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Abstract — The ubiquitousness of the parallel computational 

resources emerges in the rapid growing market of system-on-

chip. Both, complex and intense computations are requested for 

solving the fast expanding functional spectrum of the mobile 

products. The current approach is unable to provide low area 

and low power solutions for the increased functional hungry. The 

proposed Integral Parallel Architecture (IPA) provides >100x 

increase for GIPS/Watt and GIPS/mm2 than the current 

structures. This new approach is based on ConnexArrayTM 

technology, developed and tested on real chips, and on the 

Bubble-free Embedded Architecture for Multithreading (BEAM) 

execution. It is proposed an IP based model to manage tens of 

threads and a number of execution or processing units which 

starts from tens and goes up to thousands. 

I. INTRODUCTION 

The SoC domain is driven by two forces: 

• the functional spectrum is enlarging, requesting highly 

complex and high data-intense computation, 

• the number of transistors per cm
2
 of silicon increases, 

while the possibility to follow this trend is limited by: 

• our inability to fill up the size/complexity gap between 

making and specifying (the technological developments 

help us to have more transistors/die, but do not provide us 

with the techniques to write down more lines of code 

describing circuits with the corresponding complexity), 

• our inability to provide architectural solutions for limiting 

the energy waste (only structural solutions are provided). 

Our solution is based on the following main decisions: 

1. To “move” the complexity from the circuit level to the 

informational level, increasing the weight of embedded 

computation, substituting as much as possible the ASIC 

approach with programmable solutions. The functional 

complexity will come mainly from programming. 

2. To segregate the complex computation by the intense 

computation [13], in order to optimize independently 

these two too distinct forms of computation. 

3. Because the resulting programmable solution will 

competes with circuits - “naturally” parallel structures - 

the engine must be a parallel one. 

While for the initial stages of developing embedded 

computation using sequential architecture was a very good 

solution, in the actual stage of development parallel 

computation is a must, and the main problem is: what kind of 

parallel architecture is the best fit  for embedded computing? 

Unfortunately, the answer is: we need as many kinds as 

possible, because the diversity of circuits to be emulated 

efficiently requests a comparable architectural diversity. 

Our proposal takes into account the forms of parallelism 

which result from the most appropriate computation model to 

be used as starting point for defining what parallelism means. 

It is the model of partial recursive functions proposed by 

Stephan Kleene [6]. Based on Kleene’s model, in [7] and [8] 

is proposed a new taxonomy for parallel computation. The 

taxonomy proposed by Michael Flynn [3], and the similar 

ones, are somehow “artificial”, because are based on formal 

constructs derived from the sequential model of Allan Turing. 

II. INTEGRAL PARALLEL ARCHITECTURE 

In [8] is proved that, according to Kleene’s model, the 

building of a parallel model of computation can be exclusively 

based on the composition rule having the form: 

f(x1, … xm) = g(h1(x1, … xm), …hn(x1, … xm)) 

which is a n-sized form (see in Fig. 1 its structural version) 

which describes two aspects of parallelism: the synchronic 

parallelism of computing n functions hi, and the diachronic 

parallelism of pipelining hi with the reduction function g.   
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Fig.1. The structural representation for Kleene’s composition rule. 

 

Five types of parallel computation can be emphasized: 

• Data-parallel computation, characterized by: 

hi(x1,… xm) = h(xi),   g(h(x1),…h(xm))= {h(x1),…h(xm)} 

• Time-parallel computation, characterized by:  

m = 1 

• Speculative-parallel computation, characterized by:  

hi(x1,… xm) = hi(x),   g(h1(x),…hm(x))= {h1(x),…hm(x)} 

• Reduction-parallel computation, characterized by: 

hi(x1,… xm) = xi,    f(x1,… xm) = g(x1,… xm) 

• Thread-parallel computations, characterized by: 

hi(x1,… xm) = hi(xi),   g(h1(x1),…hm(xm))= {h1(x1),…hm(xm)} 

Any complex embedded application requests all these types of 

parallel computation. 
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A. Implementing IPA 

An IPA is able to perform all types of parallel computation 

previously listed. The computation in a system with IPA is 

defined on the following data structures: scalar, vector, and 

stream of scalars, and uses for defining the computation: 

functions on scalars, vectors or streams (f(x,…), f(V,…), 

f(S,…)) and function vectors (F = <f1 … fm>). 

We know that: (1) any computation can be expressed using a 

combination of the following particular forms: 

1. data-parallel: f(V1 … Vn) = V   

2. reduction-parallel: f(V) = x  

3. speculative-parallel: 
F(x)=<f1…fm>(x)={f1(x)…fm(x)}=V 

4. time-parallel: F(SI)=<f1…fm>([x1…xn])=[y1…yn]=S ; 

a stream of scalars [x1…xn] is applied to the pipe of 

functions <f1…fm>;  the result stream is [y1…yn] 

5. thread-parallel: f1(x1…xm)=y1,…fn(x1…xp)=yn 
We make the assumption that: (2) most of the frequent 

computations are performed efficiently if they are expressed 

using a combination of the previously defined functions.  

The assumption (2) is investigated in [9] based on [1]. The 

sentences (1) and (2) propose a functional approach mixed 

with a sort of RISC approach promoted starting with early 

1980s. Let’s call this approach: parallel RISC. 

B. Intense computing 

The first four forms of parallel computation have a common 

characteristic: different kinds of patterns characterize them. 

1. Data-parallel: each component of the vector results from 

the predicated execution of the same program. 

2. Reduction-parallel: each vector component is equivalent 

related to the reduction function.  

3. Speculative-parallel: applies, usually, the same variable to 

slightly different function.  

4. Time-parallel: a pipe of functions <f1…fm> is applied to 

[x1…xn] providing an efficient computation for  n >> m. 

In all these cases the dominant characteristic of computation is 

its intensity, i.e., a big amount of data is processed or is 

outputted. Therefore, both, data and program flow are highly 

predictable, determining the features of the sub-architecture 

we propose for performing the intense computation: 

• the computation is done in a cellular structure of many 

small & simple processing/execution cells [11]  

• array computing is the main type of processing executed 

in a linear network of cells 

• the computation is a high-latency functional pipe  

• buffer memory hierarchy with out-of-core executions. 

C. Complex computing 

The multi-threaded computation is a form of parallelism 

described by: f1(x1…xm)=y1, … fn(x1…xp)=yn, where each 

function represents a distinct program running on distinct data. 

Each of these computations is pattern-less. Therefore, we will 

refer to them as the complex computing, characterized by: 

• mono or multi big & complex processor organization  

• multi-threaded programming model  

• the computation is operating system based 

• the memory hierarchy is cache-based. 

Faced with intense computation, the current SoCs are 

designed with few standard complex cores and/or some 

specific accelerators (DSPs or specialized hardware).  

D. Integral Parallel Organization 

The first embodiment of a system with an IPA is the Connex 

System presented in Fig. 2, where we distinguish between the 

two kinds of computation, segregating them as: 

• ConnexArray
TM

: many-cell array of execution units (EU) 

or processing elements (PE) for intense computations [12] 

• Multi-Thread Processor (MTP) is a mono- or multi-core 

BEAM processor for complex computations [2]. 

MTP uses one of its threads to control ConnexArray
TM

 in 

order to execute an ISA containing instructions for both, 

scalars and vectors. The entire system is programmed in C++ 

using the library VectorC [10]. A GNU C++ compiler is 

developed for the current IPA instruction set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Integral Parallel Organization: Connex System. 

 

While the intense computation is executed on hundreds or 

thousands of cores, the complex computation accepts hardly 

more than 4 cores, because Interconnection Fabric limits less 

the intense computation. The data stream between Memory 

and ConnexArray
TM

 is more predictable than the data and 

program streams flowing between Memory and MTP.  

III. THE COMPLEX COMPUTING PART OF IPA 

The complex part of the computation in Connex System is 

performed by MTP. Each MTP core is able to execute up to 8 

cycle-level interleaved threads. Any active thread is in 

execution only if its current instruction flow can be executed 

bubble free. The main effect of BEAM is the increasing of the 

effective IPC, while saving the area used for the same purpose 

in the current processors by the branch predictor, superscalar 

execution units, and L2 cache. Preliminary evaluations show 

the increasing of performance by 2.5x – 4x, while the area of 

the engine is reduced with around 60% [2].  
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IV. THE INTENSE COMPUTING PART OF IPA 

ConnexArrayTM is a cellular array which performs the intense 

part of the computation [12], [13]. It is already implemented 

on silicon in 3 versions. The last one, CA1024 (a SoC for the 

HDTV market, running at 400 MHz, having 1024 EUs, 

produced in 65 nm standard process in March 2008, see Fig. 

4), has the following characteristics measured on actual chips: 

• 400 GOPS (Giga 16-bit integer OPerations per Second) 

• 120 GOPS/Watt    and     6.25 GOPS/mm2  
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Fig. 3. ConnexArrayTM. 

 

 
 

Fig. 4. CA1024. 

 

The block diagram of ConnexArray
TM

 is presented in Fig. 3, 

where a linearly connected array of 1024 EUs receives the 

same instruction for each EU. The instruction is executed in 

each EU according with its own state. The reduction network, 

designed for the most frequently used reduction functions 

(add, max, …), sends back to the controller the requested 

data. An inner global loop, closed over the array, is used to 

classify the EUs according to the selected Boolean. The IO 

system works in parallel with and transparent to the main 

computation.  

The SoC CA1024 contains besides the 1024 EUs (60% of the 

chip area) audio/video interfaces, a network of 4 MIPS and a 

time-parallel unit (8 16-bit processors). 

A. Basic Operations in ConnexArray
TM

 

Operations on vectors are performed in constant number of 

cycles. Generic operations are exemplified in the following:  

• full vector ops: {carry, v5} = v4 + v3;the 

corresponding integer components of the two operand 

vectors are added; carry is a Boolean vector 

• Boolean operation: b7 = b3 & b5;the two Boolean 

vectors are ANDed component by component 

• predicated execution: v1 = b2 ? v3 - v2 : v1; 

in any positions where b2 = 1 the corresponding 

components are subtracted 

• vector rotate: v7 = v7 >> n;the content of vector v7 

is rotated n positions right 

• strided load: load v5 addr burst stride;the 

content of v5 is loaded from the address addr, using 

bursts burst, on a stride of size stride 

• scattered load: sld v3 v9 addr stride;v3 is 

loaded indirectly using the address vector v9 

• strided store: store v7 address burst stride; 

• gathered store: gst v4 v3 addr stride; it is a sort 

of indirect store. 

Each cell contains two sub-cells: the scalar unit and the 

Boolean unit. For input-output operations there is an IO Plane, 

distributed over the array, whose content is transferred from or 

to the array’s vector memory in one cycle. On the other hand 

its content is loaded from or stored to the external memory in 

a number of cycles depending on the IO latency and 

bandwidth (around 164 clock cycles for a 400 MHz engine 

with 1024 16-bit EUs). The transfer process is transparent to 

the computation. 

B. VextorC: the programming language of ConnexArray
TM

 

ConnexArray
TM

 is programmed in VectorC, a C++ language 

extension [10]. The extension is made by adding new 

primitive data types and by extending the existing operators to 

accept the new data types. In VectorC the conditional 

statements have become predication statements. 

The new data primitives are, for example: 

• int vector: vector of integers  

• short vector: vector of shorts  

• selection: vector of Booleans 

Let be the following variable declarations: 
     int i1, i2, i3; 

     bool b1, b2, b3; 

     int vector v1, v2, v3; 

     selection s1, s2, s3; 

Then a VectorC statement   like: v3 = v1 + v2; replaces:  
for (int i = 0; i < VECTOR_SIZE; i++) 

         v3[i] = v1[i] + v2[i]; 

and s3 = s1 && s2; replaces this for statement: 
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for (int i = 0; i < VECTOR_SIZE; i++) 

         s3[i] = s1[i] && s2[i]; 

The scalar statement: if (b1) {i3 = i1 + i2}; has the 

correspondent in VectorC the vector predication statement: 
WHERE (s1) {v3 = v1 + v2}; 

replacing this nested for: 
for (int i = 0; i < VECTOR_SIZE; i++) 

         if (s1[i]) v3[i] = v1[i] + v2[i]; 

The VectorC library is used as a programming tool for 

Connex System and also as a simulation environment.   

C. Computational performance 

 Connex Architecture implements the infrequent, complex 

instructions, such as multiplication, division, floating point 

arithmetic instructions using integer resources sequentially. 

Thus the specific hardware requested for all infrequent 

operations uses less than 10% from the total area of the array.  

This mode of implementing complex operations generates a 

specific mode of evaluating the performance of the Connex 

architecture. Claiming the peak performance is meaningless 

for our architecture, and deceitful for any kind of architecture.  

Let’s take the example of peak GFLOPS claimed for a typical 

general purpose processor: 2-4 GFLOPS. There are two 

factors limiting the peak performance to the effective 

performance: (1) the weight of float instructions in current 

applications (it is maximum 24% for the most intense float 

applications, while the medium weight is 18% [4], [5]), (2) the 

stalls in the execution pipeline due to the various hazards 

(Intel reports from 48% to 85% clock cycles as stall cycles 

(see http://www.anandtech.com/print/1909)). Results: 

effectiveGFLOPS = 0.06×peakGFLOPS. 

For Connex architecture the GFLOPS we claim are effective, 

because the engine uses for float operations exactly as much 

GOPS as the applications requests. For example, let be a 1024 

32-bit cells array running at 1GHz an application which is not 

IO bounded. Results peak performance of 1 TOPS. The 

degree of parallelism is in the range of 30% - 90%. Let us take 

60%. Then the effective performance is 0.6 TOPS. For a 

medium float application results the effective performance: 

162 GIPS (Giga Instructions Per Second), out of which 29 

GFLOPS, and 133 GIPS in integer operations (each floating 

point operation is executed in 16 clock cycles). Compared 

with a standard technology, the Connex approach provides 

more than two magnitude order more effective GFLOPs (from 

121x to 243x). 

V. CONCLUSIONS 

1. The distinction between complex and intense computation 

triggers an efficient segregation which allow two magnitude 

orders increase for GOPS/Watt and GOPS/mm
2
 for the intense 

computation (in ConnexArray
TM

) and one magnitude order 

for the complex computation (in BEAM processor). 

2. IPA expands efficiently the parallel computation at the level 

of embedded computing by following the golden rule of 

increasing the size of the design faster than its complexity.  

3. Both, intense part and complex part of the system scales 

with very small performance penalties. 

4. The architectural rule of keeping the logic small & simple, 

performing only frequent operations, avoids big, infrequently 

used active structures.  

6. Programmability deserves an increased attention for 

architects also because the technological costs in nano-era 

make unmarketable the pure ASIC approach.  
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