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Abstract. All-Path Shortest-Path Problem (APSP) algorithm implemented on two currently used 
architectures, a mono-core one and on a many-core one, is compared with the implementation on 
Map-Reduce Architecture (MRA), a novel many-core architecture we propose. The hybrid system 
using an accelerator based on MRA is described. The system is evaluated in two versions for running 
the Floyd-Warshall APSP algorithm. A first version is for an accelerator with the number of cores, p, 
exceeding the number of vertexes, |V |, while the second uses a fix number of cells, N, for 
|V | = N×M, where M is a power of 2. The programs, written for our accelerator running in 
simulation, are used to evaluate the execution time for both versions. The performance of a mono-
core and of a GPU is compared with our MRA acceleration. A 128-cell MRA engine accelerates 118× 
at 20× less energy a mono-core, and 3× at 26× less energy a 128-core GPU. 
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1. INTRODUCTION 

In [1], the problem of APSP is investigated from a theoretical point of view and the result is compared 
with other solutions in the same order of complexity. The APSP modified matrix-multiplication based 
algorithm takes as input the matrix: 
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where dij is the distance between the vertex i and the vertex j ,  for i , j = 1,2, … p. On a p-processor 
hypercube architecture the algorithm is evaluated as working in O(N 2 log N ) cycles [5], where N is the 
number of vertices and p ≥ N .  Our architecture presented in [1] provides the same theoretical time 
performance, but has the advantages of the engine size which is O(p) ,  rather than the hypercube with the 
size in O(p log p).  So, for small N, because the coefficient of N 2 is small1, the modified matrix-
multiplication based algorithm for APSP works well enough. But, for big N the Floyd-Warshall algorithm 
must be considered. Its three embedded loops: 

 
                                                           
1 The execution time reported in [1] is improved, due to architectural improvements, to 2N2 + 44N + 0:5log2P + 2. 
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are executed in time belonging to O(N 3). Using an N-cell parallel architecture we expect an acceleration in 
O(N) . But, the actual constants are also important. 

The next section is about the state of the art in using GPUs as accelerators for solving the APSP 
problem. The third section describes the architecture of the proposed accelerator. The fourth section evaluate 
the performance of the proposed accelerator in solving the APSP problem and compares it with the existing 
architectural solution. The last section concludes the paper. 

2. STATE OF THE ART 

Besides the structural performance, expressed as the acceleration 
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will be provided. The architectural acceleration is the acceleration evaluated with the two engines working at 
the same frequency. In the following, α results from measurements, while A is computed by scaling the 
performance of the fastest device to the frequency of the other. 

Using data published in [2] and [3] the structural and the architectural acceleration provided for Floyd-
Warshall algorithm by a GPU used as GPGPU are presented in Fig. 1. In the following, we will consider 
tscalar = 4.1× tSSE CPU according to [2]. 
 

 
Fig. 1 – Structural and architectural performance for solving APSP 
problem with Floyd-Warshall algorithm on a mono-core scalar 
engine (3.66 GHz Pentium 4 without SSE, powered at 100 Watt) 
compared with GPU (1.35 GHz, 128-core Nvidia Quadro FX5600 
                                powered at 178 Watt). 

 
The structural acceleration of a GPU used as GPGPU remains under 10×  with an almost double power 

consumption, while the architectural performance remains under 25% of its peak performance at a more than 
4×  higher energy use. GPU provides acceleration, < 32×  with 128 processing units, but it is too small and 
the price paid in energy consumption is too high. 

The reason for this low use of the high peak performance of a GPU consists in fatal architectural 
inadequacies: the use of a highly optimized GPU as general-purpose accelerator. 

3. MAP-REDUCE ACCELERATOR 

The accelerator with MRA is designed to be attached to any standard general-purpose processing unit 
to configure a hybrid computing system. Usually, the accelerator runs a (standard) library of computationally 
intense functions. The kernel of the accelerator consists of: 

• CONTROLLER which issue in each cycle instruction (& data) to ARRAY 
• linear ARRAY of cells (the MAP section) receiving from CONTROLLER instruction & data and 

sending back, through 
• a REDUCTION network, scalars computed starting from vectors distributed along the cells. 
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The system is programmed using an instruction set which is the Cartesian product of two ISA, one for 
CONTROLLER (cISA) and another for ARRAY (ISA). The code line contains always two instructions: 

cCCC; AAA; 

where: cCCC is the instruction CCC for CONTROLLER, and AAA is the instruction to be executed is each 
active cell of ARRAY. Some instructions are labelled: 

LB(label_name); cCCC; AAA; 

An example of an actual program is presented in Figure 2. 
The instruction set architecture in both, CONTROLLER and in ARRAY, is accumulator-based: the 

scalar register acc in CONTROLLER and the vector register [acc[0], acc[1], ..., acc[p-1]] 
in ARRAY. 

The local memory resources are: the scalar memory scalarMem[0:m-1] for CONTROLLER, and 
the vector memory vectorMem[0:p-1][0:m-1] in ARRAY. Therefore, if BBB stands for a binary 
operation, then: 

• cBBB(X): acc <= acc BBB scalarMem[X] 
• BBB(X): acc[i] <= acc[i] BBB vectorMem[i][X], in each active cell 

Besides the standard arithmetic and logic operations defined for both, CONTROLLER and ARRAY, and the 
sequential control operations defined for CONTROLLER, there are also a few spatial control operations 
defined for ARRAY, as follows: 

• ACTIVATE: all cells from the MAP section of ARRAY are activated 
• WHERE(cond): in all active cells the condition cond is tested and only the cells where it is 

fulfilled remain active 
• ENDWHERE: the cells inactivated by the last WHERE or ELSEWHERE are reactivated 
• ELSEWHERE: acts like the sequence: ENDWHERE; WHERE(!cond); 

These spatial control instructions allow predicated vector execution in ARRAY. The system also allows 
embedded WHERE(...) operations. 

Another specific instructions are the reduction instructions used to send, with a latency in O(log p), as 
co-operand for acc in CONTROLLER, the value computed by the REDUCTION network, as follows: 

•  the sum of acc[i] from all active cells 
• _the maximum value of acc[i] from all active cells 
•  the minimum value of acc[i] from all active cells 
•  returns 1 if at least one cell is active 

 
Example 1. The program which computes in each cell: 
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for i = 0, 1, …, p−1 is the following: 
 

 
 
The program computes in parallel in 4+log2p steps a computation performed by a mono-core in 8p+3. 
Therefore, the acceleration is: 
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In the previous example the acceleration is limited because of the depth of the REDUCTION section of 
ARRAY. Sometimes, when the reduction operation occurs many times in a sequence of operations, the 
latency can be avoided and it is added only once at the end of the sequence. This is the case in a very 
frequently used operation: matrix-vector multiplication. 
 

Example 2. The program for M×N matrix multiplied by a N-scalar vector, where M≤m and N≤p is: 
 

 
 
The execution time is tmatrixVectorMultiply = 2M + 2 + log2p∈ 2O(M ). The mono-core execution is in time 
belonging to O(M×N). Then, the acceleration is in O(N). 
 

For N = p the acceleration is in O(p) and, more important, the acceleration is supra-linear because the 
coefficient of M in tmatrixVectorMultiply is 2, and the loop substituted by the parallel execution cannot be 
performed in 2 cycles only. This performance is obtained because the accelerator performs three processes, 
executed sequentially in a mono-core engine, in parallel three distinct hardware resources, as follows: 

• multiplications in the MAP section of ARRAY 
• additions in the REDUCTION section of ARRAY 
• the control loop in CONTROLLER 

 
Important notice. The size of ARRAY belongs to O(p). The last hardware evaluation of 

ACCELERATOR, made for 28 nm technology, provided the following figures for an ARRAY of 2048 32-
bit cells, each with 4KB of local memory, running at 1GHz: 

• silicon area: 9.2×9.2 mm2 
• power consumption: 12 Watt at 80oC 

which translates into: 170 GOPS/Watt, 24.19 GOPS/mm2 at 0.14 Watt/mm2, where GOPS stands for Giga 
Operations Per Second, for 32-bit integer operations. 

For flop applications the performance scales down to 170/1.4 GFLOPS/Watt = 121 GFLOPS/Watt. Let 
us compare our architecture with a Nvidia product implemented in the same 28 nm technology: NVIDIA 
GK104 GPU2. This GPU is a 294 mm2 chip working at the same frequency and has the following 
performance: 14 GFLOP/Watt, i.e., 8.64×  less performance than our proposal. 

How can this big boost in performance generated by our architecture be explained (besides 
mathematical reasons analyzed in [8] starting from [4])? Let us list few reasons: 

• GPU arithmetic is mainly floating-point, while in many applications only integer arithmetic is used. 
• For the reduction operations, frequently used in any linear algebra applications, our architecture 

provides specific hardware which is missing in GPUs. 
• Our memory hierarchy is buffer-oriented instead of the cache-oriented architecture used in GPUs. 

The intense computation accelerated is very predictable regarding to the data and program flow 
making useless the costly cache mechanism. 

• Our cells are execution units, while GPUs cells are processing units which come with the overhead 
of program memory and its control. 

• In our proposal, the control and the execution are performed in parallel in distinct units: 
accelerator’s CONTROLLER and MAP or REDUCTION section. 

                                                           
2 https://videocardz.net/gpu/nvidia-gk104/  
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4. EVALUATION 

The vectored form of the Floyd-Warshall algorithm, defined on the matrix D, is: 
 

 
 
The algorithm is implemented in two versions: (1) for |V |≤ p and for (2) for |V | = p×M . 

4.1. The Program for p ≥ |V |  

The maximum input matrix D for APSP algorithm is, in this case, a N×N matrix for p = N :  The 
program running on ACCELERATOR is listed in Fig. 2. The execution time, for Floyd-Warshall algorithm 
with N ≤ p ,  on our accelerator is: 

tAPSP(N)  = 11.5N2 + 8N + N log2N +7 ∈ O(N2). 

 

 
Fig. 2 – The two-column program for APSP. 

 
For comparing “apple with apple” we consider a MRA version implemented in 90 nm, because the 

literature [2,3] provides data for this technology node. Thus, the table in Fig. 3 compares the performance 
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provided by engines implemented in the same technology. For the acceleration provided by our technology 
we will compare our implementation in 90 nm with 3.66 GHz Pentium 4 without SSE, at 100 Watt. For each 
number of vertexes, starting with 64 until 4 096, implementations with p = 64 until p = 4 096 are considered 
(Fig. 3). The values for tscalar represent the execution time associated to the mono-core execution (4.1× than 
the execution involving the SSE accelerator [2]). 
 

 
Fig. 3 – Structural and architectural performance for solving APSP problem with Floyd-Warshall algorithm on a mono-core scalar 

engine (3.66 GHz Pentium 4 without SSE, at 100W) compared to the run on the MRA architecture where p≥N .  

 
We conclude that the use of the peak performance of our MRA accelerator remains > 50%. More important: 
we compare an 100 Watt engine with our engine which for p =1 024, for example, is powered with less than 
30 Watt and provides > 512×  acceleration. 

4.2. The performance for p = 128 < |V |  

Let us consider now |V | = M×N and p = N .  An MRA accelerator with p = 128 cells (90 nm, at 1GHz 
working at 5Watt) is compared with 1.35 GHz, 128-core NVidia Quadro FX5600 working at 178 Watt  
(Fig. 4). The running time for this case is: 

tAPSP(M,N)  M 2N2(11.5M – 0.25) ∈ O(N2M 3) 

and we obtain the expected acceleration in O(p). 
 

 
Fig. 4 – Structural and architectural performance for solving APSP problem with Floyd-Warshall algorithm on a GPU (1.35 GHz, 
128-core NVidia Quadro FX5600 at 178W) compared to the run on the MRA architecture where P = N = 128 (128-core at 5W). 

 
In Fig. 4 the APSP problem is solved with two engines, each of 128 cells. Results are in favor for our 

proposal, which has at least 3×  architectural performance at 26×  less energy. 

5. CONCLUSIONS 

1. The acceleration provided by a p-cell implementation of the proposed architecture is in O(p) for 
APSP problem solved using the Floyd-Warshall algorithm. The performance of our accelerator is >3×  
higher than the performance provided by GPUs used as general-purpose accelerators. 
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2. Our proposal offers also a spectacular energy saving: more than 20×  less energy for the same 
computation. 

3. The main reason for the improvements offered by the MRA accelerator is due to the architectural 
freedom allowed by the lack of any embarrassing software legacy. Instead of using ad doc structured parallel 
machines (see Intel’s MIC) or application-oriented structures (like GPUs), both marked by heavy legacies, 
we are able to start fresh and with a solid mathematical foundation, free of any corporate pressure. 

4. The only drawback is related with the programming environment which is now limited to the use of 
an accelerated library based on a kernel written in assembly language and developed at the library level using 
a standard general-purpose language (for example: the Eigen kernel implemented on the accelerator’s kernel 
is used to write in C++ the Eigen Library). 
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