
Parallel RISC Architecture.

A Functional Approach Based on Backus’s FP language

Mihaela Maliţa1 , and Gheorghe M. Ştefan2

1Saint Anselm College, Manchester, NH, (mmalita@anselm.edu)
2PUB, Bucharest, Romania, (gstefan@arh.pub.ro)

Abstract – The main consequence of building ad
hoc structured hardware for parallel computation is the
huge difficulty we have to program it. The paper dis-
cusses a new framework introducing the concept of par-
allel RISC engine, as a simple and efficient solu-
tion for executing FP like languages proposed by John
Backus [2] as an alternative to the von Neumann style
of performing computation. A first version for the hard-
ware solution is already implemented in silicon [12].

Key words: parallel architecture, parallel program-
ming, functional programming, integral parallel archi-
tecture, Backus’s FP System.

1 Introduction

No one describes better the deadlock of parallel com-
puting than David Patterson which last June wrote in
[6] the following about the stage of multi-core industry:

”... the semiconductor industry threw
the equivalent of a Hail Mary pass when
it switched from making microprocessors
run faster to putting more of them on a
chip-doing so without any clear notion of
how such devices would in general be pro-
grammed. ... The trick will be to invent
ways for programmers to write applications
that exploit the increasing number of proces-
sors found on each chip without stretching
the time needed to develop software or low-
ering its quality. Say your Hail Mary now,
because this is not going to be easy.”

Indeed, parallel computing started wrong, with ad
hoc constructs considering that more than one machine,
more or less sophisticatedly interconnected, will have
the brute force to solve the continuously increasing
hunger for computing power. The approach was, and
is, wrong for two obvious reasons:

• programmability is very low, because it was
proved that is impossible to ignore the sophisti-
cated physical details in order to write efficiently
complex programs

• portability is also very low, because code already
written for sequential algorithms is almost impos-
sible to be efficiently translated automatically for
various complex parallel engines

and one hidden, but essential reason:

• the lack of parallel architecture which is sup-
posed: (1) to hide from the programmer the phys-
ical details of the actual engine, and (2) to facili-
tate the automatic translation of the huge sequen-
tial software legacy in as much as possible efficient
parallel code.

Thus, the problem is to find the shortest path from an
appropriate computational model to the simplest possi-
ble parallel architecture and to find a validation proce-
dure. Our proposal is:

1. to start with Stephan Kleene’s computation model
of partial recursive functions, because it is a n-
based model, i.e., it assumes in the initial state-
ments the use of n variables and/or functions,
with n of any size

2. to associate, as the simplest architectural inter-
face, the Functional Program System (FP System)
proposed by John Backus [2], because of its inher-
ent parallel approach

3. to use ”The Berkeley’s View of Parallel Land-
scape” [1] as the validation environment for the
simplest generic hardware implementation: a
ConnexArrayTM based engine [9].

We presented the first step in [5], the second step is
initiated in this paper, while the last one will be only
sketched in this paper and is left to be completed for
future works. The second section describes the struc-
ture of the parallel RISC engine (pRISC), the structure

which emerged from Kleene’s computation model. The
third section proves that the FP system of Backus de-
scribes efficiently the architecture of the pRISC engine.
Preliminary evaluations of the first embodiment of a
pRISC architecture – a ConnexArrayTM based sys-
tem – are sketched in the last section.

2 The parallel RISC engine

The path from an appropriate computational model to
an integral parallel architecture (IPA) is covered in [5]
and the associated last silicon implementation – a 65
nm version of a SoC built by BrightScale, containing a
ConnexArrayTM with 1024 execution units – is de-
scribed in [12]. ConnexArrayTM is the hardware con-
sidered in our approach as the generic support for a
pRISC engine. It is represented in Figure 1, where:

�- �-
Mem

EU1

Mem

EUp−1

Mem

EU0 �-- �

?
6

?
6

?
6

IO System

C

666

?

6

?

6
Interconnection Fabric

?
6

?
�

?
6

To external memory

?

Reduction/Loop

66

?

6

Figure 1: ConnexArrayTM . The cellular array of p

execution units – EU0, . . . , EUp−1 – each with its own local

memory (Mem) is controlled by a sequential engine (C).

C is a general purpose sequential processor used as
the controller of the whole system. It issues the
sequence of instructions executed in predicated
mode in each one of the p execution units (EU).

EUi is a small & simple EU which executes, according
to its internal state, the instruction issued by C.

Mem is the local memory in each processing cell. It
is used to store data (the entire cell works as an
execution unit) or data & programs (the entire
cell works as a processing element, PE).

Reduction/Loop is a tree structured circuit which
implements: (1) vector to scalar reduction func-

tions, sending back to C the result, (2) closes a
combinational loop over the array of EUs.

IO System transfers data vectors transparently to the
processing performed in each one of the p cells

Interconnection Fabric controls the data & program
transfers between C & array and the external
memory.

The user view of ConnexArrayTM is a two-
dimension array of scalars (see Figure 2): the constant
vector index, m p-component vectors stored in the cel-
lular distributed memory (each Mem module stores m
scalars) and t p-component vectors distributed in the
EU’s register files.

s11 s12 s1p

s21 s22 s2p

sm1 sm2 smp

r11 r12 r1p

rt1 rt2 rtp

.

.

.

.

.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.

.

1 2 pindex

v1

v2

vm

ru+1

ru+t

Figure 2: The user view of ConnexArrayTM . The

local memories Mem store m p-component vectors, while

the local register files store t p-component vectors. The hor-

izontal (spatial) dimension provides time consuming com-

munication, while the vertical (temporal) dimension allow

any efficient virtual interconnection network.

The user of ConnexArrayTM sees a p × m array
of scalars. The horizontal (spatial) dimension p is sup-
ported by a very simple linear interconnection network,
i.e., the distance between two elements on this dimen-
sion is in O(p). The simple & small interconnection
hardware implies low speed on this dimension. The ver-
tical (temporal) dimension m is supported by the most
flexible “interconnection network”: the random access
mechanism of the Mem modules in each EU. On this
dimension the distance between two elements is small &
constant. The vertical flexibility can and must be used
in order to deal with “big distance” connections in the
two-dimension array of variables.

The controller C has a standard organization cen-
tered on a register file of u 32-bit scalars. The instruc-

tion set executed by the whole system – C & EUs – is
defined on the concatenation of two register files:

• the scalar register file of C

• the vector register file distributed in the p EUs

thus, the instruction set is defined on t+u registers, the
first u registers are the scalar registers in C, while the
next t registers are vector registers in the p EUs. For
example, let be t = u = 16. Then, the instruction

add r24 r3 r27;

adds to each component stored in the vector register 27
the value from the scalar register 3 and sends the result
in the vector register 24, while the instruction

add r24 r18 r27;

adds in r24 the vector r18 with vector r27.
The specific instruction for vector processing in

ConnexArrayTM is the predicated execution ex-
pressed as in the following example:

where (r25 == 0) add r20 r20 17 ;

elsewere xor r20 r20 r20 ;

where: in all the cells where the component of the vec-
tor stored in the register 25 is zero, the component of
the vector stored in the register 20 is incremented with
17, while elsewere (where the component of the vector
stored in the register 25 is different from zero) the com-
ponent of the vector stored in the register 20 is cleared.

Another specific function is:

where (r20 = <1,5,6>) first r22;

which provides in r22 a vector with 1 only on the first
position pointed by the sub-vector <1,5,6> in r20, and
0 in rest. For example: if
r20 = <7,4,1,5,7,1,5,6,8,1,5,6,4,2,4,5>

then the result is
r22 = <0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0>.
Those kinds of operations are supported by the combi-
national loop performed by Reduction/Loop circuit.

The full power of the pRISC engine must be proved
using a theoretical programming model and evaluated
using the broadest possible functional spectrum.

3 FP system on pRISC

The seminal paper of John Backus Can Programming
Be Liberated from the von Neumann Style? A Func-
tional Style and Its Algebra of Programs [2] offers the
best theoretical environment for proving that the pRISC

engine is a good candidate for a generic parallel com-
puter. The Functional Programming Systems (FP Sys-
tems) proposed by Backus was introduced as an alter-
native to the von Neumann style of programming – the
main paradigm of sequential computation. FP Sys-
tems can be seen as the definition of parallel sys-
tems from the programming point of view. There-
fore, we consider that the pRISC engine, defined in the
previous section, must be able to deal efficiently with
the objects, functions and functional forms introduced
by Backus in his FP Systems.

Objects. The objects defined in FP Systems, atoms
and sequences, can be found in the pRISC architecture
in the form of scalars (x, y, . . .) managed by the con-
troller C and the vectors (< x1, . . . , xp >) processed in
the linear array of EUs.

Functions. The following set of primitive functions,
almost identical with the set proposed in [2], are exam-
ined from the point of view of how they are implemented
in our pRISC engine.

Selector:
i :< x1, . . . , xp >→ xi

The value i is searched in the constant vector index

(Figure 2), the resulting Boolean vector is used to select
the component xi and to send it to the controller C
through the Reduction circuit.

Tail:
tl :< x1, . . . , xp >→< x2, . . . , xp >
The first element is searched using the index vector and
is deleted using the serial connections between EUs.

Reverse:
reverse :< x1, . . . , xp >→< xp, . . . , x1 >
This is the most difficult function for the pRISC engine,
because of the very simple interconnection network. It
is performed with the help of the IO System, which
is featured with hardware support for performing any
permutation as an out of core function.

Distribute:
distrl :< y,< x1, . . . >>→<< y, x1 >, . . . , < y, xp >>
distrr :< y,< x1, . . . >>→<< x1, y >, . . . , < xp, y >>
are solved depending on the computational context in
two ways: (1) by loading an uniform vector contain-
ing on each position the value y, or (2) by issuing a
{scalar, vector} → vector operation with the scalar y
broadcasted by C toward each EU.

Length:
length :< x1, . . . , xp >→ m
Is performed in two steps: (1) generates a Boolean vec-
tor with 1 on each position corresponding to the p com-
ponents of the vector, and (2) using the add reduction
function, the 1s are added and sent to the C controller.

Transpose:
trans :<< x11, . . . , x1m >,< x21, . . . , x2m >, . . . ,
< xn1, . . . , xnm >>→
<< x11, . . . , xn1 >,< x12, . . . , xn2 >, . . . ,
< x1m, . . . , xnm >>
is solved on the temporal dimension with no computa-
tion because expanding each of the m variables of the
initial vectors on the spatial dimension (horizontally),
we obtain the n variables of the final vectors vertically,
on the temporal dimension:
< x11, . . . , x1m >
< x21, . . . , x2m >
. . .
< xn1, . . . , xnm >
where each vector is a m-variable ”column”.

Append:
apendl :< y < x1, . . . , xp >>→< y, x1, . . . , xp >
apendr :< y < x1, . . . , xp >>→< x1, . . . , xp, y >
Is solved inserting in the first position the scalar y issued
by the controller C.

Rotate:
rotl :< x1, . . . , xp >→< x2, . . . , xp, x1 >
rotr :< x1, . . . , xp >→< xp, x1, . . . , xp−1 >
The two-direction linear connection between cells allows
the rotate function in both directions. For vectors with
less components than the number of EUs the reduction
and insert function are used to perform the operations.

Search:
src :< y,< x1, . . . , xp >>→< b1, . . . , bp >
with bi = (y = xi) ? 1 : 0.
The scalar y is issued by the controller and is searched
in each EU generating a Boolean vector with 1 on each
match position.

Conditioned search:
csrc :< y,< x1, . . . , xp >,< b1, . . . , bp >>→
< c1, . . . , cp >
with ci = ((y = xi)&bi−1) ? 1 : 0.
The search is performed only in the cells preceded by a
cell when the previous search (src or csrc) provided a
match.

Example. The sequence of operations:
src d, csrc o, csrc g, csrc
identify all the occurrences of the sequence dog in the
sequence < x1, . . . , xp >. It allows to define the stream
search operation.

Stream search:
ssrc :<< y1, . . . , ys >,< x1, . . . , xp >>
returns a Boolean vector with 1s pointing all the occur-
rences of < y1, . . . , ys > in < x1, . . . , xp >.

Insert data:
ins :< x, k,< x1, . . . , xp >>→
< x1, . . . , xk−1, x, xk, . . . , xp >
The scalar k is searched in the index vector to identify
the insert position for x.

Delete:
del :< k,< x1, . . . , xp >>→
< x1, . . . , xk−1, xk+1, . . . , xp >
The scalar k is searched in the index vector to identify
the delete position.

Functional forms. A functional form depends of
functions or objects. The most common functional form
is the composition, which denotes the application of a
sequence of functions f1,f2, . . ., fq to x:

(f1 ◦ f2 ◦ . . . ◦ fq) : x ≡ ((f1 : f2 : . . . : (fq : x) . . .))

Construction:
[f1, . . . , fn] : x →< f1 : x, . . . , fn : x >
Is parallel speculation. It can be performed on the vari-
able x issued by C and processed in each EU according
to the content (data and/or program) of the local mem-
ory Mem.

Insert:
/f :< x1, . . . , xp >→ f :< x1, /f :< x2, . . . , xp >>
Is executed as a reduction function in O(log p) time.

Apply to all:
αf :< x1, . . . , xp >→< f : x1, . . . , f : xp >
Is typical data parallelism. The function f is stored in
the program memory used by C.

Condition:
(p → f ; g) :< x1, . . . , xp >→
< (p → f ; g) : x1, . . . , (p → f ; g) : xp >
where:
(p → f ; g) : x → if ((p : x) = 1) f : x; else g : x;
Is the data parallel predicated execution.

Example. Let be the following definition:

Def ABS ≡ (/+) ◦ (α(lt → (− ◦ reverse);−)) ◦ trans

Applying it:

ABS :<< x1, . . . , xp >,< y1, . . . , yp >>

provides the sum of absolute difference of the two vec-
tors: < x1, . . . , xp > and < y1, . . . , yp >.

The functions used by Backus to define FP Systems
are efficiently executed by the pRISC engine. The asso-
ciated architecture is expressed as a FP System. This
approach represents a theoretical backup for the speci-
fication of a functional language for pRISC like engines.

Thus, parallel computation can start based on a
solid theoretical foundation, avoiding risky ad hoc con-
structs. The pRISC engine and the associated FP
System based architecture, complemented with multi-
threaded hardware support (see [13]), is a promising
start in saving us from saying ”Hail Mary” when decid-
ing what to do to improve our computing machines.

4 Programming pRISC in FP

The four forms of parallelism allowed by the pRISC ar-
chitecture – data, time, speculative and reduction par-
allelism (see [13]) – cover theoretically all aspects of the
intense computation paradigm [12]. But, the efficiency
of pRISC in performing all the aspects of intense compu-
tation remains to be proved. In this section we sketch
only the complex process of evaluating the proposed
pRISC architecture. The best plan for this process is to
consider all dwarfs (motifs) outlined in “A View from
Berkeley” [1], where is provided a comprehensive pre-
sentation of the problems to be solved by the emerging
actor on the computing market: the ubiquitous parallel
paradigm. Many decades just an academic topic, ”par-
allelism” becomes an important actor on the market af-
ter 2001 when the clock rate race stopped. This research
report presents 13 computational motifs which cover the
main aspects of parallel computing. In this section we
will make a preliminary evaluation of them in the con-
text of organization and architecture just introduced in
the previous two sections. The cellular network of PEs
or EUs has the simplest possible interconnection net-
work. This is both an advantage and a limitation. On
one hand, the area of the system is minimized, and it is
easy to hide the associated organization from the user,
with no loss in programmability or in the efficiency of
compilation. On the other hand, some limitations are
expected in certain application domains. Follows short
comments about how the proposed pRISC architecture
works for all of the 13 motifs.

Dense linear algebra. The computation in this do-
main operates mainly on N×M matrices. The main op-
erations performed are: matrix addition, scalar multi-
plication, transposition of a matrix, dot product of vec-
tors, matrix multiplication, determinants of a matrix,
Gaussian elimination, solving systems of linear equa-
tions and the inverse of a N × M matrix. Depending
on the size of the product N × M the internal repre-
sentation of the matrix is decided. If the product is
small enough (usually, no bigger than 128), each matrix
can be expanded as a vertical vector and associated to
one EU, resulting in p matrices represented by N ×M
p-component vectors. But, if the product N × M is
big, then q EUs are associated with each matrix, result-
ing in parallel processing of p/q matrices represented in
N × M/q p-component vectors. For all the operations
above listed the computation is usually accelerated al-
most p times, but not under (p/(log2q) times. The most
used operation is the inner product of two vectors. It is
expressed in FP System as follows:

Def IP ≡ (/+) ◦ (α×) ◦ trans

Sparse linear algebra. There are two types of sparse
matrices: (1) randomly distributed sparse arrays (rep-
resented by few types of lists), (2) band arrays, repre-
sented by a stream of short vectors.

For small random sparse arrays, converting them in-
ternally into dense array is a good solution. For big ran-
dom sparse arrays the associated list is operated using
the efficient search operations provided by pRISC ar-
chitecture. Thus, the multiplication of a sparse N ×M
matrix with a M -component sparse vector is done in
O(u + v), where u is the number of non-zero compo-
nents in the initial vector and v is the number of non-
zero components in the resulting vector.

The band arrays are first transposed using the func-
tion trans in a number of vectors equal with the width
w of the band. Then the main operations are very easy
performed using appropriate rotl and rotr operations.
Thus, the multiplication of two band matrices is done
on pRISC in O(w).

Spectral methods. The typical examples are: FFT
or wavelet computation. Because of the “butterfly” data
movement, how the FFT computation is implemented
depends on the length of the sample. The spatial and
the temporal dimensions of the proposed architecture
help the programmer to easily adapt the data represen-
tation to result in an almost linear acceleration. In order
to reduce, almost eliminate, the slowdown caused by the
rotate operations, the stream of samples is loaded us-
ing, as much as possible, the temporal dimension of the
architecture. In [3] the FFT computation is evaluated
on the pRISC architecture (for example: if FFT is con-
sidered for 1024 floating point samples the computation
is done in 1 clock cycle per sample).

N-Body method. This method fits perfectly on the
proposed architecture, because for j = 0 to j = n − 1
the following equation must be computed:

U(xj) =
∑
i

F (xj , Xi)

Each function F (xj , Xi) is computed on a single EU,
and then the sum is a reduction operation linearly ac-
celerated by the array. Depending on the value of n,
the data is distributed in the processing array using the
spatial dimension only, or for large n, both the spatial
and the temporal dimension are used. For this motif
results an almost linear acceleration.

Structured grids. The grid is distributed on the two
dimensions of our array: the spatial dimension and the
temporal dimension. Each processor is assigned a col-
umn of nodes (on the temporal dimension). It performs

each update step locally and independently of other
lines of nodes. Each node has to communicate only
with a small number of neighboring nodes on the grid,
exchanging data at the end of each step. The system
works as a cellular automaton. The computation is ac-
celerated linearly on the proposed architecture.

Unstructured grids. Unstructured grid problems
are updates on an irregular grid, where each grid el-
ement is updated from its neighbor grid elements. Par-
allel computation is disturbed by the non-uniformity
of the data distribution. In order to solve the non-
uniformity problem a preprocessing step is required to
generate an easy manageable representation of the grid.
We expect moderate performances on pRISC.

Map reduce. The typical example of a map reduce
computation is the Monte Carlo method. This method
consists in many completely independent computations
working on randomly generated data. This type of com-
putation is highly parallel. Sometimes it requires the
add reduction function, for which the proposed archi-
tecture has special accelerating hardware. The compu-
tation is linearly accelerated.

Combinational logic. There are a lot of very differ-
ent problems falling in this class. We list here only the
most important and the most frequently used:

• block processing, exemplified by AES and DES
encryption. For example, AES works in 4× 4 ar-
rays of bytes, each array is loaded in one EU, and
the processing is completely SIMD-like with linear
acceleration on the pRISC architecture.

• recursive & non-recursive convolution encoding
are computed efficiently using (1) right pipeline
propagation in the array, (2) predicated data par-
allel processing, (3) reduction add function.

• image rotation for black & white or color bit
mapped images is performed (1) by loading the
m×m array of pixels into the processing array on
both dimensions (spatial and temporal), (2) exe-
cuting a local transformation, and third restoring
the transformed image in the appropriate place.

• route lookup, used in networking; it supposes
three data-base like operations: longest match, in-
sert, delete; for all we have functions in the pRISC
architecture (similar with: src, csrc, ins, del).

Graph traversal. The array of 1024 machines can be
used as a “speculative device”. Each EU starts with a

full graph stored in its data memory, and the computa-
tion provides the result when one EU, if any, finds the
solution. Limitations are generated by the dimension
of the data memory of each EU or by the IO System
capabilities. More investigation is needed to evaluate
the actual power of pRISC in solving this problem.

Some problems related with graphs are easily solved
if matrix computation is involved (example: computing
the distance between all the elements of a graph).

Dynamic programming. Viterbi decoding is a typ-
ical example presented in [1]. The parallel strategy is to
distribute the states among the cells. Each state has its
own distinct cell. The inter cell communication is done
in a small neighborhood. Each cell receives the stream
of data which is thus submitted to a speculative com-
putation. The work done on each processor is similar.
The last stage is performed using the functions of the
Reduction circuit. The degree of parallelism is limited
to the number of state considered by the algorithm.

Back-track and branch & bound. The basic back-
tracking SAT algorithm, for example, runs on a p-cell
engine by choosing log2 p literals, instead of one on a se-
quential machine, assigning for them all the values form
00 . . . 0 to 11 . . . 1, simplifying the formula and then re-
cursively checking if the simplified formula is satisfiable.

For parallel branch & bound we use the case of the
Quadratic Assignment Problem. The problem deals
with two N × N matrices: A = (aij), B = (bkl). The
global cost function:

C(p) =

n∑
i

n∑
j

aij × bp(i)p(j)

must be minimized finding the permutation p of the
set N = {1, 2, . . . , n}. Dense linear algebra methods
already discussed are involved here.

Graphical models. Besides the Viterbi algorithm
(already discussed) used for decode, this motif is well
represented by parallel hidden Markov models. The ar-
chitectural features reported in research papers refers to
fine-grained SIMD processor arrays connected to each
node of a coarse-grained PC-cluster. Thus, a pRISC en-
gine can be used efficiently as an accelerator for general
purpose sequential engines.

Finite state machine. The authors of [1] claim that
for this motif ”nothing helps”. But, we consider that
the array of cells with their local memory loaded with
non-deterministic FSM descriptions work very efficient
as a speculative engine for applications such as deep
packet inspection, for example.

At the end of this short introductory analysis, which
must be detailed by future investigations, we claim that
for almost all the computational motifs the pRISC ar-
chitecture performs very well. Maybe for some of the
motifs additional multi-threaded computation may be
helpful (see [13]).

5 Concluding remarks

The pRISC engine is area and energy effi-
cient. The architecture described and partially eval-
uated in this paper is based on actual silicon imple-
mentations used to measure real performances for in-
tense computations. The hardware results are spectac-
ular (6.5 GOPS/mm2 and 40 GOPS/Watt [12]) and,
complemented by the architectural support provided in
this paper by a Backus’s FP System approach, positions
pRISC engine & architecture as a promising solution.

pRISC engine & its architecture are both small
& simple. The simplicity of the engine allows its hid-
ing behind an efficient architecture. No complex inter-
connection network between cells and small & simple
EUs are the main premisses for a transparent architec-
ture. “Small is Beautiful” claims [1]. (See also [8].)

Portability & programmability is high for a sim-
ple & generic architecture. High diversity and
complexity dominate the main parallel architecture tar-
geted today by the application engineers. What they
need is only one simple architecture for porting ex-
isting applications or for developing new ones. The
pRISC environment is a promising candidate.

Acknowledgments The authors got a lot of support
from the main technical contributors to the development
of the ConnexArrayTM technology, the BA1024 chip,
the associated language, and its first application: E.
Altieri, F. Ho, B. Mı̂ţu, M. Stoian, D. Thiebaut, T.
Thomson, D. Tomescu.

References

[1] K. Asanovic, et. al.: The Landscape of Parallel Com-
puting Research: A View from Berkeley, Technical
Report No. UCB/EECS-2006-183.

[2] J. Backus: “Can Programming Be Liberated from
the von Neumann Style? A Functional Style and Its
Algebra of Programs”, Communications of the ACM,
August 1978, 613-641.

[3] I. Lorentz, M. Malita, R. Andonie: “Fitting FFT
onto an Energy Efficient Massively Parallel Archi-
tecture”, The Second International Forum on Next
Generation Multicore / Manycore Technologies, June,
2010.

[4] M. Maliţa, G. Ştefan, D. Thiebaut: “Not Multi,
but Many-Core: Designing Integral Parallel Ar-
chitectures for Embedded Computation” in ACM
SIGARCH Comp. Arch. News, Vol. 35, 5, Dec. 2007.

[5] M. Maliţa, G. Ştefan: “On the Many-Processor
Paradigm”, Proceedings of the 2008 World Congress
in Computer Science, Computer Engineering and Ap-
plied Computing. vol. PDPTA’08, 2008.

[6] D. Patterson: “The Trouble with Multicore”, IEEE
Spectrum, July 2010.

[7] G. Ştefan, D. Thiebaut: “Memory Engine for the
Inspection and Manipulation of Data”, United States
Patent 6,760,821, July 6, 2004; Filed: Aug. 10, 2001.

[8] G. Ştefan, M. Maliţa: “Granularity and Com-
plexity in Parallel Systems”, Proceedings of the 15
IASTED International Conf, 2004, Marina Del Rey,
CA, pp.442-447.

[9] G. Ştefan: ”The CA1024: A Massively Parallel Pro-
cessor for Cost-Effective HDTV”, in Spring Proces-
sor Forum: Power-Efficient Design, May 15-17, San
Jose, CA 2006.

[10] G. Ştefan, et al.: “The CA1024: A Fully Program-
able System-On-Chip for Cost-Effective HDTV Me-
dia Processing”, in Hot Chips: A Symposium on High
Performance Chips, Stanford Univ., August, 2006.

[11] G. Ştefan: “The CA1024: SoC with Integral Paral-
lel Architecture for HDTV Processing”, in 4th Inter-
national System-on-Chip (SoC) Conference and Ex-
hibit, November, Newport Beach, CA, 2006.

[12] G. Ştefan: “One-Chip TeraArchitecture”, Proceed-
ings of the 8th Applications and Principles of Infor-
mation Science Conference, Okinawa, Japan on 11-12
January 2009.

[13] G. Ştefan: “Integral Parallel Architecture in
System-on-Chip Designs”. The 6th International
Workshop on Unique Chips and Systems, Atlanta,
GA, USA, December 4, 2010, 23-26.

