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Abstract

Various forms of Deep Neural Network (DNN) architectures are used as Deep
Learning tools for neural inspired computational systems. The computational
power, the bandwidth and the energy requested by the current developments of
the domain are very high. The solutions offered by the current architectural envi-
ronment are far from being efficient. We propose a hybrid computational system
for running efficiently the training and inference DNN algorithms. The system is
more energy efficient compared with the current solutions, and achieves a higher
actual performance per peak performance ratio. The accelerator part of our het-
erogenous system is a programmable many-core system with a Map-Scan/Reduce
architecture. The chapter describes and evaluates the proposed accelerator for the
main computational intensive components of a DNN: the fully connected layer, the
convolution layer, the pooling layer, and the softmax layer.

Keywords: Deep Neural Network, parallel computing, heterogenous comput-
ing, accelerators.

1 Introduction
The mono-core computation can no longer keep up with the increasing demand of
computational power requested by Deep Learning applications, making a multi- and
many-core approach inevitable. At the same time, two kind of computations are seg-
regated from the homogenous corp of the general purpose computing: the complex
computation and the intense computation. The complex computation is defined by a
code with the size, S, expressed as a number of lines, in the same magnitude order
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with its execution time, T , expressed as a number of clock cycles. The intense compu-
tation is characterized by S ≪ T . To optimize the power consumption, the execution
time, and the area of chips, a solution based on a general purpose mono-core must be
substituted with a heterogenous system. Whenever possible, the normal approach is to
have for the complex computation a host engine, while for the intense computation an
accelerator. The host engine could be a mono-core or a multi-core (multi means few)
computational engine; however, the accelerator must be a many-core (many means no
matter how big n) computational engine.

Our proposal for the accelerator part of the heterogeneous system includes a general
purpose Map-Scan-Reduce Accelerator (MSRA) based on previous research [17] [13]
[2], implementations [16], and investigated applications [14] [12] [1].

The main fallacy regarding the parallel computational systems currently used in
Deep Learning applications is: the use of a gathering of consecrated processing cores,
or of a specialized many-core engine, or of a specialized systolic array of circuits could
be the solution for accelerating the DNN computation. Even if the use of an Intel’s
Many Integrated Core (MIC), or of an Nvidia’s Graphic Processing Unit (GPU), or of
a Google’s Tensor Processing Unit (TPU) circuit, is ready to hand, the outcome will be
inefficient because of various architectural incongruities. The architectural suitability
that we propose allows to reduce 2− 3× the energy, and to increase approximately
∼ 3× the actual performance / peak performance ratio.

In the following sections we describe the main computational requirements for
DNN, the state-of-the-art hardware involved in Machine Learning applications, our
proposed accelerator, and the implementation and evaluation of the main layers of a
DNN.

2 The computational components of a DNN involved in
deep learning

The computational components of a DNN are presented in this section. Two corre-
lated issues challenge the implementation of the applications involving DNN: (1) the
data transfer between the computational engine and the main memory of the system
(unfortunately, the ghost of the von Neumann Bottleneck is still haunting us), and (2)
the specific computations associated with the different types of DNN. We begin by ad-
dressing the second issue. The first issue will be discussed when the specific library of
functions are defined and used in subsequent subsections 4.5 and 5.1.

Deep learning, as a branch of Machine Learning, uses various types of DNN. The
most notorious are: Multi-Layer Perceptron (MLP), Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Deep
Belief Network (DBN). The main computational layers to be accelerated in all the
previous types of DNN are: the fully connected neural network layer, convolution layer,
pooling layer and softmax layer. Simple vector operations must be also considered in
order to articulate properly the layers just listed in order to obtain the more complex
layers such as for RNN or LSTM.
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2.1 Fully connected layers
A fully connected layer of n neurons receives an m-component input vector and sends
out another n-component vector. The input vector, x = [x1 x2 . . . xm], is multiplied with
a m×n matrix of weights and the result is submitted to a non-linear activation function
(ReLU, sigmoid, ...).

Formally, the transfer function of a neuron is:

o = f (
m

∑
i=1

wixi) = f (net) (2.1)

where f , the activation function, has various forms. For example:

• the sigmoid function of form:

f (y) =
2

1+ exp(−λy)
−1 (2.2)

where the parameter λ determines the steepness of the continuous function f ;
for a big value of λ the function f becomes: f (y) = sgn(y)

• ReLU (rectified linear unit) of form:

f (y) = max(0,y) (2.3)

The neuron works as a combinational circuit performing the scalar product of the input
vector x with the weight vector w = [w1 w2 . . . wm] followed by the application of the
activation function. The activation function f , when it supposes a complex computa-
tion, is simply implemented using a look-up table (LUT).

A fully connected feed-forward NN is now a collection of n m-input neurons. Each
neuron receives the same input vector x and is characterized by its own weight vector
wi. The entire NN provides the output vector:

o = [o1 o2 . . . on] (2.4)

The activation function is the same for each neuron. Thus, each NN is characterized
by the weight matrix:

W =


w11 w12 . . . w1n
w21 w22 . . . w2n

...
... . . .

...
wm1 wm2 . . . wmn

 (2.5)

with each neuron having its own column of weights. The computation consists of a
matrix-vector multiplication followed by the application of the activation function on
each component of the resulting vector.
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2.2 Convolution layer
Rather than using neurons to look at the entire input at a time, a convolution layer
“scans” the input, crossing over the entire input with a small, k× k, receptive field.

Let us consider the two-dimension input plan represented in the following matrix:

I =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
. . .

...
xp1 xp2 . . . xpp

 (2.6)

where xi j are scalars (to make the story short and simple we considered a square ma-
trix). For example, I represents the 8-bit pixels of one of the RGB plans associated
with a color image. The image will be scanned looking each time to a k× k receptive
field of the following form:

Ri j =


xi j xi( j+1) . . . xi( j+k−1)

x(i+1) j x(i+1)( j+1) . . . x(i+1)( j+k−1)
...

...
. . .

...
x(i+k−1) j x(i+k−1)( j+1) . . . x(i+k−1)( j+k−1)

 (2.7)

Starting from the top left corner of the input plane, the first receptive field is R11.
Additional receptive fields are considered with a stride s horizontally and vertically:

i = 1,(1+ s),(1+2s), . . . ,(1+((p− k)/s)s) = 1,(1+ s),(1+2s), . . . ,(1+ p− k)

j = 1,(1+ s),(1+2s), . . . ,(1+ p− k)

where the stride could take values s = 1, . . . ,k (the stride cannot be bigger than k be-
cause the entire image must be scanned). If needed, the matrix I will be padded with
zeroes to have (p− k)/s = integer.

The neuron is the same during the scan of the entire input plan. This is called a
filter and is defined as a matrix having the same size with the receptive field. For each
input plane d filters are defined:

Fy =


f y
11 f y

12 . . . f y
1k

f y
21 f y

22 . . . f y
2k

...
...

. . .
...

f y
k1 f y

k2 . . . f y
kk

 (2.8)

for y = 1,2, . . . ,d. Each filter investigates the input plane “looking” for a specific fea-
ture, thus generating a Feature map (see Figure 1). The filter Fy applied to the receptive
field Ri j provides cy

i j where:

cy
i j =

k

∑
m=1

k

∑
l=1

f y
lm × x(i+l−1)( j+m−1) (2.9)
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Figure 1: Convolution.

Thus, the application of the filter Fy with stride s provides the matrix:

Cy =


cy

11 cy
12 . . . cy

1(((p−k)/s)+1)
cy

21 cy
22 . . . cy

2(((p−k)/s)+1)
...

...
. . .

...
cy
(((p−k)/s)+1)1 cy

(((p−k)/s)+1)2 . . . cy
(((p−k)/s)+1)(((p−k)/s)+1)

 (2.10)

A convolutional layer consists of the application of d filters on the input plan gener-
ating a three dimensional array of (((p−k)/s)+1)×(((p−k)/s)+1)×d scalars (see
Figure 1). For each filter a feature plan is generated with a scalar for every receptive
field.

2.3 Pooling layer
The pooling layer is used to reduce the size of a feature plan substituting (usually)
a square pooling window of q× q scalars with only one scalar, which characterizes
the entire pooling window. The scalar could be the maximum value from the pooling
window, the sum of the values from the pooling window, or another value that is able
to synthesize the content of the pooling window. The pooling windows are considered
(usually) with a stride q in both directions in order to cover the entire feature plan. A
stride smaller than q is possible, but it is not frequently considered.

Starting from a feature plan provided by a convolution, the pooling operation pro-
vides the pooled plan. Let us consider defining the pooling function with the same
input I of p× p scalars. If the pooling window is q×q and the stride q (the usual case)
the resulting plan is a p/q× p/q matrix of scalars Pq.
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Figure 2: The pooling operation: starting from a p× p matrix, results in a p/q× p/q
matrix.

Pq =


y11 y12 . . . y1(p/q)
y21 y22 . . . y2(p/q)
...

...
. . .

...
y(p/q)1 y(p/q)2 . . . y(p/q)(p/q)

 (2.11)

where yi j is computed usually in two ways (see Figure 3) for q×q matrices:
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Figure 3: Examples of pooling for 2×2 pooling windows and stride 2. The Max Pool
operation takes from the window the maximum value, while the Add Pool operation
sums all the values from the window.

• by adding all the q×q values

• by taking the maximum value from the q×q values

Pooling window of q×q scalars in the matrix I results in a scalar in the Pq matrix
(see Figure 2)
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In current applications, the value of q is 2 or 4. In Figure 3 two examples for q = 2
are presented. One with Max as pooling function, and another with Add as pooling
function. Each 2×2 matrix of scalars is substituted with their maximum or their sum.

2.4 Softmax layer
The softmax layer is used for multi-category classification, in order to emphasise
the most probable candidate as result. It is applied to a n-component vector V =
⟨x1,x2, . . . ,xn⟩. Its value is determined by the standard exponential function on each
component, divided by the sum of the exponential function applied to each component,
as a normalizing constant. Therefore, the output components sum to 1:

σi(V ) =
exi

∑n
i=1 exi

(2.12)

Results:
Si(V ) = ⟨σ1(V ),σ2(V ), . . . ,σn(V )⟩ (2.13)

In [18] the computation is simplified by avoiding the divide operation and by re-
ducing the domain of the exponent. The first step is to down-scale the exponentiation:

σi(V ) =
exi/exmax

(∑n
i=1 exi)/exmax

=
exi−xmax

∑n
i=1 exi−xmax

(2.14)

The second step is to compute the natural logarithm:

ln(σi(V )) = (xi − xmax)− ln(
n

∑
i=1

exi−xmax) (2.15)

While the sum in Expression 2.12 is susceptible to overflow because the values
generated by exponentiation are high, and the divide operation is resource and time
consuming, the Expression 2.14 works with smaller numbers and avoids the division.
Both, ln and exp operations are performed using LUTs.

2.5 Putting all together
An example of DNN is shown in Figure 4, where all the previously presented functions
are used to define a particular network. The input is a color image represented by the
three color plans RGB. A first convolutional level with ReLU as activation function is
followed by a pooling layer which is used to downsize the feature plans. We follow
similar stages (convolution with ReLU and pooling) until the last pooled volume is
flattened to a vector applied to a fully connected NN. The last stage is a softmax layer
which provides the probabilities associated with possible input images.

While the first few convolutions are used to inspect the input to identify specific
local features, the last fully connected layers provide a global analysis, and the softmax
output layer emphasizes the most probable result.
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Figure 4: An example of DNN. [19]

3 The state of the art
The main drawbacks of the current hardware solutions are: (1) the programmable
(CPU, MIC, GPU, DSP) solutions are implemented on inappropriate parallel engines
unable to use efficiently their high computational power in the specific computation
requested by DNN, (2) the specific circuit solutions do not have enough flexibility in
order to be efficiently adapted to the various forms of DNN, and (3) the FPGA-based
reconfigurable solutions are too expensive, consume too much energy and require hard-
ware specific knowledge. In the following subsections we will review the main solu-
tions based on “of-the-shelf” computational devices.

3.1 Intel’s MIC
Central Processing Units were not initially designed for machine learning, but in
the last few years manufacturers began including multiple processing units that allow
parallel execution of different tasks, making them a good candidate for deep learning.
Intel Xeon Scalable, is the first product based on Intel’s MIC Architecture (see Figure
5).

Figure 5: Xeon Phi Micro-architecture with 2 levels of cache and ring architecture [21]
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Intel Xeon Platinum 8180 is a multi-core processor that offers a peak performance
of 3259 GFLOPS for LINPACK [10] and 3.8 TFLOPS for SGEMM (Single precision
floating General Matrix Multiply) using AVX512 [5]. The 28-core processor is fab-
ricated using 14 nm technology and the TDP is 205 Watt, meaning a performance of
18.53 GFLOPS/Watt. This processor was evaluated in [5] for ResNet-50 topology
and the obtained forward and backward propagation performance for the majority of
the layers is 70%-80% of the machine peak. Nevertheless, there are layers where the
performance is about 55% of the peak, because of the high bandwidth requirements for
the process of writing the output tensors. An important observation is that the previous
performance results were obtained for an optimized implementation called direct con-
volutional kernels. For other convolution implementation, such as im2col, libxsmm
or autovec, the performance is much lower: 3 times smaller for im2col, 9 times
smaller for libxsmm and 16 times smaller for autovec.

Intel Xeon Phi 7295 is a processor specialized for deep learning, with 72 cores and
a peak performance of 11.5 TFLOPS for SGEMM using FMA4 instruction set. The
processor is fabricated using 14 nm technology and the TDP is 320 Watt, meaning the
FLOP/Watt performance is 35.9 GFLOPS/W .

This type of processor was also evaluated in [5] and the performance varied ac-
cording to the filter dimensions. For example, layers with 1x1 filters achieve ∼ 50%
of their peak performance and layers with 3x3 filters achieve 70% of their peak. For
other convolutional layer implementations, the performance is even smaller than the
one obtained for Xeon Platinum 8180: a ∼ 20% of peak average for im2col and just a
few percent of peak for most of the layers, when using libxsmm or autovec.

Intel Xeon E5-2699 v3 (Haswell) CPU with 18 cores and a peak performance of
1.3 T FLOPS for a TDP of 145 Watt (8.96 GFLOPS/W , 22nm technology) was eval-
uated in [8] for six DNN applications: two MLP networks, containing fully connected
layers, two LSTM networks, containing fully connected and element-wise operation
layers) and two CNN networks, containing convolutional, pooling and fully connected
layers. The performance evaluation reveals that the CNN networks use 23% and 46%
of processor peak computation capabilities, the MLP networks use 15.4% and 38.5%
of processor peak computation capabilities and LSTM networks use 84.6% and 46%
of processor peak computation capabilities.

3.2 Nvidia’s GPU as GPGPU
GPUs are processors created for computer graphics (see Figure 6), which, due to their
high number of cores and high parallelism, are very effective in running matrix multi-
plications, the main operation involved in deep learning.

The most famous GPU manufacturer is NVIDIA. Besides the usual GPUs, dur-
ing the last years they have begun to make their products more efficient in artificial
intelligence tasks.

Although the GPUs have large computational capabilities, the real performance
obtained in deep learning applications may be far from their peak performance. The
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Figure 6: NVIDIA Titan V [15]

factors that can influence the efficient use of computational and power resources are
either related to processor architecture or software that is not optimal for the architec-
ture it targets. This gap between theoretical and real performance for GPUs has been
highlighted in several papers.

NVIDIA GTX Titan Black is a GPU with 2880 CUDA cores and 5645 GFLOPS
single precision floating point (FP32) peak performance. The GPU was fabricated in
28 nm technology and the TDP is 250 Watt, which means a FLOP/Watt performance
of 22.56 GFLOPS/Watt. The use of computational performance on CNN experiments
are positioned in the range of 9% – 50% from peak [11].

NVIDIA Tesla K40 is a GPU with 2880 CUDA cores and 4.29 TFLOPS single pre-
cision peak performance (28 nm technology, TDP = 235 Watt, 18.25 GFLOPS/W ).
Different convolutional layers were tested and the obtained performance ranges from
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23% to 35% of peak [3].

NVIDIA Geforce GTX 980 is a GPU with 2048 CUDA cores and a peak sin-
gle precision performance of 4.95 TFLOPS (28 nm technology, TDP = 165 Watt,
30 GFLOPS/Watt). Different convolutional layers were tested and the obtained per-
formance ranges from 30% to 51% for NVIDIA Geforce GTX 980 [3].

NVIDIA Tesla K80 is a card containing two GPUs, each one with 2496 CUDA
cores and a peak single precision floating point performance of 2.8 TFLOPS (28 nm
technology, TDP = 150 Watt, 18.66 GFLOPS/Watt). The evaluation for two MLP
networks, two LSTM networks and two CNN networks reveals that the CNN networks
use 32.1% and 35.7% of peak performance, the MLP networks use 7.14% and 25% of
peak performance and LSTM networks use 17.85% and 25% of peak performance [8].

Although many applications require high precision computation (32-bit floating
point FP32, or 64-bit floating point FP64), researchers have discovered that a half
precision floating point (FP16) is sufficient for deep learning training. Additionally,
deep learning inference can be performed using 8-bit integer computation, without
significant impact on accuracy [6]. In order to make GPUs more efficient in performing
different tasks, multiple precision modes are supported.

Starting with the Volta generation, a specialized Tensor Core unit was added, speed-
ing up the matrix multiplications. Volta Tensor Cores combines FP16 (half floating
point precision) multiplications with FP32 accumulations. The newer Turing Tensor
Cores are enhanced for inferencing, adding new INT8 and INT4 precision modes. In
order to evaluate the performance of GPUs using those specialized cores, a new per-
formance metric was defined: Tensor Tera Operations Per Second, TTOPS.

Example of GPUs optimized for deep leaning are NVIDIA Titan V (see Figure
6) and NVIDIA Tesla V100. Titan V contains 5120 CUDA Cores and 640 Tensor
Cores and offers a performance of 13.8 TFLOPS for single precision floating-point
(FP32), 27.6 TFLOPS for half precision floating-point (FP16) and 110 TTOPS for
deep learning. Tesla V100 (PCIe) contains 5120 CUDA Cores and 640 Tensor Cores
and offers a performance of 14 TFLOPS for single precision floating-point (FP32), 28
TFLOPS for half precision floating-point (FP16) and 112 TTOPS for deep learning.

3.3 Google’s TPUs
TPU is an Application-Specific Integrated Circuit (ASIC) for neural networks infer-
ence, used as accelerator in a hybrid system, the communication between TPU and
host being assured by a PCIe bus.

The core of the chip (see Figure 7) is a systolic array of 256 × 256 8-bit mul-
tipliers, called Matrix Multiply Unit (MXU), which performs matrix multiplications
between input data and weights. The MXU input data is stored in the Unified Buffer,
which helds the results of previous computation steps. The data transfer between Uni-
fied Buffer and the host memory is controlled by a DMA controller. The MXU input
weights are delivered by the Weights FIFO.
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Figure 7: Block diagram of Tensor Processing Unit (TPU) [8]

The resulting products are accumulated in the Accumulators and the nonlinear ac-
tivation functions are computed by the Activation Unit.

Running at a frequency of 700 MHz and computing 256× 256 multiply-and-adds
for 8-bit integers every clock cycles, the peak performance of TPU is 92 TTOPS. The
chip was fabricated in 28 nm technology and the TDP is 75 Watt, meaning that the
TTOPS/Watt performance is 1.22 T TOPS/Watt.

TPU was evaluated in [8] for the same six DNN applications described above. The
MLP networks use 13.3% and 10.5% of its peak computing capabilities, LSTM net-
works use 4% and 3% of its peak computing capabilities and CNN networks use 93.4%
and 15.3% of its peak computing capabilities, the mean performance being 23.24% of
its peak. The performance for MLPs and LSTMs is limited by memory bandwidth,
while the small performance of one of the CNNs networks can be explained by its
structure (the presence of fully connected layers and the shallow feature depth of some
layers).

Google also developed TPU v2 and TPU v3. If the initial TPU was limited to 8-bit
integer operations, the new generations can also calculate in floating point (the MXU
units perform multiplies at reduce bfloat16 precision [20]), allowing it to be used
also for neural networks training.

The second generation of TPU has two 128× 128 MXUs, each one connected to
an 8 GB High Bandwidth Memory, increasing the bandwidth to 600 GB/s. The peak
performance for each TPU v2 chip is 45 TTOPS [9].

The third generation of TPU has two cores, each one with two 128× 128 MXU
units, peak performance being twice as the previous generation one.
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3.4 Concluding about the state of the art
Putting together all the information from the previous analysis (see Table 1), we can
learn some very important things about the way to define the structure and the archi-
tecture of an accelerator.

Table 1:
Chip model Fab. Peak Performance Actual %

techn. performance per Watt from peak
Intel Xeon Platinum 8180 14 nm 3.8 TFLOPS 18.53 GFLOPS/W 5% - 80%
Intel Xeon E5-2699 v3 22 nm 1.3 TFLOPS 8.96 GFLOPS/W 15% - 84%
Intel Xeon Phi 7295 14 nm 11.5 TFLOPS 35.9 GFLOPS/W 20% - 70%
NVIDIA GTX Titan Black 28 nm 5.64 TFLOPS 22.56 GFLOPS/W 9% - 50%
NVIDIA Tesla K40 28 nm 4.29 TFLOPS 18.25 GFLOPS/W 23% - 35%
NVIDIA Geforce GTX 980 28 nm 4.95 TFLOPS 30 GFLOPS/W 30% - 51%
NVIDIA Tesla K80 28 nm 2.8 TFLOPS 18.66 GFLOPS/W 7% - 35%
Tensor Processing Unit 28 nm 92 TTOPS 1.22 TTOPS/W 3% - 93%

The general purpose architectures implemented by MICs provide a pretty good
actual performance from the peak performance (an average of ≃ 45%) but the com-
putation per Watt is relatively low (an average of ≃ 21 GFLOP/Watt). The reduced
number of cores (less than 100) requests a simple control, allowing, in some applica-
tions for optimized code, the use of > 80% from the peak performance. But, most
of the applications, evaluated for general purpose multi-cores, are unable to use more
than 25% from their peak performance, and some of them use only few percentage
of their very high performance. The architecture of the general purpose computers
are designed for a wide specter of applications, while for intense applications there
are specific requirements. The general purpose processors waste too much resources
for 32-bit floating point computations, while usually the CNN computation asks small
integer arithmetic for inferences and accepts 16-bit float operations for training.

General purpose graphic processing unit (GPGPU) is an oxymoron. It is tempt-
ing to take “of-the-shelf” a many-core parallel processor to solve intense computations,
but, in the same time, is dangerous to use a powerful processor far from its application
domain. A graphic machine can not be converted in a machine learning accelerator
without a high risk. The actual performance related to the peak performance is lower
compared with general purpose multi-core architectures (average ≃ 34%) due to the
difficulties involved in control and data transfer for hundred or thousands of execution
units. The energy use is only a little improved (an average of ≃ 22.36 GFLOP/Watt).
The GPUs optimized for deep learning are designed with distinct physical resources
for integer, 32-float, 64-float, and tensor operations (see Figure 6). Thus the area effi-
ciency is lowered because too many times big parts of the area of the chip is unused.
The cache approach persists with its inefficiency in helping the intense computation
which is highly predictable requesting only a buffer-centered approach in the memory
hierarchy design.
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Specific ASIC’s, such as TPU, do not have enough flexibility to support the high
variety of DNNs. Therefore, only for a small part of the applications their huge com-
putational power can be activated. For most of the applications (90%, according to
[7]) no more than 13.4% from the peak performance is used. Only for one application,
deployed in less than 5% of the applications, 93% from the peak performance is ac-
tivated. The very big number of arithmetic systolic units (multipliers and adders) can
not be easy put to work efficiently for the high variety of DNN we are facing in real
applications.

The cache-based memory hierarchy is inappropriate for intense computation
because of the high predictability of the program and data flow.

Architectural inadequacy is the main issue. A general purpose architecture or a
graphic architecture or a simple systolic circuit are hard to be adapted to the specific
requirements of the intense computational domain of machine learning. And when the
energy saving criteria is added, the problem becomes much harder.

4 Map-Scan/Reduce Accelerator

4.1 The heterogenous system
The computation becomes “hybrid” or heterogenous when we start to segregate the
execution of a program in two tightly interleaved parts:

• intense computations, characterized by short code and big execution time; these
parts are sent to an accelerator

• complex computations, when the size of code and the execution time are in the
same magnitude order; these parts run on the host.

Thus, the pair HOST & ACCELERATOR represents the structure of a HETEROGE-
NEOUS COMPUTER. A possible embodiment is presented in Figure 8, where:

ACCELERATORHOST

6
?

6
?
INTERCONNECTION FABRIC

6
?

6
?

MEMORYI/O-�

Figure 8: Heterogenous system.
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• HOST is a general purpose processor which runs the application using a library
of functions written using a kernel library running on ACCELERATOR (for ex-
ample the Eigen library or the TensorFlow library implemented using EigenKer-
nel or TensorFlowKernel libraries)

• ACCELERATOR is our MSRA running EigenKernel or TensorFlowKernel li-
braries, i.e., Eigen or TensorFlow libraries limited to data structures managed
efficiently in a n-cell accelerator

• INTERCONNECTION FABRIC is a multiple point interconnection network
used for fast data transfer between the components of the system

• MEMORY stores the programs and the data to be processed

• I/O system to connect the heterogeneous computer to the external world.

The host processor is programmed in a high level language (C, C++, Python, ...) while
the accelerator’s kernel library is developed, in this early stage of the project, in as-
sembly language in order to achieve the highest possible performance. From the kernel
library to the targeted library the implementation is done in a high level language.

4.2 The accelerator’s structure
The structure of MSRA is presented in the current subsection. It is a general purpose
programmable parallel accelerator optimized for the functional requirements described
in Section 2. The accelerator is designed as part of a heterogenous computing system
in which the complex part of the program runs on the host computer, while the intense
part of the application (convolution, pooling, fully connected NN) runs on the acceler-
ator. The architecture and the structure of the heterogenous system are described with
emphasis on advantages provided for the investigated application domain.

MSRA is a n-cell engine (see MAP section in Figure 9) with two global loops:

• one, closed directly through a log-depth scan circuit, SCAN, which receives a n-
component vector from the array of cells and sends back a n-component vector

• another, closed through a log-depth reduction circuit, REDUCE, which receives
a n-component vector from the array of cells and sends its output to CON-
TROLLER which issues in each cycle, through the log-depth network DIS-
TRIBUTE, an instruction to be executed in each active cell.

The architectural image of MSRA for the user is:

• the constant vector index, distributed along the cells: IX = [1, . . . ,n] used to
identify the cells as cell1,cell2, . . . ,celln

• the distributed memory:

DM =


s11 s12 . . . s1n
s21 s22 . . . s2n
...

...
. . .

...
sm1 sm2 . . . smn

 (4.1)

15



. . . . . . .
. . . . . . .

. . . . . . .
. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .

?
6
? ?

6
? ?

6
??

6
?

cell1 cell2 cell3 celln

DISTRIBUTE
SCAN

? ? ? ?
REDUCE

-CONTROLLER �

?

66

?
to MEMORY, HOST, I/O

MAP

Figure 9: Map-Scan/Reduce Accelerator (MSRA): the linear array of cells MAP with
two global loops (one through REDUCE and another through SCAN) running code
issued in each clock cycle by the CONTROLLER unit.

which can be seen as composed by

– full horizontal vectors, distributed along the cells, for i = 1, . . . ,m:

Hi =
[
si1 si2 . . . sin

]
(4.2)

whose components can be processed in parallel in the MAP section of the
accelerator

– full vertical vectors, for j = 1, . . .n, each stored in the corresponding cell:

Vj =


s1 j
s2 j
...

sm j

 (4.3)

whose components are stored in the m-location register file in each cell

• the Boolean vector distributed along the cells: B = [b1, . . . ,bn] used to activate
the cells when bi = 1

• the accumulator vector ACC = [acc1acc2 . . .accn] distributed along the cells

• CONTROLLER’s data memory: M = [s1s2 . . .su]

• the accumulator of CONTROLLER: acc

In the program memory of CONTROLLER, HOST loads programs whose binary form
are stored as a pair of instructions, one for CONTROLLER and another to be executed
in each active cell of the MAP array. Thus, in each clock cycle, from its program
memory, CONTROLLER fetches an instruction for itself and another to be issued to-
ward the MAP array. With a latency in O(log n), CONTROLLER receives the result
provided by the REDUCE network.
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4.3 The micro-architecture
There are the following types of operations performed by MSRA:

• data transfer operations

• spatial control operations targeting the content of the vector B whose components
are used to perform predicated executions

• unary and binary predicated vector operations on horizontal vectors

• reduction operations on the components of the horizontal vectors provided by
the active cells

• scan operations on the components of the horizontal vectors provided by the
active cells

4.3.1 Data transfer operations

The content of the distributed memory DM (Equation 4.1) can be partially or totally
loaded from or stored to MEMORY (see Figure 8). The transfer is done one vector at
a time using two functions:

• load(s,i,j): s left most positions of the horizontal vector Hi are loaded with
scalars from MEMORY starting at the address j

• store(s,i,j): s left most scalars of the horizontal vector Hi are stored in
MEMORY starting at the address j

Important note: the transfer between DM and MEMORY is transparent to the
computation performed in our accelerator, i.e., during the transfer the computation
runs in parallel undisturbed. This important feature of our architecture contributes to
avoiding, at leas partially, the “bottleneck” between the MAP array and MEMORY.
Smartly used, it feeds up the data hungry MAP array with data from MEMORY.

4.3.2 Spatial control operations

The spatial control allows the predicated execution by working on the value of the
Boolean vector B. Each of the following operations is performed in one clock cycle:

• activate:
B ⇐ [1,1, ...,1]

activates all the cells of the accelerator

• where(cond):
bi = ((bi == 1) & condi) ? 1 : 0

in all active cells, keeps active only the cells where the condition condi is ful-
filled, where condi stands for the value the condition cond takes in celli
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• elsewhere: in all the cells active before the action of the last recent still last-
ing where(...), keeps active only the cells where the condition condi is not
fulfilled, i.e., performs the complementary where selection in the active space

• endwhere: restores the vector B to the state before the last recent still lasting
where(...)

Embedded where(...) are allowed.

Example 4.1 Let be, for n = 16 the boolean vector uninitiated and the accumulator
vector loaded with the index vector IX:

B = [-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-]

ACC = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

The evolution of the Boolean vector B under a sequence of spatial control operations
is the following:

( 1 ) a c t i v a t e ; => B = [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]
( 2 ) where ( acc > 3 ) ; => B = [ 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]
( 3 ) where ( acc < 1 4 ) ; => B = [ 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 ]
( 4 ) e l s e w h e r e ; => B = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 ]
( 5 ) endwhere ; => B = [ 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]
( 6 ) endwhere ; => B = [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]

In step (1) all the cells are activated: bi = 1, for i = 1,2, . . . ,16. Then, remain
active only the cells where acci > 3. In the next step, the embedded where opera-
tion is exemplified: from the active cells remain active only the cells where acci < 14.
The elsewhere operation is performed in the active space selected by the last recent
where(...): WHERE(ACC > 3). Step (4) activates the cells inactivated by the pre-
vious where(...). Step (5) restores the vector B to the state before the last recent
where(...) where action still last: WHERE(ACC < 14). In step (6) the action of
WHERE(ACC > 3), then vector B is restored to its initial value stated by the operation
ACTIVATE.

⋄

4.3.3 Arithmetic and logic operations

Each vector operation is performed on n-component horizontal vectors in constant
time.

Unary Operations Some operations are performed only in the active cells where the
value of the Boolean vector B is bi=1, other are performed in all cells, independent of
the content of B. For example:

• inc(i,k):
si j ⇐ b j ? (sk j +1) : si j

for j = 1, . . . ,n; in each active cells, the component of the horizontal vector Hi
takes the incremented component of the horizontal vector Hk
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• shiftRight(i,k,input):

si j ⇐ ( j == 0) ? input : sk( j−1)

for j = 1, . . . ,n; all the components of the horizontal vector Hk are shifted one
position right with input inserted in the left end position, and are stored as Hi

Binary Operations The binary operations are performed in constant time (usually
one clock cycle) only in the active cells where the value of the Boolean vector B is 1.
For example:

• mult(k,l,m):
sk j ⇐ b j ? (sl j ∗ sm j) : sk j

for j = 1, . . . ,n; in each active cells, the component of the horizontal vector Hi
takes the value of the product between the corresponding components of the
horizontal vectors Hl and Hm

• xor(k,l,m):
sk j ⇐ b j ? (sl j ⊕ sm j) : sk j

for j = 1, . . . ,n; in each active cells, the component of the horizontal vector Hi
takes the value of the bitwise XOR between the corresponding components of
the horizontal vectors Hl and Hm

4.3.4 Reduction operations

The reduction operations are performed on the values provided by the active cells. They
are:

• redadd(i):

acc ⇐
n

∑
k=1

(bk ? sik : 0)

the CONTROLLER’s accumulator takes the sum of the accumulators of the ac-
tive cells with a latency L ∈ O(log n)

• redmax(i):
acc ⇐ Maxn

k=1(bk ? sik : 0)

the CONTROLLER’s accumulator receives, with a latency L ∈ O(log n), the
maximum value stored in the accumulators of the active cells

• redmin(i):
acc ⇐ Minn

k=1(bk ? sik : ∞)

the CONTROLLER’s accumulator receives, with a latency L ∈ O(log n), the
minimum value stored in the accumulators of the active cells; the symbol ∞
stands for the biggest number in the representation used in the application.
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• redbool:
acc ⇐ ORn

k=1bk

the CONTROLLER’s accumulator receives, with a latency L ∈ O(log n), the
logic OR from all the bits of the Boolean vector B (used to test if at least one cell
is active or not).

4.3.5 Scan operations

The scan operations take a vector, HVk, from LM and return a vector, HVi, whose
components are computed according to the global content of HVk. For example:

• prefixadd(i,k): HVi ⇐ [(b1?sk1 : 0),(
2
∑
j=1

(b j?sk j : 0)), . . . ,(
n
∑
j=1

(b j?sk j : 0))]

• compact(i,k): HVi ⇐ [sk1,sk3, . . . ,sk(p−3),sk(p−1),0,0, . . . ,0︸ ︷︷ ︸
n/2

] aligns to the left

the odd components of the vector.

4.4 Hardware parameters of MSRA
The hardware performances are evaluated using simulation tools for the 28 nm technol-
ogy. The simulation of a MSRA running at 1 GHz was used to evaluate the size and the
power for a version having a 32-bit DDR interface, the 32-bit word size, the number of
cells n = 2048, and the memory size m = 1024 (4KB SRAM/cell). The resulting area
of the chip is 9.2×9.2 mm2 = 84.64 mm2. The power consumed by the chip is shown
in Figure 10. Depending on temperature results: 12/14/18 Watt at 80/100/120◦C.
The computational performances are:

• for integer arithmetic:

– 2048 GOPS, where GOPS stands for Giga 32-bit Operations Per Second;
at 80◦C results 170.66 GOPS/Watt

– 4096 GOPS, for 16-bit operations; at 80◦C results 341.33 GOPS/Watt

• for applications involving floating point arithmetic with 20% float operations
plus 80% integer operations:

– 820 GOPS for float and integer operations defined on 32 bits; at 80◦C re-
sults 68.33 GOPS/Watt

– 2400 GOPS for float and integer operations defined on 16 bits; at 80◦C
results 200.33 GOPS/Watt

because the float operations are performed in a sequence of operations in execu-
tion units with no floating point units implemented as distinct structures, like in
NVIDIA Titan V (see Figure 6)
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Figure 10: Power consumption evaluated for out MSA [14].

• for machine learning operations: 8 TTOPS, where TTOPS stands for Tensor
TOPS (see Section 3.2); at 80◦C results 1.36 T TOPS/Watt, if the architecture is
designed for tensor operations used in Machine Learning applications1.

To note that for training DNN the proposed architecture provides
200.33 GOPS/Watt, while for inference 341.33 GOPS/Watt or 0.68 T TOPS/Watt
(around half of the circuit performance).

4.5 NeuralKernel library
For our application, a small library, let us call it Neural, can be implemented using the
NeuralKernel library defined starting with the following functions:

instmx(M,l,c) : instantiate in ACCELERATOR’s MAP array the matrix M with l
lines and c columns, where the lines are parts of the full horizontal vectors (see
Equation 4.2), and columns are parts of the full vertical vectors (Equation 4.3)

instvt(V,l) : instantiate in the data memory of ACCELERATOR’s CONTROLLER
the vector V of length l

loadmx(M,p) : load the content of the matrix M from MEMORY starting from the
address p where the matrix is stored line by line, and increment the pointer p to
(p + l×c)

1Tensor TOPS are evaluated (as for TPU) considering the REDUCE section performing adds in parallel
with the MAP section which performs multiplications.
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storemx(M,p) : store the content of the matrix M to MEMORY starting from the
address p where the matrix is stored line by line, and increment the pointer p to
(p + l×c)

loadvt(V,p) : load the content of the vector V from MEMORY starting from the
address p, and increment the pointer p to (p + l)

storevt(V,p) : store the content of the vector V to MEMORY starting from the
address p, and increment the pointer p to (p + l)

mmm(M1,M2,M3) : the matrix M1, is multiplied with the matrix M2 and the result is
stored as M3

conv(M1,V,M2,k,s) : the matrix M1 is convoluted, with stride s, using a k× k filter
stored line by line in the vector V and the resulting feature plan is stored as M2

sigmoid(M1,M2) : the activation function sigmoid is applied to the matrix M1 with
result as M2

relu(M1,M2) : the activation function ReLU is applied to the matrix M1 with result
as M2

pooladd(M1,M2,q,s) : the content of the matrix M1 is pooled to the sum of the
values of the q × q pooling window with stride s, and the result is stored as
matrix M2

poolmax(M1,M2,q,s) : the content of the matrix M1 is pooled to the maximum of
the values of the q× q pooling window with stride s, and the result is stored as
matrix M2

softmax(M1,M2) : the softmax function is applied to M1 with result as M2

where the size of the matrices and vectors are limited by the parameters n, m, u previ-
ously defined.

5 Implementation and evaluation
Implementation and evaluation of the proposed system in implementing DNN are pre-
sented in this section. Roughly speaking, we use map resource to accelerate the con-
volution, the scan resource to accelerate the pooling, and the map-reduce resources
for the fully connected NN. The algorithms we propose for the main computational
patterns used in implementing a DNN are presented in versions easy to accelerate on
our proposed architecture.

All the experiments we have done with the proposed architecture are performed
on a cycle accurate simulator. The power estimate is based on the evaluation of the
optimised synthesizable RTL. Therefore, in this stage of the project only the main
functions of the NeuralKernel library are implemented and quantitatively evaluated.
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5.1 Fully connected NN
The fully connected layer of a NN consists of a matrix-vector multiplication, the appli-
cation of an activation function to the resulting vector, and the associated data transfer
process. The algorithm is described in Figure 11, three processes run in parallel: (1)
the control process, (2) the computation and (3) the data transfer.

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
FUNCTION NAME: F u l l y Connec ted Neura l Network

− Load t h e w e i g h t m a t r i x M s t a r t i n g w i t h mxPo in t e r
− M u l t i p l y M w i t h ’ v ’ v e c t o r s s t o r e d s u c c e s s i v e l y s t a r t i n g w i t h

t h e a d d r e s s p o i n t e d by i n V e c t P o i n t e r
− Apply t h e a c t i v a t i o n f u n c t i o n ReLU
− S t o r e t h e r e s u l t i n g ’ v ’ v e c t o r s s u c c e s s i v e l y s t a r t i n g w i t h t h e

a d d r e s s p o i n t e d by o u t V e c t P o i n t e r
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
i n s tmx (M, l i n e , column ) ; / / d e f i n e t h e s i z e o f t h e w e i g h t m a t r i x M
i n s tmx (V, 1 , column ) ; / / d e f i n e t h e s i z e o f t h e i n p u t v e c t o r V
i n s tmx (W, 1 , column ) ; / / d e f i n e t h e s i z e o f t h e o u t p u t v e c t o r W
i n i t s ( p1 , mxPo in t e r ) / / i n i t i a t e t h e v a l u e o f m a t r i x p o i n t e r
i n i t s ( p2 , i n V e c t P o i n t e r ) ; / / i n i t i a t e t h e i n p u t v e c t o r p o i n t e r
i n i t s ( p3 , o u t V e c t P o i n t e r ) ; / / i n i t i a t e t h e o u t p u t v e c t o r p o i n t e r

fu l lyConnec tedNN (M, p1 , p2 , p3 , n ) ;
loadmx (M, p1 ) ; / / l oad i n ACCELERATOR t h e c o n t e n t o f M from p1
loadmx (V, p2 ) ; / / l oad i n ACCELERATOR t h e f i r s t V s t a r t i n g from p2
mmm(M, V,W) ; / / W <= M x V
r e l u (W,W) ; / / W <= ReLU (W)
l o a d (V, p2 ) ; / / l oad t h e n e x t V s t a r t i n g from p2 + c
i <= 0 ;
d o I n P a r a l l e l {

{ whi le ( i < v−1)
i = i +1 ; } / / c o n t r o l p r o c e s s runs on CONTROLLER

{ mmm(M, V,W) ;
r e l u (W,W) ; } / / c o m p u t a t i o n r u n n i n g i n MAP+REDUCE

{ s to remx (W, p3 ) ;
loadmx (V, p2 ) ; } / / t r a n s f e r r i n g p r o c e s s

}
s to remx (W, p3 ) ; / / t h e l a s t t r a n s f e r o f t h e r e s u l t W

Figure 11: The algorithm for the fully connected neural network.

The execution time is dominated, for small v by the load of the weight matrix
(load(M,p1)), or, for big v by the loop doInParallel. The application must be de-
signed, if possible, so as too maximize the value of v. Thus, the matrix M is loaded only
once for many uses.

For big v the execution time is dominated by the slowest process executed in paral-
lel in the doInParallel loop. Because the transfer time is executed in time belong-
ing to O(c), we pay attention to the main computational process: {mmm(M,V,W);
relu(W,W);}. In Figure 12, the algorithm for matrix-vector multiplication is pre-
sented. For shiftRight(S,S,redadd(mult(V,M[i],V)) see Section 4.3 where the
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multiplication, shift and reduction operations are defined. The execution time for this
operation is 2+ log2n when it is executed only once. For l executions, because of the
pipelined hardware involved, the total execution time is 2× l + log2n, where n is the
number of cells in the MAP section of the ACCELERATOR. Thus, multiplying a l× c
matrix with a c-component vector, with c ≤ n, is executed in time belonging to O(l),
i.e., a n-cell ACCELERATOR provides an acceleration belonging to O(n).

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
FUNCTION NAME: Matr ix−v e c t o r m u l t i p l i c a t i o n : W <= M ∗ V

− t h e m a t r i x M w i t h t h e l i n e s M[ i ] , f o r i = 1 , 2 , . . . l
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

f o r ( i =1 ; i=< l ; i = i +1)
s h i f t R i g h t ( S , S , r e da dd ( mul t (V,M[ i ] ,V ) ) ;

f o r ( i =1 ; i <( l o g 2 n ) ; i = i +1)
no o p e r a t i o n ; / / f o r t h e l a t e n c y o f t h e r e d u c t i o n add

W <= S

Figure 12: Matrix-vector multiplication.

What is the constant associated to the acceleration in O(n)? The constant is for sure
> 1, because in a mono-core processor the data transfer, the arithmetic operations and
the control operation are performed sequentially, while in our architecture the doIn-
Parallel loop is possible because specific hardware is provided for the three processes.
We can claim that, for this function, the acceleration is supra-linear.

5.2 Convolutional layer
5.2.1 Stride s = 1

Step 1: load from the MEMORY the matrix I which is considered the input plan (Equa-
tion 2.6), as p lines (vectors) each of p components, and the filters as d sets of k× k
scalars, then set y ⇐ 1, and b ⇐ 1. The execution time t1 = const × (p2 +d × k2).

Step 2: we consider the filter F f as k “vertical” vectors:

F f
i =

 f f
1i
...
f f
ki


for i = 1, . . . ,k, and the p “vertical” vectors:

Ib
j =

 xb j
...

x(b+k−1) j
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for j = 1, . . . , p, associated to the “band” b. Then we compute the matrix:
Ib
1 ×F1

1 Ib
2 ×F1

1 . . . Ib
p ×F1

1
Ib
1 ×F1

2 Ib
2 ×F1

2 . . . Ib
p ×F1

2
...

...
. . .

...
Ib
1 ×F1

k Ib
2 ×F1

k . . . Ib
p ×F1

k

=


V1
V2
...

Vk


The computation is done in time t2 = 4k2 clock cycles.

Step 3: the following (k−1) shift operations are applied to the last (k−1) vectors:
V1
V2
...

Vk

=>


V1

V2 << 1
...

Vk << (k−1)

=


V ′

1
V ′

2
...

V ′
k

=


v′11 v′12 . . . v′1p
v′21 v′22 . . . v′2p
...

...
. . .

...
v′k1 v′k2 . . . v′kp


The operation is performed in t3 = 5(k−1) clock cycles.

Step 4: the line of the featured plan is computed as follows:

Cb =
[
cb1 cb2 . . . cb(p−k+1)

]
where, for i = 1,2, . . . ,(p− k+1):

cbi =
k

∑
j=1

v′ji

The computation is done t4 = k+1 clock cycles.
Step 5:
if b < p− k+1 then b ⇐ b+1 and go to Step 2.
Step 6:
The previous loop is repeated p− k+ 1 times providing the result of applying the

filter Fy on the “image” I with stride s = 1:

C f =


c11 c12 . . . c1(p−k+1)
c21 c22 . . . c2(p−k+1)
...

...
. . .

...
c(p−k+1)(p−k+1)1 c(p−k+1)(p−k+1)2 . . . c(p−k+1)(p−k+1)


which is stored in the external memory. The execution of the transfer is in t6 = const ×
(p− k+1)2.

Step 7:
if f < d then d ⇐ d +1, b ⇐ 1 and go to Step 2.
This loop is repeated d times resulting in the external memory a 3-dimension array

of (1+(p− k)/s)× (1+(p− k)/s)×d scalars.
The total execution time depends on the size of the input plan, the size of the filter

and the number of features, and is:

tconv(p,k,d) = ttrans f er + tcomputation =
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ttrans f er = (const × (p2 +dk2 +d(p− k+1)2)) ∈ O(d p2)

tcomputation = d(4(p−2)k2 +(6p+10)k−4(p+ k3 +4)) ∈ O(pk2d)

The convolution looks like an IO bounded function. In order to balance the data
transfer with the computation we need to have a high bandwidth with MEMORY (the
value of const must be small), and the overall DCNN computation must be organized
with pooling layers applied before sending to MEMORY the feature plan. Thus, the
weight of computation will be increased and the data to be transferred reduced.

5.2.2 Stride s > 1

For stride s > 1 the resulting 3-dimension array has the size:

(1+(p− k)/s)× (1+(p− k)/s)×d

because:

• vector Ci computed in Step 4 is:

Ci(s) = [cb1 x . . . x︸ ︷︷ ︸
s−1

cb(s+1) x . . . x︸ ︷︷ ︸
s−1

cb(2s+1) x . . . x︸ ︷︷ ︸
s−1

. . .]

where x stands for a meaningless value which must be removed from the final
result

• in Step 5 b ⇐ b+ s resulting in Step 6 a C f matrix with 1+(p−k)/s lines only:

C f (s) =


c11 x . . . x c1(s+1) x . . .

c(s+1)1 x . . . x c(s+1)(s+1) x . . .
c(2s+1)1 x . . . x c(2s+1)(s+1) x . . .

...
...

. . .
...

...
...

. . .


The solution to provide a compact representation, by eliminating the xs, has two

versions, one for the usual case when s is a power of 2 and another when s is of some
value. In both cases we must add some sub-steps in Step 6.

Version 1 for s = 2integer : in Step 6 we must use the scan operation compact(i,j)

(see Section 4.3.5). If the stride is s then applying log2s times the function
compact(i,j) on each line of the matrix C f (s) the meaningless values x will be
eliminated.

The execution time for this step is:

tcomp = (1+(p− k)/s)× (2+ log2n)× log2s

maintaining the execution time of Step 6 dominated by the transfer.
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Version 2 for s of some value : in Step 6 we must add the following sub-steps:
Sub-step 6.1:
The matrix C f (s) is transposed. Results a matrix T (C f (s)) with lines full of xs

and lines containing only ci j scalars.
Sub-step 6.2:
The matrix T (C f (s)) is compacted eliminating the lines of xs:

K f (s) =

 c11 c(s+1)1 c(2s+1)1 . . .
c1(s+1) c(s+1)(s+1) c(2s+1)(s+1) . . .

...
...

...
. . .


Sub-step 6.3:
The matrix K f (s) is transposed resulting the final result for the filter f

S f (s) =


c11 c1(s+1) c1(2s+1) . . .

c(s+1)1 c(s+1)(s+1) c(s+1)(2s+1) . . .
c(2s+1)1 c(2s+1)(s+1) c(2s+1)(2s+1) . . .

...
...

...
. . .


which is a matrix s2 times smaller than the matrix for s = 1.

The execution time for Step 6 increases with

t6+ = ttranspose +3p/s

Because, in our architecture ttranspose ∈ O(p2) the execution time of Step 6 remains in
the same magnitude order.

5.3 Pooling layer
The input for pooling is a matrix of type I (see Equation 2.6). The output is the matrix
of

(1+(p− k)/s)× (1+(p− k)/s)

components. The algorithm is similar to the one used for computing a feature plan in
the convolutional layer for s > 1. Instead of a filter on the receptive fields are applied
simpler functions. The differences are given by the lack of the filter, and occurs:

• in Step 2, where instead of Ib
i ×F j

k is computed the sum
b+k−1

∑
i=b

x ji or the maximum

MAXb+k−1
i=b x ji

• in Step 4, where is maintained ci =
k
∑
j=1

v′ji or is computed ci = MAXk
j=1v′ji.

Thus, the computation time is evaluated in the same way, but refers to smaller input
matrices.
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5.4 Softmax layer
For the softmax layer the exponential and logarithmic functions are computed using
LUTs because the accuracy offered by this way is enough in the domain of NN. In our
implementation we use a LUT for the logarithm, logLUT, stored in the data memory
of CONTROLLER, and another LUT for exponentiation, expLUT, replicated in each
of the n cells of ACCELERATOR.

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
ALGORITHM NAME: So f tmax

− i n p u t : V = <x1 , . . . , xp>
− o u t p u t : V = <s igma 1 ( V ) , . . . , s igma p ( V)>

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /
( 1 ) V <= V − redmax (V ) ;
( 2 ) V <= V − lnLUT ( redsum ( expLUT (V ) ) ) ;
( 3 ) V <= expLUT (V ) ;

Figure 13: The softmax algorithm.

According to the solution presented in Section 2.4 the algorithm on our accelerator
is shown in Figure 13. The execution time is tso f tmax = 9+4log2n. The loop MAP →
REDUCE →CONT ROLLER → MAP is closed two times, and both, the reduction and
the distribution network are log-depth. In step (1) of the algorithm CONTROLLER
sends back to the MAP array, through a log-stage pipe, the maximum value of the
vector V received from a log-depth circuit from the MAP array. In the second step of
the algorithm, redsum is received by CONTROLLER in log-time, and the logarithm
is sent back in the same time to the array. Thus the acceleration of this layer is in
O(n/log n).

The latency introduced by the reduction operations can be avoided, as we did
for matrix-vector multiplication, if the function is applied to a stream of vectors,
[V1,V2, . . . ,Vu], accumulated in the local memories distributed along the cells of the
array. Then the values for maxi = redMax(Vi) can be stored in the data memory of
CONTROLLER. If n ∼ u then this computation is done in O(u) time avoiding the con-
tribution of log2n for each maxi. Similarly, the values for redsum(expLUT (Vi)) are
treated. Thus, the computation will be accelerated by O(n).

6 Conclusions
1. The acceleration provided for each layer is in O(n) for a n-cell accelerator. Some-
times, the constant associated to O(n) is > 1, i.e., the acceleration is supra-linear, be-
cause the control, the transfer and the computation are done in parallel (see subsection
5.1).

2. For MSRA, α = actualPer f ormance/peakPer f ormance in performing the com-
putations associated to the stages of DNN is very high. Usually, α > 0.8.
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3. The data transfer between ACCELERATOR and MEMORY is transparent to the
computational process. Thus, the effect of the bottleneck between ACCELERATOR
and MEMORY is reduced.

4. The power consumption in our programmable system is 680 T GOPS/Watt2 not
far from the power consumption per Tensor operation provided by the TPU circuit.

GFOPS/Watt is 2× higher than for many-cores, and 3× higher than for multi-cores.

4. But, we must pay attention to how the computational layers are interleaved with
the data transfer stages in the implementation of an actual DNN. The main advantage in
this respect for our architecture is the local memory in each cell of the MAP section. If
this memory is big enough, then some data transfers can be avoided. Another advantage
for our architecture is the possibility to transfer data in parallel with the computational
process (see the algorithm for matrix-vector multiplication in Figure 12). The overall α
coefficient, taking into account also the transfers between the local memory in cells and
MEMORY (see Figure 8), decreases a little if the algorithms do ignore the possibility
of transparent transfers.

5. Because MSRA has few characteristics similar to the Streaming SIMD Extensions
(SSE) we must emphasize that the main differences consist of:

1. the control at the level of MSRA

2. the predicated execution according to the local state of each cell

3. the scan & reduction mechanism, which allows fast and efficient global vector to
vector and vector to scalar operations

4. the large amount of local storage at the cell level, instead of the limited register
file system in SSE

5. data and programs in MSRA are provided through simple buffer-like memories,
due to the high predictability of their content, unlike in the SSE system where
data and programs are provided through the area and energy consuming cache
memory system

6. search and scan instructions in the MSRA approach help advanced stream, list
or sparse matrix operations.
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