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Abstract—Gordon Moore's predictions refer, in 

addition to the resolution at which we can make the 

devices, also to the size of the chips and to the "circuit 

cleverness". Considering Moore's law in all its aspects 

offers a more complex perspective on the current evolution 

of the field of integrated circuits. Computers, as a 

General-Purpose Technology, tend to be replaced by 

various types of accelerators. A possible solution that we 

present is based on parallelism supported by the recursive 

abstract model that we propose starting from the model of 

partially recursive functions of Stephen Kleene. 
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1. Introduction  
 

Gordon Moore talks twice about the 

evolution of integrated circuit technology. In 

addition to the internal report from 1965 [1], 

the paper from 1975 [2] provides important 

new insights. If the first intervention is 

mainly about the density of components (see 

Fig. 2) and the efficiency with which the 

integrated circuits were produced (see Fig. 1), 

in the 1975 paper are explicitly added two 

other dimensions for evaluating the evolution 

of the domain of integrated circuits. 

 

 
Fig. 1 Cost vs. number of components per IC [1]. 

 
Fig.2 Number of components per IC [1]. 

 

In Figure 3 all the three factors considered: 

 Factor1: density (device size) 

 Factor2: chip size 

 Factor3: “circuit cleverness” 

are represented cumulatively. To the factor 

given by density, are added the size of the 

chip and "circuit cleverness". 

 
Fig. 3 Components per chip depending on the three factors: 

device size, chip size and “circuit cleverness” [2]. 

 

"Circuit cleverness" translates, in what 

follows in this paper, by organization and 

architecture appropriate to functions that 

integrated circuit must perform. Besides, 

density & size given by technology, and 



organization & architecture we can add few 

other factors involved, such as algorithms, 

languages, compilers and, why not, hybrid 

approaches involving analog, bio- and 

quantum-computing. 

In the following we focus only on how 

organizational and architectural aspects 

influence mainly Factor3 – “circuit 

cleverness" – and  subsidiary Factor2 – chip   

sizing. 

 

2. Distinctions Imposed by the Exponential 

Growth  
 

In theoretical computer science, the 

complexity of circuits is treated using 

terminology that creates confusion that we 

can no longer accept when the size of the 

circuits exceeds a certain limit. Terms such as 

circuit-size complexity are unacceptable 

when notable differences between size and 

complexity are required. We are obliged to 

explicitly nuance the two concepts when we 

use them to speak today distinctly of the size 

and complexity of circuits. The same for the 

intensity and complexity of computing. The 

dimensions of the circuits and the intensity of 

the computation reach very high values 

today, so high that their identification with 

the complexity become confusing. 

The conceptual framework for these 

distinctions is given by the algorithmic 

complexity introduced independently in the 

1960s years by Gregory Chaitin [3], Andrei 

N. Kolmogoroff [4], Ray Solomonoff [5]. 

 

A. Size vs. Complexity of Circuits 
 

In the case of circuits, we will have to 

distinguish between their size and their 

complexity. 

Definition 1: The size of a n-input circuit, 

S(n), is given by the number of components 

or the area it occupies on silicon. 

Definition 2: The complexity of a n-input 

circuit, C(n), is proportional to the size of the 

shortest description, expressed in number of 

characters, that defines it. 

For example, the complexity of a circuit 

can be characterized by the length of the 

shortest program written in the Hardware 

Description Language that describes it. 
 

Definition 3: A circuit is complex if its 

size and complexity are in the same 

complexity class: S(n) ~ C(n). 
 

Conjecture: As the size of a circuit 

increases exponentially, its complexity is 

limited to a logarithmic increase. 
 

Corollary: If the size of a digital system 

increases exponentially and its complexity is 

limited to increase logarithmically, then the 

system must be programmable to justify 

increasing its size. 
 

Because the dynamics of complexity 

cannot keep pace with the dynamics of size, 

we will have to consider the functional 

dynamics offered by the programmability of 

the structure deployed on an integrated 

circuit. Functional complexity will not be 

able to increase significantly unless the 

circuit function can be specified by a 

program running on a much simpler circuit 

structure (memories tightly interleaved with 

execution units). Thus, the incompressible bit 

structure of programs will give the functional 

complexity. 
 

B. Intensity vs. Complexity of Programs 
 

In the case of programs, we will have to 

distinguish between their intensity and their 

complexity. 

Definition 4: The intensity of a program is 

given by the number of clock cycles required 

for its execution. 

Definition 5: The complexity of a 

program is proportional to the size, expressed 

in number of characters, of the simplest 

description that defines it. 

Definition 6: A program is complex if its 

intensity and complexity are in the same 

complexity class. 

Definition 7: A program is intense if its 

complexity is much smaller than its intensity. 
 

3. Organization & Architecture on Big 

Sized Dies  
 

The way in which the "circuit cleverness" 

and die size evolves is dictated equally by the 



organization and architecture of the system 

that grows exponentially in size. Both 

organization and architecture must allow the 

acquisition of functional facilities to justify 

the increase of both chip size and component 

density. How can the exponential increase of 

the number of components per chip be 

capitalized in the conditions in which the 

accepted increase of the complexity of the 

structure is much slower (according to our 

point of view it is logarithmic)? Only a 

programmable cellular structure in which the 

data is interleaved with the execution 

elements represents the solution. 

A. Organizations 

The evolutions from the last years on the 

computer products market highlight more and 

more the distinction between complex and 

intense computing, in conditions in which the 

consumed energy is an essential parameter. 

Under these conditions, the organizations of 

the computing systems migrate toward 

heterogeneous computing as a solution that 

is required in the form of a host system, 

responsible for complex computing, and an 

associated accelerator that runs intense 

computing (see Figure 4). 

 

     
Fig. 4 Heterogenous computing system, where HOST runs 

the complex computation while ACCELERATOR runs the 

intense computation. 

 

The same trend is supported by the decline 

of computer technology as General-Purpose 

Technology (GPT) [6]. The accelerator has a 

specialized rather than a general structure, 

and its share in the size of the computer 

system tends to be dominant. Why wouldn't it 

be possible for us to move to a stage where 

accelerator technology is becoming a GPT? 

The host is implemented using a mono or 

multi (2÷8) core system, while for 

accelerators we can consider several parallel 

solutions: 
1. FPGA-based reconfigurable circuits (the 

genuine, natural parallel approach) able 
to take over the intense parts of the 
program 

2. FPGA-based pseudo-reconfigurable 
systems implemented as parametrizable 
& configurable programmable systems 

3. Parallel programmable systems (“artificial 
parallelism” provided by many-core 
(>64) computing systems) 

Each solution comes with its advantages 
and disadvantages.  

The first offers specific solutions that can 
be very efficient (in terms of execution time 
and energy), but it is difficult to generalize, 
due to the fact that it requires high-
performance digital designers and the number 
of circuit designers is much smaller than that 
of programmers. On the other hand, the 
solution that involves using compilers that 
translate from high-level languages into 
Hardware Description Languages is far from 
providing efficient translations in all cases.  

The second solution is general in nature, 
but the limitations are due to the use of 
FPGA technology which limits the speed of 
execution and the possibility of reducing 
energy consumption. The good news is that 
more and more frequently used modules 
(such as DSPs, BlockRAMs and UltraRAMs) 
are being implemented in this technology as 
ASICs. When such modules are usable, the 
performance gap compared to ASIC 
implementations is significantly reduced. 

The third solution should provide the most 

efficient solution (in terms of speed 

performance and power consumption), but it 

does so very rarely. Why? Because, as we 

will show, parallelism has entered computer 

science through the back door.  

Can we coherently answer the following 

question: what does parallel calculation 

mean, at least at the level of a silicon die? 

Partially yes: a Boolean circuit represents the 



natural parallel implementation of a 

function defined in {0,1}n with values in 

{0,1}m. Much more difficult is the case of the 

artificial implementation of parallelism in 

the form of programmable cellular 

computational structures. 

 

B. Architectures 
 

From an architectural point of view, the 

two components of a heterogeneous 

computing system present to the user 

completely different images. We discuss the 

second and third solutions proposed for the 

accelerator, solutions that involve 

programmable structures. 

While the host is programmed in a high-

level language that provides the compiler 

with a conventional set of instructions, the 

accelerator is seen as a hardware-

implemented kernel library of functions. 

Kernel, because the accelerator is a finite 

structure that allows the acceleration of 

functions defined on data structures limited 

by its size. Thus, the kernel library is used to 

accelerate, through programs written in a 

high-level language, a function library for 

extended data structures to the level required 

by real applications. 

 

4. “Cleverness of Organization” and Big 

Sized Chip Management 

 

Let us consider, in the following, Moore's 

"circuit cleverness " under the more general 

formulation of “organization cleverness". 

And, if we consider the issue of chip size, we 

will converge to similar requirements. 

Thus, to get noticeable accelerations, a 

“clever organization” requests a cellular 

structure of a programmable accelerator that 

performs parallel computation. Cellular, to 

keep the complexity under control and 

programmable, to get functional complexity. 

In the same time, the curse of larger die 

size and poor yields can be addressed by self-

repair replaces/bypasses techniques which are 

facilitated by repetitive cellular structures. It 

should be noted that these techniques are 

most easily applied currently to memory 

structures. This brings to our attention the 

same programmable & cellular structures. 

But what means parallel computation (at 

least) at the level of a silicon die? The 

histories of mono-core and many-core 

computing paradigms are radically different. 

While the first is rigorously substantiated, the 

second is presented with an evolution 

distorted by an unfortunate interaction 

between academic research and 

developments imposed by the corporate 

space. 

 

A. Mono-Core vs. Many-Core Evolution 
 

Let us briefly present a comparison 

between the history of mono-core computing 

and that of the parallel computing. While for 

the mono-core computing the following steps 

have been completed: 
1. 1931: Kurt Gödel [7] proved that the 

decision problem, formulated by David 
Hilbert, does not have a logical solution 
in Peano’s arithmetic 

2. 1935: Alonzo Church [8], Stephen Kleene 
[9], Emil Post [10], Alan M. Turing [11] 
published independently their 
mathematical version of Gödel's 
incompleteness theorem, thus providing 
four independent, but equivalent 
mathematical models for computing as a 
mechanism based on logic decision 

3. 1937: Claude E. Shannon [12] defended at 
MIT his master thesis which became the 
theoretical foundation for designing and 
implementing practical digital circuits. 

 

Fig. 5 From the mathematical model of mono-cell 
computation to the abstract model. a. Turing Machine. b. 
John von Neumann abstract model.  

4. 1946: John von Neumann [13], based on 
Turing's approach and on the design and 



implementation made by John Mauchly 
and J. Presper Eckert for ENIAC, 
provided the abstract model (see Figure 
5) for the mono-core computing machine 
(his approach  is paralleled  by the 
Harvard version) 

5. 1953: IBM announced the first mass-
produced computer – IBM 650 

6. 1954: John Backus made the draft 
specification for the first high level 
programming language – FORTRAN 

7. 1964: the term of computer architecture 
is used “to describe the attributes of a 
computing system as seen by the 
programmer” [14], is introduced when 
specifying the IBM 360 computer 

for the multi- or many-core parallel 
computing, the sequence of meaningful 
events had the following distorted and 
incoherent evolution: 

1. 1962: manufacturing in quantity; the first 
symmetrical MIMD parallel engine is 
introduced on the computer market by 
Burroughs Corporation 

2. 1965-75: architectural issues; Edsger W. 
Dijkstra formulates, starting with [15], 
the first concerns about specific parallel 
programming issues (such as, the critical 
regions problem, semaphores, the dining 
philosophers problem) 

3. 1974-82: abstract machine models; 
proposals of the first abstract models (bit 
vector  models in [16] and PRAM models 
(see Figure 6) in [17,18]) start to appear 
after almost two decades of non-
systematic experiments (started in the late 
1950s) and the too early market 
production 

 

Fig. 6 Parallel Random-Access Machine (PRAM) is an 

abstract machine model for parallel computing currently 

confused with a mathematical model for parallel computing. 

It is not theoretically supported by any mathematical model. 

 

4. ?: mathematical parallel computation 
model; no one yet really considered it as 
mandatory, regrettably confusing it with 
abstract machine models, although it is 
there and waits to be considered (see the 
Kleene's mathematical model for 
computation  [9]).  

Now, in the 3rd decade of the 3rd 
millennium, after more than half century of 
chaotic development, it is obvious that the 
history of parallel computing is distorted by 
missing stages and uncorrelated evolutions 
[19]. 

What is the consequence of the distorted 
history of parallel computing? Ad hoc 
organizations of multi- or many-core 
structures fail to provide accelerations close 
to the peak performance they could 
theoretically achieve. For example, the 
oxymoronic GPGPU (General Purpose 
Graphic Processing Units), proves to be 
particularly efficient in graphic applications, 
but very rarely manages to perform close to 
its very high peak performance when used as 
general-purpose accelerator. 

Table 1. Comparing GPU with CPU 
 

 Intel Xeon 

E5-2690v4 

Nvidia 

P100 

Technology 14 nm 16 nm 

Power 135 Watt 250 Watt 

Clock ~2.8 GHz 1.1 GHz 

Threads 28 3584 

Bandwidth 76.8 GB/s 732 GB/s 

Access to L1 5-12 cycles 80 cycles 

Price $2090 $2500 

 

Let's compare the performance offered by an 
Intel processor (Xeon E5-2690v4) and an 
Nvidia graphics accelerator (P100). For the 
engines exemplified in Table 1, the expected 
acceleration provided by the GPU for a code 
running on the CPU, considering the ratio 
between the threads executed in each engine 
and the ratio of the running frequencies, is: 

acc = (3584/28)×(1.1/2.8) = 50.28 



Why for most applications the actual 
acceleration is <10? Because there are some 
inconsistencies in the way the organization 
and architecture of the Nvidia chip as 
general-purpose accelerator are defined. For 
example: 

1. while the computational power of GPU is 
~50× the computational power of CPU, 
the bandwidth is only ~10× larger, thus 
increasing the effect of the von Neumann 
Bottleneck 

2. the access to Level 1 Cache requests ~10× 
more clock cycles for GPU 

3. although the data flow in an accelerator is 
very predictable, GPUs use cache 
memories instead of program-controlled 
buffers 

4. the structural organization of a GPU 
considers first the criteria of geometric 
organization of the space on silicon and 
only secondly the theoretical aspects (if 
any) of computations 

5. there is no good balance in GPUs between 
computing resources, which are oversized, 
and the possibilities of communication 
between cells. 

How should the structure (organization) of an 
efficient many-cell programmable accelerator 
look like? To answer this question, we must 
start, as in the case of mono-cell computing, 
from a mathematical model, which this time 
will have to be dedicated for parallel 
computation. 

B. A Recursive Abstract Model for 

Parallel Computation 
 

Even if the literature does not consider it as 

such, there is a mathematical model for 

parallel computation that is waiting to be 

considered. This is the Partially Recursive 

Function Model [9] proposed by Stephen 

Kleene independently and in the same year 

as the Turing Model, with which it is 

mathematically equivalent.  

Because the only independent rule in 

Kleene’s model is the composition rule [20], 

the conception of an abstract model for 

parallelism starting from the definition of 

partial recursion, just as von Neumann's 

abstract model started from Turing's 

mathematical model, considers only the 

composition rule: 

f(X) = g(h1(X), … hp(X)) 

whose representation in the form of a circuit 

is given in Figure 7. Starting from this 

representation, we highlight two theoretical 

forms of parallelism: 

 

 
Fig. 7 The circuit version of the composition rule. 

 

• synchronic parallelism, in the form of 

MAP composition, a linear array of 

cells 

• diachronic (pipeline) parallelism, due 

to the pipeline connection between 

MAP array and a log-dept REDUCE 

network. 

Kleene's mathematical model leads to the 

abstract model for parallel computing [19], 

just as Turing's mathematical model led to 

the von Neumann's abstract model (or 

Harvard model).  

 
Fig. 8 Recursive abstract model for parallelism. 

 

Figure 8 shows the abstract model resulting 

from Kleene's mathematical model. This 

model is a recursive one. Indeed, the (i+1)-th 

level in the recursive organization  

MapScanRedi+1(p) 



is divided in two parts: engi+1 and memi+1 

and contains in the MAP array p linearly 

connected cells each containing an engi and a 

memi. The p cells of the MAP array are 

thought of as having the same organization 

as MapScanRedi+1(p): an eng module, with a 

MapScanRed system loop connected with a 

Control unit, and a mem section. Thus, we 

obtain a hierarchically organized cellular 

structure where memory resources are tightly 

interleaved with execution elements. Only 

level 1 in the hierarchy – MapScanRed1(p) – 

is build from elementary cells, for which: 

• p=64÷4096, in currently used 

technological nodes or in FPGA 

implementations  

• eng0: 8÷64-bit execution unit 

• mem0: 4÷16 KB SRAM 

• REDUCE: is a log-depth tree network 

performing reduction for functions as 

add, min, max, … 

• SCAN: is a log-depth network 

performing functions such as 

permute, prefix, … 

• Control: is a standard processing 

mono-core with eng+mem+progMem 

• progMem: provides in each cycle an 

instruction for Control and another to 

be executed, with a O(log p) latency, 

in each active cell of the MAP array. 
 

For example, in Figure 9 is represented a 

two-level MapScanRed structure with 4 

cells, where each cell is a MapScanRed 

structure with 256 elementary cells. Thus, 

the structure contains 1024 hierarchically 

organized execution elements on two 

levels. 

 

 
Fig. 9 MapScanRed2(4) – a two-level hierarchy with 4 cells – with MapScanRed1(256) cells – an one-level system in the 

recursive hierarchy with 256 elementary cells. 

 

 

5. Concluding Remarks  

 

In the last half century, Factor1 has received 

almost exclusively the attention of the 

community involved in the development of 

integrated circuit technology. Now, when the 

effect of this factor seems to be exhausted, I 

think we need to pay more attention to the 

other two factors. Their effect was not 

considered with sufficient attention, 

especially the effect of the third, "circuit 

cleverness". Ad hoc structural developments 

accompanied by uninspired architectural 

approaches have led to inefficient 

computational accelerators both in terms of 

the use of the computing capabilities 

deployed on silicon and in terms of energy 

consumption. 

While Factor2 is addressed quite well by the 

modularity of large circuits (mainly 

memories), for Factor3 we believe that 

major reformulations need to be considered. 

Because big-sized circuits cannot achieve 

complexities comparable to their size, 

programmable cellular structures are required 



in which the execution elements are 

interspersed with memory blocks. Thus, large 

accelerators naturally become parallel 

computing structures. 

Because off-the-shelf accelerators are general 

ad hoc structures or dedicated structures, they 

cannot be used efficiently for parallel 

computing. Consequently, we propose an 

abstract model for one-chip parallel 

computing based on the mathematical model 

of partial recursive functions proposed in 

1936 by Stephen Kleene. 

The proposed model is a recursive one that 

allows a hierarchical cellular organization 

that attenuates, by distributing the execution 

elements to the appropriately dimensioned 

memory modules, the von Neumann 

Bottleneck effect. 

Thus, even if the density of the devices will 

not increase significantly, we have the hope 

offered by a good use of them in designing 

"clever organizations" to which we associate 

"clever architectures" to allow the action of 

Factor3 designated by Gordon Moore with 

"circuit cleverness". 
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