
ROMANIAN JOURNAL OF INFORMATION
SCIENCE AND TECHNOLOGY
Volume 9, Number 3, 2006, 227–243

A Universal Turing Machine
with Zero Internal States

Gheorghe ŞTEFAN

“Politehnica” University of Bucharest,
Faculty of Electronics, Tc. & Inf. Tech.

E-mail: stefan@arh.pub.ro

Abstract. Can we define the simplest Universal Turing Machine (UTM) as

a structure containing only uniform circuits? Is there possible a 0-state machine

containing only structures having constant sized simple definitions. In a 0-state

UTM all random structures are missing, and the resulting system exhibits only

uniform circuits. Removing the finite automaton (FA) from the definition of

UTM is the main structural effect of our approach. The state of the computa-

tional process is stored only on the “tape”, in contrast with the current versions

of UTM in which the state of the computational process is given by both, the

state of FA and the content of the “tape”. In the current UTMs, FA interprets

the description of a certain Turing Machine (TM) stored on the “tape”. In the

proposed, 0-state UTM, the description of a certain TM, stored on the same

“tape”, is executed only by uniform simple circuits.

1. Introduction

The 0-state UTM we propose in this paper is important mainly for its structural
simplicity. The reduced number of states is only a side effect, allowing to segregate
the entire complexity of computation into the symbolic stream of “instructions” stored
on the “tape”. Thus the physical structure of the machine is freed by the need of the
FA, the only complex subsystem inside of each TM. But, what does it mean simple
or complex structure? What is the main effect of reducing the number of states of
FA that interprets any TM’s description stored on the “tape” of a certain UTM? 50
years ago, Claude Shannon reduced this number to two [3]. Did he obtain a simple or
a complex machine? We will see. Our first goal is now to obtain a simple machine.
Going from 2 states to 0 states is not a meaningful target per se, it is only a way to

228 G. Ştefan

minimize the complexity of UTM. Therefore, we must first state precisely the meaning
of the term complexity when it refers to the physical structure of a digital machine.

Definition 1. The apparent complexity of a circuit is given by the size of its
definition, measured in the number of symbols used to express it.

Definition 2. The (actual) complexity of a circuit is given by the size of its shortest
definition.

According with these definitions we will define what means simple or complex
circuit structure.

Definition 3. If a circuit (or a digital machine), M, characterized by a parameter
n has the size, SM (n), and the complexity, CM (n), then we say that M is simple if

SM (n) ∈ O(f(n)), CM (n) ∈ O(1)

and we say that M is complex if

SM (n) ∼ CM (n).

For a simple structure exists anytime an n0 so that if n > n0:

SM (n) >> CM (n).

Example 1. Let be an n-bit high-speed counter. Its size is in O(n × log n).
But, its complexity is in O(1) because it can be described in a Hardware Description
Language (HDL) by a constant length module. (Only when the HDL module is used
for an actual circuit, its size is in O(log n), because the actual value of n is expressed
by logb n “digits” in base b.) Therefore, the counter is a simple circuit. 2

Example 2. Let be an n-state finite automaton with 1-bit input (for the sake of
simplicity n is a power of 2). The combinational logic circuit (CLC) which computes
its transition functions has then 1 + log2 n binary inputs. Results, the size of CLC is
SCLC(n) ∈ O(n).

The HDL description of this finite automaton has at least one line for each state,
specifying the output and the next state. Therefore, CCLC(n) ∈ O(n).

Because the state register of the automaton has Sreg(n) ∈ O(log n) and Creg(n) ∈
O(1), results:

Sfinite automaton(n) ∼ Cfinite automaton(n).

Therefore, our finite automaton is a complex circuit. 2

The previous definitions are suggested by Chaitin’s algorithmic complexity [1].
(In this approach we will ignore the “user” who must “understand”, “execute” or
“interpret” the definition. Sometimes the “user” is a human mind other times it is a
machine, both having their own “complexity” to be taken into account. But this is
another story.)

A Universal Turing Machine with Zero Internal States 229

According to the previous definitions we will prove that the complexity of a TM
is given only by the complexity of the combinational circuit connected on the loop
of the FA. This circuit computes the output and the next state of FA. The rest of
the machine, the “head” and the “tape”, are both simple according to the previous
definition of simplicity. In order to minimize the complexity of the UTM we will start
with an up-dated representation for the TM and we continue presenting the 0-state
UTM.

2. A New Look for the Turing Machine

The standard definition of TM, described with the storage “tape” and of the
access “head”, hides some essential features of the concept. In order to be able to
emphasize aspects related to the complexity of TM, we will give an equivalent up to
date definition of it. Instead of the “tape” accessed through a “head” we will use a
random access memory (RAM) addressed with an up-down counter.

Definition 4. Turing Machine (TM) is a finite automaton (FA) loop connected
with an infinite RAM addressed by an infinite up-down counter (U/DCOUNTER)
commanded by FA (see Fig. 1). In each clock cycle the following operations are
executed:

• FA receives from the output DOUT of RAM the content of the current accessed
memory cell: mem[addr]

• according to its current state, q i, and to the received symbol mem[addr]:
1. FA computes a new symbol to be stored in RAM at the same address and

applies it on the input DIN of RAM: data(q i, mem[addr])

2. FA determines the accessing mode of the next cell selecting one of the
following actions:

– increments the counter (UP): the accessed memory cell in the next
clock cycle will be located at [addr + 1]

– decrements the counter (DOWN): the accessed memory cell in the next
clock cycle will be located at [addr - 1]

– maintains the counter to the same value (-): the accessed memory cell
in the next clock cycle will be located at [addr]

3. FA computes the next state of the automaton:
next q(q i, mem[addr]).

All changes are triggered with the next active clock transition.
More formal:

TM = (I, Q, f ; q0,#)

where:

• I is the finite alphabet of TM,
• Q is the finite set of states of FA,

230 G. Ştefan

• q0 ∈ Q is the initial state of FA,
• # ∈ I is a symbol stored in all non active cells of the memory
• the transition function of the entire TM, f , is the parallel composition of the

following functions:
– f 1:(I × Q)→I, where f 1(mem[addr], q) = data

– f 2:(I × Q)→{UP, DOWN,-}, where f 2(mem[addr], q) = com

– f 3:(I × Q)→Q, where f 1(mem[addr], q) = next q.

The initial state of FA is q0. The infinite memory contains the finite string to be
processed, and the rest is full of # ∈ I. The U/DCOUNTER points to the first
symbol in the string.

FA

U/DCOUNTER

-

¾

-

Infinite RAM

?
ADDRESS

DIN

{UP, DOW N, −}

DOUT

data

mem[addr]

?

next q

addr

com

Fig. 1. The structure of a Turing Machine. The complex finite
automaton is loop connected with a simple “infinite” RAM,

and the resulting subsystem is again loop connected

with a simple “infinite” up-down counter.

3. Turing Machine’s Complexity

In Fig. 2 a detailed structure of TM is presented. It is used to evaluate TM’s
complexity. This form of TM contains:

1. a finite automaton (FA) composed by loop connecting:

• a finite REGISTER: a simple and small structure
• a combinational logic circuit (CLC): a complex structure used to compute

the next state of FA and its current output

2. an “infinite automaton” embodied as a reversible counter, a simple, recursive
defined device composed by loop connecting:

• INFINITE REGISTER: a big sized but simple structure

A Universal Turing Machine with Zero Internal States 231

• an “infinite” incrementer/decrementer (INC/DEC): a big sized but simple
structure

3. an INFINITE RAM, also a big sized but simple structure.

REGISTER

CLC

-

¾

?

?

-

?

?

-

INFINITE REGISTER

INC/DEC

INFINITE RAM

DIN

DOUT

ADDRESS

CK

CK

6

6

Fig. 2. The detailed structure of a Turing Machine. The only complex component
of a TM is CLC closing the loop of FA (an immediate Mealy finite automaton).
The state register is small and simple. The remaining components are “infinite”

and simple: an “infinite” automaton and an “infinite” memory.

In order to evaluate the (apparent) complexity of a TM used to compute M we
provide its HDL description. The following Verilog code is written to emphasize, in
two distinct files, the simple components of TM separated from the complex part of
TM. The first file with the module turing machine is the following:

module turing_machine(state, symbol, reset, clock);

parameter n = 10, // address dimension

m = 3 , // state register dimension

t = 2 ; // data size

input reset, clock;

output [m-1:0] state ;

output [t-1:0] symbol ;

reg [m-1:0] state;

reg [m-1:0] next_state;

reg [t-1:0] data;

reg [1:0] com;

// THE ONLY RANDOM PART: THE COMBINATIONAL LOGIC CIRCUIT

‘include "clc(M).v"

// THE STATE REGISTER

always @(posedge clock) if (reset) state <= 0;

else state <= next_state;

232 G. Ştefan

// THE ADDRESS UP/DOWN COUNTER

reg [n-1:0] address;

always @(posedge clock) if (reset) address <= 1;

else case (com)

2’b00: address <= address;

2’b01: address <= address + 1;

2’b10: address <= address - 1;

default address <= address;

endcase

// THE MEMORY

reg [t-1:0] mem[0:((1 << n) - 1)];

always @(posedge clock) mem[address] <= data;

assign symbol = mem[address];

endmodule

The previous module describes explicitly only the simple part of TM: the state
register, the address counter and the memory. The description remains the same for
any values of n (used to specify the dimension of the “infinite” memory), m (the size
of the state register), and t (the length of the binary words used to code the elements
of TM’s alphabet). The only complex part (random in Chaitin’s view) is contained
in the included file: clc(M).v. The generic form of this file is codded in the following
form:

// the generic form of the file clc(M).v describing the FA’s CLC

always @(state or symbol)

case (state)

4’b0000: case (symbol)

8’b0000_0000: {data, com, next_state} = {...};

8’b0000_0001: {data, com, next_state} = {...};

...

8’b1111_1111: {data, com, next_state} = {...};

endcase

4’b0001: case (symbol)

8’b0000_0000: {data, com, next_state} = {...};

8’b0000_0001: {data, com, next_state} = {...};

...

8’b1111_1111: {data, com, next_state} = {...};

endcase

...

4’b1111: case (symbol)

8’b0000_0000: {data, com, next_state} = {...};

8’b0000_0001: {data, com, next_state} = {...};

...

8’b1111_1111: {data, com, next_state} = {...};

endcase

endcase

The actual complex (random) content of this file is given by the way to fill up
the parenthesis {...}. The two level of case forms corresponds to the two inputs in
this combinational circuit: state, and symbol. The maximal complexity occurs when

A Universal Turing Machine with Zero Internal States 233

for each pair (state × symbol) the automaton has a distinct behavior. Thus, the
maximum number of lines in the file clc(M).v is const + dim(Q) × dim(I) and the
minimum number of lines is bigger than const + dim(Q).

Example 3. Let us take as example a TM that computes the parity of an 1-ary
represented number. If the final state is q3, then the number is even, else it is odd.
The initial value of T (the content of “tape”) is:

. . . #0111 . . . 10# . . . ,

the “head” points the first 0 and the description of the function f is:

f(q0,−) = (q1, 0, U) /The head moves to the first 1/

f(q1, 1) = (q2, 1, U) /Passes over the 1’s switching between q1 and q2/
f(q1, 6= 1) = (q3, 0,−) /The end of 1’s is found and the number is even/

f(q2, 1) = (q1, 1, U) /Passes over the 1’s switching between q2 and q1/
f(q2, 6= 1) = (q4, 0,−) /The end of 1’s is found and the number is odd/

f(q3,−) = (q3, 0,−) /Final state for an even number/

f(q4,−) = (q4, 0,−) /Final state for an odd number/

The corresponding clc.v is:

// the file clc(parity_of_unary_numbers).v

always @(state or symbol)

case (state)

3’b000: {data, com, next_state} = {2’b00, 2’b01, 3’b001};

3’b001: case (symbol)

2’b01: {data, com, next_state} = {2’b01, 2’b01, 3’b010};

default {data, com, next_state} = {2’b00, 2’b00, 3’b011};

endcase

3’b010: case (symbol)

2’b01: {data, com, next_state} = {2’b01, 2’b01, 3’b001};

default {data, com, next_state} = {2’b00, 2’b00, 3’b100};

endcase

3’b011: {data, com, next_state} = {2’b00, 2’b00, 3’b011};

3’b100: {data, com, next_state} = {2’b00, 2’b00, 3’b100};

default {data, com, next_state} = {2’bxx, 2’bxx, 3’bxxx};

endcase

2

CLC is the single complex structure of TM, because it “contains” the algorithm.
All the others components of TM have the complexity in O(1). Therefore, it is obvious
that CTM is in the same magnitude order with CCLC , i.e., CTM ∼ CCLC .

234 G. Ştefan

Proposition 1. Let be TM = (I, Q, f ; q0, #). Then:

CTM ∈ O((log(dim(I)) + log(dim(Q)))× dim(I)× dim(Q)).

Proof. Suppose for the sake of simplicity that dim(I) and dim(Q) are power of 2.
Our TM is characterized by n, the number of bits used to code the alphabet, and by
m, the number of bits used to code the states of FA, where:

n = log2(dim(I))

m = log2(dim(Q)).

The complexity of TM, CTM , is given by the sum of the complexity associated of each
component added with the complexity of their interconnections. Excepting CLC, all
the others components and the interconnections have constant descriptions that not
depends by n and m. Thus CLC has n+m inputs and n+m+2 outputs (see Fig. 2).
Therefore, its definition in the worst case is a random (uncompressible) table of binary
symbols having 2n+m rows and n + m + 2 columns (see also the generic form of the
file clc.v). Therefore:

CTM (n,m) = const. + CCLC ∈ O((n + m)2n+m).

By substituting the value of n and m we prove the proposition. 2

The computation performed by TM called M on a data string of n symbols is
characterized by the following three parameters:

• CM : the complexity of the TM called M , computed as the sum between the
size of the Verilog module turing machine and the size of the file clc(M).v:

CM = Sturing machine + Sclc(M).v = kTM + Sclc(M).v

• SM (n): the size of memory used to perform the computation M

• TM (n): the time, expressed in the number of clock cycles used to complete the
computation M .

We must notice that CM does not depend on n. This is the main idea of com-
putability expressed by “finite” from the finite automaton. For any value of n (even
for an infinite value) the complexity of the algorithm is the same.

Example 4. The TM parity of unary numbers (see Example 3) with an n-bit
input string “on the tape” is characterized as following:

• Cparity of unary numbers = kTM + Sclc(parity of unary numbers).v

• SM (n) = n + 2 ∈ O(n)

• TM (n) = n ∈ O(n) 2

A Universal Turing Machine with Zero Internal States 235

4. 0-State Universal Turing Machine:
the Simplest Computational Structure

We will prove that the structural complexity of TM can be reduced only imple-
menting it as a Universal Turing Machine (UTM).

Early theoretical studies where devoted to reduce the number of states of the finite
automaton, that control UTM, with a minimal increasing of the number of symbols
in the alphabet I [3]. But we believe that the more important thing is to reduce
the structural complexity of UTM. In this respect we will present the simplest UTM
built only with simple, recursive defined sub-systems. Some of them are small &
simple, others are “infinite” & simple circuits. We start with an n-state UTM, we
continue showing how this machine can be transformed in a 0-state UTM, and we end
by defining more clearly the meaning of the term information in the computation
process.

4.1. An n-State UTM

The problem leading to UTM is to define a machine whose structure can remain
unchanged when the executed function changes. In this case we need a machine with:

• an abstract representation for the needed TM, as a string of symbols stored in
the memory

• an automaton, useful for all computable functions, that “understands” and “exe-
cutes” by interpretation the abstract representation of any automaton associated
to a TM stored on the tape.

Interpretation is a process that acts on a string encoded representation of an
abstract machine, to emulate the behavior of that machine. It allows us to deal with
representations of machines rather than with the machine themselves.

Let be a TM called M with the initial content of the tape T : M(T). An interpreter
of M(T) will be the TM

U(< e(M), T >)

where e(M) is the string that describes the behavior of the FA of the TM called M .
On the tape of the TM called U there is the description of M and the string, T , to
be processed by M .

Definition 5. An UTM is a TM, U(< e(M), T >), that has a finite automaton
that interprets any TM’s description, e(M), stored in the same memory with T , the
string to be processed.

In order to implement an UTM we start from the fact that the transition function
f from the state qi can be reduced to a set of pairs having the following form:

f(qi, x) = (qj , y, cl)

f(qi, 6= x) = (qk, z, cm)

236 G. Ştefan

where: qi, qj ∈ Q, x, y, z ∈ I, and cl, cm ∈ {U, D, −} with the following meaning:

if currently accessed symbol is x
then the next state is qj

the stored back symbol is y
the access head command is cl

else the next state is qk

the stored back symbol is z
the access head command is cm

Such a pair will be associated with each state of the automaton. Therefore, any state
can be represented as a string of nine symbols having the form:

def(qi) = &qixqjyclqkzcm

where & is a symbol indicating the beginning of the defining string associated with
the state qi.

A TM can be completely described by specifying the function f , associated to
the random structure of the machine, using the above defined strings to compose a
“program” P as a stream of def(qi) strings.

Example 5. Revisiting Example 3 results the correspondent representation of
the program P (the string e(M)):
P = {def(q0), def(q1), def(q2), def(q3), def(q4)},
P = &q0−q10Uq10U&q11q21Uq30−&q21q11Uq40−&q3−q30−q30−&q4−q40−q40− 2

The tape of UTM will be divided in two sections, one for T, the string to be
processed by the machine M , and another containing the description P of the machine
M . The content of the tape will be

. . . #P@T# . . .

where:

• @ is a special symbol which delimits the “program” from the “data”
• the string P ∈ (I ∪Q∪ {D, U, −}∪ {&})∗ is the “program” that describes the

algorithm
• the string T ∈ I∗ represents the “data”.

The automaton of UTM “knows” how to interpret the string P in order to process
the string T . Its CLC used to compute the transition function of UTM is the only
random physical structure. The questions are: what is the way to minimize the
structure of this CLC? Is it possible to reduce to zero the dimension of this CLC?
Preliminary answers: with a new more efficient definition for def(qi), for the first
question; with a new more efficient & lucky definition for def(qxi), for the second
question.

A Universal Turing Machine with Zero Internal States 237

4.2. A 0-State UTM

For simplicity, we use an equivalent TM having two “heads”, one for reading
P and one for reading/writing T . The data access “head” and the program access
“head” are implemented as two counters (in the new representation of TM). This
machine has an actual implementation using a RAM with two ports, one for read the
program and another port for read/write from/in the data space.

The previous form of P must be translated in P ′ that uses for each state, instead
of the string &qixqjyclqkzcm stored in 9 successive memory cells, the following form,
call it instruction, as a single entity stored in one memory cell:

instruction = {test_symbol, yes_inc, yes_symbol, yes_com,
no_inc, no_symbol, no_com }

Any instruction is interpreted as follows:

if current accessed symbol is test symbol
then move program access head yes inc positions

store yes symbol in data space
data access head command is yes com

else move program access head no inc positions
store no symbol in data space
data access head command is no com

where: yes inc and no inc are signed integers. Obviously, each program P has a
correspondent P ′ form.

Example 6. Looking back to the previous example, the string P , with the next
form:

&q0 − q10Uq10U&q11q21Uq30−&q21q11Uq40−&q3 − q30− q30−&q4 − q40− q40−
stored in 45 successive cells can be translated in a string of P ′ type, stored in five
larger successive memory cells. If the field com is codded as follows: nop = 00, up
= 01, down = 10, results the P ′ form of P :

instruction_0 = xx, +1,00, 01, +1,00,01
instruction_1 = 01, +1,01, 01, +2,00,00
instruction_2 = 01, -1,01, 01, +2,00,00
instruction_3 = xx, +0,00, 00, +0,00,00
instruction_4 = xx, +0,00, 00, +0,00,00

2

The structure of UTM using instruction to define the transition from the state
qi is presented in Fig. 3, where the counters are detailed and some simple combina-
tional circuits are added. The program P ′ is stored in RAM starting with the address
n where the description of the state q0, instruction 0, is loaded. In the follow-
ing memory cells are stored the next instructions: instruction 1, instruction 2,

238 G. Ştefan

instruction 3, instruction 4. The string to be processed, in our case the 1-ary
represented number, is stored starting with the address m, greater than the ad-
dress containing instruction 4. The initial value of the program address counter
(ADD & R1) is n, and for the data address counter (Inc/Dec & R2) the initial
value is m. The multiplexer MUX selects (see Fig. 3), according to the output of
the comparator Comp (whose output is 1 if its two inputs are equal), the appropriate
values for:

• the value (yes symbol or no symbol) to be written in RAM to the current
address generated by Inc/Dec & R2 (the value to be written on the tape in the
current cycle of the simulated TM)

• the signed number to be added to the current value of “program counter” imple-
mented by ADD & R1 (the relative address of the cell that stores the description
of the next state: the next instruction)

• the command applied to the counter (Inc/Dec & R2) that points in the data
part of the memory.

?
CompMUX

a b¾

??? ???

?

?

- -

?

?

?

? ?

?

-

ADD

R1 R2

Inc/Dec

Addr1 Addr2

Infinite RAM

DOUT1 DOUT2

data[t-1:0]

sel

DIN

inc

com

prog addr data addr

symbol

symbol

a=b

yesno

Fig. 3. A 0-state UTM. The structure of a recursive defined UTM contains
only simple, small or “infinite” circuits. DOUT1 generates in each clock cycle

the instruction instruction i, corresponding to the current state, qi,
executed by UTM. DOUT2 generates in each clock cycle the symbol

currently accessed by the TM that is executed.

A Universal Turing Machine with Zero Internal States 239

The HDL description is the following:

module universal_turing_machine(symbol, reset, clock);

parameter n = 10, // address size

t = 8; // data word size

output [t-1:0] symbol;

input reset, clock;

reg [(2*t+3*n+3):0] mem[0:((1 << n) - 1)];

reg [n-1:0] data_addr, prog_addr;

wire [(2*t+3*n+3):0] data;

wire [t-1:0] test_symbol, yes_symbol, no_symbol;

wire [n-1:0] yes_inc, no_inc, inc;

wire [1:0] yes_com, no_com, com;

// ADDRESS GENERATORS

always @(posedge clock)

if (reset) prog_addr <= 0;

else prog_addr <= prog_addr + inc;

always @(posedge clock)

if (reset) data_addr <= 1 << (n - 1);

else data_addr <= com[1] ? data_addr :

com[0] ? data_addr + 1 :

data_addr - 1 ;

// MEMORY

always @(posedge clock) mem[data_addr] <= symbol;

assign data = mem[data_addr],

{test_symbol,

yes_inc, yes_symbol, yes_com,

no_inc, no_symbol, no_com } = mem[prog_addr];

// COMPARATOR & MULTIPLEXOR

assign {symbol, inc, com} = (test_symbol == data[t-1:0]) ?

{yes_symbol, yes_inc, yes_com} :

{no_symbol, no_inc, no_com} ;

endmodule

The resulting UTM is characterized by a strong functional segregation be-
tween the simple physical structure and the complex symbolic structure, e(M),
stored in its memory. Indeed, the UTM as a machine has no random components
(circuits). The randomness of the initially defined UTM is totally shifted into the
content of the memory, where a “random” string describes a certain TM. Instead of
random circuits (the CLC) and a random string of symbols, we have now only the
random string of symbols (the stream of instructions). The hard random structure
of the circuits is completely converted into the soft random structure of the string
describing the function executed by the emulated TM.

In this last UTM version the interpretation of e(M) is substituted with the ex-
ecution of a differently organized e(M). The interpretation is a controlled process
that involves a finite automaton, while the execution is made by simple circuits (in
this case, the combinational circuits like selectors, comparators, simple arithmetic cir-
cuits). Because Comp, MUX, ADD, Inc/Dec are simple circuits (see Fig. 3) they are

240 G. Ştefan

able only to execute a code, not to interpret it. The size of their definition does not
depend on the dimension of the sets I and Q. Removing the finite automaton
from the structure of UTM the machine substitutes the interpretation of P with the
execution of P’.

Proposition 2. The 0-state UTM is a simple machine.

Proof. There is no random part in UTM because the finite automaton is
removed and the interpretation is substituted with the direct execution using simple
circuits. 2

The computation M performed by the UTM on a data string of n symbols by a
program, P , stored in m p-bit memory cells is characterized by the following three
parameters:

• CM : the complexity of computation M , computed as the sum between the size
of the Verilog module universal turing machine and the size of the memory
used to store the program:

CM = Suniversal turing machine + p×m = CUTM + p×m

• SM (n): the size of memory used to perform the computation M

• TM (n): the time, expressed in the number of clock cycles used to complete the
computation M .

In the constant value of CM the size of the program P is correlated with the
complexity of UTM, CUTM executing it. The size of the program P can be reduced
if the complexity of UTM is increased. For the simplest UTM we expect to have the
biggest program size.

4.3. Information Based Computation

In [2] general information is defined as a meaningful syntactic structure. Start-
ing from this general definition the concept of information in the general theory of
computation becomes a very well stated concept.

Definition 6. Let be the interpreter

U(< e(M), T >)

of TM called M with the initial data T , where e(M) is the stream of symbols de-
scribing the behavior of TM. We call e(M) the information stored on the “tape” of
the machine U, and T the data to be processed by U which interprets the information
e(M).

The content of e(M) acts when it is interpreted by an UTM. Therefore, computa-
tion means: a process controlled by information. Two distinct cases are emphasized:

A Universal Turing Machine with Zero Internal States 241

• interpreting information in the n-state UTM: the FA of the machine U(<
e(M), T >) “knows” how to use (to interpret) e(M), which thus acts in or-
der to process T ;

• executing information in 0-state UTM: the content of e(M) acts mediated only
by simple circuits in order to process T .

There is a very important difference between e(M) and T . The stream e(M)
has a very precise meaning: it describes an algorithm. The stream T usually has
no meaning for the way the machine behaves processing it. T is a sort of “passive”
stream of symbols, while e(M) is an “active” stream of symbols.

Generally speaking, information acts by its meaning, which is interpreted or
executed on a physical support. In the particular case of computing this physical
support is an UTM with n or 0 states. Thus, execution can be seen as a limit case of
interpretation.

Usually we refer to computers, asserting that computers process information. More
correct is to phrase: computers process data by information. Thus the distinction
between the symbolic structure of data and the symbolic structure of information
becomes clear: the second acts, mediated by a physical structure, on the first.

5. Conclusions

The reasons of reducing the number of states of a UTM now, in Giga Gates
per Chip Era, are completely different from the reasons to make the same thing 50
years ago, in the no-chip era. Now we are driven by the problems generated by
unmanageable complexities, while a half century before only pure theoretic issues
pushed ahead a similar research. (The solution proposed by Claude Shannon in 1956
increased very much the complexity of the combinational circuit of the 2-state finite
automaton.)

1. The complexity of a computation performed by a 0-state UTM depends only by
the algorithmic complexity of the string e(M). The structural complexity of the TM is
completely converted in the complexity of the symbolic description of the computation
that will be executed (not interpreted) in 0-state UTM. A hard complexity is converted
into a soft complexity even for the problem having solutions with a less powerful
machine than a TM.

2. The present day technological evolutions offer the possibility to design machines
having very big sizes, but the complexity of this big structures can not follow this
tremendously accelerated process. The complexity can not grow as fast as the
size grows. Else, because of their too big complexity machines become uncontrol-
lable, more, they become unutterable. Let us imagine a complex circuit containing
109 gates! In order to be “accepted” in an automatic design environment we have
no solution to “express” it. The simplicity of the 0-state UTM supports our steps
toward using the new technologies for building very big and powerful machines main-
taining their complexity at a manageable level. Thus, we have a theoretical support

242 G. Ştefan

to declutch the complexity of the computation by the complexity of the machine. Is
this a good or a bad way? This is another issue, out of our purpose now.

3. The segregation between the simple machine and the complex symbolic de-
scription of computation is the main process helping us to avoid the big apparent
complexity of computation. In this way we have the chance to reach the actual com-
plexity, preserving the competence. In order to improve the performance we must
add the architectural approach, as a process that offers a good balance between the
physical structures and the symbolic structures involved in the computation process.

4. Any computation done by a TM is characterized by complexity (the size of
description of the associated TM), size (the amount of memory used to make the
computation) and time (the number of clock cycle used by TM to complete the com-
putation). For a UTM, the complexity is given by adding the complexity of UTM
with the size of the program.

5. The complexity of computation must take into account both, the complexity of
the machine performing the computation and the size of the program used to describe
the computation.

6. Information is defined as the syntactic correct symbolic structure acting by its
meaning defined in the context of an UTM. The meaning carried by information is
interpreted in n-state UTM’s or it is executed in 0-state UTMs. The active information
must be differentiated by the passive data, both stored in the “infinite” memory of
an UTM.

7. The distinction between information and data is contextual. Data can be seen
as information in the context of another computation (a compiler generating an exe-
cutable code works on data which will become information once loaded as a program
on the same machine).

Because computation implies simple machines that interpret (execute) complex
information we have the optimistic view of accepting the exponential growth of the
hard machines, while the complexity remains to be managed by modelling the soft
information.

References

[1] CHAITIN, G., Algorithmic Information Theory, IBM J. Res. Develop., July 1977.

[2] DRĂGĂNESCU, M., Information, Heuristics, Creation, in Plauder, I. (ed): Artificial
Inteligence and Information Control System of Robots, Elsevier Publishers B. V. (North-
Holland), 1984.

[3] SHANNON, C. E., A Universal Turing Machine with Two Internal States, in Annals of
Mathematics Studies, no. 34: Automata Studies, Princeton Univ. Press, pp. 157–165,
1956.

[4] ŞTEFAN, G., Circuit Complexity, Recursion, Grammars and Information. Multiple
Morphisms, Ed. Transilvania University of Braşov, 1997.

A Universal Turing Machine with Zero Internal States 243

[5] ŞTEFAN, G., No-State Universal Turing Machine, communication at Fundamentals of
Computation Theory, Iaşi, 1999.

[6] ŞTEFAN, G., Loops & Complexity in Digital Systems. Lecture notes on digital design
in the Giga-Gate per Chip Era, partially posted at http://arh.pub.ro/george/

[7] ŞTEFAN, G., 0-State Universal Turing Machine, in http://arh.pub.ro/george/

0stateUTM.htm

[8] ŞTEFAN, G., Functional Information in http://arh.pub.ro/george/functional

Information.html

