
Pseudo-Reconfigurable Heterogeneous Solution for
Accelerating Spectral Clustering

Mihaela Maliţa
Computer Science Dept.

Smith College
Northampton, MA 01063, US

mmalita@smith.edu

George Vlǎduţ Popescu
Electronic Devices, Circ. and Arch. Dept.

Politehnica University of Bucharest
Bucharest, Romania

georgevlad.popescu@yahoo.com

Gheorghe M. Ştefan
Electronic Devices, Circuits and Arch. Dept.

Politehnica University of Bucharest
Bucharest, Romania

gheorghe.stefan@upb.ro

Abstract—Spectral clustering is a Machine Learning technique
intensively used in Big Data applications. It makes extensive
use of linear algebra. This article introduces the concept of
MapReduce Accelerator (MRA) as the reconfigurable part of
a heterogeneous computing system. Although the accelerator we
propose is a general purpose one, it has some specific features
related to the targeted application. This is possible due to the
pseudo-reconfigurable environment which deploys in FPGA a
parameterizable programmable accelerator. The main specific
characteristics of the accelerator are proposed as a result of the
analysis performed on the spectral clustering algorithms. The
architecture is described and the spectral clustering algorithms
are evaluated. The proposed solution is compared, in terms of
computing performance and energy consumption, with other
solutions published in the literature. The increase in computing
performance is accompanied by a 3-5 times reduction in energy
consumed. The accelerator is a linear array of cells controlled
by a sequencer loop closed through a reduction network. Each
cell is a simple, accumulator-based execution unit with a big two-
port register file. The reduction network is a log-depth pipelined
circuit performing few reduction functions such as add, min,
max. The experimental system is a PYNQ-Z2 board equipped
with Zinq 7020 SoC; it is used to implement and evaluate the
acceleration provided by an 128-cell MRA.

Index Terms—Spectral clustering, parallel algorithm, paral-
lel computing, accelerator, heterogeneous computing, pseudo-
reconfigurable computing.

I. INTRODUCTION

Clustering is an unsupervised Machine Learning technique
used in finding a structure in a collection of objects. Thus,
a cluster is a group of objects similar between them and
dissimilar to the rest of the objects which belong to other
clusters. There are two main types of clustering algorithms: (1)
Euclidean distance-based clustering: the objects belong to the
same cluster if they are close according to a given distance, and
(2) Hamming distance-based clustering: objects are grouped
according to the match of their attributes usually expressed by
the Hamming distance. In both cases a similarity n×n matrix
S for a number of n objects is defined. Then, S is submitted
to various computational procedures to make the requested
partitions. One of these algorithms is the spectral clustering
algorithm.

Spectral clustering is a popular unsupervised Machine
Learning algorithm which often outperforms other approaches
by its accuracy. In addition, spectral clustering is very simple

to implement and can be solved efficiently by standard linear
algebra methods. In spectral clustering, the affinity, and not
the absolute location (i.e. k-means), determines what points
fall under which cluster. It is particularly useful in tackling
problems where the data, the group of objects, forms compli-
cated configurations.

Despite its good performance, the spectral clustering algo-
rithm is difficult to implement for large set of objects due to
its high computational complexity and energy demand. Indeed,
for a data set consisting of n data points, we need to compute
the n × n adjacency matrix in time ∈ O(n2), and calculate
the eigen-decomposition of the resulting Laplacian in time
∈ O(n3) (due to the inverse matrix computation involved).
Both of these two steps are computational expensive, in
both time and energy, and thus unbearable for large-scale
applications.

In the last decades, the researchers have been focused to
accelerate the algorithm. One option was to find methods for
reducing the computational cost of the eigen-decomposition
of the graph Laplacian for efficiently computing an approxi-
mate solution of the eigenproblem [4]. Another option is the
reduction of the data size beforehand by replacing the original
data set with a smaller number of data points, conducting to a
much smaller number of operations performed on the resulting
adjacency matrix [14]. These approaches, and other similar
[11] [17] [10], lead to an elegant balance between running
time and accuracy.

Configurable & Programmable

ACCELERATOR Processor
HOST

MEMORY

Fig. 1. Pseudo-reconfigurable heterogenous computing system.

In this paper we do not contribute to the improvement of
the spectral clustering algorithm. Instead, we offer a solution
to speed up the calculation, without any loss of accuracy, by
using an accelerator in a pseudo-reconfigurable heterogeneous

computing system (see Figure 1). The speed up will be
achieved in an energy aware structure.

The computational stages involved in this application are not
only very intense computationally, but some of them involve
an unpredictable, usually big, number of iterations. Thus, in
comparing various accelerators used to implement the algo-
rithm, it is hard to use information published in the literature
due to the fact that figures depend on the input data which
determines the number of iterations. Therefore, in this paper
we are focused in providing an efficient accelerating method
working on an energy aware hardware with an appropriate
instruction set architecture.

In the following, we consider the possibility to use a
heterogenous computing system having a p-core accelerator
implementable in two possible versions:

1) as an IP with ten thousands of cells integrated on the
same silicon die with the host engine using it

2) as an FPGA implemented parameterized accelerator
of up to thousands of cells integrated in a pseudo-
reconfigurable computing system (“pseudo”, because it
is a programmable system which is instantiated once,
with appropriate parameters, in FPGA and called by
the host computer for functions implemented by the
programs it contains).

Why another type of accelerating system for spectral clus-
tering? First of all, the off-the-shelf solutions are optimized for
small matrix operations (involved in graphics) and their energy
consumption is very high. The second reason is given by the
opportunity to use FPGAs or ASICs to adopt an appropriate
architectural and structural approach, flexible for the FPGA
version, and highly optimized as a general purpose accelerator
for the ASIC version.

The next section emphasizes the main functional features
involved in computing the spectral clustering for a set of
n objects. The third section describes the structure of the
MapReduce Accelerator (MRA) and the associated instruction
set architecture. The fourth section is about how the main func-
tions involved in spectral clustering algorithms are accelerated
using the architecture we proposed. The fifth section elaborates
on the use of the accelerator for big data input. The sixth and
seventh sections describe and comment the implementation of
the heterogenous system based on our MRA in two versions:
FPGA-based and ASIC-based. In the eight section, the state
of the art is shortly investigated and our solution is compared
with those designed using off-the-shelf devices.

II. FUNCTIONAL REQUIREMENTS FOR SPECTRAL
CLUSTERING

The bi-partitioning spectral clustering algorithm has the
following main steps:

1) define the similarity measure between the elements of
the n-object set

2) compute the n × n, distance-based or attribute-based,
symmetric similarity matrix S,

3) compute the eigenvector corresponding to the second
smallest eigenvalue, called the Fiedler vector, which

defines the spectral graph bi-partitioning by the sign of
the scalar it contains.

We describe the spectral clustering algorithm, in the first
subsection, in order to emphasize, in the second subsection,
the functions to be accelerated by the accelerator we propose.

A. Algorithm

The bi-partitioning clustering algorithm is applied to the
similarity matrix S:

S =

s11 . . . s1n
...

. . .
...

sn1 . . . snn


considered as the representation of a graph having in its
vertexes elements of the set of objects

O = {o1, . . . ,on}

Each edge of the graph is marked by the distance, si j, between
the elements it connects. The matrix is symmetric and the
main diagonal contains only zeroes. Starting from this matrix,
its Laplacian defines a bi-partition by computing the Fiedler
vector. The bi-partition is defined by the signs of the scalars
of the Fiedler vector. The algorithm is well known (see [2]
[3]).

ALG. 1: Spectral bi-partitioning algorithm

1) build the Laplacian matrix of S,

L = D−S

where D is the degree matrix of S defined as the diagonal
matrix with

dii =
n

∑
j=1

si j

2) compute the Fiedler vector: the eigenvector corresponding
to the second smallest eigenvalue obtained by solving the
equation

Lv = λv

where L is an n×n matrix, v is a non-zero n-component
vector and λ is a scalar

3) use the resulting Fiedler vector to make the bi-partition
upon the sign of its scalar components.

For an efficient and accurate method to compute the Fiedler
vector, based on the Householder deflation and the inverse
power iteration, we must take into account the following
assumptions:

1) The power method is a direct iteration method for
obtaining the dominant eigenvalue (i.e. the largest in
magnitude) for a given matrix A and also the corre-
sponding eigenvector.

2) If the matrix A has an eigenvalue λ and the associated
eigenvector X , then the matrix A−1 has an eigenvalue
1/λ with the associated eigenvector X.

3) If A has the dominant eigenvalue λ then its inverse
A−1 has an eigenvalue 1/λ , which will be the smallest
magnitude eigenvalue of A−1

4) L is symmetric and positively semi-defined
5) The Laplacian matrix L has n positive real eigenvalues,

0 = λ1 < λ2 < .. . < λn
6) The sum of lines of L is 0 which implies

(det(L) = 0)⇒ @ L−1

7) The eigenvectors of a matrix A are identical with the
eigenvectors of its inverse, A−1.

The algorithm we use for computing the Fiedler vector,
following [6] [19], is:

ALG. 2: Fiedler vector for a n×n Laplacian L

1) compute the scalar α = n+n1/2 and build the vector

u = [1+n1/2,1,1, . . . ,1︸ ︷︷ ︸
n−1

]T

2) compute the vector: v = h− γu/2, where:

h = Lu/α

γ = uT h/α

3) extract the vectors: r = u[2 : n] and s = v[2 : n] and build
the matrix:

L2 = L2:n,2:n − rsT − srT

having the eigenvalues of L except the smallest one, which
is 0

4) compute L−1
2

5) apply the inverse power method to L−1
2 to obtain the

eigenvector corresponding to the smallest eigenvalue, fol-
lowing the next steps:

a) instantiate the first iteration for the n−1-component
vector X0, randomly or so: 1,1, . . . ,1︸ ︷︷ ︸

n−1
b) X0

normed = X0/norm
c) until ∆Xnormed = X i+1

normed −X i
normed < error do:

i) X i+1 = L−1
2 X i

ii) X i+1
normed = X i+1/norm

d) return X i+1
normed

6) compute the Fiedler vector:

X = [0,X i+1
normed]

F = X − (uT Xu)/α

B. Functional Requirements

The previously described algorithm supposes the following
parallel computational patterns [12] in order to be imple-
mented efficiently using linear algebra operations:

• Map Pattern: a given function is mapped or is applied-
to-all elements of vectors of data, returning vectors (for
example, in computing the degree matrix, Gauss-Jordan
elimination, matrix-vector multiplication)

• Predicated Map Pattern: the mapped function is applied
only to the vector components selected according to the
binary values distributed along a Boolean vector whose
value is computed using the map pattern (for example,
searching for all the occurrences of a given value in a
vector, searching for the first occurrence of a value in a
vector, selecting a column in a matrix as in the Gauss-
Jordan elimination method).

• Reduction Pattern: a given associative and commutative
operation (add, min, max, for example) uses as argument
all, or selected, elements of a vector, returning a scalar
(for example, in matrix-vector multiplication, in comput-
ing the sum of the selected components of a vector, or in
searching the maximum value in a sequence).

It seems that a kind of Map-Reduce structure is outlined.

III. MAPREDUCE ACCELERATOR’S STRUCTURE

A. Structure

The previously emphasized functional requirements leads to
an accelerator (see Figure 2) with a linear array of p cells
connected in a loop with a controller through a reduction
network (various versions of this kind of structure are al-
ready implemented in silicon [15] [9], while the theoretical
foundation for this proposal is presented in [16]). The main
components of the accelerator are:

C1 C2 MAP Ci Cp

-

log-depth REDUCE

log-depth DISTRIBUTE

-
CONTROL

-

?

6

-

� ?

6
-

dataIn dataOut
?

6

memi

execUniti
stacki

ioRegi

-� -�
- -

{instruction, value, address}

{stackIn, stackOut}

inFIFO outFIFO�
6

?
int/inta

6
program

progFIFO

Fig. 2. Programmable accelerator as a linear array of cells connected in a
loop with a controller through a reduction unit.

• MAP: a linear array of cells which receives from the
CONTROL unit in each clock cycle, through a log-depths
DISTRIBUTE network, an instruction accompanied by a
value and an address

• CONTROL: is a mono-core processing unit with data
memory and program memory from which in each cycle
is fetched a pair of instructions, one for CONTROL and
another for the MAP array where it is executed in each
active cell

• REDUCE: is a log-depth pipelined circuit performing few
reduction functions; it provides, with a log-latency the
sum of the scalars provided by the active cells of the
MAP array, or the max/min value selected from the same
source

• three FIFOs, two – inFIFO and outFIFO – for data
exchange with the system memory and one – progFIFO
– to receive programs and commands from the host
computer

Each cell in the MAP array contains:
• execUniti: a w-bit accumulator-based execution unit
• memi: a two-port big register file of 1 to 4 K of w-bit

words
• stacki: the component of a stack distributed along the

cells; the stack is accessed at the left end and in par-
allel for read and write from/to the accumulator of the
execution units in each cell

• ioRegi: is the component of the serial register used to get
and send vectors from/to the external memory through
inFIFO and outFIFO.

The main issue raised by the structure is the log-cycle
latency introduced by the REDUCE net. It is addressed almost
any times by an appropriate use of the stack distributed along
the MAP array.

B. Variables

The computational storage resources distributed in the MAP
array are the following:

• the matrix

M =

v11 . . . v1p
...

. . .
...

vm1 . . . vmp


representing the data distributed in the local data memo-
ries, memi, of the MAP array, organized as:

– horizontal vectors, distributed along the cells, repre-
sented as:

Vi =
[
vi1 . . . vip

]
for i = 1, . . . ,m

– vertical vectors in each cell:

Wi =
[
v1 j . . . vm j

]
for j = 1, . . . , p

• A = [a1 . . .ap] : the address vector used for relative
addressing in each local memory memi

• B = [b1 . . .bp] : the Boolean vector used to select the
active cells in the MAP array (for bi = 1 the i-th cell
is active)

• IX = [1 . . . p] the index vector, whose components are
wired in each cell, used to identify the cell

• STACK = [stack1 . . .stackp] : the stack vector used to
implement two functions:

– a stack accessed at its left end
– a shift register distributed along the cells

• IOREG = [ioReg1 . . . ioRegp]: the input-output register
connected to the two FIFOs involved in the data transfer.

C. Instruction Set Architecture

The parallel operations performed in the MAP array and
the REDUCE network, defined on horizontal vectors Vi, for
i = 1,2, . . . ,m, are mainly the following:

• predicated binary or unary map operations:

Vi ⇐ BOP(Vk,Vq) ::= vi j ⇐ b j ? BOP(vk j,vq j) : vi j

Vi ⇐UOP(Vk) ::= vi j ⇐ b j ? UOP(vk j) : vi j

where BOP is a binary operation (ADD, SUB, MULT,
AND, OR, XOR, ...) and UOP is a unary operation (INC,
NOT, SHIFT, ...)

• spatial selections, acting on the content of the Boolean
vector B; the simplest set of spatial selection functions
is:

WHERE(cond) ::= bi ⇐ condi ? 1 : 0

ENDWHERE ::= bi ⇐ 1

where: cond = {CARRY,ZERO,SGN,FIRST, . . .}
for j = 1, . . . , p, performed in time ∈ O(1).

• reduction operations, defined on the active components
of vectors from the MAP array, with values in a scalar
stored in the location i of the CONTROL data memory:

acc ⇐ redOP(Vi) ::= acc ⇐ OPp
j=1b j ? si j : NE

where: NE is the neutral element of the operation OP
and acc the accumulator of CONTROL; performed with
a latency ∈ O(log p).

• data transfer operations: between M, the horizontal
vectors distributed along the MAP array in memi, for
i = 1, . . . , p, and the system memory through the two data
FIFOs:

LOAD(i,k) ::= [vi1 . . .vik] is popped f rom inFIFO

STORE(i,k) ::= [vi1 . . .vik] is pushed in outFIFO

for k ≤ p, performed in time ∈ O(k).

IV. A KERNEL LIBRARY OF FUNCTIONS FOR SPECTRAL
CLUSTERING

The MRA is part of a pseudo-reconfigurable computing
system working under the control of a host computer. It is
“pseudo”, because it is configured only once at the beginning
of the program to be accelerated. Configuring means two steps:

• load the parameterized design: parameters, such as w, m,
or p, and features, such as specific BOP, UOP, or OP
functions, are set, at the synthesis moment, depending on
the accelerated program

• load the programs: in the CONTROL’s program memory
are loaded the programs which implement the kernel
function library used to implement on the HOST (see
Figure 3) the library of functions requested by the current
application.

In a pure reconfigurable computing system, during the pro-
gram execution various circuits are instantiated in the FPGA
associated to the host computer. In our pseudo-reconfigurable
approach, the accelerator is a parameterized programmable
parallel engine. It is instantiated in FPGA with the programs
performing the functions to be accelerated.

In this section the main functions of a kernel library used
to accelerate the spectral clustering are defined, described and
evaluated. These kernel functions are used to develop, on the
host computer, the library of functions for accelerating the
spectral clustering. The kernel library, developed in assembly
language, works with data structures with the size limited
by the hardware implementation of the accelerator, while the
library is developed, in a high level language, to support data
structure with any size.

A. The Control Path

The accelerator is controlled using the 32-bit program
input and the one-bit interrupt signal. On the program path
the host computer sends two types of commands:

• INIT: used to load the initial programs in the memory of
CONTROL as a self-delimiting string of 32-bit words

• FUNCTION NAME(PARAM 1, ...,PARAM q), with
q = 0,1, . . ., used to run one of the programs loaded by
INIT; it is a string of q+1 32-bit words.

After LOAD or after the run of a program triggered by
a function FUNCTION NAME(...) MRA gets in the halt state
waiting for the occurrence of a new function at the progFIFO
output (see Figure 2).

B. Functions

The main functions implemented for our MRA to support
spectral clustering are described in the following. The accel-
erations provided by MRA are evaluated for p ≥ n, i.e., for
the cases when the data structures, matrices and vectors, can
be loaded entirely in the memory distributed along the cells
in the MAP array.

In the following a matrix of p× p elements is specified by
the index, belonging to [1,m], of its first horizontal vector in
the m× p matrix M.

• SIM(dest,source): in the matrix dest in M, is com-
puted the similarity matrix of the objects contained in the
vector source; source ∈ [1,m]. The acceleration ∈O(p).

• LAPLACE(name): replace of the matrix name with its
Laplacian. The acceleration ∈ O(p).

• INV(dest,source): computes in the matrix dest the
inverse of the matrix source. The acceleration ∈ O(p)
using Gauss-Jordan elimination method.

• MVMULT(dest,left,right): computes in the horizontal
vector dest the product of the matrix left with the hor-
izontal vector right ∈ [1,m]. The acceleration ∈ O(p).

• SQMULT(dest,left,right): computes in the matrix
dest the product of the matrices left and right. The
acceleration ∈ O(p).

• SQMACCM(dest,left,right): add to the matrix dest the
product of the matrices left and right. The acceleration
∈ O(p).

• SQSUB(dest,left,right): computes in the matrix dest

the difference of the matrices left and right. The
acceleration ∈ O(p).

• EIGENVEC(dest,source): computes, using the power
method, in vector dest the biggest eigenvector of the
matrix source. The acceleration ∈ O(p); the actual time
is given by the number of iterations determined by the
initial values of the matrix.

• GET(dest,size): gets from inFIFO in M, starting with
the horizontal vector dest, a size×p matrix. The exe-
cution time ∈ O(size).

• SEND(source,size): send to outFIFO a size×p matrix
stored in M starting with horizontal vector source. The
execution time ∈ O(size).

Unfortunately, the last two functions, GET and SEND are
not accelerated. The curse of the “von Neumann Bottleneck”
follows us relentlessly.

The accelerations claimed for the previously listed functions
are obvious, except for those involving in their execution
the matrix-vector multiplication: MVMULT, SQMULT, SQMACCM,
EIGENVEC. Indeed, if vector multiplication can be distributed
in the MAP array and executed in constant time, the sum,
supposed for the inner product, contributes with a latency in
O(log p), thus limiting the acceleration to O(n/log p). To
avoid this latency, the STACK distributed along the MAP array
is used. With this feature, the matrix-vector multiplication is
performed using the following program:

/***
MATRIX-VECTOR MULTIPLICATION

Vi,...,Vj: lines of the matrix
W: multiplier vector
Y: result vector
matrix size: (j-i+1) x p

***/
(1) for (k=i; k<(i+j+1); k=k+1)

PUSH(redAdd(W x Vk)) // push in STACK
(2) wait (log p) cycles // due to latency
(3) Y <= STACK

Step (1) is performed in a pipeline manner. The multiplica-
tion is executed in the MAP section, then the resulting vector
enters in the first pipeline level of the REDUCE network while
the next multiplication is executed, and so on. After log2 p
clock cycles, the output of the REDUCE network sends the
first sum to the input of STACK. After the last multiplication
we must wait log2 p clock cycles for the inner product to
propagate through the REDUCE network. Thus, the latency
of the REDUCE network bothers us only once when waiting
for the result of the last multiplication. The execution time is

TmatrixVectorMult = 2(j− i+1)+ log2 p ∈ O(j− i+1)

and the overall acceleration for MVMULT, SQMULT, SQMACCM,
EIGENVEC ∈ O(p).

The total execution time is given by the transfer time plus
the processing time. The transfer time (inputing the vector of
objects, O, and outputing the Fiedler vector, F , both having n
components) is in O(n) with the associated constant smaller
than 1. Theoretically, the computing time is in O(n2), for
n≤ p, due to the inverse matrix operation (see ALG. 2, step 4).
But the actual time could be given by the number of iterations
executed for EIGENVEC function. Therefore, experimentally,
the acceleration depends on the actual content of the S matrix,
because the convergent process in applying the inverse power
method (see ALG. 2, step 5) is performed in a number of
iterations which varies in a very large domain. The only
provable performance is the acceleration ∈ O(p) provided for
n ≤ p.

V. IMPLEMENTING SPECTRAL CLUSTERING FOR n > p
When n > p, the transfer time between the HOST’s MEM-

ORY and the distributed memory in ACCELERATOR (see
Figure 1), represented as the matrix M, makes his mark on
the overall performance. The matrices S, D and L are bigger
than the space defined by the matrix M, consequently these
matrices must be kept in the system’s memory, MEMORY, and
loaded tile by tile in MRA to make the computation. Therefore,
the overall acceleration is limited by the fact that the data
transfer time between the system’s memory and the internal
memory of MRA is accelerated only by O(1) times.

In the application we consider, the spectral clustering, there
are two cases when a tile of size s× s is loaded in M from
MEMORY:

1) the computation on the tile(s) is performed in O(s2)
accelerating an O(s3) computation O(s) times

2) the computation on the tile(s) is performed in O(s)
accelerating an O(s2) computation O(1) times, because
the transfer time remains in O(s2).

The spectral clustering computation is dominated by two
stages in ALG. 2: stage 4 (compute L−1

2) and stage 5 (apply
the inverse power method to L−1

2). The stage 4 corresponds
to the case 1, while the stage 5 to the second case.

The overall acceleration is approximated, considering only
these dominant stages, to:

α ≃
tinv + tpow

tinv/αinv + tpow/αpow
(1)

where: tinv and tpow are the execution times for stage 4 and
stage 5 on a mono core computing engine, while αinv and αpow
are the corresponding accelerations provided by MRA.

Because αinv ∈ O(p), while αpow ∈ O(1) we can approxi-
mate α by:

α ≃ (
tinv

tpow
+1)αpow (2)

The acceleration for stage 5 is:

αpow =
ttrans + tcomp

ttrans/αtrans + tcomp/αcomp
(3)

where: ttrans and tcomp are the execution times for data transfer
and computation on a mono core computing engine, while
αtrans and αcomp are the corresponding accelerations provided
by MRA.

Because αcomp ∈ O(p), while αtrans ∈ O(1) we can approx-
imate

ttrans/αtrans >> tcomp/αcomp (4)

and α becomes:

α ≃ (
tinv

tpow
+1)(1+

tcomp

ttrans
)αtrans (5)

Because the overall acceleration is limited by the constant
value of αtrans, for a p bigger than a maximal value the
performance of the system does not improve. This value p
is computed starting from the inequality 4:

pmax ≃ 20
tcomp

ttrans
αtrans (6)

For p> pmax the acceleration grows insignificantly for spectral
clustering if p < n.

VI. FPGA EXPERIMENTAL SETTING

The accelerator we propose is seen as a part of a het-
erogenous pseudo-reconfigurable computing system where the
host machine accelerates computation using a hardware imple-
mented standard library. The system is pseudo-reconfigurable
because it is configured only once at the start of the pro-
gram. Instead of a sequence of circuits instantiated during the
execution, only one programmable circuit, our accelerator, is
instantiated initially and is accessed during the execution to
run the programs loaded initially together with the design of
the circuit. Because the design of the accelerator is parame-
terized, at each instantiation it is tuned to the application it
supports. The number, p, of cells, the size of the word, the
type of arithmetic (integer or various forms of floating point
arithmetic), the type of reduction functions are decided at the
synthesis time of the circuit. Even, the instruction set archi-
tecture is adapted, reconfigured for the specific application.

The experimental environment is provided by a PYNQ-Z2
board equipped with a Zynq 7020 SoC in which we deployed
a MRA with 128 32-bit cells (see Figure 3). Our project used
60% of the FPGA’s programmable resources, all block RAMs
and 129 out of the 220 DSPs.

For n > p the acceleration provided by this implementation
of MRA is, according to Equation 5:

α ≃ 32

HOST
ARM Cortex-A9

6

�

PYNQ-Z2

6

?

DMA �- �-
?6 6

Interrupt
Controller

AXI Stream AXI Lite
?6 6

Map-Reduce Accelerator

6

MEMORY

?
I/Os

6

Zynq 7020 SoC

?

dataIn[63:0] dataOut[63:0] int/inta program[31:0]

6

?

Fig. 3. The pseudo-reconfigurable system.

because tcomp/ttrans = 1, αtrans = 8 for our system in matrix-
vector multiplication, and we consider tinv/tpow = 1. If the
weight of the inverse matrix computation is bigger or lower,
then α is modified accordingly. Because the ratio tinv/tpow
depends on the initial data (the actual content of vector O) the
real performance cannot be stated absolutely.

The value of p is 128, which is in the proximity of pmax =
160 (according to relation 6).

VII. ASIC VERSION EVALUATION

If an ASIC solution is envisaged, then the approach could
be based on few versions of the proposed architecture al-
ready implemented in silicon [15] [9]. The last version was
implemented in 65nm and it provided: > 120GOPS/Watt
and > 6.25GOPS/mm2 (where GOPS stands for 16-bit Giga
Integer Operations per Second).

The last evaluation for 7nm technology provided, for 128
32-bit cells, running at fclock = 1GHz, with 4096 KB of
memory each, implemented on 0.4mm2 powered at 64 mW
[8]. The computational performance is 2 TOPS/W (where
OPS stands for 32-bit integer operations per second) or 833
GFLOPS/W for 32-bit floating point applications.

The area and energy used in our approach are reduced
because:

• the floating-point operations are implemented as a se-
quence of integer operations (on an average of 8 cycles
per float operation)

• the predictability of the data flow in intense computation
is very high, instead of a cache-based memory hierarchy
we adopted a buffer-based memory hierarchy.

In this initial stage of the project, the accelerated functions
of the kernel library, used to support the library developed at
the host level, are written in assembler.

VIII. STATE OF THE ART

The core of the spectral clustering algorithm is dominated
by the matrix inverse operation. In [18], the LU factorization,
the main mechanism in computing the inverse of a matrix, is
investigated by programs written for two GPUs and compared
with a program running on a CPU. There are two cases to be
compared.

First case is for n in the range of thousands. The acceleration
obtained by the two GPUs is insignificant, while for our
solution the acceleration ∈ O(p).

The second case is for n > p. The accelerations provided
by the two GPUs are α1 = 4.4× and α2 = 2.7×, while
their bandwidth are BW1 = 142GB/s and BW2 = 86GB/s.
Obviously, the computation in the two GPUs is I/O bounded,
because, according to Equation 5, the acceleration they provide
is proportional with their bandwidth to the external memory:
α1/α2 = 1.62 while BW1/BW2 = 1.65.

In the second case, the difference is given only by energy
consumption. NVidia’s Kepler architecture implemented in
28nm provides around 10 GFLOPS/Watt [13].

To compare “apples with apples” we evaluated our architec-
ture for 28nm technology node. For 2048 32-bit cells, running
at fclock = 1GHz, with 4096 KB of memory each, implemented
on 9.2×9.2mm2, using standard cell 28nm library, 2 TOPS or
0.83 TFLOPS powered at ∼ 15Watt. These figures translate
in more than 50 GFLOPS/Watt.

To conclude the comparison:
• for n ≤ 4096 our solution provides an acceleration in

O(p), while off-the-shelf solutions provide almost no
acceleration

• for n > 4096 our solution provides similar acceleration
to off-the-shelf solutions, with several times lower power
consumption.

The number n= 4096 is, in this stage of silicon technology, the
approximative threshold between what can be implemented in
FPGA and what must be implemented as ASIC.

IX. CONCLUSION

The proposed accelerator is evaluated in two cases. In the
first case, it works CPU-bound (n≤ p: the number of execution
units in MRA allow to keep inside de accelerator the matrices
involved in computation). In the second case, it works I/O-
bound (n > p: the matrices involved in computation are stored
in the external memory and are processed tile by tile).

In the CPU-bound regime the acceleration provided for all
stages of the spectral clustering is in O(p). This acceleration
is supported by a reduction network whose log-depth latency
is avoided by an appropriate use of a distributed stack along
the cells in MAP array.

In I/O-bound regime the acceleration depends on the band-
width with the external memory.

In both cases, the accelerations are provided by an energy
saving hardware: 3 to 5 times more GFLOPS/Watt than off-
the-shelf solutions.

Acknowledgements

The authors got support from the technical contribu-
tors to the development of the ConnexArrayT M technology:
Emanuele Altieri, Frank Ho, Bogdan Mı̂ţu, Marius Stoian,
Dominique Thiébaut, Tom Thomson, Dan Tomescu.

REFERENCES

[1] I. Fischer, J. Poland: New Methods for Spectral Clustering, Technical
Report IDSIA-12-04, 2004.

[2] M. Fiedler: “Algebraic connectivity of Graphs”, Czechoslovak Mathe-
matical Journal 23(98) (1973), pp.298–305.

[3] M. Fiedler: “Laplacian of graphs and algebraic connectivity”, Combina-
torics and Graph Theory (Warsaw, 1987), Banach Center Publications
25(1) (1989), pp. 57–70.

[4] C. Fowlkes, S. Belongie, F. Chung, J. Malik: “Spectral grouping using
the nystrom method”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 2, pp. 214–225, 2004.

[5] D. Hamad, P. Biela: Introduction to spectral clustering, 2008. [Online].
Available: http://lagis-vi.univ-lille1.fr/∼lm/classpec/reunion 28 02 08/
Introduction to spectral clustering.pdf

[6] W. Jian-ping, S. Jun-qiang, Z. Wei-min, “An efficient and accurate
method to compute the Fiedler vector based on Householder deflation
and inverse power iteration”, Journal of Computational and Applied
Mathematics, Volume 269, 15 October 2014, pp. 101-108.

[7] Y. Jin, J. F. JaJa, “A High Performance Implementation of Spectral
Clustering on CPU-GPU Platforms”, 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops,

[8] S. Lupu, “Implementarea unui accelerator Map-Reduce sub forma de
ASIC (The ASIC Implementation of a Map-Reduce Accelerator)”,
Master Thesis (in Romanian), Politehnica University of Bucharest, 2020.

[9] M. Maliţa, G. Ştefan, D. Thiébaut: “Not Multi-, but Many-Core:
Designing Integral Parallel Architectures for Embedded Computation”,
ACM SIGARCH Computer Architecture News, Volume 35 , Issue 5, Dec.
2007, pp. 32-38.

[10] L. Martin, A. Loukas, P. Vandergheynst: “Fast Approximate Spectral
Clustering for Dynamic Networks”, Proceedings of the 35th Interna-
tional Conference on Machine Learning, Stockholm, Sweden, 2018

[11] D. Mavroeidis: “Accelerating spectral clustering with partial supervi-
sion”, Data Min Knowl Disc 21, 241–258 (2010).

[12] M. McCool, A. D. Robison, J. Reinders: Structured Parallel Program-
ming. Patterns for Efficient Computation, Elsevier & Morgan Kaufmann,
2012.

[13] H. Mujtaba, Nvidia Pascal GP100 GPU Expected to Feature 12 TFLOPs
of Single Precision Compute, 4 TFLOPs of Double Precision Compute
Performance, 2016. [Online]. Available: https://wccftech.com/nvidia-
pascal-gp100-gpu-compute-performance/

[14] H. Shinnou, M. Sasaki: “Spectral clustering for a large data set by
reducing the similarity matrix size” Proceedings of the Sixth Interna-
tional Conference on Language Resources and Evaluation (LREC’08),
pp. 201–204, 2008

[15] G. Ştefan, A. Sheel, B. Mı̂ţu, T. Thomson, D. Tomescu: “The CA1024: A
Fully Programmable System-On-Chip for Cost-Effective HDTV Media
Processing”, Hot Chips: A Symposium on High Performance Chips,
Memorial Auditorium, Stanford University, August 20 to 22, 2006.
[Online]. Available: https://youtu.be/HMLT4EpKBAw at 35:00.

[16] G. Ştefan, M. Maliţa: “Can one-chip parallel computing be liberated
from ad hoc solutions? A computation model based approach and its
implementation”, 18th Inter. Conf. on Circuits, Systems, Communica-
tions and Computers, 2014, pp. 582–597.

[17] N. Tremblay, G. Puy, P. Borgnat, R. Gribonval, P. Vandergheynst:
“Accelerated Spectral Clustering Using Graph Filtering Of Random
Signals”, 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 4094–4098, 2016.

[18] V. Volkov, J. W. Demmel: “Benchmarking GPUs to Tune Dense Linear
Algebra”, SC ’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, 2008.

[19] *** Power Method for Approximating Eigenvalues, [Online]. Available:
https://ergodic.ugr.es/cphys/lecciones/fortran/power method.pdf

