
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 20, Number 4/2019, pp. 411–417

ALL-PAIR SHORTEST PATH ON A HYBRID MAP-REDUCE BASED ARCHITECTURE

Voichiţa DRAGOMIR, Gheorghe M. ŞTEFAN

“Politehnica” University of Bucharest, ETTI
“Politehnica” University of Bucharest, ETTI

Corresponding author: VOICHITA DRAGOMIR, E-mail: voichita.dragomir@upb.ro

Abstract. All-Path Shortest-Path Problem (APSP) algorithm implemented on two currently used
architectures, a mono-core one and on a many-core one, is compared with the implementation on
Map-Reduce Architecture (MRA), a novel many-core architecture we propose. The hybrid system
using an accelerator based on MRA is described. The system is evaluated in two versions for running
the Floyd-Warshall APSP algorithm. A first version is for an accelerator with the number of cores, p,
exceeding the number of vertexes, |V |, while the second uses a fix number of cells, N, for
|V | = N×M, where M is a power of 2. The programs, written for our accelerator running in
simulation, are used to evaluate the execution time for both versions. The performance of a mono-
core and of a GPU is compared with our MRA acceleration. A 128-cell MRA engine accelerates 118×
at 20× less energy a mono-core, and 3× at 26× less energy a 128-core GPU.

Key words: APSP, parallelism, hybrid computation, map-reduce architecture, Floyd-Warshall algorithm.

1. INTRODUCTION

In [1], the problem of APSP is investigated from a theoretical point of view and the result is compared
with other solutions in the same order of complexity. The APSP modified matrix-multiplication based
algorithm takes as input the matrix:

11 12 1

21 22 2

1 2

...

...

...

p

p

p p pp

d d d
d d d

d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

where dij is the distance between the vertex i and the vertex j , for i , j = 1,2, … p. On a p-processor
hypercube architecture the algorithm is evaluated as working in O(N 2 log N) cycles [5], where N is the
number of vertices and p ≥ N . Our architecture presented in [1] provides the same theoretical time
performance, but has the advantages of the engine size which is O(p) , rather than the hypercube with the
size in O(p log p). So, for small N, because the coefficient of N 2 is small1, the modified matrix-
multiplication based algorithm for APSP works well enough. But, for big N the Floyd-Warshall algorithm
must be considered. Its three embedded loops:

1 The execution time reported in [1] is improved, due to architectural improvements, to 2N2 + 44N + 0:5log2P + 2.

412 Voichiţa DRAGOMIR, Gheorghe M. ŞTEFAN 2

are executed in time belonging to O(N 3). Using an N-cell parallel architecture we expect an acceleration in
O(N) . But, the actual constants are also important.

The next section is about the state of the art in using GPUs as accelerators for solving the APSP
problem. The third section describes the architecture of the proposed accelerator. The fourth section evaluate
the performance of the proposed accelerator in solving the APSP problem and compares it with the existing
architectural solution. The last section concludes the paper.

2. STATE OF THE ART

Besides the structural performance, expressed as the acceleration
()
()

r
reference clockreference

accelerated a
accelerated clock

t f
t f

α =

the architectural acceleration

r
reference reference clock
accelerated accelerated a

clock

fA
f

= α ×

will be provided. The architectural acceleration is the acceleration evaluated with the two engines working at
the same frequency. In the following, α results from measurements, while A is computed by scaling the
performance of the fastest device to the frequency of the other.

Using data published in [2] and [3] the structural and the architectural acceleration provided for Floyd-
Warshall algorithm by a GPU used as GPGPU are presented in Fig. 1. In the following, we will consider
tscalar = 4.1× tSSE CPU according to [2].

Fig. 1 – Structural and architectural performance for solving APSP
problem with Floyd-Warshall algorithm on a mono-core scalar
engine (3.66 GHz Pentium 4 without SSE, powered at 100 Watt)
compared with GPU (1.35 GHz, 128-core Nvidia Quadro FX5600
 powered at 178 Watt).

The structural acceleration of a GPU used as GPGPU remains under 10× with an almost double power

consumption, while the architectural performance remains under 25% of its peak performance at a more than
4× higher energy use. GPU provides acceleration, < 32× with 128 processing units, but it is too small and
the price paid in energy consumption is too high.

The reason for this low use of the high peak performance of a GPU consists in fatal architectural
inadequacies: the use of a highly optimized GPU as general-purpose accelerator.

3. MAP-REDUCE ACCELERATOR

The accelerator with MRA is designed to be attached to any standard general-purpose processing unit
to configure a hybrid computing system. Usually, the accelerator runs a (standard) library of computationally
intense functions. The kernel of the accelerator consists of:

• CONTROLLER which issue in each cycle instruction (& data) to ARRAY
• linear ARRAY of cells (the MAP section) receiving from CONTROLLER instruction & data and

sending back, through
• a REDUCTION network, scalars computed starting from vectors distributed along the cells.

3 All-pair shortest path on a hybrid map-reduce based architecture 413

The system is programmed using an instruction set which is the Cartesian product of two ISA, one for
CONTROLLER (cISA) and another for ARRAY (ISA). The code line contains always two instructions:

cCCC; AAA;

where: cCCC is the instruction CCC for CONTROLLER, and AAA is the instruction to be executed is each
active cell of ARRAY. Some instructions are labelled:

LB(label_name); cCCC; AAA;

An example of an actual program is presented in Figure 2.
The instruction set architecture in both, CONTROLLER and in ARRAY, is accumulator-based: the

scalar register acc in CONTROLLER and the vector register [acc[0], acc[1], ..., acc[p-1]]
in ARRAY.

The local memory resources are: the scalar memory scalarMem[0:m-1] for CONTROLLER, and
the vector memory vectorMem[0:p-1][0:m-1] in ARRAY. Therefore, if BBB stands for a binary
operation, then:

• cBBB(X): acc <= acc BBB scalarMem[X]
• BBB(X): acc[i] <= acc[i] BBB vectorMem[i][X], in each active cell

Besides the standard arithmetic and logic operations defined for both, CONTROLLER and ARRAY, and the
sequential control operations defined for CONTROLLER, there are also a few spatial control operations
defined for ARRAY, as follows:

• ACTIVATE: all cells from the MAP section of ARRAY are activated
• WHERE(cond): in all active cells the condition cond is tested and only the cells where it is

fulfilled remain active
• ENDWHERE: the cells inactivated by the last WHERE or ELSEWHERE are reactivated
• ELSEWHERE: acts like the sequence: ENDWHERE; WHERE(!cond);

These spatial control instructions allow predicated vector execution in ARRAY. The system also allows
embedded WHERE(...) operations.

Another specific instructions are the reduction instructions used to send, with a latency in O(log p), as
co-operand for acc in CONTROLLER, the value computed by the REDUCTION network, as follows:

• the sum of acc[i] from all active cells
• _the maximum value of acc[i] from all active cells
• the minimum value of acc[i] from all active cells
• returns 1 if at least one cell is active

Example 1. The program which computes in each cell:

1

0

[]
p

acc i i i
−

⇐ +∑

for i = 0, 1, …, p−1 is the following:

The program computes in parallel in 4+log2p steps a computation performed by a mono-core in 8p+3.
Therefore, the acceleration is:

2

8 3 (/ log)
4 log

pA O p p
p

+
= ∈

+

414 Voichiţa DRAGOMIR, Gheorghe M. ŞTEFAN 4

In the previous example the acceleration is limited because of the depth of the REDUCTION section of
ARRAY. Sometimes, when the reduction operation occurs many times in a sequence of operations, the
latency can be avoided and it is added only once at the end of the sequence. This is the case in a very
frequently used operation: matrix-vector multiplication.

Example 2. The program for M×N matrix multiplied by a N-scalar vector, where M≤m and N≤p is:

The execution time is tmatrixVectorMultiply = 2M + 2 + log2p∈ 2O(M). The mono-core execution is in time
belonging to O(M×N). Then, the acceleration is in O(N).

For N = p the acceleration is in O(p) and, more important, the acceleration is supra-linear because the
coefficient of M in tmatrixVectorMultiply is 2, and the loop substituted by the parallel execution cannot be
performed in 2 cycles only. This performance is obtained because the accelerator performs three processes,
executed sequentially in a mono-core engine, in parallel three distinct hardware resources, as follows:

• multiplications in the MAP section of ARRAY
• additions in the REDUCTION section of ARRAY
• the control loop in CONTROLLER

Important notice. The size of ARRAY belongs to O(p). The last hardware evaluation of

ACCELERATOR, made for 28 nm technology, provided the following figures for an ARRAY of 2048 32-
bit cells, each with 4KB of local memory, running at 1GHz:

• silicon area: 9.2×9.2 mm2
• power consumption: 12 Watt at 80oC

which translates into: 170 GOPS/Watt, 24.19 GOPS/mm2 at 0.14 Watt/mm2, where GOPS stands for Giga
Operations Per Second, for 32-bit integer operations.

For flop applications the performance scales down to 170/1.4 GFLOPS/Watt = 121 GFLOPS/Watt. Let
us compare our architecture with a Nvidia product implemented in the same 28 nm technology: NVIDIA
GK104 GPU2. This GPU is a 294 mm2 chip working at the same frequency and has the following
performance: 14 GFLOP/Watt, i.e., 8.64× less performance than our proposal.

How can this big boost in performance generated by our architecture be explained (besides
mathematical reasons analyzed in [8] starting from [4])? Let us list few reasons:

• GPU arithmetic is mainly floating-point, while in many applications only integer arithmetic is used.
• For the reduction operations, frequently used in any linear algebra applications, our architecture

provides specific hardware which is missing in GPUs.
• Our memory hierarchy is buffer-oriented instead of the cache-oriented architecture used in GPUs.

The intense computation accelerated is very predictable regarding to the data and program flow
making useless the costly cache mechanism.

• Our cells are execution units, while GPUs cells are processing units which come with the overhead
of program memory and its control.

• In our proposal, the control and the execution are performed in parallel in distinct units:
accelerator’s CONTROLLER and MAP or REDUCTION section.

2 https://videocardz.net/gpu/nvidia-gk104/

5 All-pair shortest path on a hybrid map-reduce based architecture 415

4. EVALUATION

The vectored form of the Floyd-Warshall algorithm, defined on the matrix D, is:

The algorithm is implemented in two versions: (1) for |V |≤ p and for (2) for |V | = p×M .

4.1. The Program for p ≥ |V |

The maximum input matrix D for APSP algorithm is, in this case, a N×N matrix for p = N : The
program running on ACCELERATOR is listed in Fig. 2. The execution time, for Floyd-Warshall algorithm
with N ≤ p , on our accelerator is:

tAPSP(N) = 11.5N2 + 8N + N log2N +7 ∈ O(N2).

Fig. 2 – The two-column program for APSP.

For comparing “apple with apple” we consider a MRA version implemented in 90 nm, because the

literature [2,3] provides data for this technology node. Thus, the table in Fig. 3 compares the performance

416 Voichiţa DRAGOMIR, Gheorghe M. ŞTEFAN 6

provided by engines implemented in the same technology. For the acceleration provided by our technology
we will compare our implementation in 90 nm with 3.66 GHz Pentium 4 without SSE, at 100 Watt. For each
number of vertexes, starting with 64 until 4 096, implementations with p = 64 until p = 4 096 are considered
(Fig. 3). The values for tscalar represent the execution time associated to the mono-core execution (4.1× than
the execution involving the SSE accelerator [2]).

Fig. 3 – Structural and architectural performance for solving APSP problem with Floyd-Warshall algorithm on a mono-core scalar

engine (3.66 GHz Pentium 4 without SSE, at 100W) compared to the run on the MRA architecture where p≥N .

We conclude that the use of the peak performance of our MRA accelerator remains > 50%. More important:
we compare an 100 Watt engine with our engine which for p =1 024, for example, is powered with less than
30 Watt and provides > 512× acceleration.

4.2. The performance for p = 128 < |V |

Let us consider now |V | = M×N and p = N . An MRA accelerator with p = 128 cells (90 nm, at 1GHz
working at 5Watt) is compared with 1.35 GHz, 128-core NVidia Quadro FX5600 working at 178 Watt
(Fig. 4). The running time for this case is:

tAPSP(M,N) M 2N2(11.5M – 0.25) ∈ O(N2M 3)

and we obtain the expected acceleration in O(p).

Fig. 4 – Structural and architectural performance for solving APSP problem with Floyd-Warshall algorithm on a GPU (1.35 GHz,
128-core NVidia Quadro FX5600 at 178W) compared to the run on the MRA architecture where P = N = 128 (128-core at 5W).

In Fig. 4 the APSP problem is solved with two engines, each of 128 cells. Results are in favor for our

proposal, which has at least 3× architectural performance at 26× less energy.

5. CONCLUSIONS

1. The acceleration provided by a p-cell implementation of the proposed architecture is in O(p) for
APSP problem solved using the Floyd-Warshall algorithm. The performance of our accelerator is >3×
higher than the performance provided by GPUs used as general-purpose accelerators.

7 All-pair shortest path on a hybrid map-reduce based architecture 417

2. Our proposal offers also a spectacular energy saving: more than 20× less energy for the same
computation.

3. The main reason for the improvements offered by the MRA accelerator is due to the architectural
freedom allowed by the lack of any embarrassing software legacy. Instead of using ad doc structured parallel
machines (see Intel’s MIC) or application-oriented structures (like GPUs), both marked by heavy legacies,
we are able to start fresh and with a solid mathematical foundation, free of any corporate pressure.

4. The only drawback is related with the programming environment which is now limited to the use of
an accelerated library based on a kernel written in assembly language and developed at the library level using
a standard general-purpose language (for example: the Eigen kernel implemented on the accelerator’s kernel
is used to write in C++ the Eigen Library).

REFERENCES

1. V. DRAGOMIR, All-pair shortest path modified matrix multiplication based algorithm for a one-chip MapReduce architecture,
U.P.B. Sci. Bull., Series C, 78, 4, pp. 95-108, 2016

2. S.C. HAN, F. FRANCHETTI, M. PUSCHEL, Program generation for the all-pairs shortest path problem, Parallel
Architectures and Compilation Techniques (PACT), pp. 222-232, 2006, http://users.ece.cmu.edu/~franzf/papers/pact06.pdf

3. G. J. KATZ, J.T. KIDER. All-pairs shortest-paths for large graphs on the GPU, Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS, Symposium on Graphics Hardware (GH’08), pp. 47-55, 2008. Available online:
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1213&context=hms

4. S. KLEENE, General recursive functions of natural numbers, Mathematische Annalen, 112, 1, pp. 727-742, 1936.
5. V. KUMAR, A. GRAMA, A. GUPTA, G. KARYPIS, Introduction to parallel computing: design and analysis of algorithms,

The Benjamin/Cummings Publishing Company, 1994.
6. M. MALITA, G.M. STEFAN, D. THIEBAUT, Not multi-, but many-core: Designing integral parallel architectures for

embedded computations, ACM SIGARCH Computer Architecture News, 35, 5, pp. 32-38, 2007.
7. G.M. STEFAN, A. SHEEL, B. MITU, T. THOMSON, D. TOMESCU, The CA1024: A fully programmable system-on-chip for

cost-effective HDTV media processing, Stanford University: Hot Chips – A Symposium on High Performance Chips, August
2006. Available online: https://youtu.be/HMLT4EpKBAw at 35:00.

8. G.M. STEFAN, M. MALITA, Can one-chip parallel computing be liberated from ad hoc solutions? A computation model
based approach and its implementation, 18th Inter. Conf. on Ciruits, Systems, Communications and Computers, Santorini
(Greece), July 2015, pp. 582-597, http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/COMPUTERS2-42.pdf

Received August 7, 2019

