
FPGA Based Accelerator for Molecular Dynamics

Nicolae Goga(1), Mihaela Malița(2), David Mihăiță(3), Gheorghe M. Ștefan(3)

 (1) University of Groningen

 (3) Saint Anselm College, Manchester, NH
(3)Politehnica University of Bucharest

N-Body method applied to model molecular dynamics is one of the most computationally intensive

applications. Hybrid computation could be used to deal with this very demanding computational

motif. Our proposal is based on a Xilinx platform to implement a 512-core vector machine, used as

accelerator. The accelerator has the many-core Map-Reduce architecture developed in [6].

1. Introduction - Molecular dynamics (MD) is a type of N-body simulation, one of the 13 “dwarfs” emphasized

in The View from Berkeley [2]. It is about atoms and molecules that are allowed to interact for a fixed period of

time, giving a view of the dynamical evolution of the system. The trajectories of atoms and molecules are

determined by numerically solving Newton's equations of motion for a system of interacting particles. The

forces between the particles and their potential energies are calculated using interatomic potentials or molecular

mechanics force fields. The method was initially developed in the field of theoretical physics but is applied

today mostly in the modelling of biomolecules.

We selected GROMACS (GROningen MAchine for Chemical Simulations) as a molecular dynamics package

used for simulations of proteins, lipids and nucleic acids [1]. This software package was developed in the

Biophysical Chemistry department of the University of Groningen, but is now maintained by contributors in

many universities and research centers. GROMACS is free, open source released.

The computation for one interaction for a very short fix period of time supposes, for N particles, a computation

in O(N2). Because the fix period of time must be very short the computation must be repeated so many times

that, for most of the real problems, the current computational resources are totally insufficient. Looking for ways

to provide accelerating resources is mandatory. Current implementations use distributed computing and local

ways to accelerate the computation. Locally, the acceleration is provided mainly on three ways: improving the

sequential code at the assembly level, using programmable accelerators (such as GPUs) to run the critical

section of the code, or by adding specialized hardware.

Our proposal is a FPGA based programmable accelerator supposed to work on the “leafs” of the Gromacs

system. It is connected through a PCIe interface to the host which is an x86 system.

The next section describes the structure and the architecture of the accelerator and the parallel algorithm used

for testing the accelerator. The third section evaluates the results of the simulation. Final comments conclude

our paper.

2. The MapReduce Accelerator – We start from the following ascertainments: (1) the assembly code in x86

environment is unable to provide enough performance because of the small computational capabilities of the

current processors (a four-core engine, each with its SIMD co-machine provides no more than 16 execution

units) and the low degree of parallelism provided by an architecture which is a combination of multi-threading

with SIMD capabilities, (2) using a GPU as a general purpose accelerator is limited in performance because it

has an architecture inheriting limitations due to the graphic functions for which it was initially conceived, (3) the

specialized hardware [3], [4] does not have the flexibility requested by the complexity of the computation

involved in MD.

Our project has two stages: (1) developing the architecture and the structure of an accelerator implemented in

FPGA technology, (2) based on the results provided in the first step, convert the FPGA solution into an ASIC or

eASIC chip in order to reduce price, increase performance and reduce power. The current paper refers to the

first stage.

The accelerator we propose is connected to the x86 host computer using a PCIe interface (see Figure 1) and

consists of a MapReduce section controlled by Scalar section, both interfaced through two FIFOs. The

computation is performed by the Scalar unit and the MapReduce unit (see Figure 2), where:

• Scalar unit is a RISC engine which fetches in each clock cycle from its program memory a pair of

instructions, one for itself and another to be issued toward the Map array of cells

• Map section is an array of p cells each with its execution unit (eng) and local memory (mem); each cell

executes, according to its internal state, the instruction received from the Scalar unit

https://en.wikipedia.org/wiki/N-body_simulation
https://en.wikipedia.org/wiki/Dynamics_(mechanics)
https://en.wikipedia.org/wiki/Trajectories
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
https://en.wikipedia.org/wiki/Force_(physics)
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Interatomic_potential
https://en.wikipedia.org/wiki/Molecular_mechanics
https://en.wikipedia.org/wiki/Molecular_mechanics
https://en.wikipedia.org/wiki/Force_field_(chemistry)
https://en.wikipedia.org/wiki/Biomolecule
https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/Proteins
https://en.wikipedia.org/wiki/Lipids
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/University_of_Groningen
https://en.wikipedia.org/wiki/Open_source

• Reduction is a log-depth circuit which performs functions defined on vectors which return a scalar (for

example: add, min …)

Figure 1. The system configuration. The accelerator consists of a scalar unit and a map-reduce unit connected through FIFOs to the x86

Host using a PCIe interface.

InFIFO receives programs to be loaded in the program memory of Scalar unit and data for both, Scalar unit and

Map section. OutFIFO sends back to Host the result of the computation.

Figure 2. The computational part of the accelerator.

The computation accelerated for the Gromacs system is described in Figure 3. The accelerator deals with a

system of n particles. Each particle is characterized by m scalars. Thus, the accelerator is loaded with a two-

dimension array organized as m n-scalar vectors. If n>p, then the array is fragmented in m×p arrays stored in

the accelerator’s scalar memory. Two kinds of operations are mainly performed on this two-dimension array: (1)

a search for neighbors (particles which interact with one another) for each of the p particles, (2) compute and

apply the forces on each particle. In each processing cycle step (1) is followed by q steps (2), where the user can

select the value of q from 1 to a higher value depending on the temperature, pressure etc. of the system, with the

addition that increasing this value will result in higher errors, but a faster simulation. After a number of

processing cycles, also defined by the user, the resulting array is sent back to the host.

In step (1), the position of each particle is compared, in parallel, with the positions of all other particles. The

parameters of a particle are broadcast in the cells that are close to it, thus defining the neighborhood of each

particle in each cell. In step (2), the new position for each particle is computed, also in parallel. The degree of

parallelism is given by the mean value of the size of the neighborhoods.

Start

Load system
(load initial X,Y,Z

and initial VX,VY,VZ)

Calculate PBC vector
shX = XMAX(X < 0) - XMAX(X XMAX)
shY = YMAX(Y < 0) - YMAX(Y YMAX)
shZ = ZMAX(Z < 0) - ZMAX(Z ZMAX)

Add PBC vector to X, Y, Z vectors
X = X + shX
Y = Y + shY
Z = Z + shZ

Make neighbour lists
NLi = Rij

-1(Rij
2 > 0 && Rij

2 < Rc
2)

Calculate forces
FVdW = Σ (C12 NLi

13 – C6 NLi
7)

Berendsen thermostat
λ 1 + coef. (T-1)-1

Calculate temperature
T = coef. Vavg

2

Update speed vector
VX = λVX + FVdW X dt/m
VY = λVY + FVdW Y dt/m
VZ = λVZ + FVdW Z dt/m

Update coordinates
X = X + VX dt
Y = Y + VY dt
Z = Z + VZ dt

Finish?

Stop

Figure 3. The flowchart of the computation implemented to validate the use of our MapReduce architecture as accelerator for the Gromacs

system.

3. Results and Discussion – The results of the simulation done on a Verilog cycle accurate simulator of the

accelerator are presented in Table 1. For each stage of the algorithm the number of clock cycles are listed.

Table 1

Simulation part Cycles Percent of algorithm

Full simulation 33040 100.00%

Box periodicity 80 0.24%

Neighbour search 26410 79.93%

Force computation 6409 19.40%

Thermostat 91 0.28%

Update 50 0.15%

The next table shows the overall degree of parallelism and the degree of parallelism for the main section of the

algorithm. The overall degree of parallelism of 75.6% for an array of 400 cells could be considered very good.

In the last table the performance1 of our solution is compared with x86 based architectures and the most

performant solution provided by Anton accelerator circuit [3], [4]. For our solution, there are two cases: (1) the

neighbor search is done at each force computation cycle (NS:F = 1:1), (2) the neighbor search is done at 10

1 Performance is expressed in how many micro seconds of molecular behavior can be simulated per day (µs/day)

force computation cycles (NS:F = 1:10). Compared with a mono-core x86 engine, our system provides 32x

acceleration, while compared with a four-thread, each with a 4-cell SIMD accelerator, our system provides

5.94x acceleration, due to the degree of parallelism achieved in the x86 based 16-cell engine the degree of

parallelism results only 0.296, compared with ours which is 2.55x higher.

Table 2

Simulation part Active cells Controller

Full simulation 75.6% 13.8%

Box periodicity 66.8% 0.0%

Neighbour search 79.2% 15.30%

Force computation 60.4% 7.60%

Thermostat 51.0% 62.70%

Update 100.0% 17%

The power performance, expressed in energy used for 1 µs of simulation, is very good for a FPGA

implementation and extremely good for an ASIC version of our architecture.

Table 3

Machine Cores NS:F Freq. Price Perf. Power Energy cost

[GHz] [USD] [µs/day] [W] [Wh/µs]

Intel i5 1 1:10 2.7 GHz $200 5.84 65 267.1

Intel i5 (SSE) 1 1:10 2.7 GHz $200 9.78 70 171.8

Intel i5 4 1:10 2.7 GHz $200 18.94 90 114.0

Intel i5 (SSE) 4 1:10 2.7 GHz $200 31.48 95 72.4

MRA (FPGA) 512 1:1 0.5 GHz $1000 52.42 35 16.0

MRA (FPGA) 512 1:10 0.5 GHz $1000 187.01 35 4.5

MRA (ASIC) 512 1:10 1.0 GHz $10 374.02 3 0.2

Anton 1 – 0.4 GHz - 572.32 75 3.1

Anton 512 – 0.4 GHz $10Mil 293027.84 116500 9.5

4. Conclusion – Because the power efficiency of our FPGA solution exceeds 16x the x86 based solution and the

ASIC implementation exceeds 15.5x the ASIC circuit, we consider that we provide an excellent solution for

developing MD accelerators.

5. References

[1] M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS development team, GROMACS

User Manual version 5.1.2, www.gromacs.org (2016) ftp://ftp.gromacs.org/pub/manual/manual-5.1.2.pdf

[2] Krste Asanovic, et al., The landscape of parallel computing research: A view from Berkeley, 2006.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

[3] Martin M. Deneroff, et al., Anton: A Specialized ASIC for Molecular Dynamics, 2008.

http://www.hotchips.org/wp-content/uploads/hc_archives/hc20/2_Mon/HC20.25.421.pdf

[4] D. E. Shaw, et al., “Anton 2: raising the bar for performance and programmability in a special-purpose

molecular dynamics supercomputer,” in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, Piscataway, NJ, USA, 2014.

 http://conferences.computer.org/sc/2014/papers/5500a041.pdf

[5] Gheorghe Ștefan, et al., "The CA1024: A Fully Programmable System-On-Chip for Cost-Effective HDTV

Media Processing", in Hot Chips: A Symposium on High Performance Chips, Memorial Auditorium, Stanford

University, August 20 to 22, 2006.

http://www.hotchips.org/archives/2000s/hc18/ see section S5

[6] Gheorghe M. Ștefan, Mihaela Malița, “Can One-Chip Parallel Computing Be Liberated from Ad Hoc

Solutions? A Computation Model Based Approach and Its Implementation”, 18th Inter. Conf. on Circuits,

Systems, Communications and Computers, Santorini, July 17-21, 2014, 582-597.

http://www.inase.org/library/2014/santorini/bypaper/COMPUTERS/COMPUTERS2-42.pdf

ftp://ftp.gromacs.org/pub/manual/manual-5.1.2.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc20/2_Mon/HC20.25.421.pdf
http://conferences.computer.org/sc/2014/papers/5500a041.pdf
http://www.hotchips.org/archives/2000s/hc18/
http://www.inase.org/library/2014/santorini/bypaper/COMPUTERS/COMPUTERS2-42.pdf

