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Abstract – Artificial Intelligence and Blockchain are among 

the most demanding technologies requesting tremendously 

powerful computation engines capable to deliver fast, cheap 

and energy aware solutions. These technologies provide the 

safe computational environment for making intelligent 

decisions related to complex issues. Are presented the 

functional aspects and the structural requirements for the 

emerging intelligent world – the world dominated by 

technologically assisted consensual decisions and self-

enforced regulations. Finally, are asserted the improvements 

required from the emerging nano-technologies. 
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1. Introduction  
 

The functional approach in the domains 

involving emergent nano-technologies must 

start from high level requirements defined at 

the market level. The current technology 

driven approach must shift gradually toward a 

market driven approach. In this context, the 

architectural level is of maximal importance 

by its intermediary position. A resurrected 

technology – the Artificial Intelligence (AI) – 

and an emergent technology – the Blockchain 

(BC) – form a very promising couple for the 

near future. Indeed, in our increasingly 

complex world, intelligent decisions should 

be taken only in a safe environment. 

Complexity-Intelligence-Safety represents the 

magic triad we face in our emergent 

technologically dominated world.  Under 

these conditions, requirements appearing at 

the highest functional level need to be 

reflected at the deepest structural levels. In 

this paper we will try to cover the space 

between function and structure, with a special 

emphasis on the architectural level. 

In the next section we present some aspects 

of the new applications using both, AI and BC 

which provide advanced tools capable to 

safely manage complex problems. The safety 

and complexity are supported by specific 

highly intensive computation. The third 

section emphasizes the specific architectural 

requirements for a computing system able to 

deal with AI and BC using energy aware and 

area efficient solutions. The fourth section 

describes the structural solutions. Some 

preliminary evaluations are provided in the 

fifth section. We conclude with the main 

improvement expected at the nano-

technological level. 

 

2. Where and How AI & BC are 

Involved 
 

BC and AI have presently become the two 

most talked about technologies having the 

potential to disrupt almost any imaginable 

vertical industry. Both technologies meet the 

definition of general-purpose technologies 

(GPT) as defined by Bresahan and Trajtenber 

[1] (cited in [2]). One of the key characteristics 

of a GPT is that it catalyzes innovation and 

that it is complementary to other emerging 

technologies. While each technology comes 

with its own degree of complexity, they both 

seemed to have passed the hype phase and are 

now moving on to the productivity/maturity 

phase on the Gartner technology development 

scale.  

BC’s reputation, as a general-purpose 

technology, is largely due to its first 

application – Bitcoin – an peer-to-peer cash 

system proposed by Satoshi Nakamoto back in 



2008 [3]. Nakamoto presented a solution to 

the double-spending problem using a peer-to-

peer distributed timestamp server. The term 

“distributed” has since been arguably 

considered an underlying feature of an 

authentic BC architecture, in line with the 

original intent of the Bitcoin creator. 

AI has made an impressive comeback in 

recent years thanks to significant advances in 

computing power. The most famous 

implementation of AI includes personalized 

user recommendations, advertisements 

targeting, or Machine Learning (ML) 

algorithms to prevent fraud. There are other 

applications in logistics, data mining, medical 

diagnoses, or automotive, to name just a few. 

AI relies on large amount of data sets in 

order to train and improve its algorithms. 

Hence, the quality and accuracy of collected 

data are fundamental for the AI development. 

At the same time, BC is well-known for its 

capability to handle immutable, tamper free 

and consensus validated data.  It is precisely 

at this point where BC and AI technology 

intersect and complement one another. 

In contrast to BC, AI is at the present time 

highly centralized in the hands of 

corporations such as Facebook, Google or 

Amazon who have been able to collect 

impressive amounts of data sets. Combining 

these two technologies has the potential not 

only to improve the quality and reliability of 

input data necessary to ML algorithms, but to 

democratize the computational power of AI in 

a distributed peer-to-peer system such as the 

one proposed by BC. 
 

3. Architectural Requirements 
 

The two technologies – AI and BC – 

suppose different architectural requirements, 

but we must accommodate them on the same 

physical organization.  

     A. AI Architecture 

     There are two distinct approaches in AI: 

one is explicitly rule-based developed usually 

in Lisp, another – currently in vogue – 

involving the ML technique based on Deep 

Convolutional Neural Networks (DCNN). In a 

complex application both techniques are used. 

 

   A.1 Rule-Based AI Architecture 
 

   The Lisp language is developed starting 

from the lambda-calculus proposed by Alonzo 

Church [4]. The main distinct operations 

performed in Lisp are searches, inserts and 

deletes in lists, plus a very efficient 

implementation of a huge stack. In a sequence 

of data, where the previous operations are 

performed, it is possible to implement one or 

more stacks. On a sequence of symbols 

<s0s1…sn-1> we apply operations such as: 

• SEARCH(name): all the occurrences 

of the sequence name are located 

• INSERT(name): in the first located 

place the sequence name is inserted 

• DELETE: the symbol from the first 

located place is deleted 

• READ: the symbol from the first 

located place is accessed moving the 

access to the next one. 
 

    A.2 DCNN-Based AI Architecture 
 

The main functions used in implementing 

ML on DCNN are: convolution, pooling, and 

fully connected neural layers. All these 

functions are implemented on vectors: 
V[1] = [v[11],v[12],… v[1p]] 

V[2] = [v[21],v[12],… v[2p]] 

… 

V[m ]= [v[m1],v[m2],…v[mp)]] 

as following:  

• predicated vector operations:  
v[ij]<=cond[j]?op(v[ij],v[kj]):v[ij] 

where op is an arithmetic or logic operation 

applied on the components where the 

condition cond is fulfilled 

• predicated reduction operations: 
redOp(V[i]) = Op(…,(cond[j]?v[ij]:-),…) 

where: j = 1,2,…,p and Op is an associative 

operation; it provides a scalar starting from the 

selected components of a vector 

• predicated scan operations: 
V[k] <= scanOp(…,(cond[j]?v[ij]:-),…) 

return a vector starting from the selected 



components of a vector. 
  

B. BC Architecture 
 

 The mining process is the most time and 

energy consuming process associated with the 

BC technology. It consists in hashes 

reconsidered until the requested condition is 

fulfilled. For the mining process the 

implementation is embarrassingly parallel. 

Two types of computations are involved: 

• map computations performing 

hashing functions (for example 

SHA256) on blocks of data each 

prefixed with a different nonce 

• reduce operations to find for what 

nonce the condition is fulfilled. 

A many-cell hardware receives a block of 

data and distributes it in each cell. The nonce 

is selected randomly and incremented in each 

cell with the index of the cell. A SIMD-like 

program runs. At the end, the cell where the 

condition is fulfilled, if any, sends back its 

index using the reduction network. 

 

4. Structural Proposal 
 

The structure we propose is based on the 

mathematical computational model of partial 

recursive functions proposed by Stephen 

Kleene [5]. The structure has a Map-Scan-

Reduce organization [6] [7] [8] [9]. The 

solution we propose is an accelerator as part 

of a hybrid computing system (see Fig. 1). 

The structure of the accelerator (see Fig. 2) 

is centred on a linear array of n cells, MAP, 

which receives, in each clock cycle through 

the log-depts network DISTRIBUTE, an 

instruction issued by CONTROLLER to be 

executed in all its active cells. Two loops are 

closed over MAP: one through the log-depts 

network SCAN, and another through: log-

depts network REDUCE, CONTROLLER 

and log-depts network DISTRIBUTE. 

In each cell there is an accumulator centred 

execution unit, eng[i], and a local data 

memory, mem[i], for i=1,…,n.  Thus, along 

the cells are distributed the previously defined 

horizontal vectors V[j], for j=1,…,m. The 

content of each local memory represents a 

vertical vector  
W[i] = [v[1i],v[2i],…v[mi]] 

 
 

 
Fig. 1. Hybrid computing system organization [6]. 

 

 
Fig. 2. Map-Scan-Reduce organization [6]. 

 

Besides these vectors are implemented: 

• the accumulator vector: 
acc = [acc[1], acc[2], …, acc[n]] 

• the Boolean vector used to select the 

active cells: 
b = [b[1], b[2], …, b[n]] 

• the cell index vector: 
ix = [1, 2, …, b] 

Besides the standard logic and arithmetic 

instructions executed on vectors in the active 

cells (where(b[i]==1)), in the MAP array 

are performed specific global operations, for 

all i, exemplified by the followings: 

• spatial selections, for example: 
o where(cond): 

b[i] = (cond) ? 1 : 0;  

o endwhere: b[i]==1;  

• search and modify operations: 
o search(x): 

b[i] = (acc[i]==x) ? 1 : 0; 

o csearch(x): 
b[i] = (acc[i]==x)&(b[i-1]==1) ? 1 : 0; 

o insert(x): insert in the first active 

position the value x in the vector acc and 

save acc[n] 

o delete(x): delete the symbol from the 

first active cell and acc[n]<= x 



• shift operations applied on acc 

• scan operations: 
o first: emphasizes the first active cell; 

it is applied to the Boolean vector b 

o pool: on vector acc, returns only the 

odd components aligned to the left 

• reduction operations 
o redadd:  ∑1n(b[i]?acc[i]:0) 

o redmax: MAX1n(b[i]?acc[i]:0) 

o redor: OR1nb[i] 

The size of ACCELERATOR is in O(n). 

The latency of the global loops is in O(log n). 
 

5. Evaluation 
 

The proposed architecture is validated being 

implemented in a few versions. There are 

three silicon implementations, while a 28nm 

version is evaluated for 2048 32-bit cells with 

m = 1024. Running at 1 GHz and 85oC the 

silicon die of 9.2×9.2mm2 is powered at 12W. 

The performance in implementing DCNN 

for ML are evaluated in simulation [6]. The 

acceleration provided for all types of layers is 

in O(n). For some operations the constant 

associated to the magnitude order is >1. For 

example, the multiplication of a matrix with a 

vector, besides the parallelism introduced at 

the MAP level, benefits from the parallelism 

between: multiplication in MAP, addition in 

REDUCE and loop control in CONTROL. 

Regarding SHA256 used in BC, the 

performance on the previously described 

28nm implementation is 46.8 MH/sec/Watt, 

which is 3.37× the performance of a Nvidia 

chip produced in 28nm [10]. 

 

6. Concluding Remarks 

 
From the emergent nano-technologies, going 

under 7nm, for the physical embodiment of 

the proposed hybrid computing system, we 

request support for improving or adding the 

following features to the accelerator part: 

• On chip dynamic memory buffer big 

enough to avoid as much as possible 

data transfers between MEMORY and 

ACCELERATOR (see Fig. 1) 

• Multi-chip module with memory 

organized as chip-stack, to reduce the 

energy and time for transfers between 

MEMORY and ACCELERATOR 

• Faster internal connections to reduce 

the latency of the global loops. 
 

Acknowledgements - The authors got support 

from the technical contributors to the development 

of the ConnexArrayTM technology: E. Altieri, F. 

Ho, B. Mîțu, M. Stoian, D. Thiebaut, T. Thomson, 

D. Tomescu. 
 

References 
[1] T. F. Bresnahan, M. Trajtenberg, “General 

Purpose Technologies: Engines of Growth?”, 

Journal of Econometrics, 65(1), 83–108, 1995. 

[2] C. Catalini, J. S. Gans, “Some Simple 

Economics of the Blockchain”, 2016. At:  

https://www.nber.org/papers/w22952.pdf  

[3] S. Nakamoto, “Bitcoin: A Peer-to-Peer 

Electronic Cash System”, 2008. At:  

 https://bitcoin.org/bitcoin.pdf 

[4] A. Church, “An unsolvable problem of 

elementary number theory”, The American 

Journal of Mathematics 58, pp.345-363, 1936. 

[5] S. Kleene, “General recursive functions of 

natural numbers”, Mathematische Annalen, 

112(5):727–742, 1936. 

[6] M. Malița, G. V. Popescu, G. M. Ștefan, 

“Heterogenous Computing System for Deep 

Learning” in Witold Predricz, Shyi-Ming Chen 

(eds), Deep Learning: Concepts and 

Architectures, Springer (in print), 2019. 

[7] M. Malița, G. M. Ștefan, D. Thiebaut. “Not 

multi-, but many-core: Designing integral 

parallel architectures for embedded 

computation”, ACM SIGARCH Computer 

Architecture News, 35(5):32–38, Dec. 2007.  

[8] G. M. Ștefan, M. Malița, “Can one-chip parallel 

computing be liberated from ad hoc solutions? 

A computation model-based approach and its 

implementation”, 18th Inter. Conf. on Circuits, 

Systems, Com. and Comp., pp 582–597, 2014.  
[9] G. M. Ștefan, et al., “The CA1024: A Fully 

Programmable System-On-Chip for Cost-

Effective HDTV Media Processing”, Stanford 

University: Hot Chips: A Symposium on High 

Performance Chips, August 2006. At:  

https://youtu.be/HMLT4EpKBAw at 35:00. 

[10] MSI GeForce RTX 2070 Ventus 8GB GDDR6 

Review (Turing TU106 GPU), 2018. At: 

https://www.geeks3d.com/20181130/msi-

geforce-rtx-2070-ventus-8gb-gddr6-review-

turing-tu106-gpu/#4_15 
 

https://www.nber.org/papers/w22952.pdf
https://bitcoin.org/bitcoin.pdf
https://youtu.be/HMLT4EpKBAw
https://www.geeks3d.com/20181130/msi-geforce-rtx-2070-ventus-8gb-gddr6-review-turing-tu106-gpu/#4_15
https://www.geeks3d.com/20181130/msi-geforce-rtx-2070-ventus-8gb-gddr6-review-turing-tu106-gpu/#4_15
https://www.geeks3d.com/20181130/msi-geforce-rtx-2070-ventus-8gb-gddr6-review-turing-tu106-gpu/#4_15

