
Let's consider Moore's law in its entirety

Gheorghe M. Ștefan
Politehnica University of Bucharest

E-mail: gheorghe.stefan@upb.ro

Abstract—Gordon Moore's predictions refer, in

addition to the resolution at which we can make the

devices, also to the size of the chips and to the "circuit

cleverness". Considering Moore's law in all its aspects

offers a more complex perspective on the current evolution

of the field of integrated circuits. Computers, as a

General-Purpose Technology, tend to be replaced by

various types of accelerators. A possible solution that we

present is based on parallelism supported by the recursive

abstract model that we propose starting from the model of

partially recursive functions of Stephen Kleene.

Keywords — Moore’s Law; intense computation;

accelerators; parallelism; mathematical model of

parallel computing; abstract model for parallelism.

1. Introduction

Gordon Moore talks twice about the

evolution of integrated circuit technology. In

addition to the internal report from 1965 [1],

the paper from 1975 [2] provides important

new insights. If the first intervention is

mainly about the density of components (see

Fig. 2) and the efficiency with which the

integrated circuits were produced (see Fig. 1),

in the 1975 paper are explicitly added two

other dimensions for evaluating the evolution

of the domain of integrated circuits.

Fig. 1 Cost vs. number of components per IC [1].

Fig.2 Number of components per IC [1].

In Figure 3 all the three factors considered:

 Factor1: density (device size)

 Factor2: chip size

 Factor3: “circuit cleverness”

are represented cumulatively. To the factor

given by density, are added the size of the

chip and "circuit cleverness".

Fig. 3 Components per chip depending on the three factors:

device size, chip size and “circuit cleverness” [2].

"Circuit cleverness" translates, in what

follows in this paper, by organization and

architecture appropriate to functions that

integrated circuit must perform. Besides,

density & size given by technology, and

organization & architecture we can add few

other factors involved, such as algorithms,

languages, compilers and, why not, hybrid

approaches involving analog, bio- and

quantum-computing.

In the following we focus only on how

organizational and architectural aspects

influence mainly Factor3 – “circuit

cleverness" – and subsidiary Factor2 – chip

sizing.

2. Distinctions Imposed by the Exponential

Growth

In theoretical computer science, the

complexity of circuits is treated using

terminology that creates confusion that we

can no longer accept when the size of the

circuits exceeds a certain limit. Terms such as

circuit-size complexity are unacceptable

when notable differences between size and

complexity are required. We are obliged to

explicitly nuance the two concepts when we

use them to speak today distinctly of the size

and complexity of circuits. The same for the

intensity and complexity of computing. The

dimensions of the circuits and the intensity of

the computation reach very high values

today, so high that their identification with

the complexity become confusing.

The conceptual framework for these

distinctions is given by the algorithmic

complexity introduced independently in the

1960s years by Gregory Chaitin [3], Andrei

N. Kolmogoroff [4], Ray Solomonoff [5].

A. Size vs. Complexity of Circuits

In the case of circuits, we will have to

distinguish between their size and their

complexity.

Definition 1: The size of a n-input circuit,

S(n), is given by the number of components

or the area it occupies on silicon.

Definition 2: The complexity of a n-input

circuit, C(n), is proportional to the size of the

shortest description, expressed in number of

characters, that defines it.

For example, the complexity of a circuit

can be characterized by the length of the

shortest program written in the Hardware

Description Language that describes it.

Definition 3: A circuit is complex if its

size and complexity are in the same

complexity class: S(n) ~ C(n).

Conjecture: As the size of a circuit

increases exponentially, its complexity is

limited to a logarithmic increase.

Corollary: If the size of a digital system

increases exponentially and its complexity is

limited to increase logarithmically, then the

system must be programmable to justify

increasing its size.

Because the dynamics of complexity

cannot keep pace with the dynamics of size,

we will have to consider the functional

dynamics offered by the programmability of

the structure deployed on an integrated

circuit. Functional complexity will not be

able to increase significantly unless the

circuit function can be specified by a

program running on a much simpler circuit

structure (memories tightly interleaved with

execution units). Thus, the incompressible bit

structure of programs will give the functional

complexity.

B. Intensity vs. Complexity of Programs

In the case of programs, we will have to

distinguish between their intensity and their

complexity.

Definition 4: The intensity of a program is

given by the number of clock cycles required

for its execution.

Definition 5: The complexity of a

program is proportional to the size, expressed

in number of characters, of the simplest

description that defines it.

Definition 6: A program is complex if its

intensity and complexity are in the same

complexity class.

Definition 7: A program is intense if its

complexity is much smaller than its intensity.

3. Organization & Architecture on Big

Sized Dies

The way in which the "circuit cleverness"

and die size evolves is dictated equally by the

organization and architecture of the system

that grows exponentially in size. Both

organization and architecture must allow the

acquisition of functional facilities to justify

the increase of both chip size and component

density. How can the exponential increase of

the number of components per chip be

capitalized in the conditions in which the

accepted increase of the complexity of the

structure is much slower (according to our

point of view it is logarithmic)? Only a

programmable cellular structure in which the

data is interleaved with the execution

elements represents the solution.

A. Organizations

The evolutions from the last years on the

computer products market highlight more and

more the distinction between complex and

intense computing, in conditions in which the

consumed energy is an essential parameter.

Under these conditions, the organizations of

the computing systems migrate toward

heterogeneous computing as a solution that

is required in the form of a host system,

responsible for complex computing, and an

associated accelerator that runs intense

computing (see Figure 4).

Fig. 4 Heterogenous computing system, where HOST runs

the complex computation while ACCELERATOR runs the

intense computation.

The same trend is supported by the decline

of computer technology as General-Purpose

Technology (GPT) [6]. The accelerator has a

specialized rather than a general structure,

and its share in the size of the computer

system tends to be dominant. Why wouldn't it

be possible for us to move to a stage where

accelerator technology is becoming a GPT?

The host is implemented using a mono or

multi (2÷8) core system, while for

accelerators we can consider several parallel

solutions:
1. FPGA-based reconfigurable circuits (the

genuine, natural parallel approach) able
to take over the intense parts of the
program

2. FPGA-based pseudo-reconfigurable
systems implemented as parametrizable
& configurable programmable systems

3. Parallel programmable systems (“artificial
parallelism” provided by many-core
(>64) computing systems)

Each solution comes with its advantages
and disadvantages.

The first offers specific solutions that can
be very efficient (in terms of execution time
and energy), but it is difficult to generalize,
due to the fact that it requires high-
performance digital designers and the number
of circuit designers is much smaller than that
of programmers. On the other hand, the
solution that involves using compilers that
translate from high-level languages into
Hardware Description Languages is far from
providing efficient translations in all cases.

The second solution is general in nature,
but the limitations are due to the use of
FPGA technology which limits the speed of
execution and the possibility of reducing
energy consumption. The good news is that
more and more frequently used modules
(such as DSPs, BlockRAMs and UltraRAMs)
are being implemented in this technology as
ASICs. When such modules are usable, the
performance gap compared to ASIC
implementations is significantly reduced.

The third solution should provide the most

efficient solution (in terms of speed

performance and power consumption), but it

does so very rarely. Why? Because, as we

will show, parallelism has entered computer

science through the back door.

Can we coherently answer the following

question: what does parallel calculation

mean, at least at the level of a silicon die?

Partially yes: a Boolean circuit represents the

natural parallel implementation of a

function defined in {0,1}n with values in

{0,1}m. Much more difficult is the case of the

artificial implementation of parallelism in

the form of programmable cellular

computational structures.

B. Architectures

From an architectural point of view, the

two components of a heterogeneous

computing system present to the user

completely different images. We discuss the

second and third solutions proposed for the

accelerator, solutions that involve

programmable structures.

While the host is programmed in a high-

level language that provides the compiler

with a conventional set of instructions, the

accelerator is seen as a hardware-

implemented kernel library of functions.

Kernel, because the accelerator is a finite

structure that allows the acceleration of

functions defined on data structures limited

by its size. Thus, the kernel library is used to

accelerate, through programs written in a

high-level language, a function library for

extended data structures to the level required

by real applications.

4. “Cleverness of Organization” and Big

Sized Chip Management

Let us consider, in the following, Moore's

"circuit cleverness " under the more general

formulation of “organization cleverness".

And, if we consider the issue of chip size, we

will converge to similar requirements.

Thus, to get noticeable accelerations, a

“clever organization” requests a cellular

structure of a programmable accelerator that

performs parallel computation. Cellular, to

keep the complexity under control and

programmable, to get functional complexity.

In the same time, the curse of larger die

size and poor yields can be addressed by self-

repair replaces/bypasses techniques which are

facilitated by repetitive cellular structures. It

should be noted that these techniques are

most easily applied currently to memory

structures. This brings to our attention the

same programmable & cellular structures.

But what means parallel computation (at

least) at the level of a silicon die? The

histories of mono-core and many-core

computing paradigms are radically different.

While the first is rigorously substantiated, the

second is presented with an evolution

distorted by an unfortunate interaction

between academic research and

developments imposed by the corporate

space.

A. Mono-Core vs. Many-Core Evolution

Let us briefly present a comparison

between the history of mono-core computing

and that of the parallel computing. While for

the mono-core computing the following steps

have been completed:
1. 1931: Kurt Gödel [7] proved that the

decision problem, formulated by David
Hilbert, does not have a logical solution
in Peano’s arithmetic

2. 1935: Alonzo Church [8], Stephen Kleene
[9], Emil Post [10], Alan M. Turing [11]
published independently their
mathematical version of Gödel's
incompleteness theorem, thus providing
four independent, but equivalent
mathematical models for computing as a
mechanism based on logic decision

3. 1937: Claude E. Shannon [12] defended at
MIT his master thesis which became the
theoretical foundation for designing and
implementing practical digital circuits.

Fig. 5 From the mathematical model of mono-cell
computation to the abstract model. a. Turing Machine. b.
John von Neumann abstract model.

4. 1946: John von Neumann [13], based on
Turing's approach and on the design and

implementation made by John Mauchly
and J. Presper Eckert for ENIAC,
provided the abstract model (see Figure
5) for the mono-core computing machine
(his approach is paralleled by the
Harvard version)

5. 1953: IBM announced the first mass-
produced computer – IBM 650

6. 1954: John Backus made the draft
specification for the first high level
programming language – FORTRAN

7. 1964: the term of computer architecture
is used “to describe the attributes of a
computing system as seen by the
programmer” [14], is introduced when
specifying the IBM 360 computer

for the multi- or many-core parallel
computing, the sequence of meaningful
events had the following distorted and
incoherent evolution:

1. 1962: manufacturing in quantity; the first
symmetrical MIMD parallel engine is
introduced on the computer market by
Burroughs Corporation

2. 1965-75: architectural issues; Edsger W.
Dijkstra formulates, starting with [15],
the first concerns about specific parallel
programming issues (such as, the critical
regions problem, semaphores, the dining
philosophers problem)

3. 1974-82: abstract machine models;
proposals of the first abstract models (bit
vector models in [16] and PRAM models
(see Figure 6) in [17,18]) start to appear
after almost two decades of non-
systematic experiments (started in the late
1950s) and the too early market
production

Fig. 6 Parallel Random-Access Machine (PRAM) is an

abstract machine model for parallel computing currently

confused with a mathematical model for parallel computing.

It is not theoretically supported by any mathematical model.

4. ?: mathematical parallel computation
model; no one yet really considered it as
mandatory, regrettably confusing it with
abstract machine models, although it is
there and waits to be considered (see the
Kleene's mathematical model for
computation [9]).

Now, in the 3rd decade of the 3rd
millennium, after more than half century of
chaotic development, it is obvious that the
history of parallel computing is distorted by
missing stages and uncorrelated evolutions
[19].

What is the consequence of the distorted
history of parallel computing? Ad hoc
organizations of multi- or many-core
structures fail to provide accelerations close
to the peak performance they could
theoretically achieve. For example, the
oxymoronic GPGPU (General Purpose
Graphic Processing Units), proves to be
particularly efficient in graphic applications,
but very rarely manages to perform close to
its very high peak performance when used as
general-purpose accelerator.

Table 1. Comparing GPU with CPU

 Intel Xeon

E5-2690v4

Nvidia

P100

Technology 14 nm 16 nm

Power 135 Watt 250 Watt

Clock ~2.8 GHz 1.1 GHz

Threads 28 3584

Bandwidth 76.8 GB/s 732 GB/s

Access to L1 5-12 cycles 80 cycles

Price $2090 $2500

Let's compare the performance offered by an
Intel processor (Xeon E5-2690v4) and an
Nvidia graphics accelerator (P100). For the
engines exemplified in Table 1, the expected
acceleration provided by the GPU for a code
running on the CPU, considering the ratio
between the threads executed in each engine
and the ratio of the running frequencies, is:

acc = (3584/28)×(1.1/2.8) = 50.28

Why for most applications the actual
acceleration is <10? Because there are some
inconsistencies in the way the organization
and architecture of the Nvidia chip as
general-purpose accelerator are defined. For
example:

1. while the computational power of GPU is
~50× the computational power of CPU,
the bandwidth is only ~10× larger, thus
increasing the effect of the von Neumann
Bottleneck

2. the access to Level 1 Cache requests ~10×
more clock cycles for GPU

3. although the data flow in an accelerator is
very predictable, GPUs use cache
memories instead of program-controlled
buffers

4. the structural organization of a GPU
considers first the criteria of geometric
organization of the space on silicon and
only secondly the theoretical aspects (if
any) of computations

5. there is no good balance in GPUs between
computing resources, which are oversized,
and the possibilities of communication
between cells.

How should the structure (organization) of an
efficient many-cell programmable accelerator
look like? To answer this question, we must
start, as in the case of mono-cell computing,
from a mathematical model, which this time
will have to be dedicated for parallel
computation.

B. A Recursive Abstract Model for

Parallel Computation

Even if the literature does not consider it as

such, there is a mathematical model for

parallel computation that is waiting to be

considered. This is the Partially Recursive

Function Model [9] proposed by Stephen

Kleene independently and in the same year

as the Turing Model, with which it is

mathematically equivalent.

Because the only independent rule in

Kleene’s model is the composition rule [20],

the conception of an abstract model for

parallelism starting from the definition of

partial recursion, just as von Neumann's

abstract model started from Turing's

mathematical model, considers only the

composition rule:

f(X) = g(h1(X), … hp(X))

whose representation in the form of a circuit

is given in Figure 7. Starting from this

representation, we highlight two theoretical

forms of parallelism:

Fig. 7 The circuit version of the composition rule.

• synchronic parallelism, in the form of

MAP composition, a linear array of

cells

• diachronic (pipeline) parallelism, due

to the pipeline connection between

MAP array and a log-dept REDUCE

network.

Kleene's mathematical model leads to the

abstract model for parallel computing [19],

just as Turing's mathematical model led to

the von Neumann's abstract model (or

Harvard model).

Fig. 8 Recursive abstract model for parallelism.

Figure 8 shows the abstract model resulting

from Kleene's mathematical model. This

model is a recursive one. Indeed, the (i+1)-th

level in the recursive organization

MapScanRedi+1(p)

is divided in two parts: engi+1 and memi+1

and contains in the MAP array p linearly

connected cells each containing an engi and a

memi. The p cells of the MAP array are

thought of as having the same organization

as MapScanRedi+1(p): an eng module, with a

MapScanRed system loop connected with a

Control unit, and a mem section. Thus, we

obtain a hierarchically organized cellular

structure where memory resources are tightly

interleaved with execution elements. Only

level 1 in the hierarchy – MapScanRed1(p) –

is build from elementary cells, for which:

• p=64÷4096, in currently used

technological nodes or in FPGA

implementations

• eng0: 8÷64-bit execution unit

• mem0: 4÷16 KB SRAM

• REDUCE: is a log-depth tree network

performing reduction for functions as

add, min, max, …

• SCAN: is a log-depth network

performing functions such as

permute, prefix, …

• Control: is a standard processing

mono-core with eng+mem+progMem

• progMem: provides in each cycle an

instruction for Control and another to

be executed, with a O(log p) latency,

in each active cell of the MAP array.

For example, in Figure 9 is represented a

two-level MapScanRed structure with 4

cells, where each cell is a MapScanRed

structure with 256 elementary cells. Thus,

the structure contains 1024 hierarchically

organized execution elements on two

levels.

Fig. 9 MapScanRed2(4) – a two-level hierarchy with 4 cells – with MapScanRed1(256) cells – an one-level system in the

recursive hierarchy with 256 elementary cells.

5. Concluding Remarks

In the last half century, Factor1 has received

almost exclusively the attention of the

community involved in the development of

integrated circuit technology. Now, when the

effect of this factor seems to be exhausted, I

think we need to pay more attention to the

other two factors. Their effect was not

considered with sufficient attention,

especially the effect of the third, "circuit

cleverness". Ad hoc structural developments

accompanied by uninspired architectural

approaches have led to inefficient

computational accelerators both in terms of

the use of the computing capabilities

deployed on silicon and in terms of energy

consumption.

While Factor2 is addressed quite well by the

modularity of large circuits (mainly

memories), for Factor3 we believe that

major reformulations need to be considered.

Because big-sized circuits cannot achieve

complexities comparable to their size,

programmable cellular structures are required

in which the execution elements are

interspersed with memory blocks. Thus, large

accelerators naturally become parallel

computing structures.

Because off-the-shelf accelerators are general

ad hoc structures or dedicated structures, they

cannot be used efficiently for parallel

computing. Consequently, we propose an

abstract model for one-chip parallel

computing based on the mathematical model

of partial recursive functions proposed in

1936 by Stephen Kleene.

The proposed model is a recursive one that

allows a hierarchical cellular organization

that attenuates, by distributing the execution

elements to the appropriately dimensioned

memory modules, the von Neumann

Bottleneck effect.

Thus, even if the density of the devices will

not increase significantly, we have the hope

offered by a good use of them in designing

"clever organizations" to which we associate

"clever architectures" to allow the action of

Factor3 designated by Gordon Moore with

"circuit cleverness".

References

[1] G. Moore: "The Future of Integrated
Electronics." Fairchild Semiconductor internal
publication (1964).

[2] G. Moore: “Progress in Digital Integrated
Electronics”, Technical Digest 1975.
International Electron Devices Meeting, IEEE,
pp. 11-13, 1975.

[3] G. Chaitin: “On the Length of Programs for

Computing Binary Sequences: Statistical

Considerations”, J. of the ACM, 16(1):145-

159, 1966.

[4] A.A. Kolmogorov: “Three Approaches to the

Definition of the Concept “Quantity of

Information”, in Probl. Peredachi Inform.,

1(1):3-11, 1965.

[5] R. J. Solomonoff: “A Formal Theory of

Inductive Inference”, in Information and

Control, 7(1):1-22, and 7(2):224-254, 1964.

[6] N. C. Thompson, S. Spanuth: “The Decline of

Computers as a General Purpose Technology”,

in Communication of the ACM, 64(3):64-72,

2021.

[7] K. Gödel, “Uber formal unentscheidbare Sätze

der Principia Mathematica und verwandter

Systeme”, (On Formally Undecidable

Propositions of Principia Mathematica and

Related Systems), Monatshefte für

Mathematik und Physik 38:173-198, 1931.

[8] A. Church, “An unsolvable problem of

elementary number theory”, American Journal

of Mathematics 58(2):345-363, 1936.

[9] S. Kleene, “General recursive functions of

natural numbers”, Mathematische Annalen

112(5):727-742, 1936.

[10] E. Post, “Finite Combinatory Processes -

Formulation 1”, Journal of Symbolic Logic

1(3):103-105, 1936.

[11] A. Turing, “On computable numbers with an

application to the Eintscheidungsproblem”,

Proceedings of the London Mathematical

Society, 42(1):230-256, 1936 and a correction

in 43(6):544-546, 1937.

[12] C. Shannon, A Symbolic Analysis of Relay and

Switching Circuits, Master Thesis at MIT,

1937. Republished in Transactions of the

American Institute of Electrical Engineers,

57(12):713-723, 1938.

[13] J. von Neumann, First Draft of a Report on

the EDVAC, Moore School of Electrical

Engineering, University of Pennsylvania, June

30, 1945. Republished in IEEE Annals of the

History of Computing, 15(4):27-75, 1993

[14] G. M. Amdahl, G. A. Blaauw, F. P. Brooks,

Jr., “Architecture of the IBM System/360”,

IBM Journal of Research and Development,

8(2):87-101, 1964.

[15] E. W. Dijkstra, Cooperating sequential

processes. Technical Report EWD-123,

Eindhoven University of Technology,

Netherlands, 1965.

[16] V. R. Pratt, M. O. Rabin, L. J. Stockmeyer, “A

characterization of the power of vector

machines”. Proceedings of STOC’1974, pp.

122-134, 1974.

[17] S. Fortune, and J. C. Wyllie, “Parallelism in

random access machines”. Conference Record

of the Tenth Annual ACM Symposium on

Theory of Computing, pp. 114-118, 1978.

[18] L. M. Goldschlage, “A universal

interconnection pattern for parallel

computers”. Journal of the ACM, 29(4):1073-

1086, 1982.

[19] G. M. Ștefan, M. Malița: “Can One-Chip

Parallel Computing Be Liberated From Ad

Hoc Solutions? A Computation Model Based

Approach and Its Implementation”, 18th

International Conference on Circuits, Systems,

Communications and Computers, Santorini

Island, Greece, July 17-21, pp. 582-597, 2014.

[20] G. M. Ștefan: Composition is the only

independent rule in Kleene's model of partial

recursive functions, Available at:

http://users.dcae.pub.ro/~gstefan/2ndLevel/tec

hnicalTexts/2019_Composition.pdf

http://pages.erau.edu/~eisne102/MGMT-320/resources/Gordon_Moore_1965_Article.pdf
http://pages.erau.edu/~eisne102/MGMT-320/resources/Gordon_Moore_1965_Article.pdf
https://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
https://www.eng.auburn.edu/~agrawvd/COURSE/E7770_Spr07/READ/Gordon_Moore_1975_Speech.pdf
http://web.mit.edu/STS.035/www/PDFs/edvac.pdf
http://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/COMPUTERS2-42.pdf
http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/COMPUTERS2-42.pdf
http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/COMPUTERS2-42.pdf
http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/COMPUTERS2-42.pdf
http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/2019_Composition.pdf
http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/2019_Composition.pdf

