while levels 2 and 3 are also accessible to users.

The software components built on top of X3PU are represented in Figure 21. While the flow view of the software
architecture is represented in Figure 32.

1SDK: Software Development Kit; IDE: Integrated Development Environment; XRT: X3PU Run-Time environment.
2ONNX: Open Neural Network Exchange, is an open format built to represent machine learning models. ONNX defines a common set of

operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models
with a variety of frameworks, tools, runtimes, and compilers.
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Figure 2: Software architecture: component view
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Figure 3: Software architecture: flow view

X3PU Structure (see Figure 4) consists of:

• MAP: a linear array of p cells, each with its data memory and an execution unit

• CONTROLLER: which sends an instruction in each clock cycle to be executed in the active cells of the MAP

• a distribution pipeline network of logarithmic depth
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• a REDUCE network of logarithmic depth that takes a vector from the MAP and sends a scalar to the CON-
TROLLER (sum, min, max, ...)

• a logarithmic depth SCAN network that takes a vector from the MAP and sends a vector back to the MAP
(permutation, prefix, ...)

The CONTROL receives the program from the HOST and exchanges data with the HOST’s memory.
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Figure 4: X3PU .

The entire structure is parameterizable (the size of the word with which the MAP execution units operate, the size
of the local memories in the MAP cell, the number of cells in the MAP) and configurable (the SCAN and REDUCE
functions, floating point operation, ...). Our solution does not require special technologies to achieve the performance
we claim. The advantages of our solution come from organizational and architectural improvements only.

History: several versions of X3PU have been implemented in silicon in the first decade of the century in a Sili-
con Valley startup (see http://users.dcae.pub.ro/˜gstefan/2ndLevel/connex.html). The 90 nm
version is represented in Figure 5. Last, a 65nm version was used to implement the frame rate conversion function
for dual HD video stream. At the current stage we have an FPGA implementation that is programmed in assembly
language (working prototype, on PYNQ-Z2 development board, for p = 128).

Figure 5: The 90 nm version of CA1024, a many-core of 1024-cell X3PU (16-bit execution unit, 0.5KB local memory).

August 20–22, 2006: the BA1024 chip was presented in Memorial Auditorium of Stanford University in Hot
Chips: A Symposium on High Performance Chips.

July 2007: the first real & complex application (HDTV postprocessing for frame-rate conversion) running on
BA1024 was presented in Department of Devices, Circuits and Architectures of Politehnica University of Bucharest
(the software team coordinated by Bogdan Mitu, Marius Stoian, and Radu Weiss)
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Performances & comparisons of our proposal were made by investigating the calculation of computationally in-
tensive functions involved in current applications such as: AI, automotive, bio-computing, DSP, etc. For some critical
functions (for example matrix-matrix multiplication ), compared with Nvidia GA100 chip, implemented in 7nm, we
have evaluated (see Appendix E) the following improvements:

• (11±20%)× less energy

• (3±10%)× less area (which translates in > 3× production price due to the decreasing yield with chip area)

The architectural acceleration, compared to single core machine of similar characteristics, are supra-linear:

• matrix-matrix multiplication: ∼6p, obtained by running the program on our system (see Appendix C written
using the library partially described in Appendix B whose development is exemplified in Appendix A) and
compared with one written for an x86 mono-core system (the assembly code resulting from compilation is in
Appendix D)

• FFT: ∼1.5p

• pooling: ∼2.1p

(p being the number of processing cores used).

Stage & future work is summarized in Figure 6.
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Figure 6:
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APPENDICES
A Assembly code for dense matrix multiplication on X3PU

The assembly code for multiplying square matrices is listed below. It includes the transfer of the two matrices from
the host processor and of the transfer back of the result into the host’s memory. The execution time is given by the
following relation (extracted from the code and verified by running the program in FPGA environment):

TMultiply +TTrans f er = ((2p2 + plog2 p+9p+5)+(1.5p2 +17p+6))clockCycles

;***************************************************************************************
ASSEMBLY PROGRAM for p x p dense matrix multiplication & data transfer on p-cell GPˆ3A
;***************************************************************************************
;LOAD M1 and M2

vload 31 vload 15
store 0 addrld

label0 vload 8 nop
getv nop
load 0 ioload
brzdec label1 ristore 1
store 0 nop
jmp label0 nop

;MULTIPLICATION n=16 end of M1=31
label1 vload 15 vload 31

store 0 addrld
vload 47 nop
store 3 nop
vload 32 nop
nop nop
vadd 1 caload
store 2 store 0
vload 16 rload

;THE MAIN LOOP accessed nˆ2 times
label2 redins mult 0

brnzdec label2 riload -1
;END OF THE MAIN LOOP

load 3 nop
vadd 1 nop
store 3 srload
load 2 cstore
nop nop
vadd 1 caload
store 2 store 0
load 0 vload 31
brzdec label3 addrld
store 0 nop
vload 16 rload
jmp label2 nop

;STORE THE RESULT
label3 vload 16 vload 47

store 5 addrld
nop nop
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label4 nop riload 1
load 5 iostore
brzdec label5 nop
store 5 nop
nop nop
vload 7 nop
sendv nop
jmp label4 nop

label5 setint nop
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B Subset of the library for linear algebra
A subset of functions belonging to the library of functions theKernel16.v is listed below. These functions are
used by the host computer as part of a hardware implemented library of functions. All these functions are implemented
in assembler (see in Appendix A an example of assembly code).

START : start cycles counter

STOP : stop cycles counter

INTRQ : send interrupt and cycles counter

MM EWO(destination, source1, source2, linesNr, operation, waitMatricesNo) : element-wise operation on ma-
trix

SM MULT(destination, scalar, source, linesNr, waitMatricesNo) : scalar-matrix multiplication

MM MULT(destination, source1, source2, linesNr, waitMatricesNo) : matrix-matrix multiplication

MM MAC(destination, source1, source2, linesNr, waitMatricesNo) : matrix-matrix multiplication & accumulate

SEND MATRIX ARRAY(addr, nr lines, nr columns) : Data Transfer Engine command that performs the transfer
of a data matrix in the data memory of the Array. This command needs to be followed by three parameters: the
internal data memory address where the store will start, the number of lines, and the number of columns. If the
number of columns is smaller than the number of cells in the Array, each data line will be padded with zeros.

GET MATRIX ARRAY(addr, nr lines, nr columns, wait result) : Data Transfer Engine command that performs
the transfer of a data matrix from the data memory of the Array to the Data Output FIFO. This command must
be followed by three parameters: the internal data memory address where the read will start, the number of
lines, and the number of columns. If the number of columns is smaller than the number of cells in the array, the
transfer of a data line will be considered finished after shifting out only the needed data. If wait result is 1, the
transfer will wait for a result to be marked as ready by the Controller.

SEND MATRIX CTRL(addr, nr lines, nr columns) : Data Transfer Engine command that performs the transfer
of a data matrix in the data memory of the Controller. This command needs to be followed by three parameters:
the internal data memory address where the store will start, the number of lines, and the number of columns. If
the number of columns is smaller than the number of cells in the Array, each data line will be padded with zeros.

GET MATRIX CTRL(addr, nr lines, nr columns, wait result) : Data Transfer Engine command that performs
the transfer of a data matrix from the data memory of the Controller to the Data Output FIFO. This command
must be followed by three parameters: the internal data memory address where the read will start, the number
of lines, and the number of columns. If the number of columns is smaller than the number of cells in the array,
the transfer of a data line will be considered finished after shifting out only the needed data. wait result is 1, the
transfer will wait for a result to be marked as ready by the Controller.

cWAITMATW(scalar) : Wait for Matrices to be Written: Instruction for the Controller that tells it to perform no
operation until the Data Transfer Engine confirms that a number of scalar matrices needed for the processing
sequence are transferred into the Array’s internal data memory.

cRESREADY : Result Ready: Instruction for the Controller to acknowledge the Data Transfer Engine that a process-
ing sequence is finished and the result is ready to be read.
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C Code on HOST
Using mainly functions exemplified in Appendix B, the program for dense matrix multiplication defined for large
matrices is listed below. The size of matrices is MAT DIM, a multiple of p, the number of cells of our accelerator.

/***************************************************************************************
THE PROGRAM: matrix multiplication

***************************************************************************************/
// THE PROGRAM USED TO INITIALIZE THE ACCELERATOR

pload activate
nop nop
nop rednop
‘include "theKernel16.v"
prun 0

// THE EXECUTION
START; // start the cycle counter
for(index2 = 0; index2 < (MAT_DIM/NR_CELLS)**2; index2 = index2 + 1) begin

SEND_MATRIX(16, 16, 16); // write dest=16, #Lines=16, #Columns=16
SEND_MATRIX(144, 16, 16); // write dest=144, #Lines=16, #Columns=16
SEND_MATRIX(512, 16, 16); // write dest=512, #Lines=16, #Columns=16
SEND_MATRIX(640, 16, 16); // write dest=640, #Lines=16, #Columns=16
MM_MULT(272, 16, 144, 16, 2); // dest=272, left=16, right=144, #Lines=16, #Mat=2
MM_MAC(272, 512, 640, 16, 2); // dest=272, left=512, right=640, #Lines=16, #Mat=2
if(MAT_DIM/NR_CELLS - 1 > 1) begin

for(index = 0; index < (MAT_DIM/NR_CELLS)/2 - 1; index = index + 1) begin
WAIT_RESULT_READY(); // wait for result to be ready
SEND_MATRIX(16, 16, 16); // write dest=16, #Lines=16, #Columns=16
SEND_MATRIX(144, 16, 16); // write dest=144, #Lines=16, #Columns=16
WAIT_RESULT_READY(); // wait for result to be ready
SEND_MATRIX(512, 16, 16); // write dest=512, #Lines=16, #Columns=16
SEND_MATRIX(640, 16, 16); // write dest=640, #Lines=16, #Columns=16
MM_MAC(272, 16, 144, 16, 2); // dest=272, left=16, right=144, #Lines=16,

// #Mat=2
MM_MAC(272, 512, 640, 16, 2); // dest=272, left=512, right=640, #Lines=16,

// #Mat=2
end

end
WAIT_RESULT_READY();
WAIT_RESULT_READY();
GET_MATRIX(272, 16, 16); // read from dest=272, #Lines=16, #Columns=16
INTRQ; // send the interrupt

end
STOP; // stop the cycle counter
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D Assembly code for dense matrix multiplication on mono-core x86 system
Compiling a program to multiply two matrices of 16× 16 elements generated the executable code below. The code
also includes the generation of the two matrices. The main loop, which repeats 163 times, is labeled with .L13. We will
consider, covering, the fact that the mono-core processor executes on average more than 1.22 instructions per clock
cycle (the execution report provides for the entire program 1.22 instructions per cycle). In this case, the execution time
considered for matrix multiplication is 22×N3.

Tmultiply+Trans f er ≃ 22N3clockCycles

.file "matrMul.c"
.text
.globl main
.type main, @function

main:
.LFB5:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $12320, %rsp
movq %fs:40, %rax
movq %rax, -8(%rbp)
xorl %eax, %eax
movl $0, -12316(%rbp)
jmp .L2

.L5:
movl $0, -12312(%rbp)
jmp .L3

.L4:
call random@PLT
movl %eax, %ecx
movl -12312(%rbp), %eax
cltq
movl -12316(%rbp), %edx
movslq %edx, %rdx
salq $5, %rdx
addq %rdx, %rax
movl %ecx, -12304(%rbp,%rax,4)
addl $1, -12312(%rbp)

.L3:
cmpl $31, -12312(%rbp)
jle .L4
addl $1, -12316(%rbp)

.L2:
cmpl $31, -12316(%rbp)
jle .L5
movl $0, -12316(%rbp)
jmp .L6

.L9:
movl $0, -12312(%rbp)
jmp .L7

.L8:
call random@PLT
movl %eax, %ecx
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movl -12312(%rbp), %eax
cltq
movl -12316(%rbp), %edx
movslq %edx, %rdx
salq $5, %rdx
addq %rdx, %rax
movl %ecx, -8208(%rbp,%rax,4)
addl $1, -12312(%rbp)

.L7:
cmpl $31, -12312(%rbp)
jle .L8
addl $1, -12316(%rbp)

.L6:
cmpl $31, -12316(%rbp)
jle .L9

movl $0, -12316(%rbp)
jmp .L10

.L15:
movl $0, -12312(%rbp)
jmp .L11

.L14:
movl $0, -12308(%rbp)
jmp .L12

#APP
# 22 "matrMul.c" 1

# LLVM-MCA-BEGIN foo
# 0 "" 2
#NO_APP
.L13:

movl -12312(%rbp), %eax
cltq
movl -12316(%rbp), %edx
movslq %edx, %rdx
salq $5, %rdx
addq %rdx, %rax
movl -4112(%rbp,%rax,4), %edx
movl -12308(%rbp), %eax
cltq
movl -12316(%rbp), %ecx
movslq %ecx, %rcx
salq $5, %rcx
addq %rcx, %rax
movl -12304(%rbp,%rax,4), %ecx
movl -12312(%rbp), %eax
cltq
movl -12308(%rbp), %esi
movslq %esi, %rsi
salq $5, %rsi
addq %rsi, %rax
movl -8208(%rbp,%rax,4), %eax
imull %ecx, %eax
addl %eax, %edx
movl -12312(%rbp), %eax
cltq
movl -12316(%rbp), %ecx
movslq %ecx, %rcx
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salq $5, %rcx
addq %rcx, %rax
movl %edx, -4112(%rbp,%rax,4)
addl $1, -12308(%rbp)

.L12:
cmpl $31, -12308(%rbp)
jle .L13
addl $1, -12312(%rbp)

.L11:
cmpl $31, -12312(%rbp)
jle .L14
addl $1, -12316(%rbp)

.L10:
cmpl $31, -12316(%rbp)
jle .L15

#APP
# 27 "matrMul.c" 1

# LLVM-MCA-END
# 0 "" 2
#NO_APP

movl $0, %eax
movq -8(%rbp), %rdi
xorq %fs:40, %rdi
je .L17
call __stack_chk_fail@PLT

.L17:
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.LFE5:
.size main, .-main
.ident "GCC: (Ubuntu 7.5.0-3ubuntu1˜18.04) 7.5.0"
.section .note.GNU-stack,"",@progbits

Program run report:

0.56 msec task-clock # 0.518 CPUs utilized
0 context-switches # 0.000 /sec
0 cpu-migrations # 0.000 /sec

54 page-faults # 96.601 K/sec
1,868,874 cycles # 3.343 GHz
2,286,744 instructions # 1.22 insn per cycle
259,939 branches # 465.005 M/sec

8,518 branch-misses # 3.28% of all branches
733,978 L1-dcache-loads # 1.313 G/sec

<not counted> L1-dcache-load-misses (0.00%)
<not counted> LLC-loads (0.00%)
<not counted> LLC-load-misses (0.00%)

0.001079349 seconds time elapsed
0.001167000 seconds user
0.000000000 seconds sys
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E Nvidia’s GA100 vs. our X3PU

The evaluation for X3PU is based on simulation and synthesis using Cadence environment:

• technology node: 7 nm

• area: 40 mm2

• number of cells: 1024

• clock frequency: 1.275 GHz

• power: 5.12 W

• memory bus: 128 bis

while for GA100 GPU we used the spec [6]:

• technology node: 7 nm

• area: 846 mm2

• number of cells: 6912

• clock frequency: 1.275 GHz

• power: 400 W

• memory bus: 5120 bits

For dense matrix multiplication on GA100 the information is provided by [5] (see Figure 7 and 8).

Figure 7: The definition for K, M, N [5].

According to Figure 7 and Figure 8 the matrix multiplication time for M=K=N on GA100 GPU is tGPU (1024) =
0.4ms According to simulation on a 1024 X3PU the execution time for multiplying 1024 × 1024 matrices is
tX3PU (1024) = 2.9ms.
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Figure 8: Execution time for matrix multiplication on GA100 [5].

Because the two ratio
#cellsGPU/#cellsX3PU = 6.75

and
tX3PU (1024×1024)/tGPU (1024×1024) = 7.25

are ∼ 7, starting from

PowerGPU/PowerX3PU = 78

and
AreaGPU/AreaX3PU = 21

we conclude:

X3PU performs ∼ 11× computation for the same energy on a ∼ 3× less area.

15


