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Introduction

Anyone can build a fast CPU. The trick is to
build a fast system.

Seymour Cray (1925-1996)

The concept of reconfigurable computing, RC, has existed since the 1960s, when Gerald Estrin’s
paper [Estrin *60] proposed the concept of a computer made of a standard processor and an array of “re-
configurable” hardware. The main processor would control the behavior of the reconfigurable hardware.

RC emerges as a solution to two main shortcomings suffered by the computing systems that origi-
nated in the 1940s:

Turing tariff : Turing-based universal computer could perform any function, but not necessarily ef-
ficiently. The flexibility of Turing-based computers can still be used for complex computation,
while for intense computation acceleration solutions will have to be found.

von Neumann bottleneck : the abstract model of computation disseminated by John von Neumann, in
his 1945 report, provides a solution with a small and complex processor connected to a simple and
big memory through a communication channel which isolates data and programs from the engine
which work on data according to programs. The Harvard abstract model, issued in the same time,
relaxes a little the limitation but the main problem remains: data are isolated from the processing
engine.

The emergence of the SRAM-based field-programmable gate array (FPGA) in the 1980s boosted
Reconfigurable Computing as a research and engineering field.

The book is structured in eight chapters organized in three parts followed by three appendixes.

First part : PRELIMINARIES, introduces the theoretical and historical context in which reconfig-
urable computation appears and will develop.

First chapter : History, answers, from a historical perspective, the question: why reconfigurable
computing?

Second chapter Why do we need reconfigurable computation?, describes the current spectrum
of possibilities offered by computer science.

Third chapter : System-level Organization for Reconfigurable Computation, provide a general
description of a reconfigurable computing system.

Fourth chapter : Mathematical Models of Computation, is a short review of the main math-
ematical models of computation involved in defining what the reconfigurable computation
could be.



Second part : DIGITAL HIERARCHY, is a review of the hardware resources we have to use circuits
as a computability model.

Fifth chapter : Digital System Hierarchy, describes the circuits that can be used to design the
accelerator part of the reconfigurable computing system. It starts with combinational circuits
and ends with mono-core programmable computing systems.

Sixth chapter : Cellular System Hierarchy, deals with the hierarchy of cellular systems starting
with cellular automata and describes various systems improved functionally by adding global
loops.

Seventh chapter : Recursive Hierarchy, introduces an abstract model for parallel computing
based on the Stephen Kleene ‘s partial recursive functions model.

Third part : RECONFIGURABLE SYSTEMS, provides the main techniques involved in supporting the
implementation of RC systems.

Eight chapter : Optimizing Reconfigurable Systems, deals with the optimization of the way the
code must be written iin order to optimize the hardware of the accelerator.

Ninth chapter : Optimizing Pseudo-reconfigurable Systems, provides an efficient solution for
designing the functionality of the accelerator.

APPENDIXES Composition: the only independent rule in Kleene‘s model : the proof that out of
three rules in the partial recursive model, only the first, the composition, is independent, the
other two can be expressed as a composition of specific compositions.

How to instantiate DSP48E1 : provide the Verilog code used to instantiate the DSP48E1 mod-
ule.

ConnexArray”™ simulator : provides the full description of the simulator for the generic
ConnexArray”™ used as accelerator for the pseudo-reconfigurable version proposed in the
last capitol of this book.

What do we expect in the post-Moore era? Improvements in computing performance will come from
technologies at the “Top” of the computing hierarchy, not from those at the basic technological level
(transistors). Thus we will assist to the reversing of the historical trend.

In the hardware field, processor simplification and domain specialization are expected to add perfor-
mance in the near future.

It is important to specify what means processor simplification! We will define carefully what means
simple (see Subsection 2.4.2).

And in terms of specialization, we will highlight several levels at which it can be applied. From this
perspective, we will distinguish between reconfigurable and pseudo-reconfigurable computation.
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Part I

PRELIMINARIES






Chapter 1

History

The history of computation consists of few independent threads, starting in Antiquity. The history starts
with an imaginary thread, a conceptual thread and a factual thread. Initially, the concepts and the objects
evolved independently. At their mature stage, stimulated by the sad event of World War II, the conceptual
evolution interferes with the physical implementation and the IT era begins. Application-driven history
gradually emerges around 1971 when the conceptual approach reaches a maturity that slows down the
theoretical approaches. In parallel with these threads, along the history, has been manifested and it still
manifests also an imaginary thread. One of the main driving force in any domain is the human will
and imagination. Therefore, we cannot ignore an ever developing imaginary history of the computing
technology and its applications.

1.1 Imaginary history

At the beginning is always an image, a dream.

1.1.1 Antiquity
Hephaestus & Vulcan

Greek god Hephaestus is the god of technology, blacksmiths, craftsmen and artisans. Hephaestus made
a bronze giant called Talos that would patrol around the island and throw rocks at enemy ships.
A roman counterpart of Hephaestus is Vulcan: made slave-girls of gold for himself.

Pygmalion

Pygmalion was a mythical character who, in search of perfection, sculpted in ivory the image of a perfect
woman with whom he later fell in love and the goddess Aphrodite gave life to the statue.

We are always dealing with the human being’s aspiration to correct the imperfections of nature
through artifacts. Pygmalion seems to be a transhumanist avant la lettre.

1.1.2 Middle Ages

There were several stories and legends in the Middle Ages that involved the creation of artificial beings
or creatures. These stories often reflected the beliefs and fears of medieval society regarding the power
of human beings to create and control life.
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Golem

Golem (Prague, ~1500) is a metaphor for a brainless entity who serves man under controlled conditions
but is hostile to him under others. The earliest known written account of how to create a golem can be
found in Jewish Tradition (1165-1230).

Artificial animals and creatures at the court of Emperor Frederick I1

There were also stories of artificial animals and creatures, such as the legendary mechanical eagle of
Holy Roman Emperor Frederick II (1194-1250), which was said to be able to fly and to emit various
sounds and cries.

Brazen Head

Another famous example is the story of the Brazen Head, a mechanical or artificial head that was said
to be able to answer any question put to it. According to legend, the head was created by the medieval
scholar and philosopher Roger Bacon (1220-1292), who was said to have used his knowledge of natural
philosophy to imbue the head with the power of speech and reason.

Homunculus

Another example is the legend of the Homunculus, a tiny human-like creature that was said to be cre-
ated by alchemists through the use of special substances and rituals. The Homunculus was believed to
possess magical powers and to be able to perform various tasks, including the transmutation of metals
and the creation of life. Paracelsus (1493-1541) is credited with the first mention of Homunculus in De
homunculis (c. 1529-1532), and De natura rerum (1537)

Overall, these stories and legends reflected the fascination and curiosity of medieval society with the
idea of artificial life and the power of human beings to create and control it.

1.1.3 Modernity

Frankenstein‘s Creature

Mary Shelley (1797-1851, wife of the poet Percy Shelley and daughter of Mary Wollstonecraft a found-
ing figure of feminism) published in 1818 the novel em Frankenstein about a brilliant but unorthodox
scientist, Dr. Victor Frankenstein, who rejects the artificial man he created; Creature escapes and later
swears revenge.

Offenbach’s Olympia

Jacques Offenbach (1819-1880) in his The Tales of Hoffmann opera finished in 1880 introduced the
character Olympia, a mechanical or an animatronical doll.

Karel Capek’s Robota

Robot (robota in Russian) is coined by Karel Capek 1920 R.U.R. is a 1920 science fiction play by
the Czech writer Karel Capek. R.U.R. stands for Rossumovi Univerzdlni Roboti (Rossum’s Universal
Robots). The English phrase "Rossum’s Universal Robots” has been used as a subtitle.
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Fritz Lang’s Metropolis

In 1927, German film maker Fritz Lang made the science fiction film Metropolis. The script contains the
construction of a robot that acquires perfect human appearance and behavior. The artificial product has
the ability to disrupt the behavior of the masses. It’s far beyond what was imagined for Capek’s robot.

1.1.4 Contemporary

Scary Science Fiction (SF) scenarios about Artificial Intelligence (AI) [Tegmark *17].

Max Tegmark: Life 1.0 referring to biological origins, Life 2.0 referring to cultural developments in
humanity, and Life 3.0 referring to the technological age of humans.

We must make distinctions between the three main human brain behaviors: Spiritually — Imaginary
— Rationally. Al refers mainly to the third.

1.2 Conceptual history

1.2.1 Binary Arithmetic to the Chinese

In Discourse on the Natural Theology of the Chinese, Gottfried Wilhelm von Leibniz (1646-1716) men-
tioned that the 64 hexagrams of em I Ching (~1000 BC) represent the binary arithmetic used a few
thousand years ago in China.

1.2.2 Epimenides of Crete

Karl Jaspers (1883-1969) introduced the concept of an Axial Age in his book The Origin and Goal of
History, published in 1949. During this period new ways of thinking emerged in Persia, India, China,
Greece and Roman Empire, in a singular synchronous development, without any effective direct cultural
contact between all of the Eurasian cultures. Jaspers emphasized prominent thinkers from this period
who had a profound influence on future sciences, philosophies and religions.

In this Axial Age, around 7th or 6th century BC, Epimenides of Cnossos (Crete) was a semi-mythical
Greek seer and philosopher-poet which started the conceptual development leading to the contemporary
computer science. In one day he uttered a sentence which troubled the inquisitive minds from everywhere
for the next two and half millennia:

“Cretans, always liars.”

The sentence is equivalent with “I lie”, and is undecidable: its truth value can not be decided.

1.2.3 Liar’s paradox in Middle Ages

In the Middle Ages, the paradox was studied and commented on by many philosophers and theologians,
who tried to resolve the contradiction it presents.

Boethius

Boethius is one of the earliest recorded commentaries on the paradox in the Middle Ages. He is a
Roman philosopher who lived in the 6th century CE. In his work ”Consolation of Philosophy,” Boethius
discusses the paradox and argues that it arises from a confusion of terms and concepts.
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Peter Abelard

In the 12th century, the paradox was further discussed by the French philosopher and theologian Peter
Abelard, who used it to criticize the doctrine of divine omnipotence. Abelard argued that the paradox
shows that there are limits to what even an omnipotent God can do, since he cannot make a statement
that is both true and false at the same time.

William of Ockham

In the 14th century, the English logician William of Ockham used the paradox to argue against the idea
of universal propositions. Ockham argued that the paradox shows that there are no universal propositions
that can be true or false in all cases, since there are some statements that cannot be consistently evaluated
as true or false.

Overall, the paradox of the liar was a topic of interest and debate among medieval philosophers and
theologians, who used it to explore the limits of language, logic, and the nature of truth.

1.2.4 Gottfried Wilhelm von Leibniz
Binary representation

In 1703, Leibniz published in the Mémories de [‘Académie Royale des Sciences his essay “Explication
de 1‘arithmétique binaire, qui se sert des seules caracteres 0 & 1; avec des remarques sur son utilité, et
sur ce qu‘elle donne de sens des anciennes figures chinoises de Fohy” where he explains how to perform
addition, subtraction, multiplication and division using the binary representation for numbers.

Calculus ratiocinator

The Calculus ratiocinator is a a concept introduced by Leibniz related to characteristica universalis, an
universal conceptual language. This concept could be related to both the hardware and software aspects
of the modern digital computer.

1.2.5 George Boole

In 1847 George Boole (1815-1864) published Mathematical Analysis of Logic and in 1854 An Investiga-
tion into the Laws of Thought, on which are Founded the Mathematical Theories of Logic and Probabil-
ities which underpins what we now call Boolean algebra, a successful attempt to formalize Aristotelian
logic. It is thus made available to innovators an instrument that will be used to substantiate the science
of calculus as a decision tool in the first place, and only through a second approach as a calculation tool.
Indeed, computation is mainly about deciding. Numerical computation comes only as a consequence.
At first it was the true/false alternative, and only then the 0/1 alternative.

1.2.6 1900-1928: David Hilbert

David Hilbert (1862-1943) one of the most influential and universal mathematicians of the 19th and early
20th centuries.

At the International Congress of Mathematicians held in Bologna, Hilbert revisited to the second of
the 23 problems posed in his 1900 paper Mathematische Probleme [Hilbert 1900], asking [Isaacson *85]:

1. Was its set of rules complete, so that any statement could be proved (or disproved) using only the
rules of the system?
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2. Was it consistent, so that no statement could be proved true and also proved false?

3. Was there some procedure that could determine whether a particular statement was provable, rather
than allowing the possibility that some statements (such as enduring math riddles like Fermat’s last
theorem, Goldbach’s conjecture, or the Collatz conjecture) were destined to remain in undecidable
limbo?

Hilbert thought that the answer to the first two questions was yes, making the third one moot
[Isaacson ’85].

In mathematics and computer science, the Entscheidungsproblem (German for “decision problem”)
is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928 [Hilbert & Ackermann *28]. By
the completeness theorem of first-order logic, a statement is universally valid if and only if it can be
deduced from the axioms, so the Entscheidungsproblem can also be viewed as asking for an algorithm
to decide whether a given statement is provable from the axioms using the rules of logic.

As late as 1930, Hilbert believed that there would be no such thing as an unsolvable problem.

The Entscheidungsproblem is related to Hilbert’s tenth problem (from Hilbert’s address of 1900 to the
International Congress of Mathematicians in Paris [Hilbert 1900]), which asks for an algorithm to decide
whether Diophantine equations have a solution. The non-existence of such an algorithm, established by
Yuri Matiyasevich in 1970, also implies a negative answer to the Entscheidungsproblem.

Hilbert’s address of 1900 to the International Congress of Mathematicians in Paris is perhaps the most
influential speech ever given to mathematicians, given by a mathematician, or given about mathematics.
In it, Hilbert outlined 23 major mathematical problems to be studied in the coming century.

1.2.7 1931: Kurt Godel

Kurt Friedrich Godel (1906-1978) The logician Godel published his two incompleteness theorems in
1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna.
The first incompleteness theorem states that for any self-consistent recursive axiomatic system powerful
enough to describe the arithmetic of the natural numbers (for example Peano arithmetic), there are true
propositions about the naturals that cannot be proved from the axioms. To prove this theorem, Godel
developed a technique now known as Godel numbering, which codes formal expressions as natural
numbers.

The Austrian-born logician Kurt Godel polished off the first two Hilbert’s questions with unexpected
answers: no and no. In his “incompleteness theorem”, he showed that there existed statements that could
be neither proved nor disproved.

1.2.8 1936: Church - Kleene — Post — Turing

What a synchronicity! Indeed, the logician Godel’s approach triggered four mathematicians to provide
independently mathematical versions to the logical challenge raised by the Entscheidungsproblem (the
third of Hilbert’s questions).

Alonzo Church

Alonzo Church (1903-1995): The lambda calculus emerged in his 1936 paper showing the unsolvability
of the Entscheidungsproblem. This result preceded Alan Turing’s work on the halting problem, which
also demonstrated the existence of a problem unsolvable by mechanical means. Church and Turing
then showed that the lambda calculus and the Turing machine used in Turing’s halting problem were
equivalent in capabilities, and subsequently demonstrated a variety of alternative “mechanical processes
for computation”. This resulted in the Church—Turing thesis.

The lambda calculus influenced the design of the LISP programming language and functional pro-
gramming languages in general.
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Stephen Kleene

Stephen Cole Kleene (1909-1994) is best known as a founder of the branch of mathematical logic known
as recursion theory, which subsequently helped to provide the foundations of theoretical computer sci-
ence.

Emil Post

Emil Leon Post (1897-1957) developed in 1936, independently of Alan Turing, a mathematical model
of computation that was essentially equivalent to the Turing machine model. This model is sometimes
called Post’s machine” or a Post-Turing machine.

Alan Turing

“When the great Cambridge math professor Max Newman taught Turing about Hilbert’s questions, the
way he expressed the Entscheidungsproblem was this: Is there a “mechanical process” that can be used
to determine whether a particular logical statement is provable?” [Isaacson ’85]

Alan Mathison Turing (1912-1954) in 1936 published his paper ”On Computable Numbers, with an
Application to the Entscheidungsproblem”. 1t was published in the Proceedings of the London Mathe-
matical Society journal in two parts, the first on 30 November and the second on 23 December. In this
paper, Turing reformulated Kurt Godel’s 1931 results on the limits of proof and computation, replacing
Godel’s universal arithmetic-based formal language with the formal and simple hypothetical devices that
became known as Turing machines. The Entscheidungsproblem (decision problem) was originally posed
by German mathematician David Hilbert in 1928. Turing proved that his universal computing machine”
would be capable of performing any conceivable mathematical computation if it were representable as
an algorithm. He went on to prove that there was no solution to the decision problem by first showing
that the halting problem for Turing machines is undecidable: It is not possible to decide algorithmically
whether a Turing machine will ever halt.

1.2.9 1940s: abstract models of computation

The transition from a mathematical model of computation to a realizable physical structure was enabled
by the abstract models of computers. Purely mathematical models contain descriptions that assume con-
cepts that have no physical counterpart, such as infinity. For this reason abstract models were necessary.

1943: Neural nets

Warren S. McCulloch, Walter H. Pitts introduced the neural network model for computation
[McCulloch ’43].

1944: Harvard abstract model

The term originated from the Harvard Mark I, or IBM Automatic Sequence Controlled Calculator
(ASCC), an electromechanical computer, which stored instructions on punched tape and data in electro-
mechanical counters.

1945: von Neumann abstract model

John von Neumann wrote up a description titled First Draft of a Report on the EDVAC [Neumann *45]
based on the work of Eckert and Mauchly. It was unfinished when his colleague Herman Goldstine
circulated it, and bore only von Neumann’s name (to the consternation of Eckert and Mauchly).
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1.3 Factual history

1.3.1 Antikythera mechanism

The Antikythera mechanism is believed to be designed to predict eclipses. It has been designed and
constructed by Greeks and is dated to about 200 BC to 80 BC. It is a clockwork mechanism composed
of more than 30 engaged bronze gears.

1.3.2 Hero of Alexandria

Hero of Alexandria (c.10-c.70) was the first to build a vending machine; when a coin was introduced via
a slot on the top of the machine, a set amount of holy water was dispensed.

Hero described the construction of the aeolipile (a version of which is known as Hero’s engine) which
was a rocket-like reaction engine and the first-recorded steam engine

1.3.3 Gerbert of Aurillac

In 996 A.D., Gerbert of Aurillac (Pope Sylvester II from 999) (946-1003) invented the first weight-driven
mechanical pendulum clock at a monastery in Magdeburg in Germany. The clock’s mechanism would
ring bells at regular intervals throughout the day to call his fellow monks to prayer.

Gerbert took the idea of the abacus calculator from a Spanish Arab. But the calculations with his
abacus were extremely difficult, because the people of his day used only Roman numerals.

1.3.4 Wilhelm Schickard

Johannes Kepler, claimed that the drawings of a calculating clock, predating the public release of Pascal’s
calculator by twenty years, had been discovered in two unknown letters written by Wilhelm Schickard
(1592-1635) to him in 1623 and 1624.

1.3.5 Blaise Pascal

Pascaline: Blaise Pascal (1623-1662) was led to develop a calculator by the laborious arithmetical calcu-
lations required by his father’s work as the supervisor of taxes in Rouen. He designed the machine to add
and subtract two numbers directly and to perform multiplication and division through repeated addition
or subtraction.

1.3.6 Gottfried Wilhelm von Leibniz

In Machina arithmetica in qua non additio tantum et subtractio sed et multiplicatio nullo, diviso vero
paene nullo animi labore peragantur, written in 1685, Gottfried Wilhelm (von) Leibniz (1646-1716)
described an arithmetic machine he had invented that was made by linking two separate machines, one
to perform additions/subtractions and one for multiplications/divisions.

1.3.7 Joseph Marie Charles dit Jacquard

The Joseph Jacquard (1752-1834) Loom is a mechanical loom that uses pasteboard cards with punched
holes, each card corresponding to one row of the design. Multiple rows of holes are punched in the cards
and the many cards that compose the design of the textile are strung together in order.
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1.3.8 Charles Babbage

Difference engine

Charles Babbage (1791-1871) began in 1822 with what he called the difference engine, made to compute
values of polynomial functions. It was created to calculate a series of values automatically. By using the
method of finite differences, it was possible to avoid the need for multiplication and division.

Analytical Engine

The Analytical Engine marks the transition from mechanised arithmetic to fully-fledged general purpose
computation. It is largely on it that Babbage’s standing as computer pioneer rests.

The major innovation was that the Analytical Engine was to be programmed using punched cards: the
Engine was intended to use loops of Jacquard’s punched cards to control a mechanical calculator, which
could use as input the results of preceding computations.[157][158] The machine was also intended to
employ several features subsequently used in modern computers, including sequential control, branching
and looping. It would have been the first mechanical device to be, in principle, Turing-complete.

1.3.9 Ada Byron, Countess of Lovelace

Augusta Ada King, Countess of Lovelace (née Byron; 1815-1852) chiefly known for her work on
Charles Babbage’s proposed mechanical general-purpose computer, the Analytical Engine. She was
the first to recognise that the machine had applications beyond pure calculation, and published the first
algorithm intended to be carried out by such a machine. As a result, she is sometimes regarded as the
first to recognise the full potential of a "computing machine” and one of the first computer programmers.

1.3.10 Herman Hollerith

Herman Hollerith (1860-1929) developed an electromechanical tabulating machine for punched cards to
assist in summarizing information and, later, in accounting. His invention of the punched card tabulating
machine, patented in 1889, marks the beginning of the era of semiautomatic data processing systems,
and his concept dominated that landscape for nearly a century. He was the founder of the Tabulating
Machine Company that was amalgamated (via stock acquisition) in 1911 with three other companies
to form a fifth company, the Computing-Tabulating-Recording Company, which was renamed IBM in
1924. Hollerith is regarded as one of the seminal figures in the development of data processing.

1.3.11 Claude Shannon & Thomas Flowers

Implementing electro-mechanically Boolean functions

Claude Elwood Shannon (1916-2001) known as “the father of information theory”. Shannon is noted for
having founded information theory with a landmark paper, A Mathematical Theory of Communication,
that he published in 1948.

He is also well known for founding digital circuit design theory in 1937, when -— as a 21-year-
old master’s degree student at the Massachusetts Institute of Technology (MIT) -— he wrote his thesis
demonstrating that electrical applications of Boolean algebra could construct any logical numerical rela-
tionship.
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Implementing electronically Boolean functions

Thomas Harold Flowers (1905-1998). From 1935 onward, he explored the use of electronics for tele-
phone exchanges and by 1939, he was convinced that an all-electronic system was possible. A back-
ground in switching electronics would prove crucial for his computer designs [Copeland ’06].

1.4 Merged history

The triad Math & Logic — War — Technology (Ethos — Pathos — Logos) provides the context of the
emergence of the Information Technology (IT) era.
WWII made the turbulent transition toward IT industry.

1.4.1 Colossus

Colossus was a set of computers developed by British code-breakers in the years 1943—1945 to help in the
cryptanalysis of the Lorenz cipher. Colossus used thermionic valves (vacuum tubes) to perform Boolean
and counting operations. Colossus is thus regarded as the world’s first programmable, electronic, digital
computer, although it was programmed by switches and plugs and not by a stored program.

A Colossus computer was thus not a fully Turing complete machine. The notion of a computer as
a general purpose machine — that is, as more than a calculator devoted to solving difficult but specific
problems — did not become prominent until after World War II.

1.4.2 ENIAC - EDVAC
ENIAC

Electronic Numerical Integrator and Computer was the first electronic general-purpose computer. It was
Turing-complete, digital and able to solve “a large class of numerical problems” through reprogramming.

ENIAC was completed in 1945 and first put to work for practical purposes on December 10, 1945.
ENIAC was designed by John Mauchly and J. Presper Eckert of the University of Pennsylvania, U.S.

By the end of its operation in 1956, ENIAC contained 20,000 vacuum tubes; 7,200 crystal diodes;
1,500 relays; 70,000 resistors; 10,000 capacitors; and approximately 5,000,000 hand-soldered joints. It
weighed more than 27 t, was roughly 2.4m x 0.9m x 30m in size, occupied 167m? and consumed 150kW
of electricity.

EDVAC

Electronic Discrete Variable Automatic Computer: unlike its predecessor, the ENIAC, it was binary
rather than decimal, and was designed to be a stored-program computer. Functionally, EDVAC was a
binary serial computer with automatic addition, subtraction, multiplication, programmed division and au-
tomatic checking with an ultrasonic serial memory[1] capacity of 1,000 34-bit words. EDVAC’s average
addition time was 864 microseconds and its average multiplication time was 2,900 microseconds.

ENIAC inventors John Mauchly and J. Presper Eckert proposed EDVAC’s construction in August
1944, and design work for EDVAC commenced before ENIAC was fully operational. The design would
implement a number of important architectural and logical improvements conceived during the ENIAC’s
construction and would incorporate a high-speed serial-access memory. Like the ENIAC, the EDVAC
was built for the U.S. Army’s Ballistics Research Laboratory at the Aberdeen Proving Ground by the
University of Pennsylvania’s Moore School of Electrical Engineering. Eckert and Mauchly and the other
ENIAC designers were joined by John von Neumann in a consulting role; von Neumann summarized
and discussed logical design developments in the 1945 First Draft of a Report on the EDVAC.



12 CHAPTER 1. HISTORY

1.4.3 Princeton computer

The IAS machine was the first electronic computer to be built at the Institute for Advanced Study (IAS)
in Princeton, New Jersey. It is sometimes called the von Neumann machine, since the paper describing
its design was edited by John von Neumann, a mathematics professor at both Princeton University and
IAS. The computer was built from late 1945 until 1951 under his direction.

The IAS machine was a binary computer with a 40-bit word, storing two 20-bit instructions in each
word. The memory was 1,024 words (5.1 kilobytes). Negative numbers were represented in “two’s
complement” format. It had two general-purpose registers available: the Accumulator (AC) and Multi-
plier/Quotient (MQ). It used 1,700 vacuum tubes. The memory was originally designed for about 2,300
RCA Selectron vacuum tubes.

It weighed about 1,000 pounds (450 kg).[11]

It was an asynchronous machine, meaning that there was no central clock regulating the timing of the
instructions. One instruction started executing when the previous one finished. The addition time was 62
microseconds and the multiplication time was 713 microseconds.

1.4.4 1IBM entered the scene

The IBM 701 Electronic Data Processing Machine, known as the Defense Calculator while in develop-
ment, was IBM’s first commercial scientific computer, which was announced to the public on April 29,
1952. It was designed by Nathaniel Rochester and based on the IAS machine at Princeton.

1.4.5 John Backus: first involvement

John Warner Backus (1924-2007): directed the team that invented and implemented FORTRAN, the first
widely used high-level programming language, and was the inventor of the Backus—Naur form (BNF), a
widely used notation to define formal language syntax.

1.4.6 Computer architecture

Brooks went on to help develop the IBM System/360 (now called the IBM zSeries) line of computers, in
which “architecture” became a noun defining “what the user needs to know”.

In [Amdahl ’64] [Blaauw ’64] the concept of computer architecture (low level machine model) is
introduced to allow independent evolution for the two different aspects of computer design, which have
different rate of evolution: software and hardware; thus, there are now on the market few stable and
successful architectures, such as x86, ARM, PowerPC.

1.4.7 John Backus: second involvement

He later did research into the function-level programming paradigm, presenting his findings in his in-
fluential 1977 Turing Award lecture “Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs”

1.4.8 Parallel computing enter the scene on the back door
While for mono-core computing there are the following stages [?]:

* 1936 — mathematical computational models: four equivalent models are published [Turing *36]
[Church *36] [Kleene *36] [Post *36] (all reprinted in [Davis *04]), out of which the Turing Ma-
chine offered the most expressive and technologically appropriate suggestion for future develop-
ments leading eventually to the mono-core, sequential computing
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* 1944-45 — abstract machine models: the MARK 1 computer, built by IBM for Harvard Uni-
versity, consecrated the Harvard abstract model, while the von Neumann’s report [Neumann *45]
introduced the von Neumann abstract model; these two concepts backed the RAM (random access
machine) abstract model used to evaluate algorithms for sequential machines

* 1952 — manufacturing in quantity: IBM launched /BM 701, the first large-scale electronic com-
puter

* late 1953 — high-level programming language: John W. Backus submitted a proposal to his
superiors at IBM to develop a more practical alternative to assembly language for programming
their IBM 704 mainframe computer; a draft specification for “The IBM Mathematical Formula
Translating System” was completed by November 1954; the first manual for FORTRAN appeared
in October 1956; with the first FORTRAN compiler delivered in April 1957.

* 1964 — computer architecture: in [Blaauw ’64] the concept of computer architecture (low level
machine model) is introduced to allow the independent development for the two different aspects
of computer design which have different rate of evolution: software and hardware; thus, there are
now on the market few stable and successful architectures, such as x86, ARM, ....

for parallel computing we are faced with a completely distorted evolution; let us see its first stages:

* 1962 — manufacturing in quantity: the first symmetrical MIMD engine is introduced on the
computer market by Burroughs

* 1965 - architectural issues: Edsger W. Dijkstra formulates in [Dijkstra *65] the first concerns
about specific parallel programming issues

* 1974-76 — abstract machine models: proposals of the first abstract models (bit vector models in
[Pratt *74] and PRAM models in [Fortune ’78], [Goldschlager ’82]) start to come in after almost
two decades of non-systematic experiments (started in the late 1950) and the too early market
production

* ? —mathematical computation model: no one yet really considered it, regrettably confused with
abstract machine models, although it is there waiting for us (see Kleene’s mathematical model for
computation [Kleene ’36]).

1.49 RISC

The term RISC (Reduction Instruction Set Computer) was coined by David Patterson. It means proces-
sors with an architecture characterized by:

load-store mechanism : divides instructions into two categories: ALU operations between registers,
and memory access as simple load and store between memory and registers instead complex multi-
indirected memory access modes

one-word instructions : instructions are coded in on word; even when an immediate value is involved,
it is taken into account that in most cases small values are involved that can be encoded with a
small number of bits making it unnecessary to add an additional word to specify the value.

one-cycle execution : using a Harvard abstract model, a load-store mechanism and one-word instruc-
tions, it is possible to design a processor which execute each instruction in one clock cycle

only most frequent instructions : because the statistics compiled on large program databases showed
an uneven distribution of the use of the instructions in the established ISAs, it was decided to keep
in the ISA only the frequently used instructions, provided that the omitted ones could be made by
a sequence of those maintained
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which will lead to:

The goal of any instruction format should be: 1. simple decode, 2. simple decode, and 3.
simple decode. Any attempts at improved code density at the expense of CPU performance
should be ridiculed at every opportunity. [Weaver *09]

The resulting reductions in complexity and size have increased the number of registers, increased clock
frequency and reduced power consumption.
The first implementations:

IBM 801 : based on a statistical study launched in the mid-1970s that highlighted the need to increase
the number of registries and the possibility of removing from current ISAs a significant number of
complex instructions that compilers “ignored”.

Berkeley RISC : when David Patterson was sent in 1979 on a sabbatical from University of California,
Berkeley to help DEC to improve the VAX microcode, he discovered that if the microcode was
removed, the programs would run faster. The microcode was responsible for interpreting the
complex instructions. Then, removing the complex instructions from ISA becomes a solution for
improving processor’s performance.

MIPS : stands for Microprocessor without Interlocked Pipeline Stages, a project which came from a
graduate course of John L. Hennessy At Stanfort University; it produced a functioning system in
1983.

Since 2010 a new open source ISA, RISC-V, has been under development at the University of Cali-
fornia, Berkeley.

1.4.10 FPGA & Adaptive Computer Acceleration Platform

1985 is considered the year of the birth of FPGA (Field-Programmable Gate Array) technology with the
founding of Xilinx, although in 1983 the founding of Altera led to the first forms of this technology.

ACAP (Adaptive Computer Acceleration Platform) is the technology that naturally emerges from the
FPGA approach by the fact that users of the last decades have expressed preferences that have outlined
specific structures that can be implemented as standardizable IPs.

An ACAP is a heterogeneous, hardware adaptable platform that is built from the ground up
to be fully software programmable. An ACAP is fundamentally different from any multi-core
architecture in that it provides hardware programmability but the developer does not have
to understand any of the hardware detail. [Banerjee *19]

1.5 User-driven evolution: Computation as General-Purpose Tech-
nology

1.5.1 Microsoft’s Surface

There comes a time when users begin to define and produce computing equipment for their own use. A
significant example is Microsoft’s Surface series of touchscreen-based personal computers, tablets and
interactive whiteboards.

Microsoft first announced Surface at an event on June 18, 2012, as the first major initiative by Mi-
crosoft to integrate its Windows operating system with its own hardware, and is the first PC designed
and distributed solely by Microsoft.
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1.5.2 Google’s Tensor Processing Unit

In 2015, a step forward is taken: an end-user begins to define and produce ICs for his own use. Google
began producing and using Tensor Processing Unit (TPU) as an Al accelerator ASIC developed specifi-
cally for neural network machine learning, particularly using Google’s own TensorFlow software.

From 2018, the circuits from the TPU family are also made available to other users. We are witness-
ing a mechanism by which the new technology is developed by an end-user and then made available to
other users. The development of general purpose machines (processors, computers) that are made avail-
able to different users is replaced by a process in a reverse way, users of devices dedicated to a particular
field promote products that are disseminated as general purpose products. We can also exemplify by
GPUs used as GPGPU. Note the oxymoronic formulation: General-Purpose Graphic Processing Unit.

1.5.3 Apple’s M1

M1 = (8-core ARM CPU + GPU + Neural Engine + ... + Cache) + DRAM: a first example of Accelerator-
Level Parallelism.

”So the physical RAM modules are still separate entities, but they are sitting on the same
green substrate as the processor. ... Apple calls its approach a “Unified Memory Architec-
ture” (UMA).”

1.5.4 Tesla’s Artificial Intelligence & Autopilot

FSD Chip Build Al inference chips to run our Full Self-Driving software, considering every small archi-
tectural and micro-architectural improvement while squeezing maximum silicon performance-per-watt.

1.5.5 Hadoop & Big-Data

Hadoop is an open source processing system that manages distributed data processing and storage for
Big Data applications for scalable clusters. It manages an ecosystem of Big Data applications that are
used to support advanced data mining and machine learning.

1.5.6 The Next Target: Artificial General Intelligence

AGI may be the ability of computers to solve problems in a way that human beings do, using intuition
and common sense in addition to formal skills.

Current Al techniques can be considered “narrow AI” or “weak AI” because they refer to well-
defined areas of competence, areas in which they currently exceed human performance.

AGI is a goal that is not only difficult to achieve, but, first of all, very difficult to define.

Artificial General Intelligence (AGI)

1.6 Application-driven history

A significant turning point came in 1971, when Intel launched the first successful silicon memory (1103)
and the first one-chip microprocessor (4004). In the same year, e-mail (@Mail) and the wireless network
appeared. It is the moment when the evolution of the field of computing begins to be more and more
marked by applications oriented towards the big market. The computer and its applications, until then
oriented towards government institutions, universities or corporate space, are beginning to be oriented
towards the consumer market. The main consequence will be, from that moment, the evolution under the
pressure of the criteria imposed by the market.



16

Is

CHAPTER 1. HISTORY

it a coincidence that one last important theoretical issue — NP-completeness — is being addressed

this year? An era of theoretical research seems to be coming to an end, and an era of applied develop-
ments is beginning.
It is worth mentioning some of the stages completed in the last half century [Garfinkel ’15]:

1972:

1973:

1973:
1975:
1983:

1983:

1983:

1984:

1984:

1984:

1985:

1988:

1989:

1990:

1992:

1992:

1993:

HP-35 pocket calculator destroyed the market for the slide rules. HP-35 because it had 35 keys.
Used to run at 200 KHz programs no longer then 768 instructions.

first cell phone call in April 3, on Sixth Avenue in New-York City between Fifty-Third and Fifty
Four Streets.

Alto the first personal computer developed by Xerox equipped with a graphic-user interface.
Adventure the first text-based simulation used as a game.

3-D printing is an additive manufacturing technology which fabricate objects in the field starting
from raw materials.

first laptop comes preloaded with a rudimentary word processor and a basic spreadsheet pro-
gram. It comes on the market under the specifications of RadioShack® TRS-80 Model 100 equiped
with an 8-bit Intel 80C85 microprocessor. The operating system, written almost entirely by Bill
Gates, was loaded in a 32 KB of ROM.

MIDI computer music interface helped to put music creation into the hands of more users to
generate great music without a professional performer because the computer played the music.
(MIDI stands for Musical Instrument Digital Interface.)

text-to-speech technology commoditized by DEC by its standalone appliance DECtalk

virtual reality a term coined by Jaron Lanier as being the outcome of running programs written
in Virtual Programming Language on specific hardware.

Verilog is a Hardware Description Language used by designers to describe, simulate, and synthe-
size digital systems.

desktop publishing allowed anybody to generate high quality documents with a tight control on
fonts and graphics.

CD-ROM stands for Compact Disc - Read-Only Memory; it is used to store music, video and
software.

www which stands for world wide web, transformed internet connection into a dominating tech-
nology connecting virtually every person on the planet.

GPS which stands for Global Positioning System, is a consumer navigation system based on old
radio waves technologies.

Boston Dynamics a robotics company maker of biped and quadruped robots capable of traversing
rough landscapes.

First mass-market web browser called Mosaic changed the way the www is accessed from a
professional procedure to an easy way which does not imply technical expertise.

Apple Newton electronic organizer; handwriting recognizer based on Arcon RISC MAchine
(ARM) a low-power computationally powerful controller.
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199s:

1997:
1997:
1998:

2001:

2004:

2007:

2008:

2022:

1.7

E-Commerce becomes possible as soon as the most important ingredient - security - has been im-
plemented. Netscape Secure Socket Layer allowed consumers to securely send credit card numbers
over the Internet.

Deep-Blue beat world chess campion Garry Kasparov
E-Ink electronic paper display (EPD) is a reflective display that is visible in direct sunlight.

Google based on an algorithm to rank organizes the pages on WWW. The algorithm takes into
account the number of links the quality of pages. A page is important if it is pointed from a big
numbers of important pages. In 2006 Google becomes a verb.

Wikipedia is the result of a mass-collaborative effort of organizing knowledge as a continuous
process which may containing errors, mistakes, biased attitude, but being open to self-correcting
mechanisms, till the end it is able to provide a very useful image of the current stage of knowledge.

Facebook is a (too) free communication platform. Provides a solution to the desire to connect
with and learn about other people.

iPhone invented by Apple puts together telephony, messaging, internet access, music, color
screen, touch-based interface. The main big things associated with iPhone: specialized programs
called apps.

Blockchain a collection of transactions — blocks — managed in the most possible secure mode thus
allowing the development of the criptocoin environment and many other distributed applications.

chatbot the chat robot chatGPT where GPT stands for generative pre-trained transformer .

Programming paradigms

Programming languages:

low level languages

— machine languages: uses the instructions’ numeric values of instructions directly

— assembly languages: generate executable machine code from assembly code where for each
statement there is a machine instruction; uses mnemonic codes to refer to machine code
instructions

high level languages

— imperative languages: generate explicit statements about how the machine state changes
x FORTRAN: scientific applications (1953-1957)

ALGOL (1958)

x COBOL: business applications (1959)

x Basic

*

% Pascal
x C

— declarative languages: describe what a computation should perform, without specifying de-
tailed state changes
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# functional languages: use evaluation of mathematical functions instead of explicit state
change (Lisp (1958), Clojure (2007))
* logic languages: involves explicit mathematical logic for programming (Prolog)

— multi-paradigm programming languages: programming languages that supports more than
one programming paradigm.

* Python: supports multiple programming paradigms, including procedural, object-
oriented, and functional programming

* library of functions

- BLAS
Eigen

Tensorflow

ONNX (Open Neural Network Exchange) is an open format built to represent machine learn-
ing models. ONNX defines a common set of operators - the building blocks of machine
learning and deep learning models

1.8 The Qubit

Quantum computing is a type of computation based on the collective properties of quantum states, such
as superposition, interference, and entanglement, to perform computation. The elementary devices that
perform quantum computations are qubits organized in what known as quantum computers.

The quantum computation performs the computation using a network of quantum logic gates. A
quantum gate is a complex linear-algebraic generalization of boolean circuits.

In 2001, a team of IBM scientists factored the number 15 with a quantum computer that had 7 qubits.
In 2019, IBM has launched Q System One, the first circuit-based commercial quantum computer.
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Why do we need reconfigurable
computation?

In order to understand why we need reconfigurable computing, we will first have to briefly review the
current state of the possibilities offered by hardware technologies.

2.1 Mono-core approach

The mono-core approach dominates the first decades of computer science and technology. It is based
on the mathematical model proposed by Turin and Post, and on the abstract model promoted by von
Neumann and the computer structure built at Harvard University.

There are two trends in the mono-core period: (1) increasing the capacity and speed of memories and
(2) increasing the performance of processors.

. Write -
WordLine BitLine
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H 4 T
Data’ Data
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WordLine

i
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Figure 2.1: From static to dynamic memory cell. a The static 6-transistor cell. b. The dynamic 3-
transistor cell. ¢. The dynamic one-transistor cell.

Today we have a few giga-bits per chip memories. The storage devices have evolved from the mag-
netic to silicon support, so as in the early 1970s, the first 1Kbit/chip silicon memory appeared: the Intel‘s
1103 chip (see Figure 2.2). Current density was possible because the one-bit storage cell evolved from
the static version (see Figure 2.1.a) to the dynamic cell. First to a 3-transistor cell (Figure 2.1.b), then to
the one transistor cell (Figure 2.1.c).

19
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Figure 2.2: Intel‘s 1103 dynamic memory chip released in 1971.

In half a century, from 1Kb/chip (see Figure 2.2) we get, through the action of Moore’s law, to ~1
Gb/chip (see Figure 2.3). One million times more bits per chip!

© W

e ||1|E||hl:|ﬁm|| |l|[mi|lmhlmﬂ||1m||||||mm

Figure 2.3: HP - DDR4 - 16 GB - SO-DIMM 260-pin.

If in the case of memories we are dealing with a purely quantitative evolution, in the case of proces-
sors there have been several conceptual leaps. The first one was the transition form multi-chip processors
to mono-chip processors. It happens gradually with Intel‘s 4004, continues with 8008 and 8080 but ma-
tures with x86 architecture. In parallel, Motorola, starting with its 6800 8-bit engine, is promoting 68000
series processors; with a much more elegant architecture, but supported by a less efficient management
than the one promoted by Intel.

Then, the most important transition is from CISC (Complex Instruction Set computer) to RISC (Re-
duced Instruction Set Computer) processors.

2.1.1 CISC

Turing’s UTM = CISC: a computing engine working with a processor which interprets the code. A
CISC processor is a microprogrammed machine which translates instructions in sequences of microin-
structions. This mechanism allows the designed to define very complex instructions but cannot “per-
suade” the compiler to use them frequently.

2.1.2 RISC

No state UTM = RISC [Stefan *06]: which, instead interpreting the code executes it. Main conse-
quences: smaller, simpler, faster, memory saver, energy aware processor. It has been proven that the
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intermediation offered by microprogramming is not useful for general computing. But be careful! It
may prove useful for specialized niche processors.

2.1.3 Memory wall

Originally theorized in 1994 by Wulf and McKee [Wulf *95], memory wall concept revolves around the
idea that computer processing units (CPUs) are advancing at a fast enough pace that will leave memory
(DRAM) stagnant.

CPU speed increased at an average rate of 55% per year from 1986 to 2000, whereas RAM speed
increased by just 10% per year.

A partial solutions available to combat the problem of memory wall is the use of cached data. But
this solution doesn’t work efficiently for intense computing.

2.2 Multi-core approach

Multi-core computer = ad hoc construct
Backed by the concept of multi-threading.

2.3 Many-core approach

Many-core engine = application oriented accelerator

The oximoronic General-purpose application-oriented processing unit.

Example: GPGPU which stands for “General-Purpose Graphics Processing Unit”.

Must be backed by a mathematical model. What would you say about the Kleene’s model
[Kleene *36]? See a possible approach in [Stefan *14].

2.3.1 Heterogenous approach

Circuits represent a mathematical computing model for computation.
We are faced with the hierarchical distinctions:

e communication

— between memory and the computation engine

— between the components (cells) of the computation engine
* computation

— complex computation

— intense computation
2.3.2 Adaptive Compute Acceleration Platform (ACAP)
2.3.3 Accelerator-Level Parallelism
2.4 Complexity vs. Size

2.4.1 Circuit size vs. circuit complexity

The huge size of the actual circuits implemented on a single chip imposes a more precise distinction
between simple circuits and complex circuits. When we can integrated on a single chip more than 10°
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components, the size of the circuits becomes less important than their complexity. Unfortunately we
don’t make a clear distinction between size and complexity. We say usually: “the complexity of a com-
putation is given by the size of memory and by the CPU time”. But, if we have to design a circuit of 100
million transistors it is very important to distinguish between a circuit having an uniform structure and a
randomly structured ones [?].

As a consequence we must distinguish more carefully the concept of size by the concept of complex-

ity.

Definition 2.1 The size of a digital circuit, Syigirai circuir» 1S given by the dimension of the physical re-
sources used to implement it.
o

Definition 2.2 The algorithmic complexity of a digital circuit, simply the complexity, Cyigirai circuir» has
the magnitude order given by the minimal number of symbols needed to express its definition.
o

Definition 2.2 is inspired by Gregory Chaitin’s definition for the algorithmic complexity of a string
of symbols [Chaitin *77]. The algorithmic complexity of a string is related to the dimension of the
smallest program that generates it. Our Cgjgitai circuir €an be associated to the shortest unambiguous
circuit description in a certain HDL (in the most of cases it is about a behavioral description).

Definition 2.3 A simple circuit is a circuit having the complexity much smaller than its size:

Csimple circuit << Ssimple circuit -

Usually the complexity of a simple circuit is constant: Cgimpie circuir € O(1).
o

Definition 2.4 A complex circuit is a circuit having the complexity in the same magnitude order with
its size:

Ccomplex circuit ™ Scomplex circuit

2.4.2 Complex computation vs. intense computation

Similar with the distinction between complexity and size of circuits, we define the complex computation
and the intense computation.

Definition 2.5 Complex computation is described by a program whose size, expressed in number of
lines, is in the same magnitude order with the associated execution time, expressed in number of execu-
tion cycles.

o

Definition 2.6 Intense computation is described by a program whose size, expressed in number of lines,
is much smaller than the associated execution time, expressed in number of execution cycles.
o
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2.5 Communication vs. computation

One of the main issue in computer science once the parallel, accelerated computation entered the scene
is the relation between the computation time and the communication between the main memory and the
computing device. There are two distinct possibilities:

1. the computation is I/O bounded: the accelerated computation is performed faster than the data
transfer because it involves a big amoun of data to be transferred

2. the computation is not I/O bounded: the transfer time is much smaller than the accelerated com-
putational time.

A typical example for the first case is the inner product of two n-component vectors performed by
a SIMD machine. The accelerated computation is performed in O(logn) time, while the transfer is
performed in O(n) time. For the second case, the matrix multiplication is a good example.

2.6 Host & Accelerator

Once the distinction between complex and intense computation becomes meaningful for the overall per-
formance of a computing system, the dichotomy between the host engine, responsible for the complex
computation, and the accelerator, performing the intense computation, will start to dominate the imple-
mentations of the high performance computing systems.

While the host engine remains a conventional computing system, the accelerator is implemented is a
various forms. The main implementations takes off-the-shelf devices such as the oxymoronic GPGPU.

2.7 High-level language vs. library of functions

The programming environment for the host remains the conventional one: based on the most popular
programming languages, such as C, C++, Python. For the accelerator there are two solutions:

1. to compile from the popular programming languages toward the unconventional structures of the
accelerators

2. to see the accelerator as a hardware implemented library of functions.

2.8 Turing tariff

The term Turing tariff seems to be introduced by Paul Kelly [Edwards *21], professor at Imperial College.
Roughly speaking, it is about the fact that a Turing-based computer can calculate any function, but not
always efficiently.

The main Turing Tariffs are [Kelly *20]:

1. Fetch-execute is the original Turing tariff because of the von Neumann bottleneck between memory
and processor which originates in the Turing ‘s model with tape-head-automaton.

2. FPGAs pay Turing tariffs in the reconfigurable fabric use if we pass toward FPGA-implemented
circuits highly intense computations.

3. Registers are a Turing Tariff because if we know the program’s dataflow, we can use wires and
latches to pass data from functional unit to functional unit
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Memory, because if we can stream data from where it’s produced to where it’s processed, maybe
we can reduce the use of RAM and the effect of the von Neumann bottleneck.

. Cache, which is useless and area, energy and time consuming, because the intense computation is
very predictable in term of data and program flow allowing us to use controlled buffers instead.

Floating-point arithmetic can be avoided if we know the dynamic range of expected values; thus
we can avoid the wide range of values offered by the floating point representation.

The price for these tariffs are:

1.

el

N o oW

10.
11.

12

Fetch-execute, decode

Registers, forwarding

Dynamic instruction scheduling, cracking, packing, renaming
Cache tags

Cache blocks

Cache coherency

Prefetching

Branch prediction

Speculative execution

Address translation

Store-to-load forwarding, write combining, address decoding, ECC, DRAM refresh

. Mis-provisioning: unused bandwidth, unusable FLOPs, under-used accelerators

They manifest in unuseful complexity of the computer organization. A lot of parasitic functions, unre-
lated with the main targets, where added to our computing machine to attenuate the effects of Turing
tariffs.

The solutions currently proposed for reducing Turing tariffs are:

1.
2.

b

A S R AN

SIMD: amortise fetch-execute over a vector or matrix of operands
VLIW, EPIC (Explicitly parallel instruction computing), register rotation

Macro-instructions: FMA an extension to the 128 and 256-bit Streaming SIMD Extensions in-
structions in the x86 microprocessor instruction set to perform fused multiply—add operations),
crypto, conflict-detect, custom ISAs

Streaming dataflow: FPGAs, CGRAs (Coarse Grain Reconfigurable Architectures)
Systolic arrays

Circuit switching instead of packet switching in communication networks

DMA

Predication

Long cache lines
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10.
11.
12.
13.

Non-temporal loads/stores, explicit prefetch instructions
Scratchpads (small & fast local memories)
Multi-threading

Message passing

But, unfortunately, not all of these solutions paid back in a satisfactory manner.
We ca conclude with Paul H. J. Kelly:

1.
2.

Parallelism is (usually) easy — locality is hard
Don’t spend your whole holiday carrying your skis uphill

Domain-specific compiler architecture is not about analysis! It is all about designing representa-
tions, and doing the right thing at the right level

. When there’s no more room at the bottom, all efficient computers will be domain-specific

Design of efficient algorithms will be about designing efficient domain-specific architectures

All compilers will have a place-and-route phase
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System-level organization

3.1 Defining reconfigurable computing

Reconfigurable computing develops in the context of the heterogenous accelerated computing paradigm
and involves the use of reconfigurable devices, such as field programmable gate arrays (FPGAs), for

computing purposes.

3.2 Taxonomy

3.2.1 Heterogenous accelerated computing

A reconfigurable system typically consists of one or more processors, one or more reconfigurable fab-
rics, and one or more memories. Reconfigurable systems are often classified according to the degree of
coupling between the reconfigurable fabric, used as accelerator, and the host engine which is a PRO-
CESSOR [Compton ’02] [Todman *06] [Cardoso *10]. The framework used to develop reconfigurable

computing is represented in Figure 3.1, where:

A
Y

- /0 PROCESSOR

A

Y

CACHE

A

A\ 4

MEMORY

Figure 3.1: The framework used to define the reconfigurable computing by adding, in various configura-

tion, an accelerator for the critical function supposed to be computed by HOST.

* PROCESSOR: is a mono/multi-core computing engine (for example, ARM Cortex-A9 on the

Xilinx Zyng-7000)

* T/O: represents the set of input-output devices

* CACHE: is the Level 2 or Level 3 cache memory of the system

* MEMROY: is the main memory (usually a SDRAM) of the computing system.

There are various ways to attach an accelerator in this framework.
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Stand-alone accelerator is a complex system designed to accelerate complex and intense functions.
The computation time for a task sent through the I/O subsystem is enough big to compensate the com-
munication overhead.

MEMORY

CACHE

Y
A
Y

=
]
A
Y

PROCESSOR <

Control & Data

Y

ACCELERATOR

Figure 3.2: The reconfigurable accelerator is a stand-alone computing system serial connected with
PROCESSOR.

Attached processing unit is an accelerator with a similar degree of complexity and size as the host
engine. The communication cost with the rest of the system is lover.

- /0 s—— PROCESSOR <—— CACHE <71 MEMORY
Control & Data
) 4
ACCELERATOR

Figure 3.3: The reconfigurable accelerator is a processing unit parallel connected with PROCESSOR.

Co-processor which transfers data directly to/from the main memory because performs function de-
fined on big data sequences.
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Figure 3.4: The reconfigurable accelerator is a loop connected co-processor.

Tightly coupled co-processor with data and control managed directly by the host engine.
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Figure 3.5: The reconfigurable accelerator is a loop connected co-processor

Flexible coupled accelerator which uses for big sequences the direct connection to the external mem-
ory, while for fast and small sized data transfer the internal memory resources (Cache and OCM (On

Chip memory)) are accessed.
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Figure 3.6:

Accelerator embedded in processor is a processor
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Figure 3.7:

Processor embedded in accelerator is defined in [Todman *06] as a “processor embedded in a recon-

figurable fabric”.
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PROCESSOR
- 10 <« ACCELERATOR |¢—» CACHE fe¢—» MEMORY
Figure 3.8:

3.2.2 Reconfigurable accelerators

Reconfigurable computing means a heterogenous system with a FPGA-based reconfigurable accelerator.
There are two main types of reconfigurable accelerators:

* the reconfigurable version, when in FPGA is implemented a specific circuit for each function to
be accelerated

* the pseudo-reconfigurable version, when in FPGS is implemented a parameterized and config-
urable programmable system

In the first case for each new function to be accelerated in a program running on PROCESSOR (see
previous subsection) a new circuit must be loaded in FPGA. Unlike this solution, the second version
requires a single load in FPGA for more than one accelerated function.
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Mathematical Models of Computation

4.1 Circuits

Uniform/nonuniform circuits Boolean circuits are one of the prime examples of so-called non-
uniform models of computation in the sense that inputs of different lengths are processed by different
circuits, in contrast with uniform models such as Turing machines where the same computational device
is used for all possible input lengths. An individual computational problem is thus associated with a
particular family of Boolean circuits C1,Cy, ... where each C, is the circuit handling inputs of n bits.

Logic circuits are directed acyclic graphs (DAG) in which all vertices except input vertices carry the
labels of gates. Input vertices carry the labels of Boolean variables, variables assuming values over the
set B={0,1}.

The circuit size, Sgirc(n) and depth, D;.(n) of most Boolean functions f : B* — B on n variables are
in O(n? and o(n) respectively.

What means: a function is minimised? The characteristic Boolean vector is lossless compressible.

4.1.1 Combinational circuits
Theorem 4.1 Any Boolean function f: {0,1}" — {0,1} can be computed using a logic circuit.
o
Proof 4.1 Let be the function f(xq,...,xn—1), withx; € {0,1} fori =0,...,n— 1. We can write:
Fx0s s Xn—1) = X0g (X1, Xn—1) +xph (X1, ., Xn—1)
where:
gxt, ey xn—1) = f(Lx1,. .o, X0—1)
h(x1 goes ,xnfl) = f(O,X] geese ,)Cnfl)

The functions g and h are computed similarly using for each two (n— 2)-input functions. An so on, until
the (n — n)-input constant functions 0 and 1 are reached.
o

Theorem 4.2 Any Boolean function f : {0,1}" — {0,1} is computed by a logic circuit with the size

€ 0(2").

31
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Proof 4.2 The function:
Fx05 s Xn—1) = X0g (X1, Xn—1) +xph (X1, -, Xn—1)

is implemented by an elementary multiplexor, eMUX, and the functions g and fg. The functions g and
h are implemented similarly, each using an eMUX and (n — 2)-input functions. And so on until the last
layer of 2" /2 eMUXs used to select between 1s and Os. The resulting circuit is a binary tree of 2" — 1
eMUXs.

o

The actual circuits, because the 1s and Os on leafs of the tree of eMUXs generate the “collapse” of
the eMUXs to connections to 0, 1, x,,, or xfl, are smaller.

Example 4.1 Discrete Fourier Transform (DFT) implemented using Fast Fourier Transform
[Cooley *65] has a O(Nlog N) sized circuit for N-sample input.

Figure 4.1: 16-input FFT circuit.

If the input is the time sequence x1,x»,...,xy and the frequency sequence is y1,y2,-..,yn, then:

N-1

y(i) = Y x(n) - e
n=0
while for Inverse Discrete Fourier Transform:
1 Nl 2
x(i) =~ ¥ y(n) - eIk
N n=0

fori=0,1,...,N — 1. The execution time is in O(N?).
If we take a look at those FFT and IFFT equation it looks like very similar but two differences:
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Figure 4.2: Combinational elementary cell for FFT: the Radix-2 Butterfly.

* Divided by N
* sign of power of exponential
Since the differences are small the FFT circuit can be used for IFFT by:

* swapping the imaginary part of each input with its real part (replace the twiddle factor with its
complex conjugate) at the input of the FFT circuit

* swapping the imaginary part of each output with the real counterpart

* dividing by N the output (because usually N is a power of 2, the operation is performed in binary
with a shift)

Because of the periodicity in the sequence of the values of the twiddle factors
oI nk

instead of multiplying a vector with a matrix in time belonging to O(N?) the computation is accelerated
using the circuit exemplified for N = 16 in Figure 4.1, where the elementary cell is the circuit represented
in Figure 4.2, and the size is in O(nlog n). The propagation time is in O(log n).

The structure of the cell represented in Figure 4.2 results from the form of twiddle factors, which
according to the famous Euler’s formula:
6

e’ = cos0 + jsinO
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4.1.2 Pipelined circuits

In order to accelerate to computation performed by a deep circuit pipeline registers are used. The main
price for this improvement is one cycle latency introduced by each pipeline level.

Example 4.2 The example of the FFT circuit can be revisited using the pipelined cells represented in
Figure 4.3.

inl =1 + > > outl
PR
in2 = - @—b > out2
v ‘ clock

Figure 4.3: Sequential elementary cell for FFT, eSFFT.

The pipeline register, PR, associated with each cell introduces a log,N cycles latency but increase
the clock frequency of the system almost logo N times.
o

4.1.3 Iterative circuits

For a small solution we have another approach: an iterative circuit. For a deep multi-layer circuit on each
layer with identical circuits connected differently we can use only one layer and a loop which connects
appropriately the output back to the inputs.

Example 4.3 Revisiting once again the FFT example, let’s consider the circuit represented in Figure

4.4.
IN
2mN
Y o
MUX < - ROM |
2mN A 4 mN
2mN  — - - - - -
Y
****** sel
2m-2m logoN
A Y Y Y Y Y Y Y Y
inl in2 w inl in2 w inl in2 w
eSFFT, eSFFT, | - ----- eSFFTy)»
outl out2 outl out2 outl out2
4 Y \ 4 Yy A y2m
1 » OUT
2mN

Figure 4.4: The iterative version of the FFT circuit.
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For N inputs, the number of the cells eSFFT is N/2. Instead of another —1 + log,N layers each
containing N /2 cell, the circuit has the multiplexer MUX. Because each input value is a complex number
with the real part and the imaginary part each represented on m bits, the input IN has 2mN bits. The same
for the output OUT. The output of ROM is of mN bits because in each stage of the computation we need
only N/2 complex numbers.

o

4.1.4 Controlled circuits

The FFT computation, used as example until now, is a computation which end in a predictable time. It
halts independent of the way the computation evolves. A lot of computations fall in this category. But not
all. There are computational processes whose evolution is guided takeing into account a condition tested
during the process. Therefore, we must consider circuits evolving under the control of an additional loop.

To the big & simple circuit used to perform an intense function is added a small & complex — usually
a finite automaton (FA) or a counter extended FA (CFA) — circuit to coordinate the elements of the big
and simple circuit in order to optimize its use.

Anothe characteristics of a controlled circuit used in accelerating the computation is the iterative
aspect, i.e., the computation stops when a condition is fulfilled.

Example 4.4 Clustering is an intense computation described by a WHILE loop. Therefore, it supposes

a circuit, because of intensity and a control because the WHILE loop end when the result fulfills a certain
condition. The algorithm is the following:

k-MEANS CLUSTERING ALGORITHM

X = [x1,...,X,]: vector of the coordinates x of each point
Y =[y1,-..,yn]: vector of the coordinates y of each point
K = [ky,...,kn]: vector of cluster’s name associated to each point, initialized with 0 in each position
x=[x!,...,xk]: vector of the coordinates x of each center, initialized randomly
y= [y1 Seees yk} vector of the coordinates y of each center, initialized randomly
WHILE (K! == K’) // test the end of process

K<K

FOR (i=1;i<kii=i+1)

D < (X —x')?

D' <D +(¥—y)?

WHERE (D' < D)
D<D
K <i

FOR (i=1i<ki=i+1)

WHERE (K’ = i)
x' <= redAdd(X)/redAdd(B)
V' < redAdd(Y)/redAdd(B)

The circuit represented in Figure 4.5 computes the k-Means Clustering of a N points distributed in a
two-dimension space. The memory RAM is loaded in N steps with a pair of m-bit coordinates {x;,y;} for
i=1,...,N, in each location, while the RAMK memory is loaded randomly with (log,k)-bit numbers
representing the initial, random, distribution of the centers allocated to each point. The 2m-bit registers,
R; are initialized randomly with the pairs of coordinates {xi , yi} fori=1,... k, for the clustering centers.
The k modules D compute in each clock cycle, ¢; for i = 1,... N, the square of the distance between the
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Figure 4.5:

point p; and each center ¢/ for j=1,... k:
dl = (=¥ + (i =)

The reduction circuit R provides the index j of the smallest squared distance. The index j is compared
with the index stored at the location i in RAMK and then is loaded at the location i. If the index is equal
with the value store at i in RAMK, then the output of NEQ circuit is unchanged, else it becomes 1. In
each cycle only one circuit C; is activated by accumulating in two registers the current coordinates x;
and y; and by incrementing counter initialized, at each iteration, on zero. Each iteration ends in all C; for
j=1,...,k by computing to their outputs the quotient of the divisions between the sum of coordinated
associated to the cluster j and the number accumulated in the local counter. These two numbers are then
loaded in R;. If the output of NEQ is 1, then another iteration is computed, else the registers R; are
shifted out as result.

Because in real applications k << N we decided to design a circuit with the size of the computational
resources in O(k), and the execution time in O(N).

<
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4.2 Turing/Post Model

Definition 4.1 Turing Machine (TM) has three main components (see Figure 4.6):

* g finite automaton (FA): a small but complex structure

* an “infinite” tape with locations from where in each cycle a symbol is read and substituted: a big
but simple structure

* an access head which accesses in each cycle a cell from the tape and can be moved one position
to the left or to the right: a big but simple structure

and is defined by:

™ = (S,A,X,#,50, f)
where:

St the finite set of states of the FA

A: the finite alphabet of symbols used to generate the content in the locations of a tape with an “infinite”
number of locations

Y. C S: the subset of finite final states of the FA
# € A: the delimiter symbol used in the left end and right end of the string of symbols stored on the tape
so € St the initial state of FA

F:(S\X) xA = SxAx{nop,left,right}: is the transition function of TM which in each cycle accord-
ing to the state of FA and the symbol accessed on the tape generate the next state of FA, write a
symbol on the tape of TM and sends a command to the access head to move one position to left or
right or to stay in the same position.

The use of the term “infinite” means: the needed size of the band is not known, in the general case,
at the beginning of the computation.

Initially, FA of TM is in state sg, having on the tape a finite string of symbols ... #,x1,x2,...,x,#...,
with x; € A, for i = 1,...,n, and the had pointing to the left #. Only if FA is defined for a computable
Junction, then, after a finite number of cycles, FA “halts” in a final state sy € X, with the head pointing
y1 form the tape content of form ..., #,y1,y2,...,Ym,#,... withy; €A, fori=1,...,m.
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reset com = {nop,up,down}
Finite
Automaton
Yy .
Finite
Automaton Up-Down Counter
A
com = left com = right address S
e — dataOut
Memory
- - - »{ dataln
Tl [ -
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Figure 4.6: Turing Machine. a. The original representation. b. The current representation with the head
implemented as an “infinite”” up/down counter and the tape as an “infinite” random-access memory.

Figure 4.7: The electro-mechanic telegraph with a paper tape which inspired Turing to define the tape of
its machine.

Definition 4.2 Universal TM (UTM) is a TM with the band divided in two sections as follows:

"'7#7p17p23"'7pna$7dlad27"-7dma#a“'
where:

o e(M)=4#,p1,p2,...,pn,$ is a description of the behavior of the automaton FAy of any TM T, i.e.,
it is the program describing the function f

o T =8%,d,ds,...,dy,# is the content, T, of the band associated to T, i.e., is data used by the
program.

while FA of UTM is able to apply the description of e(M) on T.
o

UTM is the mathematical model of a computer formed by an engine (FA and head) and a memory as
large as necessary (“infinite” band).
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4.2.1 The Halting Problem

A function F(x) is called computable if it can be computed by a TM, i.e., its finite description as e(M)
of T stops working on the tape containing 7.

Definition 4.3 Given a TM M(T) working on a tape content T, the Halting Problem (HP) is to find a
MTH({e(M),T)) so as:
H({(e(M),T)) = 1if M(T) halts

H({e(M),T)) =0if M(T) runs forever

where: e(M) is the symbolic description of the M’s FA.
o

In his seminal paper [Turing *36] Alan Turing proves that H doesn’t exists. In the following we will
use a proof provided by John Casti [ Casti *92].

Theorem 4.3 The function H({e(M),T)) is uncomputable for any M(T). ©

Proof Assume that the TM H exists for any encoded machine description and for any input tape.
We will define an effective TM G such that for any TM F, G halts with the tape content e(F) if
H((e(F),e(F))) = 0 and runs forever if H((e(F),e(F))) = 1. G is an effective machine because it
involves the function H and we assumed that this function is computable.

Now consider the computation H({e¢(G),e(G))) (G halts or not, running on its own description).

If H({e(G),e(G))) = 1, then the computation of G(e(G)) halts, but starting from the G’s definition
G(e(G)) the computation halts only if H({e(G),e(G))) = 0. Therefore, if H({¢(G),e(G))) = 1, then
H((e(G),e(G))) # 1.

If H((e(G),e(G))) = 0, then the computation of G(e(G)) runs forever, but starting from the
G’s definition G(e(G)) the computation runs forever only if H({e(G),e(G))) = 1. Therefore, if
H((e(G).e(G))) =0, then H((e(G),e(G))) #0.

The application of function H to the machine G and its description generates a contradiction. Because
H is defined to work for any machine description and for any input tape, we must conclude that the initial
assumption is not correct and H is not computable.

o

The price for structural simplicity is the limited domain of the computable. See also the minimaliza-
tion rule in Kleene’s model.

Let us remember the Theorem 2.1 that proves that circuits compute all the functions. UTM is limited
because it does not compute at least HP. But the advantage of UTM is that the computation has a finite
description instead of the circuits that are huge and complex. Circuits are complex while the algorithms
for TMs are simple. But, the price for the simplicity is the incompleteness.

4.3 Church Model

Definition 4.4 A A-expression is defined as a stream of symbols belonging to a finite set V to which three
special symbols — A, (, ) — adds. It form obeys to the following four rules:

1. x €V is a A-expression

2. if M is a A-expression and x a variable, then AxM is a A-expression, where: Ax is the bound
variable part, while M is the body

3. ifboth F and A are A-expressions, then (FA) is A-expression, where: F is the operator part and A
is the operand part
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4. any expression constructed using the above three rules is a A-expression.

<

Definition 4.5 Reduction Rule: If we have a A-expression (AxMA), with the operator AxM and the
operand A, then it will be replaced with the body of the operator, M, in which all the free occurrences of
x will be substituted with the operand A.

o

Example 4.5 Let us take the following simple example of A-expression:

(AF((F3) + (f4)) Ax(x x x))

where: the operator is A f((f3) + (f4)) with the variable f and body ((f3) -+ (f4)), and the operand is
Ax(x X x). The reduction follows in tree steps:

Af((f3)+ (f4)Ax(x xx)) = ((Ax(x x x)3) + (Ax(x x x)4) = (3 x 3)+ (4 x4)) = 25

4.3.1 The Halting Problem

Example 4.6 Let us take the following A-expression:
(Ax.xx) (Ax.xx)

which means to use the operator as operand, i.e., to apply the function to its description. By reduction
we obtain:
(Ax.xx)(Ax.xx) = (Axxx)(Axxx) = ... = (Axax)(Axxx) — ...

as an unending process.
o

Again, the self-reference leads to uncomputability.

4.4 Kleene Model

Definition 4.6 Let be the positive integers x,y,i € N and the sequence X = (xo,x1,...,x,—1) € N". Any
partial recursive function f : N" — N can be computed, according to [Kleene '36], using three initial
functions:

* ZERO(x) = 0: the variable x takes the value zero

* INC(x) = x+1: increments the variable x € N

* SEL(i,X) = x; : i selects the value of x; from the sequence of positive integers X
and the application of the following three rules:

 Composition: f(X)=g(hi(X),...,hp(X)), where: f:N" — Nis a total function if g : N* — N
and h; : N" =N, fori=1,...p, are total functions

* Primitive recursion: f(X,y) = g(X, f(X,(y—1))), with f(X,0) = h(X) where:
£ N1 = N is a total function if g : N**! — N and h : N" — N are total functions.
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* Minimization: f(x) = uy[g(x,y) = 0], which means: the value of the function f : N — N is the
smallest y, if any, for which the function g : N> — N takes the value g(x,y) = 0.

<

Example 4.7 Given the function f(x) = x/3 it is computed by searching for the value of y for which
glx)=3y—x=0, ie:

f(x) = uylg(x,y) =0]

Ifx =29, then in in 4 steps starting form y = 0 we reach the result (9) = 3. But if x = 10 we enter in a
never-ending loop.
o

4.4.1 The Halting Problem

The non-computability surfaces in the Kleene’s approach occasioned by the minimization applied to a
function for which the smallest y for which g(x,y) = 0 is never reached. The first to rules act building
the solution, while the third rule, minimisation, searches for the solution, and when you search you must
be prepared to find forever, that is, to find nothing.

4.4.2 The Circuit Implementation of Partial Recursive Functions

For recursive functions there are very promising circuit implementations (for details see Appendix A).

The circuit for the composition rule

For the composition rule there is a direct circuit implementation as a cellular serial-parallel expansion.
In Figure A.1, a two level system is associated with composition:

* map level: performs in a synchronic parallel manner the functions % (X)

* reduction level: performs in a diachronic parallel manner related to the map level the function
g (X),....hp(X))

X = <X() ,,,,, X,l,1>

Y
map
hi(X) ha(X) composition
1
Y
<O ! reduction
composition

Figure 4.8: The circuit version of composition. It is a two-layer construct: the parallel expanded map
layer serially connected with the log-dept reduction layer.
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The circuit for the primitive recursion rule

In Figure 4.9a, the primitive recursion mechanism is implemented. In the MOP (Multiple Output
Pipeline) section are computed iteratively the functions f(X,y) for y =0,1,...,i,..., each cell using
the result generated by the previous cell (except for the first cell).

ScanFiRgf

IR R U S SV

ReductionOR

fX.y)

a. b.

Figure 4.9: Primitive recursion and minimization are multiple applications of specific compositions.
a. The circuit version of primitive recursive rule. b. The circuit version of minimization rule.

The reduction level computes the reduction OR function from the outputs provided by each cell.
Only one cell will generate a value of the function, all the others will send to the reduction net zero.

The circuit for the minimisation rule

In Figure 4.9b, the minimisation mechanism is implemented. The circuit scanFIRST receives a Boolean
vector and sends back another Boolean vector in which only the first occurrence of 1 is maintained. The
output z of each cell takes the value of the predicate y[g(x,y) == 0. Only the unique cell for which
F; = 1, if any, sends to the reductionOR net the value i + 1 representing f(x) + 1.

Important note: the representations form Figure 4.9 are associated to a mathematical model. For
real circuits the structures are limited to a number of cells. Additional loops allow the expansion of the
functionality quantitatively.



Chapter 5

Designing Reconfigurable Systems

Reconfigurable computing is a computer paradigm combining the flexibility of software with the
high performance of hardware implemented with the very flexible, high speed solution offered by the
field-programmable gate arrays (FPGAs). The principal advantage when compared to using ordinary
processor-based mechanism is the ability to make changes to the data-path itself in addition to the con-
trol flow. The main difference from application-specific integrated circuits (ASICs) is the possibility to
adapt the hardware used to accelerate computationally intense functions during runtime by instantiating
totally or partially a new circuit on the reconfigurable fabric.

5.1 High Level Synthesis

High-level synthesis, HLS, is a new step in abstraction enabling the designer to focus on larger structural
questions rather than registers and cycle-level operations. Instead a designer describes the behavior of
the circuit in a program, and the HLS tool creates the detailed RTL code. Currently in use tools start with
C/C++ as the input language.

Fundamentally, a HLS tool does a lot of things automatically that a HDL designer does manually:

* analyzes and uses the concurrency in the algorithm described in C/C++

* includes pipeline registers as necessary to achieve a maximum (desired) clock frequency
* generates control logic that directs the data path.

* provides the design for interfaces to connect to the rest of the system.

* distributes data in registers or BRAMs to optimize resource usage and bandwidth.

* distributes computation effort to combinational logic elements to achieve ant efficient implemen-
tation.

The Vivado HLS design environment requires the following inputs:

* the function specified in C, C++, or SystemC

* the design testbench that calls the function and verifies its correctness by checking the results.
* the target FPGA device

* the desired clock period

43
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o directives guiding the implementation process

We make the following assumptions about the input function specification, which generally adheres
to the guidelines of the Vivado HLS tool:

* No dynamic memory allocation (no operators like malloc(), free(), new, and delete())
 Limited use of pointers-to-pointers (e.g., may not appear at the interface)

» System calls are not supported (e.g., abort(), exit(), printf(), etc. They can be used in the code,
e.g., in the testbench, but they are ignored (removed) during synthesis.

* Limited use of other standard libraries (e.g., common math.h functions are supported, but uncom-
mon ones are not)

* Limited use of function pointers and virtual functions in C++ classes (function calls must be
compile-time determined by the compiler).

* No recursive function calls.

* The interface must be precisely defined.

Vivado HLS generates the following outputs:

* Synthesizable Verilog and VHDL

* RTL simulations based on the design testbench

* Static analysis of performance and resource usage

* Metadata at the boundaries of a design, making it easier to integrate into a system.

5.1.1 Organization

The first important decision about the RTL code is the organization of the circuit which is a compromise
between the physical resources (the size of the circuit) and performance (expressed in clock frequency
and latency).

Example 5.1 Let’s consider [Kastner *20] a simple yet common hardware function: the finite impulse
response (FIR) filter. An FIR performs a convolution on an input sequence with a fixed set of coefficients.
The file £ir8. c describe a 8-tap FIR. It can be used as input for Vivado HLS.

/*************************************************************************
File name: fir8.c
Circuit name:
Description: Code for a 8—tap FIR filter.
*************************************************************************/
#define NUM_TAPS 8
void fir (int input, int =output, int taps[NUM.TAPS]) {
static int delay line [NUM.TAPS] = {};
int result = 0;
for (int i = NUMTAPS - 1; i > 0; i--) {
delay line[i] = delay line[i — 1];

}
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delay line[0] = input;

for (int i = 0; i < NUMTAPS; i++) {
result += delay line[i] = taps[i];

}

xoutput = result;

Instead of outputting assembly code for a standard processor (such as Intel or ARM) , the HLS
compiler geneate an RTL hardware description.

One possible circuit will execute the function sequentially like a mono-core processor. It is repre-
sented in Figure 5.1. The Read-Only Memory, ROM, contains the tap constants. The block SEQ generate
de sequence of commands for selecting, with the output 7, at the multiplier’s input the appropriate register
D; and the corresponding value tap; from ROM. At each sampling cycle:

* the output register R,,, is enabled
* the accumulator register R, is cleared
* the input register R;, and the delay registers Dy, fori =1,...,7, are enabled.

The only register which switches in each clock cycle is R,... The signal sync generated by SEQ is used as
output signal get to synchronize the filter with the system which includes it, as reset for the accumulator
register R,.., and as enable for all the other registers. Thus, for each sample of the input signal, the
system uses 8 clock cycles to compute the output sample of the filtered signal. The clock frequency is:

f 1
clock =
max((tSEQ + tROM) , tprop,reg) +tMULT +tADDER * treg_set up
Muxb—» R, —» D, —» D, | D; | D, > D; —»| Ds —»| D, |
inj —p
> RoM | Rou [,
i
SEQ
init — Sync reset
get T enable]

Figure 5.1:

The sampling frequency is fiumpling = 1 / felock» 1-€., the index i runs 8x faster than the index j. The
resulting performance is not far from the performance provided by a programmed solution.

Another possible solution is presented in Figure 5.2 where the structure is simpler but larger. The
speed is similar. The system works at the sampling frequency computed as follows:

1

tprop,reg +tmurr + 7 X TADDER + tregjetmp

fcl()ck = fmmpling =

A certain increase in frequency is obtained compared to the previous situation, because the multiplexer
and the ROM are eliminated, thus the access of the operands to the inputs of the multiplier is accelerated.
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in;—p

Rouw [P-outi—

Figure 5.2:

In practice, designs must include specific tradeoffs between a sequential architecture (like the one
shown in the Figure 5.1) and parallel architectures (like the solutions shown in the Figures 5.2, 5.3, 5.4),
in order to achieve the best performance. In Vivado HLS, these improvements are mainly controlled by
the user, using tool options and code annotations, such as #pragma directive.

How can be “determined” the compiler to generate RTL code for the structure presented in Figure
5.2?7 By adding additional directives such as:

#pragma HLS unroll : to unroll the first for by generating the behavior of a hardware delay line

#pragma HLS pipeline : to unroll the second for by generating a pipeline execution of the addition

in the previous code is provided the following code:

/*************************************************************************
File name:
Circuit name:
Description :
*************************************************************************/
#include ”block._fir.h”
void block fir(int input[256], int output[256], int taps[NUM TAPS],
int delay line [NUM.TAPS]) {

int i, j;
for (j = 0; j < 256; j++) {
int result = 0;

for (int i = NUMTAPS - 1; i > 0; i—--) {
#pragma HLS unroll
delay line[i] = delay line[i - 1];
}
delay line[0] = input[j];
for (i = 0; i < NUM.TAPS; i++) {
#pragma HLS pipeline
result += delay line[i] = taps[i];
}

output[j] = result;
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5.1.2 Processing Rate
There are two main limitations in accelerating the processing rate, i.e., the clock frequency used to trigger

the circuit inferred by the compileer from the high-level language code. The most important limit arises
from:

e resource limitations

» recurrences or feedback loops in a design.

Managing resource limitations

Example 5.2 Let’s revisit the previous example. A third solution for the FIR filter comes only with a
rearrangement of the circuits.

In Figure 5.3, we use the same physical resources so interconnected that the frequency of the clock
can be increased to the following value:

1

tprop,reg +tmurr + 3x 'ADDER + trngeIJAp

Jelock = fsampling =

This solution comes directly by applying Spira’s theorem [?], according to which a degenerate tree with
depth n can be transformed into a perfectly balanced tree of depth log;n.

inj—» Ri,

—-0ut;_

Figure 5.3:

If we accept additinal 3 clock cycle latency the fourth solution (see Figure 5.4) provide a faster
version of the FIR filter. For this version the clock frequency is:

1

tprop,reg +tmurLr + trnget,up

fclock = fsampling =
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Figure 5.4:

If we need a faster version, a pipeline level can be introduced in the structure of the multiplier. The
multiplier has two levels: first level is implemented with carry-save adders and the second is a ripple-
carry adder. Between these two levels a pipeline-register will allow to almost double the frequency of
the clock signal. Then the clock frequency of the system becomes:

1

t prop_reg +1ADDER +1, reg_set_up

fclock = fsampling =

This last improvement comes with an additional clock cycle latency. Therefore the output is out;_g.
o

Managing recurrences

The good news about loop is its their “ability” to add new features. But any good news is accompanied by
its own bad news. In this case is about the limiting of the degree of parallelism allowed in a system with
a just added loop. It is mainly about the necessity to stop sometimes the input stream of data in order
to decide, inspecting an output, how to continue the computation. The input data waits for data arriving
from an output a number of clock cycles related with the system latency. To do something special the
system must be allowed to accomplish certain internal processes.

Both, data parallelism and time parallelism are possible because when the data arrive the system
“knows” what to do with them. But sometimes the function to be applied on certain input data is decided
by processing previously received data. If the decision process is to complex, then new data can not be
processed even if the circuits to do it are there.

Example 5.3 Let be the system performing the following function:
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procedure cond_acc(a,b, cond);

out = 0;
end = 0;
loop if (cond = 1) out = out + (a + b);
else out = out + (a — b);
until (end = 1) // the loop is unending
endprocedure

For each pair of input data the function is decided according to a condition input.
The Verilog code describing an associated circuit is:

/*************************************************************************
File name: cond_accO.v

Circuit name: Conditioned Accumulator

Description : the behavioral description of the conditioned accumulator
*************************************************************************/
module cond_accO( output reg [15:0] out,

input [15:0] a, b,
input cond, reset, clock);
always @(posedge clock) if (reset) out <= 0;
else if (cond) out <= out + (a + b);
else out <= out + (a — b);

endmodule

In order to increase the speed of the circuit a pipeline register is added with the penalty of A = 1.
Results:

/*************************************************************************
File name: cond_accl .v
Circuit name: Pipelined Conditioned Accumulator
Description : the behavioral description for the circuit
*************************************************************************/
module cond_accl( output reg [15:0] out,
input [15:0] a, b,
input cond, reset, clock);
reg[15:0] pipe;
always @(posedge clock)
if (reset) begin out <= 0;

pipe <= 0;
end
else begin if (cond) pipe <= a + b;
else pipe <= a — b;
out <= out + pipe;

end
endmodule

Now let us close a loop in the first version of the system (without pipeline register). The condition
input takes the value of the sign of the output. The loop is: cond = out[15]. The function performed
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Figure 5.5: Data dependency when a loop is closed in a pipelined structure. a. The non-pipelined
version. b. The pipelined version. ¢. Adding a loop to the non-pipelined version. d. To the pipelined version the
loop can not be added without supplementary precautions because data dependency change the overall behavior.
The selection between add and sub, performed by the looped signal comes too late.

on each pair of input data in each clock cycle is determined by the sign of the output resulted from

the computation performed with the previously received pairs of data. The resulting system is called
addapt_acc.

File name: adapt_accO.v

Circuit name: Adaptive Accumulator
Description : the structural description of the adaptive accumuulator

module adapt_accO (output [15:0] out,

input [15:0] a, b,

input reset , clock);
cond_accO cont_accO( .out (out),

.a (a),
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.b (b),
.cond (out[15]), // the loop
.reset (reset),
.clock (clock));
endmodule

Figure 5.5a represents the first implementation of the cond_acc circuit, characterized by a low clock
[frequency because both the adder and the adder/subtracter contribute to limiting the clock frequency:
1

faﬂd::Agggggggggi
t+/, +t+ +tr€g

Figure 5.5b represents the pipelined version of the same circuit working faster because only one from
adder and the adder/subtracter contributes to limiting the clock frequency:

1
max(ty ) ,ty) +treg

fclock =

A small price is paid by A = 1.

The 1-bit loop closed from the output out [15] fo cond input (see Figure 5.5¢) allows the circuit to
decide itself if the sum or the difference is accumulated. Its speed is identical with the initial, no-loop,
circuit.

Figure 5.5d warns us against the expected damages of closing a loop in a pipelined system. Because
of the latency the “decision comes” to late and the functionality is altered. ¢

In the system from Figure 5.5a the degree of parallelism is 1, and in Figure 5.5b the system has the
degree of parallelism 2, because of the pipeline execution. When we closed the loop we where obliged
to renounce to the bigger degree of parallelism because of the latency associated with the pipe. We have
a new functionality — the circuit decides itself regarding the function executed in each clock cycle — but
we must pay the price of reducing the speed of the system.

According to the algorithm the function performed by the block +/- depends on data received in the
previous clock cycles. Indeed, the sign of the number stored in the output register depends on the data
stream applied on the inputs of the system. We call this effect data dependency. It is responsible for
limiting the degree of parallelism in digital circuits.

The circuit from Figure 5.5d is not a solution for our problem because the condition cond comes to
late. It corresponds to the operation executed on the input stream excepting the most recently received
pair of data. The condition comes too late, with a delay equal with the latency introduced by the pipeline
execution.

How can we avoid the speed limitation imposed by a new loop introduced in a pipelined execution?
It is possible, but we must pay a price enlarging the structure of the circuit.

If the circuit does not know what to do, addition or subtract in our previous example, then in it will be
compute both in the first stage of pipeline and will delay the decision for the next stage so compensating
the latency. We use the same example to be more clear.

Example 5.4 The pipelined version of the circuit addapt_acc is provided by the following Verilog code:

/* sk ke sk skosk skok sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ke sk skosk skske sk sk sk skosk sk sk sk skosk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk skook sk
File name: adapt_accl .v
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Figure 5.6: The speculating solution to avoid data dependency. In order to delay the moment of decision
both addition and subtract are computed on the first stage of pipeline. Speculating means instead to decide what to
do, addition or subtract, we decide what to consider after doing both.

Circuit name: Pipelined Adaptive Accumulator
Description : the behavioral description circuit
*************************************************************************/
module adapt_accl (output reg [15:0] out,
input [15:0] a, b,
input reset , clock);
reg [15:0] pipel, pipeO;
always @(posedge clock)
if (reset) begin out <= 0;

pipel <= 0;
pipe0 <= 0; end
else begin pipel <= a + b;
pipe0 <= a - b;
if (out[15]) out <= out + pipel;
else out <= out + pipe0O; end

endmodule

The execution time for this circuit is limited by the following clock frequency:
1 1
max(t+7t—7 (t+ +tmux)) + treg N -+ treg

f clock =

The resulting frequency is very near to the frequency for the pipeline version of the circuit designed in

the previous example.
Roughly speaking, the price for the speed is: an adder & two registers & a multiplexer (see for
comparing Figure 5.5¢ and Figure 5.6). Sometimes it deserves! ¢
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The procedure applied to design addapr_accl involves the multiplication of the physical resources.
We speculated, computing on the first level of pipe both the sum and the difference of the input values.
On the second state of pipe the multiplexer is used to select the appropriate value to be added to out.

We call this kind of computation speculative evaluation or simply speculation. It is used to accelerate
complex (i.e., “under the sign” of a loop) computation. The price to be paid is an increased size of the
circuit.

5.1.3 Coding style issues

An important key question we should ask ourself is:
Is this code the best way to capture the algorithm?

Sometimes, this way to put the question is misleading. The goal of our design is not only the highest
performance of the resulting circuit, but how maintainable and modifiable is the code we write. There-
fore, it is not only about a stylistic preference, because coding style can sometimes limit the hardware
organization that a HLS tool can generate from a our critical piece of code.

Unfortunately, the first bad news is: there are a multitude of criteria for the coding style when HLS
tools are used. It is difficult to make a winning compromise between:

* the clarity of the code

* the maintainability of the code

* the ease of modifying it

* the achievement of the pursued target as controllable as possible

all this being accompanied too often by modest knowledge in the field of digital circuits.

The second bad news: there is no theory about how the compromise can be resolved. First, because
the behavior of the tools we use is not well documented. But we cannot neglect the fact that HLS users
come from professional environments that extend between programming and digital design. The habits
acquired at the two extremes are practically incompatible. Consequently, it is difficult to speak of a style.
We will have to practice solving problems through reconfigurable computing for a while before we can
talk about a specific style.

The first good news: we have a solution, well grounded in theory, to speed up intense computing.
The natural parallelism offered by the circuits is a hope.

The second god news: it is very promising the fact not that the entire process of the Vivado HLS tool
is constantly being improved with each new release.

5.2 Examples

This section is based on examples investigated in [Kastner *20] and [Crockett *15].

5.21 FIR

File name: fir.cpp
Circuit name:
Description : 11 tap FIR filter.
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#include ”fir.h”

void fir(data_t =y, data_t x) {
coef_t c[N] = {53, 0, -91, 0, 313, 500, 313, 0, -91, 0, 53};
static
data_t shift_reg|[N];
acc_t acc;
int i;

acc = 0;
Shift_Accum_Loop:
for (i=N-1; i>=0; i—--) {
if (i == 0) {
acc += x * c[0];
shift_reg[0] = x;
} else {
shift_reg[i] = shift_reg[i—-1];
acc += shift_reg[i] = c[i];

xy = acc;

/*************************************************************************
File name: fir.h

Circuit name:

Description : 11 tap FIR filter.
************>l<************************************************************/

#define N 11

typedef int coef_t;
typedef int data_t;
typedef int acc_t;

void fir(data_t =y, data_t x);

This description for the FIR function does not provide an efficient implementation. It is too sequen-
tial, and supposes a big amount of control logic.

Preliminaries about speed

The speed is expressed in clock frequency. It is imposed using create_clock tcl command. For
example, create_clock -period5 targets a clock period of 5 ns.

Lower target clock frequency give more leeway space for the Vivado HLS tool to combine multiple
dependent operations in a single cycle. This process is called operation chaining. Once you have the
first results for your design, you can vary the clock frequency and optimize experimentally your design.

Because Vivado HLS deals with clock frequency estimates, you must include some margin to ac-
count for the fact that there is some error in the time estimate. The goal of this margin is to en-
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sure that the generated RTL code can be placed and routed. This margin can be controlled using the
set_clock_uncertainty TCL command.

Clock period & circuit structure

The main operation in our application is multiply and accumulate (MACC). Multiplication and addition
are performed on FPGA support depending on the technology node used to produce the FPGA. If we
target the clock period, Tk, having in mind the values for execution times associated to these two
operations, t,,,;; and 7,44, then we will be able to provide an important information for the synthesis tool
to decide about the structure of the circuit. Some typical situations can be highlighted:

Telock = tmult + tada : MACC will implemented with a RTL code which performs it in one clock cycle,
and the synthesis tool will generate accordingly the RTL code

tmult + tadd > Telock > tmurt : MACC must be performed in two clock cycles, and the synthesis tool will
generate accordingly the RTL code, considering the fact that t,,,,,;; > t,44

tmult = Telock > tadd : MACC must be performed in at least three clock cycles, depending on the value
of

k= |—tmult /tadd.|

tadd = Teaock : MACC must be performed in more than & cycles.

In order to find an optimal solution you change the target clock period and observe the differences in
the performance and structure’s size. Unfortunately, no one is able to provide the rule to pick the optimal
frequency. We don’t have an “Art of codding”. 1t is good or bad?

Code improvement

The if statement in the for loop is executed for each value of i. The main consequence is a complex
control structure. Let us remove this if from the loop. The Shift_Accum_Looop will become:

Shift_Accum_Loop:

for (i=N-1; i>0; i—-) {
shift_reg[i] = shift_reg[i—-1];
acc += shift_reg[i] % c[i];

}

acc += x * c[0];
shift reg[0] = x;

Loop splitting

In order to indicate more clearly to the compiler the component of the circuit we intend to design the
for loop must split in two distinct loops: tapped delay line (TDL) and multiply accumulate (MACC) as
follows:



56 CHAPTER 5. DESIGNING RECONFIGURABLE SYSTEMS

TDL:
for (i=N-1; i>0; i—--) {
shift_reg[i] = shift_reg[i—-1];

shift_reg[0] = x;

acc = 0;
MACC:
for (i=N-1; i>0; i—--) {
acc += shift_reg[i] = c[i];
I3

This makes the optimization process easier. Instead of optimizing a relatively complex loop, the
compiler will have to independently optimize two simpler loops.

But beware: the reverse process can also be valid. Sometimes combining two simple loops into a
more complex one can be compiled more efficiently. This fact depends very much on the real problem
we are solving.

Tip: you always have the disposition to try as much variety of tricks as possible through which the
code is written so that the physical structure generated corresponds to the requirements imposed by the
person who formulated the problem.

Loop unrolling

The Vivado HLS tool synthesizes for loops by default in a sequential manner. The tool implements the
circuit for one execution of the statements. The circuit executes the computation in N cycles per input
sample (as in circuit represented in Figure 5.1). This creates an area efficient structure, but it limits the
possibility to exploit parallelism that is present across loop iterations. By loop unrolling we replicate the
body of the loop by a number of times.

Let us take the TDL loop and unroll it manually so as to execute two shifts at a time in the delay
register.

TDL:

for (i=N-1; i>1; i=i-2) {
shift_reg[i] = shift_reg[i-1];
shift_reg[i—-1] = shift_reg[i-2];

}
if (==1) {

shift_reg[1] = shift_reg[0];
}

shift_reg [0] = x;

The if statement is for the case when N is an odd number.
The same effect is obtained using the unroll directive by inserting right after the for loop header the
directive:

#pragma HLS unroll factor=2

For the MACC loop the unrolling by a factor of 4 is the following:
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acc = 0;
MAC:
for (i=N-1; i>=3; i-=4) {
acc += shift_reg[i] * c[i] +
shift_reg[i-1] = c[i-1] +
shift_reg[i-2] * c[1-2] +
shift_reg[i-3] * c[i-3];

for (; i>=0; i—--) {
acc += shift,reg[i] * c[1];

The same effect is obtained using the unroll directive by inserting right after the for loop header the
directive:

#pragma HLS unroll factor=4

If the optional argument skip_exit_check is specified in that directive, the tool will not add the
final for loop. This is useful when you know that the loop will never require the final partial iterations.
The for loop is completely unrolled when no factor argument is specified.

Loop pipelining

Because, by default the Vivado HLS tool implements —bf for loops sequentially, loop pipelining must
be specified explicitly when considered. Related with the pipelining execution we must define two types
of latency.

Definition 5.1 Iteration latency is the number of clock cycle that it takes to perform one iteration in a
for loop.
o

Definition 5.2 for loop latency is the number of clock cycle that it takes to perform all the iterations in
a for loop.
o

Definition 5.3 Loop initialization interval, 11, is the number of clock cycles until the next iteration of
the for loop can start.
o

A possible scenario for MACC operation consist of three operations: read (constant and value, in one
cycle), multiply (constant with value, in two cycles), add (in one cycle). Results: iteration_latency = 4.
Because each iteration is independent, at each clock cycle one new iteration can start in a pipelined
fashion. Therefore, for pipeline execution with N = 11 and I = 1 results for_loop_latency = 14 instead
of for_loop_latency = 44 provided by the sequential execution.

The directive used for pipelining execution with loop initialization interval 1 is:

#pragma HLS pipeline II=2

Select hardware resources

If we intend to map an operation to a hardware resource of the FPGA a specific pragma is available. For
example, the execution of the code a = b + c can be distributed to a DSP48 writing:

#pragma HLS RESOURCE variable=a core=AddSub_DSP
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Arbitrary precision data types

Vivado HLS provides arbitrary precision data types for signed and unsigned of any bitwidth:
Unsigned : ap_uint<width>

Signed : ap_int<width>

For example: ap_int<12> for data provided by a 12-bit ADC.
To use these arbitrary precision data types we must use C++ and include the file ap_int.h, i.e., add
the code #include"ap_int.h" in your project and use a filename ending in . cpp.

Example 5.5 For the operation: ¢ = a X b, if ap_int<x> a, ap_-int<y> b, ap-int<z> c) thenz=
xX+y.
o

Concluding about FIR example

We succeeded to implement a pipelined version of the solution presented in Figure 5.1. Until the solution
in Figure 5.4 we have a few more steps to go.

How Vivado HLS works

Example 5.6 Let us use as input for Vivado HLS the FIR filter defined by fir.cpp and fir.h. The
following benchmark must be added.

/% ok ok ok ok kR ok ok R ok ok R ok KR K Sk ok ok R ok R R R ok ok R R ok ok R R K KR Sk ok R R oK kR ok R R R R kR R sk Rk R R Rk Rk Rk
File name: fir_test.cpp
Circuit name:
Description : 11 tap FIR filter benchmarck.
*>|<**>|<**********>|<*******>|<**********>|<**>l<*******>|<**************************>l</
#include <iostream >
#include ”fir.h”

using namespace std;

int main(data_t =y, data_t x){
coef_t c[N] = {53, 37, -91, 38, 313, 500, 313, 39};
data_t shift_reg([N] = {5, 5, 5, 5, 5, 5, 5, 5};
data_t x = 1;

data_t hw_result, sw_result;
int error = 0;

// Generate the expected result
sw_result = 0;
Shift_Accum_Loop:
for (i =N-1; i >= 0; i—--) {
if (i == 0) {
sw_result += x % c[0];
shift_reg[0] X;
} else {

shift_reg[i]

shift_reg[i — 1];
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sw_result += shift_reg[i] * c[i];
}
}
#ifdef HW_COSIM
// Run the Vivado HLS fir

fir (Chw_result, x);
#endif

#ifdef HW_COSIM
// Check result of HLS vs. expected
if (hw_result != sw_result) {
error_count ++;
}

#else
cout << sw._result;
#endif

#ifdef HW_COSIM
if (error_count)
cout << "TEST_FAIL:.” << error_count
<< ”Results._.do_not_match!” << endl;
else
cout << "Test_passed!” << endl;
#endif
return error_count;

To the file fir.cpp will be improved removing the if statement from the for loop and by splitting
the Shift_Accum_Loop in two lops havin the label names TDL and MAC. The code in fir.cpp becomes:

/********>|<******************>|<**>|<**>l<****>|<**>|<**>l<****************************
File name: fir.cpp
Circuit name:
Description :
void fir(data_t =y, data_t x) {
coef_t c[N] = {53, 37, -91, 38, 313, 500, 313, 39};
static data_t shift_reg[N] = {5, 5, 5, 5, 5, 5, 5, 5};
acc_t acc;

TDL:
for (int i =N - 1; i > 0; i—-)

{

}
shift_reg [0] = x;

shift_reg[i] = shift_reg[i - 1];

acc = 0;
MAC:
for (int i =N - 1; i > 0; i—-)
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{
}

acc += x * c[0];

acc += shift_reg[i] * c[i];

xy = acc;//result

File name: fir.h
Circuit name:
Description :

sk sk sk sk sk sk sk sk sk sk sk skoskosk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk */
#ifndef __FIR_H__
#define __FIR_H__

#include <cmath>
using namespace std;

// Compare TB vs HW C-model and/or RTL
#define HW_COSIM

#define N 8

typedef short coef_t;
typedef short data_t;
typedef int acc_t;

void fir(data_t =y, data_t x);

#endif

Clock cycle | LUTs | FFs | DSPs | 16-bit REGs | Latency
1.75 ns 53 406 8 24 10
2 ns 52 264 8 16 7
3 ns 52 248 8 15 7
4 ns 51 182 8 11 5
8 ns 52 147 8 9 2
10 ns 51 114 8 7 1

Table 5.1: The experiments done with the Vivaro HLS tool for designing the FIR filter.

Inthe fir.h file we set the design for 8 stages in the filter, by #define N 8, and for 16-bit numbers.
With the Vivado HLS tool we used the flowing directives:

% HLS UNROLL for TDL loop and MAC loop
% HLS PIPELINE for MAC loop.
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The design is implemented for different clock cycles, from 1.75ns to 10ns. The results are summa-
rized in Table 5.1.

The speed is controlled by the number of pipeline registers used in design. At the lowest speed
only the registers from the shift register are involved in design. We are confident in continuing the
implementation with the 2ns version because the estimated clock cycle is 1.82ns with an uncertainty of
0.25ns. With the iteration_latency =7 and I = 1, we obtain loop_latency = 14.

o

5.2.2 Matrix-Vector Multiplication

The square matrix M of SIZE x SIZE is multiplied with the V _In vector of size SIZE. The result is the
vector V _Out.

#define SIZE 8
typedef int BaseType;

void matrix_vector (BaseType M[SIZE ][ SIZE],
BaseType V_In[SIZE], BaseType V_Out[SIZE]) {

BaseType i, j;
Data loop:
for (i=0; i< SIZE; i++) {

BaseType sum = O0;

dot product loop:

for (j=0; j<SIZE; j++) {

sum += V_In[j] = M[i][]];
}

V_Out[i] = sum;

BaseType is mapped as a float.
This code, without directives, will be synthesized as a sequential circuit with one multiplier and one
adder.

Parallelism

The inner loop can be parallelized explicitly with the following code:

#define SIZE 8
typedef int BaseType;

void matrix vector(BaseType M[SIZE][SIZE],

BaseType V In[SIZE], BaseType V Out[SIZE]) {

BaseType i, j;

data loop:

for (i=0; i<SIZE; i++) {

V. Out[i] = V_In[0] = M[i][O0] +

ViIn[l] = M[i][1] +
V_In[2] = M[i][2] +
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V_In[3] = M[i][3] +
V_In[4] = M[i][4] +
V_In[5] = M[i][5] +
V_In[6] * M[i][6] +
V_In[7] * M[i][7]:

or by using #pragma HLS unroll. The circuit associated to the inner loop becomes a 4-level binary tree.
The first level computes 8 multiplications, the second 4 additions, the third 2 additions and the last one
addition. Assuming that multiplication has a latency of 3 clock cycle and the addition is executed in 1
clock cycle, the overall latency is 6.

Array partitioning

Global configuration of array partitioning is possible based on the config _array_partition project
option. Big arrays can be partitioned using the array_partition directive. The directive array_partition
splits each element of an array into its own register, resulting in a flip-flop based implementation.

#define SIZE 8
typedef int BaseType;

void matrix_vector (BaseType M[SIZE][SIZE],
BaseType V_In[SIZE], BaseType V_Out[SIZE]) {

#pragma HLS array partition variable=M dim=2 complete
#pragma HLS array partition variable=V_In complete
BaseType i, j;
data loop:
for (i=0; i<SIZE; i++) {

#pragma HLS pipeline II=1

BaseType sum = O0;

dot product loop:

for (j=0; j<SIZE; j++) {

sum += V_.In[j] = M[i][]j];
}

V_Out[i] = sum;

The Vivado HLS tool provides the fastest solution starting from the previous code. Because the
iteration latency is 6 (3 for multiplication and 3 for the addition tree) and the initialization interval is 1,
the loop latency of the inner loop is 13.

Another form of array partitioning is to use array_partition cyclic.

Example 5.7 LetbeX = [1, 2, 3, 4, 5, 6, 7, 8, 9] Applying:
array_partition variable=x factor=2 cyclic

results two arrays which are [1, 3, 5, 7, 9] and [2, 4, 6, §].
o
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An intermediate solution is provided by the following code where the inner loop of matrix-vector
multiply manually unrolled by a factor of two.

#define SIZE 8
typedef int BaseType;

void matrix vector (BaseType M[SIZE][SIZE],
BaseType V In[SIZE], BaseType V Out[SIZE]) {
#pragma HLS array partition variable=M dim=2 cyclic factor=2
#pragma HLS array partition variable=V In cyclic factor=2
BaseType i, j;
data loop:
for (i = 0; i < SIZE; i++) {
BaseType sum = 0;
dot_product_loop:
for (j = 0; j < SIZE; j+=2) {
#pragma HLS pipeline II=1
sum += V_.In[j] = M[i][]j];
sum += V_In[j+1] = M[i][j+1];

}
V_Out[i] = sum;
}
}
5.2.3 FFT
52.4 SpMV

5.2.5 Matrix Multiplication

HLS version

#include ”"matrix_mult.h”

void matrix_mult (
mat_a a[IN.AROWS][IN_A_COLS],
mat_-b b[IN.BLROWS][IN_.B_.COLS],
mat_prod prod [IN.A_ROWS][IN_B_.COLS])
{
// Iterate over the rows of the A matrix
Row: for(int i = 0; i < INNAROWS; i++) {
// Iterate over the columns of the B matrix
Col: for(int j = 0; j < IN.B_.COLS; j++) {
prod[i][j] = 0;
// Do the inner product of a row of A and col of B
Product: for(int k = 0; k < INB.LROWS; k++) {
prod[i1[j]1 += al[il[k] * bIkI[j1;
}
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#ifndef _MATRIXMUL_H__
#define __MATRIXMUL_H__

#include <cmath>
using namespace std;

// Compare TB vs HW C—-model and/or RTL
#define HW_COSIM

#define IN_A_ROWS 5
#define IN_A_COLS 5
#define IN.B_.ROWS 5
#define IN_B_.COLS 5

typedef char mat_a;
typedef char mat b;
typedef short mat_prod;

// Prototype of top level function for C-synthesis
void matrix_mult (

mat_a a[IN. A ROWS][IN_A_COLS],

mat_b b[IN.B.ROWS][IN_B_.COLS],

mat_prod prod [IN.A_LROWS][IN_B_.COLS]);

#endif // _MATRIXMUL_H__ not defined

The first solution provided by the Vivado HLS tool is implemented using 41 LUTs, 49 FFs and one
DSP. The design performs the computation in 687 cycles (~ 27 cycles per element of the result matrix.
The implementation is obviously sequential and the execution time provided by the resulting circuit is in
the same range with the execution time provided by running the C program.
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Figure 5.7: The HLS version of the circuit for 5 x 5 8-bit matrix multiplication.

The fifth solution: 635 LUTS, 665 FFs, and 122 DSPs. The solution is provided in 23 cycles.

Hand codded version

The hand codded version of the matrix multiplication, designed for 16-bit numbers, is presented in order
to compare it with the HLS version for 8-bit numbers. If an experienced circuit designer writes the code
it looks as follows:

/3 ok s R s R R R R SRR R R R R R R R R R R s R R R R R R R SRR R kR kR Rk R
File name: mmm.v
Circuit name: Matrix multiplier
Description: Multiplies 5x5 matrices. The matrix A is received line by
line, while the matrix B is inlined to the input b. The
result matrix C is generated line by line with latency 4
ek ok ok o o kR o o ok R R K KR R ok oK R R SR oK R ok R R S ok ok R R o ok R K ok R ok KR R ok kR R ok R R sk Rk R R Rk R R Rk R Rk kR %/

module mmm(input [399:0] b , // Matrix B inlined
input [79:0] a , // Lines of matrix A
output [159:0] c , // Lines of matrix C
input clk ); // my matrix multiplier

wire [79:0] col[0:4];
wire [31:0] s[0:4] ;
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// Compose the line of the matrix C
assign ¢ = {s[0],s[1],s[2],s[3],s[4]} :
// Select the columne of the matrix B

assign
col[0] = {b[399:384], b[319:304], b[239:224], b[159:144], b[79:64]} ,
col[1] = {b[383:368], b[303:288], b[223:208], b[143:128], b[63:48]} ,
col[2] = {b[367:352], b[287:272], b[207:192], b[127:112], b[47:32]} ,
col[3] = {b[351:336], b[271:256], b[191:176], b[111:96] , b[31:16]} ,
col[4] = {b[335:320], b[255:240], b[175:160], b[95:80] , b[15:0]} ;
genvar j ;
generate begin: M
for (j=0; j<5; j=j+1)
mmmm m( .b (col[j] ),
.a (a ).
¢ (shil ),
.clk (clk ));
end
endgenerate
endmodule

File name:
Circuit name:
Description :

module mmmm(input [79:0] b , // Column of matrix B
input [79:0] a , // Line of matrix A
output reg [31:0] ¢ , // Element of line in matrix C
input clk ); // my matrix multiplier module

wire [15:0] B[0:4] ;
wire [15:0] A[0:4] ;

reg [31:0] C[0:4] ;
reg [31:0] SO[0:2]
reg [31:0] S1[0:1]

assign {A[0], A[1], A[2], A[3],A[4]} =
assign {B[0], B[1], B[2], B[3],B[4]} = b :

|
o

integer i ;

always @(posedge clk) for(i=0; i<5; i=i+l)
Cl[i] <= A[i] = B[i] ;

always @(posedge clk) begin SO[0] <= C[0] + C[1]
SO[1] <= C[2] + C[3] ;
SO0[2] <= C[4] ;
S1[0] <= SO[0] + SO[1];
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S1[1]

AN
|

= S0[2] ;
= S1[0] + S1[1];

o
AN
|

end
endmodule

M.genblk1[0].m

ars0r > al79:0]

b[79:0] c[31:0]31:0
b[399:0] [ clk

clk D mmmm

M.genblk1[1].m

[ c159:0]

a[79:0]
b[79:0] c[31:0]31:0
clk

mmmm

M.genblk1[2].m
a[79:0]

b[79:0] c[31:0131:0
clk

mmmm

M.genblk1[3].m
a[79:0]

b[79:0] c[31:0131:0
clk

mmmm

M.genblk1[4].m

a[79:0]
b[79:0] c[31:0]31:0
clk

mmmm

Figure 5.8: The top module for the hand codded version of the circuit for 5 x 5 16-bit matrix multiplica-
tion. It consists of 5 slices, one for each element of the line in the result matrix.

The synthesis tool report the use of 30 DSPs, and the latency is 9 clock cycles. In the first 5 cycles
the lines of the matrix A are received to the input of the circuit. The first line of the result is provided to
the output c triggered by the fourth clock cycle.
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Figure 5.9: The structure of the slice used in Figure 5.8 for matrix multiplication.
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Chapter 6

Digital System Hierarchy

These ambiguities, redundancies and deficiencies remind us of those which doc-
tor Franz Kuhn attributes to a certain Chinese encyclopedia entitled ’Celestial
Empire of benevolent Knowledge’. In its remote pages it is written that the ani-
mals are divided into: (a) belonging to the emperor, (b) embalmed, (c) tame, (d)
sucking pigs, (e) sirens, (f) fabulous, (g) stray dogs, (h) included in the present
classification, (i) frenzied, (j) innumerable, (k) drawn with a very fine camel-
hair brush, (1) et cetera, (m) having just broken the water pitcher, (n) that from
a long way off look like flies. [Borges ’52]

Jorge Luis Borges

In the fictitious taxonomy of animals, described by the writer Jorge Luis Borges in his 1942 essay ”The Ana-
Iytical Language of John Wilkins”, the animals are divided into 14 strange categories. Meantime, the criteria have
been modified many times because the image about the animal domain has changed under the pressure of a deeper
understanding and a diversified use. The same process allows us to propose a new taxonomy in the digital world.

Thus, instead of classifying digital circuits in only two category:

1. combinational circuits: are digital networks of logic gates with no backward connections; the output of these
systems depend, with a delay due to the propagation time associated to each gate, exclusively by the current
binary values applied on the inputs

2. sequential circuits: are digital networks that include memory elements that determine an output response that
depends on the time and binary configuration applied to the input

we are in the position to propose a more nuanced taxonomy based on the maximum number of included loops closed

inside the digital system. The category of sequential circuits is detailed resulting the following loop-based taxonomy

[?]:

zero-order digital systems (0-OS) : containing only combinational structures organized in a number of layers with
no-loop closed from one layer back to one of the previous one, see Figure 6.1a

first-order digital systems (1-OS) : besides pure combinational sub-structures it contains memory circuits con-
figured by closing one loop over a small and simple network of gates (see Figure 6.1b); the main storage
elements are: latches, clocked latches, master-slave flip-flops, random-access memories, registers.

second-order digital systems (2-OS) : typically represented by finite automata (finite-state machines), see Figure
6.1c; other state machines, like counters, constitute a class of simple automata involved in various applications

third-order digital systems (3-OS) : typically represented by processor systems built by connecting in a loop a
simple functional automaton with a complex control automaton, see Figure 6.1d

fourth-order digital systems (4-OS) : typically represented by computing systems based on the von Neumann
abstract machine model (a data & program memory loop-connected with a processor), see Figure 6.1e

73
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Figure 6.1: The loop-based featuring mechanism. a. Zero-order system (0-OS): a zero-loop combi-
national circuit. b. First-order system (1st-OS): the one-loop memory circuit. ¢. Second-order system
(2nd-0OS): the two-loop finite automaton circuit. d. Third-order system (3rd-OS): the processor as a
three-loop system. e. Fourth-order system (4th-OS): the von Neumann abstract model for a computer
as a four-loop system. f. Fifth-order system (5th-OS): the Harvard abstract model for a computer as a
five-loop system. g. N-th order system (N-OS): the cellular automaton as a O(N)-loop system. h. The
first global loop closed over a simple N-OS: the reduction loop. i. The second global loop closed over a
simple N-OS: the scan loop. j. The third global loop closed over a simple N-OS: the scan loop. k. The
fourth global loop closed over a simple N-OS: the scan loop.



75

fifth-order digital systems (5-OS) : typically represented by computing systems based on the Harvard abstract
machine model (a computer with program memory only loop-connected with a data memory), see Figure
6.1f

n-order digital systems (N-OS) : typically represented by linear cellular automaton, see Figure 6.1g.

Once we reach the N-OS level, how do we move forward? We will close loops over N-OSs. Results:
zero-order parallel systems (0-OPS) : cellular automaton (N-OS), see Figure 6.1g
first-order parallel systems (1-OPS) : cellular automaton with direct reduce loop, see Figure 6.1h

second-order parallel systems (2-OPS) : cellular automaton with scan loop which includes the reduce loop, see
Figure 6.1i

third-order parallel systems (3-OPS) : cellular automaton with scan loop with the reduce loop closed through a
sequencer, see Figure 6.1j

third-order parallel systems (4-OPS) : is a Map-Scan-Reduce parallel computing system, see Figure 6.1k.

And further? In ’Celestial Empire of benevolent Knowledge’ [Borges ’52] I identified and emphasized a recur-
sive item. Let us do something similar. Therefore, the proposal is a recursive growing on the frame of a 3-OPS:

MapScanRed(i+1)[p]
MapScanRed(i) to/from SCAN from Control
Voo - - - - T 1T TTTTTTTTTTTTT T
! l SCANG)_ ] ! l
| A A A | |
I B i Tt T ! I
| | - - - - \ |
i i 1 4 ¢ ,/cell] 4 ; cell, MAP Y $ cell, i Y : i
i : P eng(i) | mem(i) [ eng(i) | mem(i) |— - - - - —1 eng(i) | mem(i) [ : » Control(i) [« : »{ Memory i
3 ey gy s Uy pupspp Xk & |
| | |
| , |
| |
1 ¢ ,,,,, F ‘ 1
| " 1 |
l . l
| |
! REDUCE() : !
! eng(i+l) I v mem(i+l)
| : :
< L .
to/from LeftCell Y to/from RightCell

to REDUCE

Figure 6.2: MapScanReduce recursive abstract model for parallel computation. In the lowest level in
the hierarchy, eng(0) is a scalar execution engine with mem(0) a small static RAM.

zero-order recursive systems (0-ORS) : zero-order parallel systems designed as a 4-OPSs with a scalar execution
unit and a data memory per cell

first-order recursive systems (1-ORS) : first-order parallel systems designed as a 4-OPSs with a 0-ORS as cell

n-order recursive systems (N-ORS) : n-order parallel systems designed as a 4-OPSs with a (N-1)-ORS as cell
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6.1 Combinational Circuits: Zero-order Digital Systems

6.1.1 Behavioral vs. structural
DCD

/3 ks ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok sk sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok sk sk sk ok ok sk sk oK sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok ok ok sk ok ok ok ok

File name: dec.v

Circuit name: Decoder

Description : behavioral description of a n—input decoder

module dec #(parameter inDim = n)( input [inDim - 1:0] sel ,

output [(1 << inDim) - 1:0] out);
assign out = 1 << sel;
endmodule

/3 sk ok sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk oK ok sk sk ok ok sk sk ok sk sk sk ok ok sk sk ok ok sk ok ok ok sk ok ok ok ok

File name: dec.v
Circuit name: Decoder
Description : structural description of a 3—input decoder

*************************************************************************/
module dec3( output [7:0] out,
input [2:0] in );

wire in0O, ninO, inl, ninl, in2, nin2;

not notOO0 (ninO, in[0]);
not notOl (in0, nin0) ;
not notlO(ninl, in[1]);
not notll (inl, ninl) ;
not not20(nin2, in[2]);
not not21 (in2, nin2) ;

and andO(out[0], nin2, ninl, ninO); // output 0
and andl (out[1], nin2, ninl, in0 ); // output 1
and and2(out[2], nin2, inl, ninO); // output 2
and and3(out[3], nin2, inl, in0 ); // output 3
and and4 (out[4], in2, ninl, nin0); // output 4
and andS5(out[5], in2, ninl, in0 ); // output 5
and and6(out[6], in2, inl, ninO); // output 6
and and7(out[7], in2, inl, in0 ); // output 7
endmodule
MUX

/*************************************************************************
File name: mux. v
Circuit name: Multiplexor
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Description : behavioral description for a n—selection inputs

multiplexor
*************************************************************************/
module mux #(parameter inDim = n)

(input [inDim-1:0] sel, // selection inputs
input [(1<<inDim)-1:0] in , // selected inputs
output out);
assign out = in[sel];
endmodule

DMUX

/*************************************************************************
File name: dmux. v

Circuit name: Demultiplexor

Description : behavioral description for a n—input demultiplexor

*************************************************************************/

module dmux #(parameter inDim = n)(input [inDim - 1:0] sel s
input enable ,
output [(1 << inDim) - 1:0] out );

assign out = enable << sel;
endmodule
PE

/3 sk ok ok sk sk sk sk sk sk sk sk ok ok oK o oK K K sk ks sk sk sk sk sk sk ok oK oK K K K ok sk sk sk sk sk sk ok ok ok oK o oK oK ok ok K sk sk sk sk sk sk sk ok ok ok R R oK ok K sk kR sk ok sk ok

File name: priority_encoder.v
Circuit name: Priority Encider
Description : behavioral description for a m—output priority encoder

*************************************************************************/
module priority_encoder #(parameter m = 4)

( input [(1<<m)-1:0] in s
input enable
output reg [m-1:0] out s
output reg Zero );
integer i;

always @(x) if (enable) begin out = 0;
for(i=(1"bl << m)-1; i>=0; i=i-1)
if ((out == 0) &k in[i]) out = i;

if (in == 0) zero = 1;
else zero = 0;
end
else begin out = 0;
zero = 0;
end

endmodule
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COMP

/% % ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok oK o o ok ok ok sk sk ok ok ok ok ok ok oK ok ok o ok ok ok koK ok ok ok ok ok ok R R ok ok ok ok Rk Rk sk ok

File name: comp . v
Circuit name: Comparator
Description : behavioral description for a n—bit words comparator
*************************************************************************/
module comp #(parameter n = 256)(output It_out
eq-out
gt_out
input [n-1:0] a s
b ]
input It_in s
eq-in s
gt_in IE

assign lt_out It_in | eq-in & (a < b);
assign eq-out eq-in & (a == b) ;
assign gt_out = gt_in | eq_.in & (a > b);

endmodule

PREFIX

/% % ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk kK ok ok ok ok ok ok ok o o ok ok ok sk sk ok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok ok R oK o o o ok Rk kR ok ok

File name: addPrefixes.v
Circuit name: ADD Prefixes
Description : behavioral description for n—input add prefixes circuit
*************************************************************************/
module prefixe #(‘include ”parameter.v”)( output [0:mxn—1] out ,
input [0O:mxn—1] in );
genvar i;
generate begin
assign out[0:m-1] = in[0:m-1];

for (i=1; i<n; i=i+1) begin
assign out[ism:(i+1)*m-1] =
in[ism:(i+1)*xm—1] + out[(i—-1)*m:ixxm-1] ;
end
end
endgenerate

endmodule

CSA

Carry-Save Adders
Four-input n-bit adders have two solutions:

Four-input n-bit adder with ripple-carry adders are implemented as a two layers system



6.1. COMBINATIONAL CIRCUITS: ZERO-ORDER DIGITAL SYSTEMS

Four-input n-bit adder with carry-save adders uses two carry-save addesr
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File name:

eCSA . v

Circuit name:

Elementary Carry-Save Adder

inl ,
cOut

1]);

)

&

in2

il

)5

Description : A m-bit inputs carry-save adder
*************************************************************************/
module eCSA #(parameter n=16)( input [n-1:0] inO,
output [n:0] sOut ,
wire [n=1:0] out ;
wire [n=1:0] cr ;
genvar i ;
generate for (i=0; i<n; i=i+1) begin: S
fa adder(inO[i], inl[i], in2[i], out[i], cr[
end
endgenerate
assign sOut = {1°b0, out} :
assign cOut = {cr, 1°b0} ;
endmodule
module fa( input inl, in2, cln s
output out, cOut );
assign out = inl in2 cln
assign cOut = inl & in2 | cIn & (inl ~ in2)
endmodule

/*************************************************************************

File name:
Circuit name:
Description :

add4 . v
Four—input adder

A m-bit 4—inputs adder based on carry-save adders
*************************************************************************/

module add4 #(parameter n=16)(
wire [n:0] sOutl, cOutl
wire [n+1:0] sOut2, cOut2
eCSA eCSA1( .in0(inO
.inl (inl
.in2 (in2
.sOut (sOutl
.cOut (cOutl
eCSA #(.n(n+1)) eCSA2(

output [n+1:0] out
input [n=1:0] inO ,
) o

)

)

) o

)

.in0 (sOutl ),

.inl (cOutl ),
.in2({1°b0, in3}
.sOut (sOut2 ),

inl ,

in2 ,

in3

)

)
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.cOut(cOut2 ));

assign out = sOut2 + cOut2;
endmodule

6.1.2 Recursive descriptions
DCD

Yp—1

Y1
oCD, ), 6 ,,,,, 6
Vp
Yp-1 % 1 1
Ym—1

DCD,

IEIERE
=

n/2

n/2

X1 ---XQ

Figure 6.3: The recursive definition of n-inputs decoder (DCD,,).

File name: dec.v
Circuit name: Decoder
Description : recursive description of a n—input decoder
module dec #(parameter n = 4)( input [n-1:0] sel ,
output [(1<<n)-1:0] out);
wire [(1<<n/2)-1:0] outO0;
wire [(1<<n/2)-1:0] outl;

genvar i,j ;

generate
if (n == 1) eDec eDec( .sel (sel ),
.out (out[1:0] ));
else begin dec #(.n(n/2)) decO( .sel(sel[n/2-1:0] ),
.out(out0 ),

decl ( .sel(sel[n—-1:n/2] ),
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.out(outl ));
for (i=0; i<(l<<n/2); i=i+1) begin
for (j=0; j<(l<<n/2); j=j+1) begin: outAND
and AND(out[(1<<n/2)*j+i], outl[j], outO[i]);
end
end
end
endgenerate
endmodule

// Elementary decoder
module eDec(input sel ,

output [1:0] out );

not bufNot(out[0], sel IE
not outNot(out[1], out[0] DE

endmodule

MUX

io R n im—1
” - - -
i 121,] io ’%1 1
MUX,_, MUX,_,
F r F V
Xp_2:-X0 | ;
00 i
X
el EMUX

Figure 6.4: The recursive definition of MUX,,.
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Figure 6.5: The recursive definition of DMUX,,.

inj2—1

0

PEp_11

inj2—1

PEp—10

m—1

24‘—. en z
m—1
m—1

out[m-1]  out[m-2:0] zero

Figure 6.6: The recursive definition of PE,,.

File name: priority_encoder.v

Circuit name: Priority Encider

Description : behavioral description for a m—output priority encoder
*************************************************************************/
module priority_encoder #(parameter m = 4)

( input [(1<<m)-1:0] in ,

input enable

output [m-1:0] out s

output Zero )
wire [m-2:0] outO ;
wire [m-2:0] outl ;
wire zerol ;
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generate
if (m == 2) begin
assign zero = enable & ~(]|in) ;
assign out[1] = enable & (in[3] | in[2]) o
assign out[0] = enable & (in[3] | "in[2] & in[1]);
end
else begin priority _encoder #(.m(m-1))
pe0 ( .in (in[(1<<(@m-1))-1:0] ),
.enable (zerol ),
.out (out0 ),
. Z€ro (zero ),
pel( .in (in[(l<<m)-1:1<<(m-1)] ),
.enable (enable ),
.out (outl ),
. Zero (zerol ));
assign out = {"zerol & enable, (out0 | outl)};
end
endgenerate
endmodule
COMP
a[n-1:n/2] b[n-1:n/2] a[n/2-1:0] b[n/2-1:0]

. It-in It-out . It-in It-out
eqin COMP, /> eq.out eq-in COMP, /3 eq.out |—a
gtin gtout gtin gt-out —‘

—> ltout

ECOMP |—» eq-out

—» stout

Figure 6.7: The optimal n-bit comparator. Applying the divide et impera principle a COMP, is built using
two COMP, /> and an ECOMP. Results a log-depth circuit with the size in O(n).

File name: comp . v
Circuit name: Comparator
Description : behavioral description for a n—bit words comparator

*************************************>I<***********************************/
module comp #(parameter n = 8)
( output It_out, eq.out, gt_out,
input [n—-1:0] a, b,
input It_in , eq-in, gt_in);
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wire It_out0, eq_out0, gt out0, It_outl , eq_outl, gt_outl ;
generate
if (n == 1) e.comp e_comp( It_out, eq_out, gt_out,
a, b, It.in, eq-in, gt_in);
else begin comp #(.n(n/2)) compO( .It_out (lt_outO ),
.eq-out (eq-out0 ),
.gt_out (gt_outO ),
.a (a[n/2-1:0] ),
.b (b[n/2-1:0] ),
.lt_in (lt_in ),
.eq-in (eq-in ),
.gt_in (gt_in ),
compl( .lt_out (lt_outl ),
.eq-out (eq-outl ),
.gt_out (gt_outl ),
.a (a[n=1:n/2] ),
.b (b[n=1:n/2] ),
.1t_in (lt_in ),
.eq-in (eq-in ),
.gt_in  (gt_in ));

e_.comp dut( .lt_out (lt_out ),
.eq-out (eq-out ),
.gt_out (gt_out ),
.a (gt_out0),
.b (1t_out0),
.Ilt_in (lt_outl),
.eq-in (eq-outl),
.gt_in (gt_outl));
end
endgenerate
endmodule

module e_comp( output lt_out, eq-out, gt_out,
input a, b, lt_in, eq-in, gt_in);

assign It_out = It_in | eq-in & "a & b,
eq-out = eq-in & “(a "~ b),

gt_out = gt_in | eq_-in & a & "b;
endmodule

SORT

File name: parameters.v
Circuit name: it is not a circuit
Description : defines the two parameters used in the sorter’s definition

********>k***>l<************************************************************/
parameter n = 16, // number of inputs
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m = 8§ // number of bits per input

a b
nx EMUX nx EMUX |
a b

Y Y

-]i? COMPy —>

—>

min(a,b)  max(a,b)
Y
min(a,b) max(a,b)
a. b.

Figure 6.8: The elementary sorter. a. The internal structure of an elementary sorter. The output 1t_out of the
comparator is used to select the input values to output in the received order (if 1t_out = 1) or in the crossed order
(if 1t_out = 0). b. The logic symbol of an elementary sorter.

/*************************************************************************
File name: sorter.v
Circuit name: Sorter Network
Description : recursive definition for a sorter n m-bit numbers
module sorter #(‘include “0O_parameters.v”)
( output [mn-1:0] out ,
input [mxn—1:0] in  );

wire [mxn/2-1:0] outO;
wire [mxn/2-1:0] outl;
generate
if (n == 2)
eSorter eSorter (.out0 (out[m—-1:0] ),
.outl (out[2+m—1:m] ),
.in0 (in[m-1:0] ),
.inl (in[2#m—1:m] ));
else begin
sorter #(.n(n/2)) sorter0 (.out(out0 ),
.in (in[m#n/2-1:0] )),
sorterl (.out(outl ),
.in (in[m#n—-1:mxn/2]));
merger #(.n(n)) merger ( .out(out ),
.in ({outl, out0} ));
end
endgenerate

endmodule
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Figure 6.9: Batcher’s sorter. The n-input sorter, Sy, is defined by a double-recursive construct: “S, =2 xS,/ +
M,”, where the merger M, consists of “M, =2 x M, j, +(n/2—1)S,”.

File name: eSorter.v

Circuit name: Elementary Sorter
Description : behavioral description of an elementary sorter for m-bit
numbers

module eSorter #(‘include ”0_parameters.v”)
( output [m-1:0] outO,
output [m-1:0] outl,
input [m=1:0] in0O |,
input [m—1:0] inl );

assign out0 = (in0 > inl) ? inl : in0 ;
assign outl = (in0 > inl) ? in0O : inl ;
endmodule
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File name: merger.v
Circuit name: Merger Network
Description : recursive definition of a merger network for n m-bit
numbers
module merger #(‘include ”0_parameters.v”)( output [mxn-1:0] out ,
input [mxn—1:0] in  );
wire [mxn/4-1:0] evenO ;
wire [mxn/4-1:0] oddO ;
wire [mxn/4-1:0] evenl ;
wire [mxn/4-1:0] oddl ;
wire [mxn/2-1:0] outO ;
wire [mxn/2-1:0] outl ;
genvar i;
generate
if (n == 2) eSorter eSorter (.out0 (out[m—1:0] ),
.outl (out[2+m—1:m] ),
.in0 (in[m—-1:0] ),
.inl (in[2#%m—1:m] ));

else begin
for (i=0; i<n/4; i=i+1) begin : oddEven
assign evenO[(i+1)*m—1:ism] =
in[2%ism+m—1:2%1xm]
assign evenl [(i+1)*xm—1:isxm] =
in [m#n/2+2% i *m+m—1:mxn/2+2 i*xm] ;
assign oddO[(i+1)*m—1:ism] =
in[2:%1sm+2xm—1:2:% i*xm+m]
assign oddl[(i+1)*m—1:i*m] =
in [m#n/2+2#1i*m+2+m—1:m«n/2+2+i*m+m] ;

end
merger #(.n(n/2)) merger(0 (. out (out0 ),
.in ({evenl, evenO} )),
mergerl (. out(outl ),

.in ({oddl, oddO} ))s
for (i=1; i<n/2; i=i+1) begin : elSort
eSorter eSorter (.outO(out[(2*i—1)*xm+m—1:(2+1i—1)=+m] )
.outl (out[2#1+m+m—1:2x%ixm] )
.in0 (outO[ism+m—1:1i=xm] )
.inl (outl[is*m—1:(i—1)*m] )
end
assign out[m-1:0]
assign out[m#n—1:m*(n—1)]
end
endgenerate
endmodule

out0O[m—1:0] 2
outl [m«n/2—-1:m*(n/2-1)] ;
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REDUCE
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File name: defines.v
Circuit name: no circuit
Description : defines the parameters for a n m—bit words reduction add
s s oo R R R R R R R KR R R SRR R SRR R R R SRR R R o R R R R R R R Rk R R ko ok R/
‘define n 8 // number of inputs
‘define m 8 // input size

/*************************************************************************

File name: reduce . v
Circuit name: Reduce
Description : recursive description for a n m—bit words reduction add

*************************************************************************/
‘include ”defines.v”

module reduce #(parameter N = ‘n)( output [‘m-1:0] out ,
input [N¥‘m—-1:0] in );

wire [(N¥‘m/2)-1:0] leftln ;
wire [(N¥‘m/2)-1:0] rightln ;
wire [‘'m=-1:0] 10ut ;
wire [‘'m-1:0] rOut ;

genvar i ;

generate
if (N == 2) assign out = in[2+*‘m-1:'m] + in[‘'m-1:0] ;
else begin assign leftln = in[N+‘m—-1:N+‘m/2];
assign rightln = in[(Nx‘m/2)-1:0];
reduce #(.N(N/2)) Ir (10ut, leftln ),
rr (rOut, rightln);
assign out = 10ut + rOut ;
end
endgenerate
endmodule
PREFIX

A n-input prefix circuit, PXn, is built using elementary prefix circuits, ePx, defined by:
Yo = X0
Y1 =X00)y1

where o is an associative and commutative function. The recursive optimal structure is described, for n = 8, in
Figure 6.11.
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Figure 6.10: The recursive prefix network.

/*************************************************************************

File name: parameter . v
Circuit name: no circuit
Description : defines the parameters and functions of the prefix network

*************************************************************************/
parameter m = 8§,
n =16,
func = 2’b00

/% func = 00: add

func = 01: and
func = 10: or
func = 11: xor

%/

/% % ok ok ok ok sk ok ok sk ok ok ok ok ok o ok ok ok ok sk kR ok sk ok ok ok oK oK o ok ok ok ok sk sk sk ok ok ok ok ok ok ok ok o ok ok ok sk ok sk ok sk ok ok ok R R ok ok ok ok kR kR ok ok

File name: prefix.v
Circuit name: Elementary Sorter
Description : recursive description of a n m—bit inputs prefix network
*************************************************************************/
module prefix #(‘include “parameter.v”)(output [0O:m#n-1] out ,
input [0O:mxn—1] in  );

wire [m—1:0] even[0:(n/2)—-1] ;

wire [m—1:0] odd[0:(n/2)-1] ;

wire [0:m*(n/2)—1] hin ;

wire [0O:m*(n/2)—1] hout ;

89
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Figure 6.11: The recursive version of a 8-input prefix network.

genvar i ;

generate

if (n == 2) ePrefix ePrefix (.out(out[0:2+xm—-1]),
cin (in[0:2xm—=1] ));

else
begin
for (i=0; i<n/2; i=i+1) Dbegin: ePxlIn
ePrefix ePrefix( .out({even[i], odd[i]} ),
cin (in[2*xis#m:2x(i+1)*xm—1] ));
end
for (i=0; i<n/2; i=i+1) begin
assign hin[m#i:mx(i+1)-1] = odd[i]
end
prefix #(.n(n/2)) hPrefix (. out(hout),
.in (hin ));
assign out[0:m-1] = even[0] ;
for(i=0; i<(n/2)-1; i=i+1) begin: ePxOout
ePrefix ePrefix (.out({ out[m=(2xi+1)m=(2xi+2)-1],
out [m#(2*i+2):m=(2xi+3)-11} ),
.in ({ hout[ism:(i+1)*m-1],
even[i+1]} ));
end
assign out[m#(n—-1):msn—1] = hout[m*((n/2)—-1)m*(n/2)-1] ;
end

endgenerate
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endmodule

module

(

always @(x)

endmodule

output
input

ePrefix #(‘include “parameter.v”)

reg [0:2+m—1] out
[0:2%m—1] in

case (func)
2°b00:
2°b01 :
2°b10:
2°bll:

endcase

out
out
out
out

{in[0:m-1],
{in[0:m-1],
{in[0:m-1],
{in[0:m-1],

An application: FIRST circuit which receives

)

)s

(in [O:
(in [O:
(in [O:
(in [O:

m—-1] +
m-1] &

m—1]
m—1]

in[m:2xm-1])}
in[m:2xm—1])}
in[m:2xm-1])}
in[m:2xm-1])}

]

s
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File name:
Circuit name:
Description :

parameter

/%  func
func
func
func

parameter.v

no circuit
the parameters FIRST network

defines
m= 1,
n =16,
func =
00: add
01: and
10: or
11: xor

2°b10

*/
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File name:
Circuit name:
Description :

module first

#(‘include “parameter.v”)( output
input

first.v

FIRST

defines

the

wire [n—1:0] pxOut

prefix prefix(

assign out

endmodule

FIRST network

fokkkk kR kR R R R F R Rk Rk k kR kR Rk kR Rk ok ok ok kkk kR kR kK kR Rk ko kk kR kR kxR Kk ok kR kkkkk kK Kk k/

)

.out (pxOut),
.in (in));

pxOut & “(pxOut >> 1) ;

in

[n-1:0] out |,
[n=1:0]

DB
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6.2 Memory Circuits: First-order Digital Systems

6.2.1 Random-Access Memories

Asynchronous RAM are “out of fashion” because of the timing difficulties. Instead, we use synchronous RAMs
which solve the timing issues at the IP level.

SRAM (synchronous RAM)

/3 sk ok ok ks sk sk sk sk sk sk ok ok oK o o K K ks sk sk sk sk sk sk ok oK oK K K K K sk sk sk sk sk sk sk ok oK ok o oK oK ok ok sk sk sk sk sk sk sk sk sk ok oK R R oK o ok ok kR kR sk ok

File name: defines .v
Circuit name: no circuit
Description : defines the parameters for a 2°n m-bits words SRAM
*************************************************************************/
‘define n 8 // address size
‘define m 8 // data input/output size

/*************************************************************************
File name: SRAM . v

Circuit name: Synchronous RAM

Description : defines a 2°n m-bits words Synchronous RAM

‘include ”defines.v”

module SRAM( input [‘'m-1:0] din ,
input [‘n—=1:0] addr ,
output [‘m-1:0] dout ,
input we
input clk );

reg [‘'m—-1:0] mem[0:(1<<‘n)-1];

always @(posedge clk) if (we) mem[addr] <= din ;
assign dout = mem[addr] ;
endmodule

PSRAM (pipelined SRAM)

/3 ok R sk o kR ok Kk KR S R KR S ok R KR S oK R oK R o KR oK R R KR S K R KR Sk ok R KR R K R R R R R R R R R R R kR R R R kR Rk R
File name: defines.v
Circuit name: no circuit
Description : defines the parameters for a 2°n m—bits words PSRAM
‘define n 8 // address size
‘define m 8 // data input/output size
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File name:
Circuit name:
Description :

PSRAM . v
First

version of a pipelined synchronous RAM
defines a 2°n m-bits words Pipelined synchronous RAM

*************************************************************************/

‘include ”defines.v”

module PSRAMV1( input
input
output reg
input
input

reg [‘'m—1:0]

always @(posedge clk)

always @(posedge clk)
endmodule

[‘'m-1:0]
[‘n—=1:0]
[‘'m=1:0]

mem[0:(1<<‘n)—-1];

if (we)
else

if (we )

dout <=
dout <= mem|[addr ]

din ,
addr ,
dout ,
we
clk );

din

s

mem[ addr] <= din;

/3% sk sk ok sk sk ok ok ok sk ok ok sk sk ok ok sk sk ok ok sk ok ok ok sk ok ok ok sk sk ok ok sk sk ok ok sk ok ok ok sk ok ok ok sk ok oK ok sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok sk ok ok kK

File name: PSRAM . v
Circuit name:

Description :

Second version of a pipelined synchronous RAM
defines a 2°n m-bits words Pipelined synchronous RAM

*************************************************************************/

‘include ”defines.v”

module PSRAMV2( input
input
output reg
input
input

reg [‘'m—-1:0] mem[0:(1<

always @(posedge clk)

always @(posedge clk)
endmodule

BRAM (Block SRAM in FPGA)

[‘m-1:0]

[‘n—-1:0]

[‘m-1:0]
<‘n)-1];

dout <= mem[addr ]

if (we )

din ,
addr ,
dout ,
we
clk );

s

mem[ addr] <= din;

The BRAM is a dual-port RAM module which can be instantiated into the FPGA to provide on-chip memory for
a relatively large set of data. Two types of BRAM memories are available: of 18k or 36k bits. The dual-port
implementation of these BRAMs allows for same-clock-cycle access to different locations.
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6.2.2 Register Files
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File name: defines.v

Circuit name: no circuit

Description : defines the parameters for a 32 32-bits register file
‘define n 5 // address size
‘define m 32 // data input/output size

/*************************************************************************

File name: registerFile.v

Circuit name: Register file

Description : Two—output port register file

*************************************************************************/

module registerFile (output [‘m-1:0] left_operand ,
output [‘m-1:0] right_operand ,
input [‘'m-1:0] result s
input [‘n—-1:0] left_addr s
input [‘n-1:0] right_addr ,
input [‘n-1:0] dest_addr s
input write_enable ,
input clock )

reg [‘'m-1:0] file[0:(1<<‘n)-1];

assign left_operand = file[left_addr] s
right_operand = file[right_addr] ;

always @(posedge clock) if (write_enable) file[dest_addr] <= result;
endmodule

6.2.3 Pipelining
REDUCE
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File name: defines.v
Circuit name: no circuit
Description : defines the parameters for the pipelined version of

a n m—bit words reduction add
*************************************************************************/
‘define n 8 // number of inputs
‘define m 8 // input size
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File name:
Circuit name:
Description :

pipelinedRed . v

defines

pipelined reduction add
the pipelined version of the reduction add circuit

‘include ”defines.v”
module pipelinedRed #(parameter N = ‘n)
( output reg[‘m-1:0] out s
input [N#‘m—-1:0] in ,
input clock )
wire [(Nx‘m/2)—-1:0] leftln ;
wire [(N¥‘m/2)—-1:0] rightln ;
wire [‘'m-1:0] 10ut ;
wire [‘'m-1:0] rOut ;
genvar i ;
generate
if(N == 2) always @(posedge clock)
out <= in[2*‘m—-1:'m] + in[‘m-1:0] ;
else begin assign leftln = in[N+‘m—-1:N+‘m/2];
assign rightln = in[(Nx‘m/2)-1:0];
reduce #(.N(N/2)) Ir (10ut, leftln, clock ),
rr (rOut, rightln, clock );
always @(posedge clock)
out <= IOut + rOut ;
end
endgenerate

endmodule



96 CHAPTER 6. DIGITAL SYSTEM HIERARCHY

PERMUTE
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Figure 6.12: The recursive definition of the n-input permutation network, Py, introduced by Véclav E.
Benes.
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File name: defines.v
Circuit name: no circuit
Description : defines the parameters

*************************************************************************/
‘define n 8
‘define m 8
‘define d 13 // m+2«log-2(n)-1

/*************************************************************************
File name: permute . v
Modules : permute . v

ePermute . v
Circuit name:
Description : defines the PERMUTE network
*************************************************************************/

‘include ”defines.v”
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module permute #(parameter N = ‘n)( output [0:Nx‘d-1] out s
input [O:N«‘d-1] 1in s
input clock )

wire [‘d-1:0] even[0:N/2-1] R
wire [‘d-1:0] odd[0:N/2-1] ;
wire [0:(N/2)x ‘d—1] leftln ;
wire [0:(N/2)*%‘d-1] rightln ;
wire [0:(N/2)x‘d—1] leftOut ;
wire [0:(N/2)%‘d-1] rightOut ;
genvar i ;
generate
if (N == 2) ePermute eP( .out (out[0:2x‘d-1] ),
.in (in[0:2x% ‘d-1] ),
.clock (clock ));
else
begin
for (i=0; i<N/2; i=i+1) Dbegin: ePin
ePermute ePe (. out ({even[i], odd[i]} ),
.in (in[2#i*°‘d:2%(i+1)x‘d-1]),
.clock (clock ));
end
for(i=0; i<N/2; i=i+1) begin
assign leftln[ix‘d:(i+1)*‘d-1] = even[i] R
assign rightIn[ix‘d:(i+1)*‘d-1] = odd[i] ;
end
permute #(.N(N/2)) permL( .out (leftOut ),
.in (leftln ),
.clock (clock ),
permR( .out (rightOut ),
.in (rightln ),
.clock (clock ));
for (i=0; i<N/2; i=i+1) Dbegin: ePout
ePermute ePe (. out ( {out[2#ix‘d:(2xi+1)x‘d-1],
out [(2#i+1)x‘d:2%(i+1)x‘d-1]}),
.in ( {leftOut[ix‘d:(i+l)*‘d-1],
rightOut[ix‘d:(i+1)*‘d-1]} ),
.clock (clock ));
end
end
endgenerate
endmodule

module ePermute

( output reg [0:2x°‘d-1]
input [0:2%°d-1]
input

wire [‘'m-1:0] dataO;
wire [‘'m=-1:0] datal ;

out ,
in

clock )

97
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3

-‘m-1:0] destO;
—‘m—-1:0] destl;

wire [°d
wire [‘d
assign {dest0, data0} = in[0:‘d-1] 0
assign {destl, datal} in[‘d:2%‘d-1] ;

always @(posedge clock)

case({dest0[0], destl[0]})
2°b00: out <= {(dest0 >> 1), data0, (destl >> 1), datal};
2°b01: out <= {(dest0 >> 1), data0, (destl >> 1), datal};
2°b10: out <= {(dest0 >> 1), datal, (destl >> 1), dataO };
2°bll: out <= {(dest0 >> 1), data0, (destl >> 1), datal};

endcase

endmodule

SYSTOLIC MATRIX-VECTOR MULTIPLIER

When a very intense computational function is requested for an Application Specific Integrated Circuit (ASIC) sys-
tolic systems represent an appropriate solution. In a systolic system data are inserted and/or extracted rhythmically
in/from a uniform modular structure. H. T. Kung and Charles E. Leiserson published the first paper describing a
systolic system in 1978 [Kung *79] (however, the first machine known to use a a systolic approach was the Colossus
Mark II in 1944). The following example of systolic system is taken from this paper.

Let us design the circuit which multiplies a band matrix with a vector as follows:

a;; app 0 0 0

x1 Y1

apr ap a3 0 0 X v
azy ax az azy 0 .- X V3
0 an a3 aw ass x|y | = V4

0o 0 . Tl X5 s
0 0 0 : :
The main operation executed for matrix-vector operations is multiply and accumulate (MACC):
Z=AxB+C

for which a specific combinational module is designed. Interleaving MACCs with memory circuits is provided a
structure able to compute and to control the flow of data in the same time. The systolic vector-matrix multiplier is
represented in Figure 6.13.

The systolic module is represented in Figure 6.13a, where a combinational multiplier (M = A x B) is serially
connected with an combinational adder (M + C). The result of MACC operation is latched in the output latch which
latches besides the result of the computation, the two input value A and B. The latch is transparent on the high level
of the clock. It is used to buffer intermediary results and to control the data propagation through the system.

The system is configured using pairs of modules to generate a master-slave structures, where one module re-
ceives ck and another ck’. The resulting structure is a non-transparent one ready to be used in a pipelined connec-
tion.

For a band matrix having the width 4, two non-transparent structures are used (see Figure 6.13c). Data is inserted
in each phase of the clock (correlate data insertion with the phase of clock represented in Figure 6.13b) as follows:

The result of the computation is generated sequentially to the output y; of the circuit from Figure 6.13c, as
follows:

y1 =ajx; +apx
Yo = az1X1 +axx2 +az3sx3
¥3 = az1xX1 +azaxy +azzxz +azaxy
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Y4 = A42X2 + A43X3 + A44X4 + A45X5
ys=...

ck
1 3 s{e]7]s]o
t
ck-——T—P{
a. b.
Ol - as3 - arp
: 8) a3 - azn -
I (@) - axn - as|
: (6) apn - az| -
! 5) - apy - 0
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) (10) A{ A{ Ai Aﬁ
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Figure 6.13: Systolic vector-matrix multiplier. a. The module. b. The clock signal with indexed half periods.
¢. How the modular structure is fed with the data in each half period of the clock signal.

6.3 Automata Circuits: Second-order Digital Systems

6.3.1 Function-oriented automata: the simple automata
RALU (Register file with ALU)

File name: defines.v
Circuit name: no circuit
Description : defines the parameters for RALU
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*************************************************************************/
‘define n 5 // addres size
‘define m 32 // data size

/*************************************************************************
File name: RALU. v

Circuit name: Register file with ALU
Description : defines RALU

s sk sk sk sk sk ok ok oK oK K K K K K sk sk sk sk sk sk sk ok ok ok oK oK oK K K K sk sk sk sk sk sk ok ok ok oK R K oK K Rk sk kR sk sk sk Sk Sk R R R R R R kR sk sk sk sk sk sk kR k %/

‘include ”defines.v”
module RALU ( output [‘m-1:0] left_out ,
output [‘m-1:0] right_out s
output carryOut ,
input load s
input [‘n—=1:0] left_addr s
input [‘n=1:0] right_addr ,
input [‘n—=1:0] dest_addr s
input write_enable ,
input [‘'m=1:0] in s
input carryln ,
input [2:0] func s
input clock )
wire [‘'m-1:0] aluOut R
wire [‘'m-1:0] muxOut ;
registerFile rf(.left_operand (left_out ),
.right_operand (right_out ),
.result (aluOut ),
.left_addr (left_addr ),
.right_addr (right_addr ),
.dest_addr (dest_addr ),
.write_enable (write_enable ),
.clock (clock ));

mux inMux (

ALU alu (. car
. fun

.out (muxOut) ,

.in0 (
.inl (
.sel(

ryln
©

.left

.rig
.car
.out

endmodule

module registerFile (output

ht
ryOut

left_out),
in),
load));

(carryln
(func
(muxOut
(right_out
(carryOut
(aluOut

[‘'m=1:0]

~ — — — — —

left_operand
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output [‘m-1:0] right_operand ,
input [‘'m-1:0] result s
input [‘n-=1:0] left_addr s
input [‘n-1:0] right_addr ,
input [‘n—=1:0] dest_addr s
input write_enable s
input clock )

reg [‘'m—-1:0] file[0:(1<<‘n)-1];

assign left_operand = file[left_addr] ,
right_operand = file[right_addr] ;

always @(posedge clock) if (write_enable) file[dest_addr] <= result;
endmodule

module mux(output [‘'m=-1:0] out ,
input [‘'m-1:0] in0 ,
input [‘'m-1:0] inl ,
input sel);
assign out = sel ? inl : in0;
endmodule
module ALU ( input carryln ,
input [2:0] func s
input [‘m-1:0] left ,
input [‘'m-1:0] right s
output reg carryOut ,
output reg [‘m-1:0] out );

always @(x)

case (func)
3°b000: {carryOut
3°b001: {carryOut

out} = left + right + carryln ;
out} = left — right — carryln 0

3°b010: {carryOut, out} = {1°b0, left & right } ;
3°b011: {carryOut, out} = {1°b0, left | right } ;
3’b100: {carryOut, out} = {1°b0, left ~ right } ;
3°bl101: {carryOut, out} = {1°b0, left } ;
3°b110: {carryOut, out} = {left[0], left >> 1 } ;
3’bl11: {carryOut, out} = {left[0], left[‘m-1], left[‘m-1:1]} 0
default:{carryOut, out} = {1°b0, left } ;
endcase
endmodule

Informational structure & information are differentiated the content of the register file.

Definition 6.1 The informational structure is a structure with a syntactic order.
o

Example 6.1 The content of the register file in a RALU is an informational structure, because it is a Boolean matrix
with each line interpreted as an operand for ALU. In the context of the system containing RALU the content of the
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register file has no any functional meaning. The system acts on the content of the register file, but the content does
not conttribute to the functionality of the system.
o

Definition 6.2 Information is an informational structure which acts according to ita meaning.
o

DSP (Digital Signal Processing module in FPGA)

The synthesis of RALU for n =5 and m = 32 provided a use of 194 LUTs. And let’s keep in mind that we only
had a small number of functions and among them there was no multiplication. If in our application are involved
hundreds of RALU the physical resources of a medium size FPGA are exhausted. Fortunately, the FPGA producers
provide specialized block implemented in ASIC technology. One of these is DSP48E1 deployed in large numbers
by Xilinx on its FPGAs. In Figure 6.14, the main resources of the DSP module are represented. For details consult
[Xilinx *18]. The code used to instantiate the DSP module is in Appendix B.

48-Bit Accumulator/Logic Unit

B \
A % P
25x 18
D Multiplier
Pre-adder

Pattern Detector

o )

Figure 6.14: Basic DSP48E1 Slice Functionality [Xilinx *18].

UG479_c1_21_032111

6.3.2 Finite automata: the complex automata

Finite automata, FA, are automata with a constant number of states whatever long is the input or output sequence of
symbols belonging to a finite set. Constant sequence means the sequence’s length is not a function of the state set
size. Therefore, “finite automata” does’t means that we differentiate them from “infinite automata”.

FA are complex automata, i.e., their description has a size depending on the state set size.

There are three main categories of FA:

¢ generator automata
* I'ECOgIliZCI' automata

¢ control automata

Generators

A FA can be used to generate sequences belonging to regular (type 3) languages.



6.3. AUTOMATA CIRCUITS: SECOND-ORDER DIGITAL SYSTEMS 103

Example 6.2 Let be the language Ly = {0"1™|n,m > 0}. The circuit which generate any sequence belonging to Ly,
specified by the pair (m,n), is defined by a Verilog module with the following connections list:

/3 % sk ok ok R sk ok ok ok Rk ok R ok KR oK R kKR K Rk KR oK Rk R R ok R R R ok R R R Rk R R K Rk KRk Rk R Rk KR R Rk KRk Rk R Rk %
FA’s output set is:
2’b00: interpreted as 0
2°b01: interpreted as 1
2’blx: interpreted as e, the empty symbol
Values m and n are limited to 1023.
sk ok ok ok R R ok R K R ok KR K Rk K R K R R K R ok KR K R kKR K Rk K R oK Rk ok ok R ok kKR ok kR R ok Rk R Rk R Rk ok R Rk sk /
module genFA ( output [1:0] out s
input [9:0] mSize, nSize,
input reset , clock);
// here comes the description
endmodule

The actual structure consists of two presetable down counters serially connected with a FA (the overall system
remains in the 2-OS category).
o

Recognizers

A FA can be used to recognize sequences belonging to regular (type 3) languages.

Example 6.3 Let be the language Ly = {a"bc™|n,m > 0}. The circuit which generate any sequence belonging to L
is defined by a Verilog module with the following connections list:

/*************************************************************************
FA’s input set is:
2’b00: interpreted as a
2’b01: interpreted as b
2°'bl0: interpreted as
2’bll: interpreted as e, the empty symbol
FA’s output set is:
2°b00: interpreted as idle
2’b01: interpreted as running
2°bl0: interpreted as the string belongs to L2
2°'bll: interpreted as the string does no belongs to L2
module genFA ( output [1:0] out s
input [1:0] in s
input reset , clock);
// here comes the description
endmodule

No matter how long the input sequence (even “infinite”) it is, it is recognized with this automaton with a finite
number of states.
o
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Control automata

We must make the distinction between command automata and control automata. The last are used to introduce a
new loop in a system: the control loop which generate commands according to the evolutionn in the commanded
sub-system.

Definition 6.3 Control Automaton, CA, is an initial FA defined by:
CA = (S7X7Y7S0’f7g7 SO)

where:

e S: the state set

X ={F,So}: the input set structured as a Cartesian product of

- F={fo,f1,...,fp—1): the set of p-component Boolean vectors
— So: the set of initial states

Y: the set of outputs

f:SxX — S: the state transition function which, in each state, takes into account only one component of
the vector F
* g:SxX = Y: the output transition function which, in each state, takes into account only one component of
the vector F
* 5o € So- the initial state.
The reset signal leads the automaton in the state so. The automaton generates sequences of commands which evolve

in the context offered by the flags represented in the Boolean vector F.
o

Example 6.4 Working with a CA we will make the following remark: the most part of the sequence generated is
organized in a linear sequence. Therefore, the commands associated to the linear sequences can be stored in ROM
at the successive addresses, i.e., the next address for a Read-Only Memory, ROM, can be obtained incrementing the
current address stored in the register R.

Results the structure represented in Figure 6.15. What is specific for this structure is an increment circuit
connected to the output of the state register and a small combinational circuit that trans-codes the bits S and Sp.
There are the following transition modes coded by M, My:

* inc, codded by S;Sp = 11: the next address for ROM results by incrementing the current value of R, i.e.,
the address to the ROM’s input

* jmp, codded by S1,Sp = 10: the next address for ROM is given by the content of the field jmp from the output
of ROM

* cjmp, codded by S,Sy = 17’: if the value of the selected flag, T (the output of MUXT), is 1, then the next
address for ROM is given by the content of the one field jmp from the output of ROM, else the next address
for ROM results by incrementing the current address

* next0Op, codded by S1,Sy = 01: the next address for ROM is selected by nMU X, from the initialization input
op

* reset, codded by S1,Sy = 00: the next address for ROM is selected by nMU X, from the init input

The only complex circuit in the CROM is the trans-coder TC. The overall complexity of the system is given by the

content of ROM.
The output of ROM can be seen as a microinstruction defined as follows:

<microinstruction>::= <setLabel> <Command> <Mod> <Test> <useLabel>;
<comm>::= <to be defined when use>;

<mod>::= jmp | cjmp | init | inc ;

<test>::= <to be defined when use>;

<setLabel>::= setLabel (<number>);

<uselLabel>: := useLabel (<number>) ;

<number>::= 0 | 1 | ... | 9 | <number><number>;
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- INC
jmp[n-1:0]
3 [«
2 |«
CLC(ROM) addr[n-1:0] j R, [« nMUX, op[n-1:0]
1
init[n-1:0]
0
com[m-1:0] test[t-1:0] mode[1:0] S So
out[m-1:0]
v clock

in[0]
in[2/-1:0] F: in(1] Y

MUXT T TC

|—> in[2/ —1] T

reset

Figure 6.15: The simplest Controller with ROM (CROM). The Moore form of control automaton is opti-
mized using an incremented circuit (INC) to compute the most frequent next address for ROM.

Let us call CROM this version of CA (Controller with ROM).
o

6.4 Processing Circuits: Third-order Digital Systems
6.4.1 Counter extended automata (CEA)

Let us try to solve the problem of recognizing the sequence of symbols of form 0"1” for n > 0 using a finite
automaton. It is possible, but we must design for each n an automaton with a number of states in O(n). A simpler,
efficient solution is to use a counter extended automaton, CEA.

Definition 6.4 A CEA is made of a small & complex finite initial automaton, FA, and an up/down counter, UDC,
which is a big & simple automaton. FA issues in each clock cycle a command belonging to the set {reset, nop,
up, down} fo UDC, and receives back the predicate zero which is 0 if the value of counter is different form zero,
and is 1 if the counter is zero (see Figure 6.16). Formally:

ceaReset X {zero}
i

FA UDC

G

{reset, nop, up, down}

Figure 6.16: Counter Extended Automaton (CEA): a Finite Automaton (FA) loop coupled with an Up-
Down Counter (UDC).

CEA = (X’Y7S7f7SO)
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FA = (X x {zero}), (Y,{reset,nop,up,down}),0,g,00)
UDC = ({reset,nop,up,down},{zero},N,h,Ny)
where:
X is the input set of CEA
Y is the output set of CEA
S =(Q X N) is the set of states of CEA
So ={Qo0,No} is the initial state of CEA
Q is the set of state of FA
Qo € Q is the initial state of FA
N is the set of states of UDC
No =0 is the initial state of UDC
h: (N x {reset,nop,up,down}) — (N x {zero}) is the transition of UDC
g: (O x{X x{zero}) — (Q x Y x {reset,nop,up,down}) is the transition of FA
f is the state transition of of CEA

<&

Example 6.5 The system used to recognize the language L = {0"1"|n > 0} is a CEA whose inital FA is described
by the following pseudo-code:

/******************************>|<******************************************
FA’s list of states:

init: inital state

recZero: state receiving zeroes

recOne : state receiving ones

finalNo: final state when the sequence does not belongs to L

finalYes: final state when the sequence belongs to L
State register: state

Input set: {in, {zero}} = {{e,0,1}, {zero}}

if (ceaReset) {state , com} <= {init, reset} ;
else case(state)
init: case (in)

e: {state, com} <= {state, nop} ;

0: {state, com} <= {recZero, up} ;
1: {state, com} <= {finalNo, nop} ;
endcase
recZero : case(in)

e: {state, com} <= {finalNo, nop} ;

0: {state, com} <= {state, up} ;
1: {state, com} <= {recOne, down} ;
endcase
recOne : case (in)

e: {state, com} <= zero ?
{finalYes , nop}
{finalNo , nop} ;

0: {state, com} <= {finalNo, nop} ;
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1: {state, com} <= {state , down} ;
endcase
finalNo : {state , com} <= {state , nop} ;
finalYes: {state , com} <= {state , nop} ;
endcase

6.4.2 Push-down automata

The first example of loop coupled automata uses a finite automaton and a functional automaton: the stack (LIFO
memory). A finite complex structure is interconnected with an “infinite” but simple structure. The simple and the
complex are thus perfectly segregated. This approach has the role of minimizing the size of the random part. More,
this loop affects the magnitude order of the randomness, instead of the previous examples (Arithmetic & Logic
Automaton) in which the size of randomness is reduced only by a constant. The proposed structure is a well known
system having many theoretical and practical applications: the push-down automaton.

i

FA

DIN

LIFO

Y {PUSH, POP, —}

Figure 6.17: The push-down automaton (PDA). A finite (random) automaton loop-coupled with an “infinite”
stack (a simple automaton) is an enhanced toll for dealing with formal languages.

Definition 6.5 The push-down automaton, PDA, (see Figure 6.17) built by a finite automaton loop connected with
a push-down stack (LIFO), is defined by the six-tuple:

PDA = (X XX/,Y xY' XX,Q,f,g,Zo)

where:

X . is the finite alphabet of the machine; the input string is in X*

X’ : is the finite alphabet of the stack, X' = X' U{z¢}

Y : is the finite output set of the machine

Y’ : is the set of commands issued by the finite automaton toward LIFO, {PUSH ,POP,—}

Q : is the finite set of the automaton states (i.e., |Q| # h(max l(s)), where s € X* is received on the input of the
machine)

f : is the state transition function of the machine
FiXxX'xQ0—=0xXxY

(i.e., depending on the received symbol, by the value of the top of stack (TOS) and by the automaton’s state,
the automaton switches in a new state, a new value can be sent to the stack and the stack receives a new
command (PUSH, POP or NOP))

g : is the output transition function of the automaton - g: Q — Y
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Figure 6.18: Defining the behavior of a PDA. The algorithm detecting the antisymmetrical sequences of
symbols.

Zo - is the initial value of TOS. ¢

Example 6.6 The problem to be solved is designing a machine that recognizes strings having the form $x&y$,
where $,& € X and x,y € X*, X being a finite alphabet and y is the antisymmetric version of x.

The solution is to use a PDA with f and g described by the flow-chart given in Figure 6.18. Results a five state,
initial (in qo) automaton, each state having the following meaning and role:

qo - Is the initial state in which the machine is waiting for the first $

g1 - in this state the received symbols are pushed into the stack, excepting & that switches the automaton in the next
state

gy : in this state, each received symbol is compared with TOS, that is poped on, while the received symbol is
not $; when the input is $ and TOS = zq the automaton switches in g3, else, if the received symbols do not
correspond with the successive value of the TOS or the final value of TOS differs from zy, the automaton
switches in q4

g3 : if the automaton is in this state the received string was recognized as a well formed string

q4 - if the automaton is in this state the received string was wrong.

The reader can try to solve the problem using only an automaton. For a given X set, especially for a small set,
the solution is possible and small, but the LOOP PLA of the resulting automaton will be a circuit with the size and
the form depending by the dimension and by the content of the set X. If only one symbol is added or at least is
changed, then the entire design process must be restarted from scratch. The automaton imposes a solution in which
the simple, recursive part of the solution is mixed up with the random part, thus all the system has a very large
apparent complexity. The automaton must store in the state space what PDA stores in stack. You imagine how huge
become the state set in a such crazy solution. Both, the size and the complexity of the solution become unacceptable.
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The solution with PDA, just presented, does not depend by the content and by the dimension of the set X. In
this solution the simple is well segregated from the complex. The simple part is the “infinite” stack and the complex
part is a small, five-state finite automaton.

6.4.3 Processor

Processor & information: generic definition

Definition 6.6 The generic structure of a processor is defined by the pair RALU + CROM loop connected. CROM
issues in each clock cycle a command for RALU and computes its next state according to its inputs: the flags
generated selected from F or the operation received on op. The generic functionality of the processor is defined by
the Instruction Set Architecture, ISA, specified by the set So of the initial states of CROM. Each element of ISA is
associated with a sequence of states generated by CROM.

o

There are two informational structure associated to the processor:

* the content of the register file (which is a RAM): the data on which the operations controlled by CROM are
applied

« the content of ROM: a set of sequence of micro-instructions defining ISA

Both are arrays of bits. The main difference between these to arrays is given by the fact that the content of ROM
defines the action on the content of RAM. ROM’s content is active, while RAM’s content is passive. At the level
of processor only the ROM’s content has a well defined meaning, while the content of RAM has no meaning for
the processor’s functionality. Therefore, we will consider RAM’s content as data, while the ROM’s content will be
considered as information.

Elementary processor

Definition 6.7 The elementary processor, EP, is a processor with So = {s¢}.
o

EP is a functional structure controlled by a strict initial automaton (see Example 4.5).
CISC vs. RISC
The way the CROM, as control unit, in a processor is implemented classifies the processors in two main categories.

Definition 6.8 A Complex Instruction Set Computer, CISC, processor associates for at least one element in ISA a
sequence of state in CROM, while a Reduced Instruction Set Computer processor associates for each element in ISA
only one state in CROM, i.e., a CISC processor interprets ISA, while a RISC processor executes ISA.

o

Accumulator-based processor
The way RALU is implemented, as the execution unit of a processor, allows us to design few versions of processors.

Definition 6.9 An accumulator-based processor is equipped with an execution unit which use a special register,
named accumulator, as the left operand and destination for arithmetic and logic operations.
o

A RISC version of an accumulator-based processor is considered in the following example.

Example 6.7 ISA of an accumulator-based processor is defined in the folder 0_definitions.v.



110 CHAPTER 6. DIGITAL SYSTEM HIERARCHY
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abRISC
dataMem
addr[9:0]
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Figure 6.19: System.
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File name: 0_definitions.v

reg
reg
reg
reg
reg
reg
reg
reg
reg
reg
reg

reg
reg
reg
reg
reg

Accumulator—Based Processor’s Instruction Set Architecture

[15:0] instr
[31:0] acc
[7:0] addr
[31:0] rf[0:255
[15:0] pc
[15:0] maddr
[31:0] min
[31:0] mout
[31:0] in
[31:0] out

int

inta

readCom

writeCom

sendCom

getCom

] [

//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//

REGISTERS

instruction register
accumultaor

address register in register file
register file

program counter

memory address register
data in register

data out register

input register

output register
interrupt input

OUTPUTS

interrupt acknowledge

read command to memory

write commmand to memory

read command to input—output
write commmand to input—output
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reg
reg
reg

int

ioReady
memready

>
>

’

//
//
//
//

INPUTS

interrupt input

input data is valid
memory output is valid

instr[15:0] = {operandSel[2:0], operation[4:0], value[7:0]}

s 3k sk ok ok ok ok ok oK oK oK K oK ok ok sk sk sk sk ok ok ok ok ok ok ok ok o o ok ok ok sk sk sk sk sk sk sk R R R R kR R kR kR sk sk sk sk kR R R Rk Rk ok kR kok sk k sk ok k %/

‘define
‘define
‘define
‘define

‘define
‘define

// ‘define

imm
dir
rel
ire

mem
ext

// ‘define ctl

‘define
‘define
‘define
‘define
‘define
‘define

‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define

‘define
‘define
‘define
‘define
‘define
‘define
‘define
‘define

jmp
ajmp
brz
brnz
ie
de

add
addc
sub
rsub
subc
rsubc
mult
shiftc
shift
ashift
bwand
bwor
bwxor

load
store
iosend
ioget
write
read
addr
insert

sck

3°b000
3°b001
3°b010
3°b011

3°b100
3°b101

//
//
//
//
//
//
//
//

3°b110
3°blll

5°b11000
5°b11001
5°b11010
5°b11011
5°b11100
5°b11101

5°b00000
5°b00001
5°b00010
5°b00011
5°b00100
5°b00101
5°b00110
5°b00111
5°b01000
5°b01001
5°b01010
5°b01011
5°b01100

5°b10000
5°b10001
5°b10010
5°b10011
5°b10100
5°b10101
5°b10110
5°b10111

//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//

SECOND OPERAND SELECTION
op {{24{val[7]}}, val}
op = rf[{2°b0, val}]
op = rf[addr + {{2{val[7]}}, val}]
op = rf[addr + {{2{val[7]}}, val}]
addr <= {{2{val[7]}}, val}
op = min
op = in
// op = utos in stack mode
// no right operand operation

CONTROL INSTRUTIONS

relative jump: pc <= pc + val
absolute jump: pc <= acc

pc <= acc == 0 ? pc + val : pc + 1
pc <= acc != 0 ? pc + val : pc + 1
interrupt desable

interrupt enable

ARITHMETIC & LOGIC INSTRUCTIONS
{cr, acc} <= acc + op

{cr, acc} <= acc + op + cr

{cr, acc} <= acc - op

{cr, acc} <= op - acc

{cr, acc} <= acc — op -cr

{cer, acc} <= op - acc - cr

{cr, acc} <= {1°b0, acc[15:0] * op[I15:0]}

{cr, acc} <= {acc[0], cr, acc[31:1]}

{cr, acc} <= {acc[0], 1'b0, acc[31:1]}
{cr, acc} <= {acc[0], acc[31], acc[31:1]}
acc <= acc & op

acc <= acc | op

acc <= acc "~ op

DATA MOVE INSTRUCTIONS
acc <= op

op <= acc, when apply
out <= acc

acc <= in

maddr <= acc; mout <= op
maddr <= acc

addr <= val

acc <= {acc << 8, val}
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first
instr —— pipeline register
| instrl pcl r/
pC
_second
) pipeline register
Y Y
[ insw2 pe2 rfAddr2 r/
¥
f we
. third |
pipeline register
Y Y + A
[ insus pc3 rfout3 rfAddr3 r/
in
dataln 1
+ Y ; +V YY
|zem| |mux| | mux |
Loy S
< dec4 > ALU
. ]fourth'
pipeline register
Y A A =
| accd dataOutd  rfAddrd r/
mWr <—1 I—
iowr
iord -

Figure 6.20: The four pipeline stages of asRISC processor.

/*************************************************************************
File name: abRISC.v
Circuit name:
Description :
‘include ”0_definitions.v”

module abRISC( input reset R
input clock s
input [9:0] pAddr s
input [15:0] pln s
input pWr s
input [31:0] in N

output iord ,
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output [31:0]

output
wire [15:0] instrl ;
wire [9:0] pcl ;
wire [15:0] instr2 ;
wire [9:0] pc2 ;
wire [7:0] rfAddr2 ;
wire [15:0] instr3 ;
wire [9:0] pc3 ;
wire [7:0] rfAddr3 ;
wire [31:0] rfOut3 ;
wire jmp4 ;
wire [31:0] acc4 ;
wire wed ;
wire mWr4 o
wire [7:0] rfAddr4 ;
wire [31:0] dataOut4;
wire [31:0] dataln5 ;
firstStage first( pAddr
pln
pWr
jmp4
acc4d
instrl
pcl
reset
clock
secondStage second( instrl
pcl
instr2
pc2
rfAddr2
reset
clock
thirdStage third( instr2

pc2
rfAddr2
acc4
wed
rfAddr4
instr3
pc3
rfAddr3
rfOut3
reset

out
iowr

)

s

113
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fourthStage fourth (

clock )

in s
instr3 s
pc3 ,
rfAddr3 ,
rfOut3
dataln5 ,

jmp4 ;
acc4 s
wed s
mWr4 s
rfAddr4 ,
dataOut4 ,

iord s
iowr s
reset ,

clock )

CHAPTER 6. DIGITAL SYSTEM HIERARCHY

lastStage last ( acc4d s
dataOut4 ,
mWr4 s
dataln5
out s
clock )
endmodule
abRISC
9; addr[9:0]
third fourth
CEE B
clock accd31:0] | clock acc4(31:0]
dataln[31 D]__ second clock | in[31:0] _ dataOut4[31:0] dataOut[31:0]
instr2(15:0] instr3[15:0] instr3[15:0] iord iord
(Iuck77 o instr2[15:0] pc2[9:0] L pc3[9:0] pc3[9:0] L | iowr 77iowr
instr1[15:0] _| pe2(90] reset | rfAddr3(7:0] reset | | imp4
pc1[9:0] rfAddr2(7:0] rfAddr2[7:0] rfOut3[31:0] rfAddr3(7:0] mWrd mwr
reset | rfAddr4(7:0] rfOut3[31:0] rfAddra[7:0] out[31:0]
secondstage wed | et
thirdStage fourthStage
in31:0]
instr(15:0] |
reset |
pc(9:0)
first
@
acc4[31:0]
clock instr1[15:0]
instr{15:0] L il pc1[9:0]
jmpa |
reset |
firstStage
abRISC

Figure 6.21: Accumulator-based RISC.
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File name: firstStage.v

Circuit name:

Description :

sk sk sk sk sk sk sk sk sk skosk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk skosk skok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok SRk sk ok */

module firstStage( input [9:0] pAddr s
input [15:0] pln ,
input pWr s
input jmp4 ;
input [31:0] acc4 s

output reg [15:0] instrl s
output reg [9:0] pcl s
input reset s
input clock );

reg [15:0] pMem[0:1023] R

always @(posedge clock)

if (reset) begin instrl <=0 ;
pcl <=0 ;
if (pWr) pMem[pAddr] <= pln ;
end
else begin instrl <= pMem| pcl ] ;
pcl <= jmp4 ? acc4[9:0] : pcl + 1 ;
end

endmodule

File name: secondStage.v
Circuit name:
Description :

‘include "0_definitions.v”

module secondStage( input [15:0] instrl s
input [9:0] pcl s
output reg [15:0] instr2 s
output reg [9:0] pc2 ,
output reg [7:0] rfAddr2 ,
input reset ;
input clock )

reg [7:0] addr ;

always @(posedge clock)
if (reset) begin instr2 <=0 ;
pc2 <= 2
rfAddr2 <= 0 ;

S

end
else begin instr2 <= instrl ;
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pc2 <= pcl ;

case(instrl [15:13])
‘dir: rfAddr2 <= instrl [7:0] ;
‘rel: rfAddr2 <= addr + instrl [7:0] ;
‘ire: rfAddr2 <= addr + instrl [7:0] ;

default : rfAddr2 <= rfAddr2 ;

endcase
addr <= (instrl[15:13] == ‘ire) ?
addr + instrl [7:0]
((instrl1 [12:8] == ‘addr)) ?

instrl [7:0] : addr ;
end

endmodule

File name: thirdStage.v

Circuit name:

Description :

sk sk sk sk sk sk sk sk sk skosk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk skosk sk sk sk skosk sk sk sk sk sk skok sk sk sk sk ok sk sk sk sk sk SRk sk ok */

‘include 7”0 _definitions .v”

module thirdStage( input [15:0] instr2 ,
input [9:0] pc2 R
input [7:0] rfAddr2 ,
input [31:0] acc4 ,
input wed ,
input [7:0] rfAddr4 ,

output reg [15:0] instr3 s
output reg [9:0] pc3 ,
output reg [7:0] rfAddr3 ,
output reg [31:0] rfOut3 s
input reset s
input clock )

reg [31:0] rf[0:255] ;

always @(posedge clock)

if (reset) begin instr3 <=0 R
pc3 <=0 ;
rfAddr3 <=0 ;
rfOut3 <=0 ;

end
else begin instr3 <= instr2 ;
pc3 <= pc2 ;
rfAddr3 <= rfAddr2 ;
rfOut3 <= rf[rfAddr2] ;

if (wed4) rf[rfAddrd] <= acc4;
end
endmodule
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File name: fourthStage.v
Circuit name:
Description :

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk */
‘include ”0_definitions.v”

module fourthStage( input
input
input
input
input
input
output
output
output
output
output
output
output
output
input
input

reg cr

reg [31:0] op ;

reg
reg
reg
reg
reg
reg
reg
reg

always @(x) case(instr3[15:

op =

‘imm: op
‘dir: op
‘rel:
‘ire: op
‘mem: op
‘ext: op
default: op
endcase

always @(posedge clock

)

[31:0] in
[15:0] instr3
[9:0] pc3

[7:0] rfAddr3
[31:0] rfOut3
[31:0] dataln
jmp4
[31:0] acc4
wed
mWr4
[7:0] rfAddr4
[31:0] dataOut4
iord
iowr
reset
clock

13])
{{24{instr3[7]}}.
rfOut3

rfOut3

rfOut3

dataln

in

= 32°b0

instr3[7:0]}

if (reset) begin rfAddr4 <= 0;
acc4 <= 0;
jmp4 <= 0;
wed <= 0;
mWr4 <= 0;
cr <= 0;
end
else begin
rfAddr4 <= rfAddr3 ;
dataOut4 <= op ;
case(instr3[12:8])
‘add : {cr, acc4} <= {acc4 + op}
‘addc : {cr, acc4} <= {acc4 + op + cr}

‘sub : {er, acc4} <= {acc4 - op}
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‘rsub : {er, accd4} <= {op - accd} ;
‘subc : {er, acc4} <= {acc4 - op - cr} ;
‘rsubc  : {cr, acc4} <= {op - acc4 - cr} ;
‘mult : {er, accd4} <= {cr, acc4[15:0] = op[15:0]} ;

‘shiftc : {cr, acc4} <= {acc4[0], cr, acc4[31:1]} ;
‘shift : {cr, accd} <= {acc4[0], 1°b0, acc4[31:1]} :
‘ashift : {cr, acc4} <= {acc4[0], acc4[31], acc4[31:1]} ;
‘bwand : {cr, acc4} <= {cr, acc4 & op} ;

‘bwor : {cr, acc4} <= {cr, accd | op} ;
‘bwxor : {cr, acc4} <= {cr, acc4d " op} ;
‘load : {er, accd4} <= {cr, op} ;
‘read : {cr, acc4} <= {cr, op} ;
‘ioget : {cr, acc4} <= {cr, op} ;
‘insert : {cr, acc4} <= {cr, acc4[23:0], op[7:0]} ;
‘jmp : {cr, acc4} <= {cr, (pc3 + op)} ;
‘ajmp : {cr, acc4} <= {cr, acc4} ;
‘brz : {er, accd4} <= {cr, ((accd == 0) ?
pc3 + op : pc3 + 1)} ;
‘brnz : {er, accd4} <= {cr, ((accd == 0) ?
pc3 + 1 : pc3 + op)} ;
default : {cr, acc4} <= {cr, acc4} ;
endcase

case(instr3[12:8])
‘jmp : jmp4 <= 1°bl ;
‘ajmp: jmp4 <= 1’bl ;
‘brz : jmp4 <= (acc4 == 0) ? 1°bl : 1’°b0;
‘brnz: jmp4 <= (acc4 == 0) ? 1°b0 : 1’bl
default : jmp4 <= 1°b0 ;

endcase

wed <= (instr3[12:8] == ‘store) ? 1°bl : 1°b0 R
iord <= (instr3[12:8] == ‘ioget) ? 1’bl : 1’°b0 R
iowr <= (instr3[12:8] == ‘iosend) ? 1°bl : 1°b0 ;
mWr4 <= (instr3[12:8] == ‘write) ? 1°bl : 1°b0 R
end

endmodule

File name: lastStage.v
Circuit name:
Description :

‘include ”0_definitions.v”

module lastStage ( input [31:0] acc4 s
input [31:0] dataOut4 ,
input mWr4 s

output reg [31:0] dataln5 |,
output reg [31:0] out s
input clock )

reg [31:0] dMem[0:1023] ;
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always @(posedge clock)

begin dataln5 <= dMem[acc4[9:0]] ;
out <= acc4 ;
if (mWr4) dMem[acc4 [9:0]] <= dataOut4 ;
end
endmodule

The simulation environment for abRISC consists of the module 1_simulator which contains a code gen-
erator 2_codeGenerator

File name: simulator.v
Circuit name:
Description :

‘include ”0_definitions.v”

module simulator;

reg reset 5
reg clock ;
reg [9:0] pAddr ;
reg [15:0] pln ;
reg pWr ;
reg [31:0] in ;
wire iord ;
wire [31:0] out ;
wire iowr ;
initial begin clock = 0 ;

forever #1 clock “clock

end

riscSystem riscSystem( reset ,
clock s
pAddr ,
pln ,
pWr ;
in s
iord ,
out ,
iowr )

// BINARY CODE GENERATOR
‘include ”2_codeGenerator.v”

integer i;
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//SIMULATION
initial begin

// *

end

reset =
pAddr
pln

pWr ;
in =0 ;

1l
S O O~

for (i=0; i<16; i=i+l1)
$display ("memory[%0d] .\t _=%b”, i, riscSystem .progMem.pMem[i]);

#4 reset = 0
#100 $finish ;
end

)
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// MONITOR FOR PROGRAM IAOD & CONTROLLER
initial begin
$monitor
(7 t=%0d _pc=%d._instr=%b._acc=%d._pc3=%d_op=%d._rf=[%0d, -%0d, -%0d, -%0d ,

e %0d , J%0d , _%0d , _%0d ],

$time ,

riscSystem . pc,
riscSystem . instr ,
riscSystem . addr ,

riscSystem .abRISC.
riscSystem .abRISC.
riscSystem .abRISC.
riscSystem .abRISC.
riscSystem . abRISC.
riscSystem .abRISC.
riscSystem .abRISC.
riscSystem . abRISC.
riscSystem .abRISC.
riscSystem .abRISC.

endmodule

pe3,

fourth .op,

third .
third .
third .
third .
third .
third .

third

rf [0],
rf [1],
rf[2],
rf [3],
rf [4],
rf [5],

.rf [6],
third .

rf [71);

/3 sk ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk ok ok ok sk ok ok ok ok

File name:

Circuit

name :

Description :

‘include

// CODE GENERATOR

reg
reg
reg
reg
reg

[4:0] opCode
[2:0] operand
[7:0] value

2 _codeGenerator.v

”0_definitions .v”

[9:0] addrCounter
[9:0] labelTab [0:1023];

task endLine;

s
s
s

s
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begin
riscSystem . progMem .pMem[ addrCounter] =
{operand , opCode, value} 0
addrCounter = addrCounter + 1 ;
end
endtask

)

// in first pass associates ’counter’ with ’labellndex ’ in labelTab
task LB ;

input [7:0] labellndex;

labelTab [labellndex] = addrCounter;
endtask
// uses the content of labelTab in the second pass
task cULB;

input [7:0] labellndex;

value = labelTab[labellndex] — addrCounter — 2’bl0;

endtask
task NOP;
begin opCode = ‘add ;
operand = ‘imm
value = 8’b0 ;
endLine ;
end
endtask
‘include ”3_cgCONTROL.v” // control instructions
‘include ”3_cgADD.v” // addition
// ‘include “cgADDC.v” // addition with carry
// ‘include "cgSUB.v” // subtract
// ‘include "cgSUBC.v” // subtract with carry
// ‘include "cgRVSUB.v” // reverse subtract
// ‘include “cgRVSUBC.v” // reverse subtract with carry
// ‘include "cgMULT.v” // multiplication
// ‘include “cgSHIFT.v” // shift
// ‘include "cgLOAD.v” // load accumulator
// ‘include "cgSTORE.v” // store accumulator
// ‘include “cgAND.v” // bit-wise AND
// ‘include "cgOR.v” // bit—-wise OR
// ‘include "cgXOR.v” // bit—-wise XOR
// RUNNING
initial begin addrCounter = 0;

‘include ”00_program.v” // first pass

addrCounter = 0;

‘include ”00_program.v” // second pass
end
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File name:

Circuit name:
Description :
ok sk ok ok sk ok ok ok ok ok sk o ok ok o ok ok ok sk sk o ok ok ok ok sk o ok ok o ok ok sk o ok sk o ok ok ok ok ook ok kR ok ok o ok ok Rk ok sk R ok ok kR ok sk Rk ok %/

/%

%/

‘include ”0_

imm = 3’b000
dir = 3°b001
rel = 3°b010
ire = 3’b011

mem = 3’°b100
ext = 3’bl101

3_cgADD . v

definitions .v”
immediate value: op = {{24{scalar[7]}}, value}
absolute: op = mem[value]
relative: op = mem[addr + value]
relative & inc: op = mem[addr + value]
addr <= addr + value
op = dataln
op = in

task VADD; // value add: acc <= acc + op

input [7

begin

end
endtask

task ADD; //
input [7

begin

end
endtask

:0] scalar;
opCode = ‘add ;
operand = ‘imm
value = scalar;
endLine ;
absolute add: acc[i] <= acc[i] + op
:0] scalar;
opCode = ‘add ;
operand = ‘dir ;
value = scalar;
endLine ;

task RADD; // relative add: acc[i] <= acc[i] + op

input [7

begin

end
endtask

task RIADD;
input [7

begin

:0] scalar;

opCode = ‘add ;

operand = ‘rel

value = scalar;

endLine R

// relative add: acc[i] <= acc[i] + op

// and increment: addr <= addr + value
:0] scalar;

opCode ‘add
operand = ‘ire ;
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value =
endLine
end
endtask

task MADD; // memory

begin opCode

operand =
value =
endLine
end
endtask

scalar ;

s

add: acc[i] <= acc[i] + dataln

task EADD; // input add: acc[i] <= acc[i] + in

begin opCode

operand =
value =
endLine
end
endtask

‘add
‘ext
8’b0

File name: 3_cgCONTROL.v
Circuit name:
Description :

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk ok skosk sk skosk sk skosk sk sk skoskosko skosk >l</
‘include ”0_definitions.v”

task JMP;
input [7:0] label

begin opCode =

)

jmp

‘imm

cULB(label) ;

operand =
endLine
end
endtask
task AJMP;
begin opCode =
operand =
endLine
end
endtask
task BRZ;

input [7:0] label

‘ajmp
imm
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begin opCode = ‘brz ;
operand = ‘imm ;
cULB(label) R
endLine ;
end
endtask
task BRNZ;

input [7:0] label ;

begin opCode = ‘brnz ;
operand = ‘imm
cULB(label) ;
endLine ;
end
endtask

6.5 Computing Circuits: Fourth-order Digital Systems

6.5.1 von Neumann abstract machine

In 1945 John von Neumann wrote First Draft on a report on the EDVAC [Neumann ’45] in the form of
letters to Herman Goldstine, which he assembled into a text and put von Neuman’s name on the front
page. Prior to this, Goldstine introduced von Neuman to J. Presper Eckert and John Mauchly, forming
the EDVAC design group. The report, which was distributed by Goldstine to 24 children, is the result of
the collaboration of this small group, because before the ENIAC computer was operational, Eckert and
Mauchly where already designing EDVAC (Electronic Discrete Variable Automatic Computer).

According to the currently used meaning for the term computer architecture, instead of von Neumann
architecture is more correct to say von Neumann abstract model of computer. The von Neumann abstract
model defines the structure of a computing machine as being formed from:

1. central unit (processor)

2. memory

3. the bidirectional communication channel that connects the central unit to the memory
The closed loop through the channel gives the system order 4 (see Figure 6.1).

In 1978, John Backus called this channel ”von Neuman Bottleneck™.

6.5.2 The stack processor — a processor as 4-OS

Another version of RALU, to be considered as an efficient solution for a processor in some application
domains, is the stack processor.

Definition 6.10 A stack processor is a processor with a RALU designed with a stack memory instead of
the register file. The operands in each cycle are the first two recordings in the top of stack with the result
in top of stack.

o
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The best way to explain how to use the concept of architecture to design an executive processor is to
use an example having an appropriate complexity. One of the simplest model of computing machine is
the stack machine. A stack machine finds always its operands in the first two stages of a stack (LIFO)
memory. The last two pushed data are the operands involved in the current operation. The computation
must be managed to have accessible the current operand(s) in the data stack. The stack used in a stack
processor have some additional features allowing an efficient data management. For example: double
pop, swap, ....

The high level description of a stack processor follows. The purpose of this description is to offer an
example of how starts the design of a processor. Once the functionality of the machine is established at
the higher level of the architecture, there are many ways to implement it.

The organization

Our Stack Processor is a sort of simple processing element characterized by using a stack memory
(LIFO) for storing the internal variables. The top level internal organization of a version of Stack Pro-
cessor (see Figure 6.22) contains the following blocks:

* STACK & ALU — SALU - is the unit performing the elementary computations; it contains:

— a two-output stack; the top of stack (stackO or tos) and the previous recording (stackl)
are accessible

— an ALU with the operands from the top of stack (left_op = stackO and right_io =
stackl)

— a selector for the input of stack grabbing data from: (0) the output of ALU, (1) external data
memory, (2) the value provided by the instruction, or (3) the value of pc +1 to be used as
return address

* PROGRAM FETCH - a unit used to generate in each clock cycle a new address for fetching from
the external program memory the next instruction to be executed

* DECODER - is a combinational circuit used to trans-code the operation code — op_code — into
commands executed by each internal block or sub-block.

Figure 6.23 represents the Verilog top module for our Stack Processor (stack_processor).

The two loop connected automata are SALU and PROGRAM FETCH. Both are simple, recursive
defined structures. The complexity of the Stack Processor is given by the DECODE unit: a combinational
circuit used to trans-code op_code providing 5 small command words to specify how behaves each
component of the system. The Verilog decode module uses test_in = tos and mem_ready to make
decisions. The value of tos can be tested (if it is zero or not, for example) to decide a conditional jump
in program (on this way only PROGRAM FETCH module is affected). The mem_ready input received
from data memory allows the processor to adapt itself to external memories having different access time.

The external data and program memories are both synchronous: the content addressed in the current
clock cycle is received back in the next clock cycle. Therefore, instruction received in each clock
cycle corresponds to instr_addr generated in the previous cycle. Thus, the fetch mechanism fits perfect
with the behavior of the synchronous memory. For data memory mem_ready flag is used to “inform” the
decode module to delay one clock cycle the use of the data received from the external data memory.

In each clock cycle ALU unit from SALU receives on its data inputs the two outputs of the stack,
and generates the result of the operation selected by the alu_com code. If MUX4 has the input O selected
by the data_sel code, then the result is applied to the input of stack. The result is written back in
tos if a unary operation (increment, for example) is performed (write the result of increment in tos
is equivalent with the sequence pop, increment & push). If a binary operation (addition, for example)
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Figure 6.22: An executing Stack Processor. Elementary functions are performed by ALU on variables stored
in a stack (LIFO) memory. The decoder supports the one-cycle execution of the instructions fetched from the external
memory.

is performed, then the first operand is popped from stack and the result is written back over the the new
tos (double pop & push involved in a binary operation is equivalent with pop & write).

MUX4 selects for the stack input, according to the command data_sel, besides the output of ALU,
data received back from the external data memory, the value carried by the currently executed instruction,
or the value pc+1 (to be used as return address).

The unit PC generates in each clock cycle the address for program memory. It uses mainly the
value from the register PC, which contains the last used address, to fetch an instruction. The content of
tos or the value contained in the current instruction are also used to compute different conditioned or
unconditioned jumps.

To keep this example simple, the program memory is a synchronous one and it contains anytime the
addressed instruction (no misses in this memory).

Because our Stack Processor is designed to be an executing machine, besides the block associated
with the elementary functions (SALU) and the block used to compose & and loop them (PC) there is only
a decoder used as execution unit (see Figure ??. The decoder module — decode — is the most complex
module of Stack Processor (see Figure 6.24). It contains three sections:

* micro-architecture: it describes the micro-operations performed by each top level block list-
ing the meaning of all binary codes used to command them
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File name: stack_processor.v

Circuit name:

Description :

module stack_processor (input clock , reset s
output [31:0] instr_addr , data_addr |,
output [1:0] data_mem_com ,
output [31:0] data_out s
input [23:0] instruction ,
input [31:0] data_in S
input mem-_ready )
wire [2:0] stack_com ; // stack command
wire [3:0] alu_com ; // alu command
wire [1:0] data_sel R // data selection for SALU
wire [2:0] pc_com ; // program counter command
wire [31:0] tos s // top of stack
ret_addr ; // return from subroutine address
decode decode( .op-code (instruction[23:16]) |,
.test_in (tos) ,
.mem-_ready (mem_ready ) ,
.stack_com (stack_com) ,
.alu_com (alu_com) s
.data_sel (data_sel) s
.pc_com (pc-com) ,
.data_mem_com (data_mem _com) )
salu salu ( .stackO (tos) s
.stackl (data_out) R
.inl (data_in) s
.in2 ({16°b0, instruction[15:0]}),
.in3 (ret_addr) ,
.s_com (stack_com) s
.data_sel (data_sel) s
.alu_com (alu_com) ,
.reset (reset) s
.clock (clock) )
assign data_addr = tos;
program_counter pc( .clock (clock) ,
.reset (reset) s
.addr (instr_addr) s
.inc_pc (ret_addr) s
.value (instruction [15:0]) |,
.tos (tos) s
.pc_com (pc-com) )
endmodule

Figure 6.23: The top level structural description of a Stack Processor. The Verilog code associated to
the circuit represented in Figure 6.22.
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/* sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk
File name: decode . v

Circuit name:

Description :

module decode( input [7:0] op-code s
input [31:0] test_in s
input mem-_ready ,
output [2:0] stack_com s
output [3:0] alu_com s
output [1:0] data_sel s
output [2:0] pc_com s
output [1:0] data_mem_com ) ;

‘include "micro_architecture .v”

‘include ”instruction_set_architecture .v”

‘include “decoder_implementation.v”
endmodule

Figure 6.24: The decode module. It contains the three complex components of the description of Stack Pro-
Cessor.

* instruction set architecture: describe each instruction performed by Stack Processor

* decoder implementation: describe how the micro-architecture is used to implement the in-
struction set architecture.

The micro-architecture

Any architecture can be implemented using various micro-architectures. For our Stack Processor one of
them is presented in Figure 6.25.

The decoder unit generates in each clock cycle a command word having the following 5-field struc-
ture:

{alu,com, data_sel, stack_com data_mem_com, pc,com} = command

where:

* alu_com: is a 4-bit code used to select the arithmetic or logic operation performed by ALU in the
current cycle; it specifies:
— well known binary operations such as: add, subtract, and, or, xor
— usual unary operations such as: increment, shifts
— test operations indicating by alu_out [0] the result of testing, for example: if an input is

zero or if an input is less than another input

* data_sel: is a 2-bit code used to select the value applied on the input of the stack for the current
cycle as one from the following:
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File name:
Circuit name:
Description :

microarchitecture .v
MICROARCHITECTURE

s 3k ok ok ok ok ok ok oK oK K K oK ok ok sk sk sk sk ok ok ok ok ok R R K o o ok Rk sk sk sk sk sk sk sk R R Rk Rk R kR kR sk sk sk sk kR R R Rk Rk ok Rk ok kkk sk ok k %/

parameter
stop
next
small_jmp
big_jmp
abs_jmp
ret_jmp
parameter
alu_left
alu_right
alu_inc
alu_dec
alu_add
alu_sub
alu_shl
alu_half
alu_zero
alu_equal
alu_less
alu_carry
alu_borrow
alu_and
alu_or
alu_xor
parameter
alu
mem
val
return
parameter
s_nop
s_swap
s_push
s_write
s_pop
S_popwr
s_pop2
parameter
mem_nop
read
write

3°b000,
3°b001 ,
3°b010,

= 3°b011,

3°b100,
3°b101;

4°b0000 ,

= 4°b0001 ,

4°b0010,
4°b0011 ,
4°b0100,

= 4°b0101 ,

4°b0110,
4°b0111,
4°b1000,

= 4°b1001 ,
= 4°b1010,

4°b1011,
4°b1100,
4°b1101,

= 4°b1110,

4°b1111;

2°b00,

= 2°b01,
= 2°b10,

2°bll;

3°b000,

= 3°b001,

3°b010,
3°b100,
3°b101,
3°bl10,
3°bl11;

2°b00,
2°b01,
2°b10;

//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//

//
//
//
//
//
//
//

//
//
//

// pc_com
pc = pc
pc = pc + 1
pc = pc + value
pc = pc + tos
pc = value
pc = tos

// alu_com
alu_out = left
alu_out = right
alu_out = left + 1
alu_out = left — 1
alu_out = left + right = add[31:0]
alu_out = left — right = sub[31:0]
alu_out = {1°b0, left[31:1]}
alu_out = {left[31], left[31:1]}
alu_out = {31°b0, (left == 0)}
alu_out = {31°b0, (left == right)}
alu_out = {31’b0, (left < right)}
alu_out = {31°b0, add[32]}
alu_out = {31°b0, sub[32]}
alu_out = left & right
alu_out = left | right
alu_out = left right

// data_sel

stack_input = alu_out
stack_input = data_in
stack_input = value
stack_input = ret_addr

// stack_com
no operation
swap the content of the first
push
write
pop
pop2 & push
pops two values

// data_mem_com
no data memory command
read from data memory
write to data memory

two

in tos

Figure 6.25: The micro-architecture of our Stack Processor. The content of file micro_architecture.v
defines each command word generated by the decoder describing the associated micro-commands and their binary

codes.
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— the output of ALU

— data received from data memory addressed by tos (with a delay of one clock cycle controlled
by mem_ready signal because the external data memory is synchronous)

— the 16-bit integer selected from the current instruction
— pc+1, generated by the PROGRAM FETCH module, to be pushed in stack when the a call

instruction is executed

* stack_com: is a 3-bit code used to select the operation performed by the stack unit in the cur-
rent cycle (it is correlated with the ALU operation selected by alu_com); the following micro-
operations are codded:

— push: it is the well known standard writing operation into a stack memory

— pop: it is the well known standard reading operation into a stack memory

— write: it writes in top of stack, which is equivalent with popping an operand and pushing
back the result of operation performed on it (used mainly in performing unary operations)

— pop & write: itis equivalent with popping two operands from stack and pushing back the
result of operation performed on them (used mainly in performing binary operations)

— double pop: it is equivalent with two successive pops, but is performed in one clock cycle;
some instructions need to remove both the content of stack0 and of stackl (for example,
after a data write into the external data memory)

— swap: it exchange the content of stack0 and of stack1; it is useful, for example to make a
subtract in the desired order.

* data_mem_com: is a 2-bit command for the external data memory; it has three instantiations:

— memory nop: keep memory doing nothing is a very important command

— read: commands the read operation from data memory with the address from tos; the data
will be returned in the next clock cycle; in the current cycle mem_read is activated to allow
stoping the processor one clock cycle (the associated read instruction will be executed in two
clock cycles)

— write: the data contained in stackl is written to the address contained in stackO (both,
address and data will be popped from stack)

* pc_com: is a 3-bit code used to command how is computed the address for the fetching of the next
instruction; 6 modes are used:

— stop: program counter is not incremented (the processor halts or is waiting for a condition
to be fulfilled)
— next: it is the most frequent mode to compute the program counter by incrementing it

— small jump: compute the next program counter adding to it the value contained in the
current instruction (instruction[15:0]) interpreted as a 16-bit signed integer; a relative
jump in program is performed

— big jump: compute the next program counter adding to it the value contained in tos inter-
preted as a 32-bit signed integer; a relative big jump in program is performed

— absolute jump: the program counter takes the value of instruction[15:0]; thhe pro-
cessor performs an absolute jump in program

— return jump: is an absolute jump performed using the content of tos (usually performs a
return from a subroutine, or is used to call a subroutine in a big addressing space)
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The 5-field just explained can not be filled up without inter-restrictions imposed by the meaning
of the micro-operations. There exist inter-correlations between the micro-operations assembled in a
command. For example, if ALU performs an addition, then the stack must perform mandatory pop &
poop& & push == pop_write. If the ALU operation is increment, then the stack must perform write.
Some fields are sometimes meaningless. For example, when an unconditioned small jump is performed
the fields alu_com and data_sel can take don’t care values. But, for obvious reasons, no times
stack_com and data_mem_com can take don’t care values.

Each unconditioned instruction has associated one 5-field commands, and each conditioned instruc-
tions is defined using two 5-field commands.

The instruction set architecture

Instruction set architecture is the interface between the hardware and the software part of a computing
machine. It grounds the definition of the lowest level programming language: the assembly language.
It is an interface because allows the parallel work of two teams once its definitions is frozen. One is the
hardware team which starts to design the physical structure, and the other is the software team which
starts to grow the symbolic structure of the hierarchy of programs. Each architecture can be embodied
in many forms according to the technological restrictions or to the imposed performances. The main
benefit of this concept is the possibility to change the hardware without throwing out the work done by
the software team.

The implementation of our Stack Processor has, as the majority of the currently produced processors,
an instruction set architecture containing the following class of instructions:

arithmetic and logic instructions having the form:

e [stackO, stackl, s2, ...] = [op(stackO, stackl), s2, ...]
where: stackO is the top of stack, stackl is the next recording in stack, and op is an
arithmetic or logic binary operation

e [stackO, stackl, s2, ...] = [(op(stack0), stackl, s2, ...]
if the operation op is unary

input-output instructions which uses stackO as data_addr and stackl as data_out

stack instructions (only for stack processors) used to immediate load the stack or to change the content
in the first two recordings (stack0 and stack1)

test instructions used to test the content of stack putting the result of the test back into the stack

control instructions used to execute unconditioned or conditioned jumps in the instruction stream by
modifying the variable program_counter used to address in the program space.

The instruction set architecture is given as part of the Verilog code describing the module decode:
the content of the file instruction_set_architecture.v (a more complete stage of this mod-
ule in Appendix: Designing a stack processor). Figure 6.26 contains an incipient form of file
instruction_set_architecture.v. From each class of instructions only few examples are shown.
Each instruction is performed in one clock cycle, except load whose execution can be delayed if
data_ready = 0.

Implementation: from micro-architecture to architecture

Designing a processor (in our case designing the Stack Processor) means to use the micro-architecture to
implement the instruction set architecture. For an executing processor the ’connection” between micro-
architecture and architecture is done by the decoder which is a combinational structure.
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File name: instruction_set_architecture .v

Circuit name: INSTRUCTION SET ARCHITECTURE

Description :
*************************************************************************/
// arithmetic & logic instructions (pc <= pc + 1)

parameter

nop = 8’b0000_0000, // sO, sl, s2 ... <= s0, sl, s2, ...

add = 8’b0000.0001, // sO, sil, s2 ... <= s0 + sl, s2,

inc = 8’b0000.0010, // sO, sI, s2 ... <= s0 + 1, sl, s2,

half = 8’b0000.0011; // sO, sl, s2 ... <= s0/2, sl, s2,

/..

// input output instructions (pc <= pc + 1)

parameter

load = 8’b0001.0000, // sO, sl, s2 ... <= data_mem[sO], sl, s2,
store = 8’b0001.0001; // sO, sl, s2 ... <= s2, s3, ...,

// data_mem[sO] = sl
// stack instructions (pc <= pc + 1)

parameter

push = 8’b0010_0000, // sO, sl, s2 ... <= value, s0, sl,

pop = 8’b0010-0010, // sO, sl, s2 ... <= sl, s2, .

dup = 8’b0010.0011, // sO, sl, s2 ... <= sO, sO, sl, s2,
swap = 8’b0010_0100, // sO, sl, s2 ... <= sl, sO, s2,

over = 8’b0010.0101; // sO, sl, s2 ... <= sl, sO, sl, s2,
/...

// test instructions (pc <= pc + 1)

parameter

Zero = 8’b0100_.0000, // sO, sl, s2 ... <= (sO0 == 0), sl, s2,
eq = 8°b0100_0001; // sO, sl, s2 ... <= (sO0 == sl), s2,

//

// control instructions

parameter

jmp = 8°b0011-0000, // pc <= pc + value

call = 8’b0011.0001, // pc <= s0; sO, sl, ... <= pc + 1, sl,
cjmpz = 8°b0011-0010, // pc <= (s0 == 0) ? pc + value : pc + I
cjmpnz = 8’b0011-0011, // pc <= (s0 == 0) ? pc + 1 : pc + value
ret = 8’b0011.0111; // pc <= s0; sO, sl, ... <= sl, s2,

//

Figure 6.26: Instruction set architecture of our Stack Processor. From each subset few typical example
are shown. The content of data stack is represented by: sO, s1, s2,
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The main body of the decode module — decoder_implementation.v — contains the description of
the Stack Processor’s instruction set architecture in term of micro-architecture.

The structure of the file decoder_implementation.v is suggested in Figure 6.27, where the output
variables are the 5 command fields (declared as registers) and the input variables are: the operation
code from instruction, the value of tos received as test_in and the flag received from the external
memory: mem_ready.

The main body of this vile consists in a big case structure with an entry for each instruction. In
Figure 6.27 only few instructions are implemented (nop, add, load) to show how an unconditioned
instruction nop, add or a conditioned instruction load is executed.

Instruction nop does not affect the state of stack and PC is incremented. We must take care only
about three command fields. PC must be incremented (next, and the fields commanding memory re-
sources (stack, external data memory) must be set on ’no operation” (s_nop, mem nop. The operation
performed by ALU and data selected as right operand have no meaning for this instruction.

Instruction add pops the two last recordings in stack, adds them, pushes back the result in tos, and
increments PC. Meantime the data memory receives no active command.

Instruction load is executed in two clock cycles. In the first cycle, when mem_ready = 0, the com-
mand read is sent to the external data memory, and the PC is maintained unchanged. The operation
performed by ALU does not matter. The selection code for MUX4 does not matter. In the next clock
cycle data memory sets it flag on 1 (mem_ready = 1 means the requested data is available), data selected
is from memory mem), and the output of MUX4 is pushed in stack ((s_push).

By default the decoder generates “dont’care” commands. Another possibility is to have nop instruc-
tion the “by default” instruction. Or by default to have a halt instruction which stops the processor. The
first version is good as a final solution because generates a minimal solution. The last version is preferred
in the initial stage of development because provides an easy testing and debugging solution.

Follows the description of some typical instructions from a possible instruction set executed by our
Stack Processor.

Instruction inc increments the top of stack, and increments also PC. The right operand of ALU does
not matter. The code describing this instruction, to be inserted into the big case sketched in Figure 6.27,
is the following:

inc : begin pc-com = next ;
alu_com = alu_inc ;
data_sel = alu ;
stack_com = s_write ;
data_mem = m_nop ;
end

Instruction store stores the value contained in stack1 at the address from stackO in external data
memory. Both, data and address are popped from stack. The associated code is:
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// THE IMPLEMENTATION

reg [3:0] alu_com ;
reg [2:0] pc-com, stack_com ;
reg [1:0] data_sel , data_mem_com ;

always @(op-code or test_in or mem-_ready)
case (op-code)
// arithmetic & logic instructions

nop : begin pc-com = next ;
alu_com = 4’°bx ;
data_sel = 2’bx ;
stack_com = s_nop ;
data_mem_com = mem-nop ;
end
add begin pc-com = next ;
alu_com = alu_add ;
data_sel = alu ;
stack_com = S_popwr ;
data_mem_com = mem-nop ;
end
/] ...
// input output instructions
load : if (mem_ready)
begin pc-com = next ;
alu_com = 4’bx ;
data_sel = mem ;
stack_com = s_write ;
data_mem_com = mem-_nop ;
end
else
begin pc-_com = stop ;
alu_com = 4’bx ;
data_sel = 2’bx
stack_com = s_nop ;
data_mem_com = read ;
end
//
//
default begin pc-com = 3’bx ;
alu_com = 4°bx
data_sel = 2°bx ;
stack_com = 3’bx ;
data_mem_com = 2°bx
end
endcase

Figure 6.27: Sample from the file decoder_implementation.v. Implementation consists in a big case
form with an entry for each instruction.
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store : begin pc_com = next ;
alu_com = 4°bx
data_sel = 2’bx
stack_com = s_pop2;
data_mem = write ;
end

Instruction push pushes {16°b0, instruction[15:0]} in in stack. The code is:

push : begin pc-com = next ;
alu_com = 4’°bx ;
data_sel = val ;
stack_com = s_push ;
data_mem = m_nop ;
end

Instruction dup pushes in stack the top of stack, thus duplicating it. ALU performs alu_left, the
right operand does not matter, and in the stack is pusher the output of ALU. The code is:

dup : begin pc_com = next ;
alu_com = alu_left ;
data_sel = alu ;
stack_com = s_push ;
data_mem = m_nop ;
end

Instruction over pushes stack1l in stack, thus duplicating the second stage of stack. ALU performs
alu_right, and in the stack is pusher the output of ALU.

over : begin pc-com = next ;
alu_com = alu_right ;
data_sel = alu ;
stack_com = s_push ;
data_mem = m-_nop ;
end

The sequence of instructions:

over;
over;

duplicates the first two recordings in stack to be reused later in another stage of computation.
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Instruction zero substitute the top of stack with 1, if its content is 0, or with O if the content is different
from O.

ZEero : begin pc-com = next ;
alu_com = alu_zero ;
data_sel = alu ;
stack_com = s_write ;
data_mem = m_nop ;

end

This instruction is used in conjunction with a conditioned jump (c jmpz or c jmpnz) to decide accord-
ing to the value of stackO.

Instruction jmp adds to PS the signed value instruction[15:0].

jmp : begin pc-com = rel_jmp ;
alu_com = 4’bx ;
data_sel = 2°bx ;
stack_com = s_nop ;
data_mem = m_nop ;
end

This instruction is expressed as follows:
jmp <value>

where, <value> is expressed sometimes as an explicit signed integer, but usually as a label which takes
a numerical value only when the program is assembled. For example:

jmp loopl;

Instruction call performs an absolute jump to the subroutine placed at the address
instruction[15:0], and saves in tos the return address (ret_addr) which is pc + 1. The
address saved in stack will be used by ret instruction to return the processor from the subroutine into
the main program.

call : begin pc_com = abs_jmp ;
alu_com = 4’bx ;
data_sel = return R
stack_com = s_push ;
data_mem = m_nop ;
end

The instruction is used, for example, as follows:
jmp subrtb;

where subrtb5 is the label of a certain subroutine.
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Instruction cjmpz performs a relative jump if the content of tos is zero; else PC is incremented. The
content of stack is unchanged. (A possible version of this instruction pops the tested value from the
stack.)

cjmpz if (test_in == 32°b0)
begin pc_com = small_jmp ;
alu_com = 4’bx ;
data_sel = 2°bx ;
stack_com = s_nop ;
data_mem = m_nop ;
end
else
begin pc-com = next ;
alu_com = 4°bx
data_sel = 2’bx
stack_com = s_nop ;
data_mem = m_nop ;
end

The instruction is used, for example, as follows:
jmp george;

where george is a label to be converted in a signed 16-bit integer in the assembly process.

Instruction ret performs a jump from subroutine back into the main program using the address
popped from tos.

ret : begin pc-com = ret_jmp ;
alu_com = 4’bx ;
data_sel = 2°bx ;
stack_com = s_pop ;
data_mem = m_nop ;
end

The hardware resources of this Stack Processor permits up to 256 instructions to be defined. For
this simple machine we do not need to define too many instructions. Therefore, a “smart” codding of
instructions will allow minimizing the size of decoder. More, for some critical paths the depth of decoder
can be also minimized, eventually reduced to zero. For example, maybe it is possible to set

alu_com = instruction[19:16]
data_sel = instruction[21:20]

allowing the critical loop to be closed faster.

Time performances

Evaluating the time behavior of the just designed machine does not make us too happy. The main reason
is provided by the fact that all the external connections are unbuffered.
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All the three inputs, instruction, data_in, mem_ready must be received long time before the
active edge of clock because their combinational path inside the Stack Processor are too deep. More,
these paths are shared partially with the internal loops responsible for the maximum clock frequency.
Therefore, optimizing the clock interferes with optimizing #;_g.

Similar comments apply to the output combinational paths.

The most disturbing propagation path is the combinational path going from inputs to outputs (for
example: from instruction to data-mem_com). The impossibility to avoid #;,_,,, make this design
very unfriendly at the system level. Connecting this module together with a data memory a program
memory and some input-output circuits will generate too many (restrictive) time dependencies.

This kind of approach can be useful only if it is strongly integrated with the design of the associated
memories and interfaces in a module having all inputs and outputs strictly registered.

The previously described Stack Processor remains to be a very good bad example of a pure function-
ally centered design which ignores the basic electrical restrictions.

Concluding about our Stack Processor

The simple processor exemplified by Stack Processor is typical for a computational engine: it contains
an simple working 3loop system — SALU — and another simple automaton — Program Fetch — both driven
by a decoder to execute what is codded in each fetched instruction. Therefore, the resulting system is
a 4th order one. This is not the solution! A lot of improvement are possible, and a lot of new features
can be added. But it is very useful to exemplify one of the main virtue of the fourth loop: the 4-loop
processing. A processor with more than the minimal 3 loops is easiest to be controlled. In our cases the
operands are automatically selected by the stack mechanism. Results a lot of advantages in control and
some performance loss. But, the analysis of pros & cons is not a circuit design problem. It is a topics to
be investigated in the computer architecture domain.

The main advantages of a stack machine is its simplicity. The operands are in each cycle already
selected, because they are the first to recording in the top of stack. Results a simple instruction containing
only two fields: op_code[7:0] and value[15:0].

The loop inside SALU is very short allowing a high clock frequency (if other loop do not impose a
smaller one).

The main disadvantage of a stack machine is the stack discipline which sometimes adds new instruc-
tions in the code generated by the compiler.

Writing a compiler for this kind of machine is simple because the discipline in selecting the operands
is high. The efficiency of the resulting code is debatable. Sometimes a longer sequence of operation is
compensated by the higher frequency allowed by a stack architecture.

A real machine can adopt a more sophisticated stack in order to remove some limitation imposed by
the restricted access imposed by the discipline.

6.6 Enhanced Computing Circuits

6.6.1 Harvard abstract machine

Howard Aiken completed and installed at Harvard University Automatic Sequence Controlled Calculator
later renamed Harvard Mark I, a general purpose electromechanical computer. Its structure inspired
what we can call the Harvard abstract model. The Harvard abstract machine defines the computer as
a machine with separate storage and signal pathways for instructions and data, in contrast with the von
Neumann abstract model, where program instructions and data share the same memory and pathways
(see Figure 6.1f).



Chapter 7

Cellular System Hierarchy

7.1 Cellular Automata: Nth-order Digital Systems

A cellular automaton consists of a regular grid of cells. Each cell has a finite number of states. The grid
has a finite number of dimensions, usually no more than three. The transition function of each cell is
defined in a constant neighborhood. Usually, the next state of the cell depends on its own state and the
states of the adjacent cells.

7.1.1 General definitions

The linear cellular automaton

Definition 7.1 The one-dimension cellular automaton is linear array of n identical cells, where each
cell is connected in a constant neighborhood of +/- m cells, see Figure 7.1a for m = 1. Each cell is a
s-state finite automaton.

o

Definition 7.2 An elementary cellular automaton is a one-dimension cellular automaton with m = 1
and s = 2. The transition function of each automaton is a three-input Boolean function defined by the
decimally expressed associated Boolean vector.

o

Example 7.1 The Boolean vector of the three-input function

fx2,x1,%0) = %2 @ (x1 +x0)

00011110

and defines the transition rule 30.
o

Definition 7.3 The Verilog definition of the elementary cellular automaton is:

139
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Figure 7.1: Cellular automaton. a. One-dimension cellular automaton. b. Two-dimension cellular automaton
with von Neumann neighborhood. ¢. Two-dimension cellular automaton with Moore neighborhood. d. Two-
dimension cellular automaton with toroidal shape. e. Two-dimension cellular automaton with rotated toroidal shape.
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eCellAut.v

File name:
Circuit name:
Description :

Linear Cellular Automaton

structural description of a linear cellular automaton
************>|<**>|<********************************************************>|</

module eCellAut #(parameter n = 127) // n—cell cellular automaton

( output

input
input
input
input

genvar i;

[n—1:0]
[7:0]
[n=1:0]

out ,

func , // Boolean vector for the transition rule
init , // to initialize the cellular automaton
rst , // loads the initial state

clk );

generate for (i=0; i<n; i=i+1) begin: C

eCell eCell (. out (out[i] ),
. func (func ),
.init (init[i] ),
.in0 ((i==0) ? out[n—1] : out[i-1] ),
.inl ((i==n-1) ? out[0] : out[i+1] ),
.rst (rst ),
.clk (clk ));
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end
endgenerate
endmodule

where the elementary cell, eCell, is:

/*************************************************************************

File name: eCell.v

Circuit name: Elementary Cell for a cellular automaton

Description : behavioral description of the simplest cell for a
cellular automaton

module eCell // elementary cell
( output reg out ,
input [7:0] func ,
input init ,
input in0 // input form the previous cell
input inl // input from the next cell
input rst ,
input clk );
always @(posedge clk) if (rst) out <= init ;
else out <= func[{inl, out, in0}];
endmodule
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Figure 7.2:

Example 7.2 The elementary cellular automaton characterized by the rule 90 (01011010) provides,
starting from the initial state 1’ bl << n/2, the behavior represented in Figure 7.2, where the sequence
of lines of bits represent the sequence of the states of the cellular automaton starting from the initial
state.

The shape generated by the elementary cellular automaton 90 is the Sierpinski triangle or the Sier-
pinski Sieve. It is a fractal named after the Polish mathematician Waclaw Sierpinski who first described
itin 1915.

<

Example 7.3 The elementary cellular automaton characterized by the rule 30 (00011110) provides,
starting from the initial state 1’ bl << n/2, the behavior represented in Figure 7.3, where the sequence
of lines of bits represent the sequence of the states of the cellular automaton starting from the initial
state.



7.1. CELLULAR AUTOMATA: NTH-ORDER DIGITAL SYSTEMS 143

0000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000011100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000110010000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000001101111000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000011001000100000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000110111101110000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000001100100001001000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000011011110011111100000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000( )000001100100011100000100000000( )000000000000000000000000000000
0000000000000000000000000000000¢ )000110111101100100011100000¢ )0000000000000000000000000000
C )110010000101111011001000¢ )000000000000000000000000000
0000000000000000000000000000000000000000000000000000110111100110100001011110000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000001100100011100110011010001000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000011011110110011101110011011100000000000000000000000000000000000000000000000000
000000000000000000000000000000000¢ )1100100001011100010011100100100¢ )0000000000000000000000000000000
0000000000000000000000000000000000000000000000001101111001101001011111001111111000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000001100100011100111101000011100000010000¢ )0000000000¢
0000000000000000000000000000000000000000000000110111101100111000011001100100001110000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000001100100001011100100110111011110011001 )0000000000000000000000000000000
00000000000000000000000000000000000000000000110111100110100111111001000100011101111 )000000000000000000000000000000
000000000000000000000000000000¢ 11001000111001111000001111011101100010001 )0000000000000000000000000000
00000000000000000000000000000C 1101111011001110001000110000100010101110111 )00000000000000000000000000

0000000000000000000000000000000000000000011001000010111001011101101001110110101000100100000000000000000000000000000000000000000
0000000000000000000000000000000000000000110111100110100111010001001111000100101101111110000000000000000000000000000000000000000
0000000000000000000000000000000000000001100100011100111100011011111000101111101001000001000000000000000000000000000000000000000
0000000000000000000000000000000000000011011110110011100010110010000101101000001111100011100000000000000000000000000000000000000
0000000000000000000000000000000000000110010000101110010110101111001101001100011000010110010000000000000000000000000000000000000
0000000000000000000000000000000000001101111001101001110100101000111001111010110100110101111000000000000000000000000000000000000
0000000000000000000000000000000000011001000111001111000111101101100111000010100111100101000100000000000000000000000000000000000
0000000000000000000000000000000000110111101100111000101100001001011100100110111100011101101110000000000000000000000000000000000
0000000000000000000000000000000001100100001011100101101010011111010011111100100010110001001001000000000000000000000000000000000
0000000000000000000000000000000011011110011010011101001011110000011110000011110110101011111111100000000000000000000000000000000
0000000000000000000000000000000110010001110011110001111010001000110001000110000100101010000000010000000000000000000000000000000
0000000000000000000000000000001101111011001110001011000011011101101011101101001111101011000000111000000000000000000000000000000
0000000000000000000000000000011001000010111001011010100110010001001010001001111000001010100001100100000000000000000000000000000
0000000000000000000000000000110111100110100111010010111101111011111011011111000100011010110011011110000000000000000000000000000
0000000000000000000000000001100100011100111100011110100001000010000010010000101110110010101110010001000000000000000000000000000
0000000000000000000000000011011110110011100010110000110011100111000111111001101000101110101001111011100000000000000000000000000
0000000000000000000000000110010000101110010110101001101110011100101100000111001101101000101111000010010000000000000000000000000
0000000000000000000000001101111001101001110100101111001001110011101010001100111001001101101000100111111000000000000000000000000
0000000000000000000000011001000111001111000111101000111111001110001011011011100111111001001101111100000100000000000000000000000
0000000000000000000000110111101100111000101100001101100000111001011010010010011100000111111001000010001110000000000000000000000
0000000000000000000001100100001011100101101010011001010001100111010011111111110010001100000111100111011001000000000000000000000
0000000000000000000011011110011010011101001011110111011011011100011110000000001111011010001100011100010111100000000000000000000
0000000000000000000110010001110011110001111010000100010010010010110001000000011000010011011010110010110100010000000000000000000
0000000000000000001101111011001110001011000011001110111111111110101011100000110100111110010010101110100110111000000000000000000
0000000000000000011001000010111001011010100110111000100000000000101010010001100111100001111110101000111100100100000000000000000
0000000000000000110111100110100111010010111100100101110000000001101011111011011100010011000000101101100011111110000000000000000
0000000000000001100100011100111100011110100011111101001000000011001010000010010010111110100001101001010110000001000000000000000
0000000000000011011110110011100010110000110110000001111100000110111011000111111110100000110011001111010101000011100000000000000
0000000000000110010000101110010110101001100101000011000010001100100010101100000000110001101110111000010101100110010000000000000
0000000000001101111001101001110100101111011101100110100111011011110110101010000001101011001000100100110101011101111000000000000
0000000000011001000111001111000111101000010001011100111100010010000100101011000011001010111101111111100101010001000100000000000
0000000000110111101100111000101100001100111011010011100010111111001111101010100110111010100001000000011101011011101110000000000
0000000001100100001011100101101010011011100010011110010110100000111000001010111100100010110011100000110001010010001001000000000
0000000011011110011010011101001011110010010111110001110100110001100100011010100011110110101110010001101011011111011111100000000
0000000110010001110011110001111010001111110100001011000111101011011110110010110110000100101001111011001010010000010000010000000
0000001101111011001110001011000011011000000110011010101100001010010000101110100101001111101111000010111011111000111000111000000
0000011001000010111001011010100110010100001101110010101010011011111001101000111101111000001000100110100010000101100101100100000
0000110111100110100111010010111101110110011001001110101011110010000111001101100001000100011101111100110111001101011101011110000
0001100100011100111100011110100001000101110111111000101010001111001100111001010011101110110001000011100100111001010001010001000
0011011110110011100010110000110011101101000100000101101011011000111011100111011110001000101011100110011111100111011011011011100
0110010000101110010110101001101110001001101110001101001010010101100010011100010001011101101010011101110000011100010010010010010
1101111001101001110100101111001001011111001001011001111011110101010111110010111011010001001011110001001000110010111111111111111

Figure 7.3:

The two-dimension cellular automaton

Definition 7.4 The two-dimension cellular automaton consists of a two-dimension array of identical
cells, where each cell is connected in a constant neighborhood, see Figure 7.1b (the von Neumann
neighborhood) and 7.1c¢ (the Moore neighborhood). Each cell is a s-state finite automaton.

o

There are also many ways of connecting the border cells. The simplest one is to connect them to
ground. Another is close the array so as the surface takes a toroidal shape (see Figure 7.1d). A more
complex form is possible if we intend to preserve also a linear connection between the cells. Results a
twisted toroidal shape (see Figure 7.1e).
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Definition 7.5 The Verilog definition of the two-dimension elementary cellular automaton with a toroid
shape (Figure 7.1d) is:

File name: eCellAut4 .v
Circuit name:
Description :

s sk ok ok sk sk oK ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok sk sk sk ok ok sk sk ok ok sk sk ok sk sk sk ok sk sk sk ok sk sk ok ok sk sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok ok ok ok sk sk ok ok ok R/

module eCellAut4 #(parameter n = 8) // nin—cell cellular automaton
( output [nxn-1:0] out ,
input [31:0] func , // transition rule
input [nxn—1:0] init , // used for initialization
input rst , // loads the inital state
input clk );
genvar i;
generate for (i=0; i<n*n; i=i+1) begin: C
eCell4
eCell4 (. out (out[i] ),
.func (func ),
.init (init[i] ),
.in0 (out[(i/n)*n+(i—((i/n)*n)+n—-1)%n] ), // east
.inl (out[(i/n)*n+(i—((i/n)*n)+1)%n] ), // west
.in2 (out[(i+n*n-n)%(n=n) ] ), // south
.in3 (out[(i+n)%(n=n)] ), // north
.rst (rst ),
.clk (clk ));
end
endgenerate
endmodule

where the elementary cell, eCellé, is:

/*************************************************************************
File name: eCell4d.v

Circuit name:

Description :

s sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok ok sk sk sk ok sk sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok ok ok ok sk sk ok ok ok R/

module eCell4 // 4—input elementary cell
( output reg out ,
input [31:0] func,
input init , //
input in0 , // north connection
input inl // east connectioin
input in2 , // south connection
input in3 , // west connectioin
input rst ,
input clk );

always @(posedge clk)
if (rst) out <= init
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else
endmodule

<
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out <= func[{in3, in2, out, inl, in0}] ;

Example 7.4 Let be a 8 x 8 cellular automaton with a von Neumann neighborhood and a toroidal shape.
The cells are 2-state automata. The transition function is a 5-input Boolean OR, and the initial state is
state 1 in the bottom right cell and 0 the the rest of cells. The system will evolve until all the cells will
switch in the state 1. Figure 7.4 represents the 8-step evolution from the initial state to the final state.
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Figure 7.4:
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Definition 7.6 The Verilog definition of the two-dimension elementary cellular automaton with linearly

connected cells (Figure 7.1e) is:

/3 % ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ks kR ok ok ok ok ok ok ok ok o ok ok ok sk sk ok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok ok ok ok ok oK R R ok o ok ok Rk kR sk ok

File name: eCellAut4L .v
Circuit name:

Description :

module eCellAut4l #(parameter n =

8) // two-dimension cellular automaton

( output [nxn-1:0] out ,
input [31:0] func , // transition rule
input [n¥xn—-1:0] init , // used to initialize
input rst // loads the initial state
input clk );
genvar i;
generate for (i=0; i<n*n; i=i+1) begin: C
eCell4 eCell4( .out (out[i] ),
.func (func ),
.init (init[1i] ),
.in0 (out[(i+n*n—1)%(n*n)] ), // east
.inl (out[(i+1)%(n*n)] ), // west
.in2 (out[(i+n*n—n)%(n*n) ] ), // south
.in3 (out[(i+n)%(n=n)] ), // north
.rst (rst ),
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.clk (clk ));
end
endgenerate
endmodule

where the elementary cell, eCell4, is the same as in the previous definition.
o

Example 7.5 Let us do the same for the two-dimension elementary cellular automaton with linearly
connected cells (Figure 7.1e). The insertion of 1s in all the cells is done now in 7 steps. See Figure 7.5.
Looks like a twisted toroidal shape offers a better neighborhood than a simple toroidal shape.

00000000 10000001 11000011 11100111 11111111 11111111 111111141 11111111
00000000 00000000 10000001 11000011 11100111 11111111 11111111 11111111
00000000 00000000 00000000 10000001 11000011 11100111 11111111 11111111
00000000 00000000 00000000 00000000 10000001 11000011 11100111 11111111
00000000 00000000 00000000 00000001 00000011 10000111 11001111 11111111
00000000 00000000 00000001 00000011 10000111 11001111 11111111 11111111
00000000 00000001 00000011 10000111 11001111 11111111 11111111 11111111
00000001 00000011 10000111 11001111 11111111 11111111 111111141 11111111

initial step 1 step 2 step 3 step 4 stap 5 step 6 final

Figure 7.5:

7.1.2 Functional CA
Left-Right Shift Register

The simplest example of n-OS is the left-right shift register. It is represented in Figure 7.6.

LIFO

There are only a few “exotic” structures that are implemented as digital systems with a great number
of loops. One of these is the stack function that needs at least two loops to be realized, as a system
in 2-OS (reversible counter & RAM serially composed). There is another, more uniform solution for
implementing the push-down stack function or LIFO (last-in first-out) memory. This solution uses a
simple, i.e., recursive defined, structure.

Definition 7.7 The n-level push-down stack, LIF O,, is built serial connecting a LIF O,_ with a LIF O
as in Figure 7.7. The one level push-down stack is a register, Ry, loop connected with MUX, so as:

S1S0 = 00 means: no op — the content of the register does not change
S180 = 01 means: pop — the register is loaded out| from the output of LIF O,

S180 = 10 means: push — the register is loaded with the input value in

<

It is evident that LIF O,, is a bi-directional serial-parallel shift register (see Figure 7.6). Because the
content of the serial-parallel register shifts in both directions each R, is contained in two kind of loops:
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Figure 7.6: Left-right shift register. a. The main internal connections. b. The structure of each cell R;. c.
The logic symbol.

* through its own MUX for no op function
* through two successive LIF O

Thus, LIFO; is a 2-0S, LIF O, is a 3-OS, LIF O3 is a4-0S, ..., LIFO;is a (i+1)OS, .. ..

The push-down stack implemented as a bi-directional serial-parallel register is an example of digital
system having the order related with the size. Indeed: LIFO,_; isan— OS.

In real applications sometimes is requested a more complex LIFO able to perform more than push
and pop.

Definition 7.8 The n-level two-pop stack, LIF O,, (see Figure 7.8, is built serial connecting a LIF O,,_»
with a LIF O, as in Figure 7.8. The two level stack LIF O; is an 3-OS defined as follows:

S$180 = 00 means: no op — the content of the two registers do not change
S180 = 01 means: pop — the content of the two registers change as follows:

* Ry <=R;
* R <=outp

8180 = 10 means: pop2 — the content of the two registers change as follows:
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Figure 7.7: The recursive definition of the LIFO,, structure as n-OS
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Figure 7.8: The recursive definition of a two-pop LIFQO,, structure as n-OS

* Ry <=outy

* R <=out3
S180 = 11 means: push — the content of the two registers change as follows:

* Ry <=in0
* Ri<=Ry

In section 6.5.2, the stack performs more functions than the four already defined. Thus, we will make
another step in enhancing the stack’s functionality.

Definition 7.9 The n-level enhanced stack, LIF O, is built serial connecting a LIFO,_, with an en-
hanced LIF O, (see Figure 7.9) as in Figure 7.8. The two level stack LIF O, is an 3-OS defined as
follows:
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Figure 7.9: The enhanced version of the LIFO, structure as 3-OS. It is used as the first cell in the
recursive definition of a LIFO.

T115S1So = 0000 means: no op — the content of the two registers do not change
T1T5S1So = 0001 means: pop — the content of the two registers change as follows:

* Ro <=R;
* R <=ing

T1TpS1S0 = 0010 means: pop2 — the content of the two registers change as follows:

* Ry <=ing
* R <=im

T1T5S1So = 0011 means: push — the content of the two registers change as follows:

* Ry <=in
* R <=Ro

T1T5S1So = 0100 means: write — the content of the two registers change as follows:

* Ry <=in
* R <=R

T115S1So = 0101 means: popwr — the content of the two registers change as follows:

* Rp<=in
* R <=ing

T1 155150 = 1000 means: swap — the content of the two registers change as follows:

* Ry <=Ry
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* R <=Ry

The enhanced version of the two-pop stack differs from the two-pop stack only in the first instantia-
tion of LIF O, when the entire stack is described in Verilog using generate.

VeriSim 7.1 ¢

SYSTOLIC SORTER
Leiserson’s systolic sorter. The initial state: in each cell = eo. For no operation: inl = +o0,in2 = —oo.
To insert the value v: inl = v, in2 = —oo. For extract: inl = in2 = +oo.
A B C
- A X - min(A,B,C) out —d— X A € X A 1 X A X Al - - -
—» B Y P med(AB,C) inl — B Y > B Y > B Y > B Y- - - -
—» C Z 9~ max(AB.C) in2 — C z ™ cC zZ P C Z»C ZH- - - -
ck ck ck ck ck
ck Latch
v ? — : o
X Y z ck D - ===
a. b. C.

Figure 7.10: Systolic sorter. a. The internal structure of cell. b. The logic symbol of cell. ¢. The organization of
the systolic sorter.
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File name: systolicSorterCell .v

Circuit name:

Description :

module systolicSorterCell #(parameter n=8)(input [n-1:0] a, b, c,
output reg [n-1:0] x, y, z,
input rst, ck);

wire [n-1:0] al, bl ; // sorter’s first level outputs
wire [n=1:0] a2, c2 ; // sorter’s second level outputs
wire [n-1:0] b3, c3 ; // sorter’s third level outputs
assign al = (a<b) ? a : b ;

assign bl = (a<b) ? b : a ;

assign a2 = (al < c) ? al : ¢ ;

assign c2 (al < c) ?2 ¢ : al ;
assign b3 = (bl < c2) ? bl : c2 ;
assign c¢3 = (bl < c2) ? ¢c2 : bl ;
always @(ck or rst or a2 or b3 or c3)

if (rst & ck) begin x = {n{1°bl}} ;
y = {n{l’bl}}
z = {n{l’bl}} ;

end
else if (ck) begin X = a2
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end
endmodule
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/*************************************************************************

File name: systolicSorter.v
Circuit name:
Description :

*************************************************************************/

module systolicSorter #(parameter n=8, m=7)
(output [n-1:0] out,
input [n=1:0] inl, in2,

input rst, ckl, ck2);
wire [n=1:0] x[0:m];
wire [n-1:0] y[0:m-1];
wire [n-=1:0] z[0O:m-1];
assign y[0] = inl ;
assign z[0] = in2 ;
assign out = x[1] ;

assign x[m]

{n{1°b1}} ;

genvar i;
generate for(i=1; i<m; i=i+l) begin: C
systolicSorterCell
systolicCell (.a (x[i+1]

b (yli-1]
.¢c (z[i-1]
x o (x[1]
.y (yli]
.z (z[i]
.rst(rst
.ck (((i/2)*%2 == i) ? ck2

end
endgenerate
endmodule

/*************************************************************************

File name: systolicSorterSim .v
Circuit name:
Description :

s sk ok ok sk sk ok ok sk sk ok ok sk sk oK sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok sk ok ok sk sk ok ok ok R/

module systolicSorterSim #(parameter n=38);
reg ckl, ck2, rst ;
reg [n—=1:0] inl, in2;
wire [n—=1:0] out ;
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initial begin ckl = 0 ;

forever begin #3 ckl =1 ;
#1 ckl =0 ;
end
end
initial begin ck2 =0 ;
#2 ck2 =0 ;
forever begin #3 ck2 =1 ;
#1 ck2 =0 ;
end
end
initial begin rst = 1 ;
in2 =0 ;
inl = 8’b1000;
#8 rst = 0 ;
#4 inl = 8°b0010;
#4 inl = 8°b0100;
#4 inl = 8°b0010;
#4 inl = 8°b0001;
#4 inl = 8°bll1111111;
in2 = 8’bl1111111;
#30 $stop;
end

systolicSorter dut( out,
inl , in2,
rst, ckl, ck2);

initial
$monitor (”time .=.%d._ckl .=_%b._.ck2 _=%b._rst .= %b.inl .=%d._...",
$time, ckl, ck2, rst, inl, in2, out);
endmodule

The result of simulation is:

# time = 0 ckl =0 ck2 =0 rst = 1 inl = 8 in2 = 0 out = X
# time = 3 ckl =1 ck2 = 0 rst = 1 inl = 8 in2 = 0 out = 255
# time = 4 ckl = 0 ck2 =0 rst = 1 inl = 8 in2 = 0 out = 255
# time = 5 ckl =0 ck2 =1 rst =1 inl 8 in2 = 0 out = 255
# time = 6 ckl = 0 ck2 = 0 rst = 1 inl = 8 in2 = 0 out = 255
# time = 7 ckl =1 ck2 =0 rst = 1 inl = 8 in2 = 0 out = 255
# time = 8 ckl = 0 ¢ck2 =0 rst = 0 inl = 8 in2 = 0 out = 0
# time = 9 ckl = 0 ck2 =1 rst = 0 inl = 8 in2 = 0 out = 0
# time = 10 ckl = 0 ck2 = 0 rst = 0 inl 8 in2 = 0 out = 0
# time = 11 ckl =1 ¢ck2 = 0 rst = 0 inl = 8 in2 = 0 out = 0
# time = 12 ckl = 0 ck2 = 0 rst = 0 inl = 2 in2 = 0 out = 0
# time = 13 ckl = 0 ck2 =1 rst = 0 inl = 2 in2 = 0 out = 0
# time = 14 ckl = 0 ck2 = 0 rst = 0 inl 2 in2 = 0 out = 0
# time = 15 ckl =1 ck2 = 0 rst = 0 inl = 2 in2 = 0 out = 0
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# time = 16 ckl = 0 ¢ck2 = 0 rst = 0 inl = 4 in2 = 0 out = 0
# time = 17 ckl = 0 ck2 =1 rst = 0 inl = 4 in2 = 0 out = 0
# time = 18 ckl = 0 ck2 = 0 rst = 0 inl = 4 in2 = 0 out = 0
# time = 19 ckl =1 ¢ck2 = 0 rst = 0 inl = 4 in2 = 0 out = 0
# time = 20 ckl = 0 ck2 = 0 rst = 0 inl = 2 in2 = 0 out = 0
# time = 21 ckl = 0 ck2 =1 rst = 0 inl = 2 in2 = 0 out = 0
# time = 22 ckl = 0 ¢ck2 = 0 rst = 0 inl = 2 in2 = 0 out = 0
# time = 23 ckl =1 ck2 = 0 rst = 0 inl = 2 in2 = 0 out = 0
# time = 24 ckl = 0 ck2 = 0 rst = 0 inl = 1 in2 = 0 out = 0
# time = 25 ckl = 0 ¢ck2 =1 rst = 0 inl = 1 in2 = 0 out = 0
# time = 26 ckl = 0 ck2 = 0 rst = 0 inl = 1 in2 = 0 out = 0
# time = 27 ckl =1 ck2 = 0 rst = 0 inl = 1 in2 = 0 out = 0
# time = 28 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 0
# time = 29 ckl = 0 ck2 = 1 rst = 0 inl = 255 in2 = 255 out = 0
# time = 30 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 0
# time = 31 ckl =1 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 1
# time = 32 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 1
# time = 33 ckl = 0 ck2 =1 rst = 0 inl = 255 in2 = 255 out = 1
# time = 34 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 1
# time = 35 ckl =1 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 2
# time = 36 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 2
# time = 37 ckl = 0 ck2 =1 rst = 0 inl = 255 in2 = 255 out = 2
# time = 38 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 2
# time = 39 ckl =1 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 2
# time = 40 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 2
# time = 41 ckl = 0 ck2 = 1 rst = 0 inl = 255 in2 = 255 out = 2
# time = 42 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 2
# time = 43 ckl =1 ¢ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 4
# time = 44 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 4
# time = 45 ckl = 0 ck2 =1 rst = 0 inl = 255 in2 = 255 out = 4
# time = 46 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 4
# time = 47 ckl =1 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 8
# time = 48 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 8
# time = 49 ckl = 0 ck2 =1 rst = 0 inl = 255 in2 = 255 out = 8
# time = 50 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 8
# time = 51 ckl =1 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 255
# time = 52 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 255
# time = 53 ckl = 0 ck2 =1 rst = 0 inl = 255 in2 = 255 out = 255
# time = 54 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 255
# time = 55 ckl =1 ¢ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 255
# time = 56 ckl = 0 ck2 = 0 rst = 0 inl = 255 in2 = 255 out = 255
# time = 57 ckl = 0 ck2 =1 rst = 0 inl = 255 in2 = 255 out = 255

7.2 The First Global Loop: Generic ConnexArray’ ¥

A first attempt to close a loop over a simple cellular automaton is presented in [?]. The effect of a
global loop on the behavior of a cellular automaton is presented in [Matita ’13]. In [Gheolbanoiu *14]
the attempt from [?] is finalized as an actual circuit.

In 1936 Stephen Kleene defined [Kleene ’36] the concept of partial recursive function as the general
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framework for computing any function of form:

f:{0,1}" = {0,1}

X = (x1,..xn) X =(x,.-xn)

L l L+W;“ 0o

X | ------ hp(X) hy (X)

|
|
|
cell| | P celly |— CONTROLLER
|
|

R,

Y

g0vp)

!

Fxpseem) FCxpseom)

Figure 7.11: Frof the mathematical mddel to the abstract machine model. a. The structure associated
to the composition rule in Kleene’s model. b. The limit case for p = 1. It provides the pipelined connection which
can be generalized for serially connected p cells. ¢. The abstract machine model for parallel computing. The MAP
section consists of the parallel connected cells, the REDUCE section stands for the function g, while the serial
connections between cells in MAP section provided by the serial pipelined connection for the limit case of p = 1.

In [?] is proved that from the three basic rules proposed by Kleene only the first, the composition
rule, is independent. Therefore, computation could be defined as repeated application of the composition
having the form:

Flxi,.oox) =g(hi(xn,. . x0), . By (1, .. X0))

In Figure 7.11a the two-level circuit version of the composition rule is represented. Each function #; is
computed by a module on the first level, while the function g reduces the resulting vector to a scalar. In
Figure 7.11b, the limit case for p = 1 is represented. The repeated application of a composition requests
the additional structures represented in Figure 7.11c. In [Stefan ’14] the transition from Figure 7.11a and
Figure 7.11b to Figure 7.11c is described.

The two-direction connections between the cells provide the p = n levels of loops which gives the
order n to the system, while the global loop is closed through the CONTROLLER.

The simplest version of the engine is behaviorally described in the next subsection as the Generic
ConnexArray™ system. Some temporal aspects are not catched in the following description because
we will be focused only on the functional aspects. A structural description takes into account at least the
pipelines used to optimize the clock frequency. Also, some aspects related with data transfer are treated
in this behavioral description ignoring the timing issues.

7.2.1 The behavioral description of Generic ConnexArray’"

The cell used in the generic n-order array with the first global loop contains a data memory for the local
data and a simple accumulator-based engine.

The cell’s structure is presented in Figure 7.12a, while the controller’s structure is presented in Figure
7.12b.

The behavioral description uses the storage resources detailed in the file ConnexArray . v represented
in Figure 7.14, where:

vectorial resources describes the resources distributed in array (for the contribution of each cell see
Figure 7.13a)
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Figure 7.12: The components of the abstract machine model. a. The cell’s structure. b. The controller’s
structure.

ixv : index vector used to associate the index i, from O to 2* — 1, to each cell

boolv : Boolean vector used to enable the execution in i-th cell; if boolv[i] is 1, then the cell is
active, else the instruction received in the current cycle is ignored (substituted with nop)

accv : is the scalar vector containing the accumulator registers of the cells; the execution unit is
accumulator based, thus accv[i] is the accumulator of the cell i

crv : is the Boolean vector containing the carry registers of each cell; crv[i] stores the carry bit
generated in cell 7 by the last arithmetic operation

vmem : is the vector memory distributed along the cells; each cell, cell;, stores in its local memory
the i-th components of all the 2" vectors

addrv : used to specify a locally computed address in each cell
control resources describes the resources involved in the sequential control (see Figure 7.13b)

pc : p-bit program counter
ir : 32-bit instruction register

progMem : the program memory organize in 27 32-bit words
scalar resources describes the resources involved in the scalar computation (see Figure 7.13b)

acc : controller’s accumulator
cr : the carry flip-flop
addr : the address register used to compute the address for controller’s data memory

mem : controller’s data memory

The instruction read from the program memory in each clock cycle is of the following form:

instruction =
{arrayInstr, contrInstr} =
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cellln controllerIn

[_accvli] |

addrv[i]

controllerCombLogic

progMem

vmem[i] cellCombLogic

ir

boolv[i]

!

cellOut
a. b.

controllerQOut

Figure 7.13: The resources used in the behavioral description. a. Cell’s internal state support. b. Con-
troller’s internal state support.

{a0pCode[4:0], // operation code for the array

alpr[2:0] , // selection operand for array
avall[7:0] , // immediate value for array
cOpCode[4:0], // operation code for controller
cOpr[2:0] , // selection operand for controller

cval[7:0] } // immediate value for controller

The input received by each cell (see Figure 7.12a and Figure 7.13a) is:

in = {instruction[15:0], data[n-1:0], address[v-1:0]}

while the output is:

out = {boolv[i], (boolv[i]l ? accv[il[n-1:0] : O0O)}

From the program memory, in each cycle is read a pair of instructions: one
(progMem [nextPc] [15:0]) for the use of controller and another (progMem[nextPc] [31:16])
to be executed in each active cell (where boolv[i] = 1). The structure of the two instructions is
detailed also in Figure 7.14.
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File name: ConnexArray . v

Circuit name: Generic Connex Array

Description : behavioral description for simulation; the content of data
memory and program memory are generated in the simulation
environment

module ConnexArray #(‘include “parameters.v”)(input reset, clock);
// control resources

reg [p-1:0] pc ; // program counter
reg [31:0] ir ; // instruction register
reg [31:0] progMem[0:(1<<p)-—1] ; // program memory

// scalar resources
reg [n—1:0] acc . // scalar accumulator
reg cr ; // scalar carry
reg [s—1:0] addr ; // scalar address
reg [n—1:0] mem[0:(1<<s)—1] ; // scalar memory

// vector resources
reg bool[0:(1<<x)—1] ; // Boolean vector
reg [n—1:0] accv[0:(1<<x)-1] ; // accumulator vector
reg crv[0:(1<<x)-1] ; // carry vector
reg [v—-1:0] addrv[0:(1<<x)-1] ; // address vector

reg [n—-1:0] vmem[0:(1<<x)-1][0:(1<<vVv)=1]; // vector memory
// structure of the instructions for array and for controller

wire [4:0] aOpCode ; // operation code for the array
wire [2:0] aOpr ; // selection operand for array
wire [7:0] aval ; // immediate value for array
wire [4:0] cOpCode ; // operation code for controller
wire [2:0] cOpr ; // selection operand for controller
wire [7:0] cval ; // immediate value for controller
assign aOpCode = ir[31:27] ;
assign aOpr = ir[26:24] ;
assign aval = ir[23:16] ;
assign cOpCode = ir[15:11] ;
assign cOpr = ir[10:8] ;
assign cval = ir[7:0] ;

// behavior of the system

integer i ;
‘include ”programControl.v”
‘include “cOperandSel.v”
‘include “cDataOperations.v”
‘include ”spatialControl.v”
‘include “aOperandSel.v”
‘include “aDataOperations.v”
‘include ”vectorTransfer.v”
endmodule

Figure 7.14: Generic Connex Array described in the file ConnexArray.v.
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The Instruction Set Architecture

File name: parameters.v
Description : defines Instruction Set Architecture for Generic Connex Array
parameter n =32 , // word size
X = 4 , // index size
v = 8 , // vector memory address size
s = 8 , // scalar memory address size
p =28 , // program memory address size

/s s sk ok ok ok ok ok stk ok sk ok sk ok ok ok ok ok ok sk ok sk ok ok ok ok ok otk ok sk ok ok ok ok ok ook ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok
opCode: selects the right operand. The architecture is accumulator based
s sk s sk ok ok s ok oot sk ok ok s ok ok ot sk ok st sk ok ok s ok oot sk ok ok s sk ok sk ok s sk ok ot sk ok st sk ok ok s ok oot sk ok o sk ok ok ot sk sk ok kR otk ok ko ok o/
val = 3°b000, // immediate value: {24{scalar[7]}}, scalar}
mab = 3°b001, // absolute: mem[scalar]
mrl = 3°b010, // relative: mem[addr+scalar]
mri = 3°b011l, // relative & increment: mem[addr+scalar]; addr <= addr+scalar
cop = 3°’b100, // co—operand
ctl = 3°blll, // control operations
/s sk ok ok ok ok ok ok ook ok sk ok sk ok ok ok ko ok sk ok sk ok ok ok ook otk ok sk ok ok ok ok ok ook ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok oKk ok ok ok ok ok oKk ok ok ok ok ok ok
Instruction Set Architecture
s sk s s ok ok sk ok ok R sk ok ok sk ok ook sk ok ok ok ok ok sk ok sk ot sk ok ok s ok ook sk ok o s ok oot sk ok sk sk ok ok sk ok ook sk ok ok sk o R sk ok ok kR ok ok o skok ok o/

add = 5°b00000, // {cr, acc} <= acc + op;

addc = 5°b00001, // {cr, acc} <= acc + op + cr;

sub = 5°b00010, // {cr, acc} <= acc — op;

rsub = 5°b00011, // {cr, acc} <= operand - acc;

subc = 5’b00100, // {cr, acc} <= acc — op — cr;

rsubc = 5°b00101, // {cr, acc} <= op - acc - cr;

mult = 5’b00110, // acc <= acc * op;

load = 5’b00111, // acc <= op;

store = 5’b01000, // op <= acc;

bwand = 5’b01001, // acc <= acc & op;

bwor = 5°b01010, // acc <= acc | op;

bwxor = 5’b01011, // acc <= acc ~ op;

insval = 5°b01100, // acc <= {acc[23:0], scalar}

shrightc = 5°b01101, // {cr, acc} <= {acc[0], cr, acc[n-1:1]}

shright = 5°b01110, // {cr, acc} <= {acc[0], 1'b0, acc[n-1:1]}

sharight = 5°b01111, // acc <= {acc[n-1], acc[n—1:1]}
// ONLY FOR CONTROLLER

jmp = 5’°b10000, // pc <= pc + scalar;

brz = 5’b10001, // pc <= acc=0 ? pc + scalar : pc + I;

brnz = 5’°b10010, // pc <= acc=0 ? pc + 1 : pc + scalar;

brzdec = 5’b10011, // pc <= acc=0 ? pc + scalar : pc + 1, acc <= acc - 1

brnzdec = 5°b10100, // pc <= acc=0 ? pc + 1 : pc + scalar; acc <= acc - 1
// ONLY FOR ARRAY

where = 5’b10000, // bool <= condv[operand] ? 1 : 0;

elsew = 5’°b10001, // bool <= ~“boolVect;

endwhere = 5’b10010, // bool <= 1I;

ixload = 5°b10011, // acc <= i

gshift = 5’b11001, // accli] <= acc[i+/-1];

vload = 5’b11010, // accv[i] <= mem[addr + i]

vstore = 5’bl11011 // mem[addr + i] <= accv[i]

Figure 7.15: Instruction Set Architecture described in the file parameters.v.

The arithmetic-logic operations performed in each cell and in the controller are very similar. Only
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the sequential control in controller and the spatial control in the array of cells differentiate the instruction
set architecture (ISA) (see Figure 7.15) which describes the functions of the controller and of the cells.
The instructions are specified by three fields (see Figure 7.14 for the structure of the instruction): one
for operation (opCode), one for the right operand (operand), because the left operand is always the
accumulator, and the last for an 8-bit immediate value.

Program Control Section

The program control section of the controller works as it is described in Figure 7.16:

/*************************************************************************
File name: programControl.v

Description : the code manages the value of the program counter (pc)
*************************************************************************/

reg [p—1:0] nextPc ;

always @(x) if (cOpr == ctl)

case (cOpCode)
jmp : nextPc = pc + cval[p-1:0] ;
brz : nextPc = (acc == 0) ? (pc + cval[p-1:0]) : (pc + 1°bl);
brnz : nextPc = (acc == 0) ? (pc + 1’bl) : (pc + cval[p-1:0]);
brzdec : nextPc = (acc == 0) ? (pc + cval[p-1:0]) : (pc + 1’bl);
brnzdec : nextPc = (acc == 0) ? (pc + 1°bl) : (pc + cval[p-1:0]);
default : nextPc = pc + cval[p-1:0] ;

endcase

else nextPc = pc + 1°bl ;

always @(posedge clock) if (reset) begin pc <= {p{l’bl}}
i 0

r <= 5

end
else begin pc <= nextPc ;
ir <= progMem|[nextPc] ;

end

Figure 7.16: The file programControl.v describes the control function for Controller.

Operand selection in controller

Data operations in controller

Data operations in controller is performed using as operands the accumulator, acc, and data selected by
contrOperand, as described in Figure 7.18.
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/*************************************************************************
File name: cOperandSel . v

Description : the code selects the right operand for Controller
*************************************************************************/

reg [n-1:0] op ;

always @(x)
case(cOpr) // selects the right operand for controller
mrl : op = mem[addr + cval[s—-1:0]] ;
mri : op mem[ addr + cval[s—-1:0]] ;
val: op = {{(n-8){cval[7]}}, cval} ;
cop: case(cval[1:0])
2°b00: begin
op = accv[0] ;
for (i=1; i<(l<<x); i=i+l)
op = op + accv[i] ;

end
2°b01: begin
op = accv|[0] ;
for (i=1; i<(l<<x); i=i+l)
op = (op < accv[i]) ? accv[i] : op ;

end
2°bl0: begin
op = {{(n-1){1’b0}}, bool[0]} ;
for (i=1; i<(l<<x); i=i+1)
op = {{(n-1){1°b0}}, op[0] | bool[il};
end
default: op =0 ;
endcase
default: op = mem[cval[s—1:0]] R

endcase

Figure 7.17: The code used to select the right operand in Controller: cOperandSel.v

Spatial control in array

/*************************************************************************
File name: spatialControl .v

Description : describes the spatial control in Array
*************************************************************************/

reg [3:0] condv[0:(1<<x)—1] ;

always @(x) for (i=0; i<(l<<x); i=i+l)
condv[i] = {lerv[i], (accv[i] !== 0), crv[i], (accv[i] == 0)};

always @(posedge clock) for (i=0; i<(l<<x); i=i+l)
case (aOpCode)

where : bool[i] <= (condv[i][aval[1:0]]) ? 1°bl : 1°b0;

elsew : bool[i] <= "bool[i] ;

endwhere: bool[i] <= 1°bl ;
endcase

Figure 7.19: File spatialControl.v which describes the spatial control functions in Array.
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Operand selection in the array’s cells

Operand selection in the array’s cells is described by the code from Figure 7.20:

File name: aOpSelection.v
Description : describes the right operand selection for Array

reg [n—-1:0] opv[0:(1<<x)—-1] ;

always @(x) for (i=0; i<(l<<x); i=i+l)
case (aOpr) // selects the right operand in each cell

mrl : opv[i] = vmem[i][addrv[i] + aval[v-1:0]] ;

mri : opv[i] = vmem[i][addrv[i] + aval[v-1:0]] ;

val: opv[i] = {{(n-8){aval[7]}}, aval} ;

cop: opv[i] = acc ;

default: opv[i] = vmem[i][aval[v-1:0]] ;
endcase

Figure 7.20: The file aOpSelection.v describes the right operand selection for Array.

Data operations in the array’s cells

Data operations in the array’s cells is performed using as operands the accumulator, accVect [i], and
data selected by arrayOperand, as shown in Figure 7.21.

Vector transfer

instructions are used to exchange data between the vector memory distributed in the array of cell and
the controller’s memory. The transfer is strided with stride given by contrScalar. The definition is in
Figure 7.22

7.2.2 Assembler Programming the Generic ConnexArray’"

Each line of program must contain code for both instructions: the instruction issued for the array and
the instruction performed by the controller. For conditioned or unconditioned relative jumps in program
some lines are labeled; LB (i) denote the label i. The use of the label is indicated by by the value used
by control instructions (example: cJMP (2)).

Example 7.6 The program which compute in the accumulator of the controller the inner product of the
index vector ix with itself is:

cNOP; ENDWHERE;; // activate all cells

cNOP; IXLOAD; // accVect[i] <= ixVect[i]

cNOP; IXMULT; // accVect[i] <= accVect[i] = ixVect[i]
cRSLOAD ; NOP; // load acc with the reduction sum

cHALT; NOP;
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The content of program memory is:

programMemory [0] = 10010111000000000000000000000000
programMemory [ 1] 10011000000000000000000000000000
programMemory [2] 01000001000000000000000000000000
programMemory [ 3] 00110001000000000000000000000000
programMemory [4] 00000000000000000011110000000000
programMemory [5] = 00000000000000001000011100000000

The result of simulation:

t=0 reset=1 pc=x acc= x ACC = [x, X, X, X ] b = [XXXXXXXXXXXXXXXX ]
t=1 reset=1 pc=255 acc= x ACC = [x, x, X, X b = [XXXXXXXXXXXXXXXX ]|
t=4 reset=0 pc=255 acc= x ACC = [x, x, X, x] b = [XXXXXXXXXXXXXXXX ]
t=5 reset=0 pc=0 acc= x ACC = [x, x, X, X ] b = [XXXXXXXXXXXXXXXX ]
t=7 reset=0 pc=1 acc= x ACC = [x, x, X, x] b= [1111111111111111]
t=9 reset=0 pc=2 acc= x ACC = [0, 1, 2, 15] b = [1111111111111111]
t=11 reset=0 pc=3 acc= x ACC = [0, 1, 2, 15] b = [1111111111111111]
t=13 reset=0 pc=4 acc= x ACC = [0, 1, 4, 2251 b = [1111111111111111]
t=15 reset=0 pc=5 acc=1240 ACC = [0, 1, 4, 2251 b = [1111111111111111]
<&

Example 7.7 The program which load the accumulator the index in each cell, stores it incremented in
12 successive addresses starting from the address 2, than add in accumulator the stored values. The
program is:

cVLOAD(12); ENDWHERE;; // acc <= 12; activate all cells
cNOP; VLOAD(2); // accVect[i] <= 2
cNOP; ADDRLD; // addrVect[i] <= accVect[i]
cNOP; IXLOAD; // accVect[i] <= index
LB(1); cNOP; RISTORE(1); // vectMem[i ][ addrVect + 1] <= accVect[i];
// addrVect <= addrVect + 1
cBRNZDEC(1); VADD(1); // if (acc !== 0) branch to LB(1); acc<=acc-1;
// accVect[i] <= accVect[i] + I,
cVLOAD(13); VLOAD(2); // acc <= 13; accVect[i] <= 2
cNOP; ADDRLD; // addrVect[i] <= accVect[i]
cNOP; VLOAD(0) ; // accVect[i] <= 0
LB(2); cBRNZDEC(2); RIADD (1); // if (acc !== 0) branch to LB(2); acc<=acc-1;

// accVect[i] <=
// accVect[i] + vectMem[i][addrVect + 1];
// addrVect <= addrVect + 1

cHALT; NOP; // halt

The result of simulation is:

t=97 ACC= [78.,91,104,117,130,143,156,169,182,195,208,221,234,247,260,273]

vect[4]
vect[5]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17



7.3. THE SECOND GLOBAL LOOP: SEARCH ORIENTED GENERIC CONNEXARRAY™ 163

vect[6] = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
vect[7] = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
vect[8] = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
vect[9] = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
vect[10] = 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
vect[11] = 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
vect[12] = 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
vect[13] = 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
vect[14] =11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
vect[15] = 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
<

7.3 The Second Global Loop: Search Oriented Generic
ConnexArray’

The global loop closed in the previous section sends back to the array the same data for each cell. A new
feature is added when another loop sends back to the array specific, differentiated information for each
cell. Let us start with a very simple function associated to this second global loop: it takes the Boolean
vector boolVect [0: (1<<x)-1] distributed along the array of cells and sends back two Boolean vectors:

» firstVect[0: (1<<x)-1]: with 1 only on the position of the first occurrence of 1 in boolVect;
it is used to indicate the first active cell

* nextVect[0: (1<<x)-1]: with 1 in all the positions next to the 1 in the firstVect Boolean
vector; it is used to indicate all the cells next to the first active cell

There are 5 additional instructions supported by this second global loop. In the file parameters.v the
following 5 lines are added:

search = 5°b10100, // b[i] <= (acc[i] == op) ? 1 : O

csearch = 5’b10101, // b[i] <= (acc[i] == op) && b[i—-1] ? 1 : 0
insert = 5°bl0110, // acc[first] <= op; acc[next] <= acc[i-1]
delete = 5°bl10111, // acc[first || next] <= acc[i+1]

read = 5’b11000, // b[i] <= b[i-1]

In the file ConnexArray . v the following line is added:

‘include ”"searchOperations.v”

where the searchOperations.v file is shown in Figure 7.23
The instruction search identifies all the positions in array where the accumulator has a certain value,
while the csearch supports the search of a certain string of values.
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Example 7.8 The program which load the index in each acc[i], identifies the occurrence of the stream
<1 2 3> in accVect and adds in acc the next four numbers:

cNOP; ENDWHERE; // set active all cells

cVLOAD(1); IXLOAD; // acc = 1; load index in each cell

¢cVLOAD(2); CSEARCH; // acc = 2; search ’acc’ in each acc[i]

cVLOAD(3); CSEARCH; // acc = 3; search ’acc’ after each active cell

cNOP; CSEARCH; // search ’acc’ after each active cell

cNOP; READ; // boolVect >> 1

¢cCLOAD(0); READ; // acc = reduceSum; boolVect >> 1

cCADD(0); READ; // acc = acc + reduceSum; boolVect >> 1

cCADD(0); READ; // acc = acc + reduceSum; boolVect >> 1

cCADD(0); NOP; // acc = acc + reduceSum

cHALT; NOP; // halt
pc=0 acc= x ACC = [x,X,X,X,X,X,X,X,X,X,X, X, X, X, X, X ] b = [XXXXXXXXXXXXXXXX ]
pc=l acc= x ACC = [Xx,X,X,X,X,X,X,X,X,X,X, X, X, X, X, x ] b= [1111111111111111]
pc=2 acc= 1 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [1111111111111111]
pc=3 acc= 2 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [0100000000000000]
pc=4 acc= 3 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [0010000000000000]
pc=5 acc= 3 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [0001000000000000]
pc=6 acc= 3 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [0000100000000000]
pc=7 acc= 4 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [0000010000000000]
pc=8 acc= 9 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [0000001000000000]
pc=9 acc= 15 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [0000000100000000]
pc=10 acc= 22 ACC = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] b = [0000000100000000]
&

Example 7.9 The program which load the index in each acc[il, identifies the occurrence(s) of the

stream <0 1> in accVect and insert in the vector accVect the sequence <13 15>.
cNOP; ENDWHERE; // set active all cells
cNOP; IXLOAD; // load index in each cell
cNOP; VSEARCH(1); // search 0’ in each acc[i]
c¢cNOP; VCSEARCH(2); // search ’'1’ after each active cell
cNOP; READ; // boolVect >> 1
cNOP; INSERT(13); // insert ’I3’ in the first active cell
cNOP; INSERT(15); // insert ’'15° in the first active cell
cHALT; NOP; // halt

<

The second global loop adds specific features which support search applications, sparse matrix/vector
operations, ... .
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File name:
Description :

cDataOperations .v
the code describes the data operations in Controller

always @(posedge clock)

case (cOpCode)
add :
addc
sub
rsub
subc
rsubc
mult
load
store

bwand
bwor
bwxor
insval
shrightc:
shright
sharight:
brzdec
brnzdec
endcase

{cr, acc} <= acc + op
{cr, acc} <= acc + op cr
{cr, acc} <= acc - op
{cr, acc} <= op - acc
{cr, acc} <= acc - op cr
{cr, acc} <= op - acc cr
{cr, acc} <= {cr, acc = op}
{cr, acc} <= {cr, op}
case (cOpr)
mab : mem[cval[s—-1:0]] <= acc
mri : mem[cval[s—1:0] + addr] <= acc
mri begin mem[cval[s—-1:0] + addr] <= acc
addr <= cval[s—-1:0] + addr
end
val addr <= acc[s—-1:0]
default: addr <= acc[s-1:0]
endcase
{cr, acc} <= {cr, acc & op}
{cr, acc} <= {cr, acc | op}
{cr, acc} <= {cr, acc " op}
{cr, acc} <= {cr, acc[23:0], op[7:0]}
{cr, acc} <= {acc[0], cr, acc[n-1:1]}
{cr, acc} <= {acc[0], 1°b0, acc[n-1:1]}
{cr, acc} <= {acc[0], acc[n-1], acc[n-1:1]}
{cr, acc} <= acc - 1°bl
{cr, acc} <= acc - 1°bl

Figure 7.18: The file describes the data operations performed in Controller: cDataOperations.v
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File name: aDataOperations . v
Description : describes the data operations in Array
always @(posedge clock) for (i=0; i<(I<<x); i=i+l)
if (bool[i]) begin
if (aOpr == mri) addrv[i] <= addrv[i] + aval[v-1:0] ;

case (aOpCode)
add : {erv[i], accv[il} <= accv[i] + opvl[i] ;
addc : {erv[i], accv[il} <= accv[i] + opv[i] + crv[i] g
sub : {erv[i], accv[il} <= accv[i] - opv[i] H
rsub : {erv[i], accv[il} <= opv[i] - accv[i] ;
subc : {erv[i], accv[il]} <= acev[i]l — opv[i] — crv[i] o
rsubc : {erv[i], accv[il} <= opv[i] - accv[i] — crv[i] ;
mult : {erv([i], accv[i]} <= {crv[i], accv[i] * opv[il} ;
load : {erv[i], accv[il} <= {crv[il, opv[i]} g
store : case (aOpr)
mab : vmem|[i][aval[v—-1:0]] <= accv[i] H
mrl : vmem[i][aval[v—=1:0] + addrv[i]] <= accv[i] ;
mri : vmem[i][aval[v—1:0] + addrv[i]] <= accv[i] ;
val : addrv[i] <= accv[i][v-1:0] ;
default addrv[i] <= addrv[i] o
endcase
bwand : {erv([i], accv[i]} <= {crv[i], accv[i] & opv[il} o
bwor : {erv([il], accv[il} <= {crv[i], accv[i] | opv[il} 2
bwxor : {erv[i], accv[il} <= {crv[i], acev[i] "~ opv[il} o
insval : {crv[i], accv[il} <= {crv[i], accv[i][23:0], opv[i][7:0]} 3
gshift : accv[i] <= opv[i][0] ? (i == ((I<<x)-1) ? 0 : accv[i+l])

(i ==0? 0 : accv[i-1]) >
shrightc: {crv[i], accv[il]} <= {accv[il[0], crv[il], accv[i][n—-1:1]}

shright : {crv[i], accv[il} <= {accv[i][0], 1°b0, accv[i][n-1:1]} H
sharight: {crv[i], accv[i]} <=
{accv[i][0], accv[i][n-1], accv[i][n—-1:1]};

vload : vmem[i][accv[i]] <= mem[acc + ixcval] ;
ixload : {crv[i], acev[i]} <= i :
endcase

end

Figure 7.21: The file aDataOperations. v describes data operations in the array of cells.

/s % sk ko ok Rk ok ok ok Rk ok R ok KR oK R kKR oK Rk kR ok Rk ok R ok R ok R ok KR K Rk R R K Rk R Rk Rk R Rk KR R Rk KRk Rk R Rk %
File name: vectorTransfer.v
Description : describes the vector transfer operations
sk ok ok ok R R ok R K R ok KR K R K R K R R K R ok R R K R kKR K Rk K R ok R R ok R K kKR ok kR R ok R R R Rk R Rk ok R Rk o/
always @(posedge clock) for (i=0; i<(1’bl<<x); i=i+1) begin
if (aOpCode == vload) accv([i] <= mem[ addr + i];
if (aOpCode == vstore) mem[addr + i] <= accv|[i]
end

s

Figure 7.22: The file vectorTransfer.v describes the vector transfer operations between array of cells
and Controller’s data memory.
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/*************************************************************************
File name: searchOperations . v
Description : describes the search operations in array
*>I<********************************>|<**************************************/
reg px[0:(1<<x)-1] ;
reg first[0:(1<<x)-1] ;
reg next[0:(1<<x)-1]
// The scan loop
always @(x) for (i=0; i<(l<<x); i=i+1) begin
px[i] = (i == 0) ? bool[0] : (bool[i] | px[i-1])
first[i] (i == 0) ? px[0] : (px[i] & “px[i-1]) ;
next[1] (i == 0) ? 1’b0 : px[i-1]
end

)

always @(posedge clock) for (i=0; i<(l<<x); i=i+1)
case (aOpCode)

search : bool[i] <= (accv[i] == opv[i]) ? 1°bl : 1°b0 ;
csearch : bool[i] <= (i == 0) ? 1°b0 :
((Cacev[i] == opv[i]) & bool[i—-1]) ? 1°bl
1°b0) .
read : bool[i] <= (i==0) ? 0 : bool[i-1] ;
insert : accv[i] <= first[i] ? opv[i] : (mnext[i] ?
accv[i—-1] : accv[i]) R
delete : accv[i] <= (i == (I<<x)-1) ?2 0
((first[i] | next[i]) ? accv[i+1] : accv[i]);
endcase

Figure 7.23: File searchOperations.v describes the search operations in the array of cells.



168 CHAPTER 7. CELLULAR SYSTEM HIERARCHY



Chapter 8

Recursive Hierarchy

The process of adding new functionality to a cellular system is recursive. The hierarchy can no longer be
based on additional loops, and increasing the size beyond a certain limit produces systems that are diffi-
cult to control. For these reasons we are obliged to adopt recursive structuring. The resulting structural
organization will allow a hierarchically distributed control based on a hierarchy of function libraries.

The cellular structures presented in the previous chapter lend themselves to a recursive hierarchical
structuring that leads to a hierarchy of memories that attenuates ”von Neumann Bottleneck”. By associ-
ating the hierarchically distributed memory modules with local execution / processing units, we further
reduce what is more recently designated by ~Turing tariff”.

The recursive hierarchy that we will introduce in this chapter naturally highlights the HOST / AC-
CELERATOR duality imposed by the segregation of intense computation from the complex one. At the
top of the hierarchy will always be HOST the computer that will ”see” everything that floated underneath
like an ACCELERATOR.

8.1 Integrating ConnexArray’" as Accelerator in a Computing
System

Integrating the generic version of ConnexArray’™ as accelerator means to add interfaces and mecha-
nisms to transfer data in and out to/form the memories defined in ConnexArray. The program memory
of the Controller must be loaded and the data memory of controller and the vector memory distributed
along the cells must communicate with the external system memory. Besides these, the host processor
must be able to activate the functions of the accelerator and to receive the minimal information back in
the form of an interrupt.

In Figure 8.1 is shown how ConnexArray’™ is used to design an accelerator for a general purpose
computing system. The interface must support the following communication facilities:

* program load: the program memory, progMen (see Figure 7.13b), of the controller is loaded with
the program(s); the interface signals are:

— fromHost[31:0]: receives programs (stream of instructions) and calls (functions and, if
needed, parameters)
— write and ready: dialog signals
* data transfer: the data memory of the controller, mem (see Figure 7.13b), and the memory dis-

tributed along the cells, vectorMem[i] (see Figure 7.13a), exchange data with the system memory
of the host; the interface signals are:

169



170 CHAPTER 8. RECURSIVE HIERARCHY

ACCELERATOR [+— ack
flag

fromHost
write

ready

ConnexArray Interfaces | fromMemory
dataWrite
inReady

toMemory

dataRead
outReady

Figure 8.1: Integrating ConnexArray’™ with a host means to add an interface for data, programs and
commends.

fromMemory [q-1:0]: receives data form the system memory; it is recommended g =m X n
with m as big as possible to attenuate the effect of the “von Neumann Bottleneck™ (usually,
the range is m = 4+ 12)

dataWrite and inReady: dialog signals

toMemory[g-1:0]: sends data to the system memory

dataRead and outReady: dialog signals

* control: the host processor calls the functions to be accelerated by starting the run of programs
loaded in controller’s program memory. The command is transferred through fromHost port. The
synchronization is done using the signals:

— flag: is the flag sent back by the accelerator, if needed, to notify the end of a process

— ack: acknowledges the receiving of the £1ag signal

8.2 ACCELERATOR as a Recursive Structured Parallel Engine

The generalized form of ConnexArray is presented as a recursive structure of the type shown in Figure
8.2, where:

* MAP: a finite linear array of p cells. Each cell executes, according to its internal state, the com-
mand (instruction, function) issued by the Control unit. It consists from a data (and program)
memory, mem, and a computing engine, eng.

* REDUCE(): a log-depth tree network of functional units used to reduce a n-dimension data struc-
ture to a (n — 1)-dimension data structure.

* SCAN(): a log-depth 2-dimension network of functional units which takes from MAP a vector
and sends back as the result, for example, a permutation or a prefix computation.

* Control(i): is a mono/multi-core computing unit, with its own data and program memory, which
issues commands for the MAP array and receives back from the array a result of the reduction.
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Figure 8.2: MapScanReduce recursive abstract model for parallel computation.

* Memory: stores data (and programs) for the entire system. The transfer between Memory and the
local memories mem(i), distributed in the array, is supervised by the Control unit.

For MapScanReduce(1)[p]:

* eng(0) is an execution unit for 8, 16, or 32 bits words (floating-point operations are performed
as a sequence of integer operations); each execute, according to its internal state, the instructions
issued by the controller in each cycle

» mem(0) is a local data memory of 1 to 16 KB

Control(0) is a computing engine (eng(0) + mem(0) + programMemory) which fetches from its
programMemory a pair of instructions, one for the controller and on to be issued to MAP array

REDUCE(0) is a log-depth circuit performing ADD, MIN, MAX
* SCAN(0) is a log-depth circuit performing prefix and permute functions
* Memory is the external memory containing data and programs

Example 8.1 The recursive hierarchy is exemplified for a 2-level implementation. On the second level
p =4, while on the first level p =256. According to our notation we have a MapScanReduce(2)[4][256].
The system is represented in Figure 8.3, where:

* Control(1) is an ARM processor
s eng(1) is ConnexArray™ with 256 cells, i.e. MapScanReduce(1)[256]
» mem(1) is a SDRAM of 1GB

The lowest level is programmed in assembly language. It provides for the second level a Kernel library
of functions used in programs written in a high level language to develop a library of functions. Thus
the program running on the ARM processor sees the accelerator as a hardware implemented library of
functions.



172 CHAPTER 8. RECURSIVE HIERARCHY

MapScanRed(2)[4]

Figure 8.3: MapScanRed(2)[4] with MapScanRed(1)[256], i.e., MapScanReduce(2)[4][256].

A mix solution is possible, because in a certain function library there are functions that do not benefit
from a parallel implementation. Therefore, part of the library is kept in its original form as an optimized
program to run on the host processor. For example, the inner product (scalar product) of two vectors
does not benefit substantially from a parallel implementation because the transfer time is in the same
order of magnitude as the sequential execution time.

o

8.3 Programming Recursive Structured Parallel Engine

The structural hierarchy corresponds to a functional hierarchy that is directly reflected in the structure of
the programs at each level. For i > 0 the Control(i) computer is programmed in a high level language
(Python, C ++) which calls the accelerated functions on the lower level. The functions on the lower level
are organized in a function library. For Control(0), programming is done in the assembler, as is done to
accelerate any function library designed for any current processor.

def functionName (paramterl, ..., parameterN)
# here comes statement 1
#

# here comes statement M

Example 8.2 Be the simplest version of the recursive hierarchy: MapScanReduce(2)(1)(128). A part

of a small & simple linear algebra kernel function library for the use of a Python program running on
HOST is defined as follows:

# loads at ’dest’ a number of ’size’ p-scalar lines sent by HOST
def loadMatrix (dest, size)

# send to ACC. the pointer to the load program

# send to ACC. the location of the first line

# send to ACC. number of lines
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# sends from ’dest’ a number of ’size’ p-scalar lines to HOST
def storeMatrix (source, size)

# send to ACC. the pointer to the store program

# send to ACC. the location of the first line

# send to ACC. number of lines

# multiply in ’dest’ the matrices located at ’left’ and ’'right’
def matrixMult(dest, left, right)
# send to ACC. the pointer to the multiply program
# send to ACC. the location of the first line of destination
# send to ACC. the location of the first line of left operand
# send to ACC. the location of the first line of right operand

# add in ’dest’ the matrices located at ’left’ and ’'right’

def matrixAdd(dest, left, right)

send to ACC. the pointer to the add program

send to ACC. the location of the first line of destination
send to ACC. the location of the first line of left operand
send to ACC. the location of the first line of right operand

F W WK R

# add to ’dest’ the matrices located at ’left’ and ’'right’

def matrixMACC(dest, left, right)
# send to ACC. the pointer to the MACC program
# send to ACC. the location of the first line of destination
# send to ACC. the location of the first line of left operand
# send to ACC. the location of the first line of right operand

<

On the zero level of the hierarchy, the programs associated with the 4 previously defined functions
are run. These programs are written in assembly language to maximize performance. On any of the
higher levels, a high-level language can be used that accesses the lower level as a library of functions
implemented in the hardware.

Example 8.3 The program which multiplies two 128 x 128 matrices stored in Memory with the result
sent back in the same memory is:

loadMatrix (8, 128)
loadMatrix (136, 128)
matrixMult (264, 8, 136)
storeMatrix (264, 128)

Because the transfer between Memory and ACCELERATOR is done through some FIFO type mem-
ories, the program does not require additional synchronization mechanisms. The program run by HOST
will "take care” to send the two matrices to the ACCELERATOR and to receive from it, when the oper-
ation has been completed, the result that it will be stored in the Memory. For the same reason, transfer
commands can be inserted into the program written in Python before or after the previous sequence
of commands. It is preferable that the matrix loading commands be earlier and the result unloading
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command is good to follow the sequence of commands sent to the accelerator. But, as well, the transfer

controls can be grouped all three before or after the accelerator function sequence.
o

Example 8.4 Another form to use functions is to define the action of a sequence of functions using

lambda expressions, as follows:

(lambda dest, left, right, size:
loadMatrix (left , size)
loadMatrix (right , size)
matrixMult(dest, left, right)
storeMatrix (dest, size) )(264, 8, 136)

<

The use of lambda form
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Chapter 9

Designing Pseudo-Reconfigurable
Systems

Unlike pure reconfigurability, pseudo-reconfigurability involves the instantiation of a configurable &
programmable accelerator in FPGA only at the beginning of a program. It is configurable to be adapted
to the data structures and to the specifics of the functions to be accelerated. It is also programmable to
run functions used to speed up the running of the program which calls the accelerator.

Why pseudo-reconfigurability? Because:
* the current compilers from the high level languages to HDL are far from being efficient

* the overhead introduced by the loading mechanism of a new circuit in FPGA is sometimes to big

Pros for pseudo-reconfigurability
* the overhead of loading FPGA during the run of the program is avoided

* the structure of the accelerator is used for a family of functions which sometimes can be thought
as a kernel of a library of functions

Cons for pseudo-reconfigurability
* a programmable structure cannot achieve the performance of a circuit

* it is not always possible to optimize a programmable structure for the set of functions required to
accelerate a program

The programmable structure that best approximates a circuit is a parallel computing structure. We
decided to use, in adaptable configurations, the MapScanReduce structure described in the last three
sections of Chapter 6.

9.1 The Pseudo-Reconfigurable Computing System
The structure of the Pseudo-Reconfigurable Computing system (see Figure 9.1) consists of:

* HOST SYSTEM: a general purpose computing system with Harvard abstract model (architecture)

177
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HOST SYSTEM
inta
int INPUT/OUTPUT
progEmpty
progRead
prog[31:0] HOST PROCESSOR
ACCELERATOR recEmpty( INTERFACE
recRead
ArecData[63:O]
sentFull
MEMORY
sentWrite
sentData[GB:Ol

Figure 9.1: The hybrid system: HOST SYSTEM & ACCELERATOR.

* ACCELERATOR: a MapScanReduce parallel engine

The HOST SYSTEM (HOST PROCESSOR + MEMORY + INPUT/OUTPUT + INTERFACE) is
supposed to run a complex part of the program stored in its program memory, part of MEMORY, while
the intense part of the program runs in ACCELERATOR. The intense part of the program and the as-
sociated data, stored in the data section of MEMORY, are transferred between HOST SYSTEM and
ACCELERATOR in the following steps:

1.

2.

9.2

in the program to run are identified the functions to be accelerated

the MapScanReduce model is configured according to the data structure and the functions to be
accelerated

. using the parameterized ISA the programs associated to the functions to be accelerated are written

the configured RTL design is loaded in FPGA

. the programs are loaded using the programming port (progEmpty, progRead, progl[31:0])

run the program on HOST PROCESSOR and the function to be accelerated are called on the
programming port while the associated data is transferred through the data ports

Kernel Library Concept

The generic ConnexArray’™ can be used as the accelerator part of the proposed hybrid system. Because
the design is parameterizable and programmable it can be used as a meaningful version for a pseudo-
reconfigurable computing system.
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The functional definition as an accelerator is given by a set of functions implemented as programs
written in assembly language. The data structures for which these programs are defined have a size
given by the limits that the hardware structure imposes. Because real applications always involve a more
extensive data structure, this set of functions will be considered as the kernel library on the basis of which
a library can be developed through host programs written in a high-level language.

9.2.1 Linear Algebra Kernel Library

The assembler must generate two codes:
* the code associated to the kernel function

* the code necessary to call the functions from the kernel

Example 9.1 A small and simple kernel library for linear algebra with the following functions, defined
for an accelerator with N cells:

GET(X,Y) : loads in the accelerator, starting with line X a matrix of Y N-scalar lines received on the
recDatal[63:0] path

SEND(X,Y): sendvia sendDatal[63: 0] an array of Y N-scalar lines stored in the accelerator start-
ing with line X

SQMULT (X,Y,Z) : multiply two N x N matrices stored starting with the locations Y and Z, with the result
in a matrix stored starting with the location X

SQMACC(X,Y,Z) : multiply two N x N matrices stored starting with the locations Y and Z, with the result
added with the matrix stored starting with the location X

START: start the cycle counter
STQOP: stop the cycle counter
INTRQ: interrupt request

SQADD(X,Y,Z): addtwo N x N matrices stored starting with the locations Y and Z, with the result in a
matrix stored starting with the location X

The two sections of code generated for using this library are described in tab 00_theProgram.v. In
the first section appears the program that is loaded at system initialization and in the second section is
sent to the accelerator the program that uses the kernel function library. The instruction cPLOAD received
on the prog[31:0] starts the program loading process. The instruction cPRUN(0) stops the program
load and start its execution from the address O.

The file 00_the Kernel.v starts with the instruction cHALT on the first line, because once loaded,
the kernel library waits to be called. The second section contains a sequence of functions sent by
the host processor correlated with the data transfer managed on the two data paths: recData[63:0],
sentData[63:0]. Each function exits with a jump to the label LB(32).

(Exercise: add a new function to be used by the host processor for accessing the value of the cycle
counter.)

The following code is generated for a 16-cell accelerator.
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File name: 00_theProgram.v
Description: the code for the accelerator sent on the prog[31:0] path

// First section: THE PROGRAM USED TO INITIALIZE THE ACCELERATOR

cPLOAD; ACTIVATE ; // activate all cells
cNOP; IOLOAD; // reset the input/ouput register
cNOP; REDNOP; // inactivate the reduction net
‘include ”00_theKernel.v”

LB(32); cHALT; NOP; // halts the accelerator
cPRUN (0); NOP; // stop program initialization

// and run it from 0
// Second section: EXAMPLE OF PROGRAM SENT BY THE HOST PROCESSOR

START // start the cycle counter
GEIM(16,16); // get the first matrix
GETM(32,16); // get the second matrix
SQMULT (48,16 ,32); // multiply
SOMACC(48,16,32); // multiply and accumulate
SQADD(64 ,48 ,16); // add

SENDM (64 ,16); // send the result

INTRQ; // send the interrupt
STOP; // stop the cycle counter

The program in the second section

Each function is accessed in two steps. The 8 functions are labeled from LB (1) to LB (8), and in
the program memory locations starting from address 4 we write jumps to the previous labels. The host
launches each function with the instructions cPRUN (4), ..., cPRUN (11).

File name: 00 _theKernel.v
Description: LINEAR ALGEBRA KERNEL LIBRARY FUNCTIONS

Sk okok ok ok kR Rk kR Rk k kR kKRR kR kR ko k kR kR KRk Rk Rk kR kR kR R R F ok kR Rk Rk kKK k/

cHALT ; NOP;
cJMP(1); NOP; // GET(addr, lines) cPRUN (4);
cJMP (2); NOP; // SEND(addr, lines) cPRUN(5);
cJMP(3); NOP; // SOMULT(dest, left, right) cPRUN(6);
cJMP (4); NOP; // SOMACC(dest, left, right) cPRUN(7);
cJMP (5); NOP; // START cPRUN(8);
cJMP (6); NOP; // STOP cPRUN(9);
cJMP (7); NOP; // INTRQ cPRUN(10);
cJMP (8); NOP; // SQADD(dest, left, right) cPRUN(I11);
/% kkxkxkkkkx GET MATRIX #kkskskkskskkgkskkgwkskkgkskkkkskskkkskskwkskskkkkskkkkskkkksk k% %/
LB(1); cPARAM; NOP;
cPARAM;; NOP;
cVSUB(1); CLOAD;
¢STORE (0); VSUB(1);
cNOP; ADDRLD;
LB(15); cVLOAD(8); NOP;
cGETV; NOP;

cLOAD (0); IOLOAD;
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/& kkkkkokkkk

LB(2);

LB(16);

/% kkkkkkkkk

LB(3);

LB(17);

LB(4);
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cBRZDEC(32); RISTORE (1);
¢STORE (0); NOP;
cJMP(15); NOP;
SEND MATRIX % % % % % % o s s s s sk sk sk ok ok ok ok % 5 5% o o o o s ok sk ok ook sk ok ok ok ok ok ok o o ok o o ok sk sk sk ok %/
cPARAM ; NOP;
cPARAM ; NOP;
cVADD(1); CLOAD;
¢STORE (0); VSUB(1);
cNOP; ADDRLD ;
cNOP; RILOAD(1);
cLOAD(0); IOSTORE ;
cBRZDEC(32); NOP;
¢cSTORE (0); NOP;
cNOP; NOP;
cNOP; NOP; // x=4
cVLOAD(7); NOP;
¢SENDV ; NOP;
cJMP(16); NOP;
MULTIPLY SQUARE MATRICES s s s s s st s s ot st sk ot s sk i sk sk s ok sk s o s s oo sk ook sk s ok sk o e/
cPARAM ; REDADD;
cVSUB(1); NOP;
c¢cSTORE (3); NOP; // dest => 3
cPARAM ; NOP;
¢STORE (0); NOP; // left = 0
cPARAM;; CLOAD;
¢STORE (2); ADDRLD; // right => 2
cVLOAD(15); NOP;
¢cSTORE(1); NOP;
cLOAD(2); NOP;
cNOP; NOP;
cVADD(1); CALOAD;
¢cSTORE (2); STORE (0) ;
cVLOAD(16); RLOAD(0);
cREDINS ; MULT(0);
cBRNZDEC(17); RILOAD(1);
cLOAD(3); NOP;
cVADD(1); NOP;
¢cSTORE (3); SRLOAD;
cLOAD(2); CSTORE; // CADD;
cVADD(1); NOP;
¢cSTORE (2); CALOAD;
cLOAD(0); STORE (0) ;
cNOP; NOP;
cLOAD(1); CLOAD;
cBRZDEC(32) ; ADDRLD;
¢cSTORE(1); NOP;
cVLOAD(16); RLOAD(0);
cJMP(17); NOP;
/% %% MULTIPLY AND ACCUMUIATE MATRICES s s s s sk s s sk sk ok ke ok ok ok sk sk sk sk ok ok ok sk ok sk sk ok ok ok ook skosk o/
cPARAM ; REDADD;
cVSUB(1); NOP;
¢cSTORE (3); NOP; // dest => 3

cPARAM ;

NOP;
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¢STORE (0); NOP; // left = 0
cPARAM ; CLOAD;
¢STORE (2); ADDRLD; // right => 2
cVLOAD(15); NOP;
¢cSTORE(1); NOP;
cLOAD(2); NOP;
cNOP; NOP;
cVADD(1); CALOAD:;
¢STORE (2); STORE (0) ;
cVLOAD(16); RLOAD(0);
LB(18); cREDINS; MULT(0);
¢cBRNZDEC(18); RILOAD(1);
cLOAD(3); NOP;
cVADD(1); NOP;
cNOP; SRLOAD;
¢cSTORE (3); CAADD;
cLOAD(2); CSTORE;
cVADD(1); NOP;
¢cSTORE (2); CALOAD;
cLOAD(0); STORE (0) ;
cNOP; NOP;
cLOAD(1); CLOAD;
cBRZDEC(32) ; ADDRLD ;
¢STORE(1); NOP;
cVLOAD(16); RLOAD(0);
cJMP(18); NOP;
/% xxxxxxxx%x START COUNTER s%%%%%%%kkkkkkkkkkrkkkkhkkkkkkkkkkkkwwwswnks sk %/
LB(5); CcSTART; NOP;
cJMP(32); NOP;
/% xxxxxxkxkx STOP COUNTER s%%%%%%%%kkskkkkkkmmsnkkkkkkkskskkkwkrmsskkskskskkksk %/
LB(6); cSTOP; NOP;
cJMP(32); NOP;
[k kwskewskskskksk INTERRUPT REQEST st st st se sk s st s ok sk ot sk ok sk st sk sk s s s se st s ok sk st sk ok sk sk s sk s sk s ke st e o sk sk sk e e/
LB(7); cSETINT; NOP;
cJMP(32); NOP;
[k skwskenskskskkk ADD SQUARE MATRICES s st s st sk ot s st st ok sk st s s st s sk se s s ot sk sf sk sk s s s sk s ke s ke st e ok s sk sk e e/
LB(8); cPARAM; NOP;
c¢cSTORE (3); NOP; // dest
cPARAM NOP;
cSTORE (4); NOP; // left
cPARAM ; NOP;
¢cSTORE (5); NOP; // right
cSUB (4); NOP;
¢STORE (0); NOP; // right — left
cLOAD(3); NOP;
cSUB(5); NOP;
¢cSTORE(1); NOP; // dest — right
cLOAD(4); NOP;
cSUB(3); NOP;
cVADD(1); NOP;
¢STORE (2); NOP; // left — dest + 1
cVLOAD(16); NOP;

¢cSTORE (6); NOP;
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LB(19); cLOAD(4); NOP;
cADD(0); NOP;
cADD(1); CALOAD;
cADD(2); CAADD;
c¢cSTORE (4); CSTORE;;
cLOAD(6); NOP;
cVSUB(1); NOP;
¢cSTORE (6); NOP;
¢cBRNZ(19); NOP;
cNOP; NOP;
cNOP; NOP;
cNOP; NOP;
cNOP; NOP;
cNOP; NOP;
cNOP; NOP;
cJMP (32); NOP;

The file cgTRANSFER. v included in 02_codeGenerator (see Appendix C) must be completed with
the following tasks:

File name: LINEAR ALGEBRA KERNEL LIBRARY FUNCTIONS

Description :

task GEIM; // get matrix: get, starting at ’firstVect’ , ’lines’ lines
input [31:0] firstVect ;
input[31:0] lines ;
begin
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar}
{16°b0, _prun,.ctl ,.8’b0000_.0100} 5

endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = firstVect;
endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = lines ;
endLine 5
end

endtask

task SENDM; // send matrix: send, starting at ’firstVect’ , ’lines’ lines
input[31:0] firstVect ;
input[31:0] lines ;
begin
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} =
{16°b0, _prun,._ctl ,_.8°b0000_0101} o
endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = firstVect;
endLine 5
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = lines ;
endLine ;

end
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endtask

task SQADD; // square matrix add
input [31:0] dest ;
input[31:0] first ;
input[31:0] second ;
begin
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} =
{16°b0, _prun,._ctl ,_.8°b0000_1011} R
endLine R
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = dest;
endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = first ;
endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = second ;
endLine 5
end

endtask

task SQMULT; // square matrix multuply
input[31:0] dest ;
input [31:0] first R
input[31:0] second ;
begin
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} =
{16°b0, _prun,._ctl ,.8’b0000_.0110} 0

endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = dest;
endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = first ;
endLine 5
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = second ;
endLine ;
end

endtask

task SQMACC; // square matrix multuply & accumulate
input[31:0] dest R
input[31:0] first ;
input[31:0] second ;
begin
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} =
{16°b0, _prun,.ctl ,.8°b0000_0111} ;
endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = dest;
endLine ;
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = first ;
endLine 5
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} = second ;
endLine ;
end

endtask
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task START; // start cycle counter
begin
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar}
{16°b0, _prun,._ctl ,_.8°b0000.1000} ;
endLine ;
end

endtask

task STOP; // stop cycle counter
begin
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar} =
{16°b0, _prun,.ctl ,_.8°b0000.1001} R
endLine R
end

endtask

task INTRQ:; // interrupt request
begin
{aOpCode, aOperand, aScalar, cOpCode, cOperand, cScalar}
{16°b0, _prun,._ctl ,.8’b0000-1010} 0
endLine ;
end

endtask

Each task generate a first line associated to:
cPRUN(starting address); NOP;

followed, if needed by lines containing 32-bit parameters.
Thus, to call the matrix multiplication function, SQMULT (0, 32, 64), on the prog[31:0] path are
inserted three 32-bit words as follows:

000_00000_00000000_111_11110_00000110
00000000_00000000_00000000_00000000
00000000_00000000_00000000_00100000
00000000_00000000_00000000_01000000

The ACCELERATOR s controller will “wake up” from halt state, when at the output of programm
FIFO the instruction prun is detected, and will execute the program starting with the instruction stored
at the location 6 in the controller‘s program memory. At the location 6 is a jump to the code which
perform the matrix multiplication. The program ends in the halt state testing if a new call waits at the
output of program FIFO. Meantime, from the program FIFO the three parameters used by the function
are downloaded.

o
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Appendix A

Composition: the only independent
rule in Kleene’s model

Kleene’s model looks like a good candidate for a mathematical model for parallel computing as the
Turing’s model was for the mono-core computation. In this respect, the composition seems to be a
natural embodiment of a many-core abstract model for the parallel computing engine. The following
conjecture has a big chance to become a theorem.

Conjecture A.1 The composition rule, implemented as a two level structure (see Figure A.1):
o the map level: a linear array of circuits, one for each h;(X) function
* the reduce level: a log-depth tree-like network of circuits for g(h(X),...,h,(X))

where the functions hj(X) and the function g(hi(X),...,h,(X)) are initial functions or hierarchic
compositions of initial functions, computes any functions f : N" — N.
o

X = <X() ,,,,, )C,,,1>

map

composition

reduction

composition

J(X)

Figure A.1: The circuit version of composition. It is a two-layer construct: the parallel expanded map
layer serially connected with the reduction layer.

Two kinds of parallelism are emphasized by the composition rule:

189
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* an-degree of synchronic parallelism between the computation performed in the circuits of the map
level

* a 2-degree of diachronic (pipeline) parallelism between the computation on the map level and the
computation of the reduction level

If the reduce circuit is detailed so as its function is performed as a composition, as follows:

g, yp) = 8(e(y1,52),8(v3,%4); - --)

where g is an associative and commutative function, then, occurs a new map level with a n/2-degree of
synchronic parallelism followed by a reduce level with p/2 inputs. The process continues until a the
binary form of the function g is reached. Therefore, the overall degree of parallelism is theoretically:

6= (2p—1)/(1 +logap).

In the next sections will be proved that, for the other two rules, specific compositions can be used,
so as we are in the position to conclude that the computation model proposed by Kleene leads to imple-
mentations involving only compositions for which the previous theorem applies.

A.1 Preliminary Definitions

Definition A.1 The reduction-less composition or map composition, MC, is the particular composition
f:N"— N? where:

F(X) = fx0,--Xn-1) = (M (X),...hp(X)) = (V1,---Yp)

hi :N" =N, and g(y1,...,yp) = (V1,---,Yp) is the identity function, fori=1,...,p.
o

Definition A.2 The map-less composition or reduction composition, RC, is the particular composition
f:N*" — N where:

FX) = f(x0,...Xn—1) = g(x1,...xp)

withy; = hi(X) =SEL(i— 1,X) =x;_1, fori=1,...,pand n = p.
o

According to the previous two definitions, the composition rule can be considered as having a map-
reduce structure (Figure A.1), where a MC is serially connected with a RC. The two functional level
can have associated the physical implementation with the A; functions and the g function embodied in
various forms, starting from combinational circuits and reaching the complexity and competence of a
processor, even a computer.

Definition A.3 The function C; : NU+m — NG+HDXn js 4 MC defined as:
C\Y,Z) =Y, P(Xi,Z)) = (X1,..., X, P(Xi,Z;))
where:
* Y= (Xi,...,Xi), the first argument, is a sequence of sequences with X; e N", for j=1,...,i
* Z;, the second argument, is a sequence of m scalars
* hj(Y)=SEL(j,Y)=X,for j=1,2,...,i
* hip1(Y) = R(SEL(i,Y),Z;) = P(X;, Z)).
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The C function adds, at the end of the sequence X, a new element computed using as arguments the
last element of X and and the second argument of the function, Z;.

Definition A.4 Multiple application of C; (see Figure A.2a), starting from C\({X),Z,) = (X,P1(X,Z})),
where the arguments are (X), a one component sequence of n scalars, and Z, the first component of the
sequence of sequences L= (Z1,Z,,...), defines the multi-output pipeline, MOP:

MOP(X,Z) = (X,P\(X,Z1),Ps(Pl,Z2), .., Pe(Peci (.., (PL(X,Z1) .. ), Zi), .)

The resulting structure, with one sequence, X and Z, as arguments and as many as necessary computed
values, P,(Py—1(...,(P1(X,Z1)...)),Zy), is represented in Figure A.2b.
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| Py [ 19| > P et P
I I
| |
Y Y Y i

X

Pi(X,Z)) P(..P(X,Z))...) Pi(X,
P(Pi(XZy),Z,)

a. b.

Figure A.2: The multi-output pipeline structure (MOP). a. The explicit application of C;. b. The
resulting MOP circuit structure.

The function MOP(X,Z) is a total function if the functions P; are total functions, since it is computed
using only the repeated application of the composition C;. For the theoretical model, k is not limited to a
specific value. By defining this sequence of MCs, a left to right serial connection between cells is added
to the general form of the MC structure. Similarly, a right to left connection can be defined.

Definition A.5 The RC function redOR : N" — N is
redOR(X) = xo|x1]...|xi]...

where: X = (x0,X1,...,%i,...), and | denote the bitwise OR logical function.
o
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Definition A.6 The MC function scanFIRST :{0,1}" — {0,1}" is:
scanFIRST (B) = (By,|B1& ~ |By,...|Bi& ~ |Bi_1 ...)
where:
* B=(by,by1,...,b;,...) is a Boolean sequence with an unspecified size
* B; = (bo,by,...,b;) is a finite Boolean sequence (the first i + 1 elements of B)

* | applied to sequence of Booleans it returns the OR functions applied to the components of the
sequence

* & is the logic operator AND
* ~ is the logic negation
o

The scanFIRST(B) function identifies the first occurrence of 1 in a the Boolean sequence B. This
function is based on the prefixes of the logic function OR.

A.2 Primitive Recursion Computed as a Sequence of Compositions

Theorem A.1 The primitive recursive rule is reducible to repeated applications of specific compo-
sitions.
o

Proof A.1 The primitive recursion rule could be applied using its iteratively expanded form:

f(xay) :g(xaf(xmy_ 1)) = :g(xvg(x’g(xv"'g(x7f(x’ 1))))) =
(y—1) times

=glxg(x8(x,...g(x, f(x,0))...))) = glx,8(x, 8(x, ... g(x, h(x)) ...)))
~—_—— —_——

y times y times

Let be, in Figure A.3, the specific instantiation of the M OP function (see Definition A.4). It computes
iteratively, starting in the first stage with the function f(x,0) = h(x), the values f(x,i) fori=0,1,.... In
each stage the predicate i = y is computed. The functions P;, for i = 1,2,..., takes form P,_; the value
of f(X,i—1) and computes f(X,i). The redOR function takes from the MOP function its arguments
asy=1?f(X,i):0fori=0,1,2,.... Because for only one i the predicate y = i takes the value 1, the
function red OR returns the value of f(X,y).

Thus, for primitive recursion we need to compose two compositions, MOP and red OR.

o

Figure A.3 presents the circuit version of the function obtained by composing a specific MOP func-
tion with the redOR function. The two stage computation just described, as a structure indefinitely
extensible to the right, is a theoretical model because the index i takes values no matter how large, simi-
lar with the “infinite” tape of Turing Machine. But, it is very important that the algorithmic complexity
of the description is in O(1), because the functions P;, MOP and red OR have constant size descriptions.
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Figure A.3: The MOP & redOR circuit version for the partial recursive rule.

A.3 Minimization Computed as a Sequence of Compositions

Theorem A.2 The minimization (least-search) rule is reducible to repeated applications of specific
compositions.
o

Proof A.2 The minimization (least-search) rule computes the value of f(x) as the smallest y, if any, for
which g(x,y) =0.

Let be, a specific structure from Figure A.4. Each cell on the map level computes the pair
(predicate,value):

Gi(xa ¢z) = <(g(x, i) = 0)7 (¢l I (i+ 1) : 0)>

The predicate is sent to the scan circuit, while the value to the reduction circuit. The scanFIRST loop
points to the first cell, if any, which provided the predicate (g(x,i) =0) = 1. The reduction level computes
redOR selecting to the output the value i 4- 1 for ¢; = 1, if any. If for x = a the output of the reduction is
0, then the function is not defined for x = a, else the output takes the value f(x)+ 1, because the value O
is reserved to indicate that the function is not defined for the value x applied on the input.

| scanFIRST
v oMo [ o o0t
Y gx0)=0 ¥ § le)=0 ¥ § |g(x2)=0 Y} [2(x)=0
Go G G | ------ G | -
*%?1:0 *qmz:o w;z‘zs;o ¢¢,-?(i+1):0
redOR
Y+

Figure A.4: The circuit structure for the minimization rule.

The computation just described is only a theoretical model, because the index i has an indefinitely
large value. But, the size of the algorithmic description remains O(1).
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A.4 Partial Recursion Means Composition Only

Kleene’s approach defines, besides the composition rule, the other two rules, ordinary (primitive) recur-
sion and minimization (least-search), only for providing the means for classifying the recursive functions
(to emphasize in the class of recursive functions the partial recursive functions and primitive recursive
functions). Therefor, to define the computation the next corollary makes the necessary and sufficient
delimitation.

Corollary A.1 Any computation defined in Definition 4.6 can be done, according to Theorem A.l
and Theorem A.2, using the initial functions and the repeated application of the composition rule.
o

The primitive recursion is differentiated from the partial recursion by the main fact that it does not
require the scan loop. It is only a straight forward sequence of compositions. For the partial recursive
rule, the additional loop interferes with the sequence of compositions in order to validate intermediate
results. Thus, an actual abstract model based on the Kleene’s computational model must provide also a
sequencing mechanism. This means at least to provide programmability at the cells level and an external
control.

Corollary A.1 can be used to define an abstract model for parallel computation. The resulting struc-
ture is able to support the hybrid solution for advanced parallel computation. A Church inspired lambda
architecture [Church *36] can be defined for the complex control, while a Kleene inspired architecture
could be used for solving problems raised by the intense computation. The operating systems problems
can remain to be handled by Turing/Post [Turing *36] [Post *36] inspired engines.



Appendix B

How to instantiate DSP48E1

DSP48E1 #(
// Feature Control Attributes: Data Path Selection
.A_INPUT (), // Selects A input source, "DIRECT” (A port) or "CASCADE” (ACIN port)
.B_INPUT (), // Selects B input source, "DIRECT” (B port) or "CASCADE” (BCIN port)
.USEDPORT(), // Select D port usage (TRUE or FALSE)
.USEMULT (), // Select multiplier usage (”MULTIPLY”, "DYNAMIC”, or "NONE”)
// Pattern Detector Attributes: Pattern Detection Configuration
. AUTORESET_PATDET (), // "NO-RESET”, "RESET-MATCH”, "RESET-NOT-MATCH”
.MASK (), // 48-bit mask value for pattern detect (I=ignore)
.PATTERN (), // 48=bit pattern match for pattern detect
.SEL.MASK (), // rC”, "MASK”, "ROUNDING-MODE!”, “ROUNDING MODE2”
.SEL_PATTERN (), // Select pattern value (”PATTERN” or "C”)
.USE_.PATTERN_DETECT (), // Enable pattern detect (”PATDET” or "NO-PATDET”)
// Register Control Attributes: Pipeline Register Configuration
.ACASCREG (), // Number of pipeline stages between A/ACIN and ACOUT (0, 1 or 2)
.ADREG (), // Number of pipeline stages for pre—adder (0 or 1)
.ALUMODEREG (), // Number of pipeline stages for ALUMODE (0 or 1)
.AREG ()., // Number of pipeline stages for A (0, I or 2)
.BCASCREG (), // Number of pipeline stages between B/BCIN and BCOUT (0, 1 or 2)
.BREG (), // Number of pipeline stages for B (0, I or 2)
.CARRYINREG (), // Number of pipeline stages for CARRYIN (0 or 1)
.CARRYINSELREG (), // Number of pipeline stages for CARRYINSEL (0 or 1)
.CREG ()., // Number of pipeline stages for C (0 or 1)
.DREG (), // Number of pipeline stages for D (0 or 1)
.INMODEREG (), // Number of pipeline stages for INMODE (0 or 1)
.MREG (), // Number of multiplier pipeline stages (0 or 1)
.OPMODEREG (), // Number of pipeline stages for OPMODE (0 or 1)
.PREG ()., // Number of pipeline stages for P (0 or 1)
.USE_SIMD () // SIMD selection (”ONE48”, "TWO024”, "FOURI2”)
)

DSP48E1_inst (

// Cascade: 30-bit (each) output: Cascade Ports

.ACOUT (), // 30-bit output: A port cascade output
.BCOUT (), // 18-bit output: B port cascade output
.CARRYCASCOUT (), // I-bit output: Cascade carry output
.MULTSIGNOUT (), // I-bit output: Multiplier sign cascade output
.PCOUT (), // 48-bit output: Cascade output
// Control: 1-bit (each) output: Control Inputs/Status Bits
.OVERFLOW (), // 1-bit output: Overflow in add/acc output
.PATTERNBDETECT (), // I-bit output: Pattern bar detect output
.PATTERNDETECT (), // I-bit output: Pattern detect output
.UNDERHLOW (), // I-bit output: Underflow in add/acc output
// Data: 4-bit (each) output: Data Ports
.CARRYOUT (), // 4-bit output: Carry output
.P (), // 48-bit output: Primary data output
// Cascade: 30-bit (each) input: Cascade Ports
ACIN (), // 30-bit input: A cascade data input
.BCIN (), // 18-bit input: B cascade input
.CARRYCASCIN (), // I1-bit input: Cascade carry input
.MULTSIGNIN (), // 1-bit input: Multiplier sign input
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.PCIN (), // 48-bit input: P cascade input

// Control: 4-bit (each) input: Control Inputs/Status Bits
.ALUMODE (), // 4=bit input: ALU control input
.CARRYINSEL (), // 3-bit input: Carry select input
.CLK (), // 1-bit input: Clock input
.INMODE (), // 5-bit input: INMODE control input 10111
.OPMODE (), // 7-bit input: Operation mode input

// Data: 30-bit (each) input: Data Ports
A (), // 30-bit input: A data input
.B (), // 18-bit input: B data input
.C (), // 48-bit input: C data input
.CARRYIN (), // I-bit input: Carry input signal
.D , // 25-bit input: D data input

// Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs
.CEA1 (), // I-bit input: Clock enable input for Ist stage AREG
.CEA2 (), // I-bit input: Clock enable input for 2nd stage AREG
.CEAD (), // I-bit input: Clock enable input for ADREG
CEALUMODE (), // 1-bit input: Clock enable input for ALUMODE
CEBI (), // I-bit input: Clock enable input for 1st stage BREG
.CEB2 (), // I-bit input: Clock enable input for 2nd stage BREG
.CEC (), // I-bit input: Clock enable input for CREG
CECARRYIN (), // I-bit input: Clock enable input for CARRYINREG
.CECTRL (), // I-bit input: Clock enable input for OPMODEREG and CARRYINSELREG
.CED (), // I-bit input: Clock enable input for DREG
.CEINMODE (), // I-bit input: Clock enable input for INMODEREG
.CEM (), // I-bit input: Clock enable input for MREG
.CEP (), // 1-bit input: Clock enable input for PREG
.RSTA (), // I-bit input: Reset input for AREG
.RSTALLCARRYIN() , // I-bit input: Reset input for CARRYINREG
.RSTALUMODE (), // I-bit input: Reset input for ALUMODEREG
.RSTB (), // I-bit input: Reset input for BREG
.RSTC (), // I-bit input: Reset input for CREG
.RSTCTRL (), // I-bit input: Reset input for OPMODEREG and CARRYINSELREG
.RSTD (), // 1-bit input: Reset input for DREG and ADREG
.RSTINMODE (), // I-bit input: Reset input for INMODEREG
.RSTM (), // I-bit input: Reset input for MREG
.RSTP () // I-bit input: Reset input for PREG
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ConnexArray’" Simulator

C.1 Top Module: simulator.v

File name: simulator.v
Description : Simulator for the module ConnexArray.v
module simulator #(‘include ”parameters.v”);

reg reset , clock;

integer j;

initial begin clock = 0 ;
forever #1 clock = “clock ;
end
ConnexArray dut(reset R
clock )
initial begin $readmemh (”initialData .txt”, dut.mem); end
// ASSEMBLER
‘include ”“codeGenerator.v” // accelerator ’s assembler
//SIMULATION
initial begin
reset = 1 ;

for (j=0; j<16; j=j+1)
$display (”programMemory[%0d] -\ t-=_%b.", j, dut.progMem[j]);
#4 reset = 0 ;
#190 begin
// DISPLAY VECTORS OF THE ARRAY
for (j=0; j<8; j=j+1)
$display ("vect[%0d] -\ to=9d .\ t_.%0d .\t _%0d.\t._.%0d.\t_-%0d.\t.-%0d.\t_-%0d.\t-%0d.\t

HHHHHHHHHHHHHHHHHHHHH Jo0d 2\ t =%0d =\ t ~%0d -\ t 2%0d =\ t ~%0d -\ t n%0d -\ t %0d .\ t .%0d” ,

j, dut.vmem[O][j], dut.vmem[l][j],
dut.vmem[2][j], dut.vmem[3][j],
dut.vmem[4][j], dut.vmem[S5][j],
dut.vmem[6][j], dut.vmem[7][j],
dut.vmem[8][j], dut.vmem[9][j],
dut.vmem[10][j], dut.vmem[11][]]
dut.vmem[12][j], dut.vmem[13][]]
dut.vmem[14][j], dut.vmem[I5][] ]

// DISPLAY THE SCALAR MEMORY

for (j=0; j<32; j=j+1)

$display ("mem[%0d] .\ to=-%0d.", j, dut.mem[j]);

B

s

end
#2  $finish ;
end

// MONITOR FOR GENERAL TEST
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initial begin
$monitor (7 t=%0d._.pc=%0d._._ir=%b.acc=%d._addr=%0d _ACC_=_[%d , -%0d , -%0d , -%0d , -%0d ,
uuuuuuuuuuuuuuuu %0d , _%0d , .%0d , .%0d , .%0d , -%0d , _%0d , _%0d , _%0d , -%0d , .%0d ] _.ADDR_=_[%0d , -%0d ,
uuuuuuuuuuu 90d , ~%0d , .%0d , .%0d , ~%0d , ~%0d , _%0d , -%0d , .%0d , .%0d , .%0d , -%0d , ~%0d , ~%0d ]
uuuuuuuu b .=[%0d%0d%0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d %0d ],
$time ,
// CONTROLLER
dut.pc, // program counter
dut.ir, // instruction register
dut.acc, // accumulator register
dut . addr , // address register
// MAP-REDUCE ARRAY
// accumulator vector
dut.accv[0], dut.accv[l], dut.accv[2], dut.accv([3],
dut.accv[4], dut.accv[5], dut.accv[6], dut.accv([7],
dut.accv[8], dut.accv[9], dut.accv[10], dut.accv[1l1l],
dut.accv[12], dut.accv[13], dut.accv[14], dut.accv[1l5],
// address vector
dut.addrv[0], dut.addrv[1], dut.addrv[2], dut.addrv[3],
dut.addrv([4], dut.addrv[5], dut.addrv[6], dut.addrv[7],
dut.addrv[8], dut.addrv[9], dut.addrv[10], dut.addrv[I1],
dut.addrv([12], dut.addrv[13], dut.addrv[14], dut.addrv[15],
// Boolean vector
dut.bool [0], dut.bool[1], dut.bool[2], dut.bool [3],
dut.bool[4], dut.bool [5], dut.bool[6], dut.bool [7],
dut.bool[8], dut.bool [9], dut.bool[10], dut.bool[l1],
dut.bool[12], dut.bool[13], dut.bool[14], dut.bool[l5]
)
end
endmodule

codeGenerator.v
assembler for Connex Array

File name:
Description :

reg [4:0] aOpCode B
reg [2:0] aOperand ;
reg [7:0] aScalar B
reg [4:0] cOpCode B
reg [2:0] cOperand B
reg [7:0] cScalar B
reg [p-1:0] deltaAddr ;
reg

[p—1:0] addrCounter 3

with

“labellndex ’

reg [p—1:0] labelTab[0:(1<<p)-1]
task endLine;
begin
dut.progMem|[addrCounter] = {aOpCode ,
aOperand ,
aScalar ,
cOpCode ,
cOperand ,
cScalar } H
addrCounter = addrCounter + 1 g
end
endtask
// sets labelTab in the first pass loading ’counter’
task LB ;
input [4:0] labellndex;
labelTab[labellndex] = addrCounter;
endtask
// uses the content of labelTab in the second pass
task cULB;
input [4:0] labellndex;
begin deltaAddr = labelTab[labellndex] - addrCounter;
cScalar = deltaAddr[7:0] ;

5
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end
endtask
‘include “cgCONTROL.v” // control instructions for controller
‘include “cgADD.v” // addition
‘include “cgADDC.v” // addition with carry
‘include ”cgSUB.v” // subtract
‘include “cgSUBC.v” // subtract with carry
‘include “cgRVSUB.v” // reverse subtract
‘include “cgRVSUBC.v” // reverse subtract with carry
‘include “cgMULT.v” // multiplication
‘include ”cgSHIFT.v” // shift
‘include “cgLOAD.v” // load accumulator
‘include ”cgSTORE.v” // store accumulator
‘include “cgAND.v” // bit-wise AND
‘include “cgOR.v” // bit-wise OR
‘include “cgXOR.v” // bit-wise XOR
‘include “cgARRAYcONTR.v” // array control instructions
‘include “cgGLOBAL.v” // global operations
‘include ”“cgTRANSFER.v” // io transfer operations
‘include ”cgSEARCH.v” // search functions (ONLY FOR THE SEARCH VERSION)
// RUNNING
initial begin addrCounter = 0;
‘include ”program.v” // first pass
addrCounter = 0;
‘include ”program.v” // second pass
end
The line
‘include “cgSEARCH.v” // search functions (ONLY FOR THE SEARCH VERSION )

is added only for the search version.

C.2.1 Assembly Functions

For each instruction, the following files contain tasks which generate the binary form of the instructions used to write programs in assembly language.

Add functions

/*******************************************************************************************
File name: cgADD . v
// in ARRAY
task VADD:; // value add:
// accli] <= acc[i] + {(n-8){aScalar[7]}}, aScalar}
input [7:0] value;

begin aOpCode = add 8
aOperand = val B
aScalar = value ;
endLine B

end

endtask

task ADD; // absolute add
// accl[i] <= acc[i] + vectMem[i][aScalar[v-1:0]]
input [7:0] value;

begin aOpCode = add H
aOperand = mab B
aScalar = value ;
endLine B

end

endtask

task RADD; // relative add:
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// accli]<=acc[i]+vectMem[i][addrVect[i]+aScalar[v-1:0]]
input [7:0] value;

begin aOpCode = add ;
aOperand = mrl ;
aScalar = value ;
endLine 5
end
endtask

task RIADD; // relative add and increment:
// accli]<=acc[i]+vectMem/[i][addrVect[i]+aScalar[v—-1:0]]
// addrVect[i] <= addrVect[i] + aScalar[v-1:0]
input [7:0] value;

begin aOpCode = add ;
aOperand = mri ;
aScalar = value ;
endLine B
end
endtask

task CADD; // co-operand add:
// accli] <= acc[i] + acc

begin aOpCode = add ;
aOperand = cop ;
aScalar = 8’b0
endLine B
end
endtask

// in CONTROLLER
task cVADD; // value add:
// acc <= acc + {(n=-8){cScalar[7]}}, cScalar}
input [7:0] value;

begin cOpCode = add ;
cOperand = val ;
cScalar = value ;
end
endtask

task cADD; // immediate add:
// acc <= acc + mem[cScalar[s—-1:0]]
input [7:0] value;

begin cOpCode = add ;
cOperand = mab ;
cScalar = value ;
end
endtask

task cRADD; // relative add:
// acc <= acc + mem[addr + cScalar[s—-1:0]]
input [7:0] value;

begin cOpCode = add ;
cOperand = mrl ;
cScalar = value ;
end
endtask

task cRIADD; // relative add:
// acc <= acc + mem[addr + cScalar[s—-1:0]]
input [7:0] value;

begin cOpCode = add H
cOperand = mri B
cScalar = value ;

end

endtask

task cCADD; // acc <= acc + mem[coOp]

//  scalar[1:0] = 00: coOp = reduction add
//  scalar[1:0] = 01: coOp = reduction min
//  scalar[1:0] = 10: coOp = reduction max
//  scalar[1:0] = 11: coOp = reduction flag
input [7:0] value;
begin cOpCode = add ;
cOperand = cop 5
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cScalar
end
endtask

Add with carry functions

File name: cgADDC . v

// in ARRAY
task VADDC;
input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task ADDC;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RADDC;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RIADDC;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task CADDC;
begin aOpCode
aOperand
aScalar
endLine
end
endtask

// in CONTROLLER
task cVADDC;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cADDC;

input [7:0] value;

begin cOpCode
cOperand
cScalar

value

addc
val
value

addc
mab
value

addc
mrl
value

addc
mri
value

addc
cop
8°b0

addc
val
value

addc
mab
value
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end
endtask

task cRADDC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRIADDC;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cCADDC;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

Bitwise AND functions

addc
mrl
value

addc
mri
value

addc
cop
value

APPENDIX C. CONNEXARRAY™ SIMULATOR

File name: cgAND . v

//

in ARRAY

task VAND;
input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task AND;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RAND;

input [7:0] value;

begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RIAND;

input [7:0] value;
begin aOpCode
aOperand
aScalar
endLine
end
endtask

bwand
val
value

bwand
mab
value

bwand
mrl
value

bwand
mri
value

5

5
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task CAND;
begin aOpCode
aOperand
aScalar
endLine
end
endtask

// in CONTROLLER
task cVAND;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cAND;

input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cRAND;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRIAND;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cCAND;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

Array Control functions

cgARRAYcONTROL . v

File name:

bwand
cop
8700

bwand
val
value

bwand
mab
value

bwand
mrl
value

bwand
mri
value

bwand
cop
value

task WHEREZERO; // where acc[i]

begin aOpCode

aOperand
aScalar
endLine
end
endtask

where
val

= 8’b0

task WHERECARRY; // where

begin aOpCode
aOperand
aScalar
endLine

carry
where
val
8°bl

B

5

5
B
B

5

0
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end
endtask

task WHERENZERO; //

begin

end
endtask

task WHERENCARRY; // where not carry

begin

end
endtask

aOpCode
aOperand
aScalar
endLine

aOpCode
aOperand
aScalar
endLine

task ELSEWHERE; // else

begin

end
endtask

aOpCode
aOperand
aScalar
endLine

task ENDWHERE;

begin

end
endtask

task NOP;
begin

end
endtask

Controller’s control functions

aOpCode
aOperand
aScalar
endLine

aOpCode
aOperand
aScalar
endLine

where

accl[i] = 0

where
val

5

B

8°b100;

where
val

8°b101;

where

elsew
val

= 8’b0

endwhere

ctl
8’ b0

add
val
87b0

B

B
5

5

5

B

5

5
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File name:

cgCONTROL . v

s s o sk sk R s SR ok R sk o s o R s R s R s R s R R sl o o R R R R sk R R sl o o o s okl R sk R R R R ok o R ok kR R R kR R Rk ko R/

task cJMP;

input [5:0] label

begin

end
endtask

task cBRZ;

cOpCode
cOperand
cULB(label)

input [5:0] label

begin

end
endtask

task cBRNZ;

cOpCode
cOperand
cULB(label)

input [5:0] label

begin

cOpCode
cOperand

jmp
ctl

brz
ctl

brnz
ctl

B
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cULB(label) 5
end
endtask

task cBRZDEC;
input [5:0] label 2

begin cOpCode = brzdec;
cOperand = il ;
cULB(label) ;
end
endtask

task cBRNZDEC;
input [5:0] label

begin cOpCode = brnzdec ;
cOperand = ctl ;
cULB(label) ;
end
endtask
task cHALT;
begin cOpCode = jmp ;
cOperand = il ;
cScalar = 8'b0
end
endtask
task cNOP;
begin cOpCode = add 8
cOperand = val B
cScalar = 8’b0 ;
end
endtask

Global functions

/*******************************************************************************************
File name: cgGLOBAL . v
*******************************************************************************************/
// SHIFTS

task GRSHIFT; // global right shift with one position

begin aOpCode = gshift;
aOperand = val 5
aScalar = 8’b0 ;
endLine B
end
endtask

task GLSHIFT; // global left shift with one position

begin aOpCode = gshift;
aOperand = val ;
aScalar = 8’bl ;
endLine B
end
endtask

Load functions

/*******************************************************************************************
File name: cgLOAD . v
*******************************************************************************************/
// in ARRAY
task VLOAD;
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input [7:0] value
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task LOAD;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RLOAD;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RILOAD;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task CLOAD;
begin aOpCode
aOperand
aScalar
endLine
end
endtask
task IXLOAD;
begin aOpCode
aOperand
aScalar
endLine
end
endtask

// in CONTROLLER

task cVLOAD;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cLOAD;

input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cRLOAD;

input [7:0] value;
begin cOpCode
cOperand

load
val
value

load
mab
value

load
mrl
value

load
mri
value

load
cop
8700

B

B

5

ixload ;

val
8’b0

load
val
value

load
mab
value

load
mrl

5

5

5
5

B

5

APPENDIX C. CONNEXARRAY™ SIMULATOR



C.2. CODE GENERATOR

cScalar = value ;
end
endtask

task cRILOAD;
input [7:0] value;

begin cOpCode = load ;
cOperand = mri ;
cScalar = value ;
end
endtask

task cCLOAD; // scalar[1:0]
// scalar[1:0]
// scalar[1:0]
// scalar[1:0]
input [7:0] value;

00: reduction add
01: reduction min
10: reduction max
11: reduction flag

begin cOpCode = load ;
cOperand = cop H
cScalar = value ;
end
endtask

Multiplication functions

File name: cgMULT . v
// in ARRAY
task VMULT;
input [7:0] value;

begin aOpCode = mult ;
aOperand = val B
aScalar = value ;
endLine B
end
endtask
task MULT;
input [7:0] value;
begin aOpCode = mult ;
aOperand = mab 5
aScalar = value ;
endLine B
end
endtask
task RMULT;
input [7:0] value;
begin aOpCode = mult ;
aOperand = mrl 3
aScalar = value ;
endLine B
end
endtask
task RIMULT;
input [7:0] value;
begin aOpCode = mult ;
aOperand = mri ;
aScalar = value ;
endLine B
end
endtask
task CMULT;
begin aOpCode = mult ;

aOperand = cop ;
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aScalar

endLine
end
endtask

// in CONTROLLER
task ¢cVMULT;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cMULT;

input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cRMULT;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRIMULT;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task ¢cCMULT;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

Bitwise OR functions

mult
val
value

mult
mab
value

mult
mrl
value

mult
mri
value

mult
cop
value

5

APPENDIX C. CONNEXARRAY™ SIMULATOR

File name: cgOR . v

// in ARRAY
task VOR;
input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task OR;

input [7:0] value;
begin aOpCode
aOperand
aScalar
endLine
end

bwor
val
value

bwor
mab
value

5
5

B

5

5
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endtask

task ROR;
input
begin

end
endtask

task RIOR;
input
begin

end
endtask

task COR;
begin

end
endtask

[7:0] value;
aOpCode
aOperand
aScalar
endLine

[7:0] value;
aOpCode
aOperand
aScalar
endLine

aOpCode
aOperand
aScalar
endLine

// in CONTROLLER

task cVOR;
input
begin

end
endtask

task cOR;
input
begin

end
endtask

task cROR;
input
begin

end
endtask

[7:0] value;
cOpCode
cOperand
cScalar

[7:0] value;
cOpCode
cOperand
cScalar

[7:0] value;
cOpCode
cOperand
cScalar

task cRIOR;

input
begin

end
endtask

task cCOR;
input
begin

end
endtask

[7:0] value;
cOpCode
cOperand
cScalar

[7:0] value;
cOpCode
cOperand
cScalar

bwor
mrl
value

bwor
mri
value

bwor
cop
8°b0

bwor
val
value

bwor
mab

= value

bwor
mrl
value

bwor
mri
value

bwor
cop
value
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Reverse subtract functions

APPENDIX C. CONNEXARRAY™ SIMULATOR

File name: cgRVSUB. v

// in ARRAY
task VRVSUB;
input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RVSUB;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RRVSUB;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask

task RIRVSUB;
input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask

task CRVSUB;
begin aOpCode

aOperand
aScalar
endLine
end
endtask

// in CONTROLLER
task cVRVSUB;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cRVSUB;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRRVSUB;
input [7:0] value;
begin cOpCode
cOperand
cScalar

rsub
val
value

rsub
mab
value

rsub
mrl
value

rsub
mri
value

rsub
cop
87b0

rsub
val
value

rsub
mab
value

rsub
mrl
value

B

B
5

5

5

5

B

5

5

B
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end
endtask

task cRIRVSUB;
input [7:0] value;

begin cOpCode = rsub
cOperand = mri B
cScalar = value ;
end
endtask
task cCRVSUB;
input [7:0] value;
begin cOpCode = rsub
cOperand = cop 5
cScalar = value ;
end
endtask

Reverse subtract with carry functions

File name: cgRVSUBC. v
// in ARRAY

task VRVSUBC;
input [7:0] value;

begin aOpCode = rsubc ;
aOperand = val B
aScalar = value ;
endLine H
end
endtask
task RVSUBC;
input [7:0] value;
begin aOpCode = rsubc ;
aOperand = mab B
aScalar = value ;
endLine B
end
endtask
task RRVSUBC;
input [7:0] value;
begin aOpCode = rsubc ;
aOperand = mrl 3
aScalar = value ;
endLine B
end
endtask
task RIRVSUBC;
input [7:0] value;
begin aOpCode = rsubc ;
aOperand = mri H
aScalar = value ;
endLine B
end
endtask
task CRVSUBC;
begin aOpCode = rsubc ;
aOperand = cop B
aScalar = 8’b0
endLine 5

end
endtask
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//

in CONTROLLER
task cVRVSUBC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRVSUBC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRRVSUBC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRIRVSUBC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cCRVSUBC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

Search functions

= rsubc ;
= val B
= value ;
= rsubc ;
= mab 5
= value ;
= rsubc ;
= mrl B
= value ;
= rsubc ;
= mri B
= value ;
= rsubc ;
= cop H
= value ;

This file is used only for the search version of the system.

APPENDIX C. CONNEXARRAY™ SIMULATOR

File name:

cgSEARCH . v

// SEARCH
task SEARCH; // search co—operand

begin aOpCode

aOperand
aScalar
endLine
end
endtask

task VSEARCH; // search

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask

task CSEARCH; // search

= search;
= cop H
= 8’b0 ;
5
value
= search;
= val B
= value ;

co—operand
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begin aOpCode = csearch ;
aOperand = cop ;
aScalar = 8’b0 ;
endLine ;
end
endtask
task VCSEARCH; // search value
input [7:0] value;
begin aOpCode = csearch;
aOperand = val B
aScalar = value ;
endLine B
end
endtask
// INSTERT
task INSERT; // insert value in the first active position
input [7:0] value;
begin aOpCode = insert;
aOperand = val B
aScalar = value ;
endLine B
end
endtask
task CINSERT; // insert co—operand in the first active position
begin aOpCode = insert;
aOperand = cop 5
aScalar = 8°b0 ;
endLine B
end
endtask
// DELETE
task DELETE; // delete the first active position
begin aOpCode = delete;
aOperand = val ;
aScalar = 8'b0
endLine B
end
endtask
// READ
task READ; // shift right one position Boolean vector
begin aOpCode = read ;
aOperand = val B
aScalar = 8’b0
endLine 5
end
endtask
Shift functions

File name: cgSHIFT . v

// in ARRAY
task SHRIGHTC; // shift
begin aOpCode
aOperand
aScalar
endLine
end
endtask

task SHRIGHT; // shift
begin aOpCode
aOperand

right

right one bit
shrighte ;
val ;
8’b0 ;

5

position with carry

value positions
= shright ;
val ;
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aScalar = 8'b0
endLine
end
endtask

task SHARIGHT; // shift right arithmetic one bit position

begin aOpCode = sharight ;
aOperand = val ;
aScalar = 8’b0 ;
endLine ;
end
endtask

task INSVAL; // insert value on the least positions
input [7:0] value;

begin aOpCode = insval;
aOperand = val B
aScalar = value ;
endLine H
end
endtask

// in CONTROLLER
task cSHRIGHTC; // shift right one bit position with carry

begin cOpCode = shrightc
cOperand = val ;
cScalar = 8’b0 ;
end
endtask

task cSHRIGHT; // shift right value positions

begin cOpCode = shright ;
cOperand = val ;
cScalar = 8’b0 H
end
endtask

task cSHARIGHT; // shift right arithmetic one bit position

begin cOpCode = sharight ;
cOperand = val ;
cScalar = 8’b0 ;
end
endtask

task cINSVAL; // insert value on the least positions
input [7:0] value;

begin cOpCode = insval;
cOperand = val 5
cScalar = value ;
end
endtask

Store functions

File name: cgSTORE . v
// in ARRAY
task ADDRLD; // addr[i] <= acc[i]

begin aOpCode = store ;
aOperand = val 5
aScalar = 8°b0 ;
endLine B
end
endtask

task STORE; // store acc[i] at arrayScalar
input [7:0] value;
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begin aOpCode = store ;
aOperand = mab B
aScalar = value ;
endLine B
end
endtask

task RSTORE; // store acc[i] at addr[i] + arrayScalar
input [7:0] value;

begin aOpCode = store ;
aOperand = mrl B
aScalar = value ;
endLine B
end
endtask

task RISTORE; // store acc[i] at addr[i] + arrayScalar
// addr[i] <= addr[i] + contrScalar
input [7:0] value;

begin aOpCode = store ;
aOperand = mri B
aScalar = value ;
endLine B
end
endtask

// in CONTROLLER
task cADDRLD; // addr <= acc

begin cOpCode = store ;
cOperand = val B
cScalar = 8’b0 ;
end
endtask

task cSTORE; // store acc at contrScalar
input [7:0] value;

begin cOpCode = store ;
cOperand = mab H
cScalar = value ;
end
endtask

task cRSTORE; // store acc at addr + contrScalar
input [7:0] value;

begin cOpCode = store ;
cOperand = mrl B
cScalar = value ;
end
endtask

task cRISTORE; // store acc at addr + contrScalar
// addr <= addr + contrScalar
input [7:0] value;

begin cOpCode = store ;
cOperand = mri B
cScalar = value ;
end
endtask

Subtract functions

File name: cgSUB . v
*******************************************************************************************/
// in ARRAY
task VSUB:; // value sub:
// accli] <= acc[i] - {(n-8){aScalar[7]}}, aScalar}
input [7:0] value;

215
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begin aOpCode = sub H
aOperand = val B
aScalar = value ;
endLine B

end

endtask

task SUB; // absolute sub
// accl[i] <= acc[i] — vectMem[i][aScalar[v—-1:0]]
input [7:0] value;

begin aOpCode = sub H
aOperand = mab B
aScalar = value ;
endLine H

end

endtask

task RSUB; // relative sub:
// accli]<=acc[i]-vectMem[i][addrVect[i]+aScalar[v—-1:0]]
input [7:0] value;

begin aOpCode = sub ;
aOperand = mrl B
aScalar = value ;
endLine B
end
endtask

task RISUB; // relative sub:
// accli]<=acc[i]-vectMem[i][addrVect[i]+aScalar[v-1:0]]
// addrVect[i] <= addrVect[i] + aScalar[v-1:0]
input [7:0] value;

begin aOpCode = sub ;
aOperand = mri ;
aScalar = value ;
endLine B
end
endtask

task CSUB; // co-operand sub:
// accli] <= acc[i] - acc

begin aOpCode = sub ;
aOperand = cop ;
aScalar = 8’b0
endLine ;
end
endtask

// in CONTROLLER
task cVSUB; // value sub:
// acc <= acc — {(n-8){cScalar[7]}}, cScalar}
input [7:0] value;

begin cOpCode = sub H
cOperand = val B
cScalar = value ;

end

endtask

task cSUB; // immediate sub:
// acc <= acc — mem[cScalar[s—-1:0]]
input [7:0] value;

begin cOpCode = sub ;
cOperand = mab H
cScalar = value ;
end
endtask

task cRSUB; // relative sub:
// acc <= acc — mem[addr + cScalar[s—-1:0]]
input [7:0] value;

begin cOpCode = sub ;
cOperand = mrl ;
cScalar = value ;
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end
endtask

task cRISUB; // relative
// acc <= acc — mem[addr + cScalar[s—1:0]]
// addr <= addr + cScalar[s—-1:0]

input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cCSUB;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

Subtract with carry functions

File name:

//

cgSUBC . v

in ARRAY

task VSUBC;
input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task SUBC;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RSUBC;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask

task RISUBC;
input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task CSUBC;
begin aOpCode
aOperand
aScalar

endLine

sub :

sub
mri
value

sub
cop
value

subc
val
value

subc
mab
value

subc
mrl
value

subc
mri
value

subc
cop
8’ b0

5

5

>
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end
endtask

// in CONTROLLER
task cVSUBC;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cSUBC;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRSUBC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cRISUBC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

task cCSUBC;
input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

Transfer functions

subc
val
value

subc
mab
value

subc
mrl
value

subc
mri
value

subc
cop
value

B

APPENDIX C. CONNEXARRAY™ SIMULATOR

File name: cgTRANSFER . v

// in CONTROLLER & ARRAY

task VGET;
begin aOpCode
aOperand
aScalar
endLine
end
endtask
task VSEND;
begin aOpCode
aOperand
aScalar
endLine
end

endtask

vload
val
8°b0

vstore ;

val
8°b0

5

>

B

5
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Bitwise exclusive OR functions

File name: cgXOR. v

// in ARRAY
task VXOR;
input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task XOR;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RXOR;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task RIXOR;

input [7:0] value;
begin aOpCode

aOperand
aScalar
endLine
end
endtask
task CXOR;
begin aOpCode
aOperand
aScalar
endLine
end
endtask

// in CONTROLLER
task cVXOR;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cXOR;

input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cRXOR;

input [7:0] value;

begin cOpCode
cOperand
cScalar

bwxor
val
value

bwxor
mab
value

bwxor
mrl
value

bwxor
mri
value

bwxor
cop
87b0

bwxor
val
value

bwxor
mab
value

bwxor
mrl
value
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end
endtask

task cRIXOR;
input [7:0] value;
begin cOpCode

cOperand
cScalar
end
endtask
task cCXOR;

input [7:0] value;
begin cOpCode
cOperand
cScalar
end
endtask

bwxor
mri
value

bwxor
cop
value

APPENDIX C. CONNEXARRAY™ SIMULATOR
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