
Integral Parallel Architecture

in System-on-Chip Designs
Gheorghe M. Ştefan

Faculty of Electronics, Tc. and IT, Politehnica University of Bucharest, Bd. Iuliu Maniu, 3-5, Bucharest, Romania

gstefan@arh.pub.ro

Abstract — The ubiquitousness of the parallel computational

resources emerges in the rapid growing market of system-on-

chip. Both, complex and intense computations are requested for

solving the fast expanding functional spectrum of the mobile

products. The current approach is unable to provide low area

and low power solutions for the increased functional hungry. The

proposed Integral Parallel Architecture (IPA) provides >100x

increase for GIPS/Watt and GIPS/mm2 than the current

structures. This new approach is based on ConnexArrayTM

technology, developed and tested on real chips, and on the

Bubble-free Embedded Architecture for Multithreading (BEAM)

execution. It is proposed an IP based model to manage tens of

threads and a number of execution or processing units which

starts from tens and goes up to thousands.

I. INTRODUCTION

The SoC domain is driven by two forces:

• the functional spectrum is enlarging, requesting highly

complex and high data-intense computation,

• the number of transistors per cm
2
 of silicon increases,

while the possibility to follow this trend is limited by:

• our inability to fill up the size/complexity gap between

making and specifying (the technological developments

help us to have more transistors/die, but do not provide us

with the techniques to write down more lines of code

describing circuits with the corresponding complexity),

• our inability to provide architectural solutions for limiting

the energy waste (only structural solutions are provided).

Our solution is based on the following main decisions:

1. To “move” the complexity from the circuit level to the

informational level, increasing the weight of embedded

computation, substituting as much as possible the ASIC

approach with programmable solutions. The functional

complexity will come mainly from programming.

2. To segregate the complex computation by the intense

computation [13], in order to optimize independently

these two too distinct forms of computation.

3. Because the resulting programmable solution will

competes with circuits - “naturally” parallel structures -

the engine must be a parallel one.

While for the initial stages of developing embedded

computation using sequential architecture was a very good

solution, in the actual stage of development parallel

computation is a must, and the main problem is: what kind of

parallel architecture is the best fit for embedded computing?

Unfortunately, the answer is: we need as many kinds as

possible, because the diversity of circuits to be emulated

efficiently requests a comparable architectural diversity.

Our proposal takes into account the forms of parallelism

which result from the most appropriate computation model to

be used as starting point for defining what parallelism means.

It is the model of partial recursive functions proposed by

Stephan Kleene [6]. Based on Kleene’s model, in [7] and [8]

is proposed a new taxonomy for parallel computation. The

taxonomy proposed by Michael Flynn [3], and the similar

ones, are somehow “artificial”, because are based on formal

constructs derived from the sequential model of Allan Turing.

II. INTEGRAL PARALLEL ARCHITECTURE

In [8] is proved that, according to Kleene’s model, the

building of a parallel model of computation can be exclusively

based on the composition rule having the form:

f(x1, … xm) = g(h1(x1, … xm), …hn(x1, … xm))

which is a n-sized form (see in Fig. 1 its structural version)

which describes two aspects of parallelism: the synchronic

parallelism of computing n functions hi, and the diachronic

parallelism of pipelining hi with the reduction function g.

 x1, … xm

 f(x1, … xm)

Fig.1. The structural representation for Kleene’s composition rule.

Five types of parallel computation can be emphasized:

• Data-parallel computation, characterized by:

hi(x1,… xm) = h(xi), g(h(x1),…h(xm))= {h(x1),…h(xm)}

• Time-parallel computation, characterized by:

m = 1

• Speculative-parallel computation, characterized by:

hi(x1,… xm) = hi(x), g(h1(x),…hm(x))= {h1(x),…hm(x)}

• Reduction-parallel computation, characterized by:

hi(x1,… xm) = xi, f(x1,… xm) = g(x1,… xm)

• Thread-parallel computations, characterized by:

hi(x1,… xm) = hi(xi), g(h1(x1),…hm(xm))= {h1(x1),…hm(xm)}

Any complex embedded application requests all these types of

parallel computation.

h1 h2 hn

 g

A. Implementing IPA

An IPA is able to perform all types of parallel computation

previously listed. The computation in a system with IPA is

defined on the following data structures: scalar, vector, and

stream of scalars, and uses for defining the computation:

functions on scalars, vectors or streams (f(x,…), f(V,…),

f(S,…)) and function vectors (F = <f1 … fm>).

We know that: (1) any computation can be expressed using a

combination of the following particular forms:

1. data-parallel: f(V1 … Vn) = V

2. reduction-parallel: f(V) = x

3. speculative-parallel:
F(x)=<f1…fm>(x)={f1(x)…fm(x)}=V

4. time-parallel: F(SI)=<f1…fm>([x1…xn])=[y1…yn]=S ;

a stream of scalars [x1…xn] is applied to the pipe of

functions <f1…fm>; the result stream is [y1…yn]

5. thread-parallel: f1(x1…xm)=y1,…fn(x1…xp)=yn
We make the assumption that: (2) most of the frequent

computations are performed efficiently if they are expressed

using a combination of the previously defined functions.

The assumption (2) is investigated in [9] based on [1]. The

sentences (1) and (2) propose a functional approach mixed

with a sort of RISC approach promoted starting with early

1980s. Let’s call this approach: parallel RISC.

B. Intense computing

The first four forms of parallel computation have a common

characteristic: different kinds of patterns characterize them.

1. Data-parallel: each component of the vector results from

the predicated execution of the same program.

2. Reduction-parallel: each vector component is equivalent

related to the reduction function.

3. Speculative-parallel: applies, usually, the same variable to

slightly different function.

4. Time-parallel: a pipe of functions <f1…fm> is applied to

[x1…xn] providing an efficient computation for n >> m.

In all these cases the dominant characteristic of computation is

its intensity, i.e., a big amount of data is processed or is

outputted. Therefore, both, data and program flow are highly

predictable, determining the features of the sub-architecture

we propose for performing the intense computation:

• the computation is done in a cellular structure of many

small & simple processing/execution cells [11]

• array computing is the main type of processing executed

in a linear network of cells

• the computation is a high-latency functional pipe

• buffer memory hierarchy with out-of-core executions.

C. Complex computing

The multi-threaded computation is a form of parallelism

described by: f1(x1…xm)=y1, … fn(x1…xp)=yn, where each

function represents a distinct program running on distinct data.

Each of these computations is pattern-less. Therefore, we will

refer to them as the complex computing, characterized by:

• mono or multi big & complex processor organization

• multi-threaded programming model

• the computation is operating system based

• the memory hierarchy is cache-based.

Faced with intense computation, the current SoCs are

designed with few standard complex cores and/or some

specific accelerators (DSPs or specialized hardware).

D. Integral Parallel Organization

The first embodiment of a system with an IPA is the Connex

System presented in Fig. 2, where we distinguish between the

two kinds of computation, segregating them as:

• ConnexArray
TM

: many-cell array of execution units (EU)

or processing elements (PE) for intense computations [12]

• Multi-Thread Processor (MTP) is a mono- or multi-core

BEAM processor for complex computations [2].

MTP uses one of its threads to control ConnexArray
TM

 in

order to execute an ISA containing instructions for both,

scalars and vectors. The entire system is programmed in C++

using the library VectorC [10]. A GNU C++ compiler is

developed for the current IPA instruction set.

Fig. 2. Integral Parallel Organization: Connex System.

While the intense computation is executed on hundreds or

thousands of cores, the complex computation accepts hardly

more than 4 cores, because Interconnection Fabric limits less

the intense computation. The data stream between Memory

and ConnexArray
TM

 is more predictable than the data and

program streams flowing between Memory and MTP.

III. THE COMPLEX COMPUTING PART OF IPA

The complex part of the computation in Connex System is

performed by MTP. Each MTP core is able to execute up to 8

cycle-level interleaved threads. Any active thread is in

execution only if its current instruction flow can be executed

bubble free. The main effect of BEAM is the increasing of the

effective IPC, while saving the area used for the same purpose

in the current processors by the branch predictor, superscalar

execution units, and L2 cache. Preliminary evaluations show

the increasing of performance by 2.5x – 4x, while the area of

the engine is reduced with around 60% [2].

ConnexArray
TM

Multi-Threaded

Processor

Interconnection Fabric

Interface

Memory

IV. THE INTENSE COMPUTING PART OF IPA

ConnexArrayTM is a cellular array which performs the intense

part of the computation [12], [13]. It is already implemented

on silicon in 3 versions. The last one, CA1024 (a SoC for the

HDTV market, running at 400 MHz, having 1024 EUs,

produced in 65 nm standard process in March 2008, see Fig.

4), has the following characteristics measured on actual chips:

• 400 GOPS (Giga 16-bit integer OPerations per Second)

• 120 GOPS/Watt and 6.25 GOPS/mm2

 To Controller

 Inner global loop

 IO System

 From Controller

Fig. 3. ConnexArrayTM.

Fig. 4. CA1024.

The block diagram of ConnexArray
TM

 is presented in Fig. 3,

where a linearly connected array of 1024 EUs receives the

same instruction for each EU. The instruction is executed in

each EU according with its own state. The reduction network,

designed for the most frequently used reduction functions

(add, max, …), sends back to the controller the requested

data. An inner global loop, closed over the array, is used to

classify the EUs according to the selected Boolean. The IO

system works in parallel with and transparent to the main

computation.

The SoC CA1024 contains besides the 1024 EUs (60% of the

chip area) audio/video interfaces, a network of 4 MIPS and a

time-parallel unit (8 16-bit processors).

A. Basic Operations in ConnexArray
TM

Operations on vectors are performed in constant number of

cycles. Generic operations are exemplified in the following:

• full vector ops: {carry, v5} = v4 + v3;the

corresponding integer components of the two operand

vectors are added; carry is a Boolean vector

• Boolean operation: b7 = b3 & b5;the two Boolean

vectors are ANDed component by component

• predicated execution: v1 = b2 ? v3 - v2 : v1;

in any positions where b2 = 1 the corresponding

components are subtracted

• vector rotate: v7 = v7 >> n;the content of vector v7

is rotated n positions right

• strided load: load v5 addr burst stride;the

content of v5 is loaded from the address addr, using

bursts burst, on a stride of size stride

• scattered load: sld v3 v9 addr stride;v3 is

loaded indirectly using the address vector v9

• strided store: store v7 address burst stride;

• gathered store: gst v4 v3 addr stride; it is a sort

of indirect store.

Each cell contains two sub-cells: the scalar unit and the

Boolean unit. For input-output operations there is an IO Plane,

distributed over the array, whose content is transferred from or

to the array’s vector memory in one cycle. On the other hand

its content is loaded from or stored to the external memory in

a number of cycles depending on the IO latency and

bandwidth (around 164 clock cycles for a 400 MHz engine

with 1024 16-bit EUs). The transfer process is transparent to

the computation.

B. VextorC: the programming language of ConnexArray
TM

ConnexArray
TM

 is programmed in VectorC, a C++ language

extension [10]. The extension is made by adding new

primitive data types and by extending the existing operators to

accept the new data types. In VectorC the conditional

statements have become predication statements.

The new data primitives are, for example:

• int vector: vector of integers

• short vector: vector of shorts

• selection: vector of Booleans

Let be the following variable declarations:
 int i1, i2, i3;

 bool b1, b2, b3;

 int vector v1, v2, v3;

 selection s1, s2, s3;

Then a VectorC statement like: v3 = v1 + v2; replaces:
for (int i = 0; i < VECTOR_SIZE; i++)

 v3[i] = v1[i] + v2[i];

and s3 = s1 && s2; replaces this for statement:

Reduction

network

Array of EUs

Distribution

network

for (int i = 0; i < VECTOR_SIZE; i++)

 s3[i] = s1[i] && s2[i];

The scalar statement: if (b1) {i3 = i1 + i2}; has the

correspondent in VectorC the vector predication statement:
WHERE (s1) {v3 = v1 + v2};

replacing this nested for:
for (int i = 0; i < VECTOR_SIZE; i++)

 if (s1[i]) v3[i] = v1[i] + v2[i];

The VectorC library is used as a programming tool for

Connex System and also as a simulation environment.

C. Computational performance

 Connex Architecture implements the infrequent, complex

instructions, such as multiplication, division, floating point

arithmetic instructions using integer resources sequentially.

Thus the specific hardware requested for all infrequent

operations uses less than 10% from the total area of the array.

This mode of implementing complex operations generates a

specific mode of evaluating the performance of the Connex

architecture. Claiming the peak performance is meaningless

for our architecture, and deceitful for any kind of architecture.

Let’s take the example of peak GFLOPS claimed for a typical

general purpose processor: 2-4 GFLOPS. There are two

factors limiting the peak performance to the effective

performance: (1) the weight of float instructions in current

applications (it is maximum 24% for the most intense float

applications, while the medium weight is 18% [4], [5]), (2) the

stalls in the execution pipeline due to the various hazards

(Intel reports from 48% to 85% clock cycles as stall cycles

(see http://www.anandtech.com/print/1909)). Results:

effectiveGFLOPS = 0.06×peakGFLOPS.

For Connex architecture the GFLOPS we claim are effective,

because the engine uses for float operations exactly as much

GOPS as the applications requests. For example, let be a 1024

32-bit cells array running at 1GHz an application which is not

IO bounded. Results peak performance of 1 TOPS. The

degree of parallelism is in the range of 30% - 90%. Let us take

60%. Then the effective performance is 0.6 TOPS. For a

medium float application results the effective performance:

162 GIPS (Giga Instructions Per Second), out of which 29

GFLOPS, and 133 GIPS in integer operations (each floating

point operation is executed in 16 clock cycles). Compared

with a standard technology, the Connex approach provides

more than two magnitude order more effective GFLOPs (from

121x to 243x).

V. CONCLUSIONS

1. The distinction between complex and intense computation

triggers an efficient segregation which allow two magnitude

orders increase for GOPS/Watt and GOPS/mm
2
 for the intense

computation (in ConnexArray
TM

) and one magnitude order

for the complex computation (in BEAM processor).

2. IPA expands efficiently the parallel computation at the level

of embedded computing by following the golden rule of

increasing the size of the design faster than its complexity.

3. Both, intense part and complex part of the system scales

with very small performance penalties.

4. The architectural rule of keeping the logic small & simple,

performing only frequent operations, avoids big, infrequently

used active structures.

6. Programmability deserves an increased attention for

architects also because the technological costs in nano-era

make unmarketable the pure ASIC approach.

ACKNOWLEDGMENT

The author got a lot of support from main technical

contributors to the development of the ConnexArray
TM

technology, the associated language, and the first applications:

Emanuele Altieri, Petronela Bumbăcea, Valeriu Corduneanu,

Frank Ho, Radu Hobincu, Mihaela Maliţa, Bogdan Mîţu,

Lucian Petrică, Victor Radu Rădulescu, Marius Stoian,

Dominique Thiébaut, Tom Thomson, Dan Tomescu.

REFERENCES

[1] K. Asanovic, et al.: The Landscape of Parallel Computing Research: A

View from Berkeley, Technical Report No. UCB/EECS-2006-183.J.
[2] V. Codreanu, R. Hobincu: "Performance Gain from Data and Control

Dependency Elimination in Embedded Processors" accepted at ISETC

2010. http://phd.arh.pub.ro/resources/beam/isetc2010.pdf
[3] M. Flynn: "Very High-Speed Computing Systems", in Proceeding of

the IEEE, 54(12), December 1966, p. 1901-1909.

[4] J. Fritts: Architecture and Compiler Design Issues in Programmable

Media Processors, PhD Thesis, Princeton University, Department of

Electrical Engineering Advisor: Prof. Wayne Wolf, 2000.

[5] J. Hennessy, D. Patterson: Computer Architecture. A Quantitative

Approach, Third edition, Morgan Kaufmann, 2003.

[6] S. Kleene: "General Recursive Functions of Natural Numbers", in

Math. Ann., 1936.

[7] M. Maliţa, G. Ştefan, D. Thiébaut: "Not Multi- but Many-Core:

Designing Integral Parallel Architectures for Embedded Computation"

in International Workshop on Advanced Low Power Systems held in
conjunction with 21st International Conference on Supercomputing

June 17, 2007 Seattle, WA, USA.

[8] M. Maliţa, G. Ştefan: "On the Many-Processor Paradigm", in: H. R.
Arabina (Ed.): Proceedings of the 2008 World Congress in Computer

Science, Computer Engineering and Applied Computing, vol.

PDPTA'08, 2008.
[9] M. Maliţa, G. Ştefan: "Integral Parallel Architecture & Berkeley's

Motifs", in ASAP09 - 20th IEEE International Conference on

Application-Specific Systems, Architectures and Processors, 7-9 July,

2009, Boston, MA, USA, pag. 191-194.

[10] B. Mîţu: “C Language Extension for Parallel Processing”, BrightScale

research report 2008. http://arh.pub.ro/gstefan/VectorC.ppt

[11] G. Ştefan, M. Maliţa: "Granularity and Complexity in Parallel

Systems", in Proceedings of the 15 IASTED International Conf, 2004,

Marina Del Rey, CA, ISBN 0-88986-391-1, p. 442- 447.
[12] G. Ştefan, A. Sheel, B. Mîţu, T. Thomson, D. Tomescu: "The CA1024:

A Fully Programmable System-On-Chip for Cost-Effective HDTV

Media Processing", in Hot Chips: A Symposium on High Performance

Chips, Stanford University, August , 2006

[13] G. Ştefan: "One-Chip TeraArchitecture", in Proceedings of the 8th

Applications and Principles of Information Science Conference,
Okinawa, Japan on 11-12 January 2009.

[14] D. Thiébaut, M. Maliţa: "Pipelining the Connex Array," BARC07,

Boston, Jan., 2007.

