
Architectural Principles for One-Chip Parallel Computer

MIHAELA MALIŢA
Saint Anselm College

Department of Computer Science
100 Saint Anselm Dr., Manchester

New Hampshire, USA
mmalita@anselm.edu

GHEORGHE M. ŞTEFAN
Politehnica University of Bucharest

Faculty of Electronics
1-3 Maniu Bd. Bucharest

ROMANIA
gstefan@arh.pub.ro

Abstract: This paper starts from the programmer’s view and states architectural principles for designing the one-
chip many processor computer. John Backus’s and Gary Sabot’s old visions about how a parallel computer must
be programmed are followed in the context of the current technologies. The proposed architectural principles are
exemplified with the Connex chip, a 1024-cell SPMD engine able to provide 120 GOPS/Watt, 6 GOPS/mm2 and
60 GOPS/$.

Key–Words: Parallel computation, computer architecture, parallel programming, functional programming, many-
cell computer.

1 Introduction

Programming parallel engines is currently the main
challenge of parallel computation. Even if a good pro-
gramming model is provided, the problem of gener-
ating efficient code remains a big issue, because de-
signing a transparent architecture is not an easy task.
The bet on a good fit between a hardware structure
and a programming model support the effort of defin-
ing a transparent architecture, the first condition for a
friendly programming environment.

What means a good architecture? For a sequential
engine is: the total transparency. For a parallel engine
we are not yet in the position to provide a definitive
answer. A tentative answer is possible. Maybe, we
should give up some restrictions and accept to manage
explicitly aspects related with the communication.

The paper starts from two solutions proposed, in
an old different technological environment, by John
Backus in 1978 [2] and Gary Sabot in 1988 [6]. We
reconsider their approach because of the current tech-
nological improvements. Backus with its functional
forms suggests the five forms of parallelism of an Inte-
gral Parallel Architecture, while the Paralation model
of Sabot goes deeply makeing explicit distinction be-
tween computation and communication, exercising, in
the same time, explicit control over locality.

The Connex Architecture [4] and the associated
hardware, the Connex System [9] [10], seems to
match pretty well the features requested by both, func-
tional forms of Backus the paralations of Sabot.

2 The Functional Forms of Backus
The Functional Programming Systems (FP Systems)
is proposed by John Backus as an alternative to the
von Neumann style of programming. But, FP Systems
can be seen also as a possible definition for paral-
lel system from the programming point of view. An
FP System consists of objects (atoms & sequences),
functions and functional forms. We claim that the
functional forms define the way the parallel execution
works in an Integral Parallel Architecture [10].
Apply to all is the functional form used to defines
data parallelism. It is represented by:

αf :< x1, . . . , xp >→< f : x1, . . . , f : xp >
Usually, unary (xi is an atom, and function f is not,
inc, ...) and binary (xi is a pair of atoms, and func-
tion f is add, mult, compare, ...) elementwise
functions are performed. But, n-ary functions are also
considered (if xi is a sequence, then f could be fft).
Insert defines the reduction parallelism. The se-
quential recursive definition proposed by Backus
/f :< x1, . . . , xp >→
f :< x1, /f :< x2, . . . , xp >>
can be implemented in parallel by a log-depth tree.
Frequently used functions are: select, defined by:
i :< x1, . . . , xp >→ xi, which returns the i-th ele-
ment of a sequence, add (returns the sum of the ele-
ments), max (returns the maximum value).
Construction defines the speculative parallelism,
defined by:

[f1, . . . , fp] : x →< f1 : x, . . . , fp : x >
There is a special case when fi(x) = g(i, x) when the
construction is implemented as an Apply to all which
uses the index sequence ix =< 1, . . . , p >.



Threaded construction defines the thread paral-
lelism. It is a form inspired from construction:
θ[f1, . . . , fn] :< x1, . . . , xp >→
< f1 : x1, . . . , fn : xp >

Composition defines the time parallelism as a
pipelined application of a sequence of functions,
f1,f2, . . ., fq, to x, as follows:
(f1 ◦ f2 ◦ . . . ◦ fq) : x ≡ ((f1 : f2 : . . . : (fq : x) . . .))
Composition supports the transition from vector pro-
cessing to stream processing.
Condition allows both, the conditioned sequence
of operations applied on a stream of sequences
(requested by the Single Program Multiple Data –
SPMD [5]):
(p → f ; g) : x →
if ((p : x) = 1) f : x; else g : x;
and the conditioned execution along a sequence:
(p → f ; g) :< x1, . . . , xp >→
< (p → f ; g) : x1, . . . , (p → f ; g) : xp >

3 The Sabot’s Paralation
The Paralation programming model proposed by
Sabot for parallel architectures had an undeserved lit-
tle impact in the world of parallel computing. It is an
elegant approach for parallelism which uses only one
data structure and three operators. We claim that in
the domain of one-chip parallel computation the main
concerns about Paralation model are removed.

The only data structure is the paralation (parallel
relation) which is a two-dimension array organized
horizontally on fields and vertically on sites. It con-
tains at least the index field. When a new par-
alation is initialized its first field index is created. For
example, a 3-field paralation with 8 sites (the first field
is the index field) is:

((0 1 2 3 4 5 6 7)
(a b c d e f g h)
(C B A E F D H G))

Elementwise evaluation is the first operation in the
Paralation model. Let be the paralation:
P1=(index A B)=((0 1 2 3 4 5 6 7)

(1 0 1 2 4 7 9 2)
(4 7 9 2 1 0 1 2))

The conditioned elementwise evaluation C =
A<B ? A:B generate a new field in P1:
P1=(index A B C)=((0 1 2 3 4 5 6 7)

(1 0 1 2 4 7 9 2)
(4 7 9 2 1 0 1 2)
(1 0 1 2 1 0 1 2))

In the approach proposed by Backus the element-
wise evaluation is Apply to all.

Move is a parallel assignment which moves the con-
tent of one field to another. The general form of this
operation specifies which element in the source field
goes into which element in the destination field. The
simplest mapping is when each element in the source
field keeps its position unchanged in the destination.
Another mapping is specified by a permutation field,
as in the following example, where S is the source, P
is the permutation and D is the destination:
P1=(index S P D)=((0 1 2 3 4 5 6 7)

(a b c d e f g h)
(4 7 3 2 1 5 0 6)
(e h d c b f a g))

Match is the third operator. Mapping is a partial and
multi-valued operation. Default values are provided
by a default field (DF). A general mapping combines
sometimes some elements into a single one using a
combining function (add in our example). Two fields,
mapping source (MS) and mapping target (MT), are
used to define the mapping. Let us illustrate the
mapped move using the match operation:
(MS MT DF S D)=((a b c d a b e a)

(b e c f d c)
(d d d d d d)
(3 6 4 1 7 2 2 5)
((6+2=8) 2 4 d 1 4))

To the first element in MT point the 2nd element
and the 6th element from MS, then the first element in
D is the sum between the 2nd element and the 6th ele-
ment from S. To the second element in MT points only
the 7th element from MS, then the second element in
D is the 7th from S, and so on. The mapping is partial,
because the 4th element in D receives nothing from S,
and is multi-valued because the first element in D re-
ceives two elements from S, which are reduced to one
element using the combining function add.

4 Connex Architeecture
4.1 The hardware
Connex System (Figure 1) is a one-chip many-core
parallel engine, designed for general purpose or em-
bedded applications. It consists of:
Linear Array of Cells : a p-cell one-dimension ar-
ray; each cell contains a processing element with local
memory and is connected to the left and the right cell.
Controller : a RISC processor which issues in each
cycle an instruction, accompanied by an atom and/or
an address if needed, received by each cell in the ar-
ray; it runs also the sequential code.
Trans : is the transfer unit used to exchange, trans-
parently to the computation process, scalar vectors
with the external memory.
Broadcast : is a log-dept pipelined tree used to
distribute to each cell the triplet {instruction,
address, atom} issued by the Controller.



?
�

Interface

atom

Linear

?

CONNEX SYSTEM

?

ARRAY

of CELLS

?

ConnexArrayTM

-

?

?
-

Trans

�-�

-�

-�-�

-�

?? ?

?? ?

Broadcast

Reduction

�Scan

Controller flaginstruction
atom

address

�

Interconnection Fabric

External Memory

?
6 6

sequenceinstruction, atom

6

Figure 1: The Connex System.

Reduction : performs reduction operations on the
atoms issued by each active cell.
Scan : is the global loop closed over the array; it
processes vectors received from the array.

4.2 The user view of the system
For the user of the system a simple image is provided.
It is kept as simple as possible, “but not simpler”, in
order to help the programmer to optimize its approach.
It consists in the internal memory – a two-dimension
array of scalars – and the external memory. The nota-
tions used for the internal memory of vectors are:
ix =< 1, . . . i, . . . p >
v0 =< s11, s12, . . . s1i, . . . s1p >
v1 =< s21, s22, . . . s2i, . . . s2p >
. . .
vj =< sj1, sj2, . . . sji, . . . sjp >
. . .
vn−1 =< sn1, sn1, . . . sni, . . . snp >
a =< b1, b2, . . . bi, . . . bp >
while for the external RAM:
s =< s0, s1, . . . si, . . . sm−1 >
where:

• ix is a constant vector called index; each cell is
identified by one component of this vector

• v =< v1, v2, . . . vj , . . . vn > is a two-dimension

array of p × n scalars; each line vj , called hor-
izontal vector, is distributed along the cells (one
component per cell), while each column, wi =<
s1i, s2i, . . . sji, . . . sni >, called vertical vector,
is stored in the local memory of the i-th cell

• a is the activation vector of Booleans distributed
along the cell; the i-th cell is active if bi = 1

• s is the external memory of scalars.

4.3 Connex ISA
The instruction set of Connex (Connex ISA) is de-
fined in SCHEME. A vector is always a horizontal
one. Connex ISA is partially described here, with em-
phasis on the functionality related with our purpose:

(Store aAddr mAddr) : store the vector vaAddr in
the external memory starting with smAddr.

(Load aAddr mAddr) : load the vector vaAddr with
atoms from the external memory starting with smAddr.

(unaryOp vector) : is an element wise unary oper-
ation (unary = {Inc,Dec,Not,...}).

(binaryOp op1 op2) : is an ele-
ment wise binary operation (binary =
{Add,Mult,Div,And,...}); at least one of
op1 or op2 is a vector.

(redOp vector) : is the reduction operation (Op =
{Add,Max,...}) which returns the Op operation
applied on the active atoms of the vector vector.

(test x y) : is a test operation (test =
{Eq,Lt,Gt,...}) which returns a Boolean vector;
at least one of x or y is a vector.

(Where vector) : acts on active cells and sets inac-
tive all the cells where the vector vector is 0.

(ElseWhere) : restores the state of cells before the
last Where and applies Where with the comple-
mented vector vector used by the last Where.

(EndWhere) : sets active all the cells inactivated by
the last Where or the last ElseWhere, i.e., restore
the activation shape modified by the last Where.

(Permute vector1 vector2) : permutes the vector
vector1, according to the indexes provided by the
vector vector2; performed in the Scan module.

(Search element vector) : on the active com-
ponents of the vector vector search the atom
element; only the components equal with
element remain active.



4.4 In silicon validation of Connex
The system described is validated by three silicon im-
plementations [8]. The last one in 2008, is BA1024,
a 1024-cell array of 16-bit cells, using standard cell
design for 65 nm. BA1024 was designed to run at
400 MHz for HDTV market and dimensioned for
decoding two H264 HD streams. It provided 120
GOPS/Watt (measured on real chips running frame
rate conversion programs), 6 GOPS/mm2 and 60
GOPS/$ (GOPS: 16-bit Giga Operations Per Second).

Compared with IBM Cell BE , AMD/ATI 2900 or
NVIDIA 8800 GPU, the Connex architecture provide
much more GOPS/Watt, GOPS/mm2, GOPS/$ with
a simpler organization and the simplest programming
environment. The main reason is the theoretical dis-
tinction and actual segregation made in the Connex
approach between complex computation and intense
computation (more details in [9]).

5 Functional Forms on Connex
All the five forms of parallelism (data-parallelism,
reduction-parallelism, speculative-parallelism, time-
parallelism, and thread-parallelism) which result from
the seminal paper of John Backus, are supported effi-
ciently by a Connex-like architecture. When the com-
position functional form is added, the most promis-
ing form of one-chip parallelism are supported: the
stream processing executed on the SPMD model. In-
deed, the forms of an IPA are supported as follows:

• data-parallelism is supported mainly by
(unaryOp vector) and (binaryOp
op1 op2)

• reduction-parallelism is supported by RedOp
vector

• speculative-parallelism is supported by index de-
pendent executions or running locally stored
code

• time-parallelism is supported by an enough big
local memory able to store intermediary results,
besides of organizing local buffers of data, thus
allowing a true stream execution in SPMD mode

• thread-parallelism is supported mainly by the
multi-threaded features implemented at the Con-
troller level (the local memory in each cell can be
used for multi-threaded executions)

Because almost any real application requests all forms
of parallelism, for one-chip parallel computing an IPA
guaranteed by Backus is a must.

6 Paralation on Connex
The low-level, architectural model provided by
Backus is detailed by the Paralation Model proposed
by Sabot. Both provide a solid foundation for what
the one-chip parallelism must be.

A paralation is represented on Connex Architec-
ture by the index vector ix and the content of a subset
of horizontal vectors from v. For example:
< ix, v3, v4, v5 >
is a paralation with 4 fields. Each site is a vertical vec-
tor of the following form:
< i, s3i, s4i, s5i >
which is associated to the i-th cell. Connex offers a
direct implementation for a paralation, because each
horizontal vector supports one or few fields and each
vertical vector supports one or few sites.

6.1 Elementwise evaluation operator
The elementwise evaluations are performed in Con-
nex System by operations (unaryOp vector)
and (binaryOp op1 op2). The conditioned
elementwise evaluations use (Where vector),
(ElseWhere) and (EndWhere) operations. For
example:
(Where (Lt v3 v4)) ; Lt is less than

(SetVector v5 v3)
(ElseWhere)

(SetVector v5 v4)
(EndWere)

6.2 Move operator
Move & match operations are strongly related. The
Connex System performs these operations more or
less efficiently, depending on the structural resources
it involves. The simplest move operation in the Par-
alation model, let us call it direct move, is performed
in Connex System by moving the content of v5, as it
is, in v3:
(SetVector v3 v5)

A more complex way to move data from a field
to another is to rearrange the components in the desti-
nation field according to a specified permutation. Let
us call it permuted move operation. Permuted move
is defined by a permutation vector/field v5, used to
permute the content of v4 with the result in v3:
(SetVector v3 (Permute v4 v5))

The hardware resources to perform this operation
determines the execution speed. The fastest version,
provided by a solution which uses a Beneš-Waxman
permutation network, provides a time in O(log n),
where n is the length of the field. The circuit size is
in O(n× log n). Taking into account the frequency of



this kind of move, the cost is too big for a general pur-
pose engine, because for n > 1024 this size competes
with the size of the execution units distributed in the
array. Next section will provide an efficient solution
in the context of Connex Technology.

6.3 Match operator
For the most complex move, the matched move, which
uses the match operation to provide the mapping, let
us revisit the example already provided in section 3.
Let be the initial state in Connex System with the des-
tination vector/field filled up, for the sake of simplic-
ity, with default value d = 0:

(MS S MT D)=((a b c d a b e a)
(3 6 4 1 7 2 2 5)
(b e c f d c)
(0 0 0 0 0 0))

The informal description of the algorithm running
on Connex System is:

1. the i-th element from the field MS is searched in
MT (using Search operation, if only atoms are
involved or Search and CondSearch opera-
tions if the elements of the field are sequences of
atoms)

2. in all the matched sites the field D is incremented
with the value stored in the i-th site of the field S

3. the previous two steps are performed for each
component of the field MS.

For our example, the content of the vector/field D
evolves as follows:

inital (0 0 0 0 0 0)
step 1 (0 0 0 0 0 0) // no ’a’ in MT
step 2 (6 0 0 0 0 0)
step 3 (6 0 4 0 0 4)
step 4 (6 0 4 0 1 4)
step 5 (6 0 4 0 1 4) // no match
step 6 (8 0 4 0 1 4)
step 7 (8 2 4 0 1 4)
step 8 (8 2 4 0 1 4) // no match

The advantage of the Connex implementation is
that the mapping defined by the from-field MS to the
to-field MT is “extracted” and “executed” in the same
time, so as the generation of the explicit forms for the
fields to-key and from-key (see [7]) is avoided. The
search capabilities of the Connex System are used to
accelerate the match operation, allowing a linear de-
pendency of the execution time by the length of the
data moved using the mapping mechanism.

7 Why Paralation, Backed by Back-
cus’s Functional Forms?

There are various reasons for using Connex as the tar-
get architecture for any Paralation Model implementa-
tion in one-chip parallel (embedded) applications, de-
spite the fact that the model failed in the 1980’s to be
successful. The failure was due technological limita-
tions. One-chip many core approach was at that mo-
ment only a dream. We consider that the Paralation
Model, backed by the Functional Forms emphasized
by Backus, benefits now from a completely new tech-
nological environment. A one-chip many core can be
the perfect fit for reconsidering Paralation Model, pro-
posed by Sabot in 1988, in the larger context of FP
Systems proposed by John Backus in 1978. Few short
motivations are listed bellow.
Data structure is a natural match because the
structure of a Sabot’s paralation or Backus’s se-
quences are directly implemented in Connex System.
The field corresponds with the horizontal vector, and
the site with the vertical vector.
Apply to all or elementwise evaluation operation
are Connex operations . In a distributed, multi-
chip or multi computer system this kind of approach
is so inefficient that it does not make sense. It was a
strong reason for the failure of Sabot’s proposal.
Permuted move operation is supported in Connex
depending on the application domain.

For applications which use this operation fre-
quently, in the Scan module (see Figure 1) a Beneš-
Waxman permutation network can be implemented
for an array having no more than 1024 cells. A bit-
serial version could be efficient for bigger arrays. But,
the Connex approach offers the opportunity to per-
form, with no cost, the permutation on a vertical vec-
tor, inside a site, instead of performing the permuta-
tion on a horizontal vector, inside a field.

Example: Let be the computation of 256 256-
sample FFTs performed on a 256-cell Connex Sys-
tem. There are two solutions to make the computa-
tion. The first solution loads the samples for each FFT
as fields/horizontal vectors, while the second loads
the samples for each FFT as sites/vertical vectors.
The first, horizontal computation working at one FFT
at a time, performs all the additions and multiplica-
tions in parallel very efficiently, but, after each stage
of add & multiply, the resulting field/vector must be
permuted. The permutations request big hardware or
big time. The second, vertical computation working
on 256 FFTs at a time, performs the add & multiply
stage with the same efficiency, but the permutation is
avoided because in each site the components of the
vertical vectors can be randomly accessed in the local
memory of each cell.



Experimental results show [3] that for even a
small number of samples, 64, the vertical solution
is 4.3 times faster than the horizontal one in floating
point applications, while in fix point is 11 times faster.

But, what can be done for a big number of sam-
ples? An intermediate solution is possible, because
the principle of the Cooley-Tukey algorithm allows to
compute a FFT of composite size N × M in terms
of FFTs of size N and M . We can use the structure
of the 2D FFT algorithm, with a twiddle multiplica-
tion between the vertical and horizontal stages. 1D
FFT of size N × M is computed in three steps: (1)
compute N vertical FFTs of size M , (2) multiply the
array with twiddle factors, (3) compute M horizontal
FFTs of size N . Instead of step (3) which supposes
the inefficient horizontal FFT computation, the array
is transposed and only then M vertical FFTs are com-
puted.

In [3] 1024-sample floating point FFTs are com-
puted for horizontal solution and for a 2D shape of
32 × 32 samples. The acceleration obtained for the
2D compared to the horizontal is 7.3.

Transforming fields in sites, or horizontal vectors
in vertical vectors, is a good solution to avoid the
slowdown induced by permutations. The transpose
function helps to make this transformation. It is easy
to optimize this function with few specific circuits.
Matched move is based on Connex’s search ca-
pabilities represented by the fast search opera-
tions. The unconditioned or conditioned search of an
atom/element in a vector/field is done in one clock cy-
cle, offering the best conditions for accelerating the
matched move. Multiple-write in one cycle allows to
move more than one atom/element at a time from one
field to another. When the mapping provides multi-
ple vectors pointing to the same cell, we can decide
to use the log-time reduction functions of the Connex
System.

8 Conclusion
The design of a parallel one-chip computer must start
from the image the programmer have about the use of
the resulting engine. The image provided by Backus
and Sabot was used to impose the architectural fea-
tures of the one-chip many core engine Connex.

The play between field and site is benefic for op-
timizing the communication in a Connex System. In
fields/horizontal vectors there is the simplest, but no
cost, the locality, while in sites/vertical vectors any lo-
cality is possible with the cost of running a sequence
of code.

Optimizing the transpose operation minimizes the
communication overhead in the system. For this rea-
son the operation is performed, transparently to the
main processing.

The impact of Functional Forms and Paralation
will grow once implemented for a one-chip paral-
lel engine, because a lot of costly actions in dis-
tributed hardware are removed on a compact struc-
ture like Connex. Paralation means both, computa-
tion and communication. The second one introduces
big overheads Paralation is not responsible for, but it
paid for with an undeserved little impact in the last
24 years. We hope Paralation backed by Functional
Forms implemented in Connex technology will lift up
each other.

Acknowledgements: The author got a lot of support
from the main technical contributors to the develop-
ment of the ConnexArrayTM technology, the BA1024
chip, the associated language, and its first application:
E. Altieri, F. Ho, B. Mı̂ţu, M. Stoian, D. Thiebaut, T.
Thomson, D. Tomescu.

References:

[1] K. Asanovic, et. al., The Landscape of Paral-
lel Computing Research: A View from Berkeley,
Technical Report No. UCB/EECS-2006-183.

[2] J. Backus, Can Programming Be Liberated from
the von Neumann Style? A Functional Style and
Its Algebra of Programs, Communications of the
ACM, August 1978, 613-641.

[3] I. Lorentz, M. Maliţa, R. Andonie, Fitting FFT
onto an Energy Efficient Massively Parallel Ar-
chitecture, The 2nd Int. Forum on Next Genera-
tion Multicore/Manycore Tech., June, 2010.

[4] M. Maliţa, G. Ştefan, Parallel RISC Architec-
ture. A Functional Approach Based on Backus’s
FP language, Proceedings of the 2011 Interna-
tional Conference on PDPTA, Las Vegas, 2011,
pp 492-498.

[5] M. McCool, Scalable Programming Models for
Massively Multicore Processors, Proceedings of
the IEEE, Vol. 96, No. 5, May 2008.

[6] G. Sabot, The Paralation Model. Architecture-
Independent Parallel Programming (Cambridge,
Massachusetts: The MIT Press, 1988).

[7] P. Snively, The Paralatioin Model, The Journal
of Apple Technology, vol. 8, no. 7, 1992.

[8] G. Ştefan, The Connex Project, at
http://arh.pub.ro/gstefan/conexMemory.html

[9] G. Ştefan, One-chip teraArchitecture, Proceed-
ings of the 8th Applications and Principles of In-
formation Science Conference, Okinawa, 2009.

[10] G. Ştefan, Integral Parallel Architecture in
System-on-Chip Designs, The 6th International
Workshop on Unique Chips and Systems, At-
lanta, GA, USA, December 4, 2010, pp. 23-26.


