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N-Body method applied to model molecular dynamics is one of the most computationally intensive 

applications. Hybrid computation could be used to deal with this very demanding computational 

motif. Our proposal is based on a Xilinx platform to implement a 512-core vector machine, used as 

accelerator. The accelerator has the many-core Map-Reduce architecture developed in [6].  

 

1. Introduction - Molecular dynamics (MD) is a type of N-body simulation, one of the 13 “dwarfs” emphasized 

in The View from Berkeley [2]. It is about atoms and molecules that are allowed to interact for a fixed period of 

time, giving a view of the dynamical evolution of the system. The trajectories of atoms and molecules are 

determined by numerically solving Newton's equations of motion for a system of interacting particles. The 

forces between the particles and their potential energies are calculated using interatomic potentials or molecular 

mechanics force fields. The method was initially developed in the field of theoretical physics but is applied 

today mostly in the modelling of biomolecules. 

We selected GROMACS (GROningen MAchine for Chemical Simulations) as a molecular dynamics package 

used for simulations of proteins, lipids and nucleic acids [1]. This software package was developed in the 

Biophysical Chemistry department of the University of Groningen, but is now maintained by contributors in 

many universities and research centers. GROMACS is free, open source released. 

The computation for one interaction for a very short fix period of time supposes, for N particles, a computation 

in O(N2). Because the fix period of time must be very short the computation must be repeated so many times 

that, for most of the real problems, the current computational resources are totally insufficient. Looking for ways 

to provide accelerating resources is mandatory. Current implementations use distributed computing and local 

ways to accelerate the computation. Locally, the acceleration is provided mainly on three ways: improving the 

sequential code at the assembly level, using programmable accelerators (such as GPUs) to run the critical 

section of the code, or by adding specialized hardware. 

Our proposal is a FPGA based programmable accelerator supposed to work on the “leafs” of the Gromacs 

system. It is connected through a PCIe interface to the host which is an x86 system.  

The next section describes the structure and the architecture of the accelerator and the parallel algorithm used 

for testing the accelerator. The third section evaluates the results of the simulation. Final comments conclude 

our paper. 

 

2. The MapReduce Accelerator – We start from the following ascertainments: (1) the assembly code in x86 

environment is unable to provide enough performance because of the small computational capabilities of the 

current processors (a four-core engine, each with its SIMD co-machine provides no more than 16 execution 

units) and the low degree of parallelism provided by an architecture which is a combination of multi-threading 

with SIMD capabilities, (2) using a GPU as a general purpose accelerator is limited in performance because it 

has an architecture inheriting limitations due to the graphic functions for which it was initially conceived, (3) the 

specialized hardware [3], [4] does not have the flexibility requested by the complexity of the computation 

involved in MD. 

Our project has two stages: (1) developing the architecture and the structure of an accelerator implemented in 

FPGA technology, (2) based on the results provided in the first step, convert the FPGA solution into an ASIC or 

eASIC chip in order to reduce price, increase performance and reduce power. The current paper refers to the 

first stage.  

  

The accelerator we propose is connected to the x86 host computer using a PCIe interface (see Figure 1) and 

consists of a MapReduce section controlled by Scalar section, both interfaced through two FIFOs. The 

computation is performed by the Scalar unit and the MapReduce unit (see Figure 2), where: 

• Scalar unit is a RISC engine which fetches in each clock cycle from its program memory a pair of 

instructions, one for itself and another to be issued toward the Map array of cells 

• Map section is an array of p cells each with its execution unit (eng) and local memory (mem); each cell 

executes, according to its internal state, the instruction received from the Scalar unit 
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• Reduction is a log-depth circuit which performs functions defined on vectors which return a scalar (for 

example: add, min …) 

 

     

 

 
Figure 1. The system configuration. The accelerator consists of a scalar unit and a map-reduce unit connected through FIFOs to the x86 

Host using a PCIe interface. 

 

InFIFO receives programs to be loaded in the program memory of Scalar unit and data for both, Scalar unit and 

Map section. OutFIFO sends back to Host the result of the computation.  

 
Figure 2. The computational part of the accelerator.  

 

 

The computation accelerated for the Gromacs system is described in Figure 3. The accelerator deals with a 

system of n particles. Each particle is characterized by m scalars. Thus, the accelerator is loaded with a two-

dimension array organized as m n-scalar vectors. If n>p, then the array is fragmented in m×p arrays stored in 

the accelerator’s scalar memory. Two kinds of operations are mainly performed on this two-dimension array: (1) 

a search for neighbors (particles which interact with one another) for each of the p particles, (2) compute and 

apply the forces on each particle. In each processing cycle step (1) is followed by q steps (2), where the user can 

select the value of q from 1 to a higher value depending on the temperature, pressure etc. of the system, with the 

addition that increasing this value will result in higher errors, but a faster simulation. After a number of 

processing cycles, also defined by the user, the resulting array is sent back to the host. 

In step (1), the position of each particle is compared, in parallel, with the positions of all other particles. The 

parameters of a particle are broadcast in the cells that are close to it, thus defining the neighborhood of each 

particle in each cell. In step (2), the new position for each particle is computed, also in parallel. The degree of 

parallelism is given by the mean value of the size of the neighborhoods.  
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Figure 3. The flowchart of the computation implemented to validate the use of our MapReduce architecture as accelerator for the Gromacs 

system. 
 

3. Results and Discussion – The results of the simulation done on a Verilog cycle accurate simulator of the 

accelerator are presented in Table 1. For each stage of the algorithm the number of clock cycles are listed.  

 

Table 1 

Simulation part Cycles Percent of algorithm

Full simulation 33040 100.00%

Box periodicity 80 0.24%

Neighbour search 26410 79.93%

Force computation 6409 19.40%

Thermostat 91 0.28%

Update 50 0.15%
 

 

The next table shows the overall degree of parallelism and the degree of parallelism for the main section of the 

algorithm. The overall degree of parallelism of 75.6% for an array of 400 cells could be considered very good.  

In the last table the performance1 of our solution is compared with x86 based architectures and the most 

performant solution provided by Anton accelerator circuit [3], [4]. For our solution, there are two cases: (1) the 

neighbor search is done at each force computation cycle (NS:F = 1:1), (2) the neighbor search is done at 10 

 
1 Performance is expressed in how many micro seconds of molecular behavior can be simulated per day (µs/day) 



force computation cycles (NS:F = 1:10). Compared with a mono-core x86 engine, our system provides 32x 

acceleration, while compared with a four-thread, each with a 4-cell SIMD accelerator, our system provides 

5.94x acceleration, due to the degree of parallelism achieved in the x86 based 16-cell engine the degree of 

parallelism results only 0.296, compared with ours which is 2.55x higher. 

 

Table 2 

Simulation part Active cells Controller

Full simulation 75.6% 13.8%

Box periodicity 66.8% 0.0%

Neighbour search 79.2% 15.30%

Force computation 60.4% 7.60%

Thermostat 51.0% 62.70%

Update 100.0% 17%
 

 

The power performance, expressed in energy used for 1 µs of simulation, is very good for a FPGA 

implementation and extremely good for an ASIC version of our architecture. 

 

Table 3 

Machine Cores NS:F Freq. Price Perf. Power Energy cost

[GHz] [USD] [µs/day] [W] [Wh/µs]

Intel i5 1 1:10 2.7 GHz $200 5.84 65 267.1

Intel i5 (SSE) 1 1:10 2.7 GHz $200 9.78 70 171.8

Intel i5 4 1:10 2.7 GHz $200 18.94 90 114.0

Intel i5 (SSE) 4 1:10 2.7 GHz $200 31.48 95 72.4

MRA (FPGA) 512 1:1 0.5 GHz $1000 52.42 35 16.0

MRA (FPGA) 512 1:10 0.5 GHz $1000 187.01 35 4.5

MRA (ASIC) 512 1:10 1.0 GHz $10 374.02 3 0.2

Anton 1 – 0.4 GHz - 572.32 75 3.1

Anton 512 – 0.4 GHz $10Mil 293027.84 116500 9.5  
 

 

4. Conclusion – Because the power efficiency of our FPGA solution exceeds 16x the x86 based solution and the 

ASIC implementation exceeds 15.5x the ASIC circuit, we consider that we provide an excellent solution for 

developing MD accelerators.  
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