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Mihaela Maliţa and Gheorghe M. Ştefan

Abstract Parallel computation is mathematically defined by Kleene’s
model of partial recursive functions. The paper proves that only the compo-
sition rule is independent. Therefore, it is used to define the Kleene Machine,
KM, and the Universal Kleene Machine, UKM, as the mathematical model
for parallel computation. The Map-Reduce parallel abstract machine model
is defined starting from UKM.
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1 Introduction

The historical evolution of the mono-core computation teaches us about the
right way to be followed in developing multi- and many-core computation.
The main steps in the history of mono-cores are:

1936: four equivalent mathematical models are published [10] [4] [7] [8]
(all seem to be triggered by Gödel’s paper on non-decidability) out of which
the Turing Machine offered the most appropriate technologically suggestion
for future developments leading eventually to mono-core computing

1944-45: MARK 1 computer, built by IBM for Harvard University, con-
secrated the Harvard abstract model, while von Neumann’s report [11]
introduced the von Neumann abstract model

1953: IBM launched IBM 701, the first electronic computer manufac-
tured in quantity

1964: the concept of computer architecture is introduced [3] to allow
the independent development for the two different aspects of computer de-
sign with different rates of evolution: software and hardware.

Thus, there are now on the market few stable and successful mono-core
architectures, such as x86, ARM. The emergence of multi- and many-core
computing, under the market criteria pressure, had its logical evolution dis-
torted (in 1962, Burroughs started the manufacturing in quantity; only in
1965, Edsger W. Dijkstra raised architectural issues [6]; in 1974, the first
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abstract machine model is proposed [9], confused with the mathematical
model). In this paper, we are able now to follow for multi/many-core (par-
allel) computation an improved path which consists of the following four
steps: mathematical model – abstract model – architectural model – manu-
facturing in quantity.

In section 3, Kleene’s mathematical model [7] is used to define the Kleene
Machine, KM, and the Universal Kleene Machine, UKM, as a genuinemathe-
matical model for parallel computation. Then, in section 3, the Map-Reduce
abstract machine model is proposed as the second step, in defining an ab-
stract machine model for parallel computation.

2 Kleene’s Model for Parallel Computing

2.1 Only the Composition Rule is Independent

From [7] the following definition for partial recursive functions is extracted:

Definition 2.1 Any partial recursive function f : Nn → N can be computed
using the initial functions:

• ZERO(x) = 0: the variable x takes the value zero

• INC(x) = x+ 1: increments the variable x ∈ N

• SEL(i, x1, . . . , xn) = xi: i selects the value of xi from the sequence
X =< x1, . . . , xn > (called identity function in Kleene’s paper)

and the application of the following rules:

• Composition:
f(x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hp(x1, . . . , xn)) where: f is a to-
tal function if g : Np → N and hi : Nn → N, for i = 1, . . . p, are total
functions

• Primitive recursion:
f(x1, . . . , xn, y) = g(x1, . . . , xn, f(x1, . . . , xn, y − 1)) while
f(x1, . . . , xn, 0) = h(x1, . . . , xn), where: f is a total function if g and
h are total functions (called ordinary recursion in Kleene’s paper)

• Minimization (least-search):
f(x, y) = µy[g(x, y) = 0], i.e., the rule computes the value of function
f : N2 → N as the smallest y for which the function g(x, y) = 0, if
any.
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2.1.1 Preliminary Definitions

Definition 2.2 The reduction-less composition, or map composition, MC,
is the composition: f(x1, . . . , xn) =< h1(x1, . . . , xn), . . . hp(x1, . . . , xn) >
because: g(y1, . . . , yp) =< y1, . . . , yp >.

Definition 2.3 The reduction composition, RC, is the composition:
f(y1, . . . yp) = g(y1, . . . , yp) with hi(x1, . . . , xn) = SEL(i, x1, . . . , xn) = xi,
for i = 1, . . . , n and n = p.

According to the previous two definitions, the composition rule could be
considered as having a map-reduce structure.

Definition 2.4 Let be the reduction-less composition Ci : Ni → Ni+1 with:
hi+1(x1, . . . , xi) = Pi(SEL(i, x1, . . . , xi)) = Pi(xi) while hk(x1, . . . , xi) =
SEL(k, x1, . . . , xi) = xk for k = 1, 2, . . . , i. The actual form of Ci results:

Ci(x1, . . . , xi) =< x1, x2, . . . , xi, Pi(xi) >

P1

?

?

?

C1

P2

?

?

C2

Pk

?

?

b.

Ck

P1 P2
- - - Pk

- -
? ? ? ?

x

?

x

P1(x) P2(P1(x)) Pk(...P1(x)...)

P1(x)
P2(P1(x))

Pk(...P1(x)...)

a.

Figure 1: The multi-output pipeline structure, MOP, as a repeated applica-
tion of the composition Ci, for i = 1, 2, . . . , k, . . .. a. The explicit application
of Ci. b. The resulting MOP circuit structure.

Definition 2.5 The repeated application of Ci (see Figure 1a1), starting
from i = 1 with x1 = x defines the multi-output pipelined, MOP, function

1The graphic representation of functions uses blocks of form

F- -x F(x)

which stand for the computation F (x).
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MOP : N → Nn, as

MOP (x) = (x, P1(x), P2(P1(x)), . . . , Pk(Pk−1(. . . , (P1(x) . . .)), . . .)

The function MOP (x) is a total function if the functions Pi are total
functions, since it is computed using only the repeated application of the
composition Ci. For the theoretical model, n is not limited to a specific
value.

Definition 2.6 The function predicated selection, PS : {{0, 1}×N}n → N
is

PS(S) = ADD(MULT (SEL(0, S)), . . .)

where: S =< (p0, s0), (p1, s1), . . . > takes a sequence of pairs (predicate, scalar),
and returns a scalar. The functions ADD and MULT add and multiply,
correspondingly, the components of the sequence received as argument.

MULT is the function mapped on the first level of composition, while
ADD is the reduction function. The function PS is used when one and only
one pi takes the value 1, i.e., for i = k pi = 1 and for i ̸= k pi = 0:

PS(S) = ADD(. . . ,MULT (0, sk−1),MULT (1, sk),MULT (0, sk+1), . . .)

PS(S) = ADD(0, 0, . . . , 0, sk, 0, . . .) = sk

Definition 2.7 Let be the Boolean sequence X =< x0, x1, . . . >. The func-
tion FIRST (X) : {0, 1}n → {0, 1}n is computed, by definition, using a two
stage structure as follows:

1. the function MOPOR(x,X) =< y0, y1, . . . >, for x = SEL(0, X),
computes the OR prefix function, ORPX(X) : {0, 1}n → {0, 1}n, with
the following computation performed in each Pi:

Pi(x,X) =< yi, X >=< OR(x, SEL(i,X)), X >

for i = 1, 2, . . ., which allows to select from its multi-output the se-
quence of OR prefixes from the binary sequence X:

ORPX(X) = MOPOR(SEL(0, X), X) =< y0, y1, . . . >=

< x0, (x0 + x1), (x0 + x1 + x2), . . . >

where “+” stands for the logic OR function

2. a reduction-less composition with hi(ORPX(X)) = firsti, where

firsti = AND(SEL(i, ORPX(X)), NOT (SEL((i−1), ORPX(X))))

for i = 0, 1, . . ., where SEL((i− 1), ORPX(X)) = 0 for i = 0,

such that
FIRST (X) =< first0, first1, . . . >

is a sequence of Booleans with a single 1, if any.
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2.1.2 Theorems

Theorem 2.1 The primitive recursive rule is reducible to repeated applica-
tions of specific compositions.

Proof. The primitive recursion rule (see Definition 2.1) could be applied
in its iterative form using the following expression:

f(x, y) = g(x, g(x, g(x, . . . g︸ ︷︷ ︸
y times

(x, h(x)) . . .)))

Let be the specific instantiation of the MOP function (see Definition
2.5), with the predicate pi = (y == i), where the functions Pi compute a
quintuple, as follows:

P1 = H(i, x, y) =< INC(i), x, y, f(x, i), pi >=< z1, z2, z3, z4, z5 >

where: because, i = 0, f(x, i) = h(x)

Pk = G(i, x, y, f(x, i−1)) =< INC(i), x, y, f(x, i), pi >=< z1, z2, z3, z4, z5 >

for k = 2, 3, . . . and i = 1, 2, . . ., where each Pk, function is computed for
the quadruple < z1, z2, z3, z4 > generated by Pk−1. From the outputs of the
MOP function we select the sequences of pairs < z4, z5 > in order to obtain:

S =<< f(x, 0), (y == 0) >,< f(x, 1), (y == 1) >, . . . >

S is used as input for the function PS which provides the result f(x, y). �

f(x, y)
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Figure 2: The specific MOP structure for partial recursive computation.

Figure 2 presents the function (see Definition 2.6) obtained by composing
a specific MOP function with PS function. The two stage computation just
described, as a structure indefinitely extensible to the right, is a theoretical
model, because the index i takes values no matter how large, similar with
the indefinitely extensible (“infinite”) tape of Turing’s machine. But, it is
very important that the algorithmic complexity of the description is in O(1),
because the functions H, G, MOP and PS have constant size descriptions.

Theorem 2.2 The minimization (least-search) rule is reducible to repeated
applications of specific compositions.
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Proof. The minimization (least-search) rule computes the value of f(x) as
the smallest y for which g(x, y) = 0. The three steps used in the evaluation
of the function are f(x) = F3(F2(F1(x))), three specific compositions, as
follows :

1. F1 : N → {0, 1}n, is a “speculative” reduction-less composition, which
returns the “infinite” sequence of predicates, X1:

F1(x) =< h0(x), h1(x), . . . >=< p0, p1, . . . >= X1

with hi(x) = (g(x, i) == 0) = pi; in this step the function g is com-
puted for x and “all” positive integers starting with 0.

2. F2 : {0, 1}n → {0, 1}n is a reduction-less composition with:

F2(X1) = FIRST (X1) = X2

It provides a sequence of predicates with no more than one 1, if any.

3. F3 : {0, 1}n → N, is a composition with:

hi(X2) = ADD(SEL(i,X2), (SEL(i,X2) ? i : 0))

g = ADD(h0(X2), h1(X2), . . .) = result

If result = 0, then the function f(x) is not defined for the input
variable x, else, if result > 0, the function is defined for x and

f(x) = result− 1

It selects as solution, if it exists, the incremented index corresponding
to the occurrence of 1 in X2, if any.

�
The computation just described is only a theoretical model, because

the index i has an indefinitely large value. But, the size of algorithmic
description remains O(1).

Corollary 2.1 Any computation defined in Definition 2.1 can be done, ac-
cording to Theorem 2.1 and Theorem 2.2, using the initial functions and the
repeated application of the composition rule.

Kleene’s approach defines the other two rules, ordinary (primitive) re-
cursion and minimization (least-search), for helping in the taxonomy of the
recursive functions. For defining the computation the Corollary 2.2 makes
the necessary delimitation.
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2.2 Kleene Machine: a Parallel Model of Computation

According to Theorem 2.1 and Theorem 2.2 only the composition rule must
be considered in defining what means computation.

Definition 2.8 Kleene Machine, KM, consists of a two-layer construct,
associated to the composition rule, see Figure 3, with:

1. map level: the independent functions hi, for i = 0, 1, . . .

2. reduction level: the function g

where hi, for i = 0, 1, . . . and g are initial functions or compositions.

h1(X) h2(X) hi(X)

? ? ?

? ? ?

X =< x1, . . . , xn >

map level

?

reduce level

f(x1, . . . , xn)

g(h1(X), . . . hi(X), . . .)

Figure 3: Kleene Machine.

Because Kleene’s model is equivalent with the Turing Machine model
the next corollary is true.

Corollary 2.2 Kleene Machine represents a mathematical model for par-
allel computation.

2.3 Universal Kleene Machine

For each function f there is a KM. As Turing defined its Universal Turing
Machine, UTM, the concept of KM must be accompanied by the concept of
Universal Kleene Machine, UKM. An UKM must provide the possibility
to define any KM on the same structure and to compose KMs.

Definition 2.9 Universal Kleene Machine is a finite KM, with p cells
on the map-level, loop connected with a Finite State Machine, FSM, with
access to a non-finite Memory. The map-level of KM contains p identical
cells, C1, . . . , Cp, each having the function:

C(hi, X) = SEL(hi,H0(X),H1(X), . . . , Hq−1(X))
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C1 C2 Cp

6

? ? ?

? ? ?
X X X

? ? ?

?

h1 h2 hp

out

- R

-

Finite

State

�

?

in

g

f?
end

Machine

Memory

�

y1 y2 yp

Figure 4: Universal Kleene Machine.

while the reduction-level has the function:

R(g, Y ) = SEL(g,G0(Y ), G1(Y ), . . . , Gr−1(Y ))

where: Y is the p-component sequence < y1, y2, . . . , yp >, and the two finite
sets of functions

H = {H0(X),H1(X), . . . ,Hq−1(X)}

G = {G0(X), G1(X), . . . , Gr−1(X)}

represent the characteristic set of functions, F = H ∪ G, used to compose
any computable function, while A = H ∪ G ∪ N represents the alphabet of
UKM. Formally:

UKM = (S,A, S0, f)

where:

• S is the finite states set of the FSM

• A is the alphabet of the UKM

• S0 ∈ S is the initial state of the Finite State Machine

• f is the transition function

f : S × A× N → S ×Hp × Nv ×G× A

which, in each cycle, according to the current state of FSM, the element
of A read from Memory and the output provided by the reduction R,
generate the next state of FSM, a stream of p functions for the map-
level, a stream of v input values, the function for the reduce-level and
the element from A to be written in Memory.
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The UKM is initialized in the state S0, and after a finite number of cycles,
if the computation is possible, the output “end” is activated indicating the
end of computation with the result on the output “out”.

Theorem 2.3 The minimal UKM is defined for p = 3 with each cells having
only one function, as follows:

C1(X) = ZERO, C2 = INC(SEL(k,X)), C3 = SEL(i,X)

while R = SEL(g, y0, y1, y2).

Proof. The FSM is used to build the sequence X from the string of outputs
(see Figure 4). The minimal UKM becomes an UTM. �

3 Map-Reduce Abstract Machine Model for
Parallel Computing

From the UKM, as a mathematical model for parallel computation, to an
abstract model for parallel computation able to support an actual implemen-
tation, few simplifying steps are needed. They are not formally sustained
by rigorous proofs. The purpose of this transition is motivated by the tran-
sition from a competent model to a model which is also able to attain high
performance.

Definition 3.1 A computation model is competent if the computation it
supports ends in a finite number of steps.

Definition 3.2 A computation model is performant if the computation it
supports ends in a minimal number of steps.

The road from competence to performance requires engineering work.
The result is validated by the evaluation of the resulting performance.

3.1 Forms of Parallelism

Five forms of simplified parallelism are emphasized as the meaningful set
of particular compositions able to provide the transition from a competent
model to a performant one.

Definition 3.3 Data-parallel computation is defined for MC computa-
tion (see Definition 2.2) when n = m with hi(x1, . . . , xn) = h(xi), for
i = 1, . . . , n.

The same function, h, is applied in parallel to each component, xi, of
the input vector.
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Definition 3.4 Reduction-parallel computation is defined for RC com-
putation (see Definition 2.3) when n = m with hi(x1, . . . , xn) = h(xi) = xi,
for i = 1, . . . , n.

On the first level of the composition, the map level, all the functions of
one variable, xi, perform the identity function.

Definition 3.5 Speculative-parallel computation is defined for MC com-
putation when n = 1.

Each function hi has the same input variable x1.

Definition 3.6 Thread-parallel computation is defined for MC computa-
tion when n = m with hi(x1, . . . , xn) = hi(xi), for i = 1, . . . , n.

Each cell performs a specific function on different data.

Definition 3.7 Time-parallel computation is defined for repeated appli-
cation of the composition rule with m = n = 1.

The repeated application of time-parallel computation provides the fol-
lowing pipe of functions:

f(x) = fp(fp−1(fp−2(. . . f1(x) . . .)))

3.2 Integral Parallelism

We claim that the previous five forms cover efficiently the most frequent
parallel computation patterns. Integrating them on a single engine provides
the parallel abstract model for computation. In Figure 5, the MapReduce
recursive parallel abstract model for parallel computation is presented. It
consists of:

• pairs eng-mem in the MAP section; they correspond to the cells Ci

from UKM, and consist of:

– eng, the engine, which is an execution unit or a processing unit

– mem, the local memory to store data (when eng are execution
units) or data and programs (when eng are processing units)

• REDUCE unit; it corresponds to the R function in UKM

• CONTR, a controller used as sequencer; performs the function of FSM
from UKM

• MEMORY, a memory resource for data and programs.

The entire structure from Figure 5 can be seen as a two-part entity:
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Figure 5: MapReduce recursive abstract model for parallel computa-
tion.

• eng: MAP + REDUCE + CONTR

• mem: MEMORY

which behaves as a cell in a recursive hierarchy of a map-reduce organi-
zation of many-core coomputation.

4 Concluding Remarks

Composition is the only independent rule in Kleene’s model. Kleene
defined the primitive recursive rule and the minimization (least-search) rule
to support the taxonomy of the recursive functions.

Composition defines Kleene Machine as the mathematical model for
parallel computation with two levels: the map level, which provides a syn-
chronous parallelism, and the reduction level, which provides the diachronic
parallelism.

Universal Kleene Machine represents the support for the parallel ab-
stract machine model. It moves the not-finite resources at the level of a
simpler structure – the “infinite” memory – similar with Turing’s approach.
Its simplest form is UTM.

The Map-Reduce parallel abstract machine model adds to the com-
petence of UKM the possibilities to actually develop an efficient computing
engine with high performances. The five forms of parallelism – data, reduc-
tion, speculative, thread, time – are simplified forms with an efficiency to be
proved by use, not by formal proofs.
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The generic parallel architecture and organization of an actual ma-
chine will be also Map-Reduce as a consequence of the mathematical and ab-
stract model. From the chip level until de cloud level the recursive abstract
model is able to provide the same organization and programming style.

Future work: the architectural definition using Backus’ Functional Forms
[2], and validation using Berkeley’s dwarfs [1].
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