
Functional Virtual Prototyping Environment for a Family of
Map-Reduce Embedded Accelerators

Cǎlin Bı̂rǎ, Mihaela Maliţa, and Gheorghe M. Ştefan

The emergence of the heterogenous computing is based mainly
on various forms of parallel accelerators. We present a family
of accelerators for embedded computation with a map-reduce
architecture based on the partial recursive functions computation
model introduced by Stephen Kleene. A three-level virtual
prototyping environment is provided to support the development
of embedded applications. The first level is written in a Lisp-like
functional language. The second is a C-like environment which
segregates the intense part of computation from the complex
part of computation. The last one is a low level simulator able to
provide support for advanced optimizations. The environment is
designed for developing applications by tuning the architecture of
a family of many-core machines which provide high performance
per Watt and cm2. The energy efficiency of processors backing our
architectural approach is in the range of 10 pJ/ f lop evaluated
for the standard cell 28nm technology.

I. INTRODUCTION

PARallel accelerators are increasingly utilized in embed-
ded computation for accelerating applications having con-

tinuously increasing complexity and intensity. One solution
for optimizing the computational resources is to make an
appropriate segregation between the complex code and the
intense code. Both, the static size (code size) of the complex
code and the dynamic size (execution time) of the intense
code are big. A heterogenous engine is the most efficient
hardware to deal with both, complexity and intensity in the
same time. But, the engines associated with the two kinds
of computation are very different, while the program must
be written in the same environment. On the other hand, the
intense computational code has mainly functional aspects,
while the complex computation has mainly control aspects.

It is about a sort of “co-design” which intends to put
together the two very different aspects of computation: the
intensity and the complexity. The prototyping environment
must deal gradually with the segregation between complex and
intense. Initially, we require a non-differentiated environment.
Subsequently, the design environment must be able to deal
differently with the two aspects of computation. Finally, the
intense computation sections must be evaluated in detail with
an accurate performance model. Thus, results the three levels
of our approach.

Cǎlin Bı̂rǎ is with Dept. of Electronic Devices, Circuits and Architectures,
Faculty of Electronics, Telecommunications and Information Technology, Po-
litehnica University of Bucharest, 060042, Romania e-mail: calin.bira@upb.ro

Mihaela Maliţa is with Dept. of Computer Science, Saint Anselm College,
Manchester, NH, 03102 USA e-mail: mmalita@anselm.edu

Gheorghe M. Ştefan is with Dept. of Electronic Devices, Circuits and
Architectures, Faculty of Electronics, Telecommunications and Information
Technology, Politehnica University of Bucharest, 060042, Romania e-mail:
gheorghe.stefan@upb.ro

Manuscript received April 19, 2005; revised August 26, 2015.

Additionally, we lack an appropriate model for parallel
and heterogenous computation. To overcome this impasse, we
attempt a firm theoretical support for parallel computation
[10]. Thus, Section II will introduce the Map-Reduce abstract
model for parallel computation starting from what we call
Kleene Machine. In the same section, based on [5] [7] [8] [9],
a hardware solution for a family of heterogenous accelerators
is proposed. Section III of the paper describes the three levels
of the virtual prototyping environment: the functional Lisp-
like level, the segregational C-like level and the optimization
level of Verilog-based simulation. Section IV shows a simple
example demonstrating the use of our environment.

II. MAP-REDUCE ABSTRACT MODEL

Since there is a mathematical and an abstract model for
the mono-core computers, the same is mandatory for the
multi/many-core parallel computers. What corresponds to the
Turing Machine for the multi/many-core computation? Where
is the equivalent of the von Neumann or Harvard abstract
model for parallel computation? In their absence, ad hoc
solutions dominate, imposed mainly by the corporate-driven
approaches. In [10], starting from [4] and based on [2], a
mathematical model is considered and an abstract model is
proposed.

A. Kleene Machine

Out of the three rules of Kleene’s model, the use of the
composition rule is enough to define what we call Kleene Ma-
chine (KM). In [10] we proved that the primitive recursion rule
and the minimalization rule are reducible to the application of
specific compositions.

Definition 1: By definition, Kleene Machine (KM) consists
of a two-layer construct, associated to the composition rule,
see Figure 1, with:

1) map level: the independent functions hi, for i = 0,1, . . .
2) reduction level: the function g

where hi, for i = 0,1, . . . and g are initial functions or compo-
sitions.
⋄

Because Kleene’s model is equivalent with the Turing
Machine model the next corollary is true.

Corollary 1: Kleene Machine represents a mathematical
model for parallel computation with two aspects: the syn-
chronic parallelism on the map level and the diachronic
(pipelined) parallelism between the two structural levels, the
map level and the reduce level.
⋄

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

h1(x) h2(x) hi(x)

? ? ?

? ? ?

x = ⟨x1 , . . . ,xn⟩

map

?

reduce

f (x1 , . . . ,xn)

g(h1(x), . . .hi(x), . . .)

Fig. 1. Kleene Machine. Synchronic parallelism performed on the map level
and diachronic parallelism between the map level and the reduce level.

Any function f : Nn →N, where N is the set of positive in-
tegers including zero, is computable using the initial functions
(zero, inc, selection) and applications of various forms of the
composition rule

f (x1, . . . ,xn) = g(h1(x1, . . . ,xn), . . . ,hp(x1, . . . ,xn)).

B. Map-Reduce Abstract Recursive Model

Starting from the mathematical model, a way to design
actual processors is provided by the abstract model presented
in Figure 2, where:

• MAP: is a linear array of cells MapRed(i) with two
components:

– eng: is an execution, processing or computing unit
– mem: is the local memory associated to eng

utilized to define recursively the parallel hardware
• REDUCE: is the reduction unit for functions defined on

a set of vectors with values on a set of scalars
• CONTR: is a mono-core computing element utilized to

sequence the computing process
• MEMORY: is the external memory of the Map-Reduce

engine

eng mem

REDUCE

??
eng mem

??
eng mem

??MAP

CONTR

?? ?

6

?

- MEMORY

6

?

�

�

�

eng(j)

eng

�

mem

mem(j+1)

mem(j)

eng(j+1)
�

�

MapRed(j+1)MapRed(j)

- � - �-- ?

�

�

�

Fig. 2. MapReduce recursive abstract model for parallel computation.

The MapReduce abstract model allows to compose (to se-
quence) various KMs and basic functions in order to compute
the desired function. The model is recursive with:

• eng(0): a 16 or 32-bit mono-core execution or processing
unit

• mem(0): a static RAM of few Kwords
• REDUCE: a log-depth pipelined circuit performing func-

tions as add, max, ...
In this paper we limit our approach to MapRed(1), an engine
implemented as a one-chip solution for eng(1) and an external
DRAM as mem(1). The first level of the simulation tool is
implemented with a solution which allows an approach which
consider also MapRed(i) for i > 1.

C. One-chip Implementation
The actual implementation takes into consideration a param-

eterized family of circuits with features selectable at synthesis.
This approach allows us to work in a flexible parameterized
and programmed environment.

Map
Section

6?6? 6?6?

-�-�

-�-�

?? ??

--

--

Scan

Trans

Reduce
Section

Distr

Controller

-

Inerconnection Fabric

�

?
66

?

Interface

6

Memory

66

?

?

Host

One-Chip

MapReduce Engine

�-
?

Fig. 3. One-chip implementation for a heterogenous embedded system with
map-reduce accelerator. The complex computation is performed by Host, while
the intense computation executes on the map-reduce engine under the control
of Controller.

In Figure 3 the block schematic of the family of accelerators
is composed out of:

• Map Section: a linear array of p cells, each containing
eng(0)+mem(0)

• Reduce Section: a reduction network with latency in
O(log p)

• Distr: a log-depth tree distribution network which sends
in each clock cycle from Controller to Map Section an
instruction with associated scalar if required

• Trans: a two-dimension network utilized to insert/extract,
in transparent mode related to the computational process,
data in/from the array

• Scan: a loop closed over the linear array of cells which
sends back to each cell global information related with
the state of cells

• Controller: a mono-core computing engine which fetch
in each clock cycle from its program memory a pair of
instructions, one for its use and another to be broadcasted
toward the many-core array through Distr

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Host: a mono- or multi-core processor which executes the
complex part of the computation and controls the data
transfers between the external memory, Memory, and the
vector memory consisting of local memories, mem(0),
distributed along the cells.

III. PROTOTYPING ENVIRONMENT

We view any new hardware design as having initially a
liquid form. The more descriptive we are and the more time
we spent on it, the more it solidifies, therefore the less changes
it allows, but the closer it is to the true silicon implementation.

The prototyping environment we designed consists of three
components listed below:

• High level Map-Reduce functional description environ-
ment utilized at high level of abstraction. It is able
to provide a unified environment for the first level of
implementation of the abstract model (MapRed(1)), as
for any higher level of implementation in the future

• OPcode INjection for Connex-Arm Architecture (OPIN-
CAA) programming environment generates executable
code starting from a C-like code where the intense part
and the complex part of the application are segregated
but, in the same time, interleaved is an unified form

• pRISC family of parallel engines utilized as a generic
parameterized environment actualized or improved ac-
cording to the results provided by the previous two
components.

A. High Level Map-Reduce Functional Environment

Dr.Racket was utilized to develop the highest level of our
virtual prototyping environment: the Functional Level Verifi-
cation. Its pure functional character, inspired from [2], allows a
flexible description for both complex and intense computation
and, in the same time, allows generating a functional hierarchy
which supports our recursive structural definition for parallel
computation (see Figure 2).

The user view of the Map-Reduce architecture consists
of (1) the content of the external scalar memory, Memory,
S = ⟨s1,s2, . . . ,sM⟩ and (2) the content of the vector memory
consisting of the memory elements, mem(0) distributed in the
Map section:

v1 = ⟨s11,s12, . . . ,s1p⟩
v2 = ⟨s21,s22, . . . ,s2p⟩

. . .
vm = ⟨sm1,sm2, . . . ,smp⟩

We call v1,v2, . . . ,vp horizontal vectors. They are distributed
along the cells of the MAP array.

The MAP section contains also two special vectors. The
constant vector index: ix = ⟨1,2, . . . , p⟩ utilized to identify
each cell, and the p-component vector of integer scalars:
active = ⟨a1,a2, . . . ,ap⟩ utilized to select in each cycle the
active cells, i.e., the cells which perform the instruction issued
by the controller CONTR. If ai = 0 then the cell i is active,
else its state is not affected in the current cycle.

The GUI is organized to show the content of the scalar
memory and of vector memory (see Figure 4).

Fig. 4. The graphic interface for MapReduce functional environment.

The API offered to the programmer consists of initialization,
transfer, map, reduce, spatial control functions and finally,
global functions, as follows:

1) Initialization
(InitSystem n p m) : initialize a system with p cells,

with n words in each local memory, and an external memory
of m words.
(SetAll aAddr vect) : the vector aAddr takes the

value vect in all active cells.
Example:
> (SetAll 0 #(7 6 5 4 3 2 1 0))

(SetVector aAddr vect) : the vector aAddr takes
the value vect only in the active cells.
(SetStream mAddr stream) : starting from the ad-

dress mAddr in the external memory, Memory, is stored the
stream stream.
Example:
> (SetStream 4 #(15 16 17 18 19 10 11))

2) Transfer
(CopyVector aAddrD aAddrS) : the vector destina-

tion, aAddrD, takes the value of the vector source, aAddrS
(StoreVector aAddr mAddr) : the vector aAddr

is stored in the external memory starting from the address
mAddr.
(LoadVector aAddr mAddr) : load aAddr starting

from mAddr in Memory.
(StoreVectorPerm aAddr mAddr indexVect) :

store vector aAddr in external memory starting from mAddr
using the permute vector indexVect.
(LoadVectorPerm aAddr mAddr indexList) :

load vector aAddr from mAddr using the permute vector
indexList; see the result in Figure 5.
(StoreVectorStrided aAddr mAddr burst

stride) : store vector aAddr, starting with the address
mAddr, in bursts of burst words, with a stride of stride
words.
(LoadVectorStrided aAddr mAddr burst

stride) : load aAddr, from mAddr, in bursts of burst,
with a stride of stride.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 5. The load with permute operation: > (LoadVectorPerm 1 20
#(5 6 1 2 3 4 0 7)).

(StoreVectorScatter aAddr burst vAddr)
: store vector aAddr, in bursts of burst words at the
locations specified by the sequence vAddr.
Example:
> (StoreVectorScatter 3 2 #(10 5 12 3))

(LoadVectorGather aAddr burst vAddr) : load
aAddr, in bursts of burst words from the addresses vAddr.

3) Map Functions
a) Arithmetic & Logic Functions: The generic form of

the arithmetic functions are: (Func x y), or (Func x),
where x and y are scalars or vectors. The addition function is
defined by: (Add x y).

Example:
If the ACTIVE = #(0 0 0 0 0 0 0 0) then

> (Add 3 17)
20
> (SetAll 2 #(20 21 22 23 24 25 26 27)
#(20 21 22 23 24 25 26 27)
> (Add 10 (Vec 2))
#(30 31 32 33 34 35 36 37)
> (Add (Vec 2) 10)
#(30 31 32 33 34 35 36 37)
> (Add (Vec 2) #(0 1 2 3 4 5 6 7))
#(20 22 24 26 28 30 32 34)
> (Inc 2)
#(21 22 23 24 25 26 27 28)

b) Test Functions: The generic form of the test functions
are: (Cond x y), or (Cond x), where x and y are scalars
or vectors. These functions return Booleans or Boolean vec-
tors. The set of test functions contains: (Eq x y), (Lt x
y), (Leq x y), ... (Zero x).

4) Reduce Functions
(RedAdd v) : returns the sum of the components of the

vector v from the active cells of the array.

(RedMax v) : returns the maximum value of the com-
ponents of the vector v from the active cells of the array.

(RedMin v) : returns the minimum value of the com-
ponents of the vector v from the active cells of the array.

5) Spatial Control Functions
(ResetActive) : ACTIVE <= #(0 0 ... 0), acti-

vates all the cells in the array.

(SetActive bVect) : ACTIVE <= vect, the
Boolean vector bVect is utilized to select the active cells in
the array.

(Where bVect) : in all active cells where the Boolean
vector bVect takes the value 1, the ACTIVE vector remains
unchanged on 0; in all the other cells the ACTIVE vector is
incremented.

(ElseWhere) : everywhere ACTIVE < 2 0 is substi-
tuted by 1 and vice versa

(EndWhere): everywhere ACTIVE > 0 is decremented

(First) : increments ACTIVE except the first occurrence
of 0.

6) Global Functions
(ShiftLeft many vect scal) : shift left with

many positions vect and insert at right end scalar.
Example:

> (SetAll 1 #(1 2 3 4 5 6 7 8))
#(1 2 3 4 5 6 7 8)
> (ShiftLeft 3 1 13)
#(4 5 6 7 8 13 13 13)

(ShiftRight many vect scal) :

(RotateLeft many vect) : rotate vect many posi-
tions left.

(RotateRight many vect) : rotate vect many po-
sitions right.

(Permute v1 v2) : permute v1 according to v2.

(FirstIndex) : returns the index of the first active cell.

B. OPINCAA: Segregating Complex from Intense

The OPINCAA [3] (OPcode INjection for Connex-ARM
Architecture) programming environment allows the program-
mer to write software for the Map Reduce accelerator, to
run, to debug and to optimize it. Using a C-like syntax, the
complex code is segregated from the intense code, but they are
subsequently integrated in the same stream of code in order
to generate the executable code. The complex part of code is
executed on HOST while the intense part of code executes on
the Map-Reduce section.

The resulting programming environment facilitates pro-
gramming and debugging code for the accelerator (remote
step-by-step debug using gdb), and simulation on better per-
forming hosts machines. It also contains software for visual-
izing key components of the computation process (see Figure
6); this can be utilized to optimize the accelerated code.

The C part of the code is also utilized to control the data
transfers between the external memory and the internal dis-
tributed vector memory. The setup utilized for experimenting
consists of a Xilinx Zynq platform (dual-core ARM as HOST
and 128-core vector machine defined in the associated FPGA)

The following code performs a data transfer test from HOST
to the Map section, then executes a computation in Map
section, to verify a basic functioning of the system. In the
API utilized in the following example:
writeDataToArray(src, vectors, offset) :

starts a HOST to Map data transfer from HOST’s src memory
address, size of vectors vectors, starting with vector o f f set.
executeKernel(name) : starts the computation called

name on Map section.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

readReduction() : starts the Reduce process and re-
trieves result.

Listing 1. OPINCAA example
s t a t i c i n t t e s t I o w r i t e (ConnexMachine ∗m,

i n t KerNum ,
i n t numVect ,
i n t Param2)

{
i n t i n d e x ;
f o r (i n t c t =0 ; c t<MACHINES∗numVect ; c t ++)

d a t a [c t] = c t ;
m−>w r i t e D a t a T o A r r a y (da t a , numVect , Param2) ;
f o r (i n d e x =0; i n d e x < numVect ; i n d e x ++)

f o r (i n t c t = 0 ; c t < MACHINES; c t ++)
{

BEGIN KERNEL(KerNum) ;
EXECUTE IN ALL(R1 = INDEX ;

R2 = c t ;
R3 = 0 ;
R4 = (R1 == R2) ;
NOP;

)
EXECUTE WHERE EQ

(R3=LS [i n d e x +Param2] ;)
EXECUTE IN ALL (REDUCE(R3) ;)

END KERNEL(KerNum) ;

m−>e x e c u t e K e r n e l (t o s t r i n g (KerNum)) ;
i n t r e s u l t = m−>r e a d R e d u c t i o n () ;

i f (d a t a [i n d e x ∗MACHINES+ c t) != r e s u l t)
re turn FAIL ;

}
re turn PASS ;

}

Fig. 6. The graphic interface for the performance analysis in OPINCAA
functional environment. All computation and all data transfers are listed and
graphically displayed separately to form a true and real perspective of the
executed application

C. pRISC Family: Estimation in Early Stage of Develop-
ment

The most accurate evaluation is provided by the third
component: a parallel RISC family of processors (pRISC)
described and simulated in Verilog using the VIVADO design
suite. The pRISC family is defined using a parameterized
behavioral description in Verilog with many optional features
conditionally generated. The content of the program memory

is provided by a two-pass assembler written in Verilog. The
source code is written in an assembly language with a pair
of instructions per line: one for Controller and another to be
broadcasted to the Map section using Distr log-depth network
(see Figure 3).

Around behavioral description we designed a test bench
which includes the assembler code generator. A controlled
cycle counter provides a cycle accurate measure of the time
performance.

IV. USING THE PROTOTYPING ENVIRONMENT

The prototyping environment is utilized to investigate so-
lutions at different levels and for different purposes. The
first level supports mainly algorithmic developments, while
the third level is involved in advanced optimizations. The
OPINCAA environment is very efficient in partitioning and
generating the two kinds of codes, segments of code executed
on the cellular array and segments of code executed on the
mono or multi-core controller. The data streams between
the external scalar memory, Memory, and the internal vector
memory distributed along the cells are efficiently designed in
the OPINCAA environment.

Example 1: Let us take the simple example of the vector-
matrix product. Only the first and the third level of virtual
prototyping are involved (the second is not involved here
because the application is purely intensive and the transfer
issues are not addressed). The high level functional program
is:

Listing 2. Lisp code
/∗∗
M u l t i p l y v e c t o r wi th m a t r i x [v1 v2 v3 v4]
Example : i f

v e c t o r : (Vec aAddrV) = (1 1 1 1)
m a t r i x : [(Vec aAddrM +0) = (1 1 1 1)

(Vec aAddrM +1) = (2 2 2 2)
(Vec aAddrM +2) = (3 3 3 3)
(Vec aAddrM +3) = (4 4 4 4)]

r e s u l t : (Vec aAddrRes) = (4 8 12 16)
∗∗ /
(d e f i n e (v e c t M a t r i x M u l t

aAddrRes aAddrV aAddrM many)
(do ((i 0 (+ i 1))) ((= i many))

(S e t V e c t o r aAddrRes
(S h i f t L e f t V a l 1 (Vec aAddrRes)

(RedAdd
(Mult (Vec aAddrV) (Vec (+ aAddrM i)))))

)
)

)

The assembly code associated to the previous program
running on the pRISC family processors is:
/***
Assembly code for Matrix-Vector Multiplication

The 2-line loop (labeled 6) performs:
- RILOAD(127): load line from local memories
- MULT(0): multiplication, in map section
- cCPUSHL(1): reduction add, with result

in the global shift register
- cBRNZDEC(6): test, decrement and branch

***/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

cSEND(6); CADDRLD;
cLOAD(0); RLOAD(0);
cVSUB(1); MULT(0);

// LOOP
LB(6); cCPUSHL(1); RILOAD(127);

cBRNZDEC(6); MULT(0);
// END LOOP

cNOP; NOP; // latency step
...
cNOP; NOP; // latency step
cLOAD(9); SRLOAD;

The execution time for a N ×N matrix in a system with P
cells, where N ≤ P, is:

Tvm(N) = 2N +4+ logP ∈ O(N)

where logP is due to the latency introduced by the distribution
and reduction networks. For example, if N = P = 1024, the
vector-matrix product is computed using 2.012 cycles per
scalar component in the result vector.

⋄
The code generated in the third level of simulation can be

executed also in the OPINCAA simulator (in this regard the
two simulators are interchangeable).

The current use of this environment is in the domains
pointed by the Berkeley dwarfs [1], such as: N-body problem,
with application in molecular dynamics, convolutional neural
networks with applications in automotive, graph theory.

V. CONCLUSION

The virtual prototyping environment we built has three
levels, each corresponding to a mandatory stage in designing
and implementing (embedded) heterogenous accelerators: the
algorithmic level with its dominating functional aspect, the
segregated (between intense and complex) code generation,
the optimization of the intense code.

On each level the appropriate type of language is utilized:
Lisp-like for the functional level, C-like for providing the
two type of code, and Verilog HDL for optimization of the
accelerator part of the hybrheterogenous engine.

The three-level approach is imposed by the emergence of
the absolute novelty of the many-core parallel accelerators in
the context of the way of thinking too oppressively dominated
by the mono- and multi-core computation. The “sequential”
approach is not the starting point for parallel programs. Par-
allel programs result from new parallel algorithms, designed
starting from functional definitions, not from parallelizing
“sequential” programs. This is the main reason for the first
level in our approach.

There is also another reason for the first, functional level,
of our prototyping environment: the recursive definition of
the abstract model MapRed(i) (see Figure 2) is supported
for any i > 1 by our High Level Map-Reduce Functional
Environment. The future work is related with the way our
environment can be utilized for many-chip, many-board, ...
many-cabinet approach of parallel accelerators.

ACKNOWLEDGMENT

The authors got a lot of support in different stages of
the development of the heterogenous MapReduce architecture

from: Frank Ho, Radu Hobincu, Bogdan Mı̂ţu, Lucian Petrică,
Marius Stoian, Dominique Thiebaut and Dan Tomescu.

REFERENCES

[1] Krste Asanovic, et al., The landscape of parallel computing research: A
view from Berkeley, 2006. At:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf.

[2] John Backus, Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. Communications
of the ACM 21, 8 (August) 1978. 613-641.

[3] Cǎlin Bı̂ră, R. Hobincu, Lucian Petrică, ”OPINCAA: A Light-Weight
and Flexible Programming Environment For Parallel SIMD Accelerators”
Romanian Journal of Information Science and Technology, Volume 16,
Numbers 4, 2013, 336-350

[4] Stephen Kleene, General recursive functions of natural numbers. Mathe-
matische Annalen 112, 5, 1936. 727-742.

[5] Mihaela Maliţa, Gheorghe M. Ştefan, Dominique Thiébaut, Not Multi-,
but Many-Core: Designing Integral Parallel Architectures for Embedded
Computation. ACM SIGARCH Computer Architecture News, Vol. 35, No.
5, December 2007. 32-39.

[6] Mihaela Maliţa, and Gheorghe M. Ştefan, Backus language for functional
nano-devices. CAS 2011, vol. 2, 331-334.

[7] Gheorghe M. Ştefan, et al., The CA1024: A fully programmable system-
on-chip for cost-effective HDTV media processing. Hot Chips: A Sym-
posium on High Performance Chips. Memorial Auditorium, Stanford
University.

[8] Gheorghe M. Ştefan, One-chip TeraArchitecture. Proceedings of the 8th
Applications and Principles of Information Science Conference. Okinawa,
Japan, 2009.

[9] Gheorghe M. Ştefan, Integral parallel architecture in system-on-chip
designs. The 6th International Workshop on Unique Chips and Systems,
Atlanta, GA, USA, December 4, 2010, pp. 23-26.

[10] Gheorghe M. Ştefan, Mihaela Maliţa, Can One-Chip Parallel Computing
Be Liberated From Ad Hoc Solutions? A Computation Model Based
Approach and Its Implementation, 18th Inter. Conf. on Ciruits, Systems,
Communications and Computers, Santorini, July 17-21, 2014, 582-597.

Călin Bı̂ră teaches digital design applications
in Politehnica University of Bucharest. His
scientific interests are focused on embedded
systems and parallel computation. More at
http://www.dcae.pub.ro/en/membri/4
/bira_calin.

Mihaela Maliţa teaches computer science at Saint
Anselm College, US. Her interests are program-
ming languages, computer graphics, and parallel
algorithms. She wrote and tested different sim-
ulators for the Connex parallel chip. More at
http://www.anselm.edu/mmalita.

Gheorghe M. Ştefan teaches digital design in
Politehnica University of Bucharest. His scientific
interests are focused on digital circuits, computer
architecture and parallel computation. In the 1980s,
he led a team which designed and implemented the
Lisp machine DIALISP. In 2003-2009 he worked
as Chief Scientist and co-founder in Brightscale, a
Silicon Valley start-up which developed the BA1024,
a many-core chip for the HDTV market. More at
http://arh.pub.ro/gstefan/.

