
Nano-Structural Requirements for Artificial Intelligence & Blockchain

Applications

Răzvan Mihai*, Mihaela Malița**, Gheorghe M. Ștefan***

* Politehnica University of Bucharest

E-mail: razvan.mihai.phd@stud.etti.upb.ro

** Saint Anselm College

E-mail: mmalita@anselm.edu

*** Politehnica University of Bucharest

E-mail: gheorghe.stefan@upb.ro

Abstract – Artificial Intelligence and Blockchain are among

the most demanding technologies requesting tremendously

powerful computation engines capable to deliver fast, cheap

and energy aware solutions. These technologies provide the

safe computational environment for making intelligent

decisions related to complex issues. Are presented the

functional aspects and the structural requirements for the

emerging intelligent world – the world dominated by

technologically assisted consensual decisions and self-

enforced regulations. Finally, are asserted the improvements

required from the emerging nano-technologies.

Keywords – artificial intelligence; blockchain; parallel

architecture; power aware technology; map-reduce.

1. Introduction

The functional approach in the domains

involving emergent nano-technologies must

start from high level requirements defined at

the market level. The current technology

driven approach must shift gradually toward a

market driven approach. In this context, the

architectural level is of maximal importance

by its intermediary position. A resurrected

technology – the Artificial Intelligence (AI) –

and an emergent technology – the Blockchain

(BC) – form a very promising couple for the

near future. Indeed, in our increasingly

complex world, intelligent decisions should

be taken only in a safe environment.

Complexity-Intelligence-Safety represents the

magic triad we face in our emergent

technologically dominated world. Under

these conditions, requirements appearing at

the highest functional level need to be

reflected at the deepest structural levels. In

this paper we will try to cover the space

between function and structure, with a special

emphasis on the architectural level.

In the next section we present some aspects

of the new applications using both, AI and BC

which provide advanced tools capable to

safely manage complex problems. The safety

and complexity are supported by specific

highly intensive computation. The third

section emphasizes the specific architectural

requirements for a computing system able to

deal with AI and BC using energy aware and

area efficient solutions. The fourth section

describes the structural solutions. Some

preliminary evaluations are provided in the

fifth section. We conclude with the main

improvement expected at the nano-

technological level.

2. Where and How AI & BC are

Involved

BC and AI have presently become the two

most talked about technologies having the

potential to disrupt almost any imaginable

vertical industry. Both technologies meet the

definition of general-purpose technologies

(GPT) as defined by Bresahan and Trajtenber

[1] (cited in [2]). One of the key characteristics

of a GPT is that it catalyzes innovation and

that it is complementary to other emerging

technologies. While each technology comes

with its own degree of complexity, they both

seemed to have passed the hype phase and are

now moving on to the productivity/maturity

phase on the Gartner technology development

scale.

BC’s reputation, as a general-purpose

technology, is largely due to its first

application – Bitcoin – an peer-to-peer cash

system proposed by Satoshi Nakamoto back in

2008 [3]. Nakamoto presented a solution to

the double-spending problem using a peer-to-

peer distributed timestamp server. The term

“distributed” has since been arguably

considered an underlying feature of an

authentic BC architecture, in line with the

original intent of the Bitcoin creator.

AI has made an impressive comeback in

recent years thanks to significant advances in

computing power. The most famous

implementation of AI includes personalized

user recommendations, advertisements

targeting, or Machine Learning (ML)

algorithms to prevent fraud. There are other

applications in logistics, data mining, medical

diagnoses, or automotive, to name just a few.

AI relies on large amount of data sets in

order to train and improve its algorithms.

Hence, the quality and accuracy of collected

data are fundamental for the AI development.

At the same time, BC is well-known for its

capability to handle immutable, tamper free

and consensus validated data. It is precisely

at this point where BC and AI technology

intersect and complement one another.

In contrast to BC, AI is at the present time

highly centralized in the hands of

corporations such as Facebook, Google or

Amazon who have been able to collect

impressive amounts of data sets. Combining

these two technologies has the potential not

only to improve the quality and reliability of

input data necessary to ML algorithms, but to

democratize the computational power of AI in

a distributed peer-to-peer system such as the

one proposed by BC.

3. Architectural Requirements

The two technologies – AI and BC –

suppose different architectural requirements,

but we must accommodate them on the same

physical organization.

 A. AI Architecture

 There are two distinct approaches in AI:

one is explicitly rule-based developed usually

in Lisp, another – currently in vogue –

involving the ML technique based on Deep

Convolutional Neural Networks (DCNN). In a

complex application both techniques are used.

 A.1 Rule-Based AI Architecture

 The Lisp language is developed starting

from the lambda-calculus proposed by Alonzo

Church [4]. The main distinct operations

performed in Lisp are searches, inserts and

deletes in lists, plus a very efficient

implementation of a huge stack. In a sequence

of data, where the previous operations are

performed, it is possible to implement one or

more stacks. On a sequence of symbols

<s0s1…sn-1> we apply operations such as:

• SEARCH(name): all the occurrences

of the sequence name are located

• INSERT(name): in the first located

place the sequence name is inserted

• DELETE: the symbol from the first

located place is deleted

• READ: the symbol from the first

located place is accessed moving the

access to the next one.

 A.2 DCNN-Based AI Architecture

The main functions used in implementing

ML on DCNN are: convolution, pooling, and

fully connected neural layers. All these

functions are implemented on vectors:
V[1] = [v[11],v[12],… v[1p]]

V[2] = [v[21],v[12],… v[2p]]

…

V[m]= [v[m1],v[m2],…v[mp)]]

as following:

• predicated vector operations:
v[ij]<=cond[j]?op(v[ij],v[kj]):v[ij]

where op is an arithmetic or logic operation

applied on the components where the

condition cond is fulfilled

• predicated reduction operations:
redOp(V[i]) = Op(…,(cond[j]?v[ij]:-),…)

where: j = 1,2,…,p and Op is an associative

operation; it provides a scalar starting from the

selected components of a vector

• predicated scan operations:
V[k] <= scanOp(…,(cond[j]?v[ij]:-),…)

return a vector starting from the selected

components of a vector.

B. BC Architecture

 The mining process is the most time and

energy consuming process associated with the

BC technology. It consists in hashes

reconsidered until the requested condition is

fulfilled. For the mining process the

implementation is embarrassingly parallel.

Two types of computations are involved:

• map computations performing

hashing functions (for example

SHA256) on blocks of data each

prefixed with a different nonce

• reduce operations to find for what

nonce the condition is fulfilled.

A many-cell hardware receives a block of

data and distributes it in each cell. The nonce

is selected randomly and incremented in each

cell with the index of the cell. A SIMD-like

program runs. At the end, the cell where the

condition is fulfilled, if any, sends back its

index using the reduction network.

4. Structural Proposal

The structure we propose is based on the

mathematical computational model of partial

recursive functions proposed by Stephen

Kleene [5]. The structure has a Map-Scan-

Reduce organization [6] [7] [8] [9]. The

solution we propose is an accelerator as part

of a hybrid computing system (see Fig. 1).

The structure of the accelerator (see Fig. 2)

is centred on a linear array of n cells, MAP,

which receives, in each clock cycle through

the log-depts network DISTRIBUTE, an

instruction issued by CONTROLLER to be

executed in all its active cells. Two loops are

closed over MAP: one through the log-depts

network SCAN, and another through: log-

depts network REDUCE, CONTROLLER

and log-depts network DISTRIBUTE.

In each cell there is an accumulator centred

execution unit, eng[i], and a local data

memory, mem[i], for i=1,…,n. Thus, along

the cells are distributed the previously defined

horizontal vectors V[j], for j=1,…,m. The

content of each local memory represents a

vertical vector
W[i] = [v[1i],v[2i],…v[mi]]

Fig. 1. Hybrid computing system organization [6].

Fig. 2. Map-Scan-Reduce organization [6].

Besides these vectors are implemented:

• the accumulator vector:
acc = [acc[1], acc[2], …, acc[n]]

• the Boolean vector used to select the

active cells:
b = [b[1], b[2], …, b[n]]

• the cell index vector:
ix = [1, 2, …, b]

Besides the standard logic and arithmetic

instructions executed on vectors in the active

cells (where(b[i]==1)), in the MAP array

are performed specific global operations, for

all i, exemplified by the followings:

• spatial selections, for example:
o where(cond):

b[i] = (cond) ? 1 : 0;

o endwhere: b[i]==1;

• search and modify operations:
o search(x):

b[i] = (acc[i]==x) ? 1 : 0;

o csearch(x):
b[i] = (acc[i]==x)&(b[i-1]==1) ? 1 : 0;

o insert(x): insert in the first active

position the value x in the vector acc and

save acc[n]

o delete(x): delete the symbol from the

first active cell and acc[n]<= x

• shift operations applied on acc

• scan operations:
o first: emphasizes the first active cell;

it is applied to the Boolean vector b

o pool: on vector acc, returns only the

odd components aligned to the left

• reduction operations
o redadd: ∑1n(b[i]?acc[i]:0)

o redmax: MAX1n(b[i]?acc[i]:0)

o redor: OR1nb[i]

The size of ACCELERATOR is in O(n).

The latency of the global loops is in O(log n).

5. Evaluation

The proposed architecture is validated being

implemented in a few versions. There are

three silicon implementations, while a 28nm

version is evaluated for 2048 32-bit cells with

m = 1024. Running at 1 GHz and 85oC the

silicon die of 9.2×9.2mm2 is powered at 12W.

The performance in implementing DCNN

for ML are evaluated in simulation [6]. The

acceleration provided for all types of layers is

in O(n). For some operations the constant

associated to the magnitude order is >1. For

example, the multiplication of a matrix with a

vector, besides the parallelism introduced at

the MAP level, benefits from the parallelism

between: multiplication in MAP, addition in

REDUCE and loop control in CONTROL.

Regarding SHA256 used in BC, the

performance on the previously described

28nm implementation is 46.8 MH/sec/Watt,

which is 3.37× the performance of a Nvidia

chip produced in 28nm [10].

6. Concluding Remarks

From the emergent nano-technologies, going

under 7nm, for the physical embodiment of

the proposed hybrid computing system, we

request support for improving or adding the

following features to the accelerator part:

• On chip dynamic memory buffer big

enough to avoid as much as possible

data transfers between MEMORY and

ACCELERATOR (see Fig. 1)

• Multi-chip module with memory

organized as chip-stack, to reduce the

energy and time for transfers between

MEMORY and ACCELERATOR

• Faster internal connections to reduce

the latency of the global loops.

Acknowledgements - The authors got support

from the technical contributors to the development

of the ConnexArrayTM technology: E. Altieri, F.

Ho, B. Mîțu, M. Stoian, D. Thiebaut, T. Thomson,

D. Tomescu.

References
[1] T. F. Bresnahan, M. Trajtenberg, “General

Purpose Technologies: Engines of Growth?”,

Journal of Econometrics, 65(1), 83–108, 1995.

[2] C. Catalini, J. S. Gans, “Some Simple

Economics of the Blockchain”, 2016. At:

https://www.nber.org/papers/w22952.pdf

[3] S. Nakamoto, “Bitcoin: A Peer-to-Peer

Electronic Cash System”, 2008. At:

 https://bitcoin.org/bitcoin.pdf

[4] A. Church, “An unsolvable problem of

elementary number theory”, The American

Journal of Mathematics 58, pp.345-363, 1936.

[5] S. Kleene, “General recursive functions of

natural numbers”, Mathematische Annalen,

112(5):727–742, 1936.

[6] M. Malița, G. V. Popescu, G. M. Ștefan,

“Heterogenous Computing System for Deep

Learning” in Witold Predricz, Shyi-Ming Chen

(eds), Deep Learning: Concepts and

Architectures, Springer (in print), 2019.

[7] M. Malița, G. M. Ștefan, D. Thiebaut. “Not

multi-, but many-core: Designing integral

parallel architectures for embedded

computation”, ACM SIGARCH Computer

Architecture News, 35(5):32–38, Dec. 2007.

[8] G. M. Ștefan, M. Malița, “Can one-chip parallel

computing be liberated from ad hoc solutions?

A computation model-based approach and its

implementation”, 18th Inter. Conf. on Circuits,

Systems, Com. and Comp., pp 582–597, 2014.
[9] G. M. Ștefan, et al., “The CA1024: A Fully

Programmable System-On-Chip for Cost-

Effective HDTV Media Processing”, Stanford

University: Hot Chips: A Symposium on High

Performance Chips, August 2006. At:

https://youtu.be/HMLT4EpKBAw at 35:00.

[10] MSI GeForce RTX 2070 Ventus 8GB GDDR6

Review (Turing TU106 GPU), 2018. At:

https://www.geeks3d.com/20181130/msi-

geforce-rtx-2070-ventus-8gb-gddr6-review-

turing-tu106-gpu/#4_15

https://www.nber.org/papers/w22952.pdf
https://bitcoin.org/bitcoin.pdf
https://youtu.be/HMLT4EpKBAw
https://www.geeks3d.com/20181130/msi-geforce-rtx-2070-ventus-8gb-gddr6-review-turing-tu106-gpu/#4_15
https://www.geeks3d.com/20181130/msi-geforce-rtx-2070-ventus-8gb-gddr6-review-turing-tu106-gpu/#4_15
https://www.geeks3d.com/20181130/msi-geforce-rtx-2070-ventus-8gb-gddr6-review-turing-tu106-gpu/#4_15

