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Computer Science Department
Saint Anselm College, Manchester, NH

Gheorghe M. Ştefan
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Abstract—There are large classes of embedded applications
involving tightly interleaved complex and intense computations.
The solution we propose segregates the complex from the intense
in a many-core centered engine. We base our approach on
a map-reduce abstract machine model suggested by Kleene’s
mathematical model of computation. An actual MapReduce Ac-
celerator is described and is evaluated for various application
domains. Results, based on ASIC and FPGA implementations,
show > 10× improvements in area & energy use.

Index Terms—many-core, accelerators-based architecture, em-
bedded computation, MapReduce, computation model.

I. INTRODUCTION

The current embedded accelerators are specific accelerators
(for graphics, video, SDR, ...) or add hoc structured multi-
or many-core engines. Our proposal is to use a many-core
approach to provide a general purpose parallel engine able to
perform efficiently all forms of intense computations requested
in the embedded domain. The criteria for evaluating such an
architecture are: the use of power (GOPS/Watt) and the use
of area (GOPS/mm2). According to the evaluations made
for few applications, our approach provides for both, energy
and area, more than 10× improvements. The MapReduce
Accelerator solution is compared with the ARM processors,
the most used general purpose embedded processors.

The second section explains the reason for the use of a
MapReduce architecture for the intense part of the embed-
ded computation. The third section describes the one-chip
implementation of the MapReduce Accelerator’s structure. The
fourth section reviews few classes of applications, already
investigated, and shows the improved use of area and power
compared with mono-core embedded computation.

II. WHY MAP-REDUCE?

In order to develop a general purpose parallel accelerator
we propose a three-step approach: (1) consider a mathematical
parallel model of computation (answering the question: what
is parallel computation?), (2) define an abstract machine model
(which is about how the structure of a parallel machine is orga-
nized), and (3) design a parallel architecture (which provides
the functional interface between the physical structure and the
informational structure used to program the parallel machine).

Instead of building ad hoc parallel engines, putting together
Turing-based machines, we started from Stephen Kleene’s
mathematical model of computation [4] which provides a
genuine model for parallel computation, just as Turing’s model
did for the sequential computation. We already proved that
only the first out of the three Kleene’s rules – the composition

– is independent [6]. Therefore, in defining real abstract
machine models, the composition rule, expressed as

f(x) = g(h1(x), h2(x), . . . hp(x))

where: x = {x1, x2, . . . xp}, is the only one to be considered.
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Fig. 1. The circuit structure associated to composition.

The abstract parallel machine model results as a two-
level construct suggested in Fig. 1. The map level works
on correspondences between functions or vector of functions
and variables or vector of variables. Three mappings result:
function to vector (data-parallel), variable to vector of func-
tions (speculative-parallel), vector of functions to vector of
variables (thread-parallel). The reduce level computes a vector
to value function.

The users image of the architecture consists of two arrays:
the one-dimension array of the external memory and the two-
dimension array of the internal memory (a vector memory)
distributed along the cells at the map level (in cell i are stored
all the i-th components of the vectors). The operations on the
internal two-dimension memory are predicated operations on
vectors. A Boolean vector is used for predicated operations.
The accelerator performs the following types of operations:

scalarVect | BooleanVect <= OP(vect, vect)
scalarVect | BooleanVect <= OP(vect, scal)
scal | Boolean <= OP(vect)

The predicated operations perform a “spatial if-then-else”
along the cells of the map level. The form:

where (BooleanVect) OP1(...);
elseWhere OP2(...);

endWhere

stands for: OP1 is done in cells where BooleanVect = 1,
while OP2 is done in cells where BooleanVect = 0

III. MAPREDUCE ONE-CHIP ENGINE

An actual implementation of the abstract machine defined
above is in Fig. 2 [5], where PROCESSOR runs the complex
part of the program and controls the execution of the intense



part on the MapReduce ACCELERATOR. Each cell in MAP
and CONTROLLER execute the same ISA. The program is
organized in pairs of instructions, one for CONTROLLER,
one for the cells in MAP. The local memory in cells contains,
if needed, code for the thread-parallel mode.
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Fig. 2. The MapReduce Accelerator

Because each cell has its m-word memory, the data in MAP
represents an array of m p-scalar horizontal vectors:

v1 =< x11, . . . , x1p >
v2 =< x21, . . . , x2p >

. . .
vm =< xm1, . . . , xmp >

where: each “column”, < x1i, . . . , xmi >, is the “vertical”
vector of scalars associated to the computational cell ci.

IV. APPLICATIONS

The embedded MapReduce architecture is cycle accurate
evaluated on a FPGA prototype described in [3], where PRO-
CESSOR is an ARM Cortex 9 and MapReduce ACCELERA-
TOR consists of 128 16-bit cells engine. On the other hand, for
evaluating the area and energy efficiency we synthesized an
ARM Cortex 9 core and a MapReduce ACCELERATOR for
64 16-bit cells, proving that the two engines have the same area
and consume the same energy working at the same frequency.

A. Pure SIMD Applications

When data consists of independent vertical vectors, the
system works in SIMD mode with 100% degree of parallelism.

1) Encryption: the AES algorithm on Cortex A9 is done
in 173 cycle/byte, while on a 64-cell MapReduce engine is
2.1 cycle/byte. Results the use of area & power is improved
173/2.1 = 82 times [2]. The acceleration is supra-linear
because the data transfer is transparent to the computation.

2) FFT: because for FFT 32-bit computation is requested,
a 32 32-bit cell engine is used [2]. It has the size and the
power consumption of a Cortex A9 core. The improvement
in area and power use is 19×. Because the accelerator does

not have hardware multipliers in its cells, the multiplication is
performed in 10 cycles, resulting less than 32× improvement.
B. SPMD Applications

1) Frame Rate Conversion: the BA1024 chip, centered on
a 1024 16-bit cells MapReduce accelerator implemented in
90nm and running at 250 MHz, was programmed to perform
in real time the frame rate conversion for HDTV.

2) Sorting: the Batcher sort algorithm implemented on a
64 16-bit cell accelerator provide > 64× improvement [2].

3) MIMD-Like Operation: in [7] the cells in MAP are serial
connected to perform a pipe of functions on a stream of data.
C. MapReduce Applications

1) SIFT Algorithm: the SIFT algorithm has a version for
SAD, and another for SSD. For SAD [3] the acceleration is
26×; for SSD it is 42×. A MapReduce engine of 128 cells was
compared with a dual ARM Cortex 9 with Neons (equivalent
with 8 SIMD cores). Thus, the acceleration is supra-linear.

2) Neural Network: the NN computation consists in matrix-
vector multiplication, i.e., in dot-product, a typical map-reduce
operation. In [1] is proved that the fastest specialized chip in
2007, Hitachi WSI, is 17× slower than the solution with our
MapReduce engine with 1024 16-bit cells (90nm version).

V. CONCLUSION

The MapReduce Accelerator provides, for some computa-
tionally intense applications, more than 10× improvement in
the area and energy use by strongly segregating the com-
plex part from the intense part of the computation [5]. The
MapReduce abstract model originated in Kleene’s mathemat-
ical model provides the foundation for developing a parallel
environment for embedded computation.
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