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Introduction

Functional Electronics (FE) means Embedded Computation (EC), i.e., circuits and information. In the
domain of FE we are interested by the High Performance FE (HPFE), which means EC as Artificial
Intelligence (AI).

EC becomes increasingly dominated by parallel computation in the form of parallel accelerators.
Thus, PHFE emerges.

AI in its new embodiment, after the last “AI winter”, is based on Machine Learning (ML). It is in the
top of a stack build starting from Heterogenous Parallel Accelerators (HPA). In Figure 1, HPFE includes,
by turn:

-based
Heterogenous
Accelerator

Linear Algebra
Library

Deep Learning

Machine Learning

Artificial Inteligence

High Performance
Functional Electronics

MapReduce

Figure 1:

• AI

• ML

• Deep Learning
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• Linear Algebra Library with non-linear activating functions (unfortunately, we do not have a pos-
itive definition for non-computable functions to use them instead of the non-linear functions)

• MapReduce based HPA

Part I: Function & Structure & Information

Chapter 2 Formal Languages is intended as an introduction to Noam Chomsky’s theory of for-
mal languages to support the association between function and structure from the perspective of formal
language of description.

Chapter 3 Structures & Languages associates to each type of language a structure with a certain
level of autonomy given by the number of loops that define the functionality of the system, so that
languages of type three are associated with systems with two loops, those of type two with systems with
three loops, and those of type one to four-loop systems.

Chapter 4 Loops & Information qualitatively defines the concept of information as a structure with
syntactic order that acts through the associated meaning in a given context.

Part II: The Parallel Engine

Chapter 5 What Means Parallel Computation introduces, starting form the computational model
proposed by Stephen Kleene, the concept of parallel computation.

Chapter 6 The Generic Parallel Engine describes the generic version of the parallel accelerator
used in these lectures.

Part III: Berkeley view of parallel computing

Chapter 7 Berkely’s View presents the 13 class of problems (“dwarfs”) typical for parallel acceler-
ators.

Chapter 8 The first Dwarf: Dense Linear Algebra presents the dense linear algebra problems.
Chapter 9 The Second Dwarf: Sparse Linear Algebra presents the sparse linear algebra problems.

Part IV: Machine Learning

Chapter 10 What is Machine Learning? is answered by learning from data.
Chapter 11 Clustering
Chapter 12 Regresion
Chapter 13 Markov Models

Appendix A introduces several ways of dealing with the histories leading to the emergence and
development of computer science and technology.

Appendix B provides the Kleene’s computational model of Partial Recursive Functions and two
theorems which allow us to use only the composition rule.

Appendix C describes the design and use of a heterogeneous computing system based on a Map-
ScanReduce accelerator introduced in Chapter 5.
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Chapter 1

Functional Approach

In this section the meaning of the term Functional Electronics, FE, is explained. The origin of the term,
how its perception and application evolved, but especially the perspective offered to digital electronics.

1.1 The Origin of the Term Functional Electronics

The term functional electronics was first used in 1959 by J. A. Morton, from Bell Telephone Laboratories,
in an attempt to find an alternative to the excessive structuring mechanisms in electronics. With this
he tried to launch an offensive against the ”tyranny of numbers”, that is, against the tendencies of an
excessive formal approach. In this first understanding, functional electronics tried to achieve functions
based only on the intrinsic properties of certain materials, avoiding circuit configurations and numerical
modeling. Too many networks and too many numbers!

The evolution of research and its market did not confirm, as expected, this orientation. J. A. Mor-
ton’s main error was that he did not make the necessary distinction between the numerical and the non-
numerical, thinking of computer science as an exclusive domain of the numerical. By doing so, he
missed the fusion between electronic circuit structures and informational ones, a fact that was excusable
in the sixties, when microelectronics had just emerged as a term and the image that researchers had of
it was far from what it is today. Nor was the meaning of information, as a symbolic structure of what
acts, sufficiently clarified. Information must be seen as a distinct entity, apart from data (numerical or
non-numerical) in a computing structure, it is a fundamental ingredient that allows a new approach to
electronics in a truly functional perspective. This new approach is proposed by Mihai Drăgănescu in the
eighties.

1.2 Current Acceptance of the Term Functional Electronics

In its new acceptance, functional electronics is constituted as a set of techniques that involve logical and
informational structures subordinated to architectures designed in such a way as to satisfy the require-
ments of man and society in their effort to achieve a state of socio-human civilization. Such a vision
goes beyond the purely technical approach. The world of technical objects, in alliance with the world
of signs, serve man and society in a way in which structure and form are pushed into the background so
that the set of functions grouped in architectures can appear in the foreground.

We could define traditional electronics as structural electronics, which provide the functions that
technologically possible electronic structures can perform under conditions of efficient production. What

3
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does functional electronics imply in addition or otherwise?
Functional electronics came at the end of a very long journey, traveled by man and society, during

which a world of signs and a world of tools emerged and developed, which today tend to merge into a
world of intelligent tools.

Through successive externalizations1, man created two new worlds: the world of signs and the world
of tools. We could speak of the world of signs as an ethnosphere in which, in addition to the species,
essential information for the existence of man and society is stored and memorized. Similarly, we can
use the term technosphere for the world of tools.

The chance to be and to preserve freedom, therefore the meaning of existence, man ensured through
the fusion between the technosphere and the ethnosphere, between tool and sign, between action and
sign, between work and culture.

The dominant concept in the technosphere was and still is that of structure, and in the ethnosphere
that of form. Technical objects were obstinately structured and the world of signs was formalized, both
thus trying to solve the problems posed by complexity.

Through externalization, man avoided, in addition to excessive specialization, complexity. Until now,
both the technosphere and the ethnosphere have struggled with complexity largely independently of each
other. They may have a better chance if they join forces in a synthesis that would allow them to overcome
structuralism and formalism through an architectural approach. The unstructured and the informal can
impose themselves, at least partially, within the scope of an architecture, breaking through rigid barriers
in the effort to master complexity.

Form and structure support each other in the scientific endeavor. A structure can be formally de-
scribed, and a formal description is usually structured. In many situations, speaking of a structure is
equivalent to speaking of a form. A structure can associate a language and, and, reciprocally, in the
cutting edge of the world of tools and signs. Microelectronics and computer science seem to be the most
advanced echelons of the two worlds that, at this level, are ready to merge, opening the era of tools that
process signs or of signs that behave like tools.

A first step on the path to this fusion is functional electronics.

1.2.1 Function vs. Structure

The system, a very ”open” entity. How can the architectural approach surpass the formal-structural one?
By the fact that it can also encompass informal functions achievable with unstructured objects.

We understand by an architecture a set of functions defined at the interface between two domains.
M. Drăgănescu does not limit the functions associated with an architecture to those that can be defined
rigorously formally. As a consequence, the concrete realization of these functions will not always imply
structures either. Unstructured, informal objects can coexist with formally defined structures.

Structures can only be formal, similar to forms that can only be structured. Structural electronics
is limited to what is formally structurable, while functional electronics is much more highly limited,
the domain of informal functions being much extended beyond that of functions achievable with formal
structures.

The structure supports a purely systemic approach by offering products whose ”closure” through
reality is not taken as a fundamental design criterion.

1Term coined by André Leroi-Gourhan, [31].
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1.2.2 The System, a Too ”Open” Entity

The technosphere dominated by structural electronics is open to man and society, in the sense that a
loop is not closed that would generate in all situations a truly valuable integration of the products of this
technical field. Electronics, through its future functional character, will have to deal with what it is not,
in order to ensure its closure in a context of potentiated value. How many of the products offered by
traditional electronics correspond to real human or social needs? (Let’s ask this question in the context
in which the situation in the electronics field seems to be, in any case, among the least serious). A bad
closure of a technical domain through social, human and natural can only lead to a process of continuous
degradation of the environment and life, reducing the chances of access to civilization.

The coupling beyond the strictly technical domain ensures functional electronics the possibility of
introducing into reality objects that tend to be, and exceed, the status of a system through the capacity to
integrate, leaving it with as few open loops as possible. In the limit, a system that closes itself tends to
cease to be a system. Electronics thus transcends the purely technical, or the technical, for the beginning
through functional electronics, being able to attach valences that truly integrate it into the nature-man-
society triad. An electronic system can have a domain of use.

An electronic function presupposes a codomain in which its utility can manifest itself. If the function
tends to be bijective, the premises for closing a loop that suspends the systemic character of the electronic
object are created.

1.2.3 Formal vs. Non-formal

In an architecture we can include formal and informal functions in a coherent whole, compatible with a
certain context and subordinated to a certain purpose.

The system had its own function, independent of the context. Architecture is always related to
something, it can never be an architecture in itself. The system focuses on its function, and architecture
offers functions at the interface between two realities, which can be described formally or informally. The
system is not fulfilled as a concept except in a formal framework, while architecture allows for formal
and informal approaches in equal measure. When the informal should not be taken into consideration,
the systemic approach proves to be sufficient. We are forced to take informality into account when we
want to close at least partially the too large openings that systemicity implies.

Objects of traditional structural electronics interact with man, nature or other objects mainly through
signals, which can be audiovisual, obtained from transducers or generated to trigger electromechanical
actions. Functional electronics mainly involves symbolic interactions through natural language or lan-
guages with minimal syntactic restrictions; images also play an increasingly important role. Another
characteristic is that the syntactic that had priority in structural electronics is increasingly replaced by se-
mantics. The signals at the terminals of functional electronic objects become symbols with the capacity
to mean, thus flooding reality with information flows that did not previously exist.

Internal symbols manipulated by an electronic tool can also acquire semantic values. When a sym-
bolic structure acquires meaning in a digital structure, we can say that that structure has degenerated
into information [16]. For reasons strictly related to the optimization of the internal structure, digital
systems have evolved in such a way that symbolic structures have appeared and developed within them.
At the moment when they have acquired such significance for internal functions, they have begun to
seize control of the functions seen from the outside, or, in other words, they have taken over control of
the actualization from the architectural perspective. The development and definition of systems from
the architectural perspective is subject to strong structural restrictions at the moment when information
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seizes control of the functional actualization.
At the level of microelectronics and computer science, the channel through which the world of tools

communicates stimulatingly, with rapid and continuous effects, with the world of signs.

1.3 Algorithmic Complexity in Defining Functional Electronics

1.3.1 Solomonov – Kolmogorov – Chaitin: Algorithmic Information

All big ideas have many starting points. It is the case of algorithmic information theory too. We can
emphasize three origins of this theory [8]:

• Ray Solomonoff’s researches on the inference processes [41]

• Andrey Nikolaevich Kolmogorov’s works on the string complexity [27]

• Gregory Chaitin’s work on the length of programs that generate binary strings [7].

Solomonoff’s researches

Solomonoff’s on prediction theory can be presented using a short story. A physicist makes the
following experience: he observes at each second a binary manifested process and records the events as
a string of 0’s and of 1’s, thus obtaining a n-bit string. For predicting the (n+1)-th events the physicist
is driven to the necessity of a theory. He has two possibilities:

1. studying the string the physicist finds a pattern, thus he can predict rigorously the (n+1)-th event

2. studying the string the physicist doesn’t find a pattern and can’t predict the next event.

In the first situation, the physicist will write a scientific paper with a new theory: the “formula” just
discovered is the pattern emphasized in the recorded binary string. Thus, the behavior of the studied
reality can be condensed and a concise and elegant formalism comes into being. Therefore, there are two
kinds of strings:

• patternless or random strings that are incompressible, having the same size as its shortest descrip-
tion

• compressible strings in which finite substrings, the patterns, are periodically repeated, allowing a
shortest description.

Kolmogorov’s work

Kolmogorov starts from the next question: Is there a qualitative difference between the next two
equally probable 16 bits words:

0101010101010101

0011101101000101

or there does not exist any qualitative difference? Yes, there is. The first string has a well-defined
generation rule and the second seems to be randomly generated. We need, according to Kolmogorov,
additional concepts to distinguish the two equally probable strings. If we use a fair coin for generating
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the previous strings, then we can say that in the second experience all is well, but in the first - the perfect
alternating of 0 and of 1 - something happens! A strange mechanism, maybe an algorithm, controls the
process. Kolmogorov defines the relative complexity (now named Kolmogorov complexity) in order to
solve this problem.

Definition 1.1 The complexity of the string x related to the string y is

K f (x|y) = min{|p| | p ∈ {0,1}∗, f (p,y) = x}

where p is a string that describes a procedure, y is the initial string and f is a function; |p| is the length
of the string p. ⋄

The function f can be a Universal Turing Machine (says Gregory Chaitin in another context) and the
relative complexity of x related to y is the length of the shortest description p that computes x starting
with y on the tape. Returning to the two previous binary strings, the description for the first binary string
can be shorter than the description for the second, because the first is built using a very simple rule and
the second has no such a rule.

Kolmogorov proved that always there exists a function that generates the shortest description for
obtaining the string x starting from the string y.

Chaitin’s approach

The teeneager Chaitin used a Universal Turing Machine, M, instead of the function f . He was
preoccupied to study the minimum length of the programs that generate binary strings.

Definition 1.2 Chaitin’s complexity of the string x as follows:

CM(x) = min{|p| | p ∈ {0,1}∗,M(p) = x}

where p is the shortest program of length |p| that generate on the machine M the string x starting with
an empty string on its tape. ⋄

Chaitin defines the basic concepts of algorithmic information theory, as follows [?].

Definition 1.3 Algorithmic probability, P(s), is the probability that the machine M eventually halts with
the string s on the output tape, if each bit of the program p results by a separate toss of an unbiased coin.
⋄

Definition 1.4 The algorithmic entropy of the binary string s is H(s) =−log2P(s). ⋄

Definition 1.5 The algorithmic information of the string s is I(s) = min(H(s)), i.e. the shortest program
written for the best machine M. ⋄

In this approach the machine complexity or the machine language complexity does not matter, only
the length of the program measured in number of bits is considered.

Theorem 1.1 The minimal algorithmic entropy for a certain n-bit string is in O(log n). ⋄
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Therefore, according to the algorithmic information theory the amount of information contained in
an n-bit binary string has not the same value for all the strings. The value of the information is correlated
with the complexity of the string, i. e., with the degree of his internal “organization”. The complexity is
minimal in a high organized string.

Theorem 1.2 For most of n-bit strings s the algorithmic complexity (information) is: H(s) = n+H(n);
or most of the n bits strings are random. ⋄

This is a tremendous result because it tells us that almost all of the real processes cannot be condensed
in short representations and, consequently, they can not be manipulated with formal instruments or in
formal theories. To widen the scope of the formal approach, we need to ”filter out”. in the direct
representations of reality, insignificant nuances. It increases so that the domain of the real in which
formalisms can be applied.

Another very important result of algorithmic information theory refers to the complexity of a theorem
deduced in a formal system. The axioms of a formal system can be represented as a finite string, as well
as the rules of inference. Therefore, the complexity of a theory is the complexity of the string that
contains its formal description.

Theorem 1.3 A theorem deduced in an axiomatic theory cannot be proven to be of complexity (entropy)
more than O(1) greater than the complexity (entropy) of the axioms of the theory. Conversely, ”there
are formal theories whose axioms have entropy n+O(1) in which it is possible to establish all true
propositions of the form ”H(speci f ic string)≥ n”.” ⋄

Consequences

Many aspects of the reality can be encoded in finite binary strings with more or less accuracy. As
most of these strings are random, our capacity to provide strict rigorously forms for all the processes in
reality is practically null. Indeed, formalization is a process of condensation in short expressions, i.e., in
programs associated with machines. Some programs can be considered a formula for large strings and
some not. Only for a few number of strings (realities) a short program can be written. Therefore, we
have three solutions:

1. to accept this limit

2. to reduce the accuracy of the representations, making partitions in the set of strings, thus generating
a seemingly enlarged space for the process of formalization (many insignificant (?) facts can be
“filtered” out, so “cleaning” up the reality by small details (but attention to the small details!))

3. to accept that the reality has deep laws that govern it and these laws can be discovered by an
appropriate approach which remains to be discovered.

The last solution says that we live in a subtle and yet unknown Cartesian world, the first solution
does not offer us any chances to understand the world, but the middle is the most realistic and optimistic
in the same time, because it invites us to “filter” the reality in order to understand it. The effective
knowledge implies many subjective options. For knowing, we must filter out. The degree of knowledge
is correlated with our subjective implication. The objective knowledge is sometimes a nonsense.

Algorithmic information theory is a new way for evaluating and mastering the complexity of big
systems.



1.3. ALGORITHMIC COMPLEXITY IN DEFINING FUNCTIONAL ELECTRONICS 9

1.3.2 Size vs. Complexity of Digital Systems

The huge size of the actual circuits implemented on a single chip imposes a more precise distinction
between simple circuits and complex circuits. When we can integrated on a single chip more than 109

components, the size of circuits becomes less important than their complexity. Unfortunately we don’t
make a clear distinction between size and complexity. We say usually: “the complexity of a computation
is given by the size of memory and by the CPU time”. But, if we have to design a circuit of 100
million transistors it is very important to distinguish between a circuit having an uniform structure and
a patternless – sometimes we say randomly – structured ones. In the first case the circuit can be easy
specified, easy described in a Hardware description Language (HDL), easy tested and so on. Otherwise,
if the structure is completely random, without any repetitive substructure inside, it can be described using
only a description having a similar dimension, expressed in number of line code, with the circuit’s size.
When the circuit is small, it is not a problem, but for million of components the problem has no solution.
Therefore, if the circuit is very big, it is not enough to deal only with its size, the most important becomes
also the degree of uniformity of the circuit. This degree of uniformity – the degree of order inside the
circuit – can be specified by its complexity.

As a consequence we must distinguish more carefully the concept of size by the concept of complex-
ity. Follow the definitions of these terms with the meanings we will use in this book.

Definition 1.6 The size of a digital circuit, Sdigital circuit , is given by the dimension of the physical re-
sources used to implement it.
⋄

In order to provide a numerical expression for size we need a more detailed definition which takes
into account technological aspects. In the ’40s we counted electronic bulbs, in the ’50s we counted
transistors, in the ’60s we counted SSI2 and MSI3 packages. In the ’70s we started to use two measures:
sometimes the number of transistors or the number of 2-input gates on the silicon die and other times the
silicon die area. Thus, we propose two numerical measures for the size.

Definition 1.7 The gate size of a digital circuit, GSdigital circuit , is expressed as the total number of CMOS
pairs of transistors used for building it4.
⋄

This definition of size offers an almost accurate image about the silicon area used to implement the
circuit, but the effects of lay-out, of fan-out and of speed are not catched by this definition.

Definition 1.8 The area size of a digital circuit, ASdigital circuit , is given by the dimension of the area,
expressed in mm2, on the silicon area used to implement it.
⋄

The area size is useful to compute the price of the implementation because when a circuit is produced
we pay for the number of wafers. If the circuit has a big area, the number of the circuits per wafer is
small and the yield is low5.

2Small Size Integrated circuits
3Medium Size Integrated circuits
4Sometimes gate size is expressed in the total number of 2-input gates necessary to implement the circuit. We prefer to

count CMOS pairs of transistors (almost identical with the number of inputs) instead of equivalent 2-input gates because is
simplest. Anyway, both ways are partially inaccurate because, for various reasons, the transistors used in implementing a gate
have different areas.

5The same number of errors make useless a bigger area of the wafer containing large circuits.
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Definition 1.9 The algorithmic complexity of a digital circuit, simply the complexity, Cdigital circuit , has
the magnitude order given by the minimal number of symbols needed to express its definition.
⋄

Definition 1.9, inspired by Gregory Chaitin’s definition for the algorithmic complexity of a string
of symbols is a concept able to clarify, in the context of Moor’s Law exponential growing mechanism,
the necessary distinction between size and complexity of an entity, more specific an integrated electronic
system. The confusion between size and complexity of digital systems can be removed using the concept
of algorithmic complexity based on Solomonoff-Kolmogorov-Chaitin complexity [41] [27] [7] [8]. The
algorithmic complexity of a string is related to the dimension of the smallest program that generates it.
Our Cdigital circuit can be associated to the shortest unambiguous circuit description in a certain HDL (in
the most of cases it is about a behavioral description).

Definition 1.10 A simple circuit is an n-input circuit having the complexity in O(1), much smaller than
its size in O( f (n)), so as

Csimple circuit << GSsimple circuit

for n > n0.
⋄

Definition 1.11 A complex circuit is a circuit having the complexity in the same magnitude order with
its size:

Ccomplex circuit ∼ Scomplex circuit

⋄

Example 1.1 The following Verilog program describes a complex circuit, because the size of its defini-
tion (the program) is

Sde f . o f random circ = k1 + k2×Srandom circ ∈ O(Srandom circ).

/ * **********************************************************
F i l e name : randomCirc . s v

The d e s c r i p t i o n o f a complex c i r c u i t . I t d e s c r i b e s a
4− g a t e c i r c u i t i n (4 + c o n s t ) l i n e s o f code

********************************************************** * /
module randomCirc ( output l o g i c f , g ,

input l o g i c a , b , c , d , e ) ;
l o g i c w1 , w2 ;

and and1 ( w1 , a , b ) ,
and2 ( w2 , c , d ) ;

or or1 ( f , w1 , c ) ,
o r2 ( g , e , w2 ) ;

endmodule

⋄
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Example 1.2 The following Verilog program describes a simple circuit, because the program that define
completely the circuit is the same for any value of n.

/ * **********************************************************
F i l e name : o r P r e f i x e s . s v

The d e s c r i p t i o n o f a ( b i g and ) s i m p l e c i r c u i t . I t s s i z e
i s i n O( n ) , w h i l e de number o f l i n e s o f code i s c o n s t a n t

********************************************************** * /
module o r P r e f i x e s # ( parameter n = 256)

( output l o g i c [ 0 : n −1] out ,
input l o g i c [ 0 : n −1] i n ) ;

i n t e g e r k ;
always comb

begin o u t [ 0 ] = i n [ 0 ] ;
f o r ( k =1; k<n ; k=k +1) o u t [ k ] = i n [ k ] | o u t [ k − 1 ] ;

end
endmodule

The prefixes of OR circuit consists in n OR2 gates connected in a very regular form. The definition
is the same for any value of n6.
⋄

Composing circuits generate not only biggest structures, but also deepest ones. The depth of the
circuit is related with the associated propagation time.

Definition 1.12 The depth of a combinational circuit is equal with the total number of serially connected
constant input gates (usually 2-input gates) on the longest path from inputs to the outputs of the circuit.
⋄

The previous definition offers also only an approximate image about the propagation time through a
combinational circuit. Inspecting the parameters of the gates from a Standard cell libraries you will see
more complex dependence contributing to the delay introduced by a certain circuit. Also, the contribution
of the interconnecting wires must be considered when the actual propagation time in a combinational
circuit is evaluated.

Some digital functions can be described starting from the associated elementary circuit by adding a
recursive rule for building a circuit that executes the same function for any size of the input. For the
rest of the circuits, which don’t have such type of definitions, we must use a definition that describes in
detail the entire circuit no matter how big it is. This description will be non-recursive and thus complex,
because the resulting dimension is proportional with the size of circuit (each part of the circuit must be
explicitly specified in this kind of definition). We will call a complex circuit random circuit, because
there is no (simple) rule for describing it.

The first type of circuits, having recursive definitions, are simple circuits. Indeed, the elementary
circuit has a constant (usually small) size and the recursive rule can be expressed using a constant number

6A short discussion occurs when the dimension of the input is specified. To be extremely rigorous, the parameter n is
expressed using a string o symbols in O(log n). But usually this aspect can be ignored.
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of signs (symbolic expressions or drawings). Therefore, the dimension of the definition remains constant,
independent by n, for this kind of circuits. In this book, this distinction, between simple and complex,
will be exemplified and will be used to promote useful distinctions between different solutions.

At the current technological level the size becomes less important than the complexity, because we
can produce circuits having an increasing number of components, but we can describe only circuits
having the range of complexity limited by our mental capacity to deal efficiently with complex represen-
tations. The first step to provide a circuit is to express what it must do in a behavioral description written
in a certain HDL. If this ”definition” is too large, having the magnitude order of a huge multi-billion-
transistor circuit, we don’t have the possibility to write the program expressing our desire.

In the domain of circuit design we passed long ago beyond the stage of minimizing the number of
gates in a few gates circuit. Now, the most important thing, in the multi-billion-transistor circuit era,
is the ability to describe, by recursive definitions, simple (because we can’t write huge programs), big
(because we can produce more circuits on the same area) sized circuits. We must take into consideration
that the Moore’s Law applies to size not to complexity.

Conjecture 1.1 As the size of a circuit increases exponentially, its complexity is limited to a logarithmic
increase.
⋄

Corollary 1.1 If the size of a digital system increases exponentially and its complexity is limited to
increase logarithmic, then the system must be programmable to justify increasing its size.
⋄

Because the dynamics of complexity cannot keep pace with the dynamics of size, we will have to con-
sider the functional dynamics offered by the programmability of the structure deployed on an integrated
circuit. Functional complexity will not be able to increase significantly unless the circuit function can be
specified by a program running on a much simpler circuit structure (memories tightly interleaved with
execution units). Thus, the incompressible bit structure of programs will give the functional complexity
[42].

1.3.3 Intensity vs. Complexity of Computation

Just as we made a clear distinction between complex circuits and simple circuits (see section 1.3.2),
we will make, also based on the definition of algorithmic complexity [7] [27] [41], an equally clear
distinction between complex computation and intensive computation (the simply expressed one).

Definition 1.13 Complex computation is characterized by an execution time, expressed in clock cycles,
in the same range than the code size, expressed in number of symbols, which describes it. ⋄

Example 1.3 Solving the 2nd degree equation is done running this fragment of complex code:

a = f l o a t ( input ( ’ c o e f i c i e n t u l a e s t e : ’ ) )
b = f l o a t ( input ( ’ c o e f i c i e n t u l b e s t e : ’ ) )
c = f l o a t ( input ( ’ c o e f i c i e n t u l c e s t e : ’ ) )
gama = 2* a
e t a = −b / gama
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d e l t a = cmath . s q r t ( b*b − 4* a * c ) / gama
x 1 = e t a − d e l t a
x 2 = e t a + d e l t a
p r i n t ( ’ S o l u t i a X1 e s t e : ’ , x 1 )
p r i n t ( ’ S o l u t i a X2 e s t e : ’ , x 2 )

The execution time is proportional to the number of lines justifying the characterization of a complex
program.
⋄

Definition 1.14 Intense computation is characterized by an execution time, expressed in clock cycles,
much bigger than the code size, expressed in number of symbols, which describes it. Or: the computation
is intense if the execution time is in O( f (n)) and the code size is in O(1).
⋄

Example 1.4 Matrix multiplication is an example of intense computation.

def m u l t i p l y m a t r i x (A, B ) :
g l o b a l C
i f A. shape [ 1 ] == B . shape [ 0 ] :

C = np . z e r o s ( (A. shape [ 0 ] , B . shape [ 1 ] ) , d t y p e = i n t )
f o r row in range ( rows ) :

f o r c o l in range ( c o l s ) :
f o r e l t in range ( l e n (B ) ) :

C[ row , c o l ] += A[ row , e l t ] * B[ e l t , c o l ]
re turn C

e l s e :
re turn ” Sorry , c a n n o t m u l t i p l y A and B . ”

The running time for this code depends on the size of the two arrays which can be arbitrarily large.
⋄

The uniformity of the computational patterns assumed by the intensive calculation presupposes the
uniformity of the structural patterns of some parallel structures. If a mono-core structure lends itself
competently for both complex and intensive computing, effectively only many-core structures, of the
type presented in the two previous chapters, can perform intensive computing.

If we can afford to continue focusing on the Turing computation for complex computation, for the
intensive one a parallel structure inspired by the Kleene computation is recommended. Consequently,
an efficient structure will have to be thought of as containing two structures, a HOST for intensive
computation, which includes the control of the entire system, and one for intensive computation that
runs under the command of the HOST. In this way, a heterogeneous system is defined that uses two
distinct computational paradigms to obtain the efficient adequacy to the complex-intensive distinction in
computation.
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1.4 Gordon Moore’s Law and Complexity

Gordon Moore talks twice about the evolution of integrated circuit technology. In addition to the internal
report from 1965 [33], the paper from 1975 [34] provides important new insights. If the first intervention
is mainly about the density of components and the efficiency with which the integrated circuits were
produced, in the 1975 paper are explicitly added two other dimensions for evaluating the evolution of
the domain of integrated circuits. Besides the density of components on the silicon chips, the chip size
an ”circuit cleverness” are considered. Besides, density & size given by technology, organization &
architecture provide functional improvements, ”cleverness” in Moore terms.

The way in which the ”circuit cleverness” and die size evolves is dictated equally by the organization
and architecture of the system that grows exponentially in size. Both organization and architecture must
allow the acquisition of functional facilities to justify the increase of both chip size and component
density. How can the exponential increase of the number of components per chip be capitalized in the
conditions in which the accepted increase of the complexity of the structure is much slower (according
to our point of view it is logarithmic takeing into account Conjecture 1.1, and its corollary)? Only a
programmable cellular structure in which the data is interleaved with the execution elements represents
the solution.

1.4.1 How Modularity Supports Parallelism

Conjecture 1.1, which works intuitively, is supported by a cellular increase of the structure with identical
cells having a controllable complexity. The uniformity of the cellular network keeps the exponentially
growing size at a constant complexity. Only the cells are supposed to be complex, but they are not
submitted to Gordon Moore’s Law.

In this way, it is understandable how we maintain complexity at a controllable growth level. But, the
problem that arises is how the structural resources of parallelism thus obtained can be put to the service
of computation. Two ways are envisaged:

1. using programming techniques and algorithmic thinking that adapt the geometric uniformity of the
cellular network to the requirements of the computation to be performed

2. organizing the cellular structure so that it corresponds to a parallel mathematical model of com-
putability that allows algorithmic thinking and coding in a friendly and efficient programming
environment (from the point of view of performance, energy and silicon area (price)).

In the first case, adapting to the computational requirements faces difficulties in achieving efficiency,
both in programming and in use. In the second case, convergence between structural possibilities and
computational requirements can be ensured so that programmability and efficiency in use can be opti-
mized.

The two ways of exploiting parallel hardware resources are practiced with different weights in the
corporate and academic space. The first method is used with predilection in the corporate space while
the second is practiced more in the academic one.

From a theoretical point of view, the adaptation of the structural potential to the functionality pursued
is illustrated by many concerns among which we quote:

• the functional forms of John Backus [3] which presents at a high theoretical level the idea of
programmability independent of the hardware support, in a manner that highlights structural re-
quirements in a way that very naturally introduces the concept of parallelism (see section 11 of the
cited text)
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• ”The Landscape of Parallel Computing Research: A View from Berkeley” [1, 2] highlights the
functional areas that parallel computing must cover, such as dense linear algebra, sparse linear
algebra, ...

• patterns for efficient computation emphasized in [32], a book that studies parallel computing from
the perspective of computational patterns that hardware systems must support efficiently

1.4.2 Heterogeneous Computation

In any real application we are challenged with a mixture of complex computation and intense computa-
tion. In order to optimize the computational system it is imposed the segregation between the complex
and intense using a heterogeneous computing system whose block schematic is represented in Figure
1.1, where HOST COMPUTER is responsible for control and complex part of the program, while AC-
CELERATOR runs the intense part of the application.

� -ACCELERATOR
COMPUTER

HOST

Heterogenous Computing System

� -

Figure 1.1: Heterogenous computing system.

The host is a Turing-based computer (Processor + Memories + I/Os), while the accelerator is many-
cell Kleene-based engine. The modular structure of the accelerator allows the exponential increase of the
size, while the complexity of the computation is based on the programmability. The overall programming
environment of a heterogeneous system is organized on two levels:

1. at the host computer level, a standard or an application specific library is implemented in a high-
level language using the associated kernel-library developed at the accelerator’s level

2. on the accelerator level, the kernel-library, developed in assembly language for data structures
limited to the size of the accelerator, expressed by p, number of cells, and m, the size of memory
in each cell.

This approach avoids the development of a specific language for the lowest level of the hierarchy, while
for the host level there are high-level languages. The kernel-library running on the accelerator works at
the host’s level like an extension of its instruction set architecture, ISA. This approach, which focuses
mainly on a hierarchical function architecture, is also encouraged by the group proposing The Berkeley
view of the parallel computing landscape:

The software span connecting applications to hardware relies more on parallel software
architectures than on parallel programming languages. Instead of traditional optimizing
compilers, we depend on autotuners, using a combination of empirical search and perfor-
mance modelling to create highly optimized libraries tailored to specific machines. [2]
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The two-level hierarchical hardware organization supposes a hierarchy of architectures through
which each level is integrated into the next higher level through a set of functions structured as a func-
tion library. Let us take the example of a linear algebra oriented library. The accelerator, programmed
in assembly, implements a kernel-library for functions defined on arrays with sizes limited by number
of cells in accelerator. Then, the host, programmed in a high-level language, manages the linear alge-
bra algorithms for data of any size by tiling problems to be solved by the kernel-library running on the
accelerator.

The structural hierarchy, accompanied by the architectural one, facilitates distinct levels at which
programming is practiced. In this sense, we continue the previous quote:

By splitting the software stack into a productivity layer and an efficiency layer and targeting
them at domain experts and programming experts respectively, we hope to bring parallel
computing to all programmers while keeping domain experts productive and allowing expert
programmers to achieve maximum efficiency. [2]

Instead of optimizing compilers, we must optimize kernel-libraries for parameterizable and con-
figurable accelerators. In this early stage of developing parallel accelerators, auto-tuning mechanisms
deserve much attention for the process leading us toward optimal structures and optimally defined and
implemented kernels of functions.

1.4.3 Configurability

Heterogeneous computing has two extreme implementation approaches:

1. accelerators based on parallel computing: the cellular structure is configured as a programmable
parallel computing machine instead of the clock speed increase (the clock speed race stopped
around 2002, see Figure 1.2

Figure 1.2: Processor performance improvement between 1978 and 2006 [1].
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2. accelerators based on reconfigurability using FPGA-based techniques, in two versions:

(a) user-made design using HDL which configures the accelerator as a circuit that performs a
specific function very efficiently

(b) synthesis techniques based on high-level synthesis, HLS, which starts from the description of
functions in the high-level language in which the program is written for the host and dynam-
ically generates circuit structures which, implemented in the accelerator’s FPGA, increase
processing performance

If until around the year 2000 we relied on increasing the system clock frequency (in the age of clock
speed), starting with the 3rd millennium we are forced to rely on the possibilities offered by parallelism
(in the age of parallelism) to increase the performance of complex computation execution (see Figures
1.3).

Figure 1.3: From age of clock speed to the age of configuration through the age of parallelism [25].

The age of configurability is gradually starting to manifest itself. Indeed, with hundreds of billions
of components on silicon, very intensive and complex functions at the same time will be able to be
implemented using HDL techniques. What we do not know today is what will be the performances and
efficiency with which they will be obtained both from the point of view of energy, area but also of a
friendly development environment.

1.4.4 Pseudo-Reconfigurability

In the prediction presented in Figure A.1, limiting the number of cores does not mean giving up modu-
larity. Modularity will not only refer to a repetitive pattern, it will be associated with complex network
configurations (hierarchical, almost certainly) but configured to a controllable complexity. Hierarchy,
as a superior form of modularity, will allow functional realizations in a context that will exceed the
possibilities of current programming languages.
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Configurability can manifest itself above a certain level only against the background of some con-
figurational ”matrices” that will allow reaching complexities achieved through self-organization mech-
anisms based on higher-level autonomies allowed by higher-level loops. We can speak of forms of
pseudo-reconfigurability.

One of the first and simplest forms of pseudo-reconfigurableness can be represented by a parallel
programmable system that is parameterizable and configurable through HLS-type mechanisms. An
HLS design system based on an efficient parallel structure that can be optimized through parameterization
and configuration will allow for efficiency in a friendly programming environment.

Configurability starts from the circuit, while pseudo-configurability starts from a parametrizable and
configurable parallel structure. How can the difference in flexibility between the two solutions be re-
duced? The circuit is more malleable than a parallel structure, so it can be adapted more efficiently to
perform a certain function.

It is worth looking for a solution because:

1. the functions we want to accelerate are part of well-defined conceptual classes, which allows the
consideration of solutions subject to specific configurations

2. the parallel structure can be configured according to a computational model specific to parallelism,
thus allowing an adaptation that matches the computational performance of the circuit.

Pseudo-configurability represents a realistic solution for the era of configurability because it can represent
a compromise between the huge size and the complexity we want to achieve. Pseudo-configurability
leaves room for information to act to provide the functional diversity we want to achieve as the size of
physical structures increases.

1.5 Data vs. Information

We know about some things, we are informed about some events, we have all the data related to a certain
reality. So there are three distinct ways in which we relate to those around us. Knowledge – Information
– Data is a challenging and sometimes a confusing triad. The middle term seems to be the hardest to
catch in a unanimously accepted definition. Dictionaries agree relatively easily on knowledge and data,
but it is very difficult to identify the slightest attempt to provide an acceptable definition for the concept
of information. Any attempt slips very quickly into quantitative assessments of an entity considered,
by an unconfessed guilty consensus, as known. We do not ignore some successful attempts to provide
qualitative interpretations of the concept of information, but we consider it necessary to deepen these
encouraging beginnings to the level at which we can provide an effective qualitative and quantitative
theory. Our approach is oriented in this direction.

1.5.1 Mihai Drăgănescu’s General Information

Mihai Drăgănescu in [17] outlines a general theory that provides a theoretical framework for the concept
of information.

Definition 1.15 The generalized information is: N =< S,M > where: S is the set of objects character-
ized by a syntactical relation, and M is the meaning of S. ⋄

In this general definition, the meaning associated to S is not a consequence of a relation in all the
situations. The meaning must be detailed, emphasizing more distinct levels.



1.5. DATA VS. INFORMATION 19

Definition 1.16 The informational structure (or syntactic information) is: N0 =< S > where the set of
objects S is characterized only by a syntactical (internal) relation. ⋄

The informational structure N0 is the simplest information, we can say that it is a pre-information
having no meaning. The informational structure can be only a good support for the information.

The first actual information is the semantic information.

Definition 1.17 The semantic information is: N1 =< S,S > where: S is a syntactical set, and S is the
set of significations of S given by a relation in (S×S). ⋄

Now the meaning exists but it is reduced to signification. There are two types of significations:

• R, the referential signification

• C, the contextual signification

thus, we can write: S =< R,C >.

Definition 1.18 Let us call the reference information: N11 =< S,R >. ⋄

Definition 1.19 Let us call the context information: N12 =< S,C >. ⋄

If in N11 to one significant there are more significats, then adding the N12 the number of the significats
can be reduced, to one in most of the situations. Therefore, the semantic information can be detailed as
follows: N1 =< S,R,C >.

Definition 1.20 Let us call the phenomenological information: N2 =< S,σ >, where: σ are senses. ⋄

Attention! The entity σ is not a set.

Definition 1.21 Let us call the pure phenomenological information: N3 =< σ >. ⋄

Now, the expression of the information is detailed emphasizing all the types of information:

N =< S,R,C,σ >

from the objects without a specified meaning, < S >, to the information without a significant set, < σ >.
Generally speaking, because all the objects are connected to the whole reality the information has

only one form: N. In real situations one or another of these forms is promoted because of practical
motivations. In digital systems we can not overtake the level of N1 and in the majority of the situations the
level N11. General information theory associates the information with the meaning in order to emphasize
the distinct role of this strange ingredient.
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1.5.2 The Meaning Acting in Context

Let us expand the generalized information defined by Mihai Drăgănescu by adding a new component
and its relation with the meaning, M , associated to S in Definition 1.15.

Definition 1.22 The generalized information is: N =< S,C M > where: S is the set of objects charac-
terized by an internal syntactical order, and M is the meaning of S which is used to act on the context
C . ⋄

We consider that information must be defined in the context where it acts. In this way we differentiate
information from data. Data is a passive entity while information is an active one. In the following sub-
sections we will exemplify the information in computers, in nature and, only speculatively, in existence.

A notable distinction appears from the beginning with the definition of the Universal Turing Machine
(UTM) [45]. By defining UTM, the tape of a Turing Machine (TM), on which a string of symbols is
recorded, has been split by Alan Turing in two. One portion contains the description of a particular TM,
M, and the second portion represents the contents of the string, D, on which M is working. The finite
automaton (FA) of UTM uses the description M to modify the content of D. Thus, we can say that, in
the context of UTM, FA uses the meanings associated with the string M to act on the contents of the
string D. Both strings, M and D, are structured according to a syntactic order, but in UTM they play
completely distinct roles. M describes an action that is performed by the FA modifying the string D. M
has a meaning at the UTM level, while D is a passive structure that supports the action defined by M and
performed by the FA. In this sense we say that M acts on D in the context of UTM.

Consequently, the abstract computer models (von Neumann and Harvard) contain two symbolic
structures in their memory/memories: programs and data, corresponding respectively to the M and
D zones of the UTM’s band.

In a computer, the information is represented only by programs, and the data can represent infor-
mation for the computer’s user in the context in which the computer is used. So, it is fair to say that a
computer processes data through program’s information. The computer processes data, not information.
The result of the computation can be instantiated in information only at user level.

Example 1.5 Let be the instruction format in a RISC processor:

instruction ::= {function, result, leftOperand, rightOperand}

Then the instruction stored in the program memory of the computer at the address 1324:

programMemory[1342] = {add, reg5, reg12, reg4}

will act on the content of the Register File (RF) adding in register 5 the content of register 12 with the
content of register 4 no matter what values were stored in these registers. Thus, the content of the
register file is passive data while the instruction stored in the program memory represent the acting
information.

In this example the context, C , is provided by an Arithmetic & Logic Unit (ALU) loop connected with
a RF and the content of RF. The instruction selects with its four fields the operation performed by ALU,
the destination register, the two operands in RF. The context, C , is designed and filled up with data in
concordance with the meaning associated to the symbols used in the instruction’s fields. Outside of this
context, the meaning associated with the fields of instruction cannot act in any way.
⋄
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In the previous example, the values contained in registers 5, 12 and 4 could be information in the
context in which the computer is used. For the arithmetic addition operation in the context provided by
the considered processor these values have no meaning, but they can be, and usually are, significant in a
broader context.

Example 1.6 In the Lisp language data and programs are represented by S-expressions. Because Lisp
programs are able to manipulate source code as a data structure, they are characterized by interchange-
ability of programs and data. The distinction between data and programs is done only in the EVAL
process which consists in reducing an input S-expression to an output S-expression. In this process
sometimes a big stack memory is used to deal with the recursive evaluations. During the EVAL process,
which starts with an empty stack, the content of the stack is used as temporary data. At the end of EVAL
the stack remains empty.

The context, C , in this case, consists of an EVAL engine and a big STACK, which can be called Lisp
Machine (LM). During the evaluation process we can expect a large data structure to expand in the stack
memory, the data structure that is resorbed until the end of the process. Instead of the data structure
contained in the RF in the previous example, the data structure in a Lisp machine has an ephemeral
character. This is due to the coexistence of data and program (information) within the S-expresses that
LM reduces.
⋄

The interleaving data and information in a LM is a natural step in the process of externalizing our
mental abilities. We do not believe that the symbolic representations used by the human mind clearly
differentiate data from information. The ability of the human mind to play different language games [?],
simultaneously or in rapid succession, requires and makes the symbolic structures with which it operates
to be able to switch their status quickly. In a certain language game a certain symbolic structure has the
role of data, while in another language game it can have the role of information. We are dealing with very
subtle mutual interactions whose modeling can be facilitated by the definition and use of S-expressions
in LM.

Example 1.7 Let be, in an artificial neural network, a fully connected m-input layer of n neurons. It
is defined by the associated weight matrix Mn×m. The layer of neurons is subjected to two distinct
processes: training and inference. In the training process it receives at the input a series of vectors that
allow the configuration of the weight matrix. In the inference process, the network receives vectors at the
input, vectors that determine a certain response of the network that is according to the training to which
it has been subjected.

In the training process, Ctraining, the content of the matrix Mn×m represents a data structure that is
configured according to the content of the stream, S, of training vectors. In this process the input stream
S represents information, because its content acts configuring the weight matrix.

In the inference process, Cin f erence, the weight matrix is multiplied with input vectors. Now the
content of the matrix Mn×m represents information, while the input stream of vectors represents data.
The syntactic order in the matrix Mn×m is not obvious because it is established in a training process and
is the consequence of a very subtle mechanism of identifying hidden patterns in the training stream S.

Now, the same symbolic structure, Mn×m, play two roles depending on the context; for Ctraining it is
data, while for Cin f erence it becomes information because it acts as a program established by training.
⋄
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While in the first example the meaning of the program is obvious because it is built applying explicit
rules, in the third example the meaning associated with the content of the matrix Mn×m is not explicit,
it exists, but in a form inaccessible to human mind. The meaning of Mn×m is related to the training
information provided in Ctraining context.

1.6 Defining Functional Electronics

Functional electronics is the path proposed by Professor Mihai Drăgănescu for obtaining maximum
functional complexity on a structural support with minimum complexity. The solution involved the
interaction of circuit structures with information structures on the same support.

In 2003 I have participated in San Jose at the annual conference on embedded systems7. After
three days, during which the latest solutions were presented, through which a chip can perform the most
sophisticated functions required by the electronic products market, I suddenly realized that I was at a
conference on functional electronics. A quarter of a century ago, in 1978, Professor Mihai Drăgănescu
initiated the course on functional electronics at the Faculty of Electronics and Telecommunications of
the Bucharest Polytechnic Institute. And even today there are still some who ask me, not without a trace
of malice, what are you doing there in the course on functional electronics? I can answer more clearly
than ever: ”Embedded systems, sir! Now that’s how I call it. Yes, those who do embedded systems today
can say, like Monsieur Jourdain, that they do functional electronics without knowing it.”

Indeed, the American term for what we consider functional electronics is embedded systems.
Systems in which computing is embedded can achieve very high behavioral complexities due to the

particularly flexible way in which their function is implemented. Since electronic technologies allowed
the integration of a processor and its associated memory on a silicon chip, we have had the possibility of
integrating complex behaviors into technical objects.

The initial forms of implementing the solutions of the functional electronics have supposed one-
chip micro-controllers embedded in various physical structure and programmed to interact with them
in performing a useful, sometimes complex functionality. The action of Moore Law allows in the last
decade to involve in the design of embedded, besides the mono-core computational engines, parallel
computational structure as accelerators for critical computations. Thus, in what follows, we consider the
functional electronics based on heterogeneous computing systems.

7he Conference of Embedded Technology. Embedded Processors Forum, San Jose, CA, 16-19 June, 2003.



Chapter 2

Formal Languages

The correspondence between the formal languages and digital machines that recognize and/or gener-
ate them is a well-known subject. Noam Chomsky has established a hierarchy in formal languages.
Therefore, we can ask the question: the machines associated to each type of formal language are they
belonging to a corresponding hierarchy?

In this book we started with a developing mechanism for digital systems, generating an ordered
structural hierarchy, and we continued associating to this structural hierarchy a functional hierarchy.
Each new order having more autonomy accepts functional gains. We proved that the functional gain,
passing from an order to the next, is given by an additional structural loop.

This functional hierarchy will lead us to emphasize a well-fitted correspondence that associates to
each language type a structural order. Therefore, our main aim in this chapter is to prove the following
correspondences:

1. type 3 languages - two loops machines (2-OS)

2. type 2 languages - three loops machines (3-OS)

3. type 1 languages - four loops machine (4-OS)

If the “expressiveness” of the languages grows, from 3 to 1, then the autonomy of the associated machines
must also increase.

2.1 Chomsky’s Generative Grammars

Noam Chomsky’s papers on formal languages, starting from ’50s, have founded many technical ap-
proaches in computer science, from the automata theory to the high level languages and computational
linguistics. This section is devoted to introduce only the basic concepts necessary to explain the correla-
tion between the formal languages and the associated physical structures.

Definition 2.1 The finite set of symbols A is an alphabet and the infinite set of strings built with the
symbols of A is A∗. ⋄

Definition 2.2 A language L, finite or infinite, is a sub-set of A∗. ⋄

Two kind of formal languages can be specified:

23
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1. complex formal languages, by an explicit enumeration of the elements of the subset L

2. simple formal languages, given by the rules for generating the subset L.

Obviously, the second is the best way to define a language because it gives us a concise, simple form
to manipulate a big size set (frequently infinite). The generative grammars were introduced by Noam
Chomsky in order to define and to study the properties of the programming languages. Choosing the
second way the researchers decided to study only the simple languages having a constant sized definition.
The first way is compulsory only for complex languages which have no rules to define them.

Definition 2.3 A generative grammar is defined as the 4-tuple G = (N,T,P,n0) where: N is the finite set
of the non-terminal symbols, T is the finite set of the terminal symbols, P is the finite set of the generation
rules, or productions, by the form p→ q with: p ∈ (N ∪ T )∗ is a non-empty string of terminals and
non-terminals having compulsory an element from N, q ∈ (N∪T )∗; n0 is the start symbol. ⋄

Definition 2.4 If n0→ p1→ p2→ . . .→ q and all the production rules used are from P of G, then we
say that q is generated in G starting from n0: n0⇒ q. ⋄

Definition 2.5 The language generated by the grammar G is the set L(G) = {p | n0⇒ p}. ⋄

Example 2.1 Let be the grammar:

G1 = ({S,A},{a,b,c},{S→ aAa,A→ aAa | bAb | c},S)

An example of generation is:

S→ aAa
aAa→ aaAaa

aaAaa→ aabAbaa
aabAbaa→ aabaAabaa

aabaAabaa→ aababAbabaa
aababAbabaa→ aababcbabaa

The generated strings are symmetrical, growing in two distinct points in the string. The generating
process stops when no rule can be applied.
⋄

Example 2.2 The grammar G2 is used for generating well formed infix algebraic expressions.

G2 = ({S,M,F},{a,+,∗,(,)},P,S)

where:
P = {S→ S+M |M,M→M ∗F | F,F → a | (S) }

Let us consider the expression:
a+a∗ (a+a)

The grammar G2 generates it as follows:
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S→ S+M;
S+M→M+M; is applied S→M
M+M→ F +M; is applied M→ F
F +M→ a+M; is applied F → a
a+M→ a+M ∗F; is applied M→M ∗F
a+M ∗F → a+F ∗F; is applied M→ F
a+F ∗F → a+a∗F; is applied F → a
a+a∗F → a+a∗ (S); is applied F → (S)
a+a∗ (S)→ a+a∗ (S+M); is applied S→ S+M
a+a∗ (S+M)→ a+a∗ (M+M); is applied S→M
a+a∗ (M+M)→ a+a∗ (F +M); is applied M→ F
a+a∗ (F +M)→ a+a∗ (a+M); is applied F → a
a+a∗ (a+M)→ a+a∗ (a+F); is applied M→ F
a+a∗ (a+F)→ a+a∗ (a+a); is applied F → a

For example, the expression
a+(a∗+

can not be generated using G2.
⋄

Example 2.3 The grammar G′2 is used for generating well formed postfix algebraic expressions.

G′2 = ({S,M,F},{a,+,∗},P,S)

where:
P = {S→ SM+ |M,M→MF ∗ | F,F → a | S }

⋄

Example 2.4 Let be the grammar:

G3 = {{S,B},{a,b},{S→ aS | aB,B→ bB | b},S}

A possible generation is:

S→ aS
aS→ aaS
aaS→ aaaB
aaaB→ aaabB
aaabB→ aaabbB
aaabbB→ aaabbbB
aaabbbB→ aaabbbb

The language generated by this grammar is:

L(G3) = {anbm | n,m≥ 1}

L(G3) generate a string n as followed by a string of m bs.
⋄



26 CHAPTER 2. FORMAL LANGUAGES

The grammar from the previous example generates strings growing at one end only.

Example 2.5 The language:
L(G4) = {anbn | n≥ 1}

is generated by the following grammar:

G4 = {{S},{a,b},{S→ aSb | ab},S}

L(G4) generates n as followed by a the same number of bs.
⋄

The language generated by G4, L(G4), is more “expressive” than the language generated by the
grammar G3, L(G3), because both generate as followed byy bs, but G4 satisfies an additional condition:
the number of as is equal with the number of bs.

Example 2.6
G5 = {{S,B},{a,b,c},P,S}

with P containing the following productions:

S→ aBSc | abc;
Ba→ aB;
Bb→ bb;

A possible generation is:

S→ aBSc
aBSc→ aBaBScc
aBaBScc→ aBaBabccc
aBaBabccc→ aaBBabccc
aaBBabccc→ aaBaBbccc
aaBaBbccc→ aaaBBbccc
aaaBBbccc→ aaaBbbccc
aaaBbbccc→ aaabbbccc = a3b3c3

It is obvious that::
L(G5) = {anbncn | n≥ 1}

⋄

The productions in G5 are context sensitive becuse, for example, the last production substitutes B
with b only in the context of a b preceded by a B.

Example 2.7 Let be the grammar:

G6 = {{S,A,B,C,D},{a,b},P,S}

where P contains:
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S→CD
C→ aCA | bCB
AD→ aD
BD→ bD
Aa→ aA
Ab→ bA
Ba→ aB
Bb→ bB
C→ λ
D→ λ

We remind that λ is the null element. The last two productions allow the disappearance of elements from
the already denerated stream of symbols. A possible derivation starting from S is:

S→CD;
CD→ aCAD; is applied C→ aCA
aCAD→ abCBAD; is applied C→ bCB
abCBAD→ abBAD; is applied C→ λ
abBAD→ abBaD; is applied AD→ aD
abBaD→ abaBD; is applied Ba→ aB
abaBD→ ababD; is applied BD→ bD
ababD→ abab; is applied D→ λ

During the generation process the string did not increases in each step.
The first two productions allow the stream to enlarge. Follow productions used to reconfigure it

depending on the context. The last two productions reduce the size of the stream.
⋄

2.2 Translation Using Generative Grammars

In computer science, the main application of the generative grammars is the translation between two for-
mal languages, from a source language (the source code) to a destination language (usually the machine
code). The translation process, in its simplest form, involves two stages:

• identification of the grammatical rules that allowed the generation of the source code starting from
the start symbol in the grammar of the source language

• application of the corresponding rules in the grammar of the target language starting from the start
symbol

Example 2.8 Let us translate a sequence generated in L(G2) into the corresponding sequence in L(G′2).
For translation to be possible, a list of correspondences between the rules of the two languages, the
source and the target, is required. This list is as follows:

• S→ S+M ↔ S→ SM+

• S→M ↔ S→M

• M→M ∗F ↔ M→MF∗
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• M→ F ↔ M→ F

• F → a ↔ F → a

• F → (S) ↔ F → S

By applying the corresponding rules starting with S in L(G′2) we get:

S→ SM+; is applied S→ SM+ corresponding to S→ S+M
SM+→MM+; is applied S→M corresponding to S→M
MM+→ FM+; is applied M→ F corresponding to M→ F
FM+→ aM+; is applied F → a corresponding to F → a
aM+→ aMF ∗+; is applied M→MF∗ corresponding to M→M ∗F
aMF ∗+→ aFF ∗+; is applied M→ F corresponding to M→ F
aFF ∗+→ aaF ∗+; is applied F → a corresponding to F → a
aaF ∗+→ aaS∗+; is applied F → S corresponding to F → (S)
aaS∗+→ aaSM+∗+; is applied S→ SM+ corresponding to S→ S+M
aaSM+∗+→ aaMM+∗+; is applied S→M corresponding to S→M
aaMM+∗+→ aaFM+∗+; is applied M→ F corresponding to M→ F
aaFM+∗+→ aaaM+∗+; is applied F → a corresponding to F → a
aaaM+∗+→ aaaF +∗+; is applied M→ F corresponding to M→ F
aaaF +∗+→ aaaa+∗+; is applied F → a corresponding to F → a

⋄
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Figure 2.1: The sequence of operations for evaluation of the postfix expression (exemplified by aaaa+*+)
using a stack-based system.

What is the advantage of using postfix expression instead of infix expression? The advantage comes
from the grouping of variables separated form the operands. This grouping allow simplify the evaluation
if an appropriate hardware is used. It is about using a stack-type evaluation as is illustrated in Figure 2.1.
When in top of stack an operand is identified, it is popped out, is applied to the operands popped from
stack and the result is pushed back in stack.
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2.3 Chomsky’s Hierarchy of Generative Grammars

In [9] [10] [11] Noam Chomsky, the founder of computational linguistics, introduced the concept of
hierarchy of grammars based on the restrictions imposed to the restrictions imposed on the rules of
generation.

Definition 2.6 A generative grammar G could be:

regular or type 3 if each production in P has the form

A→ xB | x

where A,B ∈ N ’si x ∈ T ∗

context-free or type 2 if each production in P has the form

A→ α

where A ∈ N ’si α ∈ (N∪T )∗

context-sensitive or type 1 if each production in P has the form

α → β

where α,β ∈ (N∪T )∗ ’si |α| ≤ |β |

recursively enumerable or type 0 if each production in P has no restrictions.

where |I| is the length of the string I.
⋄

Between the grammars of type 1 and 0 there are, for sure, other grammars based on rules governed
by weaker restrictions than those applied to the productions in type 1 grammars. We are not interested in
studying them because almost all programming languages are of type 2.

Regarding to the generating rules, Chomsky emphasized three restrictions:

first restriction |p| ≤ |q|, the length of p cannot be larger than the length of q in the production p→ q

second restriction : |p|= 1, p has length equal with one in the production p→ q

third restriction : q = αA, where α ∈ T ∗, A ∈ N ∪{λ}, the string grows by the generative mechanism
only at one end.

Definition 2.7 The generative grammars are classified as follows:

• type-0 grammars, having unrestricted rules

• type-1 grammars, named context-sensitive grammars, having the productions limited by the first
restriction

• type-2 grammars, named context-free grammars, having the productions limited by the first and
second restriction
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• type-3 grammars, named regular grammars, having the productions limited by the first, second
and third restriction. ⋄

Definition 2.8 The language L(G) is a type-i language, if the grammar G is a type-i grammar, for
i = 0,1,2,3. ⋄

Definition 2.9 The set Li is the set of type-i languages, for i = 0,1,2,3. ⋄

Theorem 2.1 L0 ⊃L1 ⊃L2 ⊃L3.
⋄

Proof 2.1 Directly, using the Definition 2.7
⋄

An important consequence of this theorem is that a machine associated to a language in Li is able to
recognize or to generate any string belonging to a language in L j daca j > i.

Example 2.9 In the previous examples the following types of grammars could be identified:

• G3 ∈L3 because
G3 = {{S,B},{a,b},{S→ aS | aB,B→ bB | b},S} has only productions of form: A→ xB | x

• G1,G2,G4 ∈L2 because all the three grammars
G1 = ({S,A},{a,b,c},{S→ aAa,A→ aAa | bAb | c},S)
G2 = ({S,M,F},{a,+,∗,( )},P,S) with
P = {S→ S+M |M,M→M ∗F | F,F → a | (S)}
G4 = {{S},{a,b},{S→ aSb | ab},S}
have only productions of form: A→ α unde A ∈ N ’si α ∈ (N∪T )∗

• G5 ∈L1 because
G5 = {{S,B},{a,b,c},P,S} cu
P = {S→ aBSc | abc,Ba→ aB,Bb→ bb} has productions of form α→ β where α,β ∈ (N∪T )∗

’si |α| ≤ |β |

• G6 ∈L0 because G6 = {{S,A,B,C,D},{a,b},P,S} with
P = {S→CD,C→ aCA | bCB,AD→ aD,BD→ bD,Aa→ aA,Ab→ bA,Ba→ aB,Bb→ bB,C→
λ ,D→ λ} has also productions of type A→ λ whose application in the generating process result
in reducing the length of the string.

⋄



Chapter 3

Structures & Languages

Two functions are involved in the relation between languages and machines: a string belonging to a lan-
guage must be recognized or must be generated. Recognition and generation are fundamental functions
in digital processing. Indeed, a string of symbols has a meaning that must be understood (recognized)
and, according to the recognized meaning, an answer is computed (generated). One of the simplest
processing models can be proposed according to these two steps:

RECOGNIZER is a digital system or a process that verifies if the input string has a meaning and
recognizes that meaning

GENERATOR is a digital system or a process that, starting from the received meaning and from its
own internal state, modifies the internal state and generates the output string.

The simplest digital system having an internal state is the automaton. Therefore, starting from the
second order systems (2-OS) and ending with the fourth order in digital systems, the characteristics re-
garding recognition and generation will be analyzed in correlation with the associated formal languages.

The main formal constraint we impose in recognizing and generating languages is to use only simple
machines, i.e., machines with constant sized definitions. For a string of n symbols, we must use a
machine having a definition with the size belonging to O(1), even if the size of the machine belongs to
O( f (n)).

The small complexity, even if the system size or the input string are very large, is the key to define
useful and easy to build machines. There are two theoretical types of machines:

infinite machines if CMachine ∈ O(g(n)), when the input dimension is in O(n)

finite machines if CMachine ∈ O(1) having a constant size, independent of the input dimension (even if
for an infinite input string the machine has a finite size; this being the deep meaning of the term
“finite automaton”).

If the complexity of machines is “infinite” it is out of our interest; we are unable to “say” anything about
an “infinite” machine because the definition is useless to handle. The criteria upon which we select the
useful machine is to be a finite machine, i.e., to have a constant complexity.

The previous discussion is very important because any language can be recognized and generated us-
ing any type of physical machine. We can use for all languages combinational circuits or finite automata.
The theory imposes restrictions because of the efficiency of defining and building concrete machines.
For example, we can design an automaton that recognizes the context free language L2, but this automata

31



32 CHAPTER 3. STRUCTURES & LANGUAGES

must have a number of states in O(n) for processing the strings having maximum n bits. This automaton
will not be a finite automaton, it will be an infinite machine having a huge definition. Therefore, we
associate optimal machines with languages only under the restriction that the machine must be simple
because they have constant definitions, even the size is theoretically unbounded.

Theorem 3.1 The formal languages generated by Chomsky’s grammars and the machines that recognize
and/or generate them can be optimal associated as follows:

1. L3 - finite automaton

2. L2 - push-down automata

3. L1 - linear memory bounded automata

4. L0 - Turing machines. ⋄

All the textbooks prove this theorem and in the next section we will give some proofs regarding it with
emphasis on the correlation between the type of a language and the number of loops closed inside the
associated machine.

The aim of this chapter is to prove the consistency of the featuring mechanism of digital systems by
loops using a new argument: the correspondence with another hierarchy emphasized in a related domain:
Chomsky’s formal languages theory. Maybe some important thing happen when a new loop is added in
a digital system if it is the only way to move from a machine associated with a type of formal language
toward the machine associated with a more “expressive” language in the hierarchy. Let us examine this
strange effect of the correlation between the machine’s autonomy and the expressiveness of the language.

3.1 Type 3 Grammars & Two Loops Machines (2-OS)

Here we prove that a simple (finite) digital system must have at least two internal loops for recognizing or
generating the regular (type 3) languages. We will start reminding some basic results in formal language
theory.

Theorem 3.2 Any type-3 languages can be recognized by the final states of an initial deterministic half-
automaton.
⋄

Indeed, because of the fact that the regular grammars generate only at one end of the string the
“knowledge” of the automaton must refers only to the last received symbol. Therefore, the number of
states can be finite because the alphabet is also finite. In order to offer supplementary information about
the string some counters must be added, but a new loop is not compulsory.

Theorem 3.3 Any type-3 language has a non-deterministic finite automaton which generates it.
⋄

For similar reasons a finite automaton is enough for generate randomly regular strings. A regular
string grows only according with the last symbol generated and a randomly selected rule from which are
applicable.

Now, returning to our subject, we must say something about the minimum number of loops needed
for building a machine that recognizes or generates the regular languages.



3.1. TYPE 3 GRAMMARS & TWO LOOPS MACHINES (2-OS) 33

Theorem 3.4 The lowest order of a system that implements any finite automaton is two.
⋄

Proof 3.1 We remind that finite automaton is defined by the 5-tuple A = (X ,Y,Q, f ,g), where: X is
the finite input set, Y is the finite output set, Q is the finite set of the states, f : X ×Q→ Q is the state
transition function and g : X×Q→Y is the output transition function. The structure of a finite automaton
(Mealy without delay) is presented in Figure 3.1, where:

CLC

Master Latch
1-OS

Slave Latch
1-OS

? ?

?

?

?

X

Q

0-OS

Y

? ?
CK CK’

REGISTER

	

Figure 3.1: The internal structure of a Mealy automaton

• CLC is a combinational logic circuit that computes the transition functions f and g

• REGISTER is a collection of D flip-flops having a two level internal organization:

– Master Latch, which is a collection of one bit latches that store the current state (the current
value from Q)

– Slave Latch, which is a latch that allows to close in a non-transparent fashion the loop over
the entire system, allowing a synchronous behavior (it is avoided if an automaton is designed
in the asynchronous variant).

In the system there are two level of loops:

• the first loop level in each one bit latch (from the master latch), allows the storing function

• the second loop level (through CLC, Master Latch and Slave Latch) is imposed by the state tran-
sition function, f , which is defined in X ×Q, with values in Q. Slave Latch has only an electrical
role, allowing only the synchronous transition of the system under the control of the clock signal.

⋄

We can summarize saying that two levels of loops are enough to manage regular languages because:

• the first loop is used to build the circuit that stores the last received or generated symbol: the master
latch from the state register

• the second loop, closed through register and combinational circuit, is for sequencing the process
of recognition and generation.
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No more memory is needed because the productions are very simple. The string can be recognized
(understood) in “real” time because of the simple rules which generated it. The recognition process can
fail before the ending of the string, because each symbol is related (correctly or incorrectly) only to
the previous symbol. The finite automata are the simplest digital machines that recognize and generate
regular strings. We can define a more structured simple machine, but never a less structured machine
having the order 1 or 0. A 0-OS or a 1-OS can be used, but only renouncing to the simplicity.

3.2 Type 2 Grammars & Three Loops Machines (3-OS)

We are expecting that the step towards the type-2 languages, more expressive languages, should require
a better, more autonomous machine to recognize or to generate them. Do it work the automata dealing
with the context-free languages? Yes, they work, but not as finite automata. Only “infinite” automata are
useful for these purposes. If we don’t agree “infinite” automata, then third order systems (3-OS) must
be used. An “infinite” automaton has a space state dimensioned according to the input set dimension,
or according to the length of the input sequence. If we wish to use an automaton to recognize strings
belonging to the second type language, then an automaton having |Q| ∈ O(n) must be used, where: n is
the length of the string and |Q| is the number of states. Our aim is to investigate only the finite, simple
machines and in this respect we must find a solution having constant complexity.

Let us start with a short discussion about the classical example offered by the language {anbn|n > 0}.
If we want to recognize this language using a half-automaton, then the problem raised is to know what
is the number of a’s received before the first b. The machine must memorize somewhere the number of
received symbols having the value a. The only place for an automaton is in the “state space”, but in this
case the automaton becomes an “infinite” machine. The solution to maintain the machine in the limit of
the simple machines is to add a kind of memory to “count” and “memorize” the number of a’s in order
to compare it with the number of bs. Instead of an automaton is better to use the machine represented in
Figure 3.2, where the reversible counter counts up the received as and counts down for each received b.
Thus the finite automaton helped by the counter (an “infinite” but simple automaton) solves the problem.

FA

. . . . . . . . . . . . .

. . . . . . . . . . . . .

-

�

?

?

UDCOUNTER

{a,b,e}

{CLEAR, UP, DOWN, −}

	

Z

{Y ES, NO, −}

Figure 3.2: Finite automaton with counter - a 3-OS that recognizes the language {anbn|n > 0}

The counter is a very simple “memory”, but has the inconvenient that forgets in the “reading” process.
Another inconvenient is its loss of generality. A more general memory is the stack memory. It also forgets
by reading but it is able to store the received string. Let us remember the push-down automata presented
in 5.3.1 and Example 5.3 where the family of strings recognized belonged to a type-2 language. For
general situations the next well known theorem works.
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Theorem 3.5 All type-2 languages can be recognized by the final state of a push-down automaton (PDA)
(see Definition 5.1).
⋄

The main remark is that a PDA is a small and simple machine because the automaton is a finite
machine and the stack is an infinite, recursive defined machine.

Theorem 3.6 Any type-2 language are generated by a non-deterministic push-down automata.
⋄

And now, what is the main difference between a finite automaton and a PDA? What is the main step
done in order to have a machine that recognizes or generates type-2 languages?

Theorem 3.7 The lowest order of a system that implements a push-down automaton is 3.
⋄

Proof 3.2 Because the push-down automata is build using a finite automaton loop coupled with a push-
down stack (see Chapter 5 and Figure ??), then it is a third order system. Indeed, a finite automaton is a
second order system and the push-down stack has the same order because it is an “infinite” automaton
(the stack implementation implies a reversible counter serially composed with a RAM). The third loop
through the stack has the role to memorize “the number n”, to memorize the additional relation between
the elements of the generated string (in our simple example the stack memorizes the value n).
⋄

The stack is the simplest memory device because:

1. stores only strings

2. has the access only to one end of the string (last - in first - out)

3. the read operation is destructive (the memory forgets the read information because of the access
type).

The simplicity is the reason for using this memory in order to build the first machine a little more complex
than a finite automaton. The first step beyond the automata level is made by PDA. But the same simplicity
is also the reason for which we must renounce to this memory if we want to approach the next type of
languages. For the next step we need a memory in which we can access many times the same stored
content. We need a memory who does not forget when it remembers. Recognizing or generating the
context dependent languages will implie to search for some substrings many times, in order to evaluate
the context for different received or generated symbols.

3.3 Type 1 Grammars & Four Loops Machines (4-OS)

Let’s try to solve the recognition of a language from L1 using an automaton! Even an “infinite automa-
ton”. After two minutes of thinking my conclusion is to leave this pleasure to other people ... . More
chances we have with a pushdown automaton, but this solution implies also an “infinite” number of states
for the automaton. It is evident the necessity to make the next step in introducing a new feature for the
recognizing/generating machine.
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For example when we try to build a machine associated to the language {anbncn|n > 0} we must
add a supplementary device. Indeed, if we try to use a PDA for recognizing this language we will be in
impossibility to finish our work because after reading the a’s from the stack the information about n will
be lost and we need this information for “counting” the c’s. We must add something to compensate this
disfunctionality. We must think to add a new reversible counter. But, this solution leads us toward the
third loop.

In the general case we can use for L1 a finite defined machine (a machine with CMachine(n) ∈ O(1))
only by adding, to the push-down stack automaton, a new push-down stack to make a back-up for each
symbol read from the first stack. In this case a new loop is closed in the machine and it becomes a
four order system (4-OS). The new stack compensates the limit of the stack memory that forgets by the
reading.

The third loop of the system is necessary because it gives us access to a new external memory.
This additional memory was imposed because a restriction that acts on the productions that define the
grammars has been removed. But, the effect of the additional memory can be substituted if the machine
should be equipped with a memory having more features: the linear bounded memory.

Definition 3.1 The linear bounded automaton (LBA) is a finite automaton (FA) loop connected with a
linear bounded memory (see Figure 3.3) that performs in each cycle the following sequence of opera-
tions:

1. generates to the output DOUT the content of the current accessed cell

2. stores to the current accessed cell the symbol applied on the input DIN

3. changes the accessed cell with the next right cell (UP) or the previous left cell (DOWN), or main-
tains the same accessed cell (-) (working like a bi-directional list memory). The formal definition
of the LBA is:

LBA = (I∪{#}, Q, f ;q0)

where: I ∪{#} is the finite alphabet of the machine, Q is the finite state set, q0 ∈ Q is the initial
state of the automaton and f is the transition function of the entire machine:

f = (I∪{#})×Q→ (I∪{#})×Q×{UP, DOWN, −}

with the very important restriction: the symbol # is prohibited to be substituted. In each state,
starting from the symbol read from memory and from the state of the automaton, a new symbol
is written back into the memory, the automaton switches in a new state and the cell for the next
state is selected. In the initial state of the machine the automaton is in q0, the memory contains the
string to be processed limited on both ends by # and the first symbol from the string is accessed.

⋄

Using the machine just defined the context dependent language were studied from the point of view
of the machine that recognizes or generates it.

Theorem 3.8 The context-sensitive languages (type-1 languages) are recognized only by the final states
of a linear bounded automata.
⋄
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Figure 3.3: Linear Bounded Automata

If the string to be recognized is in a memory in which after reading a symbol it can be written back,
then it can be inspected many times in order to perform a more complex recognizing process.

Theorem 3.9 The context-sensitive languages are generated only by the machines that are at least linear
bounded automata.
⋄

The possibility to re-memorize suggests us a new loop.

Theorem 3.10 The lowest order of a system that implements a linear bounded memory automaton is 4.
⋄

Proof 3.3 The simplest memory having non-destructive reading can be made by loop connecting two
push-down stack memories. For each POP, from the initial stack, a PUSH with the same symbol or
another, in the added stack, is performed. For each POP from the added stack, a corresponding PUSH
can be made in the initial stack. Thus, these two stacks perform the functions of a memory which doesn’t
forget when reading. The sizes of each stack can be linearly bounded to the string’s length. Thus, the
two stacks simulate a bi-directional list.

Because a push-down stack is a 2-OS, a memory with non-destructive reading is a 3-OS (made by
loop connecting two stacks) and a linear bounded automaton is a 4-OS (see Figure 3.4).
⋄
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Figure 3.4: Push-down automaton with an additional stack memory

An equivalent structure for LBA is presented in Figure 3.5, where:

• AUTOMATON is a finite automaton (a 2-OS)

• UDCOUNT ER is an “infinite” automaton, having a simple structure (CUDCOUNT ER ∈ O(1), even
the size is SUDCOUNT ER ∈ O(logn)), used to point a symbol in memory
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Figure 3.5: Automaton with Linear Bounded Memory

• RAM is a random access memory for storing the string (a first order system)

This structure has two loops over a finite automaton. Therefore, it is also a 4-OS. The structure is more
complex but the size is minimal. Instead of the previous solution, in which the content “moves” in front
of the automaton, now the content of the memory is pointed by the content of an up-down counter. Now
the pointer moves and the content is stable in RAM.

The hardware requirement for context-sensitive languages implies a more structured and a more
functional segregated machine. This machine has two supplementary loops added to an automaton with
two distinct roles:

• the first, through RAM, for accessing an external memory support

• the second, through UDCOUNT ER and RAM, for accessing an external memory function: a bi-
directional scanned list.

The list can do more than the stack. Both are strings but the second allows only a limited and
destructive access to the content of the string. In a memory hierarchy the list has a higher order because
it is equivalent (sometimes it is implemented so) by two loop-coupled stacks.

3.4 Type 0 Grammars & Turing Machines

The computational model of the Turing machine is responsible, together with Kleene’s model, for the
(too) strong imposed von Neumann architecture [von Neumann ’45] of the actual computers.

Definition 3.2 Turing Machine (TM) is a finte automaton (FA) loop connected with an infinite memory
(Figure 3.6). The automaton performs in each cycle the following sequence of operations:

1. receives from the output DOUT the content of the current accessed cell in the memory

2. stores to the current accessed cell the symbol generated, on the input DIN, according with the own
state and with the received symbol

3. changes the accessed cell with the next right (UP) or next left (DOWN) cell, or maintains the same
accessed cell (-).
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The formal definition of the TM is:
T M = (I, Q, f ;q0)

where: I is finite alphabet of the machine, Q is the finite state set, q0 ∈ Q is the initial state of the
automaton and f is the transition function of the entire machine:

f = I×Q→ I×Q×{UP, DOWN, −}.

In each state, starting from the symbol read from the memory and from the state of the automaton, a new
symbol is written in the memory, the automaton switches in a new state and the cell for the next state is
selected. In the initial state the automaton is in q0, the memory contains the string to be processed ended
on both ends by # ∈ I, the selected symbol from the string is the first symbol.
⋄
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Figure 3.6: The Turing Machine

A detailed structure of TM is presented in Figure 3.7 for emphasizing its three main components:

1. the finite automaton (FA)

2. the infinite automaton that is the reversible counter, UDCOUNTER, a simple recursive defined
device

3. Infinite RAM (also a simple recursive defined structure) addressed by UDCOUNTER.

Theoretically, the Infinite RAM and UDCOUNTER are both more than two “infinite” machines
because they must be in fact infinite. Therefore, TM is not a real machine and we can not classify it as a
digital system; we can not discuss about the order of TM.
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Figure 3.7: The structure of a Turing Machine
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Type-0 grammars and the associated languages are characterized with rules having no restrictions.
The last restriction being avoided (the string length can not be reduced in any step of the generative
processes), the memory space cannot be evaluated before the process of generating or recognizing the
string (in the generative process the string can reach an unpredictable length). Therefore the memory
must be theoretically unlimited.

The formal language theory is centered on the context free (type-2) languages because these are
the most used programming languages. Therefore, it is enough to study the languages that border the
context free languages, i.e., regular languages and context dependent languages. Languages simpler that
the regular language and, in the same time useful, maybe do not exit. But a question rises: are there
languages between type 1 languages and type 0 languages? In other words, is there a less restrictive
condition that the restriction imposed to the context sensitive language? The answer to this question
should become important if we will need formal languages more less restrictive (or more “expressive”)
than the current ones.

3.5 Universal Turing Machine: the Simplest Structure

Is TM a simple or a complex machine? The complexity of TM is given by the complexity of the finite
automaton because this part of the machine is actualized for each distinct problem. The finite automaton
contains the single random structure from a TM: the combinational circuit that closes the loop of the
automaton. We will prove that the structural complexity of TM can be reduced only transforming it in
the Universal Turing Machine (UTM).

Early theoretical studies where devoted to reduce the number of states of the finite automaton with
a minimal increasing of the number of symbols in the alphabet I [Shannon ’56]. In this approach the
complexity of the finite automaton increases very much. But we believe that, instead of reducing the
number of states, the more important thing is to reduce the structural complexity of UTM. In this respect
we will present the simplest UTM built only with recursive defined circuits.

The problem is to define a machine whose structure can remain unchanged when the executed func-
tion changes. In this case we need a machine with:

• an abstract representation for the needed TM, as a string of symbols stored in the memory

• an automaton, useful for all computable functions, that “understands” and “executes” by interpre-
tation the abstract representation, stored on the tape, of any automaton associated to a TM.

Interpretation is a process that uses a string encoded representation of an abstract machine, to emulate
the behavior of that machine. It allows us to deal with representations of machines rather than with the
machine themselves.

Let be a machine M with the initial content of the tape T : M(T ). An interpreter of M(T ) will be the
machine

U(< e(M),T >)

where e(M) is the string that describes the machine M. On the tape of the machine U there is the
description of M and the string, T , to be processed by the machine M.

Definition 3.3 An UTM is a TM, U(< e(M),T >), that has a finite automaton that interprets any TM’s
description, e(M), stored in the same memory with the string, T , to be processed.
⋄
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In order to implement an UTM we start from the fact that the transition function f from the state qi

can be reduced to a set of the pair of transitions having the next form:

f (qi,out o f RAM = x) = f (qi,x) = (q j,y,cl)

f (qi,out o f RAM ̸= x) = f (qi, ̸= x) = (qk,z,cm)

where: qi,q j ∈ Q, x,y,z ∈ I, and cl,cm ∈ {UP, DOWN, −} having the following meaning:

if out of RAM=x
then the next state is q j

the stored symbol is y
the access head command is cl

else the next state is qk
the stored symbol is z
the access head command is cm

Each such a pair will be associated with a state of the automaton. Therefore, any state can be represented
as a string of nine symbols having the form:

&,qi,x,q j,y,cl,qk,z,cm

where & is a symbol that points the beginning of the string associated with the state qi.
A TM can be completely described by specifying the function f , associated to the random structure

of the machine, using the above defined strings to compose a ”program” P.
The tape of UTM will be divided in two sections, one for the string T to be processed by the machine

M, and one containing the description P of the machine M. The content of the tape will be . . .#P@T # . . .
where:

• @ is a special symbol which delimits the “program” from the “data”

• the string P ∈ (I∪Q∪{DOWN, UP, −}∪{&})∗ is the “program” that describes the algorithm

• the string T ∈ I∗ represents the “data”.

The automaton of UTM “knows” how to interpret the string P in order to process the string T . It is
the only random structure in UTM. The question is: what are the possibilities to minimize this random
structure in UTM? The answer is: performing a strong functional segregation.

For simplicity, we will use a TM having two tapes (the first segregation!), one for P and one for T .
This machine has an actual implementation using a RAM with two ports for read and a port for write.

The previous form of P must be translated in P′ that uses for each state, instead of the string
&,qi,x,q j,y,cl,qk,z,cm stored in 9 successive memory cells, the next form, as a single entity stored
in one cell:

x,△q j,y,cl,△qk,z,cm

where: △q j and △qk represents the distance in memory between the current location and the locations
that store the descriptions for the states q j and qk. Each program P has a P′ form (this is the premise for
the second segregation!).
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Figure 3.8: The structure of a recursive defined Universal Turing Machine

The structure of UTM in the most segregated form is presented in Figure 3.8, where the counters are
detailed and some simple combinatorial circuits are added. The program P′ is stored in RAM starting
with a certain address n, where the description of the state q0 is loaded. In the following cells are stored
the descriptions for q1, . . .. The string to be processed is stored starting with a certain address m, greater
than the address in which the symbol @ is. The initial value of the first address “counter” (ADD & R1)
is n, and for the second counter (Inc/Dec & R2) is m. The multiplexer MUX selects (see Figure 3.8),
according to the output of Comp, the appropriate values for:

• the value (y or z) to be written in RAM to the current address generated by Inc/Dec & R2 (the
value to be written on the tape in the current cycle of the simulated TM)

• the signed number to be added to the current value of “program counter” implemented by
ADD & R1 (the relative address of the cell that stores the description of the next state: the next
“instruction”)

• the command applied to the counter (Inc/Dec & R2) that points in the data part of the tape

(The latch connected to DOUT2 has only an electrical role, avoiding the transparency on the loop closed
through the RAM built by latches. If the RAM would have been built with master-slave flip-flops (a
possible, but a very inefficient solution) the latch on DOUT2 output is not necessary.)

The strong functional segregation in UTM implies a machine with no random circuits. The ran-
domness of the machine is totally shifted in the content of the tape (memory), where a “random” string
describes an algorithm. Instead of random circuits we have random string of symbols. The hard random
structure of the circuits is converted to the soft random structure of the string describing the function
executed by the machine.

An UTM implemented in a variant with functional segregation emphasizes the fact that the relation
between the recursive part and the random part is the same as the actual relation between the hard part
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and the soft part of a computer system.
In this last UTM variant the interpretation of T is substituted with the execution of T. The interpre-

tation is a controlled process that involves a finite automaton. The execution is made by simple circuits
(in this case, combinational). Comp, MUX, ADD, Inc/Dec are simple circuits that execute. Removing
the finite automaton from the structure of UTM the machine substitutes the interpretation of P with the
execution of P.

In order to use only the simplest structure for implementing the machine associated with any formal
language it is evident that the best solution is UTM. The random part of its structure can be null. It is the
time for a new theorem.

Theorem 3.11 The simplest physical structure of a machine that recognizes/generates a formal
language is the physical structure of a 0-state UTM that executes, using only combinational circuits,
the “program” P instead of interpreting P using a finite automaton. ⋄

Proof 3.4 There is no random part in UTM. The combinational circuit of a finite automaton is random
and all the machines previously associated to formal languages contain at least a finite automaton.
Therefore, only UTM is completely built with recursive defined circuits. The finite automaton is avoided
and the interpretation is substituted with the execution.
⋄

3.5.1 The Halting Problem: the Price for Simplicity

The complexity of U depends only on the algorithmic complexity of the string e(M). The structural
complexity is converted in the complexity of the symbolic description of the computation that will be
interpreted or executed in UTM. A hard complexity is converted into a soft complexity even for the
problem having solutions with a less powerful machine (such as finite automata, PDA as LBA). What is
the price for translating the complexity in a soft modeled space? The price is, at least, the unsolvability
of the Halting Problem (HP).

HP is one of the most important problems that arise in computability. Let be a machine M(T ) having
the tape content T (a program, M, and an input data, T). The question is: the machine does stops after a
finite number of cycles or does not stop? The halting function sould be computed by another TM, named
H, that returns 1 if M with initial content of tape T stops, else returns 0:

H(< e(M),T >) = 1 if M(T ) halts

H(< e(M),T >) = 0 if M(T ) runs f orever.

Theorem 3.12 The function H(< e(M),T >) is uncomputable. ⋄

Proof 3.5 Assume that the TM H exists for any encoded machine description and for any input tape.
We will define an effective TM G such that for any TM F, G halts with the tape content e(F) if H(<
e(F),e(F) >) = 0 and runs forever if H(< e(F),e(F) >) = 1. G is an effective machine because it
involves the function H and we assumed that this function is computable.

Now consider the computation H(< e(G),e(G)>) (G halts or not, running on its own description).
If H(< e(G),e(G)>) = 1, then the computation of G(e(G)) halts, but starting from the G’s defini-

tion G(e(G)) the computation halts only if H(< e(G),e(G)>) = 0. Therefore, if H(< e(G),e(G)>) = 1,
then H(< e(G),e(G)>) ̸= 1.
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If H(< e(G),e(G) >) = 0, then the computation of G(e(G)) runs forever, but starting from the
G’s definition G(e(G)) the computation runs forever only if H(< e(G),e(G)>) = 1. Therefore, if H(<
e(G),e(G)>) = 0, then H(< e(G),e(G)>) ̸= 0.

The application of function H to the machine G and its description generates a contradiction. Be-
cause H is defined to work for any machine description and for any input tape, we must conclude that
the initial assumption is not correct and H is not computable. [?]
⋄

The price for structural simplicity is the limited domain of the computable. See also the minimaliza-
tion rule in the previous chapter as an example illustrating the HP.

Let us remember the Theorem 2.1 that proves that circuits compute all the functions. UTM is limited
because it does not compute at least HP. But the advantage of UTM is that the computation has a finite
description instead of the circuits that are huge and complex. Circuits are complex while the algorithms
for TMs are simple. But, the price for the simplicity is the incompleteness.

3.6 Conclusions

Thesis: The actual structure evolved toward simplicity. In this respect we can promote a thesis:

Thesis: Digital machines that recognize and generate formal languages can be “infi-
nite” (big sized) machines but must have finite definitions (small complexity).

The most important conclusion of this chapter is that there exists a correspondence between:

• L3↔ 2−OS

• L2↔ 3−OS

• L1↔ 4−OS

Turing machine and zero type languages don’t have an associated order in structural hierarchy, because
the Turing machine is only a theoretical model.

Between context-sensitive languages and zero type languages there are many other types of languages,
corresponding to a less restricted production of their grammars. Until now, these languages are out of our
interest because most of the programming languages are context-free. Systems having the order more
than 4 are, maybe, associated to these hypothetical languages.

The initial evolution of the machine converted the hardware complexity into the software complexity.
Nowadays VLSI technologies can build big sized circuits only if they are simple.

The complexity cannot grow with the same speed as the size.

We must avoid the growing of the complexity in order to built very large circuits, or we must find other
ways to make computations. A large complex system has only the chance to balance between chaos and
(partial) order by self-organizing processes.



Chapter 4

Loops & Information

One of the most used scientific term is information, but we still don’t know a wide accepted definition
of it. Shannon’s theory shows us only how to measure information not what is information. Many other
approaches show us different, but only particular aspects of this full of meanings word used in sciences,
in philosophy or in our current language. Information shares this ambiguous statute with others widely
used terms such as time or complexity. Time has a very rigorous quantitative approach and in the same
time nobody knows what the time is. Also, complexity is used with so many different meanings.

In the first section of this chapter we will present three points of view regarding the information:

• a brief introduction of Claude Shannon’s definition about what is the quantity of information

• Gregory Chaitin’s approach: the well known algorithmic information theory which offers in the
same time a quantitative and a qualitative evaluation

• Mihai Drǎgǎnescu’s approach: a general information theory built beyond the distinction between
artificial and natural objects.

We explain information, in the second section of this chapter, as a consequence of a structuring pro-
cesses in digital systems; this approach will offer only a qualitative image about information as functional
information.

Between these “definitions” there are many convergences emphasized in the last section. I believe
that for understanding what is information in computer science these definitions are enough and for a
general approach Drǎgǎnescu’s theory represents a very good start. In the same time only the scientific
community is not enough for validating such an important term. But, maybe a definition accepted in all
kind of communities is very hard to be discovered or to be constructed.

4.1 Definitions of Information

4.1.1 Shannon’s Definiton

The start point of Shannon was the need to offer a theory for the communication process [Shannon ’48].
The information is associated with a set of events E = {e1, . . . ,en} each having its own probability to

come into being p1, . . . , pn, with
n

∑
i=1

pi = 1. The quantity of information has the value

I(E) =−
n

∑
i=1

pilog pi

45
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.
This quantity of information is proportional with the non-determining removed when an event ei

from E occurs. I(E) is maximized when the probabilities pi have the same value, because if the events
are equally probable any event remove a big non-determining. This definition does not say anything
about the information contained in each event ei. The measure of information is associated only with the
set of events E, not with each distinct event.

And,the question remains: what is Information? Qualitative meanings are missing in Shannon’s
approach.

4.1.2 Algorithmic Information Theory

Premises

All big ideas have many starting points. It is the case of algorithmic information theory too. We can
emphasize three origins of this theory [Chaitin ’70]:

• Solomonoff’s researches on the inference processes [Solomonoff ’64]

• Kolmogorov’s works on the string complexity [Kolmogorov ’65]

• Chaitin’s papers about the length of programs computing binary strings [Chaitin ’66].

Solomonoff’s researches on prediction theory can be presented using a small story. A physicist makes
the next experience: observes at each second a binary manifested process and records the events as a
string of 0’s and of 1’s. Thus obtains an n-bit string. For predicting the (n+1)-th events the physicist is
driven to the necessity of a theory. He has two possibilities:

1. studying the string the physicist finds a pattern periodically repeated, thus he can predict rigorously
the (n+1)-th event

2. studying the string the physicist doesn’t find a pattern and can’t predict the next event.

In the first situation, the physicist will write a scientific paper with a new theory: the “formula” just
discovered, which describes the studied phenomenon, is the pattern emphasized in the recorded binary
string. In the second situation, the physicist can publish only the whole string as his own “theory”, but
this “theory” can’t be used to predict anything. When the string has a pattern a formula can be found and
a theory can be built. The behavior of the studied reality can be condensed and a concise and elegant
formalism comes into being. Therefore, there are two kinds of strings:

• patternless or random strings that are incompressible, having the same size as its shortest descrip-
tion (i.e., the complexity has the same value as the size)

• compressible strings in which finite substrings, the patterns, are periodically repeated, allowing a
shortest description.

Kolmogorov’s work starts from the next question: Is there a qualitative difference between the next
two equally probable 16 bits words:

0101010101010101

0011101101000101
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or there does not exist any qualitative difference? Yes, there is, can be the answer. However, what is
it? The first has a well-defined generation rule and the second seems to be random. An approach in
the classical probability theory is not enough to characterize such differences between binary strings.
We need, about Kolmogorov, some additional concepts in order to distinguish the two equally probable
strings. If we use a fair coin for generating the previous strings, then we can say that in the second
experience all is well, but in the first - the perfect alternating of 0 and of 1 - something happens! A strange
mechanism, maybe an algorithm, controls the process. Kolmogorov defines the relative complexity (now
named Kolmogorov complexity) in order to solve this problem.

Definition 4.1 The complexity of the string x related to the string y is

K f (x|y) = min{|p| | p ∈ {0,1}∗, f (p,y) = x}

where p is a string that describes a procedure, y is the initial string and f is a function; |p| is the length
of the string p. ⋄

The function f can be a Universal Turing Machine (says Gregory Chaitin in another context but
solving in fact a similar problem) and the relative complexity of x related to y is the length of the shortest
description p that computes x starting with y on the tape. Returning to the two previous binary strings,
the description for the first binary string can be shorter than the description for the second, because the
first is built using a very simple rule and the second has no such a rule.

Theorem 4.1 There is a partial recursive function f0 (or an Universal Turing Machine) so as for any
other partial recursive function f and for any binary strings x and y the following condition is true:

K f0(x|y)≤ K f (x|y)+ c f

where c f is a constant.
⋄

Therefore, always there exist a function that generates the shortest description for obtaining the string
x starting from the string y.

Chaitin’s approach starts by simplifying Kolmogorov’s definition and by sustiruting with a machine
the function f . The teen-eager Gregory Chaitin was preoccupied to study the minimum length of the
programs that generate binary strings [Chaitin ’66]. He substitutes the function f with a Universal
Turing Machine, M, where the description p is a program and the starting binary string y becomes an
empty string. Therefore Chaitin’s complexity is:

CM(x) = min{|p| | p ∈ {0,1}∗,M(p) = x}.

Chaitin’s Definition for Algorithmic Information Content

The definition of algorithmic information content uses a sort of Universal Turing Machine, named M,
having some special characteristics.

Definition 4.2 The machine M (see Figure 4.1) has the following characteristics:

• three tapes (memories) as follows:
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Figure 4.1: The machine M

– a read-only program tape (ROM) in which each location contains only 0’s and 1’s, the
access head can be moved only in one direction and its content cannot be modified

– a read-write working tape (RAM) containing only 0’s and 1’s and blanks, having an access
head that can be moved to the left or to the right

– a write-only output tape (WOM) in which each location contains 0, 1 or comma; its head
can be moved only in one direction

• a finite state strict initial automaton performing eleven possible actions:

– halt

– shift the work tape to the left or to the right (two actions)

– write 0,1 or blank on the read-write tape (three actions)

– read from the current pointed place of the program tape, write the read symbols on the work
tape in the current pointed place and move one place the head of the program tape

– write comma, 0 or 1 on the output tape and move one position the access head (three actions)

– consult an oracle enabling the machine M to chose between two possible transitions of the
automaton.

The work tape and the output tape are initially blank. The programming language L associated to the
machine M is the following:

<instruction> ::= <length of pattern><number of cycles><pattern>

<length of pattern> ::= <1-ary number>

<number of cycles> ::= <1-ary number>

<pattern> ::= <binary string>

<1-ary number> ::= 01 | 001 | 0001 | 00001 | ...

<binary string> ::= 0 | 1 | 00 | 01 | 10 | 11 | 000 | 001 | ...

The automaton of the machine M interprets programs written in L and stored on the read-only program
memory.
⋄
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The machine M was defined as an architecture because besides structural characteristics it has also
defined the language L. This language is a very simple one having only theoretical implications. The
main feature of this language is that it generates programs using only binary symbols and each program
is a self-delimited string (i.e., we don’t need a special symbol for indicating the end of the program).
Consequently, each program has associated an easy to compute probability to be generated using many
tosses of a fair coin.

Example 4.1 If the program written in L for the machine M is:

000100000101

then the output string will be:
01010101.

Indeed a pattern having the length 2 (the first 4 bits: 0001) is repeated 4 times (the next 6 bits: 000001) and this
pattern is 01 (the last 2 bits:01). ⋄

Using this simple machine Chaitin defines the basic concepts of algorithmic information theory, as
follows.

Definition 4.3 The algorithmic probability P(s) is the probability that the machine M eventually halts
with the string s on the output tape, if each bit of the program results by a separate toss of an unbiased
coin (the program results in a random process). ⋄

Example 4.2 Let be the machine M. If m is the number of cycles and n is the length of the pattern, then:

P(s) = 2−(m+2n+4).⋄

Definition 4.4 The algorithmic entropy of the binary string s is H(s) =−log2P(s). ⋄

Now we are prepared to present the definition of the algorithmic information.

Definition 4.5 The bf algorithmic information of the string s is I(s) = min(H(s)), i.e. the shortest pro-
gram written for the best machine. ⋄

In this approach the machine complexity or the machine language complexity does not matter, only
the length of the program measured in number of bits is considered.

Example 4.3 What is the algorithmic entropy of the two following strings: s1 a patternless string of n bits and s2
a string of n zeroes?

Using the previous defined machine M results: H(s1) ∈ O(n) and H(s2) ∈ O(n).

The question of Kolmogorov remains unsolved because the complexity of the strings seems to be the
same. What can be the explanation for this situation? It is obvious that the machine M is not performant
enough for making the distinction between the complexity of the strings s1 and s2. A new better machine
must be built.

Definition 4.6 The machine M from the previous definition becomes M′ if the machine language becomes
L′, defined starting from L modifying only the first line as follows:
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<instruction> ::= <the length of <pattern length> in 1-ary>

<pattern length in binary>

<the length of <number of cycles> in 1-ary>

<number of cycles in binary>

<pattern> ⋄

The complexity of the machine M’ is bigger than that of the machine M because it must interpret
programs written in L′ that are more complex than programs written in L. Using the machine M′ more
subtle distinctions can be emphasized in the set of binary strings. Now, we can take back the last exemplu
trying to find a difference between the complexity of the strings s1 and s2.

Example 4.4 The program in L′ that generates in M′ the string s1 is:

00...0︸ ︷︷ ︸
⌈log2n⌉

011XX ...X︸ ︷︷ ︸
⌈log2n⌉

0011XX ...X︸ ︷︷ ︸
n

and for the string s2 is:
001100...0︸ ︷︷ ︸

⌈log2n⌉

011XX ...X︸ ︷︷ ︸
⌈log2n⌉

0

where X ∈ {0,1}. Starting from these two programs written in L′ the entropy becomes: H(s1) ∈O(n) and H(s2) ∈
O(log n). Only this new machine makes the difference between a random string and a “uniform” string. ⋄

Can we say that I(s1) ∈ O(n) and I(s2) ∈ O(log n)? I yes, we can.

Theorem 4.2 The minimal algorithmic entropy for a certain n-bit string is in O(log n). ⋄

Proof If the simplest pattern has the length 1, then only the length of the string depends on n and
can be coded with log2n bits. ⋄

According to the algorithmic information theory the amount of information contained in an n-bit
binary string has not the same value for all the strings. The value of the information is correlated with the
complexity of the string, i. e., with the degree of his internal “organization”. The complexity is minimal
in a high organized string. For a quantitative evaluation we must emphasize some basic relationships.

Chaitin extended the previous defined concepts to the conditioned entropy.

Definition 4.7 H(t|s) is the entropy of the process of the t string generation conditioned by the genera-
tion of the string s.⋄

We can write: H(s, t) = H(t|s)+H(s), where H(s, t) is the entropy of the string s followed by the string
t, because: P(t|s) = P(s,t)

P(s) .

Theorem 4.3 H(s)≤ H(t,s)+ c, c ∈ O(1).⋄

Proof The string s can be generated using a program for the string(t,s) adding a constant program as a
prefix.⋄

Theorem 4.4 H(s, t) = H(t,s)+ c, c ∈ O(1). ⋄
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Proof The program for the string (t,s) can be converted in a program for (s, t) using a constant size
program as prefix.⋄

Theorem 4.5 H(s, t)≤ H(s)+H(t)+ c, c ∈ O(1).⋄

Proof The “price” of the concatenation of two programs is a constant length program.⋄

Theorem 4.6 H(t|s)≤ H(t)+ c, c ∈ O(1).⋄

Proof By definition H(t|s) = H(s, t)−H(s) and using the previous theorem we can write: H(t|s) ≤
H(s)+H(t)+ c−H(s) = H(t)+ c, where c ∈ O(1).⋄

Definition 4.8 A string s is said to be random when I(s) = n+c, where n is the length of the string s and
c ∈ O(1).⋄

Theorem 4.7 For most of n-bit strings s the algorithmic complexity (information) is: H(s) = n+H(n);
or most of the n bits strings are random. ⋄

Proof Each n-bit string has its own distinct program. How many distinct programs have the shorted
length n+H(n)+ c− k related to the programs having the length n+H(n)+ c (where c ∈ O(1))? The
number of the short programs decreases by 2k. That is, if the length of the programs decreases linearly,
then the number of the distinct programs decreases exponentially. Therefore, most of n bits strings are
random. ⋄

This is a tremendous result because it tells us that almost all of the real processes cannot be con-
densed in short representations and, consequently, they can not be manipulated with formal instruments
or in formal theories. In order to enlarge the domain of formal approach, we must “filter” the direct
representations so as the insignificant differences, in comparison with a formal, compact representation,
to be eliminated.

Another very important result of algorithmic information theory refers to the complexity of a theorem
deduced in a formal system. The axioms of a formal system can be represented as a finite string, also the
rules of inference. Therefore, the complexity of a theory is the complexity of the string that contains its
formal description.

Theorem 4.8 A theorem deduced in an axiomatic theory cannot be proven to be of complexity (entropy)
more than O(1) greater than the complexity (entropy) of the axioms of the theory. Conversely, ”there
are formal theories whose axioms have entropy n+O(1) in which it is possible to establish all true
propositions of the form ”H(speci f ic string)≥ n”.” [Chaitin ’77] ⋄

Proof We reproduce Chaitin’s proof. “Consider the enumeration of the theorems of the formal
axiomatic theory in order of the size of their proof. For each natural number k, let s∗ be the string
in the theorem of the form ”H(s) ≥ n” with n greater than H(axioms)+ k which appears first in this
enumeration. On the one hand, if all theorems are true, then H(s∗)> H(axioms)+ k. On the other hand,
the above prescription for calculating s∗ shows that H(s∗) ≤ H(axioms)+H(k)+O(1). It follows that
k < H(k)+O(1). However, this inequality is false for all k ≥ k∗, where k∗ depends only on the rule of
inference. The apparent contradiction is avoided only if s∗ does not exist for k = k∗, i.e., only if it is
impossible to prove in the formal theory that a specific string has H greater than H(axioms)+ k∗. Proof
of Converse. The set T of all true propositions of the form ”H(s)< k” is r.e. Chose a fixed enumeration
of T without repetitions, and for each natural number n let s∗ be the string in the last proposition of
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the form ”H(s) < n” in the enumeration. It is not difficult to see that H(s∗,n) = n+O(1). Let p be a
minimal program for the pair s∗, n. Then p is the desired axiom, for H(p) = n+O(1) and to obtain all
true proposition of the form ”H(s) ≥ n” from p one enumerates T until all s with H(s) < n have been
discovered. All other s have H(s)≥ n.” ⋄

Consequences

Many aspects of the reality can be encoded in finite binary strings with more or less accuracy. Because,
a tremendous majority of this strings are random, our capacity to do strict rigorously forms for all the
processes in reality is practically null. Indeed, the formalization is a process of condensation in short
expressions, i.e., in programs associated with machines. Some programs can be considered a formula for
large strings and some not. Only for a few number of strings (realities) a short program can be written.
Therefore, we have three solutions:

1. to accept this limit

2. to reduce the accuracy of the representations, making partitions in the set of strings, thus generating
a seemingly enlarged space for the process of formalization (many insignificant (?) facts can be
“filtered” out, so “cleaning” up the reality by small details (but attention to the small details!))

3. to accept that the reality has deep laws that govern it and these laws can be discovered by an
appropriate approach which remains to be discovered.

The last solution says that we live in a subtle and yet unknown Cartesian world, the first solution
does not offer us any chances to understand the world, but the middle is the most realistic and optimistic
in the same time, because it invites us to “filter” the reality in order to understand it. The effective
knowledge implies many subjective options. For knowing, we must filter out. The degree of knowledge
is correlated with our subjective implication. The objective knowledge is a nonsense.

Algorithmic information theory is a new way for evaluating and mastering the complexity of the big
systems.

4.1.3 General Information Theory

Beyond the quantitative (Shannon, Chaitin) and qualitative (Chaitin) aspects of information in for-
mal systems (like digital systems for exemplu) turns up the necessity of a general information theory
[Drǎgǎnescu ’84]. The concept of information must be applied to the non-structured or to the informal
defined objects, too. These objects can have an useful function in the future computation paradigms and
we must pay attention for them.

To be prepared to understand the premises of this theory we start with two main distinctions:

• between syntax and semantics in the approach of the world of signs

• between the signification and the sense of the signs.

Syntactic-Semantic

Let be a set of signs (usually but incorrectly named symbols in most papers), then two types of relations
can be defined within the semiotic science (the science of signs):
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• an internal relation between the elements of the set, named syntactic relation

• an external relation with another set of objects, named semantic relation.

Definition 4.9 The syntactic relation in the set A is a subset of the cartesian product (A×A× . . .×A).
⋄

By the rule, a syntactical relation makes order in manipulating symbols to generate useful configu-
rations. These relations emphasize the ordered spaces which have a small complexity. We remind that,
according to the algorithmic information theory, the complexity of a set has the order of the complexity
of the rule that generates it.

Definition 4.10 The semantic relation between the set S of signifiers and the set O of signifieds is R ∈
(S×O). The set S is a formal defined mathematical set, but the set O can be a mathematical set and
in the same time can be a collection of physical objects, mental states, ... . Therefore, the semantically
relation can be sometimes beyond of a mathematical relation. ⋄

Sense and Signification

The semantic relation leads us towards two new concepts: signification and sense. Both are aspects of
the meaning associated to a set in which there is a syntactical relation.

Definition 4.11 The signification can be emphasized using a formal semantical relation in which each
signifiers has one or more signifieds. ⋄

Definition 4.12 The sense of an object is a meaning which cannot be emphasized using a formal seman-
tic relation. ⋄

By the above definition, the meaning of the sense remains undefined because its meaning may be
suggested only by an informal approach. We can try an informal definition:

The sense may be the signification in the context of the wholeness.

The sense blows up only in the wholeness. We cannot talk about “the set of senses”. Our interest
regarding the sense is due to the fact that the senses act in the whole reality. A symbol or an object full
of senses may have an essential role in the interaction between the technical reality and the wholeness.
When an object has sense it overtakes the system, becomes more than a system. By the rule, an object
has a signification and sometimes a sense. (Seldom there is the situation when the object has only sense,
but not in the world of the objects.)

The signification is a formal relation and acts in the structural reality. The sense is an informal
connection between an object and the wholeness and acts in a phenomenological reality. The structural-
phenomenological reality supposes the manifestation of the signification and of the sense. Our limited
approach only makes the difference between the structural and the phenomenological. The pure structural
reality does not exist, it is created only by our helplessness in understanding the world. On the other hand,
the “phenomenological reality” is a pleasantly and motionless dream. Only the play between sense and
signification can be a key for dealing with the complexity of the structural-phenomenological reality.
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Generalized Information

Starting from the distinctions above presented the generalized information will be defined using
[Drǎgǎnescu ’84].

Definition 4.13 The generalized information is:

N =< S,M >

where: S is the set of objects characterized by a syntactical relation, M is the meaning of S. ⋄

In this general definition, the meaning associated to S is not a consequence of a relation in all the
situations. The meaning must be detailed, emphasizing more distinct levels.

Definition 4.14 The informational structure (or syntactic information) is:

N0 =< S >

where the set of objects S is characterized only by a syntactical (internal) relation.⋄

The informational structure N0 is the simplest information, we can say that it is a pre-information
having no meaning. The informational structure can be only a good support for the information.

Example 4.5 The content of a RAM between the addresses 0103H−53FBH does not have an informational char-
acter without knowing the architecture of the host computer. ⋄

The first actual information is the semantic information.

Definition 4.15 The semantic information is:

N1 =< S,S >

where: S is a syntactical set, and S is the set of significations of S given by a relation in (S×S). ⋄

Now the meaning exists but it is reduced to the signification. There are two types of significations:

• R, the referential signification

• C, the contextual signification

thus, we can write:
S =< R,C > .

Definition 4.16 Let us call the reference information: N11 =< S,R >. ⋄

Definition 4.17 Let us call the context information: N12 =< S,C >. ⋄

If in N11 to one significant there are more significats, then adding the N12 the number of the significats
can be reduced, to one in most of the situations. Therefore, the semantic information can be detailed as
follows:

N1 =< S,R,C > .
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Definition 4.18 Let us call the phenomenological information: N2 =< S,σ >, where: σ are senses. ⋄

Attention! The entity σ is not a set.

Definition 4.19 Let us call the pure phenomenological information: N3 =< σ >. ⋄

Now, the expression of the information is detailed emphasizing all the types of information:

N =< S,R,C,σ >

from the objects without a specified meaning, < S >, to the information without a significant set, < σ >.
Generally speaking, because all the objects are connected to the whole reality the information has

only one form: N. In concrete situations one or another of these forms is promoted because of practical
motivations. In digital systems we can not overtake the level of N1 and in the majority of the situations the
level N11. General information theory associates the information with the meaning in order to emphasize
the distinct role of this strange ingredient.

4.2 Looping toward Functional Information

Information arises in a natural process in which circuits grow in size and in complexity. There is a level
from which the increasing complexity of the circuits tend to stop and only the circuit size continues to
grow. This is a very important moment because the complexity of computation continues to grow based
on the increasing of another entity: the information. The computational power is distributed from this
moment between two main structures:

• a physical structure that can grow in size remaining at a moderate or a small complexity

• a symbolic structure that has a random structure with the size in the same order with the com-
plexity.

The birth of information is determined by the gap between the size of circuits and their complexity.
This gap allows the segregation process, which emphasizes functional defined circuits as simple circuits.
Also, this gap increases the weight of control. Indeed, a small number of well defined functional circuits
must do complex computations coordinated by a complex control.

Information assumes the control in the computing systems. It is a way to put together a small num-
ber of functional segregated circuits in order to perform complex computations.We usie simple machines
controlled by complex programs. Information comes out in a process in which the random part of com-
putation is segregated from the simple (recursive defined) part of computation. Now, let us explain this
process.

The first step towards the definition of information is to emphasize the informational structure. In
this approach, we will make two distinctions in the class of the automata. The first between automata
having random loops and functional loops and the second between automata with non-structured states
and with structured states. After that, the informational structure is defined at the level of the second
order digital systems and information is defined at the level of the third order digital systems. We end at
the level of the 4-OS where information gains a complete control of the function in digital systems.
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4.2.1 Random Loop vs. Functional Loop

Let us start with a simple exemplu. Usually we call half-automaton a circuit built by a state register R
and a combinational circuit CLC loop coupled. Most of the circuits designed as half-automaton contain
a CLC having a “random” structure, i.e., a structure without a simple recursive definition. The minimal
definition of a random CLC has the size in the same order with the size of the circuit. On the other
hand, there are half-automata with the loop closed over simple, recursive defined CLCs having big or
small sizes. These CLC have well defined functions and in consequence have always a “name”, such
as: adder, comparator, priority encoder, . . .. This distinction can be extended over all circuits having
internal loops and will have a very important consequences on the structuring process in digital systems.
A random structure can not be expanded instead of a recursive defined functional structure that contains
in its definition the expansion rule. In the structural developing process the growth of the random circuits
stops very soon rather than the same process for functional circuits that is limited only by technological
reasons.

Definition 4.20 The random loop of an automaton is a loop on which the actual value assigned for the
state has only structural implications on the combinational circuit without any functional consequences
on the automaton. ⋄

Any finite automaton has a random loop and the state code can be assigned in many kinds without
functional effects. Only the optimization process is affected by the actual binary value assigned to each
state.

Definition 4.21 The functional loop of an automaton is a loop on which the actual value of the state is
strict related to the function of the automaton. ⋄

A counter has a functional loop and its structure is easy expandable for any number of bits. The
same is Bits Eater Automaton (see Figure ?? in Chapter 4). The functional loop will allow us to make
an important step towards the definition of information.

If an automaton has a loop closed through uniform circuits (multiplexors, priority encoder, demul-
tiplexor and a linear network of XORs, . . . ) that all have recursive definitions, then at the input of the
state register, the binary configurations have a precise meaning, imposed by the functional circuits. We
don’t have the possibility to choose the state assignment because of the combinational circuit that has a
predefined function.

A final exemplu will illustrate the distinction between the structural loop and the functional loop in a
machine that contains both situations.

Example 4.6 The Elementary Processor (see Figure ??) contains two automata. The control automaton has a
structural loop: the commands, whatever they are, can be stored in ROM in many different orders. The binary
configuration stored in ROM is random and the ROM as combinational circuit is then a random circuit. The
second automaton is an functional automaton (Rn & ADDn & nMUX4) with a functional loop: the associated
CLC has well defined digital functions (ADDn & nMUX4)and through the loop we have only binary configurations
with well-defined meaning: numbers.

There is also a third loop, closed over the two previous mentioned automata. The control automaton is loop
connected with a system having a well-defined function. The field <func> is used to generate towards ADDn &
nMUX4 binary configurations with a precise meaning. Therefore, this loop is also a functional one. ⋄
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On the random loop we are free to use different codes for the same states in order to optimize the
associated CLC or to satisfy some external imposed conditions (related to the synchronous or asyn-
chronous connection to the input or to the output of the automaton). The actual code results as a deal
with the structure of the circuits that close the loop.

On the functional loop the structure of the circuit and the meaning of binary configurations are
reciprocally conditioned. The designer has no liberty to choose codes and to optimize circuits. Circuits
on the loop are imposed and signals through the loop have well defined meanings.

4.2.2 Non-structured States vs. Structured States

The usual automata have the states coded with a compact binary configuration. As we knoow, the size
of a combinational circuit depends, in the general case, exponentially by the number of inputs. If the
number of bits used for coding the state becomes too large the circuit that implements the loop can grow
too much. In order to reduce the size of this combinational circuit the state can be divided in many fields,
in each clock cycle being modified the value of one field only. So the state gets an internal structure.

Definition 4.22 The structured state space automaton (S3A) [Ştefan ’91] is:

S3A = (X×A,Y,Q0×Q1× . . .×Qq, f ,g)

where:

• X ×A is the input set, X = {0,1}m and A = {0,1}p = {A0,A1, . . . ,Aq} is the selection set, with
q+1 = 2p

• Y is the output set

• Q0×Q1× . . .×Qq is the structured state set

• f : (X×A×Q0×Q1× . . .×Qq)→ Qi has the following form:

f (x,P(a,q,q0,q1, . . . ,qq)) = f ′(x,qa)

with x ∈ X, a ∈ A, qi ∈ Qi, where f ′ : (X ×Qa)→ Qa is the state transition function and P is the
projection function (see Chapter 8)

• g : (X×A×Q0×Q1× . . .×Qq)→ Y has the following form:

g(x,P(a,q,q0,q1, . . . ,qq)) = g′(x,qa)

with x ∈ X, a ∈ A, qi ∈ Qi, where g′ : (X×Qa)→ Y is the output transition function.⋄

The main effect of this approach is the huge reduction of the size of the circuit that closes the loop.
Let be Qi = {0,1}r. Then Q = {0,1}r×(q+1). The size of CLC without structured state space should
be SCLC ∈ O(2m+r×(q+1)), but the equivalent variant with structures state space has SCLC′ ∈ O(2m+r).
Theoretically, the size of the circuit is reduced 2q+1 times. The price for this fantastic (only theoretical)
reduction is the execution time that is multiplied with q+ 1. The time increases linearly and the size
decreases exponentially. There is no engineer that dares to ignore this fact. All the time when this
solution is possible, it will be applied.
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Figure 4.2: The structured state space automaton as a multiple register structure.

The structure of a S3A is obtained in a few steps starting from the structure of a standard automaton.
In the first step (see Figure 4.2) the state register is divided in (q+1) smaller registers (Ri, i = 0,1, . . . ,q)
each having its own clock input on which it receives the clock distributed by the demultiplexer DMUX
according to the value of the address A. The multiplexer MUX selects, according to A, the content of one
of the q+ 1 small registers to be applied to CLC. The output of CLC is stored only in the register that
receives the clock.

But, in the structure from Figure 4.2 there are too many circuits. Indeed, each register Ri is build by
a master latch serial connected with the corresponding slave latch. The second stores an element Qi of
the Cartesian product Q, but the first acts only in the cycles in which Qi is modified. Therefore, in each
clock cycle only one master latch is active. Starting from this evidence, the second step will be to replace
the registers Ri with latches Li and to add a single master latch ML (see Figure 4.3). The latch ML is
shared by all the slave latches Li for a proper closing of a non-transparent loop. In each clock cycle the
selected Li and ML form a well structured register that allows to close the loop. ML is triggered by the
inverted clock CK′ and the selected latch by the clock CK.
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Figure 4.3: The structured state space automaton as a single master-latch.

The structure formed by DMUX , MUX and L0, . . . ,Lq is obviously a random access memory (RAM)
that stores q+ 1 words of r bits. Therefore, the last step in structuring a S3A is to emphasize the RAM
by the structure from Figure 4.4. Each clock cycle allows to modify the content of a word stored at the
address A according to the input X and the function performed by CLC.
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Figure 4.4: The structured state space automaton with RAM and master latch.
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Figure 4.5: An exemplu of structured state space automaton: Registers with ALU (RALU)

Example 4.7 A very good exemplu of S3A is the core of each classical processor: the registers (R) and
the arithmetic and logic unit (ALU) that form together RALU (see Figure 4.5). The memory RAM has
two read ports, selected by Left and Right and a write port selected by Dest. It is very easy to imagine
such a memory. In the representation from Figure 4.3 the selections code for DMUX, separated from the
selection code of MUX, becomes Dest and a new MUX is added for the second output port. One output
port has the selection code Left and the other has the selection code Right. MUX selects (by Sel)
between the binary configuration received from an external device (DIN) and the binary configuration
offered to the left output LO of the memory RAM.

In each clock cycle two words from the memory, selected by Left and Right (if Sel = 1), or a
word from memory, selected by Right, and a receiver word (if Sel = 0), are offered as arguments for
the function Func performed by ALU and the result is stored to the address indicated by Dest.

The line of command generated by a control automaton for this device is:

<RALU Command> ::= <Left> <Right> <Dest> <Sel> <Func> <Write>

<Left> ::= L0 | L1 | ... | Lq | - ,

<Right> ::= R0 | R1 | ... | Rq | - ,

<Dest> ::= D0 | D1 | ... |Dq | - ,
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<Sel> ::= DIN | - ,

<Func> ::= AND | OR | XOR | ADD | SUB | INC | LEFT | SHR,

<Write> ::= W | - .

RALU returns to the control automaton some bits as indicators:
Indicators = {CARRY, OVFL, SGN, ODD, ZERO}.
The output AOUT will be used in applications needed to address an external memory. ⋄

The structured state of RALU is modified by a sequence of commands. This sequence is generated
by the rule, using a control automaton that works according to its switching functions for the state and
for the output, taking into account sometimes the evolution of the indicators.

4.2.3 Informational Structure in Two Loops Circuits (2-OS)

We have seen at the level of the 2-OS appearing a symbolic structure: the Cartesian product defining the
state space of the automaton. This symbolic structure is very important for two reasons:

1. the RALU, that supports it, is one of the main structure involved in defining and building the
central unit of a computing machine

2. it is the support for meanings that gains, step by step, an important role in defining the function of
a digital system; we shall call this new structure informational structure.

The Cartesian product (Q0×Q1 . . .×Qq) stored in the RAM is the state of the automaton. What are
the differences between this structured state and the state of a standard finite automaton? The state of a
standard automaton has two characteristics:

• it is a whole entity, without an internal structure

• it may be encoded in many equivalent forms and the external behavior of the automaton remains
the same; each particular encoding has its own combinational circuit thus the automaton runs in
the state space in the same manner; any code changing is compensated by a modification in the
structure of the circuit.

In S3A, RALU for exemplu, the situation is more different:

• the state has a structure: the structure of a Cartesian product

• using a functional loop (well defined combinational circuit (ALU) closes the loop) we loose the
possibility to make any state assignment for Qi and the concrete form of the state codes have a
well defined meaning: they are numbers.

Definition 4.23 The informational structure is a structured state that has a meaning correlated with
the functional loop of an automaton.⋄

The state of a standard automaton doesn’t have any meaning because the loop is closed through a
random circuit having a structure “negotiated” with the state assignment. This meaningless of the state
code is used for minimizing the combinational circuit of the automaton or to satisfy certain external
conditions (asybchronous inputs or free of hazard outputs). When the state degenerates in informational
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structure this resource for optimization is lost. What is the gain? I believe that the gain is a new structure
- the informational structure - that will be used to improve the functional resources of a digital machine
and for simplifying its structure.

The functional loop and the structured state lead us in the neighborhood of information, emphasizing
the informational structure. The process was stimulated by the segregation of the simple, recursive
defined combinational resources of the infinite automata. And now: the main step!

4.2.4 Functional Information in Three Loops Circuits (3-OS)

The functional approach in the structured space automata generates the informational structure. There-
fore, the second order digital systems offer the context for the birth of the informational structure. The
third order digital systems is the context in which the informational structure degenerates in information.
Therefore, the information is strongly related to the processing function. At the level of processors the
informational structure can act directly and becomes in this way information.

Let’s put together the just defined RALU with an improved control automaton that was defined as
CROM, thus defining a microprogrammed processor.

Definition 4.24 A microprogrammed processor consists in a RALU, as an functional automaton, loop
coupled with a CROM, as a control automaton. The function of a CROM is given by its internal structure
and the associated microprogramming language. The structure of the simplest CROM is shown in Figure
4.6 (is a variant having the complexity between the structure from Figure ?? and the structure from
Figure ??), where:

R is the state register containing the address of the current microinstruction

ROM is the combinational random circuit generating (“containing”) the current microinstruction hav-
ing the following fields:

<RALU Command> containing subfields for RALU (see Exemple 10.7)

<Out> the field for commanding the external devices (in this exemplu assimilated with the pro-
gram and data memory)

<Test> is the field that selects the appropriate indicator for the current switch of CROM

<Next> is the jump address if the value of T is true (the selected indicator is 1)

<Mod> is the bit that selects together with T the transition mode of the automaton

Inc. is an incrementer realized as a combinational circuit; it generates the next address in current
unconditioned transition of the automaton

MUX is the multiplexer selecting the next address from:

• the incremented current address

• the address generated by the microprogram

• the address 00 . . .0, for restarting the system

• the instruction received from the external memory (the instruction code is constituted by the
address from which begin the microprogram associated to the instruction)
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Figure 4.6: CROM

MUXT is the multiplexer that selects the current indicator (it can be 0 or 1 for non-conditioned or usual
transitions)

The associated microprogramming language is:
<Microinstruction> ::= <RALU Command> <Out> <Mod> <Test> <Next>

<RALU Command> ::= <Left> <Right> <Dest> <Sel> <Func> <Write>

<Left> ::= L0 | L1 | ... | Lq | - ,

<Right> ::= R0 | R1 | ... | Rq,

<Dest> ::= D0 | D1 | ... |Dq | - ,

<Sel> ::= DIN | - ,

<Func> ::= AND | OR | XOR | ADD | SUB | INC | LEFT | SHR,

<Write> ::= W | - ,

<Out> ::= READ | WRITE | - ,

<Mod> ::= INIT | - ,

<Test> ::= - | WAIT | CARRY | OVFL | SGN | ODD | ZERO | TRUE,

<Next> ::= <a label unused before in this definition of maximum six symbols

starting with a letter>.

The WAIT signal is received from the external memory. ⋄

In the previous defined machine let be q = 15 and r = 16, i.e., the machine has 16 register of 16 bits.
The register Q15 takes the function of the program counter (PC) addressing the program space in the
memory. The first microprogram must be done for the previous defined machine is the microprogram
that initializes the machine resetting the program counter (PC) and, after that, loops forever reading
(fetching) an instruction, incrementing PC and giving the access to the microprogram execution. Each
microprogram, that interprets an instruction, ends with a jump back to the point where a new instruction
is fetched, and so on.

Example 4.8 The main microprogram that drives a microprogrammed machine interpreting a machine language
is described by the next procedure.

Procedure PROCESSOR
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PC← the value zero
loop

do READ from PC
until not WAIT

repeat
READ from PC, INIT and PC← PC + 1

repeat
end PROCESSOR

The previous procedure has the next implementation as a microprogram.

L15 R15 D15 XOR W // Clear PC //

LOOP R15 READ WAIT LOOP // Fetch the current instruction //

R15 READ TRUE INIT L15 D15 XOR W // ‘‘Jump" to the

associated microprogram and increment PC //

⋄

The previous microprogram, or a similar one, is stored starting from the address 00 . . .0 in any
microprogrammed machine. The restart function of CROM facilitates the access to this microroutine.

Definition 4.25 The Processor is a third order machine (3-OS) built with two loop-coupled 2-OS sys-
tems, i.e., two distinct automata:

1. a functional automaton receiving commands from a control automaton and returning indicators
that characterize the current performed operation (usually is a RALU)

2. a control automaton (CROM in a microprogrammed machine) receiving:

• Instructions that initialize the automaton in order to perform it by interpretation (each in-
struction has an associated microprogram executed by the controlled subsystems)

• Indicators (flags) from the functional automaton and from the external devices for decisions
within the current microprogram. ⋄

For this subsection one exemplu of instruction is sufficient. The instruction is an exotic one, atyp-
ical for a standard processor but very good as an exemplu. The instruction computes in a register the
integer part of logarithm from a number stored in another register of the processor. The microprogram
implements the priority encoder function (see Chapter 2).

Example 4.9 Let be Q0 the register that stores the variable and Q1 the register that will contain the result, if it
exists, else (the variable has the value zero) the result will be 11 . . .1. The microprogram is:

L1 R1 D1 XOR W

L0 LEFT ZERO ERROR

TEST L0 D0 SHR ZERO LOOP

L1 D1 INC W TRUE TEST

ERROR L0 D0 INC W

L1 R0 D1 SUB W TRUE LOOP

The label LOOP refers in the previous microprogram. ⋄
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Each line of microprogram has a binary coded form according to the structure of circuits commanded.
The machine just defined is the typical digital machine for 3-OS: the processor. Any processor is

characterized by:

• the behavior defined by the set of control sequences (in our exemplu microprograms implemented
in ROM)

• the structure that usually contains many functional segregated simple circuits

• the flow of the internal loop signals.

Because the behavior (the set of control sequences or of microprograms) and the structure (composed
by uniform recursive defined circuits) are imposed, we don’t have the liberty to choose the actual coding
of the signals that flows on the loops. In this restricted context there are three types of binary coded sets
which “flow” inside the processor:

• informational structured sets having elements with a well defined meaning, according to the as-
sociated functional loop (for exemplu, the meaning of each Qi from RALU is that of a number,
because the circuit on the loop (ALU) has mainly arithmetic functions)

• the set of indicators or flags that are signals generated indirectly by the informational structure
through an arithmetical or a logical function

• information, an informational structured set that generates functional effects on the whole system
by its flow on a functional loop formed by RALU and CROM.

What is the difference between information and informational structure? Both are informational struc-
tures with a well defined meaning regarding to the physical structure, but information acts having a
functional role in the system in which it flows.

Definition 4.26 The functional information is an informational structure which generates strings of sym-
bols specifying the actual function of a digital system. ⋄

The content of ROM can be seen as a Cartesian product of many sets, each being responsible for
controlling a physical structure inside or outside the processor. In our example there are 10 fields: six for
RALU, one for outside of the machine (for memory) and 3 for the controller. A sequence of elements
from this Cartesian product, i.e., a microprogram, performs a specific function. We can interpret the
information as a symbolical structure having a meaning through which it acts performing a function.

The informational structure can be data or microprograms, but only the microprograms belong to
the information. At the level of the third order systems (processors) the information is made up only by
microprograms.

Until now, we emphasized in a processing structure two main informational structures:

• the processed strings that are data (informational structure)

• the strings that lead the processing: microprograms (information).

The informational structure is processed by the processor as a whole consisting in two entities:

• a simple and recursive physical structures
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• the information as a symbolic complex structure.

The information is executed by the simple functional segregated structures inside the processor.
The information is the random part of the processor. The initial randomness of digital circuits,

performing any functions, was converted in the randomness of symbolic structures which meanings are
executed by a simple, recursive defined digital circuits. Thus, the processor has two structures:

1. a physical one, consisting in a big size, low complex system

2. a symbolic one, having the complexity related with the performed computation.

According to the sense established for the term information we can say that digital systems do not
process the information, they process through information.

And now, what is the difference between flags and information? A flag is interpreted through infor-
mation instead of information that is executed by the physical structure (by the hardware). The value of
the flag does not have any meaning all the time for the processing. It has meaning only when the infor-
mation “needs” to know the value of the indicator (the indicator is selected by the field <Test>). The
flag acts indirectly and suffers a symbolic, informational interpretation instead of the hardware execution
to which the microprogram is submited. The flags are an intermediate stage between the informational
structure and information. The flags do not belong to any informational structure.

The loop “closed through” the flags is a weak informational one. The flags classify the huge content
of the informational structure in few classes. Only a small part of the meaning contained in data (the in-
formational structure) acts having a functional role. Through flags the informational structure manifests
with shyness as information. The flags emphasize the small informational content of the informational
structure. Thus, between the information and the informational structure there is not a net distinction.
The informational structure influence, through the flags only some execution details not the function to
be executed.

4.2.5 Controlling by Information in Four Loops Circuits (4-OS)

In the previous subsection, the information interacts directly with the physical structure. All the infor-
mation is executed or interpreted by the circuits. The next step disconnects partially the information
from circuits. In a system, having four loops the information can be interpreted by another information
acting to the lower level in the system. The typical 4-OS is the computer structure (see Chapter 6). This
structure is more than we need for computing. Indeed, as we said in Chapter 8 the partial recursive func-
tions can be computed in 3-OS. Why are we interested in using 4-OS for performing computations? The
answer is: for segregating more the simple circuits from random (complex) informational structure. In
a system having four loops the simple and the complex are maximal segregated, the first in circuits and
the second in information.

In order to exemplify how information acts in 4-OS we will use a very simple language: Extended
LOOP (ELOOP). This language is equivalent with the computational model of partial recursive func-
tions. For this language, an architecture will be defined. The architecture has associated a processor
(3-OS) and works on a computer (4-OS).

Definition 4.27 The LOOP language (LL) is defined as follows [Calude ’82]:
<character>::=A|B|C|...|Z

<number>::=0|1|2|...|9

<name>::=<character>|<name><number>|<name><character>
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<instruction>::=<name>=0|<name>=<name>+1|<name>=<name>

<loop>::=LOOP<name>

<end>::=END

<program>::=<loop><program><end>|<program><program>|<instruction>

⋄

The LOOP language is devoted to compute primitive recursive functions only. (See the proof in
[Calude ’82].) A new feature must be added to the LOOP language in order to use it for computing
partial recursive functions. The language must test sometimes the value resulting in the computation
process (see the minimalization rule in 8.1.4).

Definition 4.28 The Extended LOOP Language (ELOOP) is the LL supplemented with the next instruc-
tion:

IFX ̸= 0 GO TO < label >

where < label > is the “name” of an instruction from the current program. ⋄

In order to implement a machine able to execute a program written in the ELOOP language we
propose two architectures: AL1 and AL2. The two architectures will be used to exemplify different
degrees of interpretations. There are two ways in which the information acts in digital systems:

• by execution - digital circuits interpret one, more or all fields of an instruction

• by interpretation - another informational structure (by the rule a microprogram) interprets one,
more or all fields of the instruction.

In the fourth order systems the ratio between interpretation and execution is modified depending
on the architectural approach. If there are fields having associated circuits that directly execute the
functions indicated by the code, then these fields are directly executed, else these are interpreted, usually
by microprograms.

Definition 4.29 The assembly language one (AL1), as a minimal architecture associated for the proces-
sor that performs the ELOOP language, contains the following instructions:

LOAD <Register> <Register>: load the first register with the content of the external memory ad-
dressed with the second register

STORE <Register> <Register>: store the content of the first register on the cell addressed with the
second register

COPY <Register> <Register>: copy the content of the first register in the second register

CLR <Register>: reset the content of the register to zero

INC <Register>: increment the content of the register

DEC <Register>: decrement the content of the register

JMP <Register> <address>: if the content of the register is zero, then jump to the instruction stored
at the indicated address, else execute the next instruction
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NOP : no operation

where:

<Register> ::= R0 | R1 | ... | R15

The instructions are coded in one 16 bits word. The registers have 16 bits. ⋄

There are some difficulties in the previous defined architecture to construct in registers the addresses
for load, store and jump. In order to avoid this inconvenient in the second architecture addresses are
generated as values in a special field of the instruction.

Definition 4.30 The assembly language two (AL2), as a minimal architecture associated for the proces-
sor that performs ELOOP language, contains the following instructions:

LOAD <Register> <Address>: load the internal register of the processor with the addressed content
of the external memory

STORE <Register> <Address>: store the content of an internal register on the addressed cell in the
external memory

COPY <Register> <Register>: copy the content of the first register in the second register

CLR <Register>: reset the content of the register to zero

INC <Register>: increment the content of the register

DEC <Register>: decrement the content of the register

JMP <Register> <Address>: if the content of the register is zero, then jump to the instruction stored
at the indicated address, else execute the next instruction

NOP : no operation

where:

<Register> ::= R0 | R1 | ... | R15

<Address> ::= 0H | 1H | ... | FFFFH.

The instructions with the field <Address> are coded in two 16-bits words and the rest in one 16 bits
word. The registers have 16-bits. ⋄

The microprogrammed machine previously defined (see Definition 10.24) can be used without any
modification to implement the processor associated to these two architectures.

Each instruction in AL1 has the associated microprogram. The reader is invited to make a first
exercise implementing this processor using the microprogrammed machine defined in the previous sub-
section. The exercise consists in writing many microprograms. Each of the six instructions using a
register needs 16 microprograms, one for each register. The LOAD, STORE, COPY and JUMP instruc-
tions use two registers and we must write 256 microprograms for them. For NOP there is only one
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microprogram. Therefore, the processor is defined by 3× 16+ 4× 2073+ 1 = microprograms. A big
amount of microprogram memory is wasted.

The same machine allows us to implement a processor with the AL2 architecture. In this case, the
address is stored in the second word of the instructions: LOAD, STORE and JUMP. The number of
needed microprograms decreases to 6×16+256+1 = 353.

In order to avoid this big number of microprograms a third exercise can be done. We will modify
the internal structure of the processor thus the field <Register> is interpreted by the circuits, not by the
information as microprogram. (The field <Register> accesses direct through a miltiplexer the RALU
inputs <Left> and <Dest>.) Results a machine defined by eight microprograms only, one for each
instruction.

Thus, there are many degrees of interpretation at the level of the fourth order systems. In the first
implementation the entire information contained by the instruction is interpreted by the microprogram.

The second implementation offers a machine in which the field <Address> is executed by the de-
coder of the external RAM, after its storage in one register of the processor.

The third implementation allows a maximal execution. This variant interprets only the field that
contains the name of the instruction. The fields specifying the registers are executed by the RAM from
RALU and the address field is stored in RALU and after that is executed by the external memory.

In the first solution, the physical structure has no role in the actual function of the machine. The
physical structure has only a potential role, it interprets the basic information: the microprograms.

The third solution generates a machine in which the information, contained by the programs stored
in the external RAM, acts in two manners: is interpreted by the microprograms (the field containing the
name of the instruction) and is executed by circuits (the fields containing the register names are decoded
by the internal RAM from the RALU and the field containing the value of the address is decoded by the
external RAM).

There are processors, which have an architecture in which the information is entirely executed. A
pure RISC processor can be designed having circuits that execute all instruction fields. Between complete
interpretation and complete execution, the current technologies offer all the possibilities.

Starting from the level of the fourth order systems the functional aspects of a digital system is im-
posed mainly by the information. The role of the circuits decreases. Circuits become simple even if they
gain in size. The complexity of the computation switches from circuits to information.

4.3 Comparing Information Definitions

Ending this chapter about information, we make some comments about the interrelation between the
different definitions of this full of meanings term that we discussed here. We want to emphasize that
there are many convergences in interpreting different definitions for information.

1. Shannon’s theory evaluates the information associated with the set of events instead of Chaitin’s
approach which emphasizes the information contained in each event. Even with this initial difference,
the final results for big sized realities are in the same order for the majority of events. Indeed, according
to Theorem 10.7 the most of n-bit strings have information around the value of n bits.

2. The functional information and the algorithmic information offer two very distinct images. The
first is an exclusive qualitative approach, instead of the second which is a preponderant quantitative one.
Even that, the final point in this two theories is the same: the program or a related symbolic structure.
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The functional way starts from circuits instead of the algorithmic approach that starts from the string of
symbols. Both have in the second plane the idea of computation and both are motivated by the relation
between the size and the complexity of the circuits (for functional information) or of the strings (for
algorithmic information).

3. The functional information is a particular form of the generalized information defined by
Drǎgǎnescu, because the meaning (having the form of the referential signification) associated to strings
of symbols acts generating functional effects.

4. The jump from the binary string to the program of a machine that generates the string can be assimi-
lated with the relation between the string and its meaning. This meaning, i.e., the program, is interpreted
by the machine generating the string. The interpretation is the main function that allows the birth of func-
tional information. Therefore, the interpretation function, the meaning and the string are main concepts
that connect the functional information, generalized information and algorithmic information.

5. The information acts in a well-defined functional context by its meaning generating a string having
the complexity related to the size of its expression. The basic mechanism introduced by information is
the interpretation. A string has a meaning and the meaning must be interpreted. Algorithmic information
emphasizes the meaning and the functional information emphasizes the functional segregated context in
which the meaning is interpreted.
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Chapter 5

What Means Parallel Computation?

A clean way to impose a computational system is to go through the following mandatory steps:

• mathematical computational model

• abstract model

• structure

• architecture

• programming model

5.1 From Kleene’s model to MapReduce engine

In this section the way from the Kleene’s model to MapReduce engine is presented [?]. In Appendix
B the Stephen Kleene’s model of partial recursive functions is shortly presented. It can be used as a
mathematical model for parallel for parallel computation. In the same appendix there are proved two
theorems.

First Theorem : the primitive recursive rule is reducible to repeated applications of specific composi-
tions (see Theorem B.1).
⋄

Second Theorem : the minimization (least-search) rule is reducible to repeated applications of specific
compositions (see Theorem B.2).
⋄

5.1.1 Kleene Machine: a Parallel Model of Computation

Because, according to Theorems B.1 and B.2, only the composition rule must be considered in defining
what means (parallel) computation, the following definition is based exclusively on the composition rule.

Definition 5.1 Kleene Machine, KM, which computes any function f :Nn→Nm, is a composition struc-
tured as a two-layer construct (see Figure 5.1) with:

73
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1. map level: populated with the functions

hi(X , li+1,ri−1) = ⟨yi, li,ri⟩

for i = 1,2, . . .

2. reduction level: the function
g(y1, . . . ,yi, . . .) = ⟨zi, . . . ,zm⟩

where: the functions hi and the function g are initial functions or KMs, yi are arguments for the function
g, while li, ri are arguments for hi generated by hi+1 and hi−1, respectively.
⋄

h1(X , l2,r0) h2(X , l3,r1)

�

-

�

-
hi(X , li+1,ri−1)

�

-

�

-

g(y1, . . .yi, . . .)

?

reduce level

f (X) = f (x1, . . . ,xn) = ⟨z1, . . . ,zm⟩= Z

? ? ?
y1 y2 yi

l2

r1 r2

li

ri

map level

? ? ?

X = ⟨x1, . . . ,xn⟩

Figure 5.1: Kleene Machine. The synchronic parallelism is performed on the map level and the di-
achronic parallelism works between the map level and the reduce level.

The left-right connections between the cells of KM are due to the MOB structure which can be
developed in two versions, one already introduced in Definition ??, and another which can be similarly
defined for the left oriented connections.

Because Kleene’s model is proved to be mathematically equivalent with the Turing Machine model,
the next corollary is true.

Corollary 5.1 The Kleene Machine represents a mathematical model for parallel computation with two
aspects: the synchronic parallelism on the map level and the diachronic (pipelined) parallelism between
the two structural levels, the map level and the reduce level.
⋄

5.1.2 Universal Kleene Machine

For each function f there is a KM. As Turing defined [?] its Universal Turing Machine, UTM, the
concept of KM must be accompanied by the concept of Universal Kleene Machine, UKM. An UKM
must provide the possibility (1) to define any KM on the same structure, and (2) to compose KMs.
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Definition 5.2 Universal Kleene Machine (Figure 5.2) is a finite KM, with p cells on the map-level, loop
connected with a Counter-Extended Finite-State Automaton, CFA [?] (see Figure ??), having access to a
non-finite Memory addressed by the non-finite counter of CFA. The map-level of the finite KM contains
p identical cells, C1, . . . ,Cp, each having the function:

C1 C2 Cp

? ? ?

? ? ?
X X X

? ? ?

6

h1 h2 hp

Universal Turing Machine

f (X)
Accelerator

-

Addr.
Counter-extended

Finite-State
Automaton�

Memory

�

y1 y2 yp

- R
g

-

�

-

�

-

�
l2

r2

lp

r1

Figure 5.2: Universal Kleene Machine: seen as an Accelerated Universal Turing Machine.

Ci(hi,X ,ri−1, li+1) = Hhi(X ,ri−1, li+1) = ⟨yi, li,ri⟩

with hi ∈ {0,1, . . . ,q− 1}, X = ⟨x1, . . . ,x j, . . . ,xn⟩, x j ∈ N, for j = 1, . . . ,n, li,ri ∈ N the left and right
outputs of the cells, and yi ∈ N, for i = 1, . . . , p; while the reduction-level performs the function:

Gg : Np→ N

selected by:
R(g,Y ) = SEL(g,G0(Y ),G1(Y ), . . . ,Gr−1(Y ))

with Y = ⟨y1,y2, . . . ,yp⟩, g ∈ {0,1, . . . ,r− 1}; where hi and g select functions from the following two
finite sets of functions

H= {H0,H1, . . . ,Hq−1}

G= {G0,G1, . . . ,Gr−1}

representing the characteristic set of functions, F=H∪G, used to compose, starting from the the initial
functions of the composition rule, any computable function.

Formally:
UKM = (S,A,S0,λ )

where:

• S is the finite states set of the automaton in CFA

• A=H∪G∪N is the alphabet of the UKM

• S0 ∈ S is the initial state of the automaton in CFA
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• λ is the transition function

λ : S×N× (Np×N×Nn)→ S×Np×N×Nn×N

which, in each cycle, according to:

1. the current state of the automaton in CFA
2. the output of the reduction function
3. the “instruction” read from Memory having the following fields:

(a) the p indexes for selecting the elements from H for the map level
(b) the index for selecting one element of G for the reduction level)
(c) data (the sequence X ∈ Nn) read from Memory

generates:

1. the next state of the automaton in CFA
2. a sequence of codes for the p functions of the map level, ⟨h1,h2, . . . ,hp⟩, provided by Memory

or generated by CFA
3. the code of the function for the reduce level, g, provided by Memory or generated by CFA
4. the X sequence of n integers for the map level, ⟨x1,x2, . . . ,xn⟩, provided by Memory or gen-

erated by CFA
5. the element from N to be written back in Memory.

The memory is organized in words of p+1+n integers in read mode and in one-integer words for write
mode. The UKM is initialized in the state S0, and after a finite number of cycles, if the computation is
possible, the automaton in CFA stops in a final state.
⋄

In the structure of UKM it is easy to segregate the structure of a Turing Machine (which is instantiated
as an Universal Turing Machine). Therefore, UKM can be defined also as an UTM working with an
accelerator build as a finite KM, because the “infinite”-ness of KM is emulated in the “infinite” Memory,
loop connected with CFA.

5.2 Map-Reduce Abstract Machine Model for Parallel Computing

From the UKM, as a mathematical model for parallel computation, to an abstract model for parallel
computation able to support an actual implementation, few simplifying steps are needed. They are not
formally sustained by rigorous proofs. The purpose of this transition is motivated by the transition from
a competent model to a model which is also able to attain high performance.

Definition 5.3 A computation model is competent if the computation it supports ends in a finite number
of steps.
⋄

Definition 5.4 A computation model is performant if the computation it supports ends in a minimal
number of steps.
⋄

The road from competence to performance requires engineering work. The result is validated by the
evaluation of the resulting performance.
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5.2.1 Forms of Parallelism

Five forms of simplified parallelism (see Figure 5.3) are emphasized as the meaningful set of particular
compositions able to provide the transition from a competent model to a performant one.

a. Data-arallel

? ?

? ?

xp

h(x1) h(xp)

x1

f1 f2

? ?
b. Reduction-parallel

?

- - -

c. Speculative-parallel

-- fp

x1 xp

g(x1, . . . ,xp)

?

? ?

x1

x

x

h1(x)

d. Time-parallel

h1(x1) hp(xp)

xp

? ?

? ?

e.Thread-parallel

hp(x)

?

Speculative-

Figure 5.3: Five types of parallelism as particular forms of composition (see Figure 5.2)

Definition 5.5 Data-parallel computation is defined for MC computation (see Definition B.2) when n =
m with hi(x1, . . . ,xn) = h(xi), for i = 1, . . . ,n.
⋄

The same function, h, is applied in parallel to each component, xi, of the input vector.

Definition 5.6 Reduction-parallel computation is defined for RC computation (see Definition B.3) when
n = m with hi(x1, . . . ,xn) = h(xi) = xi, for i = 1, . . . ,n.
⋄
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On the first level of the composition, the map level, all the functions of one variable, xi, perform the
identity function.

Definition 5.7 Speculative-parallel computation is defined for MC computation when n = 1.
⋄

Each function hi has the same input variable x1.

Definition 5.8 Thread-parallel computation is defined for MC computation when n = m with
hi(x1, . . . ,xn) = hi(xi), for i = 1, . . . ,n.
⋄

Each cell performs a specific function on different data.

Definition 5.9 Time-parallel computation is defined for repeated application of the composition rule
with m = n = 1.
⋄

The repeated application of time-parallel computation provides the following pipe of functions:

f (x) = fp( fp−1( fp−2(. . . f1(x) . . .)))

5.2.2 Integral Parallelism

We claim that the previous five forms cover efficiently the most frequent parallel computation patterns.
Integrating them on a single engine provides the parallel abstract model for computation. In Figure 5.4,
the MapReduce recursive parallel abstract model for parallel computation is presented. It consists of:

eng mem
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eng mem
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�
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�

Figure 5.4: MapReduce recursive abstract model for parallel computation.
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• pairs eng-mem in the MAP section; they correspond to the cells Ci from UKM, and consist of:

– eng, the engine, which is an execution unit or a processing unit

– mem, the local memory to store data (when eng are execution units) or data and programs
(when eng are processing units)

• REDUCE unit; it corresponds to the R function in UKM

• CONTR, a controller used as sequencer; performs the function of FSM from UKM

• MEMORY, a memory resource for data and programs.

The entire structure from Figure 5.4 can be seen as a two-part entity:

• eng: MAP + REDUCE + CONTR

• mem: MEMORY

which behaves as a cell in a recursive hierarchy of a map-reduce organization of many-core coomputa-
tion.

5.3 A Programming Model

5.3.1 Backus’ Functional Forms

Although Backus’s concept of Functional Programming Systems (FPS) was introduced as an alternative
to the von Neumann style of programming in [3], we claim that they can be seen also as a low level
description for the parallel computing paradigm. In the following we use a FPS-like form to provide
a low level functional description for the abstract model defined in the previous section. Thus, we
obtain the virtual machine description of a parallel computer, i.e., the description defining the transparent
interface between the hardware system and the software system in a real parallel computer. Starting
from this virtual machine, the actual instruction set architecture could be designed for the physical
embodiment of various parallel engines.

This section provides, following [3], the low level description for what we call Integral Parallel
Machine (IPM). It contains functions which map objects into objects, where an object could be:

• atom, x; special atoms are: T (true), F (false), ϕ (empty sequence)

• sequence of objects, < x1, . . . ,xp >, where xi are atoms or sequences

• ⊥: undefined object

The set of functions contains:

• primitive functions: the functions performed atomically, which manage:

– atoms, using functions defined on constant length sequences of atoms, returning constant
length sequence of atoms

– p-length sequences, where p is the number of cells of the MANY-CORE section

• functional forms for:
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– expanding to sequences the functions defined on atoms

– defining new functions

• definitions: the programming tool used for developing applications.

Primitive Functions

An informal and partial description of a set of primitive functions follows.

• Atom : if the argument is an atom, then T is returned, else F is returned.

atom : x≡ (x is an atom)→ T ;F

The function is performed by the controller or at the level of each ci cell if the function is applied
to each element of a sequence (see apply to all in the next subsection).

• Null : if the argument is the empty sequence, it returns T, else F.

null : x≡ (x = ϕ)→ T ;F

It is a reduction-parallel function performed by the reduction/loop network, redLoopNet (see Fig-
ure ??), which returns a predicate to the controller.

• Equals : if the argument is a pair of identical objects, then returns T, else F.

eq : x≡ ((x =< y,z >) & (y = z))→ T ;F

If the argument contains two atoms, then the function is performed by the controller, else, if the
argument contains two sequences, the function is performed in the cells ci, and the final results is
delivered to the controller through redLoopNet.

• Identity : is a sort of no operation function which returns the argument.

id : x≡ x

• Length : returns an atom representing the length of the sequence.

length : x≡ (x =< x1, . . . ,xi >)→ i;(x = ϕ)→ 0;⊥

If the sequence is distributed in the MANY-CELL array, then a Boolean sequence, < b1, . . . ,bp >,
with 1 on each position containing a component x j is generated and redLoopNet provides ∑p

1 b j

for the controller.

• Selector : if the argument is a sequence with no less than i objects, then the i-th object is returned.

i : x≡ ((x =< x1, . . . ,xp >) & (i≤ p))→ xi

The function is performed composing an intense speculative-parallel search operation with a data-
parallel mask operation and the reduction-parallel OR operation which sends to the controller the
selected object.
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• Delete : if the first argument, k, is a number no bigger than the length of the second argument, then
the k-th element in the second argument is deleted.
del : x≡ (x =< k,< x1, . . . ,xp >>)&(k ≤ p)→
< x1, . . . ,xk−1,xk+1, . . . >
The ORprefix circuit included in the redLoopNet subsystem selects the sequence < xk,xk+1, . . . >,
then the left-right connection in the MANY-CELL array is used to perform a one position left shift
in the selected sub-sequence.

• Insert data : if the second argument, k, is a number no bigger than the length of the third argu-
ment, then the first argument is inserted in the k-th position in the last argument.
ins : x≡ (x =< y,k,< x1, . . . ,xp >>)&(k ≤ p)→
< x1, . . . ,xk−1,y,xk, . . . >
The ORprefix function performed in the redLoopNet subsystem selects the sequence <
xk,xk+1, . . . >, then the left-right connection in the MANY-CELL array is used to perform one
position right shift in the selected sub-sequence and write y in the freed position.

• Rotate : if the argument is a sequence, then it is returned rotated one position left.

rot : x≡ (x =< x1, . . . ,xp >)→< x2, . . . ,xp,x1 >

The redLoopNet subsystem and the left-right connection in the MANY-CELL array allows this
operation.

• Transpose : the argument is a sequence of sequences which can be seen as a two-dimension array.
It returns a sequence of sequences which represents the transposition of the argument matrix.
trans : x≡
(x =<< x11, . . . ,x1m >,. . . ,< xn1, . . . ,xnm >>)→
<< x11, . . . ,xn1 >,. . . ,< x1m, . . . ,xnm >>
There are two possible implementations. First, it is naturally solved in the MANY-CELL section
because, loading each component of x “horizontally”, as a sequence in Buffer, we obtain, associ-
ated to each cell ci, the n-component final sequences on the “vertical” dimension (see paragraph
3.2.3):

< x11, . . . ,xn1 > accessed by c1
< x12, . . . ,xn2 > accessed by c2

. . .
< x1m, . . . ,xnm > accessed by cm

where each initial sequence is a m-variable “line” and each final sequence is n-variable “column”
in Buffer. Second, using rotate and inter sequence operations.

• Distribute : returns a sequence of pairs; the i-th element of the returned sequence contains the first
argument and the i-th element of the second argument.
distr : x≡ (x =< y,< x1, . . . ,xp >>)→
<< y,x1 >,. . . ,< y,xp >>
The function is performed in two steps: (1) generates the p-length sequence < y, . . . ,y >, then (2)
performs trans << y, . . . ,y >,< x1, . . . ,xp >>.
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• Permute : the argument is a sequence of two equally length sequences; the first defines the per-
mutation, while the second is submitted to the permutation.
perm : x≡
(x =<< y1, . . . ,yp >,< x1, . . . ,xp >>)→
< xy1 , . . . ,xyp >
With no special hardware support it is performed in time O(p). An optimal implementation, in
time belonging to O(log p), involves a redLoopNet containing a Waksman permutation network,
with < y1, . . . ,yp > used to program it.

• Search : the first argument is the searched object, while the second argument is the target sequence;
returns a Boolean sequence with T on each match position.
src : x≡ (x =< y,< x1, . . . ,xp >>)→
< (y = xi), . . . ,(y = xp)>
It is an intense speculative-parallel operation. The scalar y is issued by the controller and it is
searched in each cell generating a Boolean sequence, distributed along the cells ci in MANY-
CELL, with T on each match position and F on the rest.

• Conditioned search : the first argument is the searched object, the second argument is the target
sequence, while the third argument is a Boolean sequence (usually generated in a previous search
or conditioned search); the search is performed only in the positions preceded by T in the Boolean
sequence; returns a Boolean sequencer with T on each conditioned match position.
csrc : x≡
(x =< y,< x1, . . . ,xp >,< b1, . . . ,bp >>)→
< c1, . . . ,cp >
where: ci = ((y = xi) & bi−1) ? T : F .
The combination of src or csrc allows us to define a sequence search operation (an application
is described in [?]).

• Arithmetic & logic operations :

op2 : x≡ ((x =< y,z >) & (y,z atoms))→ yop2z

where: op2 ∈ {add,sub,mult,eq, lt,gt, leq,and,or, ...}
or

op1 : x≡ ((x = y) & (y atom))→ op1y

where: op1 ∈ {inc,dec,zero,not}. These operations will be applied on sequences of any length
using the functional forms defined in the next sub-section.

• Constant : generates a constant value.

x̄ : y≡ x

Functional Forms

A functional form is made of functions that are applied to objects. They are used to define complex
functions, for an IPM, starting from the set of primitive functions.
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• Apply to all : represents the data-parallel computation. The same function is applied to all ele-
ments of the sequence.

α f : x≡ (x =< x1, . . . ,xp >)→< f : x1, . . . , f : xp >

Example:
α add :<< x1,y1 >,. . . ,< xp,yp >>→
< add :< x1,y1 >,. . . ,add :< xp,yp >>
expands the function add, defined on atoms, to be applied on sequences, << x1, . . . ,xp ><
y1, . . . ,yp >>, transposed in a sequence of pairs < xi,yi >.

• Insert : represents the reduction-parallel computation. The function f has as argument a sequence
of objects and returns an object. Its recursive form is:
/ f : x≡ ((x =< x1, . . . ,xp >)&(p≥ 2))→
f :< x1,/ f :< x2, . . . ,xp >>
The resulting action looks like a sequential process executed in O(p) cycles, but on the Integral
Parallel Abstract Model (see Figure ??) it is executed as a reduction function in O(log p) steps in
the redLoopNet circuit.

• Construction : represents the speculative-parallel computation. The same argument is used by a
sequence of functions.

[ f1, . . . , fn] : x≡< f1 : x, . . . , fn : x >

• Composition : represents time-parallel computation if the computation is applied to a stream of
objects. By definition:
( fq ◦ fq−1 ◦ . . .◦ f1) : x≡
fq : ( fq−1 : ( fq−2 : (. . . : ( f1 : x) . . .)))
The previous form is:

– sequential computation, if only one object x is considered as input variable

– pipelined time-parallel computation, if a stream of objects, |xn, . . . ,x1|, are considered to be
inserted, starting with x1, in c1 in the MANY-CORE section (see Figure ??) so as in each
successive two cells, ci and ci+1, are performed

fi( fi−1 : ( fi−2 : (. . . : ( f1 : x j) . . .)))

fi+1( fi : ( fi−1 : (. . . : ( f1 : x j−1) . . .)))

Thus, the array of cells c1, . . . ,cp can be involved to compute in parallel the function

f (x) = ( fq ◦ fq−1 ◦ . . .◦ f1) : x

for maximum q values of x.

• Threaded construction : is a special case of construction for: fi = gi ◦ i which represents the
thread-parallel computation:
θ [ f1, . . . , fp] : x≡
(x =< x1, . . . ,xp >)→< g1 : x1, . . . ,gp : xp >
where: g1 : x1 represents an independent thread.
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• Condition : represents a conditioned execution.
(p→ f ;g) : x≡
((p : x) = T )→ f : x;((p : x) = F)→ g : x

• Binary to unary : is used to express any function as an unary function.

(bu f x) : y≡ f :< x,y >

This function allows the algebraic manipulation of programs.

Definitions

Definitions are used to write programs conceived as functional forms.

Def new f unction symbol ≡ f unctional f orm

Example : Let be the following definitions used to compute the sum of absolute difference (SAD) of
two sequence of numbers:

Def SAD≡ (/+)◦ (αABS)◦ trans
Def ABS≡ lt→ (sub◦REV );sub
Def REV ≡ (bu perm < 2̄, 1̄ >)

5.3.2 Kleene – Backus Synergy

The beauty of the relation between the abstract machine components resulting from Kleene’s model and
the FPS proposed by Backus is that all the five meaningful forms of composition correspond to the main
functional forms, as follows:

Kleene’s parallelism↔
data-parallel↔

reduction-parallel↔
speculative-parallel↔

time-parallel↔
thread-parallel↔

Backus’s functional forms
apply to all

insert

construction

composition

threaded construction

Let us agree that Kleene’s model, and the FPS proposed by Backus represent a solid foundation for
parallel computing, avoiding risky ad hoc constructs. The generic parallel structure proposed in the next
section is a promising start in saving us from saying ”Hail Mary” (see [?]) when we decide what to do in
order to improve our computing machines with parallel features.

5.3.3 Lisp-like MapReduce Functional Language
A low level programming environment, called Backus-Connex Parallel FP system – BC for short –, was
defined in Scheme for this generic parallel engine (see [?]). Some of the most used functions working
on the previously defined array A are listed below:

(SetVector a v); a: address, v: vector content

(UnaryOp x) ; x: scalar|vector

(BinaryOp x y) ; (x,y): scalar | vector

(Cond x y) ; (x,y): scalar | vector
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(RedOp v) ; RedOp = {RedAdd, RedMax,...}

(ResetActive) ; activate all cells

(Where b) ; active where vector b is 1

(ElseWhere) ; active where vector b was 0

(EndWhere) ; return to previous active

Let us take as example the function conditioned reduction add, CRA, which returns the sum of all the
components of the sequence s1 =< x11, . . . ,x1p> corresponding to the positions where the element in the
sequence s2 =< x21, . . . ,x2p > is less or equal than the element of the sequence s3 =< x31, . . . ,x3p >:

CRA(s1,s2,s3) =
p

∑
i=1

(x2i ≤ x3i)?x1i : 0

The computation of this function is expressed as follows:

Def CRA≡ (/+)◦ (α((leq◦ (bu del1))→ (id ◦1); 0̄))◦ trans

where the argument must be a sequence of three sequences:

x =< s1,s2,s3 >

and the result is returned as an atom. For

x =<< 1,2,3,4 >,< 5,6,7,8 >,< 8,7,6,5 >>

the evaluation is the following:
CRA : x⇒
(/+)◦ (α((leq◦ (bu del 1))→ (id ◦1); 0̄))◦ trans :
<< 1,2,3,4 >,< 5,6,7,8 >,< 8,7,6,5 >>⇒
(/+)◦ (α((leq◦ (bu del 1))→ (id ◦1); 0̄)) :<< 1,5,8 >,< 2,6,7 >,< 3,7,6 >< 4,8,5 >>⇒
(/+) :<
((leq◦ (bu del 1))→ (id ◦1); 0̄) :< 1,5,8 >,
((leq◦ (bu del 1))→ (id ◦1); 0̄) :< 2,6,7 >,
((leq◦ (bu del 1))→ (id ◦1); 0̄) :< 2,6,7 >,
((leq◦ (bu del 1))→ (id ◦1); 0̄) :< 4,8,5 >>⇒
(/+) :< ((leq :< 5,8 >)→ (id : 1); 0̄), . . . ,((leq :< 8,5 >)→ (id : 4); 0̄)>⇒
(/+) :< ((leq :< 5,8 >)→ 1; 0̄), . . . ,((leq :< 8,5 >)→ 4; 0̄)>⇒
(/+) :< (T → 1;0),(T → 2;0),(F → 3;0),(F → 4;0)>⇒
(/+) :< 1,2,0,0 >⇒ 3

At the level of machine language the previous program is translated into the following BC code:

(define (CRA v0 v1 v2 v3)

(Where (Leq (Vec v2) (Vec v3)))

(SetVector v0 (Vec v1))

(ElseWhere)

(SetVector v0 (MakeAll 0))

(EndWhere)

(RedAdd (Vec v0))

)

The function CRA returns a scalar and has as side effect the updated content of the vector v0.
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5.3.4 Backus-type MapReduce Functional Language

The language describe the computation of an accelerator in a hybrid computing system. The system
consists of HOST and ACCELERATOR interconnected by INTERFACE. The program runs mainly on
ACCELERATOR. Only the transfer functions are controlled by HOST.

Def FUNC ≡ OP1◦OP2◦ . . .◦OPn

If, FUNC<<parameter 1>...<parameter m>> then, the function OPn must be defined on
<<parameter 1>...<parameter m>>, it must let, for the next function OP(n-1), an appropriate num-
ber of parameters, and so on.

Example 5.1 Functions belonging to the matrix subset:

// on ACCELERATOR

MATMULT<<source><source><dest>>

<source> | <dest>: <MAT<lines, columns, vectorAddress>> |

<EXTMAT<lines, columns, scalarAddress>>

// on HOST

LOADMAT<lines, columns, scalarAddress> // HOST loads inFifo from scalarAddress,

// INTERFACE loads the matrix from inFifo in ACCELERATOR

STOREMAT<lines, columns, scalarAddress> // INTERFACE load outFifo

// HOST store the matrix at scalarAddress in external memory

The program which multiplies an internally stored matrix with an externally stored matrix and stores
back the result in the external memory:

MATMULT<MAT<lines, columns, vectorAddress>

EXTMAT<lines, columns, vectorAddress>

EXTMAT<lines, columns, vectorAddress>

>

LOADMAT<lines, columns, scalarAddress> // load the second operand

STOREMAT<lines, columns, scalarAddress> // store the result

⋄



Chapter 6

The Generic Parallel Engine

6.1 The General Description of the Hybrid System

The structure of the hybrid system we consider (see Figure 6.1) consists of:

• HOST SYSTEM: a general purpose computing system with Harvard architecture

• ACCELERATOR: a parallel engine
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Figure 6.1: The hybrid system: HOST SYSTEM & ACCELERATOR.

The HOST SYSTEM is supposed to run a complex part of the program stored in its program memory,
part of MEMORY, while the intense part of the program runs in ACCELERATOR. The intense part of
the program and the associated data, stored in the data section of MEMORY, are transferred between
HOST SYSTEM and ACCELERATOR.

87
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6.2 Host System

6.2.1 Host System’s Structure

The host system (see Figure 6.1) consists of:

• HOST PROCESSOR, a simple, general purpose RISC processor with Harvard architecture.

• HOST DMA, an interface with ACCELERATOR having two counter-extended automata:

– one to control the program and commands transfer from HOST PROCESSOR system to
ACCELERATOR

– another to manage data transfer between ACCELERATOR and data section of MEMORY

• MEMORY, the memory system containing two memories, one for programs and another for data.

6.2.2 The Host’s Instruction Set Architecture

The storage resources of the host system are:

• host program memory (part of MEMORY):
reg [31:0] hostProgMem[0:1023]

• host data memory (part of MEMORY):
reg [31:0] hostDataMem[0:1023]

• register file:
reg [31:0] rf[0:31]

• program counter:
reg [31:0] pc

• cycles counter:
reg [31:0] hostCounter

The instruction set architecture is a typical RISC one (see 0 DEFINES.hv in C.2.1).

6.3 Accelerator

6.3.1 Accelerator’s Structure

The accelerator (see Figure 6.1) consists of:

• DMA: Direct Memory Access controller which receives programs and commands from Host,
through progFIFO, or manages data transfers between MEMORY and ACCELERATOR; it con-
sists of two counter-extended finite automata:

– one for managing program and commands transfer from HOST to the ACCELERATOR

– another to manage data transfer between ACCELERATOR and MEMORY and to send mes-
sages to HOST
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• progFIFO: used to transfer the program which run on ACCELERATOR and to trigger the functions
(programs) programmed on ACCELERATOR

• inFIFO: used to receive data from the External Memory

• outFIFO: used to

– send back to MEMORY the result of computation

– send requests of data from ACCELERATOR to the external memory MEMORY

– to send simple messages to HOST (such as end of running the requested function)

• CONTROLLER & MAP-REDUCE ARRAY: is in fact the accelerator.

progIn
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eng mem
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� eng mem �- eng mem �-

6
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mem

distribution net
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?

MAP

Figure 6.2: The functional organization of the accelerator’s core.

The computational part of the accelerator (see Figure 6.2) performs functions dealing with scalar or
vectors and consists of a four parts:

• CONTROLLER: performing functions defined on scalars with values in scalars; it has a Hardware
RISC architecture with its program memory (prog mem), data memory (mem) and execution unit
(eng)

• distribution net: is a log-depth pipe-lined network used to distribute instruction, data and address
form CONTROLLER to the cells of the MAP section

• MAP section: performing functions defined on vectors with values in vectors; it is a linear array
of cells each with its own data memory and execution unit similar with those of the controller

• REDUCTION network: performing functions defined on vectors with values in scalars; it is a
log-depth circuit.
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The parameters used to configure the ACCELERATOR are defined in the first three lines in
0 DEFINES.hv (see C.2.1).

6.3.2 The User’s Architectural Image

The user’s image of the accelerator system is presented in Figure 6.3. It consists of the memory resources
accessible at the level of the assembly language. There are two levels of storage in the system we
simulate:

• Controller’s Memory resources are:

– Accumulator Register: is a 32-bit register in the accumulator-based execution unit; it pro-
vides one of the operand and and stores the result of the unary and binary operations per-
formed by the execution unit
reg [n-1:0] acc

– Carry Bit: is a 1-bit register whose content is actualized at each arithmetic operation (shifts
are arithmetic operations)
reg cr

– Scalar Memory: is the data memory of the controller; it provides, by the rule,, the second
operand for binary operations.
reg [n-1:0] mem[0:(1<<s)-1]

– Address Register: is a register used to form the address for Scalar Memory when relative ad-
dressing mode is used; its content is added with the immediate value provided by controller’s
instruction
reg [s-1:0] addr

– Programm Memory: contains at each location a pair of instructions, one for CONTROLLER
and another for MAP-REDUCE array; it is loaded under the control of DMA unit
reg [31:0] progMem[0:(1<<p)-1]

• Array’s Memory resources are:

– Boolean Vector: is a p = 2x one-bit words vector; if bi = 1 the celli is active, i.e., the instruc-
tion received from controller is executed, else, if bi = 0 the celli is inactive
reg boolVect[0:(1<<x)-1]

– Accumulator vector: is a p n-bit words vector distributed along the p cells of the MAP
section; its components are used as accumulators in the execution units of each cell
reg [n-1:] accVect[0:(1<<x)-1]

– Carry Vector: is a p one-bit words vector distributed along the p cells of the MAP section;
its content is updated at each arithmetic and shift operation
reg crVect[0:(1<<x)-1]

– Address Vector: is a vector distributed along the p cells of the MAP section; it is used for
relative addressing the data memory of each cell
reg [v-1:0] addrVect[0:(1<<x)-1]

– Vector Memory: contains m = 2v p-component vectors
reg [n-1:0] vectMem[0:(1<<x)-1][0:(1<<v)-1]

as follow
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Figure 6.3: The users view of the ACCELERATOR’s architecture.
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* vector[0]: reg [n-1:0] vectMem[0:(1<<x)-1][0]

* vector[1]: reg [n-1:0] vectMem[0:(1<<x)-1][1]

* ...

* vector[i]: reg [n-1:0] vectMem[0:(1<<x)-1][j]

* ...

* vector[p-1]: reg [n-1:0] vectMem[0:(1<<x)-1][p-1]

– Serial Register: is a serial-parallel register distributed along the MAP’s cells; each of the p
cells contains a n-bit parallel register serially connected in the previous and in the next cell
reg [n-1:0] serialReg[0:(1<<x)-1]

– Index Vector: is a constant vector used to index the p cells of the MAP section
reg [x-1:0] ixVect[0:(1<<x)-1]

– Input-Output Register: is used to insert inData or to extract outData (see Figure 6.1) in-
/from array of cells
reg [n-1:0] ioReg [0:(1<<x)-1]

There are the following five operation modes in the storage space just described:

1. vector to scalar mode: is performed in REDUCTION section starting from accVect and provid-
ing a value in acc or back to the MAP section.
Important note: the REDUCTION unit is a log-depth circuit with a latency λ (p) = 1+0.5log2 p.
Therefore, any scalar generated at the output of the REDUCTION unit is valid with a λ cycles
delay, i.e., between the instruction which set the content of accVect submitted to a reduction op-
eration and the instruction which uses the result of the reduction operation whatever λ instructions
must be inserted; if nothing to do, then no operation instructions are welcome.

2. scalar-scalar to scalar mode: is performed in CONTROLLER between acc and mem[i] or im-
mediate value contained in instruction or coOperand with result in acc; coOperand is the scalar
value received, with λ cycles latency, through REDUCTION unit from MAP section

3. vector-scalar to vector: is performed in MAP section between accVect and immediate value
contained in instruction or coOperand with result in accVect; coOperand is the scalar value
received from CONTROLLER or, with λ cycles latency, from the REDUCTION unit

4. vector-vector to vector mode: is performed in MAP section between accVect and vectMem[j]

5. vector to vector mode: is performed in MAP section on accVect

6.3.3 The Accelerator’s Instruction Set Architecture

The initial, generic instruction set is described.
Because the structure of the MapReduce generic engine consists of two programmable parts – the

Controller and the Array –, the instruction set architecture, ISAmapReduce, is a dual one:

ISAmapReduce = (ISAcontroller× ISAarray)

where:
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• ISAcontroller = SSarith&logic∪SScontrol ∪SScommunication is the ISA associated to the Controller, with
three subsets of instructions

• ISAarray = SSarith&logic∪SSspatialControl ∪SStrans f er is the ISA associated to the cellular array, with
three subsets of instructions

In each clock cycle from the program memory of the controller a pair of instructions is read: one from
ISAcontroller, to be executed by Controller, and another from ISAarray to be executed by Array.

The subset SSarith&logic in the two ISAs – ISAcontroller and ISAarray – are identical. The
SScommunication subset controls the internal communication between array and controller and the com-
munication of the MapReduce system with the host computer. The SStrans f er subset controls the
data transfer between the distributed along the cells local memory of the array – reg [n-1:0]

vectMem[0:(1<<x)-1][0:(1<<v)-1] – and the external memory of the system. The SScontrol sub-
set consists of conventional control instruction is a standard processor. We must pay more attention
to the SSspatialControl subset used to perform the specific spatial control in an array of cells containing
execution units or processing units. The main instructions in SSspatialControl subset are:

activate : all the cells of the array are activated for executing the next instructions

where : maintains active only the active cells where the condition cond is fulfilled; example: where

(zero) maintains active only the active cells where the accumulator is zero (such an instruction
corresponds to the if (cond) instruction form the SScontrol subset)

elsewhere : activates the cells inactivated by the associated where (cond) instruction (it corresponds
to the else action form the SScontrol subset)

endwhere : restores the activations existed before the previous where (zero) instruction (it corre-
sponds to the endif instruction form the SScontrol subset)

The instruction format for the MapReduce engine allows issuing two instruction at a time, as follows:

mrInstruction[63:0] = {controllerInstr, arrayInstr} =

{{instr[4:0], operand[2:0], value[23:0]},

{instr[4:0], operand[2:0], value[23:0]}}

where:

instr[4:0] : codes the instruction

operand[2:0] : codes source of the second operand used in instruction

value[23:0] : is mainly the immediate value or the address

The field operand[2:0] is specific for our accumulator centered architecture. It mainly specifies the
second n-bit operand, op, and has the following meanings:

val = 3’b000 : immediate value
op = {{(n-8){value[7]}}, value[7:0]}

mab = 3’b001 : absolute, from local memory
op = mem[value]
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mrl = 3’b010 : relative, from local memory
op = mem[value + addr]

mri = 3’b011 : relative, from local memory and increment the address pointer
op = mem[value + addr];

addr <= value + addr

cop = 3’b100 : immediate, with co-operand – coop

op = coop

mac = 3’b101 : absolute, from the local memory of each cell, addressed with acc or the controller’s
operand selected by the send instruction op[i] = vectMem[(contrOpCode==send) ? op :

acc]

mrc = 3’b110 : relative, from local memory, using acc or the controller’s operand selected by the send
instruction op[i] = vectMem[addr[i] + ((contrOpCode==send) ? op : acc)]

ctl = 3’b111 : control instructions

where the co-operand of the array is the accumulator of the controller: acc, while the co-operand of the
controller is provided by the four outputs of reduction section of the array:

redSum : the sum of the accumulators from the active cells: Σp
0 acci

redMin : the minimum value of the accumulators from the active cells: Minp
0 acci

redMax : the maximum value of the accumulators from the active cells: Maxp
0 acci

redBool : the sum of the Boolean variable from the active cells: Σp
0 booli

The instruction set architecture is the machine language used to put to work each engine of our
computational structure. The instructions are tabulated in Table 6.1, Table 6.2, Table 6.3, Table 6.4.

opC\op val imm rel rei cop cim crl

CONTR
&
ARRAY

for ARRAY the code is placed in the right column
for CONTROLLER the code is placed in the left column
for CONTROLLER the prefix ’c’ is added

add
VADD(s) ADD(s) RADD(s) RIADD(s) CADD CAADD CRADD

nop pseudo-instruction codded as VADD(0)

addc VADDC(s) ADDC(s) RADDC(s) RIADDC(s) CADDC CAADDC CRADDC

sub VSUB(s) SUB(s) RSUB(s) RISUB(s) CSUB CASUB CRSUB

rsub VRSUB(s) RSUB(s) RRSUB(s) RIRSUB(s) CRSUB CARSUB CRRSUB

subc VSUBC(s) SUBC(s) RSUBC(s) RISUBC(s) CSUBC CASUBC CRSUBC

rsubc VRSUBC(s) RSUBC(s) RRSUBC(s) RIRSUBC(s) CRSUBC CARSUBC CRRSUBC

mult VMULT(s) MULT(s) RMULT(s) RIMULT(s) CMULT CAMULT CRMULT

bwand VAND(s) AND(s) RAND(s) RIAND(s) CAND CAAND CRAND

bwor VOR(s) OR(s) ROR(s) RIOR(s) COR CAOR CROR

bwxor VXOR(s) XOR(s) RXOR(s) RIXOR(s) CXOR CAXOR CRXOR

load VLOAD(s) LOAD(s) RLOAD(s) RILOAD(s) CLOAD CALOAD CRLOAD

store STORE(s) RSTORE(s) RISTORE(s) CSTORE CASTORE CRSTORE

ARRAY
search VSEARCH(s) SEARCH

csearch VCSEARCH(s) CSEARCH

insert VINSERT(s) INSERT

Table 6.1: Instructions with operand from the Instruction Set Architecture.
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Instructions in Table 6.1 of form XXX(s) are defined for a numerical value, s, which is a scalar cVal
for CONTROLLER, or aVal for ARRAY.

opCode\operand COMMENTARIES ISA ctl

CONTROLLER
&
ARRAY

for ARRAY the code is placed in the right column
for CONTROLLER the code is placed in the left column
for CONTROLLER the prefix ’c’ is added

shift rotate operations

shift right one bit position SHR

shift right arithmetic one bit position ASHR

shift right one bit position with carry SHRC

shift left one bit position SHL

shift right one bit position with carry SHLC

rotate right arithmetic one bit position ROTR

rotate left arithmetic one bit position ROTL

insval acc/acc[i] <= {(acc/acc[i] << 8), value[7:0]} INSVAL

misc store load addr/addr[i] <= acc/acc[i] ADDRLD

Table 6.2: Instruction Set Architecture with no operand.

opCode\operand COMMENTARIES ISA ctl

ARRAY ONLY

misc store load

acc[i] <= i IXLOADd

acc[i] <= serialReg[i] GETSR

serialReg[i] <= acc[i] SENDSR

aMem[i][s] <= ioReg[i] GETIO

ioReg[i] <= aMem[i][s] SENDIO

spatial select

WHEREZERO

WHERECARRY

WHERENEGATIVE

WHEREPREVACT

WHEREFIRST

WHERENEXT

WHEREPREV

WHERENZERO

WHERENCARRY

WHERENNEGATIVE

WHERENPREVACT

WHERENFIRST

WHERENNEXT

WHERENPREV

ELSEWHERE

SELSHIFT

ACTIVATE

set reduction

REDADD

REDMIN

REDMAX

REDOR

delete DELETE

Table 6.3: Array’s Instruction Set Architecture with no operand.
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CONTROLLER ONLY

global shift

1-position global right shift GRSHIFT

1-position global left shift GLSHIFT

reduction output insert right RREDINS

reduction output insert left LREDINS

1-position global right rotate GRROTATE

1-position global left rotate GLROTATE

jmp

relative jump to label s cJMP(s)

absolute jump to label s cAJMP(s)

jump to label s if acc=0 cBRZ(s)

jump to label s if acc!=0 cBRNZ(s)

jump to label s if acc=0; acc<=acc-1 cBRZDEC(s)

jump to label s if acc!=0; acc<=acc-1 cBRNZDEC(s)

cHALT

misc testing
cSTART

cSTOP

Table 6.4: Controller’s Instruction Set Architecture with no operand.
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Chapter 7

Berkeley’s View

The efficiency of Connex System in performing all the aspects of intense computation remains to be
proved. In this subsection we sketch only the complex process of evaluation using the report “A View
from Berkeley” [1]. Many decades just an academic topic, ”parallelism” becomes an important actor on
the market after 2001 when the clock rate race stopped. This research report presents 13 computational
motifs which cover the main aspects of parallel computing. Short comments follows about how the
proposed architecture and generic parallel engine work for all of the 13 motifs.

For dense linear algebra the most used operation is the inner product (IP) of two vectors. It is
expressed in FP System as follows:

Def IP≡ (/+)◦ (α×)◦ trans

while the BC code is:

(define (IP v0 v1)

(RedAdd (Mult v0 v1))

)

allowing a linear acceleration of the computation.
For sparse linear algebra the band arrays are first transposed using the function Trans in a number

of vectors equal with the width w of the band. Then the main operations are naturally performed using
the appropriate RotLeft and RotRight operations. Thus, the multiplication of two band matrices is
done on Connex System in O(w).

For spectral methods the typical example is FFT. The vertical and horizontal vectors defined in the
array A help the programmer to adapt the data representation to obtain an almost linear acceleration [?],
because the Scan module is designed to hide the performance of the matrix transpose operation. In order
to eliminate the slowdown caused by the rotate operations, the stream of samples are operated as vertical
vectors (see also [?], where for example: FFT for 1024 floating point samples is done in less than 1 clock
cycle per sample).

N-Body method fits perfect on the proposed architecture, because for j = 0 to j = n−1 the following
equation is computed:

U(x j) = ∑
i

F(x j,Xi)

using one cell for each function F(x j,Xi), followed b the sum (a reduction operation).
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Structured grids are distributed on the two dimensions of the array A. Each processor is assigned a
column of nodes. Each node has to communicate only with a small, constant number of neighbor nodes
on the grid, exchanging data at the end of each step. The system works like a cellular automaton.

Unstructured grids problems are updates on an irregular grid, where each grid element is updated
from its neighbor grid elements. Parallel computation is disturbed by the non-uniformity of the data
distribution. In order to solve the non-uniformity problem a preprocessing step is required to generate
an easy manageable representation of the grid. Slow-downs are expected compared with the structured
grid.

The typical example of mapReduce computation is the Monte Carlo method. This method is highly
parallel because it consists in many completely independent computations working on randomly gener-
ated data. It requires the add reduction function. The computation is linearly accelerated.

For combinational logic a good example is AES encryption which works in 4×4 arrays of bytes. If
each array is loaded in one cell, then the processing is pure data-parallel with linear acceleration.

For graph traversal in [?] are reported parallel algorithms achieving asymptotically optimal O(|V |+
|E|) work complexity. Using sparse linear algebra methods, the breadth-first search for graph traversal
is expected to be done on a Connex System in time belonging to O(|V |).

For dynamic programming the Viterbi decoding is a typical example. The parallel strategy is to
distribute the states among the cells. Each state has its own distinct cell. The inter-cell communication
is done in a small neighborhood. Each cell receives the stream of data which is thus submitted to a
speculative computation. The work done on each processor is similar. The last stage is performed using
the reduction functions. The degree of parallelism is limited to the number of states considered by the
algorithm.

Parallel back-track is exemplified by the SAT algorithm which runs on a p-cell engine by choosing
log2 p literals, instead of one on a sequential machine, and assigning for them all the values from 00 . . .0
to 11 . . .1 = p−1. Each cell evaluates the formula for one value. For parallel branch & bound we use
the case of the Quadratic Assignment Problem. The problem deals with two N×N matrices: A = (ai j),
B = (bkl). The global cost function:

C(p) =
n

∑
i

n

∑
j

ai j×bp(i)p( j)

must be minimized finding the permutation p of the set N = {1,2, . . . ,n}. Dense linear algebra methods,
efficiently running on our architecture, are involved here.

Graphical models are well represented by parallel hidden Markov models. The architectural features
reported in research papers refers to fine-grained data-parallel processor arrays connected to each node
of a coarse-grained PC-cluster. Thus, our engine can be used efficiently as an accelerator for general
purpose sequential engines.

For finite state machine (FSM) the authors of [1] claim that ”nothing helps”. But, we consider that
the array of cells with their local memory loaded with non-deterministic FSM descriptions work very
efficient as a speculative engine for applications such as deep packet inspection, for example.

At the end of this superficial introductory analysis, which must be deepened by future investigations,
we claim that for almost all the computational motifs the Connex System, in its simple generic form,
perform at least encouraging if not pretty well.



Chapter 8

The First Dwarf: Dense Linear Algebra

The problems approached in this chapter are:

• matrix transpose

• matrix-vector multiplication

• matrix-matrix multiplication

• matrix move

• matrix inverse

8.1 Matrix Transpose

8.1.1 The Algorithm

The algorithm:

======================================================================================

size = N; // the matrix size

source = S; // the address of the first vector

dest = D; // the address of the first vector

ixModN[i] = ix - (ix/N)*N;

cycles = size - 1;

sAddr[i] = (ixModN[i] - cycles)modN // compute "diagonal"

dAddr[i] = (ixModN[i] + cycles)modN // compute the "opposite diagonal"

while (cycles > 0) {

acc[i] <= mem[i][sAddr[i] + source]; // read on "diagonal"

glshift(cycles); // global left shift

mem[i][dAddr[i] + dest] <= acc; // store on the "opposite diagonal"

acc[i] <= mem[i][sAddr[i] + source]; // read on "diagonal"

grshift(N-cycels); // global right shift

where (ixModN >= N-cycels)

mem[i][dAddr[i] + dest] <= acc; // store on the "opposite diagonal"

endwhere

sAddr <= (sAddr + 1)modN; // "increment diagonal"
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dAddr <= (dAddr - 1)modN; // "decrement diagonal"

cycles <= cycels - 1; // decrement cycles

}

move the diagonal;

======================================================================================

8.1.2 The Program
The program has the following parameters:

mem[0] = N: matrix size

mem[1] = S: source matrix (the address of the first vector)

mem[2] = D: destination matrix (the address of the first vector)

and the file matrixTranspose.v is:

/***********************************************************************************************

MATRIX TRANSPOSE

M: the matrix to be transposed stored starting from the addres stored in mem[4]

MT: the transposed matrix stored starting from the addres stored in mem[1]

N: the size of the square matrix stored in mem[0]

Example: the final state of vector memory for:

- mem[0] = 5;

- mem[1] = 25;

- mem[4] = 5

is:

vect[5] = 0 1 2 3 4 - - ...

vect[6] = 0 1 2 3 4 - - ...

vect[7] = 0 1 2 3 4 - - ...

vect[8] = 0 1 2 3 4 - - ...

vect[9] = 0 1 2 3 4 - - ...

... - - ...

vect[25] = 0 0 0 0 0 - - ...

vect[26] = 1 1 1 1 1 - - ...

vect[27] = 2 2 2 2 2 - - ...

vect[28] = 3 3 3 3 3 - - ...

vect[29] = 4 4 4 4 4 - - ...

***********************************************************************************************/

// mem[0][i] <= ixModN[i]

cLOAD(0); IXLOAD; // acc <= N; acc[i] <= index

cNOP; CDIV; // acc[i] <= index/N

cNOP; CMULT; // acc <= N*(index/N) in integers

cNOP; STORE(0); // mem[0][i] <= acc[i]

NOP; IXLOAD; // acc[i] <= index

cVSUB(1); SUB(0); // acc <= acc - 1; acc[i] <= index - N*(index/N) = ixModN

cSTORE(3); STORE(0); // mem[3] <= size - 1 = cycles; mem[0][i] <= ixModN[i]

// mem[1][i] <= sAddr[i] = (ixModN[i] - cycles)modN

cNOP; CSUB; // acc <= ixModN - cycles

cLOAD(0); WHERECARRY; // acc <= N; select where carry

cNOP; CADD; // acc[i] <= acc[i] + acc

cNOP; ENDWHERE; // reselect all cells

cNOP; STORE(1); // store at mem[1][i]
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// mem[2][i] <= dAddr[i] = (ixModN[i] + cycles)modN

cLOAD(3); LOAD(0); // acc <= cycles; acc[i] <= ixModN[i]

cLOAD(0); CADD; // acc <= N; acc[i] <= ixModN[i] + cycles

cNOP; CCOMPARE; // compare with N (acc - N)

cNOP; WHERENCARRY;// select where not carry

cNOP; CSUB; // acc[i] <= acc - N;

cNOP; ENDWHERE; // reselect all cells

cNOP; STORE(2); // store at mem[2][i]

// read on "diagonal"

LB(4); cLOAD(1); LOAD(1); // load source; load (ixModN[i] - cycles)modN

cNOP; ADDRLD; // addr[i] <= (ixModN[i] - cycles)modN

cLOAD(3); CRLOAD; // acc[i] <= mem[i][S + (ixModN[i] - cycles)modN]

// local, modN rotate with cycles

cVSUB(1); STORE(3); // save "diagonal" (!!! a register should be good)

LB(2); cBRNZDEC(2);GLSHIFT; // global left shift cycle times

cNOP; STORE(4); // save the left shifted "diagonal" (!!! the same note)

// write on "diagonal"

cLOAD(2); LOAD(2); // load dest; load (ixModN[i] + cycles)modN

cNOP; ADDRLD; // addr[i] <= (ixModN[i] + cycles)modN

cNOP; LOAD(4); // reload the shifted "diagonal"

cLOAD(0); CRSTORE; // acc[i] <= mem[i][D + (ixModN[i] + cycles)modN]

cSUB(3); LOAD(3); // reload the "diagonal"

cVSUB(1); NOP; //

LB(3); cBRNZDEC(3);GRSHIFT; // global right shift N-cycles times

cLOAD(0); STORE(4); // save the right shifted "diagonal"

cSUB(3); LOAD(0); // acc <= cycles; acc[i] <= ixModN[i]

cNOP; CCOMPARE; // compare ixModN[i] with cycles

cNOP; WHERENCARRY;// where not carry (select where load the right shift)

cLOAD(2); LOAD(4); // restore the right shifted "diagonal"

cNOP; CRSTORE; // acc[i] <= mem[i][D + (ixModN[i] + cycles)modN]

cLOAD(0); ENDWHERE; // acc <= N; reselect all cells

// "increment source diagonal"

cVSUB(1); LOAD(1); // acc <= N-1; load source diagonal addresses

cNOP; CSUB; // acc[i] <= (ixModN[i] + cycles)modN - (N-1)

cLOAD(0); WHERENZERO; // select where not carry

cNOP; CADD; // acc[i] <= acc[i] + acc

cNOP; ENDWHERE; // reselect all cells

cNOP; STORE(1); // store back aAddr[i]

// "decrement dest diagonal"

cVSUB(1); LOAD(2); // acc <= N-1; acc[i] <= dAddr[i] = (ixModN[i] + cycles)modN

cNOP; WHEREZERO; // select where zero

cNOP; CLOAD; // where 0 acc <= N-1

cLOAD(5); ELSEWHERE; // select where not zero

cVSUB(1); VSUB(1); // acc <= cycles; acc[i] <= acc[i] - 1

cSTORE(5); ENDWHERE; // acc <= acc - 1; reselect all cells

cBRNZ(4); STORE(2); // mem[5] <= cycles; store back dAddr[i]

// move diagonal

cLOAD(1); LOAD(0); // acc <= S; acc[i] <= ixModN[i]

cNOP; ADDRLD; // addr[i] <= ixModN[i]

cLOAD(2); CRLOAD; // acc <= D; acc[i] <= mem[i][S + ixModN[i]]
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cNOP; CRSTORE; // mem[i][D + ixModN[i]] <= ac[i]

//==============================================================================================

8.1.3 The Verification

The execution time is:
TmatrixTranspose = N2 +30N−7 ∈ O(N2)

For N = 1024, TmatrixTranspose = 1.03×N2.

Example 8.1 The matrix is of 13×13 elements, it is stored starting with the vector 5, and the result will
be stored starting with the vector 25. The matrix contains on each line the index vector.

INITIAL

mem[0] = 13 // N=13: the size

mem[1] = 5 // S=5: where starts source matrix

mem[2] = 25 // D=25: where starts destination matrix

//source matrix

vect[5] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[6] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[7] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[8] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[9] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[10] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[11] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[12] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[13] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[14] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[15] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[16] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[17] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The program for this example is:

/******************************************************************************

TESTING MATRIX TRANSPOSE

******************************************************************************/

cVLOAD(13); NOP;

cSTORE(0); NOP; // mem[0] = N: matrix size (13)

cVLOAD(5); NOP;

cSTORE(1); NOP; // mem[1] = S: source (5)

cVLOAD(25); NOP;

cSTORE(2); NOP; // mem[2] = D: destination (25)

cNOP; ENDWHERE; // activate all cells

// SET MATRIX

// v(S) = 0 1 2 ...

// v(S+1) = 0 1 2 ...

// ...

cVLOAD(13); VLOAD(4);

cNOP; ADDRLD;

cNOP; IXLOAD;
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LB(1); cVSUB(1); VADD(0);

cBRNZ(1); RISTORE(1);

cSTART; NOP;

‘include "matrixTranspose.v"

cSTOP; NOP; // stop cycles counter

cHALT; NOP; // halt

//============================================================================

FINAL

vect[5] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[6] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[7] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[8] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[9] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[10] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[11] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[12] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[13] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[14] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[15] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[16] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[17] = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

vect[25] = 0 0 0 0 0 0 0 0 0 0 0 0 0 13 13 13

vect[26] = 1 1 1 1 1 1 1 1 1 1 1 1 1 14 14 14

vect[27] = 2 2 2 2 2 2 2 2 2 2 2 2 2 15 15 15

vect[28] = 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0

vect[29] = 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0

vect[30] = 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0

vect[31] = 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 0

vect[32] = 7 7 7 7 7 7 7 7 7 7 7 7 7 0 0 0

vect[33] = 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0

vect[34] = 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0

vect[35] = 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0

vect[36] = 11 11 11 11 11 11 11 11 11 11 11 11 11 0 0 0

vect[37] = 12 12 12 12 12 12 12 12 12 12 12 12 12 0 0 0

Execution time on simulation: 552 cycles.
⋄

8.2 Matrix-Vector Multiplication

The algorithm is standard.
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8.2.1 The Program

/*************************************************************************************

Matrix-Vector Multiplication Algorithm

The 2-line inner loop (labeled 6) performs:

- load the line: RILOAD(127)

- multiplication, in map section of the array: MULT(0)

- reduction add, in reduction section with result in the global shift

register: cCPUSHL(0)

- decrement test and decrement the counter: cBRNZDEC(6)

The main loop is repeated N times.

*************************************************************************************/

cSEND(6); CADDRLD; // addr[i] <= mem[6]

cLOAD(0); RLOAD(0); // acc <= N; load last matrix M1 line

cVSUB(1); MULT(0); // acc <= N-1;add line with vector

// MAIN LOOP

// INNER LOOP

LB(6); cCPUSHL(1); RILOAD(127);// push reduction min; load next line

cBRNZDEC(6); MULT(0); // test end of loop; add line with vector

// END OF INNER LOOP

// latency = 1 + 0.5 log N

cNOP; NOP; // latency

cNOP; NOP; // latency

cLOAD(9); SRLOAD; // acc <= mem[9]; load result in acc

cVADD(1); CSTORE; // acc <= mem[9]+1; mem[i][mem[9]] <= acc[i]

// END OF MAIN LOOP

//====================================================================================

The execution time for a N×N matrix in a system with P cells, where N ≤ P, is:

Tvm(N) = 2N +5+0.5logP ∈ O(N)

where 0.5logN is due to the latency introduced by the reduction network.

8.3 Matrix-Matrix Multiplication

The algorithm is standard.

8.3.1 The Program
The program has the following parameters:

cSTORE(0); NOP; // mem[0] <= N

cVLOAD(24); NOP; //

cSTORE(1); NOP; // mem[1] <= M2T

cVLOAD(32); NOP; //

cSTORE(2); NOP; // mem[2] <= R

cVLOAD(8); NOP; //

cSTORE(3); NOP; // mem[3] <= M1

cVLOAD(16); NOP; //

cSTORE(4); NOP; // mem[4] <= M2
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The program is stored as the file matrixMatrixMult.v of form:

/******************************************************************************

MATRIX-MATRIX MULTIPLICATION

R: starting vector for result

M1: starting vector for the multiplicand matrix

M2: starting vector for the multiplier matrix

Main steps:

- compute starting with M2T the transposed multiplier

- multiply each line of the multiplicand with the transposed multiplier

******************************************************************************/

‘include "03_matrixTranspose.v"

// seleect the first N cells only

cLOAD(0); IXLOAD; // acc <= N; acc[i] <= index

cLOAD(0); CSUB; // acc[i] <= index - N

cSTORE(5); WHERECARRY; // select only the first N cells

cLOAD(1); NOP; //

cADD(0); NOP; //

cVSUB(1); NOP; //

cSTORE(6); NOP; // mem[6] <= last line in M1

// M1 "x" M2T

LB(7); cLOAD(3); NOP; // acc = pointer in M1

cVADD(1); CALOAD; // increment pointer; acc[i] <= mem[i][mem[3]]

cSTORE(3); STORE(0); // save the pointer; load line at 0

‘include "03_matrixVectMult.v"

cSTORE(2); NOP; //

cLOAD(5); NOP; // acc = loopCounter

cVSUB(1); NOP; // decrement loopCounter

cSTORE(5); NOP; // store back loopCounter

cBRNZ(7); NOP;

// END MATRIX-MATRIX MULTIPLICATION

//=============================================================================

The execution time, for N ≤ P, is TmatrixMatrixMult = 3N2 +0.5Nlog2 P+43N ∈ O(N2).
For N = 1024 results: TmatrixMatrixMult = 3.046N2, out of which 3N2 are consumed in the following

lines as follows:

• from the file 03 matrixTranspose.v the following two lines are executed in N cycles

LB(2); cBRNZDEC(2);GLSHIFT; // global left shift cycle times

...

LB(3); cBRNZDEC(3);GRSHIFT; // global right shift N-cycles times
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• from the file 03 matrixVectMult.v.v the following two lines are executed in 2N cycles

LB(2); cCPUSHL(0); RILOAD(63); // push reduction sum; load matrix line

cBRNZDEC(2); MULT(0); // test end of loop; line-vector multiply

8.3.2 The Verification

Example 8.2 Let us multiply the two matrix, M1 and M2, with N = 7, stored in vector memory start-
ing with vectMem[8] for M1, and vectMem[16] for M2. The result will be stored starting with
vectMem[32]. The memory space starting from vectMem[24] is used to store the transposed from
of the matrix M2.

The matrix M1 contains on the line i the vector index + i, while M2 contains on each line the
vector ⟨i, i, . . . , i⟩, for i = 1, . . . ,7.

/******************************************************************************

TESTING MATRIX-MATRIX MULTIPLICATION

******************************************************************************/

cVLOAD(7); ENDWHERE; // activate all cells

cSTORE(0); NOP; // mem[0] <= N

cVLOAD(24); NOP; //

cSTORE(1); NOP; // mem[1] <= M2T

cVLOAD(32); NOP; //

cSTORE(2); NOP; // mem[2] <= R

cVLOAD(8); NOP; //

cSTORE(3); NOP; // mem[3] <= M1

cVLOAD(16); NOP; //

cSTORE(4); NOP; // mem[4] <= M2

// mem[5] reserved for cycles

// SET MATRIX M1

// v8 = index + 1

// v9 = index + 2

// ...

// v14 = index + 7

cLOAD(3); NOP;

cVSUB(1); NOP;

cLOAD(0); CADDRLD;

cNOP; IXLOAD; // VLOAD(3);

LB(8); cVSUB(1); VADD(1);

cBRNZ(8); RISTORE(1);

// SET MATRIX M2

// v16 = 0 0 ... 0

// v17 = 1 1 ... 1

// ...

// v22 = 6 6 ... 6

cLOAD(4); NOP;

cVSUB(1); NOP;
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cLOAD(0); CADDRLD;

cNOP; VLOAD(255);

LB(9); cVSUB(1); VADD(1);

cBRNZ(9); RISTORE(1);

cSTART; NOP; // start cycle counter

‘include "03_matrixMatrixMult.v"

cSTOP; NOP; // stop cycle counter

cHALT; NOP;

//=============================================================================

The initial state of the vector memory is:

vect[8] = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

vect[9] = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

vect[10] = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

vect[11] = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

vect[12] = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

vect[13] = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

vect[14] = 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

vect[15] = x x x x x x x x x x x x x x x x

vect[16] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

vect[17] = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

vect[18] = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

vect[19] = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

vect[20] = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

vect[21] = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

vect[22] = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

The final sate of the vector memory is:

vect[0] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1

vect[1] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1

vect[2] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1

vect[3] = 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

vect[4] = 0 0 0 0 0 0 6 0 1 2 3 4 5 6 0 1

vect[5] = x x x x x x x x x x x x x x x x

vect[6] = x x x x x x x x x x x x x x x x

vect[7] = x x x x x x x x x x x x x x x x

vect[8] = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

vect[9] = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

vect[10] = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

vect[11] = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

vect[12] = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

vect[13] = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

vect[14] = 7 8 9 10 11 12 3 14 15 16 17 18 19 20 21 22

vect[15] = x x x x x x x x x x x x x x x x

vect[16] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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vect[17] = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

vect[18] = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

vect[19] = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

vect[20] = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

vect[21] = 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

vect[22] = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

vect[23] = x x x x x x x x x x x x x x x x

vect[24] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1

vect[25] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1

vect[26] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 0

vect[27] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 0

vect[28] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 0

vect[29] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 0

vect[30] = 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 0

vect[31] = x x x x x x x x x x x x x x x x

vect[32] = 112 112 112 112 112 112 112 x x x x x x x x x

vect[33] = 133 133 133 133 133 133 133 x x x x x x x x x

vect[34] = 154 154 154 154 154 154 154 x x x x x x x x x

vect[35] = 175 175 175 175 175 175 175 x x x x x x x x x

vect[36] = 196 196 196 196 196 196 196 x x x x x x x x x

vect[37] = 217 217 217 217 217 217 217 x x x x x x x x x

vect[38] = 238 238 238 238 238 238 238 x x x x x x x x x

The cycles counter provides: cc = 462. Indeed, for N = 7 the theoretical evaluation provides the
same results: TvectMatrixMult = 462.
⋄

8.4 Matrix Move

The program moves a matrix form a source, S, specified by the location of the first line, to the destination,
D, specified by the location of the first line. The code is:

/******************************************************************************

TESTING MATRIX MOVE

******************************************************************************/

cLOAD(0); NOP;

LB(10); cSTORE(5); NOP;

cLOAD(6); NOP;

cVADD(1); CALOAD;

cSTORE(6); NOP;

cLOAD(7); NOP;

cVADD(1); CSTORE;

cSTORE(7); NOP;

cLOAD(5); NOP;

cVSUB(1); NOP;

cBRNZ(10); NOP;

//=============================================================================

The following code is used to define the source and the destination of the move operation
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//=============================================================================

cVLOAD(38); NOP; //

cSTORE(6); NOP; // mem[6] <= S (source)

cVLOAD(8); NOP; //

cSTORE(7); NOP; // mem[7] <= D (destination)

//=============================================================================

8.5 Matrix Inverse Using Gauss-Jordan Elimination

/***************************************************************************
Algorithm: matrix inverse

input: n×n matrix A
output: n×n matrix A−1

***************************************************************************/

for (i=0; i<n; i=i+1)

read column i

select the first diagonal component: s[i,i]

divide the i-th row, R[i}, by s[i,i]: R[i] <= R[i]/s[i,i]

for (j=0; j<n; j=j+1)

if ~(i=j) R[j} <= R[j} - R[i] x s[j]

Example 8.3 Let us take a 3×3 matrix [6] and apply the algorithm for matrix inverse.

A =

13 2 5
14 8 3
11 6 10


Write the augmented matrix adding, separated by bars, right columns representing the identity matrix I:13 2 5 | 1 0 0

14 8 3 | 0 1 0
11 6 10 | 0 0 1


Step 1: divide R1 by 13 to obtain the 1 in the first diagonal 1 0.1538 0.3846 | 0.0769 0 0

14 8 3 | 0 1 0
11 6 10 | 0 0 1


Step 2: R2 - 14R1 to obtain the first zero on the first column 1 0.1538 0.3846 | 0.0769 0 0

0 5.8462 −2.3846 | −1.0769 1 0
11 6 10 | 0 0 1


Step 3: R3 - 11R1 1 0.1538 0.3846 | 0.0769 0 0

0 5.8462 −2.3846 | −1.0769 1 0
0 4.3077 5.7692 | −0.8462 0 1
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Step 4: divide R2 by 5.84621 0.1538 0.3846 | 0.0769 0 0
0 1 −0.4079 | −0.1842 0.1711 0
0 4.3077 5.7692 | −0.8462 0 1


Step 5: R1 - 0.1538R21 0 0.4474 | 0.1053 −0.0263 0

0 1 −0.4079 | −0.1842 0.1711 0
0 4.3077 5.7692 | −0.8462 0 1


Step 6: R3 - 4.3077R2 1 0 0.4474 | 0.1053 −0.0263 0

0 1 −0.4079 | −0.1842 0.1711 0
0 0 7.5263 | −0.0526 −0.7368 1


Step 7: divide R3 by 7.52631 0 0.4474 | 0.1053 −0.0263 0

0 1 −0.4079 | −0.1842 0.1711 0
0 0 1 | −0.007 −0.0979 0.1329


Step 8: R1 - 0.4474R31 0 0 | 0.1084 0.0175 −0.0594

0 1 −0.4079 | −0.1842 0.1711 0
0 0 1 | −0.007 −0.0979 0.1329


Step 9: R2 + 0.4079R3 1 0 0 | 0.1084 0.0175 −0.0594

0 1 0 | −0.1871 0.1311 0.0542
0 0 1 | −0.007 −0.0979 0.1329


Then:

A−1 =

 0.1084 0.0175 −0.0594
−0.1871 0.1311 0.0542
−0.007 −0.0979 0.1329





Chapter 9

The Second Dwarf: Sparse Linear Algebra
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Part IV

Machine Learning
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Chapter 10

What is Machine Learning?

Machine Learning is the science and art of using computers so they can learn from data without being
explicitly programmed.

Instead of writing rules we must train according to an algorithm.
Applying ML techniques to dig into large amounts of data can help discover patterns that were not

immediately apparent. This is called data mining.
There are so many different types of Machine Learning systems that it is useful to classify them in

broad categories based on:

• Whether or not they are trained with human supervision (supervised, unsupervised, semisuper-
vised, and Reinforcement Learning)

• Whether or not they can learn incrementally on the fly (online versus batch learning)

• Whether they work by simply comparing new data points to known data points, or instead detect
patterns in the training data and build a predictive model, much like scientists do (instance-based
versus model-based learning)
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Chapter 11

Clustering

Clustering is a unsupervised learning technique. It deals with finding a structure in a collection of data
by organizing objects into groups whose members are similar in some way. A cluster is a collection of
objects which are similar between them and are dissimilar to the objects belonging to other clusters. The
main problem is to define the meaning of “similar” and “dissimilar”.

Types of clustering:

• distance-based clustering: the objects belong to the same cluster if they are close according to a
given (usually geometrical distance

• conceptual clustering: objects are grouped according to their fit to descriptive concepts

The main applications are:

• WWW: document classification by clustering web data to emphasize groups of similar patterns.

• Insurance: identifying groups of insurance policy holders according to the claim cost

• Libraries: book ordering according to their content

• Marketing: identifying groups of customers with similar characteristics using the database of cus-
tomer containing their properties and past records

The main clustering algorithms are:

• K-means

• Hierarchical clustering

• Fuzzy C-means

• Mixture of Gaussians

11.1 K-means

K-means [?] is an unsupervised learning algorithms that solve the clustering problem.
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11.1.1 Distance-based k-means clustering

Given n d-dimension vectorial entities (points)

⟨x1,x2, . . . ,xn⟩

k-means clustering provides the partition into k sets. The generic algorithm consists of the following
main steps:

/*************************************************************************
K−MEANS DISTANCE−BASED ALGORITHM
*************************************************************************/

( 1 ) s e t ( randomly ) k d− d imens ion c e n t e r s and
a l l o c a t e each p o i n t ( randomly ) t o a c e n t e r

( 2 ) compute f o r each d− d imens ion p o i n t t h e E u c l i d e a n d i s t a n c e t o t h e
k c e n t e r s and a s s i g n each p o i n t t o t h e ‘ ‘ n e a r e s t ” c e n t e r

( 3 ) compare t h e new a s s i g n m e n t s t o t h e o l d ones
i f ( no d i f f e r e n c e ) , then s t o p t h e p r o c e s s

e l s e c o n t i n u e
( 4 ) move t h e k c e n t e r s t o t h e means o f c r e a t e d groups , and go t o ( 2 ) .

The algorithm is sensitive to the initial positions of the k center. It is recommended to place them as
much as possible far away from each other.

Implementation

Let us consider the points stored in HOST’s data memory as N sequences of d-dimension vectors. The
result will be a N-dimension vector of scalars indicating the index of the center associated to each of the
N points considered. To explain how the architectural features of our accelerator are used to solve this
problem, we take a constant sized example.

Example 11.1 If the size of array is p = 1024, and d = 3, we consider N = 1023. The algorithm is:

/*************************************************************************
K−MEANS IMPLEMENTATION ON ACCELERATOR
*************************************************************************/

( 1 ) l o a d from t h e HOST’ s d a t a memory 3 1023− component v e c t o r s
( 2 ) i n s t a n t i a t e t h e k c e n t e r s i n CONTROLLER’ s d a t a memory
( 3 ) t r a n s p o s e t h e 341 3x3 m a t r i x s t o r e d i n t h e 3 v e c t o r s j u s t l o a d e d

( each o f t h e f i r s t 1023 c e l l s w i l l c o n t a i n t h e c o o r d i n a t e o f a p o i n t
( 4 ) i n s t a n t i a t e a 4 t h v e c t o r wi th ( i n d e x ) mod k ( t h e i n i t i a l s o l u t i o n )
( 5 ) a s s o c i a t e each p o i n t t o t h e n e a r e s t c e n t e r
( 6 ) i f ( s o l u t i o n i s i d e n t i c a l w i th t h e p r e v i o u s s o l u t i o n )

then s t o r e t h e s o l u t i o n a t HOST’ S memory and s t o p t h e c o m p u t a t i o n
( 7 ) compute t h e p o s i t i o n o f t h e k c e n t e r s and go t o ( 5 )
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The initial data in HOST’s memory is a stream of triplets, as follows:[
x0 y0 z0 x1 y1 z1 . . . x1023 y1023 z1023

]
The external data is loaded in three vectors in ARRAY, as follows: x0 y0 z0 x1 y1 z1 . . . x340 y340 z340

x341 y341 z341 x342 y342 z342 . . . x681 y681 z681
x682 y682 z682 x683 y683 z683 . . . x1023 y1023 z1023


Once loaded, the three 1023-component vectors are considered as 341 3×matrices. The 3×matrices are
transposed. Results in ARRAY the following 1023 3-component vertical vectors, on for each point. One
vector, X, with the x coordinates, another, Y , for the y coordinates and a third, Z, for the z coordinates.x0 x341 x682 x1 x342 x683 . . . x340 x681 x1023

y0 y341 y682 y1 y342 y683 . . . y340 y681 y1023
z0 y341 z682 z1 z342 z683 . . . z340 z681 z1023


The final result is the vector K, containing the index of the cluster to which each point belongs.[

k0 k341 k682 k1 k342 k683 . . . k340 k681 k1023
]

The main open problem, for the time being, is how to send back to the external memory the result, because
the vector K must be somehow reordered in order to be friendly used.
⋄

Evaluation

The degree of parallelism for the steps 5 and 6 on the loop of the algorithm is maximal. Only the step 7
is executed with a degree of parallelism p/k.

Let us consider initially a number of points equal with p. Then, each point is associated to a cell,
which stores the d coordinates. The computation is not I/O bounded even for the smallest data bandwidth
of 4GB/sec, if 30k > p. In these easy to fulfil conditions, by simulation, the architectural acceleration of
a pure sequential computation results, for k > 10:

A≃ p× α
1+α

where:

α =
execution time f or steps 5+6

execution time f or step 7
≃ 16

4+ log2 p

For p = 1024, A≃ 546.
The number of points can be easy expanded, maintaining the acceleration, to hundreds of thousands

if the computation remains not I/O bounded. The data for each set of p points is stored in d+1 horizontal
vectors.
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11.1.2 Conceptual k-means clustering

While for the distance-based k-means clustering the vector

o j = ⟨v1, . . . ,vm⟩

consists of numerical values, for conceptual k-means clustering it consists of bits representing the pres-
ence, for bi = 1, or the absence, for bi = 0, of the feature i associated to the object j:

xi = ⟨b1, . . . ,bm⟩

Instead of numerical evaluation of the “distance”, now associative mechanisms must be used to evalu-
ate the “distance” of each point from each center. A numerical evaluation is substituted with a fitting
mechanism. The problem is:

Given :

• a set of abstract objects: X = {x1, . . . ,xn}
• a set of attribute associated to the objects: xi = ⟨bi1, . . . ,bim⟩ for i = 1, . . . ,n, i.e., each xi is a

m-bit binary number

• a body of knowledge for evaluating the belonging to a class

Find :
a hierarchy of objects in classes

One solution is a hierarchical approach which uses a recursive bi-partitioning clustering algorithm.
The bi-partitioning clustering algorithm has the following stages:

1. define the similarity measure, si j, for the n m-bit binary variables, xi and x j, as the Hamming
distance between them

2. compute the normalized information distance of each object from each other objects as a n× n
similarity matrix S, of form:

S =

s11 . . . s1n
...

. . .
...

sn1 . . . snn


by starting from the vector [x1, . . . ,xn] with the computation of the symmetric matrix

XOR =


x1⊕ x1 x1⊕ x2 . . . x1⊕ xn

x2⊕ x1 x2⊕ x2 . . . x2⊕ xn
...

...
. . .

...
xn⊕ x1 xn⊕ x2 . . . xn⊕ xn


where xi⊕ x j is the bitwise exclusive or logic function (the number of 1s in xi⊕ x j represents

the degree of similarity between xi and x j), and ending with the computing si j =
m

∑
k=1

bik⊕b jk, the

components of the similarity matrix S.
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3. apply a spectral clustering algorithm on S, considered as the representation of a graph having in
its vertexes objects and the edges marked with the distance between the objects it connects, as
follows:

(a) build the Laplacian matrix of S,
L = D−S

where D is the degree matrix of S defined as the diagonal matrix with di j =
n

∑
i=1

si j

(b) compute the dominant eigenvalue and the associated eigenvector1. The eigenvalue and eigen-
vector are defined by the following equation:

Av = λv

where A is an n× n matrix, v is a non-zero n-component vector and λ is a scalar (real or
complex). Any value of λ for which this equation has a solution is known as an eigenvalue
of the matrix A. The vector v which corresponds to this value is the associated eigenvector.
The above equation is transformed as follows:

Av−λv = 0

Av−λ Iv = 0

(Av−λ I)v = 0

and, if v is a non-zero vector, then the equation has a solution if

|Av−λ I|= 0

Computing the determinant results an n-th order polynomial in λ . The n roots are computed
only by numerical methods for big n, the usual case.
Because, in the most of cases n is a big value, we have to use a numerical method as follows
[?]:

i. take an arbitrary vector X(0)

ii. compute its normalized form:

Y(i) =
1

max(X(i))
X(i)

iii. iterate the value of X(i):
X(i+1) = Y(i)L

iv. test for ending by computing:

∆(X(i)) = X(i+1)−X(i)

and:
A. if (∆(X(i)) is small enough) then stop the iterative process and return X(i+1) as the

dominant eigen vector

1“Moreover, in our examples with K clusters so far, always the D = K dominant eigenvectors have been sufficient.” [?]
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B. else continue going back to the step ii.

(c) use the dominant eigenvector to make the bi-partition.

Example 11.2 Let’s consider a simple example (following [?]) of 6 objects: X = {x1,x2,x3,x4,x5,x6}
defined by the the graph represented in Figure 11.1, where the edges are marked by the normalized
similarity measure between xi and x j. Where the edge is missing the similarity measure is 0. The
similarity matrix S is:

S =



0 0.8 0.6 0 0.1 0
0.8 0 0.8 0 0 0
0.6 0.8 0 0.2 0 0
0 0 0.2 0 0.8 0.7

0.1 0 0 0.8 0 0.8
0 0 0 0.7 0.8 0
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Figure 11.1:

The Laplacian matrix is build as using the degree matrix, D, as follows:

L = D−S =



1.5 0 0 0 0 0
0 1.6 0 0 0 0
0 0 1.6 0 0 0
0 0 0 1.7 0 0
0 0 0 0 1.7 0
0 0 0 0 0 1.5

−


0 0.8 0.6 0 0.1 0
0.8 0 0.8 0 0 0
0.6 0.8 0 0.2 0 0
0 0 0.2 0 0.8 0.7

0.1 0 0 0.8 0 0.8
0 0 0 0.7 0.8 0



L =



1.5 −0.8 −0.6 0 −0.1 0
−0.8 1.6 −0.8 0 0 0
−0.6 −0.8 1.6 −0.2 0 0

0 0 −0.2 1.7 −0.8 −0.7
−0.1 0 0 −0.8 1.7 −0.8

0 0 0 −0.7 −0.8 1.5
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The dominant eigenvalue, λ , and the associated eigenvector, X, are computed iteratively starting
with an arbitrary vector X(0) = [1 2 1 2 1 2 1 2]T by computing

X(1) = LX(0) =



1.5 −0.8 −0.6 0 −0.1 0
−0.8 1.6 −0.8 0 0 0
−0.6 −0.8 1.6 −0.2 0 0

0 0 −0.2 1.7 −0.8 −0.7
−0.1 0 0 −0.8 1.7 −0.8

0 0 0 −0.7 −0.8 1.5





1
2
1
2
1
2

=



−0.8
1.6
−1
1
−1.6
0.8


and then normalizing the result (to obtain a column vector with the biggest element of value 1)

Y(1) =
X(1)

max(X(1))
=

1
1.6



−0.8
1.6
−1
1
−1.6
0.8

=



−0.5
1

−0.625
0.625
−1
0.5


where max(X(1)) is the maximum component of X(1). The process continue until the difference between
Y(i−1) and Y(i) is small enough. Then, X(i) is the eigen vector and the value used to normalize it is the
eigen value.

For this example results the dominant eigen vector [0.2 0.2 0.2 −0.4 −0.7 −0.7]T . The position
where the sign chances delimits the partition. Therefore, the partition is {{x1,x2,x3},{x4,x5,x6}}
⋄

11.2 Hierarchical clustering

11.3 Fuzzy C-means

11.4 Mixture of Gaussians



126 CHAPTER 11. CLUSTERING



Chapter 12

Regression

Regression is an important algorithm used in machine learning [?]. It provides the base for other learning
algorithms, such as the neural networks algorithm.

Regression is used in data mining, finance, business and investing. It is applied to determine the
strength of a relationship between one dependent variable (typically represented at y) and other indepen-
dent variables, (typically represented at x1, ...).

12.1 Linear Regression

Linear regression uses one independent variable, x, to predict the outcome of the dependent variable, y,
and is expressed through a straight regression line.

y = a+bx

The input for computation is a vector of pairs of coordinates, as follows:

⟨(x1,y1),(x2,y2), . . .(xn,yn)⟩

and the output is computed using the following expressions:

a =

( n

∑
i=1

yi

)( n

∑
i=1

x2
i

)
−
( n

∑
i=1

xi

)( n

∑
i=1

xiyi

)
n
( n

∑
i=1

x2
i

)
−
( n

∑
i=1

xi

)2

b =

n
( n

∑
i=1

xiyi

)
−
( n

∑
i=1

xi

)( n

∑
i=1

yi

)
n
( n

∑
i=1

x2
i

)
−
( n

∑
i=1

xi

)2

Our hybrid system will be used to compute the sums:
n

∑
i=1

xi,
n

∑
i=1

yi,
n

∑
i=1

x2
i , and

n

∑
i=1

xiyi, organized in

a 4-component vector which is send back to the HOST’s data memory. Then, the four values are used
by HOST to compute a and b. Squaring the values of xi and multiplying xi with yi, for i = 1, . . . ,n is
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performed in parallel, while the sums are performed by the REDUCTION unit of ACCELERATOR. All
the other operations, loads and stores and the final computation are performed sequentially.

For very big n the transfer operations can be at least partially overlapped with the computation, but
the computing time remains IO bounded.

Example 12.1 In Figure 12.1 there are 16 points in a two-dimension space.

⟨(4,3),(1,5),(5,5),(7,7),(10,7),(2,8),(5,10),(12,10),
(3,12),(8,13),(12,13),(10,14),(15,14),(13,16),(10,17),(16,18)⟩
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Figure 12.1:

/************************************************************************
REGRESSION ALGORITHM

i n i t i a l : 16 p a i r s o f c o o r d i n a t e d a r e s t o r e d i n HOST’ s d a t a memory
s t a r t i n g form t h e a d d r e s s 9 6 .

f i n a l : r f [ 5 ] = 10a , r f [ 6 ] = 10b ( t o a v o i d f l o a t i n g p o i n t o p e r a t i o n s
************************************************************************/

( 1 ) Load t h e p a i r s o f c o o r d i n a t e s a s two v e c t o r s i n ARRAY a t
vectMem [ 3 3 ]
vectMem [ 3 4 ]

( 2 ) t r a n s p o s e t h e 2x2 m a t r i c e s s t o r e d i n t h e two v e c t o r s : t h u s each
c e l l c o n t a i n s a p a i s o f c o o r d i n a t e s
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( 3 ) push l e f t i n s e r i a l R e g redSum ( vectMem [ 3 3 ] )
( 4 ) push l e f t i n s e r i a l R e g redSum ( vectMem [ 3 3 ] x vectMem [ 3 3 ] )
( 5 ) push l e f t i n s e r i a l R e g redSum ( vectMem [ 3 4 ] )
( 6 ) push l e f t i n s e r i a l R e g redSum ( vectMem [ 3 3 ] x vectMem [ 3 4 ] )
( 7 ) send s e r i a l R e g t o HOST i n :

mem[ 0 ] <= SUM( xy )
mem[ 1 ] <= SUM( y )
mem[ 2 ] <= SUM( x ˆ 2 )
mem{3] <= SUM( x )

( 8 ) compute i n HOST t h e p a r a m e t e r s o f t h e l i n e :
r f [ 5 ] <= 10 a
r f [ 6 ] <= 10b

/************************************************************************
REGRESSION ALGORITHM: t h e program r u n n i n g on HOST
F i l e name : 05 h o s t R e g r e s s i o n . v
************************************************************************/

hSTART ;
RUN( ‘MLOAD, 33 , 96 , 16 , 1 ) ; / / l o a d f i r s t v e c t o r wi th n / 2 p a i r s
RUN( ‘MLOAD, 34 , 112 , 16 , 1 ) ; / / l o a d second v e c t o r wi th n / 2 p a i r s
hRUN( ‘REG ) ; / / c a l l REG r u n n i n g on ACCELERATOR
RUN( ‘MSTORE, 37 , 90 , 4 , 1 ) ; / / s t o r e t h e 4− s c a l a r v e c t o r i n HOST
hRUN( ‘EOP ) ; / / c a l l END OF PROGRAM
hWAITACC; / / w a i t f o r end of program
hIGET ( 9 0 ) ;
hLOAD ( 0 ) ; / / r f [ 0 ] <= SUM( xy )
hIGET ( 9 1 ) ;
hLOAD ( 1 ) ; / / r f [ 1 ] <= SUM( y )
hIGET ( 9 2 ) ;
hLOAD ( 2 ) ; / / r f [ 2 ] <= SUM( x ˆ 2 )
hIGET ( 9 3 ) ;
hLOAD ( 3 ) ; / / r f [ 3 ] <= SUM( x )
hVMULT( 4 , 2 , 1 6 ) ;
hMULT( 5 , 3 , 3 ) ;
hSUB ( 4 , 4 , 5 ) ;
hVDIV ( 4 , 4 , 1 0 ) ; / / t o i n c r e a s e t h e p r e c i s i o n
hMULT( 5 , 3 , 0 ) ;
hMULT( 6 , 1 , 2 ) ;
hSUB ( 5 , 6 , 5 ) ;
hDIV ( 5 , 5 , 4 ) ; / / r f [ 5 ] <= 10 a
hVMULT( 6 , 0 , 1 6 ) ;
hMULT( 7 , 1 , 3 ) ;
hSUB ( 6 , 6 , 7 ) ;
hDIV ( 6 , 6 , 4 ) ; / / r f [ 6 ] <= 10b
hSTOP ;
hHALT ;

The program written for ACCELERATOR is:
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/************************************************************************
REGRESSION ALGORITHM: t h e program r u n n i n g on ACCELERATOR
F i l e name : 05 r e g r e s s i o n . v
************************************************************************/

‘ d e f i n e MLOAD 2
‘ d e f i n e ML 6
‘ d e f i n e REG 8
‘ d e f i n e MSTORE 1
‘ d e f i n e MS1 3
‘ d e f i n e MS2 5
‘ d e f i n e EOP 4

LB( ‘MLOAD) ; cPOPFIFO ; NOP;
cNOP ; CLOAD;
cPOPFIFO ; VSUB ( 1 ) ;
cSTORE ( 2 ) ; ADDRLD;
cPOPFIFO ; NOP;
cSTORE ( 1 ) ; NOP;
cPOPFIFO ; NOP;
cSTORE ( 3 ) ; NOP;

LB( ‘ML) ; cLADDR ( 2 ) ; NOP;
cLSIZE ( 1 ) ; NOP;
cTRUN ( 1 ) ; NOP;
cLOAD ( 2 ) ; NOP;
cADD ( 1 ) ; NOP;
cSTORE ( 2 ) ; NOP;
cIOWAIT ; NOP;
cLOAD ( 3 ) ; NOP;
cVSUB ( 1 ) ; IOLOAD ;
cSTORE ( 3 ) ; RISTORE ( 1 ) ;
cBRNZ( ‘ML) ; NOP;
cHALT ; NOP;

LB( ‘MSTORE ) ; cPOPFIFO ; NOP;
cNOP ; CADDRLD;
cPOPFIFO ; RILOAD ( 0 ) ;
cSTORE ( 2 ) ; NOP;
cPOPFIFO ; NOP;
cSTORE ( 1 ) ; NOP;
cPOPFIFO ; IOSTORE ;
cSTORE ( 3 ) ; NOP;

LB( ‘MS1 ) ; cLADDR ( 2 ) ; NOP;
cLSIZE ( 1 ) ; NOP; l o a d i o r e g i s t e r w i th acc
cTRUN ( 2 ) ; NOP; r a t i o n i n DMA
cLOAD ( 3 ) ; NOP;
cVSUB ( 1 ) ; NOP;
cBRZ ( ‘MS2 ) ; NOP;
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cSTORE ( 3 ) ; NOP;
cLOAD ( 2 ) ; RILOAD ( 1 ) ;
cADD ( 1 ) ; NOP;
cSTORE ( 2 ) ; NOP;
cIOWAIT ; NOP;
cJMP ( ‘MS1 ) ; IOSTORE ;

LB( ‘MS2 ) ; cIOWAIT ; NOP;
cHALT ; NOP;

LB( ‘EOP ) ; cTRUN ( 7 ) ; NOP;
cHALT ; NOP;

/ / REGRESSION PROGRAM
LB( ‘REG ) ; cSTART ; LOAD( 3 3 ) ; / / TRANSPOSE

cNOP ; GLSHIFT ;
cNOP ; STORE ( 3 5 ) ;
cNOP ; LOAD( 3 4 ) ;
cNOP ; GRSHIFT ;
cNOP ; STORE ( 3 6 ) ;
cNOP ; IXLOAD ;
cNOP ; VAND( 1 ) ;
cNOP ; WHEREZERO;
cNOP ; LOAD( 3 5 ) ;
cNOP ; STORE ( 3 4 ) ;
cNOP ; ELSEWHERE;
cNOP ; LOAD( 3 6 ) ;
cNOP ; STORE ( 3 3 ) ;
cNOP ; ENDWHERE;
cNOP ; LOAD( 3 3 ) ; / / COMPUTE SUMS
cCPUSHL ( 0 ) ; MULT( 3 3 ) ;
cCPUSHL ( 0 ) ; LOAD( 3 4 ) ;
cCPUSHL ( 0 ) ; MULT( 3 3 ) ;
cCPUSHL ( 0 ) ; NOP;
cNOP ; NOP;
cNOP ; NOP;
cNOP ; NOP;
cNOP ; SRLOAD;
cSTOP ; STORE ( 3 7 ) ;
cHALT ; NOP;

The result of the program is stored in the register file of HOST:

a = 4.9

b = 0.7

Using them, the line from Figure 12.1 is drown.
⋄
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12.2 Non-Linear Regression

Non-linear regression is similar to linear regression in that it seeks to track a particular response from a
set of variables on the graph. However, non-linear models are somewhat more complicated to develop.
Non-linear models are created through a series of iterations. The Gauss-Newton method is the most used
non-linear regression modelling techniques. It receive as input a set of n points in a two-dimension space:

p = {(xi,yi) | i = 1, . . . ,n}

and a function f which is supposed to approximate the evolution described by x in the two-dimension
space:

y = f (x,a1, . . . ,am)

where the vector a = [a1, . . . ,am] contains the parameters whose values will be approximated using the
Gauss-Newton method. The problem is to find the actual values in a for which

ε(a1, . . . ,am) =
n

∑
i=1

(yi− f (xi,a1, . . . ,am))
2 =

n

∑
i=1

(yi− fi(a1, . . . ,am))
2 =

n

∑
i=1

r2
i

with ri = yi− fi(a1, . . . ,am), is minimal. Therefore, the following equations must be solved:

δ
δa j

= ε(a1, . . . ,am) =−2
n

∑
i=1

(yi− f (xi,a1, . . . ,am))
δ fi(a1, . . . ,am)

δa j
= 0

for j = 1, . . . ,m, where

Ji j =
δ fi(a1, . . . ,am)

δa j
f or (i = 1, . . . ,n); j = 1, . . . ,m)

is an element of the Jacobian matrix Jf.

Jf =

J11 . . . J1m
...

. . .
...

Jn1 . . . Jnm

=


δ f1(a1,...,am)

δa1
. . . δ f1(a1,...,am)

δam
...

. . .
...

δ fn(a1,...,am)
δa1

. . . δ fn(a1,...,am)
δam


The solution of the problem (see [?]) is iterative, in each step, starting from an initial “inspired guess”

a(0), is computed

a(t+1) = a(t)+∆

where:

∆ = (Jf
T Jf)

−1Jf
T r

with r= [r1, . . . ,rn]
T . The iterative process stops when the components of ∆ become small enough. Some

times, problems of ill-conditioning and divergence can occur. They can be corrected by finding initial
parameter estimates that are near to the optimal values.
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The algorithm for the hybrid system has the following steps:

1. initialization:

• load the vectors x = [x1, . . . ,xn] and y = [y1, . . . ,yn] in ARRAY

• load the vector a0 = [a0
1, . . . ,a

0
m] in CONTROLLER’s data memory

2. compute in ARRAY: the matrix JT
f as m n-component vectors

3. compute in ARRAY Jf
T Jf as a m×m matrix

4. compute the inverse of Jf
T Jf by:

• sending the m×m matrix to HOST

• computing in HOST the inverse

• sending back to CONTROLLER the m×m matrix (Jf
T Jf)

−1

5. compute in ARRAY (Jf
T Jf)

−1Jf
T as matrix m×n

6. compute in ARRAY the n-component vector r = [(y1− f1(a1, . . . ,am)), . . . ,(yn− fn(a1, . . . ,am))]

7. compute ∆ as a m-component vector and update a

8. if the components of ∆ are small enough, then end the process sending a( f inal) to HOST, else go to
6.

In the current applications n >> m. This is the reason for which the matrix of m×m is send back to
HOST for computing its inverse.

Example 12.2 Let us consider an application with n = 1024 and the function f is

f (x) = ax2 +bx+ c

Then, m = 3. The next steps are used to compute the non-linear regression:

1. initialization:

(a) load the vectors x = [x1, . . . ,x1024] and y = [y1, . . . ,y1024] in ARRAY

(b) load the vector a(0) = [a(0),b(0),c(0)] in CONTROLLER’s data memory

2. compute in ARRAY the matrix JT
f as 3 1024-component vectors as follows: because δ f

δa = x2,
δ f
δb = x, and δ f

δc = 0, the Jacobian is

J =


δ f1
δa

δ f1
δb

δ f1
δc

...
...

...
δ f1024

δa
δ f1024

δb
δ f1024

δc

=

 x2
1 x1 0
...

...
...

x2
1024 x1024 0


where each column is represented as a n-component vector in ARRAY

3. compute in ARRAY (Jf
T Jf)

−1Jf
T as matrix 3×3
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4. compute the inverse of (Jf
T Jf)

−1 by:

• sending the 3×3 matrix to HOST

• computing in HOST the inverse

• sending back to CONTROLLER the 3×3 resulting matrix

5. compute in ARRAY (Jf
T Jf)

−1Jf
T as matrix 3×1024

6. compute in ARRAY the 1024-component vector r = [(y1− f1(a,b,c)), . . . ,(y1024− f1024(a,b,c))]
using a(k)

7. compute ∆ as a 3-component vector and a(k+1) = a(k)+∆

8. if the components of ∆ are small enough, then end the process sending a( f inal) = a(k+1) to HOST,
else go to 6.

⋄
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Markov Models

A Markov Model is a stochastic model which models temporal or sequential data. It is used to model
randomly changing systems. It is assumed that the next state depend only on the current state, not on the
events that occurred before it. Generally, this assumption enables reasoning and computation with the
model that would otherwise be intractable. Markov models are named after their creator, Andrey Markov
(1856–1922), a Russian mathematician [?] [?] [?] [?].

Hidden Markov Model is an unsupervised Machine Learning Algorithm.
Markov Model could be assimilated with a no-input stochastic finite half-automaton. The inputs to

be tested in each state are substituted by the probabilities of transition from a state in another. The initial
state is given be a vector of probabilities.

Hidden Markov Model could be assimilated with a no-input stochastic finite automaton.

13.1 Markov Models

Definition 13.1 A first-order Markov Model is a n-node graph where each node is a state si ∈ S =
{s1, . . .sn} and each edge ai j represents the probability of going from the state si to the state s j. It is
completely described by the pair:

MM = (A,Π(0))

where:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


is the n×n state transition matrix with ai j = P(s j|si), and

Π(0) =
[
p1 p2 . . . pn

]
is the initial state distribution vector with pi = P(si).
⋄

MM is a first-order Markov Model because, if the state at the moment t is σt ∈ S, then the probability
of being in a state at time t depends only on the probability of the state at time t−1 :

P(σt |σ0,σ1, . . .σt−1) = P(σt |σt−1)

135
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Having a MM, the main application is to compute the probability distribution of the state at the
moment t. Because the state distribution vector at the moment t is: p(t) = p(t−1)A, related to the initial
state distribution vector we have:

Π(t) = ((((Π(0)A)A) . . .)A) = Π(0)At

Example 13.1 Let be S = {sun,cloud,rain} with the Markov Model represented as the graph from Fig-
ure 13.1 [?].

Sun Cloud

Rain

s

Y
}

s

7

�

7 K

I

0.8 0.5

0.6

0.15

0.2

0.20.2 0.30.05

Figure 13.1: Example of Markov Model.

The transition probability matrix is:

A =

 P(sun|sun) P(cloud|sun) P(rain|sun)
P(sun|cloud) P(cloud|cloud) P(rain|cloud)
P(sun|rain) P(cloud|rain) P(rain|rain)

=

0.8 0.15 0.05
0.2 0.5 0.3
0.2 0.2 0.6


where: P(sun|sun) is the probability to have a sunny day followed by another sunny day, P(cloud|sun)
is the probability to have a cloudy day preceded by a sunny day, and so on.

If Π(0) = [1,0,0] (it is a sunny day) what is Π(1) (the forecast for tomorrow)? The answer is:

Π(1) =
[
1 0 0

]0.8 0.15 0.05
0.2 0.5 0.3
0.2 0.2 0.6

=
[
0.8 0.15 0.05

]
It will be a sunny day with the probability of 0.8, a cloudy day with the probability of 0.15, or a rainy
day with the probability of 0.05.

The forecast for the day after tomorrow is:

Π(2) = Π(0)A2 =
[
0.68 0.205 0.115

]
⋄

The main computational challenge imposed by using a Markov Model is the vector-matrix multipli-
cation. Working with probabilities the fix point arithmetic is recommended.
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13.1.1 Eigenvector & Eigenvalue

Consider we start with a state distribution vector Π(t), and we multiply by the matrix A, and we end up
with the same state distribution vector:

Π(t) = Π(t)A

This is what we call a stationary distribution, because no matter how many times we make the transition
from this state distribution, we still have the same state distribution.

Definition 13.2 If
ΠA = λΠ

then the vector Π is called the eigenvector of the matrix A and λ is the eigenvalue.
⋄

13.2 Hidden Markov Models

HMM is a probabilistic finite state automaton, with probabilistic outputs. The Hidden Markov Model is
a process that has two levels:

• embedded level: is a Markov process and has the unobservable states S = {s1, . . . ,sn} with the
unobservable series of state σ⃗ = {σ1,σ2, . . . ,σT}, with σi ∈ S (it could be associated to a half-
automaton-like engine)

• observable level: is what we can actually observe – that is the output that internal states emit – the
series of observed outputs ω⃗ = {ω1,ω2, . . . ,ωT} with ωi ∈O = {o1, . . . ,om} where O is the output
alphabet (could be associated to an automaton-like engine whose internal states are unobservable).

Definition 13.3 A Hidden Markov Model is defined by the following pair:

HMM = (MM,B)

where: MM is a Markov Model (see Definition 13.1), and B describe the observable behavior of MM
defined by elements of the output alphabet O = {o1, . . . ,om}

B =


b11 b12 . . . b1n

b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn


where: b jk = P(ωt = ok|σt = s j), with ωt ∈ O the value at any moment t in the observed series

ω⃗ = {ω1,ω2, . . . ,ωT}

⋄

Example 13.2 Let be a HMM with O = {o1, . . . ,o8}. A possible observed output is:

ω⃗ = {ω1 = o5,ω2 = o1,ω3 = o7,ω4 = o2,ω5 = o1,ω6 = o5}

⋄
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s1 s2

� I

j� R 	? ?
o1 o2 o3

Markov Model

R

I

a11 = 0.54 a22 = 0.51a12 = 0.46

a21 = 0.49

b32 = 0.47

b21 = 0.26

b31 = 0.58b12 = 0.25

b22 = 0.28

b11 = 0.16

Figure 13.2: Example of Hidden Markov Model.

Example 13.3 Let be HMM = (A,B,Π(0)) represented in Figure 13.2 defined by:

A =

[
a11 a12
a21 a22

]
=

[
0.54 0.46
0.49 0.51

]

B =

b11 b12
b21 b22
b31 b32

=

0.16 0.25
0.26 0.28
0.58 0.47


Π(0) =

[
p1 p2

]
=
[
0.5 0.5

]
with S = {s1,s2} and O = {o1,o2,o3}.
⋄

There are three problems related to the Hidden Markov Model:

• Evaluation: since the state of Markov Model is hidden, we cannot actually be sure that it did
generate the outcome. We have a model and we have a sequence we observe, but what are the
probabilities that what we can see is really an emission product? We cannot directly observe the
state, so how can we know if our assumption is accurate? To calculate our ‘belief state’ we use the
Forward Backward Algorithm

• Learning: provides what model has the highest probability of generating the observed outcome?
What are the parameters that generated the observed sequences? For this problem, we use the
Baum-Welch Algorithm

• Decoding: means to find what is the most likely hidden and unobserved sequence, based on what
we can observe? Which state has the highest possibility of being accurate? To decode what state
the output refers to we use the Viterbi Algorithm

13.2.1 Evaluation problem

Given M = (A,B,Π(0)) and the observation sequence ω⃗ = {ω1,ω2, . . . ,ωT}, calculate the probability
that ω⃗ is generated by M.
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Forward recursion

Definition 13.4 The variable αt(i) = P(ω1ω2 . . .ωt ,σt = si) is defined as the joint probability of the
partial observation sequence {ω1ω2 . . .ωt} and that the hidden state at time t is si.

For each t is defined the vector: αt = [αt(1)αt(2) . . .αt(n)].
⋄

Definition 13.5 The Hadamard (entrywise) product is defined as follows:

• for two n×m-element matrices Pn×m and Rn×m:

Hn×m = P◦R = R◦P =

p11 . . . p1m
...

. . .
...

pn1 . . . pnm

◦
r11 . . . r1m

...
. . .

...
rn1 . . . rnm

=

r11 p11 . . . r1m p1m
...

. . .
...

rn1 pn1 . . . rnm pnm


• for Pn×1 and Rn×m:

Hn×m = P◦R = R◦P =

p11
...

pn1

◦
r11 . . . r1m

...
. . .

...
rn1 . . . rnm

=

r11 p11 . . . r1m p11
...

. . .
...

rn1 pn1 . . . rnm pn1


• for Pn×m and R1×m:

Hn×m = P◦R = R◦P =

p11 . . . p1m
...

. . .
...

pn1 . . . pnm

◦ [r11 . . . r1m
]
=

r11 p11 . . . r1m p1m
...

. . .
...

r11 pn1 . . . r1m pnm


⋄

Example 13.4 [
2 4 6

]
◦
[
3 5 7

]
=
[
6 40 42

]
⋄

Definition 13.6 The Hadamard (entrywise) division, ⊘, is defined similarly for:

• for two n×m-element matrices Pn×m and Rn×m: Hn×m = P⊘R

• for Pn×m and Rn×1: Hn×m = P⊘R

• for Pn×1 and R1×m: Hn×m = P⊘R

⋄

Definition 13.7 The reduction sum applied to the vector V = [v1 . . .vn] is

redSum(V ) = Σn
1vi

⋄
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Forward Algorithm: let us consider M = (A,B,Π(0)) and the observed outputs ω⃗ = {ω1,ω2, . . . ,ωT}.
The probability that M generates ω⃗ starting from Π(0) is computed as follows:

Initialization :

α1 =
[
α1(1)α1(2) . . .α1(n)

]
=
[
p1 p2 . . . pn

]
◦
[
B(ω1,1)B(ω1,2) . . .B(ω1,n)

]
=Π(0)◦B(ω1,−)

where B(ω1,−) is the line in the matrix B selected by ω1

Forward recursion :
αt+1 = (αtA)◦B(ωt+1,−)

for t = 1 . . .(T −1) where B(ωt+1,−) is the line in the matrix B selected by ωt+1

Termination : P(ω⃗) = redSum(αT ).

The execution time is in O(n2T ).

Example 13.5 Let be HMM = (A,B,Π(0)) defined in Example 13.3 and ω⃗ = {o1,o2,o3}.
The forward algorithm runs as follow:

initialization :

α1 = Π(0)◦B(1,−) =
[
0.5 0.5

]
◦
[
0.16 0.25

]
=
[
0.08 0.125

]
forward recursion :

first step :

α2 =(α1A)◦B(2,−)= (
[
0.08 0.12

][0.54 0.46
0.49 0.51

]
)◦

[
0.26 0.28

]
=
[
0.0271 0.0281

]
second step :

α3 = (α2A)◦B(3,−) = (
[
0.0271 0.0281

][0.54 0.46
0.49 0.51

]
)◦

[
0.58 0.47

]
=

=
[
0.0165069392 0.0126198572

]
termination : P({1,2,3}) = 0.0165069392+0.0126198572

⋄

Backward recursion

Backward algorithm is the time-reversed version of the forward algorithm. In backward algorithm we
find the probability that the machine will be in hidden state si at time step t and will generate the remain-
ing part of the sequence of the visible symbol ω⃗ .

Definition 13.8 Define the variable βt(i) as the joint probability of the partial observation sequence
ωt+1ωt+2 . . .ωT given that the hidden state at time t is si:

βt(i) = P(ωt+1ωt+2 . . .ωT )|σt = si)

For each t is defined the vector: βt = [βt(1)βt(2) . . .βt(n)].
⋄
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Backward Algorithm: let us consider M = (A,B,Π(0)) and the observed outputs ω⃗ = {ω1,ω2, . . . ,ωT}.
The probability that M generates ω⃗ starting from Π(0) is computed as follows:

Initialization :
βT =

[
βT (1)βT (2) . . .βT (n)

]
=
[
11 . . .1

]
Backward recursion :

βt = (βt+1 ◦B(ωt+1,−))A′

for t = T −1 . . .1 where A′ is the matrix A transposed (ai j⇐ a ji)

Termination : P(ω⃗) = redSum(β1 ◦B(ω1,−)◦Π(0)).

The execution time is in O(n2T ).

Example 13.6 Let be M = (A,B,Π0) defined in Example 13.5, and ω⃗ = {o2,o1,o2} [?]. The backward
algorithm runs as follow:

initialization :
β4 =

[
11
]

backward recursion :

first step :

β3 =(β4◦B(2,−))A=(
[
1 1

]
◦
[
0.58 0.47

]
)

[
0.54 0.49
0.46 0.51

]
=
[
0.5294 0.5239

]
second step :

β2 = (β3 ◦B(1,−))A = (
[
0.5294 0.5239

]
◦
[
0.26 0.28

]
)

[
0.54 0.49
0.46 0.51

]
=

[
0.14180608 0.14225848

]
third step :

β1 =(β2◦B(2,−))A=(
[
0.14180608 0.14225848

]
◦
[
0.58 0.47

]
)

[
0.54 0.49
0.46 0.51

]
=

=
[
0.0751699476 0.0744006456

]
termination :

P(⃗x) = redSum(
[
0.07516994 0.07440064

]
◦
[
0.58 0.47

]
◦
[
0.5 0.5

]
) = 0.039283

⋄
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13.2.2 Learning problem

Given some training observation sequences ω⃗ = {ω1,ω2, . . . ,ωT} and the numbers of hidden variable
and of visible outputs, determine the parameters of MM =(A,B,Π(0) that best fit training data, i.e., max-
imize P(ω⃗|MM). There is no algorithm producing optimal parameter values. The iterative expectation-
maximization algorithm is used to find a local maximum of P(ω⃗|MM). It is called Baum-Welch algo-
rithm.

Definition 13.9 The probability of the transition between state si and s j at time t given the observations
{ω1,ω2, . . . ,ωt} is proportional to:

gt(i, j) = αt(i)ai jb jωt βt+1( j)

⋄

Definition 13.10 The maximum likelihood for transition form si to s j at any time is:

ai j =
ΣT gt(i, j)

Σ jΣT gt(i, j)

⋄

Definition 13.11 The maximum likelihood for ok to be generated by the state s j at any time is:

b jk =
ΣiΣT 1{ωt = ok}gt(i, j)

ΣiΣT gt(i, j)

⋄

Learning Algorithm

Initialization : initialize the matrices A and B with equal probabilities or randomly distributed
probabilities.

Repeat until convergence :

Compute expectation : run the Forward and Backward algorithms to compute αi and βi
for i = 1 . . .n, and compute the matrices

Gt =


gt(1,1) . . . gt(1,n)
gt(2,1) . . . gt(2,n)

...
. . .

...
gt(n,1) . . . gt(n,n)

= α ′t ◦A◦ (B(ωt ,−)◦βt+1)

for t = 1 . . .T .
Re-estimate : the probability matrices A and B are recomputed as follows:

for state transition matrix :
• add the matrices Gt

G = ΣT Gt

• generate the vector C, as a n×1 matrix, by summing all the elements of each
row of G

C = Σ jG(i, j)
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• instantiate the new A by entrywise dividing (see Definition 13.6) each column
of G by vector C

A⇐G⊘C

for output transition matrix :
• compute the matrices

Gk = ΣT Gt(ωt = ok)

for k = 1 . . .m
• construct the matrix:

Γ =


ΣiG1

ΣiG2

...
ΣiGm


where ΣiGk = [Σigk(i,1),Σigk(i,2), . . . ,Σigk(i,n)]

• generate the vector R, as a 1×n matrix, by summing all the elements of each
column of G

R = ΣiG(i, j)

• instantiate the new B by entrywise dividing the matrix Γ with the vector R:

B⇐ Γ⊘R

13.2.3 Decoding problem

Given M = (A,B,Π(0)) and the observation sequence ω⃗ = {ω1,ω2, . . . ,ωT}, we must calculate the most
likely sequence of σ⃗ that produced ω⃗ . This algorithm is similar to the forward recursion of evaluation
problem, with redSum operations replaced by redMax and additional backtracking.

Definition 13.12 The pseudo-multiplication of a matrix Pn×m with a matrix Rm×q, P •R, is performed
substituting, in the multiplication algorithm, the reduction sum operation, performed in the dot products
of the m-component vector, with the selection of the maximum value from those of the vectors resulting
from the Hadamard product.
⋄

Example 13.7 [
1 2
3 4

]
•
[

1
2

]
=

[
max(1×1,2×2)
max(1×3,2×4)

]
=

[
4
8

]
⋄

Definition 13.13 Let be α(t) = [α1(t),α2(t), . . . ,αn(t)], where αi(t) is the probability to reach state si

via an optimal sequence of states after emitting the first t observations:

αi(t) = maxn
j=1(α j(t−1)A( j, i)B(ωt , i))

⋄
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Viterbi Algorithm

Initialization :
α(1) = Π(0)◦B(ω1,−)

Iteration :
α(t) = (α(t−1)•A)◦B(ωt ,−)

σ⃗(t)⇐{σ⃗(t−1),sindexMax(α(t+1))}

where: indexMax(α(i)) is the index of the maximum value in α(i).

Termination : σ⃗(T )

Example 13.8 Let be:

A =

[
0.7 0.3
0.4 0.6

]

B =

0.5 0.1
0.4 0.3
0.1 0.6


Π(0) =

[
0.6 0.4

]
and the observed sequence ω⃗ = {o1,o2,o3} [?].

Then, the Viterbi algorithm runs as follows:

initialization :

α(1) = Π(0)◦B(o1,−) =
[
0.6 0.4

]
◦
[
0.5 0.1

]
=
[
0.3 0.04

]
because indexMax(α(1) = 1

iteration :

first iteration :
α(2) = (α(1)•A)◦B(o2,−) =

=
[
0.3 0.04

]
•
[

0.7 0.3
0.4 0.6

]
◦
[
0.4 0.3

]
=

=
[
max(0.21,0.016) max(0.09,0.024)

]
◦
[
0.4 0.3

]
=
[
0.084 0.027

]
second iteration :

α(3) =
[
0.084 0.027

]
•
[

0.7 0.3
0.4 0.6

]
◦
[
0.1 0.6

]
=

=
[
max(0.058,0.0108) max(0.0252,0.0162)

]
◦
[
0.1 0.6

]
=
[
0.0058 0.01512

]
termination : σ⃗(T ) = {s1,s1,s2}

⋄
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Chapter 14

Artificial Neural Network

Artificial neural network (NN) is a technical construct inspired from the biological neural networks.
NN are composed of interconnected artificial neurons. An artificial neuron is a programmed or circuit
construct that mimic the property of a biological neuron. A multi-layer NN is used as a connectionist
computational model. The introductory text [47] is used for a short presentation of the concept of NN.

14.1 The neuron

The artificial neuron (see Figure 14.1) receives the inputs x1, . . . ,xn (corresponding to n dendrites) and
process them to produce an output o (synapse). The sums of each node are weighted, using the weight
vector w1, . . . ,wn and the sum, net, is passed through a non-linear function, f (net), called activation
function or transfer function. The transfer functions usually have a sigmoid shape (see Figure 14.2) or
step functions.

×-
?

w1

-

×-
?

w2

f (net)

×-
?

wn

-∑

wj

7

?

o

w2

net

x1

a.

x2

xn

b.

NEURON

-
-

-

? ?

-

w1 wn

o

x1
x2

xn

Figure 14.1: The general form of a neuron. a. The circuit structure of a n-input neuron. b. The logic symbol.
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Formally, the transfer function of a neuron:

o = f (
n

∑
i=1

wixi) = f (net)

where f , the typical activation function, is:

6

-
1 2 3

1

-1

-2-3 -1

λ = 7 λ = 2 λ = 0.5

o
] o

y

f (y)

Figure 14.2: The activation function.

f (y) =
2

1+ exp(−λy)
−1

The parameter λ determines the steepness of the continuous function f . For big value of λ the function
f becomes:

f (y) = sgn(y)

The neuron works as a combinational circuit performing the scalar product of the input vector

x = [x1 x2 . . . xn]

with the weight vector
w = [w1 w2 . . . wn]

followed by the application of the activation function. The activation function f is simply implemented
using as a look-up table using a Read-Only Memory.

14.2 The feedforward neural network

A feedforward NN is a collection of m n-input neurons (see Figure 14.3). Each neuron receives the same
input vector

x = [x1 x2 . . . xm]

and is characterized by its own weight vector

wi = [w1 w2 . . . wm]
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Figure 14.3: The single-layer feedforward neural network. a. The organization of a feedforward NN
having m n-input neurons. b. The logic symbol.

The entire NN provides the output vector

o = [o1 o2 . . . om]
t

The activation function is the same for each neuron.
Each NN is characterized by the weight matrix

W =


w11 w12 . . . w1n

w21 w22 . . . w2n
...

... . . .
...

wm1 wm2 . . . wmn


having for each output a line, while for each input it has a column. The transition function of the NN is:

o(t) = Γ[Wx(t)]

where:



150 CHAPTER 14. ARTIFICIAL NEURAL NETWORK

Γ[·] =


f (·) 0 . . . 0
0 f (·) . . . 0
...

... . . .
...

0 0 . . . f (·)


The feedforwaed NN is of “instantaneous” type, i.e., it behaves as a combinational circuit which provides
the result in the same “cycle”. The propagation time associated do not involve storage elements.

Example 14.1 The shaded area in Figure 14.4 must be recognized by a two-layer feedforward NN. Four
conditions must be met to define the surface:

x1−1 > 0→ sgn(x1−1) = 1
x1−2 < 0→ sgn(−x1 +2) = 1
x2 > 0 → sgn(x2) = 1
x2−3 < 0→ sgn(−x2 +3)

For each condition a neuron from the first layer is used. The second layer determines whether all the
conditions tested by the first layer are fulfilled.

The first layer is characterized the weight matrix

W43 =


1 0 1
−1 0 −2
0 1 0
0 −1 −3


The weight vector for the second layer is

W = [1 1 1 1 3.5]

On both layers the activation function is sgn.
⋄

14.3 The feedback neural network

The feedback NN is a sequential system. It provides the output with a delay of a number of clock cycles
after the initialization with the input vector x. The structure of a feedback NN is presented in Figure
14.5. The multiplexor mux is used to initialize the loop closed through register. If init = 1 the vector x
is applied to NNmn( f ) one clock cycle, then init is switched to 0 and the loop is closed.

In the circuit approach of this concept, after the initialization cycle the output of the network is
applied to the input through the feedback register. The transition function is:

o(t +Tclock) = Γ[Wo(t)]

where Tclock (the clock period) is the delay on the loop. After k clock cycles the state of the network is
described by:

o(t + k×Tclock) = Γ[WΓ[. . .Γ[Wo(t)] . . .]]

A feedback NN can be considered as an initial automaton with few final states mapping disjoint
subsets of inputs.
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Figure 14.4: A two-layer feedforward NN. a. The structure. b. The two-dimension space mapping.

Example 14.2 Let be a feedback NN with 4 4-input neurons with one-bit inputs and outputs. The acti-
vation function is sgn. The feedback NN can be initialized with any 4-bit binary configuration from
x = [-1 -1 -1 -1]

to
x = [1 1 1 1]

and the system has two final states:
o14 = [1 1 1 -1]

o1 = [-1 -1 -1 1]

reached in a number of clock cycles after the initialization.
The resulting discrete-time recurrent network has the following weight matrix:

W44 =


0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0
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Figure 14.5: The single-layer feedback neural network.

The resulting structure of the NN is represented in Figure 14.6, where the weight matrix is applied on the
four 4-bit inputs destined for the weight vectors.
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?

� clock

?

[-1 -1 -1 0]

?

NN44(sgn)
o

-

Figure 14.6: The feedback NN with two final states.

The sequence of transitions are computed using the form:

o(t +1) = [sgn(net1(t)) sgn(net2(t)) sgn(net3(t)) sgn(net4(t))]

Some sequences end in o14 = [1 1 1 -1], while others in o1 = [-1 -1 -1 1].
⋄

14.4 The learning process

The learning process is used to determine the actual form of the matrix W. The learning process is
an iterative one. In each iteration, for each neuron the weight vector w is adjusted with ∆w, which is
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proportional with the input vector x and the learning signal r. The general form of the learning signal is:

r = r(w,x,d)

where d is the desired response (the teacher’s signal). Thus, in each step the weight vector is adjusted as
follows:

w(t +1) = w(t)+ c× r(w(t),x(t),d(t))×x(t)

where c is the learning constant. The learning process starts from an initial form of the weight vector
(established randomly or by a simple “hand calculation”) and uses as a set of training input vectors.

There are two types of learning:

unsupervised learning :
r = r(w,x)

the desired behavior is not known; the network will adapt its response by “discovering” the appro-
priate values for the weight vectors by self-organization

supervised learning :
r = r(w,x,d)

the desired behavior, d, is known and can be compared with the actual behavior of the neuron in
order to find how to adjust the weight vector.

In the following both types will be exemplified using the Hebbian rule and the perceptron rule.

14.4.1 Unsupervised learning: Hebbian rule

The learning signal is the output of the neuron. In each step the vector w will be adjusted (see Figure
14.7) as follows:

w(t +1) = w(t)+ c× f (w(t),x(t))×x(t)

The learning process starts with small random values for wi.

Example 14.3 Let be a four-input neuron with the activation function sgn. The initial weight vector is:

w(t0) = [1 −1 0 0.5]

The training inputs are:
x1 = [1 −2 1.5 0],
x2 = [1 −0.5 −2 −1.5],
x3 = [0 1 −1 1.5]

Applying by turn the three training input vectors for c = 1 we obtain:
w(t0 +1) = w(t0)+ sgn(net)×x1 = w(t0)+ sgn(3)×x1 = w(t0)+x1 = [2 −3 1.5 0.5]
w(t0 +2) = w(t0 +1)+ sgn(net)×x2 = w(t0 +1)+ sgn(−0.25)×x2 = w(t0 +1)−x2 = [1 −2.5 3.5 2]
w(t0 +3) = w(t0 +2)+ sgn(net)×x3 = w(t0 +2)+ sgn(−3)×x3 = w(t0 +2)−x3 = [1 −3.5 4.5 0.5]
⋄
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Figure 14.7: The Hebian learning rule

14.4.2 Supervised learning: perceptron rule

The perceptron rule performs a supervised learning. The learning is guided by the difference between
the desired output and the actual output. Thus, the learning signal for each neuron is:

r = d−o

In each step the weight vector is updated (see Figure 14.8) according to the relation:

w(t +1) = w(t)+ c× (d(t)− f (w(t),x(t)))×x(t)

The initial value for w does not matter.

Example 14.4 Let be a four-input neuron with the activation function sgn. The initial weight vector is:

w(t0) = [1 −1 0 0.5]

The training inputs are:
x1 = [1 −2 0 −1],
x2 = [0 1.5 −0.5 −1],
x3 = [−1 1 0.5 −1]
and the desired output for the three input vectors are: d1 =−1, d2 =−1, d3 = 1. The learning constant
is c = 0.1.

Applying by turn the three training input vectors for c = 1 we obtain:

step 1 : because (d− sgn(net)) ̸= 0
w(t0 +1) = w(t0)+0.1× (−1+ sgn(net))×x1 = w(t0)+0.1× (−1−1)×x1 = [0.8 −0.6 0 0.7]

step 2 : because (d− sgn(net) ̸= 0) no correction is needed in this step
w(t0 +2) = w(t0 +1)
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Figure 14.8: The perceptron learning rule

step 3 : because (d− sgn(net)) = 2
w(t0 +3) = w(t0 +2)+0.1×2×x3 = [0.6 −0.4 0.1 0.5]

⋄

14.5 Neural processing

NN are currently used to model complex relationships between inputs and outputs or to find patterns in
streams of data. Although NN has the full power of a Universal Turing Machine (some people claim
that the use of irrational values for weights results in a machine with “super-Turing” power), the real
application of this paradigm are limited only to few functions involving specific complex memory func-
tions (please do not use this paradigm to implement a text editor). They are grouped in the following
categories:

• auto-association: the input (even a degraded input pattern) is associated to the closest stored pattern

• hetero-association: the association is made between pais of patterns; distorted input patterns are
accepted

• classification: divides the input patterns into a number of classes; each class is indicated by a
number (can be understood as a special case of hetero-association which returns a number)

• recognition: is a sort of classification with input patterns which do not exactly correspond to any
of the patterns in the set

• generalization: is a sort of interpolation of new data applied to the input.

What is specific for this computational paradigm is that its “program” – the set of weight matrices
generated in the learning process – do not provide explicit information about the functionality of the
net. The content of the weight matrices can not be read and understood as we read and understand the
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program performed by a conventional processor built by a register file, an ALU, .... The representation
of an actual function of a NN defies any pattern based interpretation. Maybe this is the price we must
pay for the complexity of the functions performed by NN.



Chapter 15

Convolutional Neural Network

Convolutional neural networks (CNNs) emerged from the study of the brain’s visual cortex, and they
have been used in image recognition since the 1980s. In the last few years, thanks to the increase in com-
putational power, CNNs have managed to achieve superhuman performance. They are also successful at
other tasks: voice recognition or natural language processing (NLP).

David H. Hubel and Torsten Wiesel performed a series of experiments on cats and monkeys starting
from 1958, giving crucial insights on the structure of the visual cortex. They showed that many neurons
in the visual cortex have a small local receptive field, meaning they react only to visual stimuli located
in a limited region of the visual field. The receptive fields of different neurons may overlap, and together
they tile the whole visual field. The receptive fields provide low-level patterns.

Some neurons have larger receptive fields, and they react to more complex patterns that are combi-
nations of the lower-level patterns. We conclude that the higher-level neurons are based on the outputs
of neighboring lower-level neurons. These studies of the visual cortex inspired the idea of we now call
convolutional neural networks. The structure of this kind of network has fully connected layers with
various activation functions, convolutional layers, and pooling layers.

15.1 Convolutional Layer

Neurons in a convolutional layer are not connected to every single pixel in the input layer but only to
pixels in their receptive fields.

Rather than using neurons to look at the entire input at a time, a convolution layer “scans” the input,
crossing over the entire input with a small, k× k, receptive field.

Let us consider the two-dimension input plan represented in the following matrix:

I =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...
xp1 xp2 . . . xpp

 (15.1)

where xi j are scalars (to make the story short and simple we considered a square matrix). For example,
I represents the 8-bit pixels of one of the RGB plans associated with a color image. The image will be
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scanned looking each time to a k× k receptive field of the following form:

Ri j =


xi j xi( j+1) . . . xi( j+k−1)

x(i+1) j x(i+1)( j+1) . . . x(i+1)( j+k−1)
...

...
. . .

...
x(i+k−1) j x(i+k−1)( j+1) . . . x(i+k−1)( j+k−1)

 (15.2)

Starting from the top left corner of the input plane, the first receptive field is R11. Additional receptive
fields are considered with a stride s horizontally and vertically:

i = 1,(1+ s),(1+2s), . . . ,(1+((p− k)/s)s) = 1,(1+ s),(1+2s), . . . ,(1+ p− k)

j = 1,(1+ s),(1+2s), . . . ,(1+ p− k)

where the stride could take values s= 1, . . . ,k (the stride cannot be bigger than k because the entire image
must be scanned). If needed, the matrix I will be padded with zeroes to have (p− k)/s = integer.

Input Planp

p

k
k

1
2

3

d

p−k
s +1

p−k
s +1

Receptive field

�

*

ci j

Feature map 1
Feature map 2

Feature map 3

Feature map d

Figure 15.1: Convolution.

The neuron is the same during the scan of the entire input plan. This is called a filter and is defined
as a matrix having the same size with the receptive field. For each input plane d filters are defined:

Fy =


f y
11 f y

12 . . . f y
1k

f y
21 f y

22 . . . f y
2k

...
...

. . .
...

f y
k1 f y

k2 . . . f y
kk

 (15.3)

for y = 1,2, . . . ,d. Each filter investigates the input plane “looking” for a specific feature, thus generating
a Feature map (see Figure 15.1). The filter Fy applied to the receptive field Ri j provides cy

i j where:

cy
i j =

k

∑
m=1

k

∑
l=1

f y
lm× x(i+l−1)( j+m−1) (15.4)
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Thus, the application of the filter Fy with stride s provides the matrix:

Cy =


cy

11 cy
12 . . . cy

1(((p−k)/s)+1)
cy

21 cy
22 . . . cy

2(((p−k)/s)+1)
...

...
. . .

...
cy
(((p−k)/s)+1)1 cy

(((p−k)/s)+1)2 . . . cy
(((p−k)/s)+1)(((p−k)/s)+1)

 (15.5)

A convolutional layer consists of the application of d filters on the input plan generating a three
dimensional array of (((p−k)/s)+1)× (((p−k)/s)+1)×d scalars (see Figure 15.1). For each filter a
feature plan is generated with a scalar for every receptive field.

15.2 Pooling layer

The pooling layer is used to reduce the size of a feature plan substituting (usually) a square pooling
window of q×q scalars with only one scalar, which characterizes the entire pooling window. The scalar
could be the maximum value from the pooling window, the sum of the values from the pooling window,
or another value that is able to synthesize the content of the pooling window. The pooling windows are
considered (usually) with a stride q in both directions in order to cover the entire feature plan. A stride
smaller than q is possible, but it is not frequently considered.

Starting from a feature plan provided by a convolution, the pooling operation provides the pooled
plan. Let us consider defining the pooling function with the same input I of p× p scalars. If the pooling
window is q×q and the stride q (the usual case) the resulting plan is a p/q× p/q matrix of scalars Pq.

Input plane

Pooled plane

j

q
q

p

p

p/q

p/q

Figure 15.2: The pooling operation: starting from a p× p matrix, results in a p/q× p/q matrix.

Pq =


y11 y12 . . . y1(p/q)
y21 y22 . . . y2(p/q)
...

...
. . .

...
y(p/q)1 y(p/q)2 . . . y(p/q)(p/q)

 (15.6)

where yi j is computed usually in two ways (see Figure 15.3) for q×q matrices:

• by adding all the q×q values

• by taking the maximum value from the q×q values



160 CHAPTER 15. CONVOLUTIONAL NEURAL NETWORK

3

3

3
2

22
5

5

1

1
1

7
4

4

4
8

Max Pool Add Pool

5 7
5 8

1316
1115

I

P2 P2

Figure 15.3: Examples of pooling for 2× 2 pooling windows and stride 2. The Max Pool operation
takes from the window the maximum value, while the Add Pool operation sums all the values from the
window.

Pooling window of q×q scalars in the matrix I results in a scalar in the Pq matrix (see Figure 15.2)
In current applications, the value of q is 2 or 4. In Figure 15.3 two examples for q = 2 are presented.

One with Max as pooling function, and another with Add as pooling function. Each 2× 2 matrix of
scalars is substituted with their maximum or their sum.

15.3 Softmax layer

The softmax layer is used for multi-category classification, in order to emphasise the most probable
candidate as result. It is applied to a n-component vector V = ⟨x1,x2, . . . ,xn⟩. Its value is determined by
the standard exponential function on each component, divided by the sum of the exponential function
applied to each component, as a normalizing constant. Therefore, the output components sum to 1:

σi(V ) =
exi

∑n
i=1 exi

(15.7)

Results:
Si(V ) = ⟨σ1(V ),σ2(V ), . . . ,σn(V )⟩ (15.8)

In [?] the computation is simplified by avoiding the divide operation and by reducing the domain of
the exponent. The first step is to down-scale the exponentiation:

σi(V ) =
exi/exmax

(∑n
i=1 exi)/exmax

=
exi−xmax

∑n
i=1 exi−xmax

(15.9)

The second step is to compute the natural logarithm:

ln(σi(V )) = (xi− xmax)− ln(
n

∑
i=1

exi−xmax) (15.10)

While the sum in Expression 15.7 is susceptible to overflow because the values generated by expo-
nentiation are high, and the divide operation is resource and time consuming, the Expression 15.9 works
with smaller numbers and avoids the division. Both, ln and exp operations are performed using LUTs.
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15.4 Putting all together

An example of DNN is shown in Figure 15.4, where all the previously presented functions are used to
define a particular network. The network has 5 layers, hence named Lenet-5: three sets of convolution
layers with a combination of average pooling and two fully connected layers. At last, a Softmax classifier
which classifies the images.

Figure 15.4: An example of DNN: Lenet-5 proposed by Yann LeCun [28] [29] [40].

While the first convolutions are used to inspect the input to identify specific local features, the last
fully connected layers provide a global analysis, and the softmax output layer emphasizes the most
probable result. The Lenet-5 has the following characteristics on each of its layers:

input with one channel of 32×32 gray-scale image

first convolution operation with 6 filter of size 5×5. Therefore, the feature map is 28×28×6 because
the padding is not used (the number of channels is equal to the number of filters applied).

average pooling with stride 2 and the size of the feature map is reduced by half. Note that, the number
of channels is intact.

second convolution layer with 16 filters of size 5×5.

average pooling with stride 2 reduces the size of the feature map by half i.e 5×5×16

third convolution layer of size 5×5 with 120 filters leaving the feature map size 1×1×120, i.e., 120
values

first fully connected layer with 84 neurons

second fully connected layer with 10 neurons with activation function softmax, unlike the others layers
which have tanh activation function.

The number of trainable parameters is 60000.
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Chapter 16

Recurrent Neural Network

In this chapter, we are going to discuss about recurrent neural networks (RNN). RNN is a class of neural
networks that can predict, up to a point, the future. They can analyze time series data (for example stock
prices)g. They can anticipate car trajectories and help avoid accidents. They can work on sequences of
arbitrary lengths, rather than on fixed-sized inputs like all the nets we have discussed so far.

16.1 Recurrent Neural Network Structure

16.1.1 Recurrent Neuron

Unlike the neuron used until now, described by

y(t) = ϕ(xT
(t) ·wx +b)

the recurrent neuron is described by [24]:

y(t) = ϕ(xT
(t) ·wx +yT

(t−1) ·wy +b)

because of the loop closed from its output, y, to its input which now is a concatenation between the
current input, x(t), and the output generated in the previous cycle, y(t−1).

16.1.2 Recurrent Layer of Neurons

For a layer of recurrent neurons we write:

Y(t) = ϕ(X(t) ·Wx +Y(t−1) ·Wy +b) = ϕ([X(t) Y(t−1)] ·W+b)

with:

W =

[
Wx

Wy

]
where:

Y(t) is an m×nneurons matrix containing the layer’s outputs at time step t for each instance in the mini-
batch (m is the number of instances in the mini-batch and nneurons is the number of neurons).

X(t) is an m×ninputs matrix containing the inputs for all instances (ninputs is the number of input features).
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Wx is an ninputs× nneurons matrix containing the connection weights for the inputs of the current time
step.

Wy is an nneurons×nneurons matrix containing the connection weights for the outputs of the previous time
step. The weight matrices Wx and Wy are often concatenated into a single weight matrix W of
shape (ninputs +nneurons)×nneurons.

b is a vector of size nneurons containing each neuron’s bias term.

This layer of neurons has the output y(t) depending on the inputs from the moment t = 0. Likewise,
output behavior, with constant input, can predict subsequent behaviors.

16.1.3 Internal State of a Cell

A cell’s internal state at time t is
h(t) = f (h(t−1),xt)

while the output at the step t is
y(t) = g(h(t−1),xt)

which means in each cell there is a memory for the value of h(t).
For a layer of recurrent neurons the internal state is a vector H(t) and evolves triggered by the se-

quence of input vectors, X(0),X(1), . . .X(i), . . . according to:

H(t) = f (H(t−1),Xt)

while the output vector Y(t) evolves triggered by the sequence of input vectors, X(0),X(1), . . .X(i), . . . ac-
cording to:

Y(t) = g(H(t−1),Xt)

generating the sequence of vectors Y(0),Y(1), . . .Y(i), . . ..

16.2 Operation Modes

16.2.1 Sequence of vectors to sequence of vectors

The network is fed by a sequence of vectors and provides a sequence of vectors. For example in predict-
ing time series such as stock prices.

X(0),X(1), . . .X(i)⇒ Y(0),Y(1), . . .Y(i)

16.2.2 Sequence of vectors to vector

The network is fed by a sequence of vectors, for example key words associated to a process. The network
”accumulates” the information and provides a ”score” associated to the process. The outputs of the
network are ignored from t = 0 to t = i−1.

X(0),X(1), . . .X(i)⇒ Y(i)
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16.2.3 Vector to sequence of vectors

The network is triggered by an input vector and is let to evolve a number of cycles generating a descrip-
tion for X(0).

X(0)⇒ Y(0),Y(1), . . .Y(i)

16.2.4 Delayed sequence of vectors to sequence of vectors

The network is triggered as a sequence-to-vector network, performing the operation called encoder,
followed by a vector-to-sequence network, performing the operation called decoder. For example, this
mode is used for translating a sentence from one language to another.

X(0),X(1), . . .X(i)⇒ Y(i+1),Y(i+2), . . .Y(i+ j)

The output is ignored for the first cycles in the process of encoding, then the input is ignored for the
last cycles in the process of decoding.
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Chapter 17

Autoencoders

An autoencoder looks at the inputs, converts them to an efficient internal representation, and then gen-
erates a representation that looks very close to the inputs. An autoencoder is always composed of two
parts: an encoder, which is a recognition network that converts the inputs to an internal representation,
followed by a decoder which is a generative network that converts the internal representation and outputs
it.

The output are often called the reconstruction since the autoencoder tries to reconstruct the input,
and the cost function contains a reconstruction loss that penalizes the model when the reconstructions
are different from the inputs.

The internal representation has a lower dimensionality than the input data (it is 2D instead of 3D).
Thus the autoencoder is said to be undercomplete. An autoencoder cannot simply copy its inputs to
the codings. It must find a way to output a copy of its inputs. Therefore, it is forced to learn the most
important features in the input data and drop the unimportant ones.
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Chapter 18

Reinforcement Learning
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Appendix A

History

The history of computation consists of few independent threads, starting in Antiquity. The history starts
with an imaginary thread, a conceptual thread and a factual thread. Initially, the concepts and the objects
evolved independently. At their mature stage, stimulated by the sad event of World War II, the conceptual
evolution interferes with the physical implementation and the IT era begins. Application-driven history
gradually emerges around 1971 when the conceptual approach reaches a maturity that slows down the
theoretical approaches. In parallel with these threads, along the history, has been manifested and it still
manifests also an imaginary thread. One of the main driving force in any domain is the human will
and imagination. Therefore, we cannot ignore an ever developing imaginary history of the computing
technology and its applications.

A.1 Imaginary history

At the beginning is always an image, a dream.

A.1.1 Antiquity

Hephaestus & Vulcan

Greek god Hephaestus is the god of technology, blacksmiths, craftsmen and artisans. Hephaestus made
a bronze giant called Talos who protected Crete from pirates and invaders. It would patrol around the
island and throw rocks at enemy ships.

A roman counterpart of Hephaestus is Vulcan: made slave-girls of gold for himself.

Pygmalion

Pygmalion was a mythical character who, in search of perfection, sculpted in ivory the image of a perfect
woman with whom he later fell in love and the goddess Aphrodite gave life to the statue.

We are always dealing with the human being’s aspiration to correct the imperfections of nature
through artifacts. Pygmalion seems to be a transhumanist avant la lettre.

A.1.2 Middle Ages

There were several stories and legends in the Middle Ages that involved the creation of artificial beings
or creatures. These stories often reflected the beliefs and fears of medieval society regarding the power
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of human beings to create and control life.

Golem

Golem (Prague, ∼1500) is a metaphor for a mindless entity that serves man under controlled conditions,
but is hostile to him under certain conditions. The earliest known written account of how a golem is
created can be found in Jewish tradition. The most famous golem narrative involves Judah Loew ben
Bezalel, the late 16th-century rabbi of Prague.

Artificial animals and creatures at the court of Emperor Frederick II

There were also stories of artificial animals and creatures, such as the legendary mechanical eagle of
Holy Roman Emperor Frederick II (1194-1250), which was said to be able to fly and to emit various
sounds and cries.

Brazen Head

Another famous example is the story of the Brazen Head, a mechanical or artificial head that was said
to be able to answer any question put to it. According to legend, the head was created by the medieval
scholar and philosopher Roger Bacon (1220-1292), who was said to have used his knowledge of natural
philosophy to imbue the head with the power of speech and reason.

Homunculus

Another example is the legend of the Homunculus, a tiny human-like creature that was said to be cre-
ated by alchemists through the use of special substances and rituals. The Homunculus was believed to
possess magical powers and to be able to perform various tasks, including the transmutation of metals
and the creation of life. Paracelsus (1493–1541) is credited with the first mention of Homunculus in De
homunculis (c. 1529–1532), and De natura rerum (1537)

Overall, these stories and legends reflected the fascination and curiosity of medieval society with the
idea of artificial life and the power of human beings to create and control it.

A.1.3 Modernity

Frankenstein‘s Creature

Mary Shelley (1797-1851, wife of the poet Percy Shelley and daughter of Mary Wollstonecraft a found-
ing figure of feminism) published in 1818 the novel Frankenstein about a brilliant but unorthodox scien-
tist, Dr. Victor Frankenstein, who rejects the artificial man he created; Creature escapes and later swears
revenge.

Offenbach’s Olympia

Jacques Offenbach (1819-1880) in his The Tales of Hoffmann opera finished in 1880 introduced the
character Olympia, a mechanical or an animatronical doll.
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Karel Capek’s Robota

Robot (robota in Russian) is coined by Karel Capek 1920 R.U.R. is a 1920 science fiction play by
the Czech writer Karel Čapek. R.U.R. stands for Rossumovi Univerzálnı́ Roboti (Rossum’s Universal
Robots). The English phrase ”Rossum’s Universal Robots” has been used as a subtitle.

Fritz Lang’s Metropolis

In 1927, German film maker Fritz Lang made the science fiction film Metropolis. The script contains the
construction of a robot that acquires perfect human appearance and behavior. The artificial product has
the ability to disrupt the behavior of the masses. It’s far beyond what was imagined for Capek’s robot.

A.1.4 Contemporary

Scary Science Fiction (SF) scenarios about Artificial Intelligence (AI) [44].
Max Tegmark: Life 1.0 referring to biological origins, Life 2.0 referring to cultural developments in

humanity, and Life 3.0 referring to the technological age of humans.
We must make distinctions between the three main human brain behaviors: Spiritually – Imaginary

– Rationally. AI refers mainly to the third.

A.2 Conceptual history

A.2.1 Binary Arithmetic to the Chinese

In Discourse on the Natural Theology of the Chinese, Gottfried Wilhelm von Leibniz (1646-1716) men-
tioned that the 64 hexagrams of I Ching (∼1000 BC) represent the binary arithmetic used a few thousand
years ago in China. Leibnitz consider the mythical King and philosopher Fuxi, who is believed to have
lived more than 4000 years ago, as the inventor of binary notation.

111

Lake, joy

000

010

Thunder, movement

101

100

110

Heaven, creativity

Earth, receptivity

Water, dabger

011

001

Fire, clarity

Binar Trigram

Mountain, stillness

Wind/wood, flexibility

Meaning

Figure A.1: Figure of the Eight Cova attributed to Fuxi.
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Fuxi is considered the originator of the methods of divination that were passed down through the
ages before the I Ching.

Figure A.2: Guo Xu (1456-1529) depicts Fuxi as he looks at the binary symbols he invented (dated
1503).

A.2.2 Programming & Algorithms in Babylon [49]

Floating-point notation

In Babylonia the base-60 number system is introduced. The sequels of this system can be found in the
60 minutes of the hour, the 60 degrees of the angles of the equilateral triangle, ...

Instructions to describe to compute

Descriptions were found on the cuneiform tablets in the form of instructions for making certain calcula-
tions.

A.2.3 Epimenides of Crete (late 7th century - 6th century BC

Karl Jaspers (1883–1969) introduced the concept of an Axial Age in his book The Origin and Goal of
History, published in 1949. It refers to broad changes in religious and philosophical thought that occurred
in a variety of locations from about the 8th to the 3rd century BCE. During this period new ways of think-
ing emerged in Persia, India, China, Greece and Roman Empire, in a singular synchronous development,
without any effective direct cultural contact between all of the Eurasian cultures. Jaspers emphasized
prominent thinkers from this period who had a profound influence on future sciences, philosophies and
religions.

In this Axial Age, around 7th or 6th century BC, Epimenides of Cnossos (Crete) was a semi-mythical
Greek seer and philosopher-poet which started the conceptual development leading to the contemporary
computer science. In one day he uttered a sentence which troubled the inquisitive minds from everywhere
for the next two and half millennia:

“Cretans, always liars.”
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The sentence is equivalent with “I lie”, and is undecidable: its truth value can not be decided.

A.2.4 Liar’s paradox in Middle Ages

In the Middle Ages, the paradox was studied and commented on by many philosophers and theologians,
who tried to resolve the contradiction it presents.

Anicius Manlius Severinus Boethius (∼480-524)

Boethius is one of the earliest recorded commentaries on the paradox in the Middle Ages. He is a
Roman philosopher who lived in the 6th century CE. In his work ”Consolation of Philosophy,” Boethius
discusses the paradox and argues that it arises from a confusion of terms and concepts.

Peter Abelard (1079-1142)

In the 12th century, the paradox was further discussed by the French philosopher and theologian Peter
Abelard, who used it to criticize the doctrine of divine omnipotence. Abelard argued that the paradox
shows that there are limits to what even an omnipotent God can do, since he cannot make a statement
that is both true and false at the same time.

William of Ockham (1285-1347)

In the 14th century, the English logician William of Ockham used the paradox to argue against the idea
of universal propositions. Ockham argued that the paradox shows that there are no universal propositions
that can be true or false in all cases, since there are some statements that cannot be consistently evaluated
as true or false.

Overall, the paradox of the liar was a topic of interest and debate among medieval philosophers and
theologians, who used it to explore the limits of language, logic, and the nature of truth.

A.2.5 Mohammed Al-Khoresmi (780-850)

Active in the city of Baghdad, not far from the ancient city of Babylon, Al-Khoresmi works as a court
mathematician around the year 800.

Algebra

His work Kitâ al-jabr wa’l-muqabâla gives the name to the mathematical discipline algebra.

Decimal notation

The lost work, translated into Latin under the name Algorithmi de numero Indiorum introduces the posi-
tional number system we use today: a base-10 system including a symbol for zero.

Algorithm

Al-Khoresmi’s name also gave the currently used name, that of algorithm, for the procedure associated
with a sequence of operations that describes a computation.
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A.2.6 Gottfried Wilhelm von Leibniz

Binary representation

In 1703, Leibniz published in the Mémories de l‘Académie Royale des Sciences his essay “Explication
de l‘arithmétique binaire, qui se sert des seules caractères 0 & 1; avec des remarques sur son utilité, et
sur ce qu‘elle donne de sens des anciennes figures chinoises de Fohy” [30] where he explains how to
perform addition, subtraction, multiplication and division using the binary representation for numbers.

Calculus ratiocinator

The Calculus ratiocinator is a a concept introduced by Leibniz related to characteristica universalis, an
universal conceptual language. This concept could be related to both the hardware and software aspects
of the modern digital computer.

A.2.7 George Boole

In 1847 George Boole (1815-1864) published Mathematical Analysis of Logic and in 1854 An Investiga-
tion into the Laws of Thought, on which are Founded the Mathematical Theories of Logic and Probabil-
ities which underpins what we now call Boolean algebra, a successful attempt to formalize Aristotelian
logic. It is thus made available to innovators an instrument that will be used to substantiate the science
of calculus as a decision tool in the first place, and only through a second approach as a calculation tool.
Indeed, computation is mainly about deciding. Numerical computation comes only as a consequence. At
first it was the true/false alternative, and only then the 0/1 alternative.

A.2.8 1900-1928: David Hilbert

David Hilbert (1862-1943) one of the most influential and universal mathematicians of the 19th and early
20th centuries.

At the International Congress of Mathematicians held in Bologna, Hilbert revisited to the second of
the 23 problems posed in his 1900 paper Mathematische Probleme [21], asking [23]:

1. Was its set of rules complete, so that any statement could be proved (or disproved) using only the
rules of the system?

2. Was it consistent, so that no statement could be proved true and also proved false?

3. Was there some procedure that could determine whether a particular statement was provable, rather
than allowing the possibility that some statements (such as enduring math riddles like Fermat’s last
theorem, Goldbach’s conjecture, or the Collatz conjecture) were destined to remain in undecidable
limbo?

Hilbert thought that the answer to the first two questions was yes, making the third one moot [23].
In mathematics and computer science, the Entscheidungsproblem (German for “decision problem”)

is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928 [22]. By the completeness
theorem of first-order logic, a statement is universally valid if and only if it can be deduced from the
axioms, so the Entscheidungsproblem can also be viewed as asking for an algorithm to decide whether a
given statement is provable from the axioms using the rules of logic.

As late as 1930, Hilbert believed that there would be no such thing as an unsolvable problem.
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The Entscheidungsproblem is related to Hilbert’s tenth problem (from Hilbert’s address of 1900 to the
International Congress of Mathematicians in Paris [21]), which asks for an algorithm to decide whether
Diophantine equations have a solution. The non-existence of such an algorithm, established by Yuri
Matiyasevich in 1970, also implies a negative answer to the Entscheidungsproblem.

Hilbert’s address of 1900 to the International Congress of Mathematicians in Paris is perhaps the most
influential speech ever given to mathematicians, given by a mathematician, or given about mathematics.
In it, Hilbert outlined 23 major mathematical problems to be studied in the coming century.

A.2.9 1931: Kurt Gödel

Kurt Friedrich Gödel (1906-1978) The logician Gödel published his two incompleteness theorems in
1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna. The first
incompleteness theorem states that for any self-consistent recursive axiomatic system powerful enough to
describe the arithmetic of the natural numbers (for example Peano arithmetic), there are true propositions
about the naturals that cannot be proved from the axioms. To prove this theorem, Gödel developed a
technique now known as Gödel numbering, which codes formal expressions as natural numbers.

The Austrian-born logician Kurt Gödel polished off the first two Hilbert’s questions with unexpected
answers: no and no. In his “incompleteness theorem”, he showed that there existed statements that could
be neither proved nor disproved.

A.2.10 1936: Church – Kleene – Post – Turing

What a synchronicity! Indeed, the logician Gödel’s approach triggered four mathematicians to provide
independently mathematical versions to the logical challenge raised by the Entscheidungsproblem (the
third of Hilbert’s questions).

Alonzo Church

Alonzo Church (1903-1995): The lambda calculus emerged in his 1936 paper showing the unsolvability
of the Entscheidungsproblem. This result preceded Alan Turing’s work on the halting problem, which
also demonstrated the existence of a problem unsolvable by mechanical means. Church and Turing
then showed that the lambda calculus and the Turing machine used in Turing’s halting problem were
equivalent in capabilities, and subsequently demonstrated a variety of alternative “mechanical processes
for computation”. This resulted in the Church–Turing thesis.

The lambda calculus influenced the design of the LISP programming language and functional pro-
gramming languages in general.

Stephen Kleene

Stephen Cole Kleene (1909-1994) is best known as a founder of the branch of mathematical logic known
as recursion theory, which subsequently helped to provide the foundations of theoretical computer sci-
ence.

Emil Post

Emil Leon Post (1897-1957) developed in 1936, independently of Alan Turing, a mathematical model
of computation that was essentially equivalent to the Turing machine model. This model is sometimes
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called ”Post’s machine” or a Post–Turing machine.

Alan Turing

“When the great Cambridge math professor Max Newman taught Turing about Hilbert’s questions, the
way he expressed the Entscheidungsproblem was this: Is there a “mechanical process” that can be used
to determine whether a particular logical statement is provable?” [23]

Alan Mathison Turing (1912-1954) in 1936 published his paper ”On Computable Numbers, with an
Application to the Entscheidungsproblem”. It was published in the Proceedings of the London Mathe-
matical Society journal in two parts, the first on 30 November and the second on 23 December. In this
paper, Turing reformulated Kurt Gödel’s 1931 results on the limits of proof and computation, replacing
Gödel’s universal arithmetic-based formal language with the formal and simple hypothetical devices that
became known as Turing machines. The Entscheidungsproblem (decision problem) was originally posed
by German mathematician David Hilbert in 1928. Turing proved that his ”universal computing machine”
would be capable of performing any conceivable mathematical computation if it were representable as
an algorithm. He went on to prove that there was no solution to the decision problem by first showing
that the halting problem for Turing machines is undecidable: It is not possible to decide algorithmically
whether a Turing machine will ever halt.

A.2.11 1940s: abstract models of computation

The transition from a mathematical model of computation to a realizable physical structure was enabled
by the abstract models of computers. Purely mathematical models contain descriptions that assume con-
cepts that have no physical counterpart, such as infinity. For this reason abstract models were necessary.

1943: Neural nets

Warren S. McCulloch, Walter H. Pitts introduced the neural network model for computation [38].

1944: Harvard abstract model

The term originated from the Harvard Mark I, or IBM Automatic Sequence Controlled Calculator
(ASCC), an electromechanical computer, which stored instructions on punched tape and data in electro-
mechanical counters.

1945: von Neumann abstract model

John von Neumann wrote up a description titled First Draft of a Report on the EDVAC [46] based on the
work of Eckert and Mauchly. It was unfinished when his colleague Herman Goldstine circulated it, and
bore only von Neumann’s name (to the consternation of Eckert and Mauchly).

A.3 Factual history

A.3.1 Antikythera mechanism

The Antikythera mechanism is believed to be designed to predict eclipses. It has been designed and
constructed by Greeks and is dated to about 200 BC to 80 BC. It is a clockwork mechanism composed
of more than 30 engaged bronze gears.
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A.3.2 Hero of Alexandria

Hero of Alexandria (c.10-c.70) was the first to build a vending machine; when a coin was introduced via
a slot on the top of the machine, a set amount of holy water was dispensed.

Hero described the construction of the aeolipile (a version of which is known as Hero’s engine) which
was a rocket-like reaction engine and the first-recorded steam engine

A.3.3 Gerbert of Aurillac

In 996 A.D., Gerbert of Aurillac (Pope Sylvester II from 999) (946-1003) invented the first weight-driven
mechanical pendulum clock at a monastery in Magdeburg in Germany. The clock’s mechanism would
ring bells at regular intervals throughout the day to call his fellow monks to prayer.

Gerbert took the idea of the abacus calculator from a Spanish Arab. But the calculations with his
abacus were extremely difficult, because the people of his day used only Roman numerals.

A.3.4 Wilhelm Schickard

Johannes Kepler, claimed that the drawings of a calculating clock, predating the public release of Pascal’s
calculator by twenty years, had been discovered in two unknown letters written by Wilhelm Schickard
(1592-1635) to him in 1623 and 1624.

A.3.5 Blaise Pascal

Pascaline: Blaise Pascal (1623-1662) was led to develop a calculator by the laborious arithmetical calcu-
lations required by his father’s work as the supervisor of taxes in Rouen. He designed the machine to add
and subtract two numbers directly and to perform multiplication and division through repeated addition
or subtraction.

A.3.6 Gottfried Wilhelm von Leibniz

In Machina arithmetica in qua non additio tantum et subtractio sed et multiplicatio nullo, diviso vero
paene nullo animi labore peragantur, written in 1685, Gottfried Wilhelm (von) Leibniz (1646-1716)
described an arithmetic machine he had invented that was made by linking two separate machines, one
to perform additions/subtractions and one for multiplications/divisions.

A.3.7 Joseph Marie Charles dit Jacquard

The Joseph Jacquard (1752-1834) Loom is a mechanical loom that uses pasteboard cards with punched
holes, each card corresponding to one row of the design. Multiple rows of holes are punched in the cards
and the many cards that compose the design of the textile are strung together in order.

A.3.8 Charles Babbage

Difference engine

Charles Babbage (1791-1871) began in 1822 with what he called the difference engine, made to compute
values of polynomial functions. It was created to calculate a series of values automatically. By using the
method of finite differences, it was possible to avoid the need for multiplication and division.
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Analytical Engine

The Analytical Engine marks the transition from mechanised arithmetic to fully-fledged general purpose
computation. It is largely on it that Babbage’s standing as computer pioneer rests.

The major innovation was that the Analytical Engine was to be programmed using punched cards: the
Engine was intended to use loops of Jacquard’s punched cards to control a mechanical calculator, which
could use as input the results of preceding computations.[157][158] The machine was also intended to
employ several features subsequently used in modern computers, including sequential control, branching
and looping. It would have been the first mechanical device to be, in principle, Turing-complete.

A.3.9 Ada Byron, Countess of Lovelace

Augusta Ada King, Countess of Lovelace (née Byron; 1815–1852) chiefly known for her work on Charles
Babbage’s proposed mechanical general-purpose computer, the Analytical Engine. She was the first to
recognise that the machine had applications beyond pure calculation, and published the first algorithm
intended to be carried out by such a machine. As a result, she is sometimes regarded as the first to
recognise the full potential of a ”computing machine” and one of the first computer programmers.

A.3.10 Herman Hollerith

Herman Hollerith (1860-1929) developed an electromechanical tabulating machine for punched cards to
assist in summarizing information and, later, in accounting. His invention of the punched card tabulating
machine, patented in 1889, marks the beginning of the era of semiautomatic data processing systems,
and his concept dominated that landscape for nearly a century. He was the founder of the Tabulating
Machine Company that was amalgamated (via stock acquisition) in 1911 with three other companies
to form a fifth company, the Computing-Tabulating-Recording Company, which was renamed IBM in
1924. Hollerith is regarded as one of the seminal figures in the development of data processing.

A.3.11 Claude Shannon & Thomas Flowers

Implementing electro-mechanically Boolean functions

Claude Elwood Shannon (1916-2001) known as “the father of information theory”. Shannon is noted for
having founded information theory with a landmark paper, A Mathematical Theory of Communication,
that he published in 1948.

He is also well known for founding digital circuit design theory in 1937, when -— as a 21-year-
old master’s degree student at the Massachusetts Institute of Technology (MIT) -— he wrote his thesis
demonstrating that electrical applications of Boolean algebra could construct any logical numerical rela-
tionship.

Implementing electronically Boolean functions

Thomas Harold Flowers (1905-1998). From 1935 onward, he explored the use of electronics for tele-
phone exchanges and by 1939, he was convinced that an all-electronic system was possible. A back-
ground in switching electronics would prove crucial for his computer designs [13].
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A.4 Merged history

The triad Math & Logic – War – Technology (Ethos – Pathos – Logos) provides the context of the
emergence of the Information Technology (IT) era.

WWII made the turbulent transition toward IT industry.

A.4.1 Konrad Zuse (1910-1995)

Z1 to Z4 electro-mechanical first programmable computers

Plankalkül first high-level programming language

A.4.2 Colossus

Colossus was a set of computers developed by British code-breakers in the years 1943–1945 to help in the
cryptanalysis of the Lorenz cipher. Colossus used thermionic valves (vacuum tubes) to perform Boolean
and counting operations. Colossus is thus regarded as the world’s first programmable, electronic, digital
computer, although it was programmed by switches and plugs and not by a stored program.

A Colossus computer was thus not a fully Turing complete machine. The notion of a computer as
a general purpose machine — that is, as more than a calculator devoted to solving difficult but specific
problems — did not become prominent until after World War II.

A.4.3 ENIAC – EDVAC

ENIAC

Electronic Numerical Integrator and Computer was the first electronic general-purpose computer. It was
Turing-complete, digital and able to solve “a large class of numerical problems” through reprogramming.

ENIAC was completed in 1945 and first put to work for practical purposes on December 10, 1945.
ENIAC was designed by John Mauchly and J. Presper Eckert of the University of Pennsylvania, U.S.

By the end of its operation in 1956, ENIAC contained 20,000 vacuum tubes; 7,200 crystal diodes;
1,500 relays; 70,000 resistors; 10,000 capacitors; and approximately 5,000,000 hand-soldered joints. It
weighed more than 27 t, was roughly 2.4m×0.9m×30m in size, occupied 167m2 and consumed 150kW
of electricity.

EDVAC

Electronic Discrete Variable Automatic Computer: unlike its predecessor, the ENIAC, it was binary
rather than decimal, and was designed to be a stored-program computer. Functionally, EDVAC was a
binary serial computer with automatic addition, subtraction, multiplication, programmed division and au-
tomatic checking with an ultrasonic serial memory[1] capacity of 1,000 34-bit words. EDVAC’s average
addition time was 864 microseconds and its average multiplication time was 2,900 microseconds.

ENIAC inventors John Mauchly and J. Presper Eckert proposed EDVAC’s construction in August
1944, and design work for EDVAC commenced before ENIAC was fully operational. The design would
implement a number of important architectural and logical improvements conceived during the ENIAC’s
construction and would incorporate a high-speed serial-access memory. Like the ENIAC, the EDVAC
was built for the U.S. Army’s Ballistics Research Laboratory at the Aberdeen Proving Ground by the
University of Pennsylvania’s Moore School of Electrical Engineering. Eckert and Mauchly and the other
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ENIAC designers were joined by John von Neumann in a consulting role; von Neumann summarized
and discussed logical design developments in the 1945 First Draft of a Report on the EDVAC.

A.4.4 Princeton computer

The IAS machine was the first electronic computer to be built at the Institute for Advanced Study (IAS)
in Princeton, New Jersey. It is sometimes called the von Neumann machine, since the paper describing
its design was edited by John von Neumann, a mathematics professor at both Princeton University and
IAS. The computer was built from late 1945 until 1951 under his direction.

The IAS machine was a binary computer with a 40-bit word, storing two 20-bit instructions in each
word. The memory was 1,024 words (5.1 kilobytes). Negative numbers were represented in “two’s
complement” format. It had two general-purpose registers available: the Accumulator (AC) and Multi-
plier/Quotient (MQ). It used 1,700 vacuum tubes. The memory was originally designed for about 2,300
RCA Selectron vacuum tubes.

It weighed about 1,000 pounds (450 kg).[11]
It was an asynchronous machine, meaning that there was no central clock regulating the timing of

the instructions. One instruction started executing when the previous one finished. The addition time
was 62 microseconds and the multiplication time was 713 microseconds.

A.4.5 IBM entered the scene

The IBM 701 Electronic Data Processing Machine, known as the Defense Calculator while in develop-
ment, was IBM’s first commercial scientific computer, which was announced to the public on April 29,
1952. It was designed by Nathaniel Rochester and based on the IAS machine at Princeton.

A.4.6 John Backus: first involvement

John Warner Backus (1924-2007): directed the team that invented and implemented FORTRAN, the first
widely used high-level programming language, and was the inventor of the Backus–Naur form (BNF), a
widely used notation to define formal language syntax.

A.4.7 LISP language & Artificial Intelligence

LISP (LISt Processor) language is the language of AI. Lisp was originally created influenced by the
notation of Alonzo Church’s lambda calculus. Data structure and source code are lists in LISP. John
McCarthy began developing Lisp in 1958 while he was at the Massachusetts Institute of Technology.

Alan Turing was the first to conduct substantial research in the field that he called artificial intelli-
gence machine intelligence. The field went through multiple cycles of optimism followed by disappoint-
ment and loss of funding.

There have been two well-known ”AI winters” in the history of artificial intelligence:
First AI Winter (1970s-1980s): The term ”AI winter” was first coined during this period. It occurred

due to overhyped expectations and unfulfilled promises of AI capabilities. Funding for AI research was
reduced as progress did not meet the ambitious goals set earlier.

Second AI Winter (late 1980s-early 1990s): Another AI winter followed as a result of similar is-
sues—high expectations that were not met, coupled with limited progress in AI research. Funding de-
creased, and interest in AI waned during this time.



A.4. MERGED HISTORY 185

It’s worth noting that while these periods were challenging for the field of AI, they also led to valuable
lessons and paved the way for more realistic expectations and sustainable progress in subsequent years.
The field has seen a resurgence and significant advancements since the late 1990s, and AI is now a rapidly
evolving and influential area of technology. [ChatGPT]

A.4.8 Smalltalk language

A.4.9 Prolog language

A.4.10 Pyton language

A.4.11 Computer architecture

Brooks went on to help develop the IBM System/360 (now called the IBM zSeries) line of computers, in
which “architecture” became a noun defining “what the user needs to know”.

In [?] [5] the concept of computer architecture (low level machine model) is introduced to allow
independent evolution for the two different aspects of computer design, which have different rate of evo-
lution: software and hardware; thus, there are now on the market few stable and successful architectures,
such as x86, ARM, PowerPC.

A.4.12 John Backus: second involvement

He later did research into the function-level programming paradigm, presenting his findings in his in-
fluential 1977 Turing Award lecture “Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs”

A.4.13 Parallel computing enter the scene on the back door

While for mono-core computing there are the following stages [?]:

• 1936 – mathematical computational models: four equivalent models are published [?] [12] [26]
[36] (all reprinted in [?]), out of which the Turing Machine offered the most expressive and tech-
nologically appropriate suggestion for future developments leading eventually to the mono-core,
sequential computing

• 1944-45 – abstract machine models: the MARK 1 computer, built by IBM for Harvard Univer-
sity, consecrated the Harvard abstract model, while the von Neumann’s report [46] introduced
the von Neumann abstract model; these two concepts backed the RAM (random access machine)
abstract model used to evaluate algorithms for sequential machines

• 1952 – manufacturing in quantity: IBM launched IBM 701, the first large-scale electronic com-
puter

• late 1953 – high-level programming language: John W. Backus submitted a proposal to his
superiors at IBM to develop a more practical alternative to assembly language for programming
their IBM 704 mainframe computer; a draft specification for “The IBM Mathematical Formula
Translating System” was completed by November 1954; the first manual for FORTRAN appeared
in October 1956; with the first FORTRAN compiler delivered in April 1957.
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• 1964 – computer architecture: in [5] the concept of computer architecture (low level machine
model) is introduced to allow the independent development for the two different aspects of com-
puter design which have different rate of evolution: software and hardware; thus, there are now on
the market few stable and successful architectures, such as x86, ARM, . . ..

for parallel computing we are faced with a completely distorted evolution; let us see its first stages:

• 1962 – manufacturing in quantity: the first symmetrical MIMD engine is introduced on the
computer market by Burroughs

• 1965 – architectural issues: Edsger W. Dijkstra formulates in [15] the first concerns about specific
parallel programming issues

• 1974-76 – abstract machine models: proposals of the first abstract models (bit vector models in
[39] and PRAM models in [18], [20]) start to come in after almost two decades of non-systematic
experiments (started in the late 1950) and the too early market production

• ? – mathematical computation model: no one yet really considered it, regrettably confused with
abstract machine models, although it is there waiting for us (see Kleene’s mathematical model for
computation [26]).

A.4.14 RISC

The term RISC (Reduction Instruction Set Computer) was coined by David Patterson. It means proces-
sors with an architecture characterized by:

load-store mechanism : divides instructions into two categories: ALU operations between registers,
and memory access as simple load and store between memory and registers instead complex multi-
indirected memory access modes

one-word instructions : instructions are coded in on word; even when an immediate value is involved,
it is taken into account that in most cases small values are involved that can be encoded with a
small number of bits making it unnecessary to add an additional word to specify the value.

one-cycle execution : using a Harvard abstract model, a load-store mechanism and one-word instruc-
tions, it is possible to design a processor which execute each instruction in one clock cycle

only most frequent instructions : because the statistics compiled on large program databases showed
an uneven distribution of the use of the instructions in the established ISAs, it was decided to keep
in the ISA only the frequently used instructions, provided that the omitted ones could be made by
a sequence of those maintained

which will lead to:

The goal of any instruction format should be: 1. simple decode, 2. simple decode, and 3.
simple decode. Any attempts at improved code density at the expense of CPU performance
should be ridiculed at every opportunity. [48]

The resulting reductions in complexity and size have increased the number of registers, increased clock
frequency and reduced power consumption.

The first implementations:
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IBM 801 : based on a statistical study launched in the mid-1970s that highlighted the need to increase
the number of registries and the possibility of removing from current ISAs a significant number of
complex instructions that compilers ”ignored”.

Berkeley RISC : when David Patterson was sent in 1979 on a sabbatical from University of California,
Berkeley to help DEC to improve the VAX microcode, he discovered that if the microcode was
removed, the programs would run faster. The microcode was responsible for interpreting the
complex instructions. Then, removing the complex instructions from ISA becomes a solution
for improving processor’s performance.

MIPS : stands for Microprocessor without Interlocked Pipeline Stages, a project which came from a
graduate course of John L. Hennessy At Stanfort University; it produced a functioning system in
1983.

Since 2010 a new open source ISA, RISC-V, has been under development at the University of Cali-
fornia, Berkeley.

A.4.15 FPGA & Adaptive Computer Acceleration Platform

1985 is considered the year of the birth of FPGA (Field-Programmable Gate Array) technology with the
founding of Xilinx, although in 1983 the founding of Altera led to the first forms of this technology.

ACAP (Adaptive Computer Acceleration Platform) is the technology that naturally emerges from the
FPGA approach by the fact that users of the last decades have expressed preferences that have outlined
specific structures that can be implemented as standardizable IPs.

An ACAP is a heterogeneous, hardware adaptable platform that is built from the ground up
to be fully software programmable. An ACAP is fundamentally different from any multi-core
architecture in that it provides hardware programmability but the developer does not have
to understand any of the hardware detail. [4]

A.5 User-driven evolution: Computation as General-Purpose Technology

A.5.1 Microsoft’s Surface

There comes a time when users begin to define and produce computing equipment for their own use. A
significant example is Microsoft’s Surface series of touchscreen-based personal computers, tablets and
interactive whiteboards.

Microsoft first announced Surface at an event on June 18, 2012, as the first major initiative by Mi-
crosoft to integrate its Windows operating system with its own hardware, and is the first PC designed
and distributed solely by Microsoft.

A.5.2 Google’s Tensor Processing Unit

In 2015, a step forward is taken: an end-user begins to define and produce ICs for his own use. Google
began producing and using Tensor Processing Unit (TPU) as an AI accelerator ASIC developed specifi-
cally for neural network machine learning, particularly using Google’s own TensorFlow software.

From 2018, the circuits from the TPU family are also made available to other users. We are witness-
ing a mechanism by which the new technology is developed by an end-user and then made available to
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other users. The development of general purpose machines (processors, computers) that are made avail-
able to different users is replaced by a process in a reverse way, users of devices dedicated to a particular
field promote products that are disseminated as general purpose products. We can also exemplify by
GPUs used as GPGPU. Note the oxymoronic formulation: General-Purpose Graphic Processing Unit.

A.5.3 Apple’s M1

M1 = (8-core ARM CPU + GPU + Neural Engine + ... + Cache) + DRAM: a first example of Accelerator-
Level Parallelism.

”So the physical RAM modules are still separate entities, but they are sitting on the same
green substrate as the processor. ... Apple calls its approach a “Unified Memory Architec-
ture” (UMA).”

A.5.4 Tesla’s Artificial Intelligence & Autopilot

FSD Chip Build AI inference chips to run our Full Self-Driving software, considering every small archi-
tectural and micro-architectural improvement while squeezing maximum silicon performance-per-watt.

A.5.5 Hadoop & Big-Data

Hadoop is an open source processing system that manages distributed data processing and storage for
Big Data applications for scalable clusters. It manages an ecosystem of Big Data applications that are
used to support advanced data mining and machine learning.

A.5.6 The Next Target: Artificial General Intelligence

AGI may be the ability of computers to solve problems in a way that human beings do, using intuition
and common sense in addition to formal skills.

Current AI techniques can be considered ”narrow AI” or ”weak AI” because they refer to well-
defined areas of competence, areas in which they currently exceed human performance.

AGI is a goal that is not only difficult to achieve, but, first of all, very difficult to define.
Artificial General Intelligence (AGI)

A.6 Application-driven history

A significant turning point came in 1971, when Intel launched the first successful silicon memory (1103)
and the first one-chip microprocessor (4004). In the same year, e-mail (@Mail) and the wireless network
appeared. It is the moment when the evolution of the field of computing begins to be more and more
marked by applications oriented towards the big market. The computer and its applications, until then
oriented towards government institutions, universities or corporate space, are beginning to be oriented
towards the consumer market. The main consequence will be, from that moment, the evolution under the
pressure of the criteria imposed by the market.

Is it a coincidence that one last important theoretical issue – NP-completeness – is being addressed
this year? An era of theoretical research seems to be coming to an end, and an era of applied develop-
ments is beginning.

It is worth mentioning some of the stages completed in the last half century [19]:
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1972: HP-35 pocket calculator destroyed the market for the slide rules. HP-35 because it had 35 keys.
Used to run at 200 KHz programs no longer then 768 instructions.

1973: first cell phone call in April 3, on Sixth Avenue in New-York City between Fifty-Third and Fifty
Four Streets.

1973: Alto the first personal computer developed by Xerox equipped with a graphic-user interface.

1975: Adventure the first text-based simulation used as a game.

1983: 3-D printing is an additive manufacturing technology which fabricate objects in the field starting
from raw materials.

1983: first laptop comes preloaded with a rudimentary word processor and a basic spreadsheet pro-
gram. It comes on the market under the specifications of RadioShack® TRS-80 Model 100 equiped
with an 8-bit Intel 80C85 microprocessor. The operating system, written almost entirely by Bill
Gates, was loaded in a 32 KB of ROM.

1983: MIDI computer music interface helped to put music creation into the hands of more users to
generate great music without a professional performer because the computer played the music.
(MIDI stands for Musical Instrument Digital Interface.)

1984: text-to-speech technology commoditized by DEC by its standalone appliance DECtalk

1984: virtual reality a term coined by Jaron Lanier as being the outcome of running programs written
in Virtual Programming Language on specific hardware.

1984: Verilog is a Hardware Description Language used by designers to describe, simulate, and synthe-
size digital systems.

1985: desktop publishing allowed anybody to generate high quality documents with a tight control on
fonts and graphics.

1988: CD-ROM stands for Compact Disc - Read-Only Memory; it is used to store music, video and
software.

1989: www which stands for world wide web, transformed internet connection into a dominating tech-
nology connecting virtually every person on the planet.

1990: GPS which stands for Global Positioning System, is a consumer navigation system based on old
radio waves technologies.

1992: Boston Dynamics a robotics company maker of biped and quadruped robots capable of traversing
rough landscapes.

1992: First mass-market web browser called Mosaic changed the way the www is accessed from a
professional procedure to an easy way which does not imply technical expertise.

1993: Apple Newton electronic organizer; handwriting recognizer based on Arcon RISC MAchine
(ARM) a low-power computationally powerful controller.
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1995: E-Commerce becomes possible as soon as the most important ingredient - security - has been im-
plemented. Netscape Secure Socket Layer allowed consumers to securely send credit card numbers
over the Internet.

1997: Deep-Blue beat world chess campion Garry Kasparov

1997: E-Ink electronic paper display (EPD) is a reflective display that is visible in direct sunlight.

1998: Google based on an algorithm to rank organizes the pages on WWW. The algorithm takes into
account the number of links the quality of pages. A page is important if it is pointed from a big
numbers of important pages. In 2006 Google becomes a verb.

2001: Wikipedia is the result of a mass-collaborative effort of organizing knowledge as a continuous
process which may containing errors, mistakes, biased attitude, but being open to self-correcting
mechanisms, till the end it is able to provide a very useful image of the current stage of knowledge.

2004: Facebook is a (too) free communication platform. Provides a solution to the desire to connect
with and learn about other people.

2007: iPhone invented by Apple puts together telephony, messaging, internet access, music, color
screen, touch-based interface. The main big things associated with iPhone: specialized programs
called apps.

2008: Blockchain a collection of transactions – blocks – managed in the most possible secure mode thus
allowing the development of the criptocoin environment and many other distributed applications.

2022: chatbot the chat robot chatGPT where GPT stands for generative pre-trained transformer .

A.7 Programming paradigms

Programming languages:

• low level languages

– machine languages: uses the instructions’ numeric values of instructions directly

– assembly languages: generate executable machine code from assembly code where for each
statement there is a machine instruction; uses mnemonic codes to refer to machine code
instructions

• high level languages

– imperative languages: generate explicit statements about how the machine state changes

* FORTRAN: scientific applications (1953-1957)

* ALGOL (1958)

* COBOL: business applications (1959)

* Basic

* Pascal

* C
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* ...

– declarative languages: describe what a computation should perform, without specifying de-
tailed state changes

* functional languages: use evaluation of mathematical functions instead of explicit state
change (Lisp (1958), Clojure (2007))

* logic languages: involves explicit mathematical logic for programming (Prolog)

– multi-paradigm programming languages: programming languages that supports more than
one programming paradigm.

* Python: supports multiple programming paradigms, including procedural, object-
oriented, and functional programming

* ...

• library of functions

– BLAS

– Eigen

– Tensorflow

– ONNX (Open Neural Network Exchange) is an open format built to represent machine learn-
ing models. ONNX defines a common set of operators - the building blocks of machine
learning and deep learning models

– ...

A.8 The Qubit

Quantum computing is a type of computation based on the collective properties of quantum states, such
as superposition, interference, and entanglement, to perform computation. The elementary devices that
perform quantum computations are qubits organized in what known as quantum computers.

The quantum computation performs the computation using a network of quantum logic gates. A
quantum gate is a complex linear-algebraic generalization of boolean circuits.

In 2001, a team of IBM scientists factored the number 15 with a quantum computer that had 7 qubits.
In 2019, IBM has launched Q System One, the first circuit-based commercial quantum computer.
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Appendix B

Kleene’s Mathematical Model of
Computation

B.1 Kleene’s Model of Partial Recursive Functions

Definition B.1 Let be the positive integers x,y, i ∈ N and the vector x⃗ = ⟨x0,x1, . . . ,xn−1⟩ ∈ Nn. Any partial
recursive function f : Nn→ N can be computed using three initial functions:

• ZERO(x) = 0 : the variable x takes the value zero

• INC(x) = x+1 : increments the variable x ∈ N

• SEL(i, x⃗) = xi : i selects the value of xi from the vector of positive integers x⃗

and the application of the following three rules:

• Composition: f (⃗x) = g(h0(⃗x), . . . ,hp−1(⃗x)), where: f : Nn→ N is a total function if g : Np→ N and
hi : Nn→ N, for i = 0,1, . . . p−1, are total functions

• Primitive recursion: f (⃗x,y) = g(⃗x, f (⃗x,(y−1))), with f (⃗x,0) = h(⃗x) where:
f : Nn+1→ N is a total function if g : Nn+1→ N and h : Nn→ N are total functions.

• Minimization: f (⃗x)= µy[g(⃗x,y)= 0], which means: the value of the function f :Nn→N is the smallest
y, if any, for which the function g : Nn+1→ N takes the value g(⃗x,y) = 0.

⋄

Kleene’s model looks like a good candidate for a mathematical model for parallel computing as the
Turing’s model was for the mono-core computation. In this respect, the composition seems to be a
natural embodiment of a many-core abstract model for the parallel computing engine. The following
conjecture has a big chance to become a theorem:

Conjecture B.1 The composition rule, implemented as a two level structure (see Figure B.1):

• the MAP level: a linear array of circuits, one for each hi(⃗x) function

193
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• the REDUCE level: a log-depth tree-like network of circuits for g(h0(⃗x), . . . ,hp−1(⃗x))

where the functions hi(⃗x) and the function g(h0(⃗x), . . . ,hp−1(⃗x)) are initial functions or hierarchic
compositions of initial functions, computes any functions f : Nn→ N.
⋄

h2(X) hp(X)

? ? ?

y1 y2 yp

? ? ?

?

g(y1, . . . ,yp)

X = ⟨x0, . . . ,xn−1⟩

f (X)

map
composition

reduction
composition

h1(X)

Figure B.1: The circuit version of composition. It is a two-layer construct: the parallel expanded map
layer serially connected with the reduction layer.

Two kinds of parallelism are emphasized by the composition rule:

• a n-degree of synchronic parallelism between the computation performed in the circuits of the
MAP level

• a 2-degree of diachronic (pipeline) parallelism between the computation on the map level and the
computation of the REDUCE level

In the next sections will be proved that, for the other two rules, specific compositions can be used,
so as we are in the position to conclude that the computation model proposed by Kleene leads to imple-
mentations involving only compositions for which the previous conjecture applies.

B.2 Preliminary Definitions

Definition B.2 The reduction-less composition or map composition, MC, is the particular composition
f : Nn→ Np where:

f (⃗x) = f (x0, . . .xn−1) = ⟨h0(⃗x), . . .hp−1(⃗x)⟩= ⟨y0, . . .yp−1⟩= y⃗

hi : Nn→ N, and g(⃗y) = y⃗ is the identity function, for i = 0, . . . , p−1.
⋄

Definition B.3 The map-less composition or reduction composition, RC, is the particular composition
f : Nn→ N where:

f (⃗x) = g(⃗x)
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with yi = hi(⃗x) = SEL(i, x⃗) = xi, for i = 0, . . . , p−1 and n = p.
⋄

According to the previous two definitions, the composition rule can be considered as having a map-
reduce structure (Figure B.1), where a MC is serially connected with a RC. The two functional level can
have associated the physical implementation with the hi functions and the g function embodied in various
forms, starting from combinational circuits and reaching the complexity and competence of a processor,
even a computer.

Definition B.4 The RC function redOR : Nn→ N is

redOR(⃗x) = x0|x1| . . . |xn−1

where: | denote the bitwise OR logical function.
⋄

Definition B.5 For x⃗ = ⟨x0,x1, . . . ,xi. . . .⟩, let us define the right-chained MC as:

rightMC(x, x⃗) = H ′(x,⃗z)◦H (⃗x)

composed by the following two MCs:

H (⃗x) = ⟨h0(⃗x),h1(⃗x), . . . ,hi(⃗x). . . .⟩= ⟨z0,z1, . . . ,zi. . . .⟩

H ′(x,⃗z) = ⟨h′0(x,SEL(0,⃗z)),h′1(SEL(0,⃗z),SEL(1,⃗z)), . . . ,h′i(SEL(i−1,⃗z),SEL(i,⃗z)), . . .⟩
⋄

Thus, rightMCs is a MC which contains a serial connection between the cells performing the func-
tions hi ◦h′i, for i = 0,1, . . . , i, . . . . Theoretically, MAP section is right unlimited. Results the circuit from
Figure B.2. Similarly, a left serial connection can be defined.

h′0 ◦h0 h′1 ◦h1 h′i ◦hi- --

? ? ?

x
z1 zizi−1- -

z0

y′iy′1y′0

g(y′0,y
′
1, . . . ,y

′
i, . . .)

? f (⃗x)

x⃗ = ⟨x0,x1, . . . ,xn−1⟩

? ? ?

Figure B.2: The circuit associated to the composition rule expanded with a rightSHIFT serial con-
nections.

Definition B.6 By definition, rightSHIFT (x, x⃗) is a rightMC(x, x⃗) for x⃗ = ⟨x0,x1, . . . ,xi. . . .⟩, hi(⃗x) =
SEL(i, x⃗), h′0 = x, and h′i = SEL(i−1,⃗z), for i = 1,2, . . . , i, . . ., such that:

rightSHIFT (x, x⃗) = ⟨x,x0,x1, . . . ,xi. . . .⟩

⋄
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Definition B.7 We define pre f ixOR(⃗b) as a scan circuit for the OR prefix function [?], so it receiving a
binary input vector

b⃗ = ⟨b0,b1, . . . ,bi, . . .⟩
returns

pre f ixOR(⃗b) = ⟨b0,b0|b1,b0|b1|b2, . . . ,ORi
0b j, . . .⟩

⋄

Definition B.8 The MC function scanFIRST : {0,1}n→{0,1}n is:

scanFIRST (⃗b) = pre f ixOR(⃗b)&∼ (rigthSHIFT (pre f ixOR(⃗b)))

where: b⃗ = ⟨b0,b1, . . . ,bn−1⟩ is a Boolean sequence.
⋄

The scanFIRST (⃗b) function identifies, if any, the first occurrence of 1 in a the Boolean sequence b⃗.

B.3 Primitive Recursion Computed as a Sequence of Compositions

Theorem B.1 The primitive recursive rule is reducible to repeated applications of specific compo-
sitions.
⋄

Proof B.1 The primitive recursion rule could be applied using its iteratively expanded form:

f (⃗x,y) = g(⃗x, f (⃗x,y−1)) = . . .= g(⃗x,g(⃗x,g(⃗x, . . .g︸ ︷︷ ︸
(y−1) times

(⃗x, f (⃗x,1)) . . .))) =

= g(⃗x,g(x,g(⃗x, . . .g︸ ︷︷ ︸
y times

(⃗x, f (x,0)) . . .))) = g(⃗x,g(⃗x,g(⃗x, . . .g︸ ︷︷ ︸
y times

(⃗x,h(x)) . . .)))

Let be, in Figure B.3, the specific instantiation of the righMC function (see Definition B.5). It com-
putes iteratively, starting in the first stage, P0, with the function f (⃗x,0) = h(⃗x), in each Pi the values
f (⃗x, i) for i = 1,2, .... In each cell the predicate (y = i) is computed. The functions Pi, for i = 1,2, . . .,
takes form Pi−1 the value of f (⃗x, i−1) and computes f (⃗x, i). The redOR function takes from Pi its argu-
ments as (y = i) ? f (⃗x, i) : 0 for i = 0,1,2, . . .. Because for only one i the predicate y = i takes the value
1, the function redOR returns the value of f (⃗x,y).

Thus, for primitive recursion we need to compose two compositions, rightSHIFT and redOR.
⋄

Figure B.3 presents the circuit version of the function obtained by composing a specific rightMC
function with the redOR function. The two stage computation just described, as a structure indefinitely
extensible to the right, is a theoretical model because the index i takes values no matter how large, similar
with the “infinite” tape of Turing Machine. But, it is very important that the algorithmic complexity of
the description is in O(1), because the functions Pi, defining rightMC, and redOR have constant size
descriptions.
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P0 -

?

f (⃗x,0)

?

P1 -

?

f (⃗x,1)

?

P2 -f (⃗x,2)
Pi -f (⃗x, i)-f (⃗x, i−1)

? ? ? ?
⟨⃗x,y⟩

(y = 0) ? f (⃗x,0) : 0 (y = 1) ? f (⃗x,1) : 0 (y = 2) ? f (⃗x,2) : 0 (y = i) ? f (⃗x, i) : 0

redOR

?f (⃗x,y)

Figure B.3: The rightMC & redOR circuit version for the partial recursive rule.

B.4 Minimization Computed as a Sequence of Compositions

Theorem B.2 The minimization (least-search) rule is reducible to repeated applications of specific
compositions.
⋄

G0

?
6

?

?

g(⃗x,0) = 0
ϕ0

ϕ0? 1 : 0

G1

?
6

?

?

g(⃗x,1) = 0
ϕ1

ϕ1? 2 : 0

G2

?
6

?

?

g(⃗x,2) = 0
ϕ2

ϕ2? 3 : 0

Gi

?
6

?

?

g(⃗x, i) = 0
ϕi

ϕi? INC(i) : 0

?

x⃗

redOR

scanFIRST

INC( f (⃗x))

Figure B.4: The circuit structure for the minimization rule.

Proof B.2 The minimization (least-search) rule computes the value of f (⃗x) as the smallest y, if any, for
which g(⃗x,y) = 0. The functional structure to which we will refer is represented in Figure B.4.

The scanFIRST MC receives from the MAP section the vector of predicates

⟨(g(⃗x,0) = 0),(g(⃗x,1) = 0), . . . ,(g(⃗x, i) = 0), . . .⟩

and returns the Boolean vector
ϕ⃗ = ⟨ϕ0,ϕ1, . . . ,ϕi, . . .⟩

Thus, scanFIRST MC points, with ϕk = 1, to the first cell, if any, which provided the predicate (g(⃗x, i) =
0) = 1. The MAP section uses the vector ϕ⃗ to generate the vector:

⟨(ϕ0 ? 1 : 0),(ϕ1 ? 2 : 0), . . . ,(ϕi ? INC(i) : 0), . . .⟩
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as input for the reduction section redOR. Thus, the output of the reduction section takes the value
INC( f (⃗x)), because the value 0 is reserved to indicate that the function is not defined for the value x⃗
applied on the input.
⋄

The computation just described is only a theoretical model, because the index i has an indefinitely
large value. But, the size of the algorithmic description remains O(1).

B.5 Partial Recursion Means Composition Only

Kleene’s approach defines, besides the composition rule, other two rules, ordinary (primitive) recur-
sion and minimization (least-search), only for providing the means for classifying the recursive func-
tions (to emphasize in the class of recursive functions partial recursive functions and primitive recursive
functions). Therefore, to define the computation the next corollary makes the necessary and sufficient
delimitation.

Corollary B.1 Any computation defined in Definition B.1 can be done, according to Theorem B.1
and Theorem B.2, using the initial functions and the repeated application of the composition rule.
⋄

The primitive recursion is differentiated from the partial recursion by the main fact that it does not
require the scanFIRST section. It is only a straight forward sequence of compositions. For the partial
recursive rule, the additional scan section is required to test whether an imposed condition is met or not.

The composition rule is defined for a finite p, while various forms of the composition rule used to
define primitive recursion and minimization are designed for an ”infinite” p. Thus, Corollary B.1 can
be used to define an abstract model for parallel computations. To get rid of the ”infinity” assumed by
the pure mathematical definition of parallelism, a recurrent process is necessary. It will be based on the
endowment of cells with internal memory, and on the introduction of a sequencer necessary to control
the recurrent process, control that takes into account the feedback loops introduced by the two log-
depth networks: the reduction network and the scan network. The sequencer will allow the theoretically
”infinite” size assumed by the mathematical model to be emulated using a constant-size structure defined
as the abstract model for parallel computing, just as the Harvard and von Neumann abstract model did
for Turing’s model.



Appendix C

HETEROGENEOUS SYSTEM
SIMULATOR

C.1 Heterogenous Computing System Structure: 1 hetSys.sv

/ * ***********************************************************************
F i l e : 0 h e t S y s . s v
Name : He te rogenous Sys tem
D e s c r i p t i o n :
*********************************************************************** * /
‘ i n c l u d e ” 0 DEFINES . vh ”
module h e t S y s ( input l o g i c r e s e t ,

input l o g i c c l o c k ) ;
l o g i c h 2 i P w r i t e ; / / h o s t t o i n t e r f a c e program w r i t e
l o g i c i 2 h P f u l l ; / / programFIFO i s f u l l
l o g i c [ 6 3 : 0 ] h 2 i ; / / h o s t t o da ta program & da ta
l o g i c h 2 i D w r i t e ; / / h o s t t o i n t e r f a c e da ta w r i t e
l o g i c i 2 h D f u l l ; / / inputDataFIFO i s f u l l
l o g i c [ 6 3 : 0 ] i 2 h ; / / i n t e r f a c e t o h o s t da ta
l o g i c h2 iDread ; / / h o s t t o i n t e r f a c e da ta read
l o g i c i2hDempty ; / / outputDataFIFO i s empty
l o g i c a 2 h I n t ; / / a c c e l e r a t o r t o h o s t i n t e r r u p t
l o g i c h 2 a I n t a ; / / i n t e r r u p t acknowledge

h o s t HOST( h 2 i P w r i t e ,
i 2 h P f u l l ,
h 2 i ,
h 2 i D w r i t e ,
i 2 h D f u l l ,
i 2 h ,
h2 iDread ,
i2hDempty ,
a 2 h I n t ,
h 2 a I n t a ,
r e s e t ,

199
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c l o c k ) ;
a c c e l e r a t o r ACCELERATOR( h 2 i P w r i t e ,

i 2 h P f u l l ,
h 2 i ,
h 2 i D w r i t e ,
i 2 h D f u l l ,
i 2 h ,
h2 iDread ,
i2hDempty ,
a 2 h I n t ,
h 2 a I n t a ,
r e s e t ,
c l o c k ) ;

endmodule

Figure C.1: Heterogeneous System.

C.1.1 Host Computer: 2 host.sv

It is a conventional RISC computing engine.

/ * ***********************************************************************
F i l e : 1 h o s t . s v
Name : Host Computer
D e s c r i p t i o n :
*********************************************************************** * /
module h o s t ( output l o g i c h 2 i P w r i t e ,

input l o g i c i 2 h P f u l l ,
output l o g i c [ 6 3 : 0 ] h 2 i ,
output l o g i c h 2 i D w r i t e ,
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input l o g i c i 2 h D f u l l ,
input l o g i c [ 6 3 : 0 ] i 2 h ,
output l o g i c h2 iDread ,
input l o g i c i2hDempty ,
input l o g i c a 2 h I n t ,
output l o g i c h 2 a I n t a ,
input l o g i c r e s e t ,
input l o g i c c l o c k ) ;

l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] hos tP rogAddr ;
l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] hos tDa taAddr ;
l o g i c [ 3 1 : 0 ] i n s t r u c t i o n ;
l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] t r a n s A d d r ;
l o g i c [ ‘n − 1 : 0 ] p r o c D a t a I n ;
l o g i c [ ‘n − 1 : 0 ] p rocDa taOut ;
l o g i c p r o c W r i t e ;
l o g i c [ $ c l og 2 ( ‘m ) : 0 ] procAddr ;
l o g i c [ 6 3 : 0 ] mem2int ;
l o g i c s e l P r o g O u t ;
l o g i c [ 6 3 : 0 ] p r o g 2 i n t ;

a s s i g n h 2 i = s e l P r o g O u t ? p r o g 2 i n t : mem2int ;
h o s t P r o c e s s o r h o s t P r o c e s s o r ( h 2 i P w r i t e ,

i 2 h P f u l l ,
mem2int [ 3 1 : 1 9 ] ,
h 2 i D w r i t e ,
i 2 h D f u l l ,
h2 iDread ,
i2hDempty ,
s e l P r o g O u t ,
p r o g 2 i n t ,
hos tP rogAddr ,
i n s t r u c t i o n ,
t r a n s A d d r ,
p r o c D a t a I n ,
p rocDa taOut ,
p r o c W r i t e ,
procAddr ,
a 2 h I n t ,
h 2 a I n t a ,
r e s e t , c l o c k ) ;

hostProgramMemory
hostProgramMemory ( . hos tP rogAddr ( hos tP rogAddr ) ,

. hos tP rog ram (0 ) ,

. we ( 1 ’ b0 ) ,

. i n s t r u c t i o n ( i n s t r u c t i o n ) ,

. c l o c k ( c l o c k ) ) ;
hostDataMemory hostDataMemory ( mem2int ,

i 2 h ,
h2 iDread ,
t r a n s A d d r ,
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p r o c D a t a I n ,
p rocDa taOut ,
p r o c W r i t e ,
procAddr ,
c l o c k ) ;

endmodule

Processor: 3 hostProcessor.sv

It is a simple RISC processor called toyRISC processor.

/ * ***********************************************************************
F i l e : 2 h o s t P r o c e s s o r . s v
Name : Host P r o c e s s o r
D e s c r i p t i o n :
*********************************************************************** * /
module h o s t P r o c e s s o r (

output l o g i c h 2 i P w r i t e ,
input l o g i c i 2 h P f u l l ,
input l o g i c [ 1 2 : 0 ] c I n s t r ,
output l o g i c h 2 i D w r i t e ,
input l o g i c i 2 h D f u l l ,
output l o g i c h2 iDread ,
input l o g i c i2hDempty ,
output l o g i c s e l P r o g O u t ,
output l o g i c [ 6 3 : 0 ] p r o g 2 i n t ,
output l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] hos tP rogAddr ,
input l o g i c [ 3 1 : 0 ] i n s t r u c t i o n ,
output l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] t r a n s A d d r ,
input l o g i c [ ‘n − 1 : 0 ] p r o c D a t a I n ,
output l o g i c [ ‘n − 1 : 0 ] p rocDa taOut ,
output l o g i c p r o c W r i t e ,
output l o g i c [ $ c l og 2 ( ‘m ) : 0 ] procAddr ,
input l o g i c a 2 h I n t ,
output l o g i c h 2 a I n t a ,
input l o g i c r e s e t , c l o c k ) ;

l o g i c [ 1 : 0 ] loadCom ;
l o g i c [ 3 1 : 0 ] l e f t O u t ;
l o g i c [ 3 1 : 0 ] h o s t C y c l e C o u n t e r ;

a s s i g n procAddr = l e f t O u t [ $ c lo g2 ( ‘m ) : 0 ] ;
a s s i g n t r a n s A d d r = l e f t O u t [ $ c lo g2 ( ‘m ) − 1 : 0 ] ;
hostDCD hDCD

( . i n s t r ( i n s t r u c t i o n ) ,
. w r i t e E n a b l e ( w r i t e E n a b l e ) ,
. loadCom ( loadCom ) ,
. h 2 i P w r i t e ( h 2 i P w r i t e ) ,
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. h 2 i D w r i t e ( h 2 i D w r i t e ) ,

. h2 iDread ( h2 iDread ) ,

. p r o c W r i t e ( p r o c W r i t e ) ,

. s e l P r o g O u t ( s e l P r o g O u t ) ,

. p r o g 2 i n t ( p r o g 2 i n t ) ) ;
hostPC hPC (

. h o s t 2 a c c I n t a ( h 2 a I n t a ) ,

. a c c 2 h o s t I n t ( a 2 h I n t ) ,

. c I n s t r ( c I n s t r ) ,

. l e f t E q R i g t h ( l e f t O u t == procDataOut ) ,

. l e f t O u t ( l e f t O u t ) ,

. hos tP rogAddr ( hos tP rogAddr ) ,

. hOpCode ( i n s t r u c t i o n [ 3 1 : 2 6 ] ) ,

. v a l u e ( i n s t r u c t i o n [ $c l og 2 ( ‘m ) − 1 : 0 ] ) ,

. h o s t C y c l e C o u n t e r ( h o s t C y c l e C o u n t e r ) ,

. r e s e t ( r e s e t ) ,

. c l o c k ( c l o c k ) ) ;
hostRALU hRALU

( . w r i t e E n a b l e ( w r i t e E n a b l e ) ,
. d e s t A d d r ( i n s t r u c t i o n [ 2 5 : 2 1 ] ) ,
. l e f t A d d r ( i n s t r u c t i o n [ 2 0 : 1 6 ] ) ,
. r i g h t A d d r ( i n s t r u c t i o n [ 1 5 : 1 1 ] ) ,
. v a l u e ( i n s t r u c t i o n [ 1 5 : 0 ] ) ,
. p r o c D a t a I n ( p r o c D a t a I n ) ,
. h F u n c t i o n ( i n s t r u c t i o n [ 3 1 : 2 6 ] ) ,
. i 2 h P f u l l ( i 2 h P f u l l ) ,
. i 2 h D f u l l ( i 2 h D f u l l ) ,
. i2hDempty ( i2hDempty ) ,
. loadCom ( loadCom ) ,
. l e f t O u t ( l e f t O u t ) ,
. r i g h t O u t ( p rocDa taOut ) ,
. c l o c k ( c l o c k ) ) ;

endmodule

Decoder: 4 hostDCD.sv is the toyRISC’s decoder.

/ * ***********************************************************************
F i l e : 3 hostDCD . sv
Name : Host Decoder
D e s c r i p t i o n :
*********************************************************************** * /
module hostDCD ( input l o g i c [ 3 1 : 0 ] i n s t r ,

output l o g i c w r i t e E n a b l e ,
output l o g i c [ 1 : 0 ] loadCom ,
output l o g i c h 2 i P w r i t e ,
output l o g i c h 2 i D w r i t e ,
output l o g i c h2 iDread ,
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output l o g i c p r o c W r i t e ,
output l o g i c s e l P r o g O u t ,
output l o g i c [ 6 3 : 0 ] p r o g 2 i n t ) ;

a s s i g n w r i t e E n a b l e = ( i n s t r [ 3 1 : 3 0 ] == 2 ’ b01 ) | |
( i n s t r [ 3 1 : 3 0 ] == 2 ’ b10 ) ;

always comb case ( i n s t r [ 3 1 : 2 6 ] )
‘ h v a l u e : loadCom = 2 ’ b00 ;
‘ h i n s v a l : loadCom = 2 ’ b01 ;
‘ h l o a d : loadCom = 2 ’ b10 ;
d e f a u l t : loadCom = 2 ’ b11 ;

endcase
a s s i g n h 2 i P w r i t e = ( i n s t r [ 3 1 : 2 6 ] == ‘ h p s e n d ) | |

( i n s t r [ 3 1 : 2 6 ] == ‘ h f s e n d ) | |
( i n s t r [ 3 1 : 2 6 ] == ‘ h s s e n d ) ;

a s s i g n s e l P r o g O u t = ( i n s t r [ 3 1 : 2 6 ] == ‘ h f s e n d ) | |
( i n s t r [ 3 1 : 2 6 ] == ‘ h s s e n d ) ;

a s s i g n h 2 i D w r i t e = i n s t r [ 3 1 : 2 6 ] == ‘ h d s e n d ;
a s s i g n h2 iDread = i n s t r [ 3 1 : 2 6 ] == ‘ h d g e t ;
a s s i g n p r o c W r i t e = i n s t r [ 3 1 : 2 6 ] == ‘ h s t o r e ;

a s s i g n p r o g 2 i n t = {32 ’ b0 , ( ( i n s t r [ 3 1 : 2 6 ] == ‘ h f s e n d ) ?
{ ‘ c o n t r , ‘imm , ‘p run , i n s t r [ 1 8 : 0 ] } :
{{6{ i n s t r [ 2 5 ]}} , i n s t r [ 2 5 : 0 ] } ) } ;

endmodule

Program Counter: 4 hostPC.sv is the program counter of toyRISC.

/ * ***********************************************************************
F i l e : 3 hos tPC . sv
Name : Host Program Counter
D e s c r i p t i o n :
*********************************************************************** * /
module hostPC (

output l o g i c h o s t 2 a c c I n t a ,
input l o g i c a c c 2 h o s t I n t ,
input l o g i c [ 1 2 : 0 ] c I n s t r ,
input l o g i c l e f t E q R i g t h ,
input l o g i c [ 3 1 : 0 ] l e f t O u t ,
output l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] hos tP rogAddr ,
input l o g i c [ 5 : 0 ] hOpCode ,
input l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] v a l u e ,
output l o g i c [ 3 1 : 0 ] h o s t C y c l e C o u n t e r ,
input l o g i c r e s e t ,
input l o g i c c l o c k ) ;

l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] p rogramCounte r ;
l o g i c h C y c l e C o u n t e r E n a b l e ;
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a l w a y s f f @( posedge c l o c k )
i f ( r e s e t ) h o s t C y c l e C o u n t e r <= 0 ;

e l s e begin
i f ( h C y c l e C o u n t e r E n a b l e )

h o s t C y c l e C o u n t e r <= h o s t C y c l e C o u n t e r + 1 ;
i f ( hOpCode == ‘ h s t t c c )

h C y c l e C o u n t e r E n a b l e <= 1 ;
i f ( hOpCode == ‘ h s t p c c )

h C y c l e C o u n t e r E n a b l e <= 0 ;
end

a s s i g n h o s t 2 a c c I n t a =
a c c 2 h o s t I n t && ( hOpCode == ‘ h i n t w a i t ) ;

a l w a y s f f @( posedge c l o c k )
i f ( r e s e t ) p rogramCounte r <= −1 ;

e l s e programCounte r <= hos tP rogAddr ;
hNextPC hnPC ( hos tP rogAddr ,

p rogramCounte r ,
hOpCode ,
v a l u e ,
a c c 2 h o s t I n t ,
c I n s t r ,
l e f t E q R i g t h ,
l e f t O u t ) ;

endmodule

RALU: 4 hostRALU.sv is the Verilog file describing the RALU unit of toyRISC.

/ * ***********************************************************************
F i l e : 3 hostRALU . sv
Name : Host RALU
D e s c r i p t i o n :
*********************************************************************** * /
module hostRALU ( input l o g i c w r i t e E n a b l e ,

input l o g i c [ 4 : 0 ] d e s t A d d r ,
input l o g i c [ 4 : 0 ] l e f t A d d r ,
input l o g i c [ 4 : 0 ] r i g h t A d d r ,
input l o g i c [ 1 5 : 0 ] v a l u e ,
input l o g i c [ 3 1 : 0 ] p r o c D a t a I n ,
input l o g i c [ 5 : 0 ] h F u n c t i o n ,
input l o g i c i 2 h P f u l l ,
input l o g i c i 2 h D f u l l ,
input l o g i c i2hDempty ,
input l o g i c [ 1 : 0 ] loadCom ,
output l o g i c [ 3 1 : 0 ] l e f t O u t ,
output l o g i c [ 3 1 : 0 ] r i g h t O u t ,
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input l o g i c c l o c k ) ;
l o g i c [ 3 1 : 0 ] r e s u l t ;
l o g i c [ 3 1 : 0 ] muxOut ;

h o s t R e g i s t e r F i l e hRF ( muxOut ,
w r i t e E n a b l e ,
d e s t A d d r ,
l e f t A d d r ,
r i g h t A d d r ,
l e f t O u t ,
r i g h t O u t ,
c l o c k ) ;

hostALU hALU( r e s u l t ,
l e f t O u t ,
r i g h t O u t ,
v a l u e ,
h F u n c t i o n ,
i 2 h P f u l l ,
i 2 h D f u l l ,
i2hDempty ,
c l o c k ) ;

hostInMUX hInMux ( . loadCom ( loadCom ) ,
. r e s u l t ( r e s u l t ) ,
. v a l u e ( v a l u e ) ,
. p r o c D a t a I n ( p r o c D a t a I n ) ,
. l e f tOu tLow ( l e f t O u t [ 1 5 : 0 ] ) ,
. muxOut ( muxOut ) ) ;

endmodule

Host Register File : 4 hostRegisterFile.sv is the Verilog file describing the register file unit
of hostRALU.

/ * ***********************************************************************
F i l e : 4 h o s t R e g i s t e r F i l e . s v
Name :
D e s c r i p t i o n :
*********************************************************************** * /
module h o s t R e g i s t e r F i l e

( input l o g i c [ 3 1 : 0 ] muxOut ,
input l o g i c w r i t e E n a b l e ,
input l o g i c [ 4 : 0 ] d e s t A d d r ,
input l o g i c [ 4 : 0 ] l e f t A d d r ,
input l o g i c [ 4 : 0 ] r i g h t A d d r ,
output l o g i c [ 3 1 : 0 ] l e f t O u t ,
output l o g i c [ 3 1 : 0 ] r i g h t O u t ,
input c l o c k ) ;

l o g i c [ 3 1 : 0 ] h R e g F i l e [ 0 : 3 1 ] ;
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a l w a y s f f @( posedge c l o c k )
i f ( w r i t e E n a b l e ) h R e g F i l e [ d e s t A d d r ] <= muxOut ;

a s s i g n l e f t O u t = h Re g F i l e [ l e f t A d d r ] ;
a s s i g n r i g h t O u t = h Re g F i l e [ r i g h t A d d r ] ;

endmodule

Host ALU : 4 hostALU.sv is the Verilog file describing the register file unit of hostALU.

/ * ***********************************************************************
F i l e : 4 hostALU . sv
Name :
D e s c r i p t i o n :
*********************************************************************** * /
module hostALU ( output l o g i c [ 3 1 : 0 ] r e s u l t ,

input l o g i c [ 3 1 : 0 ] l e f t O u t ,
input l o g i c [ 3 1 : 0 ] r i g h t O u t ,
input l o g i c [ 1 5 : 0 ] v a l u e ,
input l o g i c [ 5 : 0 ] h F u n c t i o n ,
input l o g i c i 2 h P f u l l ,
input l o g i c i 2 h D f u l l ,
input l o g i c i2hDempty ,
input l o g i c c l o c k ) ;

l o g i c crFF ;
l o g i c c r ;
l o g i c [ 3 1 : 0 ] r i g h t V a l ;

a s s i g n r i g h t V a l = {{16{ v a l u e [ 1 5 ]}} , v a l u e } ;
always comb

case ( h F u n c t i o n [ 5 : 0 ] )
‘hadd : { cr , r e s u l t } = l e f t O u t + r i g h t O u t ;
‘ h a d d c r : { cr , r e s u l t } = l e f t O u t + r i g h t O u t + crFF ;
‘ h s u b : { cr , r e s u l t } = l e f t O u t − r i g h t O u t ;
‘ h s u b c r : { cr , r e s u l t } = l e f t O u t − r i g h t O u t − crFF ;
‘ h m u l t : { cr , r e s u l t } = { crFF , l e f t O u t * r i g h t O u t } ;
‘hbwand : { cr , r e s u l t } = { crFF , l e f t O u t & r i g h t O u t } ;
‘hbwor : { cr , r e s u l t } = { crFF , l e f t O u t | r i g h t O u t } ;
‘hbwxor : { cr , r e s u l t } = { crFF , l e f t O u t ˆ r i g h t O u t } ;
‘haddv : { cr , r e s u l t } = l e f t O u t + r i g h t V a l ;
‘ h a d d c r v : { cr , r e s u l t } = l e f t O u t + r i g h t V a l + crFF ;
‘h s ub v : { cr , r e s u l t } = l e f t O u t − r i g h t V a l ;
‘ h s u b c r v : { cr , r e s u l t } = l e f t O u t − r i g h t V a l − crFF ;
‘ h m u l t v : { cr , r e s u l t } = { crFF , l e f t O u t * r i g h t V a l } ;
‘hbwandv : { cr , r e s u l t } = { crFF , l e f t O u t & r i g h t V a l } ;
‘hbworv : { cr , r e s u l t } = { crFF , l e f t O u t | r i g h t V a l } ;
‘hbwxorv : { cr , r e s u l t } = { crFF , l e f t O u t ˆ r i g h t V a l } ;
‘ h p s e n d : { cr , r e s u l t } = { crFF , l e f t O u t + ! i 2 h P f u l l } ;
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‘ h d s e n d : { cr , r e s u l t } = { crFF , l e f t O u t + ! i 2 h D f u l l } ;
‘ h d g e t : { cr , r e s u l t } = { crFF , l e f t O u t + ! i2hDempty} ;
d e f a u l t : { cr , r e s u l t } = { crFF , 32 ’ bx} ;

endcase
a l w a y s f f @( posedge c l o c k ) crFF <= c r ;

endmodule

Input MUX : 4 hostInMUX.sv is the Verilog file describing the .

/ * ***********************************************************************
F i l e : 4 hostInMUX . sv
Name :
D e s c r i p t i o n :
*********************************************************************** * /
module hostInMUX ( input l o g i c [ 1 : 0 ] loadCom ,

input l o g i c [ 3 1 : 0 ] r e s u l t ,
input l o g i c [ 1 5 : 0 ] v a l u e ,
input l o g i c [ 3 1 : 0 ] p r o c D a t a I n ,
input l o g i c [ 1 5 : 0 ] l e f tOu tLow ,
output l o g i c [ 3 1 : 0 ] muxOut ) ;

always comb case ( loadCom )
2 ’ b00 : muxOut = {{16{ v a l u e [ 1 5 ]}} , v a l u e } ;
2 ’ b01 : muxOut = { l e f tOutLow , v a l u e } ;
2 ’ b10 : muxOut = p r o c D a t a I n ;
2 ’ b11 : muxOut = r e s u l t ;

endcase
endmodule
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Data Memory: 3 hostDataMemory.sv

/ * ***********************************************************************
F i l e : 2 hostDataMemory . sv
Name : Host Data Memory
D e s c r i p t i o n :
*********************************************************************** * /
module hostDataMemory

( output l o g i c [ 6 3 : 0 ] mem2int ,
input l o g i c [ 6 3 : 0 ] i 2 h ,
input l o g i c h2 iDread ,
input l o g i c [ $ c l o g 2 ( ‘m ) − 1 : 0 ] t r a n s A d d r ,
output l o g i c [ ‘n − 1 : 0 ] p r o c D a t a I n ,
input l o g i c [ ‘n − 1 : 0 ] p rocDa taOut ,
input l o g i c p r o c W r i t e ,
input l o g i c [ $ c l og 2 ( ‘m ) : 0 ] procAddr ,
input l o g i c c l o c k ) ;

l o g i c [ 6 3 : 0 ] hDmem [ 0 : ‘m −1] ;
l o g i c [ 6 3 : 0 ] p r o c D a t a ;

a l w a y s f f @( posedge c l o c k )
i f ( h2 iDread ) hDmem[ t r a n s A d d r ] <= i 2 h ;

e l s e i f ( p r o c W r i t e ) hDmem[ procAddr [ $c log 2 ( ‘m ) : 1 ] ]
<= procAddr [ 0 ] ?

{ procDataOut , p r o c D a t a [ ‘n − 1 : 0 ]} :
{ p r o c D a t a [ 6 3 : ‘n ] , p rocDa taOut } ;

a s s i g n mem2int = hDmem[ t r a n s A d d r ] ;
a s s i g n p r o c D a t a = hDmem[ procAddr [ $ c l o g2 ( ‘m ) : 1 ] ] ;
a s s i g n p r o c D a t a I n = procAddr [ 0 ] ? p r o c D a t a [ 6 3 : ‘n ] :

p r o c D a t a [ ‘n − 1 : 0 ] ;
endmodule

Program Memory: 3 hostProgramMemory.sv

/ * ***********************************************************************
F i l e : 2 hostProgramMemory . s v
Name : Host Program memory
D e s c r i p t i o n :
*********************************************************************** * /
module hostProgramMemory

( input l o g i c [ $ c l o g 2 ( ‘m ) − 1 : 0 ] hos tProgAddr ,
input l o g i c [ 3 1 : 0 ] hos tP rog ram ,
input l o g i c we ,
output l o g i c [ 3 1 : 0 ] i n s t r u c t i o n ,
input l o g i c c l o c k ) ;

l o g i c [ 3 1 : 0 ] hPmem [ 0 : ‘m − 1 ] ;
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a l w a y s f f @( posedge c l o c k ) begin
i f ( we ) hPmem[ hos tP rogAddr ] <= hos tP rog ram ;

i n s t r u c t i o n <= hPmem[ hos tP rogAddr ] ;
end

endmodule

C.1.2 Accelerator: 1 accelerator.sv

/ * ***********************************************************************
F i l e : 1 a c c e l e r a t o r . s v
Name : I n t e r f a c e s
D e s c r i p t i o n :
*********************************************************************** * /
module a c c e l e r a t o r ( input l o g i c h 2 i P w r i t e ,

output l o g i c i 2 h P f u l l ,
input l o g i c [ 6 3 : 0 ] h 2 i ,
input l o g i c h 2 i D w r i t e ,
output l o g i c i 2 h D f u l l ,
output l o g i c [ 6 3 : 0 ] i 2 h ,
input l o g i c h2 iDread ,
output l o g i c i2hDempty ,
output l o g i c a 2 h I n t ,
input l o g i c h 2 a I n t a ,
input l o g i c r e s e t ,
input l o g i c c l o c k ) ;

l o g i c [ 6 3 : 0 ] i 2 a D a t a ;
l o g i c [ 6 3 : 0 ] a 2 i ;
l o g i c [ 6 3 : 0 ] i 2 a P r o g ;

i n t e r f a c e s INTERFACES ( h 2 i P w r i t e ,
i 2 h P f u l l ,
h 2 i ,
h 2 i D w r i t e ,
i 2 h D f u l l ,
i 2 h ,
h2 iDread ,
i2hDempty ,
i 2 a P r o g ,
a 2 i P r e a d ,
i2aPempty ,
i 2 a D a t a ,
a 2 i D r e a d ,
i2aDempty ,
a 2 i ,
a 2 i D w r i t e ,
i 2 a D f u l l ,
r e s e t ,
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c l o c k ) ;
pRISC pRISC ( i 2 a P r o g ,

a 2 i P r e a d ,
i2aPempty ,
i 2 a D a t a ,
a 2 i D r e a d ,
i2aDempty ,
a 2 i ,
a 2 i D w r i t e ,
i 2 a D f u l l ,
a 2 h I n t ,
h 2 a I n t a ,
r e s e t ,
c l o c k ) ;

endmodule

Figure C.2: The accelerator.

Interfaces: 2 interfaces.sv

/ * ***********************************************************************
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F i l e : 2 i n t e r f a c e s . s v
Name : I n t e r f a c e s
D e s c r i p t i o n :
*********************************************************************** * /
module i n t e r f a c e s ( input l o g i c h 2 i P w r i t e ,

output l o g i c i 2 h P f u l l ,
input l o g i c [ 6 3 : 0 ] h 2 i ,
input l o g i c h 2 i D w r i t e ,
output l o g i c i 2 h D f u l l ,
output l o g i c [ 6 3 : 0 ] i 2 h ,
input l o g i c h2 iDread ,
output l o g i c i2hDempty ,
output l o g i c [ 6 3 : 0 ] i 2 a P r o g ,
input l o g i c a 2 i P r e a d ,
output l o g i c i2aPempty ,
output l o g i c [ 6 3 : 0 ] i 2 a D a t a ,
input l o g i c a 2 i D r e a d ,
output l o g i c i2aDempty ,
input l o g i c [ 6 3 : 0 ] a 2 i ,
input l o g i c a 2 i D w r i t e ,
output l o g i c i 2 a D f u l l ,
input l o g i c r e s e t , c l o c k ) ;

f i f o programFIFO ( . d a t a I n ( h 2 i ) ,
. w r i t e ( h 2 i P w r i t e ) ,
. f u l l ( i 2 h P f u l l ) ,
. d a t a O u t ( i 2 a P r o g ) ,
. r e a d ( a 2 i P r e a d ) ,
. empty ( i2aPempty ) ,
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ;

f i f o inpu tDa taFIFO ( . d a t a I n ( h 2 i ) ,
. w r i t e ( h 2 i D w r i t e ) ,
. f u l l ( i 2 h D f u l l ) ,
. d a t a O u t ( i 2 a D a t a ) ,
. r e a d ( a 2 i D r e a d ) ,
. empty ( i2aDempty ) ,
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ;

f i f o ou tpu tDa taFIFO ( . d a t a I n ( a 2 i ) ,
. w r i t e ( a 2 i D w r i t e ) ,
. f u l l ( i 2 a D f u l l ) ,
. d a t a O u t ( i 2 h ) ,
. r e a d ( h2 iDread ) ,
. empty ( i2hDempty ) ,
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ;

endmodule
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Figure C.3: Interfaces.

FIFO: 3 fifo.sv the synchronous version

/ * ***********************************************************************
F i l e : 3 f i f o . s v
Name : FIFO
D e s c r i p t i o n :
*********************************************************************** * /
module f i f o ( input l o g i c [ 6 3 : 0 ] d a t a I n ,

input l o g i c w r i t e ,
output l o g i c f u l l ,
output l o g i c [ 6 3 : 0 ] d a t a O u t ,
input l o g i c r e a d ,
output l o g i c empty ,
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input l o g i c r e s e t ,
input l o g i c c l o c k ) ;

l o g i c [ 6 3 : 0 ] ram [ 0 : 2 5 5 ] ;
l o g i c [ 8 : 0 ] rA , wA ;

a s s i g n empty = ( rA [ 7 : 0 ] == wA[ 7 : 0 ] ) & ˜ ( rA [ 8 ] ˆ wA[ 8 ] ) ;
a s s i g n f u l l = ( rA [ 7 : 0 ] == wA[ 7 : 0 ] ) & ( rA [ 8 ] ˆ wA[ 8 ] ) ;
a l w a y s f f @( posedge c l o c k )

i f ( w r i t e && ˜ f u l l ) ram [wA[ 7 : 0 ] ] <= d a t a I n ;
a s s i g n d a t a O u t = ram [ rA [ 7 : 0 ] ] ;
a l w a y s f f @( posedge c l o c k )

i f ( r e s e t ) begin wA <= 0 ;
rA <= 0 ;

end
e l s e begin i f ( w r i t e && ˜ f u l l ) wA <= wA + 1 ;

i f ( r e a d && ˜ empty ) rA <= rA + 1 ;
end

endmodule

pRISC: 2 pRISC.sv

/ * ***********************************************************************
F i l e : 2 pRISC . sv
Name : A c c e l e r a t o r
D e s c r i p t i o n :
*********************************************************************** * /
module pRISC ( input l o g i c [ 6 3 : 0 ] i 2 a P r o g ,

output l o g i c a 2 i P r e a d ,
input l o g i c i2aPempty ,
input l o g i c [ 6 3 : 0 ] i 2 a D a t a ,
output l o g i c a 2 i D r e a d ,
input l o g i c i2aDempty ,
output l o g i c [ 6 3 : 0 ] a 2 i ,
output l o g i c a 2 i D w r i t e ,
input l o g i c i 2 a D f u l l ,
output l o g i c a 2 h I n t ,
input l o g i c h 2 a I n t a ,
input l o g i c r e s e t , c l o c k ) ;

l o g i c [ 2 : 0 ] dataTransCom ;
l o g i c [ ‘n + 1 2 : 0 ] c o n t r 2 a r r a y ;
l o g i c [ ‘n − 1 : 0 ] r e d ;

c o n t r o l l e r c o n t r o l l e r ( i 2 a P r o g ,
a 2 i P r e a d ,
i2aPempty ,
dataTransCom ,
a 2 i D r e a d ,



C.1. HETEROGENOUS COMPUTING SYSTEM STRUCTURE: 1 HETSYS.SV 215

i2aDempty ,
a 2 i D w r i t e ,
i 2 a D f u l l ,
c o n t r 2 a r r a y ,
r e d ,
a 2 h I n t ,
h 2 a I n t a ,
r e s e t , c l o c k ) ;

a r r a y a r r a y ( i 2 a D a t a ,
a 2 i ,
dataTransCom ,
c o n t r 2 a r r a y ,
r e d ,
c l o c k ) ;

endmodule

Figure C.4: pRISC.

/ * ***********************************************************************
F i l e : 3 c o n t r o l l e r . s v
Name : C o n t r o l l e r
D e s c r i p t i o n :
*********************************************************************** * /
module c o n t r o l l e r ( input l o g i c [ 6 3 : 0 ] i 2 a P r o g ,

output l o g i c a 2 i P r e a d ,
input l o g i c i2aPempty ,
output l o g i c [ 2 : 0 ] dataTransCom ,
output l o g i c a 2 i D r e a d ,
input l o g i c i2aDempty ,
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output l o g i c a 2 i D w r i t e ,
input l o g i c i 2 a D f u l l ,
output l o g i c [ ‘n + 1 2 : 0 ] c o n t r 2 a r r a y ,
input l o g i c [ ‘n − 1 : 0 ] r e d ,
output l o g i c a 2 h I n t ,
input l o g i c h 2 a I n t a ,
input l o g i c r e s e t ,
input l o g i c c l o c k ) ;

l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] progAddr ;
l o g i c [ 6 3 : 0 ] d u a l I n s t r ;
l o g i c [ 6 3 : 0 ] d e l a y e d I n s t r ;
l o g i c [ 3 1 : 0 ] contrMemIn ;
l o g i c [ 3 1 : 0 ] contrMemOut ;
l o g i c [ 1 : 0 ] a c c S t a t e ;
l o g i c i n i t F u n c ;
l o g i c ge tParam ;

c o n t r o l l e r 2 d i s t r i b u t e c o n t r 2 d i s t r (
. c o n t r 2 a r r a y ( c o n t r 2 a r r a y ) ,
. contrMemIn ( contrMemIn ) ,
. d e l a y e d I n s t r ( d e l a y e d I n s t r ) ,
. c l o c k ( c l o c k ) ) ;

co n t r o l l e r P r o g r a m M e m o r y contrProgMem ( i 2 a P r o g ,
a 2 i P r e a d ,
i2aPempty ,
progAddr ,
d u a l I n s t r ,
d e l a y e d I n s t r ,
a c c S t a t e ,
i n i t F u n c ,
ge tParam ,
r e s e t , c l o c k ) ;

c o n t r o l l e r D a t a M e m o r y contrDataMem (
. c o n t r D a t a A d d r ( d u a l I n s t r [ $ c l og2 ( ‘m ) − 1 : 0 ] ) ,
. c o n t r D e l D a t a A d d r ( d e l a y e d I n s t r [ $ c l og 2 ( ‘m ) − 1 : 0 ] ) ,
. contrMemOut ( contrMemOut ) ,
. contrMemIn ( contrMemIn ) ,
. contrMemCom ( d u a l I n s t r [ 3 1 : 2 4 ] ) ,
. contrDelMemCom ( d e l a y e d I n s t r [ 3 1 : 1 9 ] ) ,
. c l o c k ( c l o c k ) ) ;

c o n t r o l l e r P r o c e s s o r c o n t r P r o c (
. progAddr ( progAddr ) ,
. i n s t r ( d u a l I n s t r [ 3 1 : 0 ] ) ,
. d e l a y e d I n s t r ( d e l a y e d I n s t r [ 3 1 : 0 ] ) ,
. contrMemOut ( contrMemOut ) ,
. contrMemIn ( contrMemIn ) ,
. dataTransCom ( dataTransCom ) ,
. a 2 i D r e a d ( a 2 i D r e a d ) ,
. i2aDempty ( i2aDempty ) ,
. a 2 i D w r i t e ( a 2 i D w r i t e ) ,
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. i 2 a D f u l l ( i 2 a D f u l l ) ,

. r e d 2 c o n t r ( r e d ) ,

. a 2 h I n t ( a 2 h I n t ) ,

. h 2 a I n t a ( h 2 a I n t a ) ,

. a c c S t a t e ( a c c S t a t e ) ,

. i n i t F u n c ( i n i t F u n c ) ,

. ge tParam ( ge tParam ) ,

. i n t 2 a c c P r o g ( i 2 a P r o g [ 3 1 : 0 ] ) ,

. r e s e t ( r e s e t ) ,

. c l o c k ( c l o c k ) ) ;
endmodule

Controller: 3 controller.sv
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Controller Processor: 4 controllerProcessor.sv is the Verilog file describing CON-
TROLLER’s processor.

/ * ***********************************************************************
F i l e : 4 c o n t r o l l e r P r o c e s s o r . s v
Name : C o n t r o l l e r P r o c e s s o r
D e s c r i p t i o n :
*********************************************************************** * /
module c o n t r o l l e r P r o c e s s o r (

output l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] progAddr ,
input l o g i c [ 3 1 : 0 ] i n s t r ,
input l o g i c [ 3 1 : 0 ] d e l a y e d I n s t r ,
input l o g i c [ 3 1 : 0 ] contrMemOut ,
output l o g i c [ 3 1 : 0 ] contrMemIn ,
output l o g i c [ 2 : 0 ] dataTransCom ,
output l o g i c a 2 i D r e a d ,
input l o g i c i2aDempty ,
output l o g i c a 2 i D w r i t e ,
input l o g i c i 2 a D f u l l ,
input l o g i c [ ‘n − 1 : 0 ] r e d 2 c o n t r ,
output l o g i c a 2 h I n t ,
input l o g i c h 2 a I n t a ,
input l o g i c [ 1 : 0 ] a c c S t a t e ,
input l o g i c i n i t F u n c ,
input l o g i c ge tParam ,
input l o g i c [ 3 1 : 0 ] i n t 2 a c c P r o g ,
input l o g i c r e s e t , c l o c k ) ;

l o g i c e n d T r a n s f e r ;
l o g i c z e r o ;

c o n t r o l l e r C o m contCom (
. a 2 h I n t ( a 2 h I n t ) ,
. h 2 a I n t a ( h 2 a I n t a ) ,
. i n s t r ( i n s t r ) ,
. dataTransCom ( dataTransCom ) ,
. e n d T r a n s f e r ( e n d T r a n s f e r ) ,
. a 2 i D r e a d ( a 2 i D r e a d ) ,
. i2aDempty ( i2aDempty ) ,
. a 2 i D w r i t e ( a 2 i D w r i t e ) ,
. i 2 a D f u l l ( i 2 a D f u l l ) ,
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ;

c o n t r o l l e r P C cont rPC (
. progAddr ( progAddr ) ,
. i n s t r ( i n s t r ) ,
. z e r o ( z e r o ) ,
. e n d T r a n s f e r ( e n d T r a n s f e r ) ,
. a c c S t a t e ( a c c S t a t e ) ,
. i n i t F u n c ( i n i t F u n c ) ,
. i n i t A d d r ( i n t 2 a c c P r o g [ $ c l og2 ( ‘m ) − 1 : 0 ] ) ,
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. r e s e t ( r e s e t ) ,

. c l o c k ( c l o c k ) ) ;
con t ro l l e rAALU contAALU (

. i n s t r u c t i o n ( d e l a y e d I n s t r ) ,

. contrMemOut ( contrMemOut ) ,

. r e d 2 c o n t r ( r e d 2 c o n t r ) ,

. i n t 2 a c c P r o g ( i n t 2 a c c P r o g ) ,

. cAcc ( contrMemIn ) ,

. z e r o ( z e r o ) ,

. c l o c k ( c l o c k ) ) ;
endmodule
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Controller Data Memory: 4 controllerDataMemory.sv is the System Verilog file describing
CONTROLLER’s data memory.

/ * ***********************************************************************
F i l e :4 c o n t r o l l e r D a t a M e m o r y . sv
Name : C o n t r o l l e r Data Memory
D e s c r i p t i o n :
*********************************************************************** * /
module c o n t r o l l e r D a t a M e m o r y (

input l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] c o n t r D a t a A d d r ,
input l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] con t rDe lDa taAddr ,
output l o g i c [ ‘n − 1 : 0 ] contrMemOut ,
input l o g i c [ ‘n − 1 : 0 ] contrMemIn ,
input l o g i c [ 7 : 0 ] contrMemCom ,
input l o g i c [ 1 2 : 0 ] contrDelMemCom ,
input l o g i c c l o c k ) ;

/ / memCom: 00: nop ; 01: a b s o l u t e ; 10: r e l ; 11: r e l +up da t e
l o g i c [ 3 1 : 0 ] contrDM [ 0 : ‘m −1] ;
l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] cont rAddrReg ;
l o g i c [ 1 : 0 ] wCom ;
l o g i c [ 1 : 0 ] rCom ;
l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] wAddr ;
l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] rAddr ;
l o g i c addrLoad ;

/ / Transcode :
/ / memCom: 00: nop ; 01: abs ; 10: r e l ; 11: r e l +up da t e

always comb case ( contrDelMemCom [ 1 2 : 5 ] )
{ ‘ c s t o r e , ‘ d i r } : wCom = 2 ’ b01 ;
{ ‘ c s t o r e , ‘ c d r } : wCom = 2 ’ b01 ;
{ ‘ c s t o r e , ‘ r e l } : wCom = 2 ’ b10 ;
{ ‘ c s t o r e , ‘ c r l } : wCom = 2 ’ b10 ;
{ ‘ c s t o r e , ‘ r e i } : wCom = 2 ’ b11 ;
{ ‘ c s t o r e , ‘ c r i } : wCom = 2 ’ b11 ;
d e f a u l t : wCom = 2 ’ b00 ;

endcase
always comb i f ( contrMemCom [ 7 : 3 ] == ‘ c s t o r e )

rCom = 2 ’ b00 ;
e l s e case ( contrMemCom [ 2 : 0 ] )

‘ d i r : rCom = 2 ’ b01 ;
‘ c d r : rCom = 2 ’ b01 ;
‘ r e l : rCom = 2 ’ b10 ;
‘ c r l : rCom = 2 ’ b10 ;
‘ r e i : rCom = 2 ’ b11 ;
‘ c r i : rCom = 2 ’ b11 ;
d e f a u l t : rCom = 2 ’ b00 ;

endcase
a s s i g n addrLoad =

{ ‘ c o n t r , ‘imm , ‘ c r e l a } == contrDelMemCom ;
/ / Addres s compute
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always comb
case (wCom [ 1 : 0 ] )

2 ’ b01 : wAddr = c o n t r D e l D a t a A d d r ;
2 ’ b10 : wAddr = cont rAddrReg + c o n t r D e l D a t a A d d r ;
2 ’ b11 : wAddr = cont rAddrReg + c o n t r D e l D a t a A d d r ;

d e f a u l t : wAddr = c o n t r D e l D a t a A d d r ;
endcase

always comb
case ( rCom [ 1 : 0 ] )

2 ’ b01 : rAddr = c o n t r D a t a A d d r ;
2 ’ b10 : rAddr = cont rAddrReg + c o n t r D a t a A d d r ;
2 ’ b11 : rAddr = cont rAddrReg + c o n t r D a t a A d d r ;

d e f a u l t : rAddr = c o n t r D a t a A d d r ;
endcase

/ / O p e r a t i o n
a l w a y s f f @( posedge c l o c k ) begin

i f ( | rCom ) contrMemOut <= contrDM [ rAddr ] ;
i f ( |wCom) contrDM [ wAddr ] <= contrMemIn ;
i f (&wCom) cont rAddrReg

<= cont rAddrReg + c o n t r D e l D a t a A d d r ;
i f (&rCom ) cont rAddrReg

<= cont rAddrReg + c o n t r D a t a A d d r ;
i f ( addrLoad ) con t rAddrReg

<= contrMemIn [ $c l og 2 ( ‘m ) − 1 : 0 ] ;
end

endmodule

Controller Program Memory: 4 controllerProgramMemory.sv is the Verilog file describing
CONTROLLER’s program memory.

/ * ***********************************************************************
F i l e : 4 con t ro l l e rProgramMemory . s v
Name : C o n t r o l l e r Program Memory
D e s c r i p t i o n :
*********************************************************************** * /
module c o n t r o l l e r P r o g r a m M e m o r y (

input l o g i c [ 6 3 : 0 ] i 2 a P r o g ,
output l o g i c a 2 i P r e a d ,
input l o g i c i2aPempty ,
input l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] progAddr ,
output l o g i c [ 6 3 : 0 ] d u a l I n s t r ,
output l o g i c [ 6 3 : 0 ] d e l a y e d I n s t r ,
output l o g i c [ 1 : 0 ] a c c S t a t e ,
output l o g i c i n i t F u n c ,
output l o g i c ge tParam ,
input l o g i c r e s e t , c l o c k ) ;

l o g i c [ 6 3 : 0 ] contrPM [ 0 : ‘m −1] ;
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l o g i c [ $ c l og 2 ( ‘m ) − 1 : 0 ] loadReg ;

a l w a y s f f @( posedge c l o c k )
i f ( r e s e t ) a c c S t a t e <= ‘ i d l e ;

e l s e begin
i f ( ( a c c S t a t e == ‘ i d l e ) && ! i2aPempty &&

( i 2 a P r o g [ 3 1 : 2 4 ] == { ‘ c o n t r , ‘imm } ) &&
( i 2 a P r o g [ 2 3 : 1 9 ] == ‘ p l o a d ) )
a c c S t a t e <= ‘ l o a d i n g ;

i f ( ( a c c S t a t e == ‘ i d l e ) && ! i2aPempty &&
( i 2 a P r o g [ 3 1 : 2 4 ] == { ‘ c o n t r , ‘imm } ) &&
( i 2 a P r o g [ 2 3 : 1 9 ] == ‘ p r u n ) )
a c c S t a t e <= ‘ r u n n i n g ;

i f ( ( a c c S t a t e == ‘ l o a d i n g ) && ! i2aPempty &&
( i 2 a P r o g [ 3 1 : 2 4 ] == { ‘ c o n t r , ‘imm } ) &&
( i 2 a P r o g [ 2 3 : 1 9 ] == ‘ p r u n ) )
a c c S t a t e <= ‘ r u n n i n g ;

i f ( ( a c c S t a t e == ‘ r u n n i n g ) &&
( d u a l I n s t r [ 3 1 : 2 4 ] == { ‘ c o n t r , ‘imm } ) &&
( d u a l I n s t r [ 2 3 : 1 9 ] == ‘ h a l t ) )
a c c S t a t e <= ‘ i d l e ;

end
a s s i g n i n i t F u n c =

( a c c S t a t e == ‘ i d l e ) && ! i2aPempty &&
( i 2 a P r o g [ 3 1 : 2 4 ] == { ‘ c o n t r , ‘imm } ) &&
( i 2 a P r o g [ 2 3 : 1 9 ] == ‘ p r u n ) ;

a s s i g n ge tParam =
( a c c S t a t e == ‘ r u n n i n g ) && ! i2aPempty &&
( d e l a y e d I n s t r [ 3 1 : 2 4 ] == { ‘ c o n t r , ‘imm } ) &&
( d e l a y e d I n s t r [ 2 3 : 1 9 ] == ‘param ) ;

a l w a y s f f @( posedge c l o c k ) begin
i f ( a c c S t a t e == ‘ i d l e )

loadReg <= i 2 a P r o g [ $c log 2 ( ‘m ) − 1 : 0 ] ;
i f ( ( a c c S t a t e == ‘ l o a d i n g ) && ! i2aPempty )

loadReg <= loadReg + 1 ;
i f ( a c c S t a t e == ‘ r u n n i n g )

loadReg <= loadReg ;
end

a l w a y s f f @( posedge c l o c k )
i f ( ( a c c S t a t e == ‘ l o a d i n g ) && ! i2aPempty )

contrPM [ loadReg ] <= i 2 a P r o g ;

a l w a y s f f @( posedge c l o c k ) begin
d u a l I n s t r <= ( a c c S t a t e == ‘ r u n n i n g ) ?

contrPM [ progAddr ] : 0 ;
d e l a y e d I n s t r <= d u a l I n s t r ;

end
a s s i g n a 2 i P r e a d = ( ( a c c S t a t e == ‘ l o a d i n g ) && ! i2aPempty )

| | i n i t F u n c | | ge tParam ;
endmodule
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Controller to Array: 4 controller2distribute.sv is the Verilog file describing the connec-
tion between CONTROLLER and ARRAY.

/ * ***********************************************************************
F i l e : 4 c o n t r o l l e r 2 d i s t r i b u t e . s v
Name : C o n t r o l l e r t o Array D i s t r i b u t e
D e s c r i p t i o n :
*********************************************************************** * /
module c o n t r o l l e r 2 d i s t r i b u t e (

output l o g i c [ ‘n + 1 2 : 0 ] c o n t r 2 a r r a y ,
input l o g i c [ 3 1 : 0 ] contrMemIn ,
input l o g i c [ 6 3 : 0 ] d e l a y e d I n s t r ,
input l o g i c c l o c k ) ;

l o g i c [ 1 : 0 ] dsh [ 0 : $ c lo g2 ( ‘p ) ] ;
l o g i c [ 1 : 0 ] r e d I n s ;
l o g i c [ 2 : 0 ] s h i f t ;
i n t e g e r i ;

a s s i g n r e d I n s =
( ( d e l a y e d I n s t r [ 3 1 : 1 9 ] == { ‘ c o n t r , ‘imm , ‘ g s h i f t } ) &&

d e l a y e d I n s t r [ 2 ] ) ?
{1 ’ b1 , d e l a y e d I n s t r [ 0 ]} : 2 ’ b00 ;

a s s i g n s h i f t =
( ( d e l a y e d I n s t r [ 3 1 : 1 9 ] == { ‘ c o n t r , ‘imm , ‘ g s h i f t } ) &&

! d e l a y e d I n s t r [ 2 ] ) ?
{1 ’ b1 , d e l a y e d I n s t r [ 1 : 0 ] } : 3 ’ b000 ;

a l w a y s f f @( posedge c l o c k ) f o r ( i =0 ; i<$c l og 2 ( ‘p ) + 1 ; i = i +1)
dsh [ i ] <= ( i ==0) ? r e d I n s : dsh [ i − 1 ] ;

a s s i g n c o n t r 2 a r r a y =
{ dsh [ $ c l og2 ( ‘p ) ] ,

s h i f t ,
d e l a y e d I n s t r [ 6 3 : 5 6 ] ,

( ( ( d e l a y e d I n s t r [ 5 8 : 5 6 ] == ‘c im ) |
( d e l a y e d I n s t r [ 5 8 : 5 6 ] == ‘ c d r ) |
( d e l a y e d I n s t r [ 5 8 : 5 6 ] == ‘ c r l ) |
( d e l a y e d I n s t r [ 5 8 : 5 6 ] == ‘ c r i ) ) ?

contrMemIn :
{{8{ d e l a y e d I n s t r [ 5 5 ]}} , d e l a y e d I n s t r [ 5 5 : 3 2 ] } ) } ;

endmodule

Array of Cells: 3 array.sv are

/ * ***********************************************************************
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F i l e : 3 a r r a y . s v
Name : Array
D e s c r i p t i o n :
*********************************************************************** * /
module a r r a y ( input l o g i c [ 6 3 : 0 ] i 2 a D a t a ,

output l o g i c [ 6 3 : 0 ] a 2 i ,
input l o g i c [ 2 : 0 ] dataTransCom ,
input l o g i c [ ‘n + 1 2 : 0 ] c o n t r 2 a r r a y ,
output l o g i c [ ‘n − 1 : 0 ] r e d ,
input l o g i c c l o c k ) ;

/ / dataTransCom : 000 : nop
/ / dataTransCom : 100 : even i n s e r t
/ / dataTransCom : 101 : odd i n s e r t
/ / dataTransCom : 110 : even e x t r a c t
/ / dataTransCom : 111 : odd e x t r a c t

l o g i c [ ‘n + 1 : 0 ] map2reduce [ 0 : ‘p −1] ; / / f u n c [ 1 : 0 ] , acc
l o g i c [ 0 : ‘p −1] b o o l e a n ;
l o g i c [ 0 : ‘p −1] f i r s t ;
l o g i c [ 0 : ‘p −1] n e x t ;
l o g i c [ ‘n + 1 : 0 ] r e d 2 c o n t r ;

map map ( . i n t 2 a c c D a t a ( i 2 a D a t a ) ,
. a 2 i ( a 2 i ) ,
. dataTransCom ( dataTransCom ) ,
. c o n t r 2 a r r a y ( c o n t r 2 a r r a y ) ,
. map2reduce ( map2reduce ) ,
. r e d ( r e d ) ,
. b o o l e a n ( b o o l e a n ) ,
. f i r s t ( f i r s t ) ,
. n e x t ( n e x t ) ,
. c l o c k ( c l o c k ) ) ;

s can SCAN( b o o l e a n ,
f i r s t ,
n e x t ,
c l o c k ) ;

r e d u c e REDUCE( r e d 2 c o n t r ,
map2reduce ,
c l o c k ) ;

a s s i g n r e d = r e d 2 c o n t r [ ‘n − 1 : 0 ] ;
endmodule
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Figure C.5: Array for p = 8.

Map: 4 map.sv is the Verilog file describing the MAP section in ARRAY.

/ * ***********************************************************************
F i l e : 4 map . sv
Name : Map s e c t i o n
D e s c r i p t i o n :
*********************************************************************** * /
module map ( input l o g i c [ 6 3 : 0 ] i n t 2 a c c D a t a ,

output l o g i c [ 6 3 : 0 ] a 2 i ,
input l o g i c [ 2 : 0 ] dataTransCom ,
input l o g i c [ ‘n + 1 2 : 0 ] c o n t r 2 a r r a y ,
output l o g i c [ ‘n + 1 : 0 ] map2reduce [ 0 : ‘p −1] ,
input l o g i c [ ‘n − 1 : 0 ] r e d ,
output l o g i c [ 0 : ‘p −1] b o o l e a n ,
input l o g i c [ 0 : ‘p −1] f i r s t ,
input l o g i c [ 0 : ‘p −1] n e x t ,
input l o g i c c l o c k ) ;

/ / dataTransCom : 000 : nop
/ / dataTransCom : 100 : even i n s e r t
/ / dataTransCom : 101 : odd i n s e r t
/ / dataTransCom : 110 : even e x t r a c t
/ / dataTransCom : 111 : odd e x t r a c t

l o g i c [ ‘n : 0 ] l e f t E n d I n ;
l o g i c [ ‘n − 1 : 0 ] r i g h t E n d I n ;
l o g i c [ 0 : ‘p /2 −1] b o o l e a n 0 ;
l o g i c [ 0 : ‘p /2 −1] b o o l e a n 1 ;
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l o g i c [ 0 : ‘p /2 −1] f i r s t 0 ;
l o g i c [ 0 : ‘p /2 −1] f i r s t 1 ;
l o g i c [ 0 : ‘p /2 −1] n e x t 0 ;
l o g i c [ 0 : ‘p /2 −1] n e x t 1 ;
l o g i c [ ‘n : 0 ] r i g h t O u t 0 [ 0 : ‘p /4 −1] ;
l o g i c [ ‘n − 1 : 0 ] l e f t O u t 0 [ 0 : ‘p /4 −1] ;
l o g i c [ ‘n : 0 ] r i g h t O u t 1 [ 0 : ‘p /4 −1] ;
l o g i c [ ‘n − 1 : 0 ] l e f t O u t 1 [ 0 : ‘p /4 −1] ;
l o g i c i n s S e r i a l ;
l o g i c [ 1 : 0 ] r o t a t e S e l L e f t ;
l o g i c [ 1 : 0 ] r o t a t e S e l R i g h t ;
l o g i c [ 6 3 : 0 ] a c c 2 i n t D a t a 0 ;
l o g i c [ 6 3 : 0 ] a c c 2 i n t D a t a 1 ;
i n t e g e r i , j , k ;

always comb f o r ( i =0 ; i<‘p ; i = i +1)
case ( i [ 1 : 0 ] )

2 ’ b00 : b o o l e a n [ i ] = b o o l e a n 0 [ 2 * ( i / 4 ) ] ;
2 ’ b01 : b o o l e a n [ i ] = b o o l e a n 0 [ 2 * ( i / 4 ) + 1 ] ;
2 ’ b10 : b o o l e a n [ i ] = b o o l e a n 1 [ 2 * ( i / 4 ) ] ;
2 ’ b11 : b o o l e a n [ i ] = b o o l e a n 1 [ 2 * ( i / 4 ) + 1 ] ;

endcase
always comb f o r ( j =0 ; j<‘p / 4 ; j = j +1) begin

{ f i r s t 0 [2* j ] , f i r s t 0 [2* j +1]} =
{ f i r s t [4* j ] , f i r s t [4* j +1]} ;
{ f i r s t 1 [2* j ] , f i r s t 1 [2* j +1]} =
{ f i r s t [4* j + 2 ] , f i r s t [4* j +3]} ;

end
always comb f o r ( k =0; k<‘p / 4 ; k= k +1) begin

{ n e x t 0 [2* k ] , n e x t 0 [2* k +1]} =
{ n e x t [4* k ] , n e x t [4* k +1]} ;
{ n e x t 1 [2* k ] , n e x t 1 [2* k +1]} =
{ n e x t [4* k + 2] , n e x t [4* k +3]} ;

end
always comb

case ( r o t a t e S e l L e f t )
2 ’ b00 : l e f t E n d I n = { ‘n +1{1 ’ b0}} ;
2 ’ b01 : l e f t E n d I n = {1 ’ b0 , r i g h t O u t 1 [ ‘p / 4 − 1 ] [ ‘n − 1 : 0 ] } ;
2 ’ b10 : l e f t E n d I n = {1 ’ b0 , r e d } ;
2 ’ b11 : l e f t E n d I n = { ‘n +1{1 ’ b0}} ;

endcase
always comb

case ( r o t a t e S e l R i g h t )
2 ’ b00 : r i g h t E n d I n = { ‘n {1 ’ b0}} ;
2 ’ b01 : r i g h t E n d I n = l e f t O u t 0 [ 0 ] ;
2 ’ b10 : r i g h t E n d I n = r e d ;
2 ’ b11 : r i g h t E n d I n = { ‘n {1 ’ b0}} ;

endcase
a s s i g n a 2 i = dataTransCom [ 0 ] ? a c c 2 i n t D a t a 0 : a c c 2 i n t D a t a 1 ;
column c o l 0 (
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. i n t 2 a c c D a t a ( i n t 2 a c c D a t a ) ,

. a c c 2 i n t D a t a ( a c c 2 i n t D a t a 1 ) ,

. dataTransCom ( dataTransCom ) ,

. map2reduce ( map2reduce [ 0 : ‘p /2 −1] ) ,

. b o o l e a n ( b o o l e a n 0 ) ,

. f i r s t ( f i r s t 0 ) ,

. n e x t ( n e x t 0 ) ,

. r i g h t O u t ( r i g h t O u t 0 [ 0 : ‘p /4 −1] ) ,

. l e f t I n ({ l e f t E n d I n , r i g h t O u t 1 [ 0 : ‘p /4 −2]} ) ,

. l e f t O u t ( l e f t O u t 0 [ 0 : ‘p /4 −1] ) ,

. r i g h t I n ( l e f t O u t 1 [ 0 : ‘p /4 −1] ) ,

. c o n t r 2 a r r a y ( c o n t r 2 a r r a y ) ,

. r o t a t e S e l L e f t ( r o t a t e S e l L e f t ) ,

. r o t a t e S e l R i g h t ( ) ,

. i n d e x ( 1 ’ b0 ) ,

. c l o c k ( c l o c k ) ) ;
column c o l 1 (

. i n t 2 a c c D a t a ( i n t 2 a c c D a t a ) ,

. a c c 2 i n t D a t a ( a c c 2 i n t D a t a 0 ) ,

. dataTransCom ({ dataTransCom [ 2 : 1 ] , ! dataTransCom [ 0 ] } ) ,

. map2reduce ( map2reduce [ ‘p / 2 : ‘p −1] ) ,

. b o o l e a n ( b o o l e a n 1 ) ,

. f i r s t ( f i r s t 1 ) ,

. n e x t ( n e x t 1 ) ,

. r i g h t O u t ( r i g h t O u t 1 [ 0 : ‘p /4 −1] ) ,

. l e f t I n ( r i g h t O u t 0 [ 0 : ‘p /4 −1] ) ,

. l e f t O u t ( l e f t O u t 1 [ 0 : ‘p /4 −1] ) ,

. r i g h t I n ({ l e f t O u t 0 [ 1 : ‘p / 4 − 1 ] , r i g h t E n d I n } ) ,

. c o n t r 2 a r r a y ( c o n t r 2 a r r a y ) ,

. r o t a t e S e l L e f t ( ) ,

. r o t a t e S e l R i g h t ( r o t a t e S e l R i g h t ) ,

. i n d e x ( 1 ’ b1 ) ,

. c l o c k ( c l o c k ) ) ;
endmodule

Scan: 4 scan.sv is the Verilog file describing the SCAN section in ARRAY.

/ * ***********************************************************************
F i l e : 4 s c a n . sv
Name : Scan Network
D e s c r i p t i o n :
*********************************************************************** * /
module scan ( input l o g i c [ 0 : ‘p −1] b o o l e a n ,

output l o g i c [ 0 : ‘p −1] f i r s t ,
output l o g i c [ 0 : ‘p −1] n e x t ,
input l o g i c c l o c k ) ;

l o g i c [ 0 : ‘p −1] o u t ;
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o r P r e f i x o r P r e f i x ( . i n ( b o o l e a n ) ,
. o u t ( o u t ) ) ;

a l w a y s f f @( posedge c l o c k ) begin
f i r s t <= o u t & ˜ ( o u t >> 1 ) ;
n e x t <= ( o u t >> 1) ;

end
endmodule
endmodule

Figure C.6: Scan network.
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Figure C.7: OR prefix network.

Reduce: 4 reduce.sv is the Verilog file describing the REDUCE section in ARRAY.

/ * ***********************************************************************
F i l e : 4 r e d u c e . sv
Name : Reduce Network
D e s c r i p t i o n :
*********************************************************************** * /
module r e d u c e # ( parameter P= ‘p ) (

output l o g i c [ ‘n + 1 : 0 ] r e d 2 c o n t r ,
input l o g i c [ ‘n + 1 : 0 ] map2reduce [ 0 : P −1] ,
input l o g i c c l o c k ) ;

l o g i c [ ‘n + 1 : 0 ] out0 , ou t1 ;

genvar i ;
g e n e r a t e

i f ( P == 2) eRed e r e d ( map2reduce [ 0 : 1 ] ,
r e d 2 c o n t r ,
c l o c k ) ;

e l s e begin
r e d u c e # ( . P ( P / 2 ) )
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r e d u c e 0 ( . r e d 2 c o n t r ( ou t0 ) ,
. map2reduce ( map2reduce [ P / 2 : P − 1 ] ) ,
. c l o c k ( c l o c k ) ) ,

r e d u c e 1 ( . r e d 2 c o n t r ( ou t1 ) ,
. map2reduce ( map2reduce [ 0 : P / 2 − 1 ] ) ,
. c l o c k ( c l o c k ) ) ;

eRed e r e d u c e ( . i n ({ out0 , ou t1 } ) ,
. o u t ( r e d 2 c o n t r ) ,
. c l o c k ( c l o c k ) ) ;

end
endgenerate

endmodule

Figure C.8: Reduce network.
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C.2 Heterogeneous Architecture

The lowest level of the architecture is the micro-architecture used to define in the file 0 DEFINE:

• the micro-operations performed by HOST

• the micro-operations performed by CONTROLLER

• the micro-operations performed by each cell in MAP array

• the main parameters of the ACCELERATOR:

– n: the size of the word used in cells

– p: the number of cells in MAP array

– m: the size of local data memory (register file) in each cell

The next level in defining the architecture is Instruction Set Architecture by specifying the way the
instructions are generated using the micro-architecture. There are two code generators defined in the
following System Verilog files::

0 hostCodeGenerator.sv : defines the instruction code used to generate the binary form of the program
executed by HOST

0 accCodeGenerator.sv : defines the instruction code used to generate the binary form of the program
executed by CONTROLLER and ARRAY of cells

C.2.1 Micro-architecture: 0 DEFINES.vh

/ * ***********************************************************************
F i l e name : 0 DEFINES . vh
*********************************************************************** * /
‘ d e f i n e n ( 3 2 ) / / i n t e r n a l word
‘ d e f i n e p ( 1 6 ) / / number o f c e l l s
‘ d e f i n e m ( 1 0 2 4 ) / / memory s i z e

/ / / / / / / / / /
/ / HOST / /
/ / / / / / / / / /

/ * ***********************************************************************
Name : Host ’ s i n s t r u c t i o n s e t a r c h i t e c t u r e

i n s t r ={opCode [ 5 : 0 ] , d e s t [ 4 : 0 ] , l e f t [ 4 : 0 ] , r i g h t [ 4 : 0 ] , nu [ 1 0 : 0 ]} |
{opCode [ 5 : 0 ] , d e s t [ 4 : 0 ] , l e f t [ 4 : 0 ] , immue [ 1 5 : 0 ]}

reg [ 3 1 : 0 ] r f [ 0 : 3 1 ]
reg [ $ c l og2 ( ‘m ) −1:0] pc
reg cr
*********************************************************************** * /
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/ / CONTROL INSTRUCTIONS
‘ d e f i n e hnop 6 ’ b000000 / / pc <= pc+1
‘ d e f i n e hjmp 6 ’ b000001 / / pc <= pc+immue
‘ d e f i n e hjmpz 6 ’ b000010 / / pc <= ( r f [ l e f t ]==0) ? pc+immue : pc+1
‘ d e f i n e hjmpnz 6 ’ b000011 / / pc <= ! ( r f [ l e f t ]==0) ? pc+immue : pc+1
‘ d e f i n e hpsend 6 ’ b100000 / / pc <= ( h o s t 2 i n t [31:24]==

/ / { ‘prun , ‘ c t l } ) ? pc + 1 : pc
/ / h 2 i P w r i t e = 1
/ / r f [ l e f t ] <= r f [ l e f t ]+! i 2 h P f u l l

‘ d e f i n e h d g e t 6 ’ b100010 / / pc <= ( l e f t O u t ==r i g h t O u t ) ?
/ / pc + 1 : pc
/ / i2hDread = 1
/ / r f [ d e s t ] <= r f [ l e f t ]+! i 2 h D f u l l

‘ d e f i n e hdsend 6 ’ b100001 / / pc <= ( l e f t O u t ==r i g h t O u t ) ?
/ / pc + 1 : pc
/ / h 2 i D w r i t e = 1
/ / r f [ l e f t ] <= r f [ l e f t ]+! i 2 h D f u l l

‘ d e f i n e h i n t w a i t 6 ’ b000111 / / pc <= ( i n t ) ? pc+1 : pc
‘ d e f i n e hajmp 6 ’ b001000 / / pc <= immue
‘ d e f i n e h h a l t 6 ’ b001001 / / pc <= pc
‘ d e f i n e h s t t c c 6 ’ b001010 / / s t a r t h o s t c y c l e c o u n t e r
‘ d e f i n e h s t p c c 6 ’ b001011 / / s t o p h o s t c y c l e c o u n t e r

/ / FUNCTIONAL INSTRUCTIONS
‘ d e f i n e hadd 6 ’ b010000 / / { cr , r f [ d e s t ]} <= r f [ l e f t ]+ r f [ r i g h t ]
‘ d e f i n e ha dd c r 6 ’ b010001 / / { cr , r f [ d e s t ]} <= r f [ l e f t ]+ r f [ r i g h t ]+ cr
‘ d e f i n e hsub 6 ’ b010010 / / { cr , r f [ d e s t ]} <= r f [ l e f t ]− r f [ r i g h t ]
‘ d e f i n e h s u b c r 6 ’ b010011 / / { cr , r f [ d e s t ]} <= r f [ l e f t ]− r f [ r i g h t ]− cr
‘ d e f i n e hmul t 6 ’ b010100 / / { cr , r f [ d e s t ]} <= r f [ l e f t ]* r f [ r i g h t ]
‘ d e f i n e hbwand 6 ’ b010101 / / { cr , r f [ d e s t ]} <= { cr , r f [ l e f t ] & r f [ r i g h t ]}
‘ d e f i n e hbwor 6 ’ b010110 / / { cr , r f [ d e s t ]} <= { cr , r f [ l e f t ] | r f [ r i g h t ]}
‘ d e f i n e hbwxor 6 ’ b010111 / / { cr , r f [ d e s t ]} <= { cr , r f [ l e f t ] ˆ r f [ r i g h t ]}
‘ d e f i n e haddv 6 ’ b011000

/ / { cr , r f [ d e s t ]} <= r f [ l e f t ]+{{16{ immue [15}} , immue}
‘ d e f i n e haddc rv 6 ’ b011001

/ / { cr , r f [ d e s t ]} <= r f [ l e f t ]+{{16{ immue [15}} , immue}+ cr
‘ d e f i n e hsubv 6 ’ b011010

/ / { cr , r f [ d e s t ]} <= r f [ l e f t ] −{{16{ immue [15}} , immue}
‘ d e f i n e h s u b c r v 6 ’ b011011

/ / { cr , r f [ d e s t ]} <= r f [ l e f t ] −{{16{ immue [15}} , immue}− cr
‘ d e f i n e hmul tv 6 ’ b011100

/ / { cr , r f [ d e s t ]} <= r f [ l e f t ]*{{16{ immue [15}} , immue}
‘ d e f i n e hbwandv 6 ’ b011101

/ / { cr , r f [ d e s t ]} <= { cr , r f [ l e f t ]&{{16{ immue [15}} , immue}}
‘ d e f i n e hbworv 6 ’ b011110

/ / { cr , r f [ d e s t ]} <= { cr , r f [ l e f t ] | {{1 6{ immue [15}} , immue}}
‘ d e f i n e hbwxorv 6 ’ b011111

/ / { cr , r f [ d e s t ]} <= { cr , r f [ l e f t ] ˆ{{16{ immue [15}} , immue}}

/ / DATA TRANSFER INSTRUCTIONS
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‘ d e f i n e h f s e n d 6 ’ b100011 / / f u n c t i o n send :
/ / { code [ 5 : 0 ] , ‘prun , ‘ c t l , i n i t A d d r e s s }

‘ d e f i n e hss en d 6 ’ b100100 / / s c a l a r send : { code [ 5 : 0 ] , s c a l a r }
‘ d e f i n e h v a l u e 6 ’ b101000 / / { cr , r f [ d e s t ]} <= { cr ,{{16{ immue [15}} , immue}}
‘ d e f i n e h i n s v a l 6 ’ b101001 / / { cr , r f [ d e s t ]} <= { cr , { r f [ l e f t ] [ 1 5 : 0 ] , immue}
‘ d e f i n e h l o a d 6 ’ b101010 / / { cr , r f [ d e s t ]} <= { cr , hDmem[ r f [ l e f t ]}
‘ d e f i n e h s t o r e 6 ’ b111011 / / hDmem[ r f [ l e f t ] ] <= r f [ r i g h t ]

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / ACCELERATOR’ S CONTROLLER / /
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ * ***********************************************************************
A c c e l e r a t o r ’ s s t a t e :

*********************************************************************** * /
‘ d e f i n e i d l e 2 ’ b00
‘ d e f i n e l o a d i n g 2 ’ b01
‘ d e f i n e r u n n i n g 2 ’ b10

/ * ***********************************************************************
A d d r e s s i n g modes d e f i n i n g t h e r i g h t operand :

*********************************************************************** * /
‘ d e f i n e imm 3 ’ b000 / / op : immue
‘ d e f i n e d i r 3 ’ b001 / / op : mem[ immue ]
‘ d e f i n e r e l 3 ’ b010 / / op : mem[ addrReg + immue ]
‘ d e f i n e r e i 3 ’ b011 / / op : mem[ addrReg + immue ] ; addrReg = addrReg + immue
‘ d e f i n e cim 3 ’ b100 / / op : coOperand
‘ d e f i n e c d r 3 ’ b101 / / op : mem[ coOperand ]
‘ d e f i n e c r l 3 ’ b110 / / op : mem[ addrReg + coOpereand ]
‘ d e f i n e c t l 3 ’ b111 / / c o n t r o l

/ * ***********************************************************************
Name : C o n t r o l l e r ’ s i n s t r u c t i o n s e t a r c h i t e c t u r e

i n s t r = { con trOpcode [ 4 : 0 ] , contrMode [ 2 : 0 ] , contr immue [ 2 3 : 0 ]}

reg [ $ c l og 2 ( ‘m ) −1:0] cPC
reg [ 3 1 : 0 ] cAcc / / c o n t r o l l e r ’ s a c c u m u u l a t o r
reg cCR / / c o n t r o l l e r ’ s c a r r y
reg [ $ c l og2 ( ‘m ) −1:0] cAddrReg / / c o n t r o l l e r ’ s a d d r e s s reg .
reg [ 3 1 : 0 ] cMem / / c o n t r o l l e r ’ s da ta memory
*********************************************************************** * /
/ / FUNCTIONAL INSTRUCTIONS contrMode != 111
‘ d e f i n e cadd 5 ’ b00000 / / {cCR , cAcc} <= cAcc + op
‘ d e f i n e c a d d c r 5 ’ b00001 / / {cCR , cAcc} <= cAcc + op + cCR
‘ d e f i n e csub 5 ’ b00010 / / {cCR , cAcc} <= cAcc − op
‘ d e f i n e c s u b c r 5 ’ b00011 / / {cCR , cAcc} <= cAcc − op − cCR
‘ d e f i n e cmul t 5 ’ b00100 / / {cCR , cAcc} <= {cCR , cAcc * op}
‘ d e f i n e cbwand 5 ’ b00101 / / {cCR , cAcc} <= {cCR , cAcc & op}
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‘ d e f i n e cbwor 5 ’ b00110 / / {cCR , cAcc} <= {cCR , cAcc | op}
‘ d e f i n e cbwxor 5 ’ b00111 / / {cCR , cAcc} <= {cCR , cAcc ˆ op}
/ / DATA TRANSFER INSTRUCTIONS
‘ d e f i n e c l o a d 5 ’ b01000 / / {cCR , cAcc} <= {cCR , op}
‘ d e f i n e c i n s v a l 5 ’ b01001 / / {cCR , cAcc} <= {cCR , ( cAcc [ 2 3 : 0 ] ˆ op [ 7 : 0 ]}
‘ d e f i n e r e d l o a d 5 ’ b01010 / / {cCR , cAcc} = r e d u c t i o n O u t
‘ d e f i n e c s t o r e 5 ’ b01011 / / cMem <= cAcc
‘ d e f i n e c s h i f t 5 ’ b01100 / / s h i f t one p o s i t i o n immue coded
/ / CONTROL INSTRUCTIONS contrMode == 111
‘ d e f i n e nop 5 ’ b00000 / / pc <= pc+1
‘ d e f i n e jmp 5 ’ b00001 / / pc <= pc+immue
‘ d e f i n e b r z 5 ’ b00010 / / pc <= cAcc=0 ? pc+immue : pc+1
‘ d e f i n e brnz 5 ’ b00011 / / pc <= cAcc=0? pc+1 : pc+immue
‘ d e f i n e b r z d e c 5 ’ b00100 / / pc <= cAcc=0 ? pc+immue : pc+1
‘ d e f i n e b r n z d e c 5 ’ b00101 / / pc <= cAcc=0 ? pc+1 : pc+immue
‘ d e f i n e ajmp 5 ’ b00110 / / pc <= immue
‘ d e f i n e h a l t 5 ’ b00111 / / pc <= pc
‘ d e f i n e s e t i n t 5 ’ b01000 / / s e t i n t e r r u p t
‘ d e f i n e d a t a i n s 5 ’ b01001 / / i n s e r t i n a r r a y
‘ d e f i n e d a t a e x t 5 ’ b01010 / / e x t r a c t from a r r r a y
‘ d e f i n e c r e l a 5 ’ b01011 / / cAddrReg <= cAcc ; load a d d r e s s
‘ d e f i n e s t a r t 5 ’ b11011 / / s t a r t c y c l e c o u n t e r
‘ d e f i n e s t o p 5 ’ b11100 / / s t o p c y c l e c o o u n t e r
‘ d e f i n e param 5 ’ b11101 / / l oad parame te r
‘ d e f i n e p l o a d 5 ’ b11110 / / l oad program s t a r t i n g t o immue
‘ d e f i n e prun 5 ’ b11111 / / run t h e program a t immue

/ / / / / / / / / / / / / / / / / / / / / / / /
/ / ACCELERATOR’ S ARRAY / /
/ / / / / / / / / / / / / / / / / / / / / / / /

/ * ***********************************************************************
Name : Array ’ s i n s t r u c t i o n s e t a r c h i t e c t u r e

i n s t r = { arrayOpcode [ 4 : 0 ] , arrayMode [ 2 : 0 ] , immue [ 2 3 : 0 ]}

reg [ 3 1 : 0 ] acc [ 0 : p −1] / / array ’ s a c c u m u u l a t o r
reg cr [ 0 : p−1] / / array ’ s c a r r y
reg [ $ c l og2 (m) −1:0] addrReg [ 0 : p −1] / / array ’ s a d d r e s s reg .
reg [ n −1:0] mem[ 0 :m] / / array ’ s da ta memory
reg [ $ c l og2 ( p ) −1] a c t [ 0 : p −1] / / a c t i v a t e c o u n t e r
reg [ n −1:0] s r [ 0 : p −1] / / s e r i a l r e g i s t e r
*********************************************************************** * /
/ / FUNCTIONAL INSTRUCTIONS contrMode != 111
‘ d e f i n e add 5 ’ b00000 / / {aCR , aAcc} <= aAcc + op
‘ d e f i n e a d d c r 5 ’ b00001 / / {aCR , aAcc} <= aAcc + op + cr
‘ d e f i n e sub 5 ’ b00010 / / {aCR , aAcc} <= aAcc − op
‘ d e f i n e s u b c r 5 ’ b00011 / / {aCR , aAcc} <= aAcc − op − cr
‘ d e f i n e mul t 5 ’ b00100 / / {aCR , aAcc} <= {aCR , aAcc * op}
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‘ d e f i n e bwand 5 ’ b00101 / / {aCR , aAcc} <= {aCR , aAcc & op}
‘ d e f i n e bwor 5 ’ b00110 / / {aCR , aAcc} <= {aCR , aAcc | op}
‘ d e f i n e bwxor 5 ’ b00111 / / {aCR , aAcc} <= {aCR , aAcc ˆ op}
/ / DATA TRANSFER INSTRUCTIONS
‘ d e f i n e l o a d 5 ’ b01000 / / {aCR , aAcc} <= {aCR , op}
‘ d e f i n e s t o r e 5 ’ b01001 / / aMem[ immue ] <= aAcc
‘ d e f i n e s e n d i o 5 ’ b01010 / / ioReg [ i ] <= aMem[ immue ] ; i o S e t
‘ d e f i n e g e t i o 5 ’ b01011 / / aMem[ immue ] <= ioReg [ i ] ; i o R s t
‘ d e f i n e i n s v a l 5 ’ b01100 / / {aCR , aAcc} <= {aCR , ( aAcc [ 2 3 : 0 ] , immue [ 7 : 0 ]}
‘ d e f i n e s e a r c h 5 ’ b01101 / / where ! ( b [ i ] & acc [ i ]=op ) ; a c t <= a c t +1
‘ d e f i n e c s e a r c h 5 ’ b01110 / / where ! ( b [ i −1] & acc [ i ]=op ) ; a c t <= a c t +1
‘ d e f i n e l o a d i 5 ’ b01111 / / l oad & 1 e f t i n s e r t redOut i n s r

/ / CONTROL INSTRUCTIONS contrMode == 111
‘ d e f i n e a l l a c t 5 ’ b10000 / / a l l c e l l s a c t i v e a c t [ i ] <= 0
‘ d e f i n e where 5 ’ b10001 / / where ( b [ i ] & cond ) a c t <= a c t +1
‘ d e f i n e e l sew 5 ’ b10010 / / i f ( a c t =0) ac t <=1; i f ( a c t =1) ac t <=0
‘ d e f i n e back 5 ’ b10011 / / a c t <= act −1 as p o s i t i v e i n t e g e r
/ / GLOBAL INSTRUCTIONS contrMode == 111
‘ d e f i n e s h i f t 5 ’ b10100 / / s h i f t s a c c o r d i n g t o immue [ 2 : 0 ]
‘ d e f i n e s e l s h 5 ’ b10101 / / s e l e c t i o n s h i f t
‘ d e f i n e i n s e r t 5 ’ b10110 / / i n s e r t i n f i r s t p o s i t i o n i n s r
‘ d e f i n e d e l e t e 5 ’ b10111 / / d e l e t e i n f i r s t p o s i t i o n i n s r
‘ d e f i n e i x l o a d 5 ’ b11000 / / acc [ i ] <= i
‘ d e f i n e a r e l a 5 ’ b11001 / / aAddrReg <= aAcc
‘ d e f i n e s e t r e d 5 ’ b11010 / / s e t reduce ’ s f u n c t i o n
‘ d e f i n e g e t s r 5 ’ b11011 / / acc [ i ] <= s r [ i ]
‘ d e f i n e s e n d s r 5 ’ b11100 / / s r [ i ] <= acc [ i ]
‘ d e f i n e r e d i n s 5 ’ b11101 / / 1 e f t i n s e r t i n s e r i a l r e g i s t e r
‘ d e f i n e g s h i f t 5 ’ b11110 / / g l o b a l s h i f t s ( immue [ 2 : 0 ] )

The Instruction Set Architecture (ISA), based on the previously defined micro-architectures, has two
components:

• HOST ISA defined in 0 hostCodeGenerator.sv (see below) is a typical RISC ISA

• ACCELERATOR ISA with its two components:

– CONTROLLER ISA defined in 0 accCodeGenerator.sv (see below) is a typical RISC
ISA

– ARRAY ISA defined in 0 accCodeGenerator.sv (see below) is a an atypical ISA with
instructions specific for an array of execution units designed as an accumulator-based engine
working with a large two-port register file.

C.2.2 HOST’s Instruction Set Architecture

Code Generator for Host: 0 hostCodeGenerator.sv

This file is included in 0 simulator.sv Verilog file to generate the binary form of the program
0 hProgram.sv executed by HOST.
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/ * ***********************************************************************
F i l e name : 0 h o s t C o d e G e n e r a t o r . s v

CODE GENERATOR FOR HOST

*********************************************************************** * /
reg [ 5 : 0 ] opCode ;
reg [ 4 : 0 ] d e s t ;
reg [ 4 : 0 ] l e f t ;
reg [ 4 : 0 ] r i g h t ;
reg [ 1 5 : 0 ] v a l u e ;
reg [ 9 : 0 ] a d d r C o u n t e r ;
reg [ 9 : 0 ] l a b e l T a b [ 0 : 1 0 2 3 ] ;

‘ i n c l u d e ” 0 DEFINES . vh ”

ta sk endLine ;
begin

d u t . h o s t . hostProgramMemory . hPmem[ a d d r C o u n t e r ] [ 3 1 : 0 ] =
{ opCode ,

d e s t ,
l e f t ,
v a l u e } ;

a d d r C o u n t e r = a d d r C o u n t e r + 1 ;
end

endtask

/ / s e t s l a b e l T a b i n t h e f i r s t pas s
/ / a s s o c i a t i n g ’ c o u n t e r ’ w i t h ’ l a b e l I n d e x ’
ta sk hLB ;

input [ 5 : 0 ] l a b e l I n d e x ;
l a b e l T a b [ l a b e l I n d e x ] = a d d r C o u n t e r ;

endtask
/ / u s e s t h e c o n t e n t o f l a b e l T a b i n t h e second pass
ta sk hULB ;

input [ 5 : 0 ] l a b e l I n d e x ;
v a l u e = l a b e l T a b [ l a b e l I n d e x ] − a d d r C o u n t e r ;

endtask

‘ i n c l u d e ”cgHOST LIBRARY . sv ”

/ / CONTROL INSTRUCTIONS
ta sk hNOP ; / / i n c r e m e n t h o s t program c o u n t e r : pc <= pc + 1

begin opCode = ‘hnop ;
d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b0 ;
endLine ;

end
endtask



C.2. HETEROGENEOUS ARCHITECTURE 237

ta sk hJMP ; / / u n c o n d i t i o n a l jump t o a d d r e s s l a b e l e d w i t h ” l a b e l ”
input [ 1 5 : 0 ] l a b e l ;
begin opCode = ‘hjmp ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
hULB( l a b e l ) ;
endLine ;

end
endtask

task hJMPZ ; / / jump i f ( r f [ r e g F i l e ] == 0) t o l a b e l
input [ 4 : 0 ] r e g f i l e ;
input [ 9 : 0 ] l a b e l ;
begin opCode = ‘hjmpz ;

d e s t = 5 ’ b0 ;
l e f t = r e g f i l e ;
hULB( l a b e l ) ;
endLine ;

end
endtask

task hJMPNZ ; / / jump i f ! ( r f [ r e g F i l e ] == 0) t o l a b e l
input [ 4 : 0 ] r e g f i l e ;
input [ 9 : 0 ] l a b e l ;
begin opCode = ‘hjmpnz ;

d e s t = 5 ’ b0 ;
l e f t = r e g f i l e ;
hULB( l a b e l ) ;
endLine ;

end
endtask

task hPSEND ; / / program send :
/ / pc <= ( h o s t 2 i n t [ 3 1 : 2 4 ] == \{ prun , c t l \} ) ? pc+1 : pc
/ / h 2 i P w r i t e = 1
/ / r f [ d e s t ] <= r f [ l e f t ]+! i 2 h P f u l l

input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
begin opCode = ‘ h p s e n d ;

d e s t = d ;
l e f t = l ;
v a l u e = 16 ’ b0 ;
endLine ;

end
endtask

task hDGET ; / / da ta g e t :
/ / pc <= ( l e f t O u t == r i g h t O u t ) ? pc+1 : pc
/ / i2hDread = 1
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/ / r f [ d e s t ] <= r f [ l e f t ] + ! i2hDempty
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ; / / i n i t i a l a d d r e s s
input [ 4 : 0 ] r ; / / f i n a l a d d r e s s
begin opCode = ‘ h d g e t ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hDSEND ; / / da ta send :
/ / pc <= ( l e f t O u t == r i g h t O u t ) ? pc+1 : pc
/ / i 2 h D w r i t e = 1
/ / r f [ d e s t ] <= r f [ l e f t ] + ! i 2 h D f u l l

input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ; / / i n i t i a l a d d r e s s
input [ 4 : 0 ] r ; / / f i n a l a d d r e s s
begin opCode = ‘ h d s e n d ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hINTWAIT ; / / i n t e r r u p t w a i t : pc <= ( i n t ) ? pc+1 : pc
begin opCode = ‘ h i n t w a i t ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b0 ;
endLine ;

end
endtask

task hAJMP ; / / a b s o l u t e jump : pc <= s c a l a r
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘ha jmp ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hHALT ; / / pc <= pc
begin opCode = ‘ h h a l t ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
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v a l u e = 16 ’ b0 ;
endLine ;

end
endtask

task hSTARTCC ; / / s t a r t h o s t c y c l e c o u n t e r
begin opCode = ‘ h s t t c c ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b0 ;
endLine ;

end
endtask

task hSTOPCC ; / / s t o p h o s t c y c l e c o u n t e r
begin opCode = ‘ h s t p c c ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b0 ;
endLine ;

end
endtask

/ / FUNCTIONAL INSTRUCTIONS
ta sk hADD; / / { cr , r f [ d ]} <= r f [ l ] + r f [ r ]

input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
begin opCode = ‘hadd ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hADDCR; / / { cr , r f [ d ]} <= r f [ l ] + r f [ r ] + cr
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
begin opCode = ‘ h a d d c r ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hSUB ; / / { cr , r f [ d ]} <= r f [ l ] − r f [ r ]
input [ 4 : 0 ] d ;
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input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
begin opCode = ‘ h s u b ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hSUBCR ; / / { cr , r f [ d ]} <= r f [ l ] − r f [ r ] − cr
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
begin opCode = ‘ h s u b c r ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hMULT; / / r f [ d ] <= r f [ l ] * r f [ r ]
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
begin opCode = ‘ h m u l t ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hAND; / / r f [ d ] <= r f [ l ] & r f [ r ]
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
begin opCode = ‘hbwand ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hOR ; / / r f [ d ] <= r f [ l ] | r f [ r ]
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
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begin opCode = ‘hbwor ;
d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hXOR; / / r f [ d ] <= r f [ l ] ˆ r f [ r ]
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
begin opCode = ‘hbwxor ;

d e s t = d ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

task hADDV; / / { cr , r f [ d ]} <= r f [ l ] + hVal
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘haddv ;

d e s t = d ;
l e f t = l ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hADDCRV; { cr , r f [ d ]} <= r f [ l ] + hVal + c r
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘ h a d d c r v ;

d e s t = d ;
l e f t = l ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hSUBV ; { cr , r f [ d ]} <= r f [ l ] − hVal
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘ hsu bv ;

d e s t = d ;
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l e f t = l ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hSUBCRV; { cr , r f [ d ]} <= r f [ l ] − hVal − c r
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘ h s u b c r v ;

d e s t = d ;
l e f t = l ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hMULTV; r f [ d ] <= r f [ l ] * hVal
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘ h m u l t v ;

d e s t = d ;
l e f t = l ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hANDV; r f [ d ] <= r f [ l ] & {{16{ hVal [ 1 5}} , hVal}
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘hbwandv ;

d e s t = d ;
l e f t = l ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hORV; r f [ d ] <= r f [ l ] | {{16{ hVal [ 1 5}} , hVal}
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘hbworv ;

d e s t = d ;
l e f t = l ;
v a l u e = s c a l a r ;
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endLine ;
end

endtask

task hXORV; r f [ d ] <= r f [ l ] ˆ {{16{ hVal [ 1 5}} , hVal}
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘hbwxorv ;

d e s t = d ;
l e f t = l ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

/ / DATA TRANSFER INSTRUCTIONS
ta sk hVALUE; r f [ d ] <= {{16{ hVal [ 1 5}} , hVal}

input [ 4 : 0 ] d ;
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘ h v a l u e ;

d e s t = d ;
l e f t = 5 ’ b0 ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hINSVAL ; r f [ d ] <= { r f [ l e f t ] [ 1 5 ] , hVal}
input [ 4 : 0 ] d ;
input
input [ 1 5 : 0 ] s c a l a r ;
begin opCode = ‘ h i n s v a l ;

d e s t = d ;
l e f t = 5 ’ b0 ;
v a l u e = s c a l a r ;
endLine ;

end
endtask

task hLOAD; r f [ d ] <= hDataMem [ r f [ l ] ]
input [ 4 : 0 ] d ;
input [ 4 : 0 ] l ;
begin opCode = ‘ h l o a d ;

d e s t = d ;
l e f t = l ;
v a l u e = 16 ’ b0 ;
endLine ;

end
endtask
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ta sk hSTORE ; / / hDataMem [ r f [ l ] ] <= r f [ r ]
input [ 4 : 0 ] l ;
input [ 4 : 0 ] r ;
begin opCode = ‘ h s t o r e ;

d e s t = 5 ’ b0 ;
l e f t = l ;
v a l u e = { r , 11 ’ b0 } ;
endLine ;

end
endtask

/ / RUNNING
i n i t i a l begin a d d r C o u n t e r = 0 ;

‘ i n c l u d e ” 0 hProgram . sv ” / / f i r s t pas s
a d d r C o u n t e r = 0 ;
‘ i n c l u d e ” 0 hProgram . sv ” / / s econd pas s

end

C.2.3 ACCELERATOR’s Instruction Set Architecture

This file is included in 0 simulator.sv Verilog file to generate the binary form of the two-column
assembly program 0 aProgram.sv executed by ACCELERATOR. A synthetic form is presented in the
next 4 tables, and the explicit form for each instructions follows after.

The first column and the first line in Table 6.1 contains components of the micro-architecture.

TRANSFER :

program run starting from cVal :

• cPRUN: instruction to self-delimit the program loaded by HOST in

CONTOLLER’s program memory

program load starting from cVal :

• cPLOAD: instruction to start in CONTROLLER the loading of the program

sent by HOST

parameter load :

• cPARAM: acc <= progFIFOout

pop from inDataFIFO and insert in ARRAY :

• cDATAINS

extract from ARRAY and push in outDataFIFO :

• cDATAEXT
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interrupt set to HOST :

• cSETINT

input-output register store :

• GETIO: mem[i][aVal] <= ioReg[i]

input-output register relative store :

• RGETIO: mem[i][addrr[i] + aVal] <= ioReg[i]

input-output register relative store & address increment :

• RIGETIO: mem[i][addr[i] + aVal] <= ioReg[i]

addr[i] <= addr[i] + aVal

input-output register absolute load :

• SENDIO: ioReg[i] <= mem[i][aVal]

input-output register relative load & address update :

• SENDIO: ioReg[i] <= mem[i][addr[i] + aVal] addr[i] <= addr[i] + aVal

CONTROL

flow control :

• cHALT: pc <= pc

• cNOP: pc <= pc + 1

• cJMP: pc <= pc + cVal

• cAJMP: pc <= cVal

• cBRNZ: pc <= (acc == 0) ? pc + 1 : pc + cVal

• cBRZ: pc <= (acc == 0) pc + cVal : pc + 1

• cBRNZDECpc <= (acc == 0) ? pc + 1 : pc + cVal; acc <= acc - 1

• cBRZDEC: pc <= (acc == 0) pc + cVal : pc + 1; acc <= acc - 1

spatial control in array :

• ACTIVATE: b[i] <= 1

• WHEREZERO: b[i] <= (b[i] && acc[i] == 0) ? 1 : 0

• WHERECARRY: b[i] <= (b[i] && cy[i]) ? 1 : 0

• WHERENEGATIVE: b[i] <= (b[i] && acc[i][n-1]) ? 1 : 0

• WHEREPREVACT: b[i] <= b[i] ? b[i-1] : 0

• WHEREFIRST: b[i] <= (first) ? 1 : 0

• WHERENEXT: b[i] <= (next) ? 1 : 0
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• WHEREPREV b[i] <= (next || first) ? 1 : 0

• WHERENZERO: b[i] <= !(b[i] && acc[i] == 0) ? 1 : 0

• WHERENCARRY: b[i] <= !(b[i] && cy[i]) ? 1 : 0

• WHERENNEGATIVE: b[i] <= !(b[i] && acc[i][n-1]) ? 1 : 0

• WHERENPREVACT: b[i] <= !(i == 0) ? 0 : b[i-1]

• WHERENFIRST: b[i] <= !(first) ? 1 : 0

• WHERENNEXT: b[i] <= !(next) ? 1 : 0

• WHERENPREV b[i] <= !(next || first) ? 1 : 0

• ELSEWHERE: activates the most recently deactivated cell

• ENDWHERE: cancels the effect of the last "where" selection

• SELSHIFT: b[i] <= b[i-1]

LOAD

immediate load :

• cVLOAD: acc <= cVal

• VLOAD: acc[i] <= aVal

insert value :

• cINSVAL: acc <= {acc[23:0], cVal[7:0]}
• INSVAL: acc[i] <= {acc[i][23:0], aVal[7:0]}

absolute load :

• cLOAD: acc <= mem[cVal]

• LOAD: acc[i] <= mem[i][aVal]

relative load :

• cRLOAD: acc <= mem[addr + cVal]

• RLOAD: acc[i] <= mem[i][addr[i] + aVal]

relative load & increment :

• cRILOAD: acc <= mem[addr + cVal]

addr <= addr + cVal

• RILOAD: acc[i] <= mem[i][addr[i] + aVal]

addr[i] <= addr[i] + aVal

co-operand immediate load :

• cCLOAD: acc <= redOut

• CLOAD: acc[i] <= acc
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co-operand absolute load :

• CDLOAD: acc[i] <= mem[i][acc]

co-operand relative load :

• CDLOAD: acc[i] <= mem[i][addr[i] + acc]

index load :

• IXLOAD: acc[i] <= i

serial register load :

• GETSR: acc[i] <= serialReg[i]

input-output register load :

• GETIO: mem[i][aVal] <= ioReg[i]

STORE

relative address store :

• cADDRLD: addr <= acc

• ADDRLD: addr[i] <= acc[i]

absolute store :

• cSTORE: mem[cVal] <= acc

• STORE: mem[i][aVal] <= acc[i]

relative store :

• cRSTORE: mem[addr + cVal] <= acc

• RSTORE: mem[i][addr[i] + aVal] <= acc[i]

relative store & address update :

• cRISTORE: mem[addr + cVal] <= acc

addr <= addr + cVal

• RISTORE: mem[i][addr[i] + aVal] <= acc[i]

addr[i] <= addr[i] + aVal

co-operand absolute store :

• CSTORE: mem[i][acc] <= acc[i]

co-operand relative store :

• CSTORE: mem[i][addr[i] + acc] <= acc[i]
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ADDITION :

immediate addition :

• cVADD: {cy, acc} <= acc + cVal

• VADD: {cy[i], acc[i]} <= acc[i] + aVal

absolute addition :

• cADD: {cy, acc} <= acc + mem[cVal]

• ADD: {cy[i], acc[i]} <= acc[i] + mem[i][aVal]

relative addition :

• cRADD: {cy, acc} <= acc + mem[addr + cVal]

• RADD: {cy[i], acc[i]} <= acc[i] + mem[i][addr[i] + aVal]

relative addition & increment :

• cRIADD: {cy, acc} <= acc + mem[addr + cVal]

addr <= addr + cVal

• RIADD: {cy[i], acc[i]} <= acc[i] + mem[i][addr[i] + aVal]

addr[i] <= addr[i] + aVal

immediate addition with co-operand :

• cCADD: acc{cy, acc} <= acc + redOut

• CADD: {cy[i], acc[i]} <= acc[i] + acc

absolute addition with co-operand :

• CAADD: {cy[i], acc[i]} <= acc[i] + mem[i][acc]

relative addition with co-operand :

• CRADD: {cy[i], acc[i]} <= acc[i] + mem[i][addr[i] + acc]

ADDITION WITH CARRY :

immediate addition with carry :

• cVADDC: {cy, acc} <= acc + cVal + cy

• VADDC: {cy[i], acc[i]} <= acc[i] + aVal + cy[i]

absolute addition with carry :

• cADDC: {cy, acc} <= acc + mem[cVal] + cy

• ADDC: {cy[i], acc[i]} <= acc[i] + mem[i][aVal] + cy[i]

relative addition with carry :
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• cRADDC {cy, acc} <= acc + mem[addr + cVal] + cy

• RADDC: {cy[i], acc[i]} <= acc[i] + mem[i][addr[i] + aVal] + cy[i]

relative addition with carry & increment :

• cRIADDC: {cy, acc} <= acc + mem[addr + cVal + cy]

addr <= addr + cVal

• RIADDC: {cy[i], acc[i]} <= acc[i] + mem[i][addr[i] + aVal + cy[i]]

addr[i] <= addr[i] + aVal

immediate addition with carry with co-operand :

• cCADDC: {cy, acc} <= acc + redOut + cy

• CADDC: {cy[i], acc[i]} <= acc[i] + acc + cy[i]

absolute addition with carry with co-operand :

• CAADDC: {cy[i], acc[i]} <= acc[i] + mem[i][acc] + cy[i]

relative addition with carry with co-operand :

• CRADDC: {cy[i], acc[i]} <= acc[i] + mem[i][addr[i] + acc + cy[i]

SUBTRACT :

immediate subtract :

• cVSUB: {cy, acc} <= acc - cVal

• VSUB: {cy[i], acc[i]} <= acc[i] - aVal

absolute subtract :

• cSUB: {cy, acc} <= acc - mem[cVal]

• SUB: {cy[i], acc[i]} <= acc[i] - mem[i][aVal]

relative subtract :

• cRSUB: {cy, acc} <= acc + mem[addr - cVal]

• RSUB: {cy[i], acc[i]} <= acc[i] - mem[i][addr[i] + aVal]

relative subtract & increment :

• cRISUB: {cy, acc} <= acc - mem[addr + cVal]

addr <= addr + cVal

• RISUB: {cy[i], acc[i]} <= acc[i] - mem[i][addr[i] + aVal]

addr[i] <= addr[i] + aVal

immediate subtract with co-operand :

• cCSUB: acc{cy, acc} <= acc - redOut
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• CSUB: {cy[i], acc[i]} <= acc[i] - acc

absolute subtract with co-operand :

• CASUB: {cy[i], acc[i]} <= acc[i] - mem[i][acc]

relative subtract with co-operand :

• CRSUB: {cy[i], acc[i]} <= acc[i] - mem[i][addr[i] + acc]

SUBTRACT WITH CARRY :

immediate subtract with carry :

• cVSUBC: {cy, acc} <= acc - cVal - cy

• VSUBC: {cy[i], acc[i]} <= acc[i] - aVal - cy[i]

absolute subtract with carry :

• cSUBC: {cy, acc} <= acc - mem[cVal] - cy

• SUBC: {cy[i], acc[i]} <= acc[i] - mem[i][aVal] - cy[i]

relative subtract with carry :

• cRSUBC: {cy, acc} <= acc - mem[addr + cVal] - cy

• RSUBC: {cy[i], acc[i]} <= acc[i] - mem[i][addr[i] + aVal] - cy[i]

relative subtract with carry & increment :

• cRISUBC: {cy, acc} <= acc + mem[addr - cVal] - cy

addr <= addr + cVal

• RISUBC: {cy[i], acc[i]} <= acc[i] - mem[i][addr[i] + aVal] - cy[i]

addr[i] <= addr[i] + aVal

immediate subtract with carry with co-operand :

• cCSUBC: acc{cy, acc} <= acc - redOut - cy

• CSUBC: {cy[i], acc[i]} <= acc[i] - acc - cy[i]

absolute subtract with carry with co-operand :

• CASUBC: {cy[i], acc[i]} <= acc[i] - mem[i][acc] - cy[i]

relative subtract with carry with co-operand :

• CRSUBC: {cy[i], acc[i]} <= acc[i] - mem[i][addr[i] + acc] - cy[i]
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MULTIPLY :

immediate multiply :

• cVMULT: acc <= acc * cVal

• VMULT: acc[i] <= acc[i] * aVal

absolute multiply :

• cMULT: acc <= acc * mem[cVal]

• MULT: acc[i] <= acc[i] * mem[i][aVal]

relative multiply :

• cRMULT: acc <= acc * mem[addr + cVal]

• RMULT: acc[i] <= acc[i] * mem[i][addr[i] + aVal]

relative multiply & increment :

• cRIMULT: acc <= acc * mem[addr + cVal]

addr <= addr + cVal

• RIMULT: acc[i] <= acc[i] * mem[i][addr[i] + aVal]

addr[i] <= addr[i] + aVal

immediate multiply with co-operand :

• cCMULT: acc <= acc * redOut

• CMULT: acc[i] <= acc[i] * acc

absolute multiply with co-operand :

• CAMULT: acc[i] <= acc[i] * mem[i][acc]

relative multiply with co-operand :

• CRMULT: acc[i] <= acc[i] * mem[i][addr[i] + acc]

SHIFT/ROTATE

right shift one bit position :

• cSHR: acc <= {1’b0, acc[n-1:1]}
cy <= acc[0]

• SHR: acc[i] <= {1’b0, acc[i][n-1:1]}
cy[i] <= acc[i][0]

arithmetic right shift one bit position :

• cASHR: acc <= {acc[n-1], acc[n-1:1]}
cy <= acc[0]
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• ASHR: acc[i] <= {acc[i][n-1], acc[i][n-1:1]}
cy[i] <= acc[i][0]

right shift one bit position with carry :

• cSHRC: acc <= {cy, acc[n-1:1]}
cy <= acc[0]

• SHRC: acc[i] <= {cy[i], acc[i][n-1:1]}
cy[i] <= acc[i][0]

left shift one bit position :

• cSHL: acc <= {acc[n-2:0], 1’b0} cy <= acc[n-1]

• SHL: acc[i] <= {acc[i][n-2:0], 1’b0} cy[i] <= acc[i][n-1]

left shift one bit position with carry :

• cSHLC: acc <= {acc[n-2:0], cy} cy <= acc[n-1]

• SHLC: acc[i] <= {acc[i][n-2:0], cy[i]} cy[i] <= acc[i][n-1]

right rotate one bit position :

• cROTR: acc <= {acc[0], acc[n-1:1]}
• ROTR: acc[i] <= {acc[i][0], acc[i][n-1:1]}

left rotate one bit position :

• cROTL: acc <= {acc[n-2:0], acc[n-1]}
• ROTL: acc[i] <= {acc[i][n-2:0], acc[i][n-1]}

AND :

immediate bitwise AND :

• cVAND: acc <= acc & cVal

• VAND: acc[i] <= acc[i] & aVal

absolute bitwise AND :

• cAND: acc <= acc & mem[cVal]

• AND: acc[i] <= acc[i] & mem[i][aVal]

relative bitwise AND :

• cRAND: acc <= acc & mem[addr + cVal]

• RAND: acc[i] <= acc[i] & mem[i][addr[i] + aVal]

relative bitwise AND & increment :
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• cRIADND: acc <= acc & mem[addr + cVal]

addr <= addr + cVal

• RIAND: acc[i] <= acc[i] & mem[i][addr[i] + aVal]

addr[i] <= addr[i] + aVal

immediate bitwise AND with co-operand :

• cCAND: acc <= acc & redOut

• CAND: acc[i] <= acc[i] & acc

absolute bitwise AND with co-operand :

• CAAND: acc[i] <= acc[i] & mem[i][acc]

relative bitwise AND with co-operand :

• CRAND: acc[i] <= acc[i] & mem[i][addr[i] + acc]

OR :

immediate bitwise OR :

• cVOR: acc <= acc | cVal

• VOR: acc[i] <= acc[i] | aVal

absolute bitwise OR :

• cOR: acc <= acc | mem[cVal]

• OR: acc[i] <= acc[i] | mem[i][aVal]

relative bitwise OR :

• cROR: acc <= acc | mem[addr + cVal]

• ROR: acc[i] <= acc[i] mem[i][addr[i] + aVal]

relative bitwise OR & increment :

• cRIOR: acc <= acc | mem[addr + cVal]

addr <= addr + cVal

• RIADDOR: acc[i] <= acc[i] | mem[i][addr[i] + aVal]

addr[i] <= addr[i] + aVal

immediate bitwise OR with co-operand :

• cCOR: acc <= acc | redOut

• COR: acc[i] <= acc[i] | acc

absolute bitwise OR with co-operand :

• CAOR: acc[i] <= acc[i] | mem[i][acc]

relative bitwise OR with co-operand :

• CROR: acc[i] <= acc[i] | mem[i][addr[i] + acc]
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XOR :

immediate bitwise XOR :

• cVXOR: acc <= acc ⊕ cVal

• VXOR: acc[i] <= acc[i] ⊕ aVal

absolute bitwise XOR :

• cXOR: acc <= acc ⊕ mem[cVal]

• XOR: acc[i] <= acc[i] ⊕ mem[i][aVal]

relative bitwise XOR :

• cRXOR: acc <= acc ⊕ mem[addr + cVal]

• RXOR: acc[i] <= acc[i] ⊕ mem[i][addr[i] + aVal]

relative bitwise XOR & increment :

• cRIXOR: acc <= acc ⊕ mem[addr + cVal]

addr <= addr + cVal

• RIXOR: acc[i] <= acc[i] ⊕ mem[i][addr[i] + aVal]

addr[i] <= addr[i] + aVal

immediate bitwise XOR with co-operand :

• cCXOR: acc <= acc ⊕ redOut

• CXOR: acc[i] <= acc[i] ⊕ acc

absolute bitwise XOR with co-operand :

• CAXOR: acc[i] <= acc[i] ⊕ mem[i][acc]

relative bitwise XOR with co-operand :

• CRXOR: acc[i] <= acc[i] ⊕ mem[i][addr[i] + acc]

REDUCE :

reduction add :

• REDADD: acc <= acc[0] + acc[1] + ... + acc[p-1]

reduction OP :

• REDOR: acc <= acc[0] | acc[1] | ... | acc[p-1]

reduction maximum :

• REDMAX: acc <= max(acc[0], acc[1], ..., acc[p-1])

reduction minimum :

• REDMIN: acc <= min(acc[0], acc[1], ..., acc[p-1])
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SEARCH :

search co-operand :

• SEARCH: b[i] <= (b[i] && (acc[i] == acc)) ? 1 : 0

search value :

• VSEARCH: b[i] <= (b[i] && (acc[i] == aVal)) ? 1 : 0

conditioned search co-operand :

• CSEARCH: b[i] <= (b[i-1] && (acc[i] == acc)) ? 1 : 0

conditioned search value :

• VCSEARCH: b[i] <= (b[i-1] && (acc[i] == aVal)) ? 1 : 0

g

GLOBAL :

global right shift with one position :

• GRSHIFT: serialReg[i] <= (i==0) ? 0 : serialReg[i-1]

global left shift with one position :

• GLSHIFT: serialReg[i] <= (i==p-1) ? 0 : aerialReg[i+1]

insert left redOut in shift register :

• LREDINS: serialReg[i] <= (i==0) ? redOut : serialReg[i-1]

insert right redOut in shift register :

• RREDINS: serialReg[i] <= (i==p-1) ? redOut : aerialReg[i+1]

global right rotate with one position :

• GRROTATE: serialReg[i] <= (i==0) ? serialReg[p-1] : serialReg[i-1]

global left rotate with one position :

• GLROTATE: serialReg[i] <= (i==p-1) ? aerialReg[0] : aerialReg[i+1]

send to serial register :

• SENDSR: serialReg[i] <= acc[i]

insert value in the first active position :

• INSERT: serialReg[i] <= (first) ? aVal : (next) ? serialReg[i-1] :

serialReg[i]
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insert co-operand in the first active position :

• CINSERT: serialReg[i] <= (first) ? acc : ((next) ? serialReg[i-1] :

serialReg[i])

delete the first active accumulator :

• DELETE: (first || next) ? serialReg[i+1] : ((i==p-1) ? 0 :

serialReg)

C.2.4 ACCELERATOR’s Code Generator: 0 accCodeGenerator.sv

/ * ***********************************************************
F i l e name : 0 accCodeGenera tor . s v

CODE GENERATOR FOR ACCELERATOR

*********************************************************** * /

reg [ 4 : 0 ] aOpCode ;
reg [ 2 : 0 ] aOperand ;
reg [ 2 3 : 0 ] a S c a l a r ;
reg [ 4 : 0 ] cOpCode ;
reg [ 2 : 0 ] cOperand ;
reg [ 2 3 : 0 ] c S c a l a r ;
reg [ $ c l og 2 ( ‘m ) − 1 : 0 ] addrCount ;
reg [ $ c l og 2 ( ‘m ) − 1 : 0 ] l abTab [ 0 : ‘m −1] ;

‘ i n c l u d e ” 0 DEFINES . vh ”

ta sk endLineA ;
begin

d u t . h o s t . hostDataMemory . hDmem[ addrCoun t ] =
/ / d u t . a c c e l e r a t o r . c o n t r o l l e r . contrProgMem .
/ / contrPM [ addrCount ] = / / w i t h o u t h o s t
{ aOpCode ,

aOperand ,
a S c a l a r ,
cOpCode ,
cOperand ,
c S c a l a r } ;

addrCoun t = addrCoun t + 1 ;
end

endtask

/ / s e t s l a b e l T a b i n t h e f i r s t pas s
ta sk LB ;

input [ 5 : 0 ] l a b I n d e x ;
l abTab [ l a b I n d e x ] = addrCount ;

endtask
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/ / u s e s t h e c o n t e n t o f l a b e l T a b i n t h e second pass
ta sk cULB ;

input [ 5 : 0 ] l a b I n d e x ;
c S c a l a r = labTab [ l a b I n d e x ] − addrCoun t ;

endtask

task NOP;
begin aOpCode = ‘add ;

aOperand = ‘ v a l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task cNOP ;
begin cOpCode = ‘ c a d d ;

cOperand = ‘ v a l ;
c S c a l a r = 0 ;

end
endtask

‘ i n c l u d e ”cgCONTROL . sv ” / / c o n t r o l i n s t r u c t i o n s
‘ i n c l u d e ”cgLOAD . sv ” / / l oad a c c u m u l a t o r
‘ i n c l u d e ”cgSTORE . sv ” / / s t o r e a c c u m u l a t o r
‘ i n c l u d e ”cgADD . sv ” / / a d d i t i o n
‘ i n c l u d e ”cgADDC . sv ” / / a d d i t i o n w i t h c a r r y
‘ i n c l u d e ”cgSUB . sv ” / / s u b t r a c t
‘ i n c l u d e ”cgSUBC . sv ” / / s u b t r a c t w i t h c a r r y
‘ i n c l u d e ”cgMULT . sv ” / / m u l t i p l i c a t i o n
‘ i n c l u d e ” cgSHIFT . sv ” / / s h i f t
‘ i n c l u d e ”cgAND . sv ” / / b i t −wi se AND
‘ i n c l u d e ”cgOR . sv ” / / b i t −wi se OR
‘ i n c l u d e ”cgXOR . sv ” / / b i t −wi se XOR
‘ i n c l u d e ”cgREDUCE . sv ” / / r e du c e ne twork f u n c t i o n s
‘ i n c l u d e ”cgGLOBAL . sv ” / / g l o b a l o p e r a t i o n s
‘ i n c l u d e ”cgTRANSFER . sv ” / / i o t r a n s f e r o p e r a t i o n s
‘ i n c l u d e ”cgSEARCH . sv ” / / s e a r c h f u n c t i o n s
/ / ‘ i n c l u d e ” l o w L e v e l L i b r a r y . s v ”

ta sk cSTART ;
begin cOpCode = ‘ s t a r t ;

cOperand = ‘ c t l ;
c S c a l a r = 0 ;

end
endtask

task cSTOP ;
begin cOpCode = ‘ s t o p ;

cOperand = ‘ c t l ;
c S c a l a r = 0 ;
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end
endtask

/ / RUNNING
i n i t i a l begin addrCoun t = 0 ;

‘ i n c l u d e ” 0 aProgram . sv ” / / f i r s t pas s
addrCoun t = 0 ;
‘ i n c l u d e ” 0 aProgram . sv ” / / s econd pas s

end

Control Instructions: cgCONTROL.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgCONTROL . sv

CONTROL INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cHALT ;
begin cOpCode = ‘ h a l t ;

cOperand = ‘ c t l ;
c S c a l a r = 0 ;

end
endtask

task cJMP ;
input [ 9 : 0 ] l a b ;
begin cOpCode = ‘jmp ;

cOperand = ‘ c t l ;
cULB( l a b ) ;

end
endtask

task cAJMP ;
input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘a jmp ;

cOperand = ‘ c t l ;
c S c a l a r = v a l u e ;

end
endtask

task cBRNZ ;
input [ 9 : 0 ] l a b ;
begin cOpCode = ‘ b r n z ;

cOperand = ‘ c t l ;
cULB( l a b ) ;
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end
endtask

task cBRZ ;
input [ 9 : 0 ] l a b ;
begin cOpCode = ‘ b r z ;

cOperand = ‘ c t l ;
cULB( l a b ) ;

end
endtask

task cBRNZDEC;
input [ 9 : 0 ] l a b ;
begin cOpCode = ‘ b r n z d e c ;

cOperand = ‘ c t l ;
cULB( l a b ) ;

end
endtask

task cBRZDEC ;
input [ 9 : 0 ] l a b ;
begin cOpCode = ‘ b r z d e c ;

cOperand = ‘ c t l ;
cULB( l a b ) ;

end
endtask

/ / i n ARRAY
ta sk ACTIVATE ;

begin aOpCode = ‘ a l l a c t ;
aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task WHEREZERO; / / where acc [ i ] = 0
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b0000 ;
endLineA ;

end
endtask

task WHERECARRY; / / where c a r r y
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b0001 ;
endLineA ;

end



260 APPENDIX C. HETEROGENEOUS SYSTEM SIMULATOR

endtask

task WHERENEGATIVE; / / where n e g a t i v e
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b0010 ;
endLineA ;

end
endtask

task WHEREPREVACT; / / where p r e v i o u s i s a c t i v e
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b0011 ;
endLineA ;

end
endtask

task WHEREFIRST ; / / where f i r s t
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b0100 ;
endLineA ;

end
endtask

task WHERENEXT; / / where n e x t t o f i r s t
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b0101 ;
endLineA ;

end
endtask

task WHEREPREV; / / where p r e v i o u s t o f i r s t
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b0110 ;
endLineA ;

end
endtask

task WHERENZERO; / / where acc [ i ] != 0
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b1000 ;
endLineA ;

end
endtask
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ta sk WHERENCARRY; / / where n o t c a r r y
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b1001 ;
endLineA ;

end
endtask

task WHEREPOSITIVE ; / / where p o s i t i v e
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b1010 ;
endLineA ;

end
endtask

task WHERENPREVACT; / / where p r e v i o u s i s a c t i v e
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b1011 ;
endLineA ;

end
endtask

task WHERENFIRST ; / / where n o t f i r s t
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b1100 ;
endLineA ;

end
endtask

task WHERENNEXT; / / where n o t n e x t t o f i r s t
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b1101 ;
endLineA ;

end
endtask

task WHERENPREV; / / where n o t p r e v i o u s t o f i r s t
begin aOpCode = ‘where ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b1110 ;
endLineA ;

end
endtask

task ELSEWHERE; / / e l s e where
begin aOpCode = ‘ e l s e w ;
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aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task ENDWHERE; / / end where
begin aOpCode = ‘ b a c k ;

aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

Load Instructions: cgLOAD.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgLOAD . sv

LOAD INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cVLOAD;
input [ 2 3 : 0 ] v a l u e ;

begin cOpCode = ‘ c l o a d ;
cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cINSVAL ;
input [ 2 3 : 0 ] v a l u e ;

begin cOpCode = ‘ c i n s v a l ;
cOperand = ‘ c t l ;
c S c a l a r = v a l u e ;

end
endtask

task cLOAD;
input [ 2 3 : 0 ] v a l u e ;

begin cOpCode = ‘ c l o a d ;
cOperand = ‘ d i r ;
c S c a l a r = v a l u e ;
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end
endtask

task cRLOAD;
input [ 2 3 : 0 ] v a l u e ;

begin cOpCode = ‘ c l o a d ;
cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRILOAD ;
input [ 2 3 : 0 ] v a l u e ;

begin cOpCode = ‘ c l o a d ;
cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCLOAD;
begin cOpCode = ‘ c l o a d ;

cOperand = ‘c im ;
c S c a l a r = 0 ;

end
endtask

/ / i n ARRAY

ta sk IXLOAD ; / / / / acc [ i ] <= i
begin aOpCode = ‘ i x l o a d ;

aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task GETSR ; / / acc [ i ] <= s e r i a l R e g [ i ]
begin aOpCode = ‘ g e t s r ;

aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task VLOAD;
input [ 2 3 : 0 ] v a l u e ;

begin aOpCode = ‘ l o a d ;
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aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task INSVAL ;
input [ 2 3 : 0 ] v a l u e ;

begin aOpCode = ‘ i n s v a l ;
aOperand = ‘ c t l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task LOAD;
input [ 2 3 : 0 ] v a l u e ;

begin aOpCode = ‘ l o a d ;
aOperand = ‘ d i r ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RLOAD;
input [ 2 3 : 0 ] v a l u e ;

begin aOpCode = ‘ l o a d ;
aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RILOAD ;
input [ 2 3 : 0 ] v a l u e ;

begin aOpCode = ‘ l o a d ;
aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RILOADI ;
input [ 2 3 : 0 ] v a l u e ;

begin aOpCode = ‘ l o a d i ;
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aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CLOAD;
begin aOpCode = ‘ l o a d ;

aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CDLOAD;
begin aOpCode = ‘ l o a d ;

aOperand = ‘ c d r ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRLOAD;

begin aOpCode = ‘ l o a d ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

Store Instructions: cgSTORE.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgSTORE . sv

STORE INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cADDRLD; / / addr <= acc
begin cOpCode = ‘ c r e l a ;

cOperand = ‘ v a l ;
c S c a l a r = 0 ;

end
endtask
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ta sk cSTORE ; / / s t o r e acc a t c o n t r S c a l a r
input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s t o r e ;

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cRSTORE ; / / s t o r e acc a t addr + c o n t r S c a l a r
input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s t o r e ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRISTORE ; / / s t o r e acc a t addr + c o n t r S c a l a r
input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s t o r e ;

cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

/ / i n ARRAY
ta sk STORE ; / / s t o r e acc [ i ] a t a r r a y S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s t o r e ;

aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RSTORE ; / / s t o r e acc [ i ] a t addr [ i ] + a r r a y S c a l a r
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s t o r e ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RISTORE ; / / s t o r e acc [ i ] a t addr [ i ] + a r r a y S c a l a r
/ / addr [ i ] <= addr [ i ] + c o n t r S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s t o r e ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;
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end
endtask

task CSTORE ; / / s t o r e acc [ i ] a t acc
begin aOpCode = ‘ s t o r e ;

aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRSTORE; / / s t o r e acc [ i ] a t addr [ i ] + acc
begin aOpCode = ‘ s t o r e ;

aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task ADDRLD; / / addr [ i ] <= acc [ i ]
begin aOpCode = ‘ a r e l a ;

aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task SENDIO ;
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s e n d i o ;

aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RISENDIO ;
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s e n d i o ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

Add Instructions: cgADD.sv is a non Verilog file.
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/ * ***********************************************************
F i l e name : cgADD . sv

ADDITION INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cVADD; / / immed ia t e a d d i t i o n :
/ / acc <= acc + c S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d ;

cOperand = ‘ v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cADD; / / immed ia t e a d d r e s s i n g a d d i t i o n :
/ / acc <= acc + mem[ c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d ;

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cRADD; / / r e l a t i v e a d d r e s s i n g a d d i t i o n :
/ / acc <= acc + mem[ addr + c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRIADD ; / / r e l a t i v e a d d r e s s i n g add ; a d d r e s s up da t e
/ / acc <= acc + mem[ addr + c S c a l a r [ s −1:0]]
/ / addr = addr + c S c a l a r [ s −1:0]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d ;

cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCADD; / / cooperand a d d r e s s i n g a d d i t i o n :
/ / acc <= acc + coOperand

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d ;

cOperand = ‘cop ;
c S c a l a r = v a l u e ;
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end
endtask

/ / i n ARRAY
ta sk VADD; / / v a l u e add :

/ / acc [ i ] <= acc [ i ] + a S c a l a r
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘add ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task ADD; / / a b s o l u t e add
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ a S c a l a r ]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘add ;

aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RADD; / / r e l a t i v e
/ / add : acc [ i ] <= acc [ i ] +
/ / vectMem [ i ] [ a d d r V e c t [ i ] + a S c a l a r [ v −1:0]]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ add ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RIADD ; / / r e l a t i v e add and i n c r e m e n t :
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘add ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CADD; / / co−operand add :
/ / acc [ i ] <= acc [ i ] + acc

begin aOpCode = ‘add ;
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aOperand = ‘cop ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CAADD; / / co−operand a b s o l u t e add
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ acc [ v −1:0]]

begin aOpCode = ‘add ;
aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRADD; / / co−operand r e l a t i v e add :
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ a d d r V e c t [ i ]
/ / + acc [ v −1:0]]

begin aOpCode = ‘add ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

Add with Carry Instructions: cgADDC.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgADDC . sv

ADDITION WITH CARRY INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cVADDC; / / immed ia t e a d d i t i o n w i t h c a r r y :
/ / acc <= acc + c S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d c r ;

cOperand = ‘ v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cADDC; / / immed ia t e a d d r e s s i n g a d d i t i o n w i t h c a r r y :
/ / acc <= acc + mem[ c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d c r ;



C.2. HETEROGENEOUS ARCHITECTURE 271

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cRADDC; / / r e l a t i v e a d d r e s s i n g a d d i t i o n w i t h c a r r y :
/ / acc <= acc + mem[ addr + c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d c r ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRIADDC ; / / r e l a t i v e a d d r e s s i n g a d d i t i o n w i t h c a r r y
/ / w i t h a d d r e s s u pd a t e :
/ / acc <= acc + mem[ addr + c S c a l a r [ s −1:0]]
/ / addr = addr + c S c a l a r [ s −1:0]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d c r ;

cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCADDC; / / cooperand a d d r e s s i n g a d d i t i o n w i t h c a r r y :
/ / acc <= acc + coOperand

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c a d d c r ;

cOperand = ‘cop ;
c S c a l a r = v a l u e ;

end
endtask

/ / i n ARRAY
ta sk VADDC; / / v a l u e add w i t h c a r r y :

/ / acc [ i ] <= acc [ i ] + a S c a l a r + c a r r y
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ a d d c r ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task ADDC; / / a b s o l u t e add w i t h c a r r y
/ / acc [ i ] <= acc [ i ]+vectMem [ i ] [ a S c a l a r ]+ c a r r y

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ a d d c r ;

aOperand = ‘imm ;
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a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RADDC; / / r e l a t i v e add w i t h c a r r y :
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]] + c a r r y

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ a d d c r ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RIADDC ; / / r e l a t i v e add w i t h c a r r y and i n c r e m e n t :
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]] + c a r r y
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ a d d c r ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CADDC; / / co−operand add w i t h c a r r y :
/ / acc [ i ] <= acc [ i ] + acc + c a r r y

begin aOpCode = ‘ a d d c r ;
aOperand = ‘cop ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CAADDC; / / co−operand a b s o l u t e add w i t h c a r r y
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ acc [ v −1:0]]
/ / + c a r r y

begin aOpCode = ‘ a d d c r ;
aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRADDC; / / co−operand r e l a t i v e add w i t h c a r r y :
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ a d d r V e c t [ i ]
/ / + acc [ v −1:0]] + c a r r y
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begin aOpCode = ‘ a d d c r ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

Subtract Instructions: cgSUB.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgSUB . sv

SUBTRACT INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cVSUB ; / / immed ia t e s u b t r a c t :
/ / acc <= acc − c S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b ;

cOperand = ‘ v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cSUB ; / / immed ia t e a d d r e s s i n g s u b t r a c t :
/ / acc <= acc − mem[ c S c a l a r [ 9 : 0 ] ]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b ;

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cRSUB ; / / r e l a t i v e a d d r e s s i n g s u b t r a c t :
/ / acc <= acc − mem[ addr + c S c a l a r [ 9 : 0 ] ]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRISUB ; / / r e l a t i v e a d d r e s s i n g sub ; a d d r e s s up da t e :
/ / acc <= acc − mem[ addr + c S c a l a r [ 9 : 0 ] ]
/ / addr = addr + c S c a l a r [ s −1:0]

input [ 9 : 0 ] v a l u e ;
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begin cOpCode = ‘ c s u b ;
cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCSUB ; / / cooperand a d d r e s s i n g s u b t r a c t :
/ / acc <= acc − coOperand

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b ;

cOperand = ‘cop ;
c S c a l a r = v a l u e ;

end
endtask

/ / i n ARRAY
ta sk VSUB; / / v a l u e s u b t r a c t :

/ / acc [ i ] <= acc [ i ] − a S c a l a r
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s u b ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task SUB; / / a b s o l u t e s u b t r a c t
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ a S c a l a r ]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s u b ;

aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RSUB; / / r e l a t i v e s u b t r a c t :
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ a d d r V e c t [ i ]
/ + a S c a l a r [ v − 1 : 0 ] ]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s u b ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RISUB ; / / r e l a t i v e s u b t r a c t and i n c r e m e n t :
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ a d d r V e c t [ i ]
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/ / + a S c a l a r [ v −1:0]]
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s u b ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CSUB; / / co−operand s u b t r a c t :
/ / acc [ i ] <= acc [ i ] − acc

begin aOpCode = ‘ s u b ;
aOperand = ‘cop ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CASUB; / / co−operand a b s o l u t e s u b t r a c t
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ acc [ v −1:0]]

begin aOpCode = ‘ s u b ;
aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRSUB; / / co−operand r e l a t i v e s u b t r a c t :
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ a d d r V e c t [ i ]
/ / + acc [ v −1:0]]

begin aOpCode = ‘ s u b ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

Subtract with Carry Instructions: cgSUBC.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgSUBC . sv

SUBTRACT WITH CARRY INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER
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ta sk cVSUBC ; / / immed ia t e s u b t r a c t w i t h c a r r y :
/ / acc <= acc − c S c a l a r − c a r r y

input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b c r ;

cOperand = ‘ v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cSUBC ; / / immed ia t e a d d r e s s i n g s u b t r a c t w i t h c a r r y :
/ / acc <= acc − mem[ c S c a l a r [ 9 : 0 ] ] − c a r r y

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b c r ;

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cRSUBC ; / / r e l a t i v e a d d r e s s i n g s u b t r a c t w i t h c a r r y :
/ / acc <= acc −mem[ addr+c S c a l a r [9:0]] − c a r r y

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b c r ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRISUBC ; / / r e l a t i v e a d d r e s s i n g s u b t r a c t w i t h c a r r y
/ / w i t h a d d r e s s u pd a t e :

/ / acc <= acc −mem[ addr+c S c a l a r [9:0]] − c a r r y
/ / addr = addr + c S c a l a r [ s −1:0]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b c r ;

cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCSUBC ; / / cooperand a d d r e s s i n g s u b t r a c t w i t h c a r r y :
/ / acc <= acc − coOperand − c a r r y

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c s u b c r ;

cOperand = ‘cop ;
c S c a l a r = v a l u e ;

end
endtask

/ / i n ARRAY
ta sk VSUBC; / / v a l u e s u b t r a c t w i t h c a r r y :

/ / acc [ i ] <= acc [ i ] − a S c a l a r − c a r r y
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input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s u b c r ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task SUBC; / / a b s o l u t e s u b t r a c t w i t h c a r r y
/ / acc [ i ] <= acc [ i ]−vectMem [ i ] [ a S c a l a r ]− c a r r y

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s u b c r ;

aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RSUBC; / / r e l a t i v e s u b t r a c t w i t h c a r r y :
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]] − c a r r y

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s u b c r ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RISUBC ; / / r e l a t i v e s u b t r a c t w i t h c a r r y & i n c r e m e n t :
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]] − c a r r y
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s u b c r ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CSUBC; / / co−operand s u b t r a c t w i t h c a r r y :
/ / acc [ i ] <= acc [ i ] − acc − c a r r y

begin aOpCode = ‘ s u b c r ;
aOperand = ‘c o p ;
a S c a l a r = 0 ;
endLineA ;

end
endtask
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ta sk CASUBC; / / co−operand a b s o l u t e s u b t r a c t w i t h c a r r y
/ / acc [ i ] <= acc [ i ]−vectMem [ i ] [ acc [ v −1:0]]
/ / − c a r r y

begin aOpCode = ‘ s u b c r ;
aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRSUBC; / / co−operand r e l a t i v e s u b t r a c t w i t h c a r r y :
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ a d d r V e c t [ i ]
/ / + acc [ v −1:0]] − c a r r y

begin aOpCode = ‘ s u b c r ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

Multiply Instructions: cgMULT.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgMULT . sv

MULTIPLY INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cVMULT; / / immed ia t e m u l t i p l i c a t i o n :
/ / acc <= acc * c S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ c m u l t ;

cOperand = ‘ v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cMULT; / / immed ia t e a d d r e s s i n g m u l t i p l i c a t i o n :
/ / acc <= acc * mem[ c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c m u l t ;

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask
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ta sk cRMULT; / / r e l a t i v e a d d r e s s i n g m u l t i p l i c a t i o n :
/ / acc <= acc * mem[ addr + c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c m u l t ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRIMULT ; / / r e l a t i v e a d d r e s s i n g mu l t ; a d d r e s s up da t e
/ / acc <= acc * mem[ addr + c S c a l a r [ s −1:0]]
/ / addr = addr + c S c a l a r [ s −1:0]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c m u l t ;

cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCMULT; / / cooperand a d d r e s s i n g m u l t i p l i c a t i o n :
/ / acc <= acc * coOperand

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘ c m u l t ;

cOperand = ‘cop ;
c S c a l a r = v a l u e ;

end
endtask

/ / i n ARRAY
ta sk VMULT; / / v a l u e m u l t i p l i c a t i o n :

/ / acc [ i ] <= acc [ i ] * a S c a l a r
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ m u l t ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task MULT; / / a b s o l u t e m u l t i p l i c a t i o n
/ / acc [ i ] <= acc [ i ] * vectMem [ i ] [ a S c a l a r ]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ m u l t ;

aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask
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ta sk RMULT; / / r e l a t i v e m u l t i p l i c a t i o n :
/ / acc [ i ] <= acc [ i ] * vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ m u l t ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RIMULT ; / / r e l a t i v e m u l t i p l i c a t i o n and i n c r e m e n t :
/ / acc [ i ] <= acc [ i ] * vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ m u l t ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CMULT; / / co−operand m u l t i p l i c a t i o n :
/ / acc [ i ] <= acc [ i ] * acc

begin aOpCode = ‘ m u l t ;
aOperand = ‘cop ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CAMULT; / / co−operand a b s o l u t e m u l t i p l i c a t i o n
/ / acc [ i ] <= acc [ i ] * vectMem [ i ] [ acc [ v −1:0]]

begin aOpCode = ‘ m u l t ;
aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRMULT; / / co−operand r e l a t i v e m u l t i p l i c a t i o n :
/ / acc [ i ] <= acc [ i ] * vectMem [ i ] [ a d d r V e c t [ i ]
/ / + acc [ v −1:0]]

begin aOpCode = ‘ m u l t ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask
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Shift Instructions: cgSHIFT.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgSHIFT . sv

SHIFT INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER
ta sk cSHR ; / / s h i f t r i g h t one b i t p o s i t i o n

begin cOpCode = ‘ c s h i f t ;
cOperand = ‘imm ;
c S c a l a r = 24 ’ b100 ;

end
endtask

task cASHR ; / / s h i f t r i g h t a r i t h m e t i c one b i t p o s i t i o n
begin cOpCode = ‘ c s h i f t ;

cOperand = ‘imm ;
c S c a l a r = 24 ’ b101 ;

end
endtask

task cSHRC ; / / s h i f t r i g h t one b i t p o s i t i o n w i t h c a r r y
begin cOpCode = ‘ c s h i f t ;

cOperand = ‘imm ;
c S c a l a r = 24 ’ b110 ;

end
endtask

task cSHL ; / / s h i f t l e f t one b i t p o s i t i o n
begin cOpCode = ‘ c s h i f t ;

cOperand = ‘imm ;
c S c a l a r = 24 ’ b001 ;

end
endtask

task cSHLC ; / / s h i f t l e f t one b i t p o s i t i o n w i t h c a r r y
begin cOpCode = ‘ c s h i f t ;

cOperand = ‘imm ;
c S c a l a r = 24 ’ b010 ;

end
endtask

task cROTR ; / / r o t a t e r i g h t one b i t p o s i t i o n
begin cOpCode = ‘ c s h i f t ;

cOperand = ‘imm ;
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c S c a l a r = 24 ’ b111 ;
end

endtask

task cROTL ; / / r o t a t e r i g h t one b i t p o s i t i o n
begin cOpCode = ‘ c s h i f t ;

cOperand = ‘imm ;
c S c a l a r = 24 ’ b011 ;

end
endtask

/ / i n ARRAY
ta sk SHR; / / s h i f t r i g h t one b i t p o s i t i o n

begin aOpCode = ‘ s h i f t ;
aOperand = ‘imm ;
a S c a l a r = 24 ’ b100 ;
endLineA ;

end
endtask

task ASHR; / / s h i f t r i g h t a r i t h m e t i c one b i t p o s i t i o n
begin aOpCode = ‘ s h i f t ;

aOperand = ‘imm ;
a S c a l a r = 24 ’ b101 ;
endLineA ;

end
endtask

task SHRC; / / s h i f t r i g h t one b i t p o s i t i o n w i t h c a r r y
begin cOpCode = ‘ s h i f t ;

cOperand = ‘imm ;
c S c a l a r = 24 ’ b110 ;
endLineA ;

end
endtask

task SHL ; / / s h i f t l e f t one b i t p o s i t i o n
begin aOpCode = ‘ s h i f t ;

aOperand = ‘imm ;
a S c a l a r = 24 ’ b001 ;
endLineA ;

end
endtask

task SHLC ; / / s h i f t l e f t one b i t p o s i t i o n w i t h c a r r y
begin aOpCode = ‘ s h i f t ;

aOperand = ‘imm ;
a S c a l a r = 24 ’ b010 ;
endLineA ;

end
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endtask

task ROTR; / / r o t a t e r i g h t one b i t p o s i t i o n
begin aOpCode = ‘ s h i f t ;

aOperand = ‘imm ;
a S c a l a r = 24 ’ b111 ;
endLineA ;

end
endtask

task ROTL; / / r o t a t e r i g h t one b i t p o s i t i o n
begin cOpCode = ‘ s h i f t ;

cOperand = ‘imm ;
c S c a l a r = 24 ’ b011 ;
endLineA ;

end
endtask

AND Instructions: cgAND.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgAND . sv

BIT−WISE AND INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cVAND; / / immed ia t e AND−i n g :
/ / acc <= acc & c S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘cbwand ;

cOperand = ‘ v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cAND; / / immed ia t e a d d r e s s i n g AND−i n g :
/ / acc <= acc & mem[ c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwand ;

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cRAND; / / r e l a t i v e a d d r e s s i n g AND−i n g :
/ / acc <= acc & mem[ addr + c S c a l a r [ s −1:0]]
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input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwand ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRIAND ; / / r e l a t i v e a d d r e s s i n g AND; a d d r e s s up da t e :
/ / acc <= acc & mem[ addr + c S c a l a r [ s −1:0]]
/ / addr = addr + c S c a l a r [ s −1:0]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwand ;

cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCAND; / / cooperand a d d r e s s i n g AND−i n g :
/ / acc <= acc & coOperand

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwand ;

cOperand = ‘cop ;
c S c a l a r = v a l u e ;

end
endtask

/ / i n ARRAY
ta sk VAND; / / v a l u e AND−i n g :

/ / acc [ i ] <= acc [ i ] & a S c a l a r
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwand ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task AND; / / a b s o l u t e AND−i n g
/ / acc [ i ] <= acc [ i ] & vectMem [ i ] [ a S c a l a r ]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwand ;

aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RAND; / / r e l a t i v e AND−i n g :
/ / acc [ i ] <= acc [ i ] & vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]
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input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwand ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RIAND ; / / r e l a t i v e AND−i n g and i n c r e m e n t :
/ / acc [ i ] <= acc [ i ] & vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ] + a S c a l a r [ v −1:0]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwand ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CAND; / / co−operand AND−i n g :
/ / acc [ i ] <= acc [ i ] & acc

begin aOpCode = ‘bwand ;
aOperand = ‘cop ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CAAND; / / co−operand a b s o l u t e AND−i n g
/ / acc [ i ] <= acc [ i ] & vectMem [ i ] [ acc [ v −1:0]]

begin aOpCode = ‘bwand ;
aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRAND; / / co−operand r e l a t i v e AND−i n g
/ / acc [ i ] <= acc [ i ] & vectMem [ i ] [ a d d r V e c t [ i ]
/ / + acc [ v −1:0]]

begin aOpCode = ‘bwand ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

OR Instructions: cgOR.sv is a non Verilog file.
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/ * ***********************************************************
F i l e name : cgOR . sv

BIT−WISE OR INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cVOR ; / / immed ia t e OR−i n g :
/ / acc <= acc | c S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘cbwor ;

cOperand = ‘ v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cOR ; / / immed ia t e a d d r e s s i n g OR−i n g :
/ / acc <= acc | mem[ c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwor ;

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cROR ; / / r e l a t i v e a d d r e s s i n g OR−i n g :
/ / acc <= acc | mem[ addr + c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwor ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRIOR ; / / r e l a t i v e a d d r e s s i n g OR; a d d r e s s upd a t e :
/ / acc <= acc | mem[ addr + c S c a l a r [ s −1:0]]
/ / addr = addr + c S c a l a r [ s −1:0]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwor ;

cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCOR ; / / cooperand a d d r e s s i n g OR−i n g :
/ / acc <= acc | coOperand

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwor ;

cOperand = ‘cop ;
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c S c a l a r = v a l u e ;
end

endtask

/ / i n ARRAY
ta sk VOR; / / v a l u e OR−i n g :

/ / acc [ i ] <= acc [ i ] | a S c a l a r
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwor ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task OR; / / a b s o l u t e OR−i n g
/ / acc [ i ] <= acc [ i ] | vectMem [ i ] [ a S c a l a r ]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwor ;

aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task ROR; / / r e l a t i v e OR−i n g :
/ / acc [ i ] <= acc [ i ] | vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwor ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RIOR ; / / r e l a t i v e OR−i n g and i n c r e m e n t :
/ / acc [ i ] <= acc [ i ] | vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwor ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task COR; / / co−operand OR−i n g :
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/ / acc [ i ] <= acc [ i ] | acc
begin aOpCode = ‘bwor ;

aOperand = ‘cop ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CAOR; / / co−operand a b s o l u t e OR−i n g
/ / acc [ i ] <= acc [ i ] | vectMem [ i ] [ acc [ v −1:0]]

begin aOpCode = ‘bwor ;
aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CROR; / / co−operand r e l a t i v e OR−i n g :
/ / acc [ i ] <= acc [ i ] | vectMem [ i ] [ a d d r V e c t [ i ]
/ / + acc [ v −1:0]]

begin aOpCode = ‘bwor ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

XOR Instructions: cgXOR.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgXOR . sv

BIT−WISE XOR INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cVXOR; / / immed ia t e XOR−i n g :
/ / acc <= acc ˆ c S c a l a r

input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘cbwxor ;

cOperand = ‘ v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cXOR ; / / immed ia t e a d d r e s s i n g XOR−i n g :
/ / acc <= acc ˆ mem[ c S c a l a r [ s −1:0]]
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input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwxor ;

cOperand = ‘imm ;
c S c a l a r = v a l u e ;

end
endtask

task cRXOR; / / r e l a t i v e a d d r e s s i n g XOR−i n g :
/ / acc <= acc ˆ mem[ addr + c S c a l a r [ s −1:0]]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwxor ;

cOperand = ‘ r e l ;
c S c a l a r = v a l u e ;

end
endtask

task cRIXOR ; / / r e l a t i v e a d d r e s s i n g XOR; a d d r e s s up da t e :
/ / acc <= acc ˆ mem[ addr + c S c a l a r [ s −1:0]]
/ / addr = addr + c S c a l a r [ s −1:0]

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwxor ;

cOperand = ‘ r e i ;
c S c a l a r = v a l u e ;

end
endtask

task cCXOR; / / cooperand a d d r e s s i n g XOR−i n g :
/ / acc <= acc ˆ c o O p e r a n d a d d i t i

input [ 9 : 0 ] v a l u e ;
begin cOpCode = ‘cbwxor ;

cOperand = ‘cop ;
c S c a l a r = v a l u e ;

end
endtask

/ / i n ARRAY
ta sk VXOR; / / v a l u e XOR−i n g :

/ / acc [ i ] <= acc [ i ] ˆ a S c a l a r
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwxor ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task XOR; / / a b s o l u t e XOR−i n g
/ / acc [ i ] <= acc [ i ] ˆ vectMem [ i ] [ a S c a l a r ]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwxor ;
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aOperand = ‘imm ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RXOR; / / r e l a t i v e XOR−i n g :
/ / acc [ i ] <= acc [ i ] ˆ vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwxor ;

aOperand = ‘ r e l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task RIXOR ; / / r e l a t i v e XOR−i n g and i n c r e m e n t :
/ / acc [ i ] <= acc [ i ] ˆ vectMem [ i ] [ a d d r V e c t [ i ]
/ / + a S c a l a r [ v −1:0]]
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]

input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘bwxor ;

aOperand = ‘ r e i ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CXOR; / / co−operand XOR−i n g :
/ / acc [ i ] <= acc [ i ] ˆ acc

begin aOpCode = ‘bwxor ;
aOperand = ‘c o p ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CAXOR; / / co−operand a b s o l u t e XOR−i n g
/ / acc [ i ] <= acc [ i ] ˆ vectMem [ i ] [ acc [ v −1:0]]

begin aOpCode = ‘bwxor ;
aOperand = ‘c im ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task CRXOR; / / co−operand r e l a t i v e XOR−i n g :
/ / acc [ i ] <= acc [ i ] ˆ vectMem [ i ] [ a d d r V e c t [ i ]
/ / + acc [ v −1:0]]



C.2. HETEROGENEOUS ARCHITECTURE 291

begin aOpCode = ‘bwxor ;
aOperand = ‘ c r l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

Reduce Instructions: cgREDUCE.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgREDUCE . sv

REDUCE INSTRUCTIONS

*********************************************************** * /
/ / i n REDUCE NETWORK

ta sk REDADD;
begin aOpCode = ‘ s e t r e d ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b00 ;
endLineA ;

end
endtask

task REDOR;
begin aOpCode = ‘ s e t r e d ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b01 ;
endLineA ;

end
endtask

task REDMAX;
begin aOpCode = ‘ s e t r e d ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b10 ;
endLineA ;

end
endtask

task REDMIN;
begin aOpCode = ‘ s e t r e d ;

aOperand = ‘ c t l ;
a S c a l a r = 24 ’ b11 ;
endLineA ;

end
endtask



292 APPENDIX C. HETEROGENEOUS SYSTEM SIMULATOR

Global Instructions: cgGLOBAL.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgGLOBAL . sv

GLOBAL INSTRUCTIONS

*********************************************************** * /
ta sk GRSHIFT ; / / g l o b a l r i g h t s h i f t w i t h one p o s i t i o n

begin aOpCode = ‘ g r s h i f t ;
aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task GLSHIFT ; / / g l o b a l l e f t s h i f t w i t h one p o s i t i o n
begin aOpCode = ‘ g l s h i f t ;

aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task SENDSR ; / / s e r i a l R e g [ i ] <= acc [ i ]
begin aOpCode = ‘ s e n d s r ;

aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task REDINS ; / / i n s e r t r e d u c t i o n o u t p u t i n s h i f t r e g i s t e r
begin aOpCode = ‘ r e d i n s ;

aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task INSERT ; / / i n s e r t v a l u e a t f i r s t
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ i n s e r t ;

aOperand = ‘ c t l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

task CINSERT ; / / i n s e r t co−operand a t f i r s t
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begin aOpCode = ‘ i n s e r t ;
aOperand = ‘cop ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task DELETE ; / / d e l e t e t h e f i r s t a c t i v e a c c u m u l a t o r
begin aOpCode = ‘ d e l e t e ;

aOperand = ‘ c t l ;
a S c a l a r = 0 ;
endLineA ;

end
end tasK

Transfer Instructions: cgTRANSFER.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgTRANSFER . sv

TRANSFER INSTRUCTIONS

*********************************************************** * /
/ / i n CONTROLLER

ta sk cPRUN ; / / program run from v a l u e
input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ p r u n ;

cOperand = ‘ c t l ;
c S c a l a r = v a l u e ;

end
endtask

task cPLOAD ; / / program loa d s t a r t i n g from v a l u e
input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ p l o a d ;

cOperand = ‘ c t l ;
c S c a l a r = v a l u e ;

end
endtask

task cPARAM; / / parame te r l oad
begin cOpCode = ‘param ;

cOperand = ‘ c t l ;
c S c a l a r = 0 ;

end
endtask
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ta sk cDATAINS ; / / pop from inFIFO
input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ d a t a i n s ;

cOperand = ‘ c t l ;
c S c a l a r = v a l u e ;

end
endtask

task cDATAEXT; / / push i n outFIFO
input [ 2 3 : 0 ] v a l u e ;
begin cOpCode = ‘ d a t a e x t ;

cOperand = ‘ c t l ;
c S c a l a r = v a l u e ;

end
endtask

task cSETINT ; / / s e t i n t e r r u p t
begin cOpCode = ‘ s e t i n t ;

cOperand = ‘ c t l ;
c S c a l a r = 0 ;

end
endtask

Search Instructions: cgSEARCH.sv is a non Verilog file.

/ * ***********************************************************
F i l e name : cgSEARCH . sv

SEARCH INSTRUCTIONS

*********************************************************** * /
ta sk SEARCH; / / s e a r c h co−operand

begin aOpCode = ‘ s e a r c h ;
aOperand = ‘c o p ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task VSEARCH; / / s e a r c h v a l u e
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ s e a r c h ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask
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ta sk CSEARCH; / / s e a r c h co−operand
begin aOpCode = ‘ c s e a r c h ;

aOperand = ‘cop ;
a S c a l a r = 0 ;
endLineA ;

end
endtask

task VCSEARCH; / / s e a r c h v a l u e
input [ 2 3 : 0 ] v a l u e ;
begin aOpCode = ‘ c s e a r c h ;

aOperand = ‘ v a l ;
a S c a l a r = v a l u e ;
endLineA ;

end
endtask

C.2.5 Assembly Language

Programming or heterogeneous system in assembly language means to launch two programs:

• 0 hProgram.sv, whose form is exemplified for the generation and addition of matrices:

hVALUE(0,0); // selects the program generated in the data memory

// of HOST

hPSEND(0,0); // send the self delimited program

// GEN MATRICES X & UNIT MATRIX AND ADD THEM

hSQGENX; // to array: generate matrix X

hUNIT(‘p); // to array: generate matrix UNIT

hSQMADD(2*‘p, 0, ‘p); // to array: add matrices

// END ADDING PROGRAM

hHALT;

allowing to load in the program memory of CONTROLLER 0 aProgram.sv

• 0 aProgram.sv, is the program designed to run on CONTROLLER whose typical form is:

cPLOAD(0); ACTIVATE;

cNOP; GETIO(1);

cNOP; IXLOAD;

‘include "00_theKernel.sv"

LB(32); cHALT; NOP;

cPRUN(0); NOP;
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including the kernel library.

Host Assembly Language

/ * ***********************************************************************
F i l e name : 0 hProgram . sv

HOST PROGRAM
*********************************************************************** * /

hVALUE ( 0 , 0 ) ; / /
hPSEND ( 0 , 0 ) ;

/ / GEN MATRICES X & UNIT MATRIX MULTIPLY ADD THEM AND MAC
/ *

/ / hSTART ;
hSQGENX; / / t o a r r a y : g e n e r a t e m a t r i x X a t 0
hDIAG ( ‘p , 1 ) ; / / t o a r r a y : g e n e r a t e d i a g o n a l m a t r i x a t p
hSQMMULT(2* ‘p , 2 * ‘p − 1 , 0 ) ; / / t o a r r a y : m u l t i p l y m a t r i c e s
hSQMMAC(2* ‘p , 2 * ‘p − 1 , 0 ) ; / / t o a r r a y : mu l t & acc m a t r i c e s
/ / hSTOP ;

/ / * /
/ / GEN MATRICES DIAG 23 AT 0 & DIAG 3 AT 16 MULTIPLY THEM AND MAC
/ / *

/ / hSTART ;
hDIAG ( 0 , 2 3 ) ; / / t o a r r a y : d i a g o n a l m a t r i x o f 23 a t 0
hDIAG ( ‘p , 3 ) ; / / t o a r r a y : d i a g o n a l m a t r i x o f 23 a t 16
hSTART ;
hSQMMULT(2* ‘p , 2 * ‘p − 1 , 0 ) ; / / t o a r r a y : m u l t i p l y m a t r i c e s
hSQMMAC(2* ‘p , 2 * ‘p − 1 , 0 ) ; / / t o a r r a y : mu l t & acc m a t r i c e s
hSTOP ; / / p =16: 1748 , 6 . 8 2 c / s ; p =32: 5604 , 5 . 4 7 c / s

/ / w i t h o u t m a t r i c e s g e n e r e a t i o n : p =16: 1618 , 6 . 3 2 c / s
/ / * /
/ / GEN MATRICES X & UNIT MATRIX AND ADD THEM
/ *

hSQGENX; / / t o a r r a y : g e n e r a t e m a t r i x X
hUNIT ( ‘p ) ; / / t o a r r a y : g e n e r a t e m a t r i x UNIT
hSQMADD(2* ‘p , 0 , ‘p ) ; / / t o a r r a y : add m a t r i c e s

/ / * /
/ / GEN MATRICES X & UNIT MATRIX AND MULTIPLY THEM
/ *

hSQGENX; / / t o a r r a y : g e n e r a t e m a t r i x X
hUNIT ( ‘p ) ; / / t o a r r a y : g e n e r a t e m a t r i x UNIT
hSTART ;
hSQMMULT(2* ‘p , 2 * ‘p − 1 , 0 ) ; / / t o a r r a y : m u l t i p l y m a t r i c e s
hSTOP ; / / p =32: 2676; 2 . 6 1 c y c l e s / s c a l a r

/ / * /
/ / GEN MATRICES X & MULTIPLY WITH VECTOR [N , N , . . . , N] FOR N=3
/ *

hSQGENX; / / t o a r r a y : g e n e r a t e m a t r i x X
hVGENN( 4 , ‘p ) ; / / t o a r r a y : g e n e r a t e v e c t o r 3 . . . 3 a t p
hSTART ;
hSQMVMULT( ‘p −1 , ‘p , ‘p +1); / / t o a r r a y : ma t r i x −v e c t o r m u l t i p l y
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hSTOP ; / / p =32: 89; 2 . 7 8 c y c l e s / s c a l a r
/ / * /
/ / GENEERATE INDEX VECTOR AND VCETOR [N , . . . , N , . . . N] AT ADDRESS
/ *

hVGENX ( 1 3 ) ; / / t o a r r a y : g e n e r a t e i n d e x v e c t o r a t 13
hVGENN ( 1 4 , 2 3 ) ; / / t o a r r a y : g e n e r a t e v e c t o r [ . . . 14 . . . ] a t 23

/ / * /
/ / GEN MATRICES , SEND TO HOST , READ BACK IN ARRAY , MULTIPLY ,
/ / SEND RESULT TO HOST , READ BACK THE RESULT
/ *
/ / GENERATE MATRIX WITH INDEX

hSQGENX; / / t o a r r a y : g e n e r a t e m a t r i x X
hMSEND( 0 , ‘p ) ; / / t o a r r a y : send m a t r i x from 0 o f 16 l i n e s

/ / t o a r r a y : send m a t r i x
hVALUE ( 1 , ( ‘p * ‘p ) / 2 − 1 ) ; / / t o h o s t : end a d d r e s s i n h o s t
hVALUE ( 0 , 0 ) ; / / t o h o s t : s t a r t a d d r e s s i n h o s t
hDGET ( 0 , 0 , 1 ) ; / / t o h o s t : g e t da ta i n h o s t

/ / REPEAT FOR N
hSQGENN; / / t o a r r a y : g e n e r a t e m a t r i x N
hMSEND( 0 , ‘p ) ; / / t o a r r a y : send m a t r i x
hVALUE ( 1 , ( ‘p * ‘p ) −1) ; / / t o h o s t : end a d d r e s s i n h o s t
hVALUE ( 0 , ( ‘p * ‘p ) / 2 ) ; / / t o h o s t : s t a r t a d d r e s s i n h o s t
hDGET ( 0 , 0 , 1 ) ; / / t o h o s t : g e t da ta i n h o s t

/ / LOAD MATRICES FROM HOST
hSTART ;
hMGET( ‘p , ‘p ) ; / / t o a r r a y : g e t a t 16 m a t r i x o f 16 l i n e s
hVALUE ( 1 , ( ‘p * ‘p ) / 2 − 1 ) ; / / t o h o s t : end a d d r e s s i n h o s t
hVALUE ( 0 , 0 ) ; / / t o h o s t : s t a r t a d d r e s s i n h o s t
hDSEND ( 0 , 0 , 1 ) ; / / t o h o s t : send da ta i n h o s t

hMGET( 0 , ‘p ) ; / / t o a r r a y : g e t a t 16 m a t r i x o f 16 l i n e s
hVALUE ( 1 , ( ‘p * ‘p ) −1) ; / / t o h o s t : end a d d r e s s i n h o s t
hVALUE ( 0 , ( ‘p * ‘p ) / 2 ) ; / / t o h o s t : s t a r t a d d r e s s i n h o s t
hDSEND ( 0 , 0 , 1 ) ; / / t o h o s t : send da ta i n h o s t

/ / MULTIPLICATION
hSQMMULT(2* ‘p , 2 * ‘p − 1 , 0 ) ; / / t o a r r a y : m u l t i p l y m a t r i c e s

/ / SEND RESULTS
hMSEND(2* ‘p , ‘p ) ; / / t o a r r a y : send m a t r i x from 0 o f 16 l i n e s

/ / t o a r r a y : send m a t r i x
hVALUE ( 1 , ( ‘p * ‘p ) / 2 − 1 ) ; / / t o h o s t : end a d d r e s s i n h o s t
hVALUE ( 0 , 0 ) ; / / t o h o s t : s t a r t a d d r e s s i n h o s t
hDGET ( 0 , 0 , 1 ) ; / / t o h o s t : g e t da ta i n h o s t
hSTOP ; / / p =16: 1590 c y c l e s ; 6 . 2 c y c l e s / s c a l a r o f r e s u l t

/ / p =32: 5014 c y c l e s ; 4 . 8 9 c y c l e s / s c a l a r o f r e s u l t
/ / READ BACK THE RESULT

hMGET( ‘p , ‘p ) ; / / t o a r r a y : g e t a t 16 m a t r i x o f 16 l i n e s
hVALUE ( 1 , ( ‘p * ‘p ) / 2 − 1 ) ; / / t o h o s t : end a d d r e s s i n h o s t
hVALUE ( 0 , 0 ) ; / / t o h o s t : s t a r t a d d r e s s i n h o s t
hDSEND ( 0 , 0 , 1 ) ; / / t o h o s t : send da ta i n h o s t

/ / * /
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hHALT ;

Accelerator Assembly Language

/ * ***********************************************************
F i l e name : 0 aProgram . sv

ACCELERATOR PROGRAM
*********************************************************** * /

cPLOAD ( 0 ) ; ACTIVATE ;
cNOP ; GETIO ( 1 ) ;
cNOP ; IXLOAD ;

/ / ‘ i n c l u d e ”10 e x a m p l e s . v”

‘ i n c l u d e ” 00 t h e K e r n e l . sv ”

LB ( 3 2 ) ; cHALT ; NOP;
cPRUN ( 0 ) ; NOP;

/ * ***********************************************************************
EXAMPLES: 10 e x a m p l e s . v
S im p l e programs used t o d e m o n s t r a t e some f e a t u r e s o f t h e a c c e l e r a t o r
*********************************************************************** * /

/ * ***********************************************************************
T e s t program 1:

− a c t i v a t e r e d u c t i o n add f u n c t i o n
− acc [ i ] <= i , f o r i = 0 , 1 , . . . , 1 5
− 2 x l a t e n c y s t e p s
− acc <= acc [0]+ acc [ 1 ] + . . . + acc [1 5]

*********************************************************************** * /
/ * v e r s i o n 1 : 2 x NOPs are used t o w a i t f o r r e d u c t i o n l a t e n c y

cVLOAD ( 1 3 ) ; REDADD; / / a c t i v a t e r e d u c t i o n add
cNOP; VSUB ( 7 ) ;
cNOP; WHERENCARRY;
cNOP; NOP; / / l a t e n c y s t e p f o r d i s t i b u t i o n
cREDLOAD; NOP; / / l a t e n c y s t e p f o r d i s t i b u t i o n
cREDLOAD; NOP; / / l a t e n c y s t e p f o r d i s t i b u t i o n
cREDLOAD; NOP; / / l a t e n c y s t e p f o r d i s t i b u t i o n
cREDLOAD; NOP; / / l a t e n c y s t e p f o r r e d u c t i o n
cREDLOAD; NOP; / / l a t e n c y s t e p f o r r e d u c t i o n
cREDLOAD; NOP; / / l a t e n c y s t e p f o r r e d u c t i o n
cREDLOAD; NOP; / / l a t e n c y s t e p f o r r e d u c t i o n
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cREDLOAD; NOP; / / acc <= max o f i n d e x e s
/ / * /

/ / * v e r s i o n 2 : a 2 x c y c l e s loop c o n t r o l s t h e l a t e n c y
cVLOAD(2* $c l og 2 ( ‘p ) ) ; REDADD;

LB ( 1 ) ; cBRNZDEC ( 1 ) ; IXLOAD ; / / l a t e n c y loop ; acc [ i ] <= i ;
cREDLOAD; NOP; / / acc <= sum o f i n d e x e s

/ / * /

/ * ***********************************************************************
T e s t program 2:

− a c t i v a t e r e d u c t i o n add f u n c t i o n
− acc [ i ] <= i f o r 1 = 0 , 1 , . . . , 1 5
− memVect [ i ] [ 4 ] <= acc [ i ] f o r 1 = 0 , 1 , . . . , 1 5
− acc [ i ] <= acc [ i ] x vectMem [ i ] [ 4 ]
− acc <= acc [0]+ acc [ 1 ] + . . . + acc [15]
− mem[24] <= acc = i n n e r P r o d u c t ( index , i n d e x )

*********************************************************************** * /
/ *

cNOP; IXLOAD ; / / acc [ i ] <= i n d e x
cNOP; STORE ( 4 ) ; / / memVect [ i ] [ 4 ] <= acc [ i ]
cNOP; REDADD; / / a c t i v a t e r e d u c t i o n add
cVLOAD(2* $c l og 2 ( ‘p ) −1) ; MULT( 4 ) ; / / i n i t l l a t e n c y loop ;

/ / acc [ i ] <=
/ / acc [ i ] * memVect [ i ] [ 4 ]

LB ( 1 ) ; cBRNZDEC ( 1 ) ; NOP; / / l a t e n c y loop
cREDLOAD; NOP; / / acc <= redAdd ( acc [ i ] )
cSTORE ( 2 ) ; NOP; / / mem[ 2 ] <= acc

/ / * /

/ * ***********************************************************************
T e s t program 3: how many c e l l s are a c t i v e a f t e r two WHERE

− a c t i v a t e r e d u c t i o n add f u n c t i o n
− acc [ i } <= i
− keep a c t i v e c e l l s where ( acc [ i ] >= 5)
− keep a c t i v e c e l l s where ( acc [ i ] < 15)
− acc [ i ] <= 1 o n l y i n a l l a c t i v e c e l l s
− r e a c t i v a t e a l l c e l l s and w a i t f o r l a t e n c y i n 8 = 2 x c y c l e s
− acc <= acc [0]+ acc [ 1 ] + . . . + acc [15] o n l y f o r t h e a c t i v e c e l l s

*********************************************************************** * /
/ *

cNOP; REDADD; / / a c t i v a t e red . add
cNOP; IXLOAD ; / / acc [ i ] <= i n d e x
cNOP; VSUB ( 5 ) ; / / { cr , acc [ i ]} <=

/ / acc [ i ] − 5
cNOP; WHERENCARRY; / / where cr =1 a c t i v e
cNOP; VSUB ( 1 0 ) ; / / {{ cr , acc [ i ]} <=

/ / acc [ i ] − (15 − 5)
cNOP; WHERECARRY; / / where cr =0 a c t i v e
cNOP; VLOAD ( 1 ) ;
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cNOP; ENDWHERE; / / r e a c t i v a t e where
/ / second WHERE a c t e d

cVLOAD(2* $c l og 2 ( ‘p ) −3) ; ENDWHERE; / / r e a c t i v a t e where
/ / f i r s t WHERE a c t e d

LB ( 1 ) ; cBRNZDEC ( 1 ) ; NOP; / / l a t e n c y loop
cREDLOAD; NOP; / / acc <= number o f

/ / a c t i v e c e l l s
/ / * /

/ * ***********************************************************************
T e s t program 4:

− a c t i v a t e r e d u c t i o n add f u n c t i o n
− acc [ i } <= i ; load i n d e x
− 2 x l a t e n c y s t e p s
− acc <= acc [0]+ acc [ 1 ] + . . . acc [1 5]
− acc [ i ] <= acc [ i ] + acc

*********************************************************************** * /
/ *

cVLOAD(2* $c l og 2 ( ‘p ) −1) ; REDADD; / / s e t l oop s i z e ;
/ / a c t i v a t e r e d u c t i o n add

LB ( 1 ) ; cBRNZDEC ( 1 ) ; IXLOAD ; / / l a t e n c y loop ; acc [ i ] <= i
cREDLOAD; NOP; / / acc<=acc [ 0 ] + . . . acc [15]
cNOP; CADD; / / acc [ i ] <= acc [ i ] + acc

/ / * /

/ * ***********************************************************************
T e s t program 5:

− acc <= 10; i n i t i a l i z e t h e loop c o u n t e r and acc [ i ] = i
− do ( acc +1) t i m e s

acc [ i ] <= acc [ i ] / 2
acc [ i ] <= acc [ i ] + 99

*********************************************************************** * /
/ *

cVLOAD ( 1 0 ) ; NOP;
LB ( 1 ) ; cNOP; SHR; / / d i v i d e by 2

cBRNZDEC ( 1 ) ; VADD( 9 9 ) ; / / branch i f acc =0 , acc<=acc −1 , add 99
/ / * /

C.3 Libraries of Functions

C.3.1 Low-Level Library

Low-Level Library Definition: cgHOST LIBRARY.sv

/ * ***********************************************************
F i l e name : cgHOST LIBRARY . sv
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LOW LEVEL LIBRARY FUNCTIONS

*********************************************************** * /
ta sk hSSEND ; / / s c a l a r send as parame te r

input [ 2 5 : 0 ] s c a l a r ;
begin opCode = ‘ h s s e n d ;

{ d e s t , l e f t , v a l u e } = s c a l a r ;
endLine ;

end
endtask

task hSTART ; / / s t a r t c o n t r o l l e r ’ s c y c l e c o u n t e r
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b0100 ;
endLine ;

end
endtask

task hSTOP ; / / s t o p c o n t r o l l e r ’ s c y c l e c o u n t e r
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b0101 ;
endLine ;

end
endtask

task hINTRQ ; / / i n t e r r u p t r e q u e s t
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b0110 ;
endLine ;

end
endtask

task hSQGENX; / / s qu are m a t r i x X s t a r t i n g w i t h v e c t [ 0 ]
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b0111 ;
endLine ;

end
endtask

task hSQGENN; / / s qu are m a t r i x N s t a r t i n g w i t h v e c t [ 0 ]
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
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l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b1000 ;
endLine ;

end
endtask

task hMSEND; / / m a t r i x send
input [ 2 5 : 0 ] a d d r e s s ;
input [ 2 5 : 0 ] s i z e ;
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b1001 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = a d d r e s s ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = s i z e ;
endLine ;

end
endtask

task hMGET; / / m a t r i x g e t
input [ 2 5 : 0 ] a d d r e s s ;
input [ 2 5 : 0 ] s i z e ;
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b1010 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = a d d r e s s ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = s i z e ;
endLine ;

end
endtask

task hUNIT ; / / s qu are u n i t m a t r i x s t a r t i n g a t a d d r e s s
input [ 2 5 : 0 ] a d d r e s s ;
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b1011 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = a d d r e s s ;
endLine ;
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end
endtask

task hSQMADD; / / s qu are m a t r i c e s add
input [ 2 5 : 0 ] d ;
input [ 2 5 : 0 ] l ;
input [ 2 5 : 0 ] r ;
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b1100 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = d ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = l ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = r ;
endLine ;

end
endtask

task hVGENX; / / i n d e x v e c t o r g e n e r a t e a t a d d r e s s
input [ 2 5 : 0 ] a d d r e s s ;
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b1101 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = a d d r e s s ;
endLine ;

end
endtask

task hVGENN; / / i n t e g e r v e c t o r g e n e r a t e a t a d d r e s s
input [ 2 5 : 0 ] a d d r e s s ;
input [ 2 5 : 0 ] s c a l a r ;
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b1110 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = a d d r e s s ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = s c a l a r ;



304 APPENDIX C. HETEROGENEOUS SYSTEM SIMULATOR

endLine ;
end

endtask

task hSQMVMULT; / / s qu ar e m a t r i c e v e c t o r m u l t i p l y
input [ 2 5 : 0 ] d ;
input [ 2 5 : 0 ] l ;
input [ 2 5 : 0 ] r ;
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b1111 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = d ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = l ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = r ;
endLine ;

end
endtask

task hSQMMULT; / / s qu ar e m a t r i c e s m u l t i p l y
input [ 2 5 : 0 ] d ;
input [ 2 5 : 0 ] l ;
input [ 2 5 : 0 ] r ;
begin opCode = ‘ h f s e n d ;

d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b10000 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = d ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = l ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = r ;
endLine ;

end
endtask

task hSQMMAC; / / s qu are m a t r i c e s m u l t i p l y −a c c u m u l a t e
input [ 2 5 : 0 ] d ;
input [ 2 5 : 0 ] l ;
input [ 2 5 : 0 ] r ;



C.3. LIBRARIES OF FUNCTIONS 305

begin opCode = ‘ h f s e n d ;
d e s t = 5 ’ b0 ;
l e f t = 5 ’ b0 ;
v a l u e = 16 ’ b10001 ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = d ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = l ;
endLine ;
opCode = ‘ h s s e n d ;
{ d e s t , l e f t , v a l u e } = r ;
endLine ;

end
endtask

Low-Level Library Implementation: 00 theKernel.v

/ * ***********************************************************
F i l e name : 00 t h e K e r n e l . s v
D e s c r i p t i o n : LINEAR ALGEBRA KERNEL LIBRARY FUNCTIONS
*********************************************************** * /

cHALT ; NOP;
cJMP ( 1 ) ; NOP; / / hSTART
cJMP ( 2 ) ; NOP; / / hSTOP
cJMP ( 3 ) ; NOP; / / hINTRQ
cJMP ( 4 ) ; NOP; / / hSQGENX
cJMP ( 5 ) ; NOP; / / hSQGENN
cJMP ( 6 ) ; NOP; / / hMSEND( addr , s i z e )
cJMP ( 7 ) ; NOP; / / hMGET( addr , s i z e )
cJMP ( 8 ) ; NOP; / / hUNIT ( addr )
cJMP ( 9 ) ; NOP; / / hSQADD( d e s t , l e f t , r i g h t )
cJMP ( 1 0 ) ; NOP; / / hVGENX( addr )
cJMP ( 1 1 ) ; NOP; / / hVGENN( addr , v a l u e )
cJMP ( 1 2 ) ; NOP; / / hSQMVMULT( d e s t , l e f t , r i g h t )
cJMP ( 1 3 ) ; NOP; / / hSQMMULT( d e s t , l e f t , r i g h t )
cJMP ( 1 4 ) ; NOP; / / hSQMMAC( d e s t , l e f t , r i g h t )
cJMP ( 1 5 ) ; NOP; / / hDIAG ( d e s t , v a l u e )

/ / ********** START COUNTER **********************************
LB ( 1 ) ; cSTART ; VLOAD( 2 2 ) ;

cJMP ( 3 2 ) ; NOP;
/ / ********** STOP COUNTER ***********************************

LB ( 2 ) ; cSTOP ; VLOAD( 3 3 ) ;
cJMP ( 3 2 ) ; NOP;

/ / ********** INTERRUPT REQEST *******************************
LB ( 3 ) ; cSETINT ; VLOAD( 4 4 ) ;
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cJMP ( 3 2 ) ; NOP;
/ / ********** SQUARE MATRIX X GENERATE ***********************

LB ( 4 ) ; cVLOAD( ‘p − 1 ) ; VLOAD( − 1 ) ;
cNOP ; ADDRLD;
cNOP ; IXLOAD ;

LB ( 1 7 ) ; cNOP ; RISTORE ( 1 ) ;
cBRNZDEC ( 1 7 ) ; VADD( 1 ) ;
cJMP ( 3 2 ) ; NOP;

/ / ********** SQUARE MATRIX N GENERATE ***********************
LB ( 5 ) ; cVLOAD( ‘p − 1 ) ; VLOAD( − 1 ) ;

cNOP ; ADDRLD;
cNOP ; VLOAD( 0 ) ;

LB ( 1 8 ) ; cNOP ; RISTORE ( 1 ) ;
cBRNZDEC ( 1 8 ) ; VADD( 1 ) ;
cJMP ( 3 2 ) ; NOP;

/ / ********** SEND MATRIX ************************************
LB ( 6 ) ; cPARAM; NOP;

cVSUB ( 1 ) ; NOP;
cPARAM; CLOAD;
cNOP ; ADDRLD;
cNOP ; NOP;
cNOP ; RISENDIO ( 1 ) ;

LB ( 1 9 ) ; cNOP ; NOP;
cBRZDEC ( 3 2 ) ; NOP;
cSTORE ( 0 ) ; NOP; / /

cVLOAD( $ c l og 2 ( ‘p ) −4) ;
cVLOAD( $c lo g2 ( ‘p ) − 4 ) ; NOP; / / LB ( 3 4 ) ; cBRZDEC ( 3 4 ) ;

LB ( 3 4 ) ; cBRZDEC ( 3 4 ) ; NOP;
cLOAD ( 0 ) ; NOP;
cDATAEXT( ‘p / 2 ) ; NOP;
cJMP ( 1 9 ) ; RISENDIO ( 1 ) ;

/ / ********** GET MATRIX *************************************
LB ( 7 ) ; cPARAM; NOP;

cVSUB ( 1 ) ; NOP;
cPARAM; CLOAD;
cVSUB ( 1 ) ; ADDRLD;
cSTORE ( 0 ) ; NOP;
cVLOAD( $c lo g2 ( ‘p ) ) ; RGETIO ( 1 ) ;

LB ( 2 8 ) ; cBRNZDEC ( 2 8 ) ; NOP;
LB ( 2 0 ) ; cDATAINS ( ‘p / 2 ) ; NOP;

cLOAD ( 0 ) ; RIGETIO ( 1 ) ;
cBRZDEC ( 3 2 ) ; NOP;
cSTORE ( 0 ) ; NOP;
cVLOAD( $c lo g2 ( ‘p ) − 4 ) ; NOP;

LB ( 2 9 ) ; cBRNZDEC ( 2 9 ) ; NOP;
cJMP ( 2 0 ) ; NOP;

/ / ********** UNIT MATRIX GENERATE ***************************
LB ( 8 ) ; cPARAM; NOP;

cVSUB ( 1 ) ; NOP;
cVLOAD( ‘p − 1 ) ; CLOAD;
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cNOP ; ADDRLD;
cNOP ; IXLOAD ;
cNOP ; WHEREZERO;
cNOP ; VLOAD( 1 ) ; / / ! ! ! !
cNOP ; ELSEWHERE;
cNOP ; VLOAD( 0 ) ;
cNOP ; SENDSR ;
cNOP ; ENDWHERE;
cNOP ; NOP; / / VLOAD ( 2 3 ) ;

LB ( 2 2 ) ; cNOP ; GETSR ;
cNOP ; RISTORE ( 1 ) ;
cBRNZDEC ( 2 2 ) ; GRSHIFT ;
cJMP ( 3 2 ) ; NOP;

/ / ********** ADD SQUARE MATRICES ****************************
LB ( 9 ) ; cPARAM; NOP;

cSTORE ( 3 ) ; NOP; / / d e s t a t mem[ 3 ]
cPARAM; NOP;
cSTORE ( 4 ) ; NOP; / / l e f t a t mem[ 4 ]
cPARAM; NOP;
cSTORE ( 5 ) ; NOP; / / r i g h t a t mem[ 5 ]
cSUB ( 4 ) ; NOP;
cSTORE ( 0 ) ; NOP; / / r i g h t − l e f t a t mem[ 0 ]
cLOAD ( 3 ) ; NOP;
cSUB ( 5 ) ; NOP;
cSTORE ( 1 ) ; NOP; / / d e s t − r i g h t a t mem[ 1 ]
cLOAD ( 4 ) ; NOP;
cSUB ( 3 ) ; NOP;
cVADD ( 1 ) ; NOP;
cSTORE ( 2 ) ; NOP; / / l e f t −d e s t +1 a t mem[ 2 ]
cVLOAD( ‘p + 1 ) ; NOP;
cSTORE ( 6 ) ; NOP;

LB ( 2 3 ) ; cLOAD ( 4 ) ; NOP;
cADD ( 0 ) ; CDLOAD;
cADD ( 1 ) ; CAADD;
cADD ( 2 ) ; CSTORE ;
cSTORE ( 4 ) ; NOP;
cLOAD ( 6 ) ; NOP;
cVSUB ( 1 ) ; NOP;
cSTORE ( 6 ) ; NOP;
cBRNZ ( 2 3 ) ; NOP;
cJMP ( 3 2 ) ; NOP;

/ / ************ INDEX VECTOR GENERATE ************************
LB ( 1 0 ) ; cPARAM; IXLOAD ;

cJMP ( 3 2 ) ; CSTORE ;
/ / ************ . . . N . . . VECTOR GENERATE ************************

LB ( 1 1 ) ; cPARAM; NOP;
cPARAM; CLOAD;
cJMP ( 3 2 ) ; CSTORE ;

/ / ************ MATRIX−VECTOR MULTIPLY ***********************
LB ( 1 2 ) ; cPARAM; NOP;
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cPARAM; CLOAD;
cSTORE ( 0 ) ; VADD( 1 ) ; / / mem[ 0 ] = v e c t o r addr
cPARAM; ADDRLD; / / m a t r i x end addr + 1
cSTORE ( 1 ) ; REDADD; / / mem[ 1 ] = r e s u l t v e c t o r addr
cVLOAD( ‘p ) ; RILOAD( − 1 ) ;

LB ( 2 4 ) ; cNOP ; MULT( ‘p ) ;
cBRNZDEC ( 2 4 ) ; RILOADI ( − 1 ) ;
cVLOAD( $c lo g2 ( ‘p ) − 4 ) ; NOP;

LB ( 3 0 ) ; cNOP ; LREDINS ;
cBRNZDEC ( 3 0 ) ; NOP;
cLOAD ( 1 ) ; GETSR ;
cJMP ( 3 2 ) ; CSTORE ;

/ / ********** MULTIPLY SQUARE MATRICES ***********************
LB ( 1 3 ) ; cPARAM; REDADD;

cVSUB ( 1 ) ; NOP;
cSTORE ( 3 ) ; NOP; / / d e s t => 3
cPARAM; NOP;
cSTORE ( 0 ) ; NOP; / / l e f t => 0
cPARAM; CLOAD;
cSTORE ( 2 ) ; ADDRLD; / / r i g h t => 2
cVLOAD( ‘p − 1 ) ; NOP;
cSTORE ( 1 ) ; NOP;
cLOAD ( 2 ) ; NOP;
cVADD ( 1 ) ; CDLOAD;
cSTORE ( 2 ) ; STORE(3* ‘p ) ;
cVLOAD( ‘p ) ; RILOAD ( 0 ) ;

LB ( 2 5 ) ; cNOP ; MULT(3* ‘p ) ;
cBRNZDEC ( 2 5 ) ; RILOADI ( − 1 ) ;
cVLOAD( $c lo g2 ( ‘p ) − 4 ) ; NOP;

LB ( 3 1 ) ; cNOP ; LREDINS ;
cBRNZDEC ( 3 1 ) ; NOP;
cLOAD ( 3 ) ; NOP;
cVADD ( 1 ) ; NOP;
cSTORE ( 3 ) ; GETSR ;
cLOAD ( 2 ) ; CSTORE ; / / CSADD;
cVADD ( 1 ) ; CDLOAD;
cSTORE ( 2 ) ; NOP;
cLOAD ( 0 ) ; STORE(3* ‘p ) ;
cLOAD ( 1 ) ; CLOAD;
cBRZDEC( 3 2 ) ; ADDRLD;
cSTORE ( 1 ) ; NOP;
cVLOAD( ‘p ) ; RLOAD( 0 ) ;
cJMP ( 2 5 ) ; NOP;

/ / ********** MULTIPLY & ACCUMULATE SQUARE MATRICES **********
LB ( 1 4 ) ; cPARAM; REDADD;

cVSUB ( 1 ) ; NOP;
cSTORE ( 3 ) ; NOP; / / d e s t => 3
cPARAM; NOP;
cSTORE ( 0 ) ; NOP; / / l e f t => 0
cPARAM; CLOAD;
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cSTORE ( 2 ) ; ADDRLD; / / r i g h t => 2
cVLOAD( ‘p − 1 ) ; NOP;
cSTORE ( 1 ) ; NOP;
cLOAD ( 2 ) ; NOP;
cVADD ( 1 ) ; CDLOAD;
cSTORE ( 2 ) ; STORE(3* ‘p ) ;
cVLOAD( ‘p ) ; RILOAD ( 0 ) ;

LB ( 2 6 ) ; cNOP ; MULT(3* ‘p ) ;
cBRNZDEC ( 2 6 ) ; RILOADI ( − 1 ) ;
cVLOAD( $c lo g2 ( ‘p ) − 4 ) ; NOP;

LB ( 3 3 ) ; cNOP ; LREDINS ;
cBRNZDEC ( 3 3 ) ; NOP;
cLOAD ( 3 ) ; NOP; / / MULT(3* ‘p ) ;
cVADD ( 1 ) ; NOP;
cNOP ; GETSR ;
cSTORE ( 3 ) ; CAADD; / / CSTORE;
cLOAD ( 2 ) ; CSTORE ;
cVADD ( 1 ) ; CDLOAD;
cSTORE ( 2 ) ; NOP;
cLOAD ( 0 ) ; STORE(3* ‘p ) ;
cLOAD ( 1 ) ; CLOAD;
cBRZDEC( 3 2 ) ; ADDRLD;
cSTORE ( 1 ) ; NOP;
cVLOAD( ‘p ) ; RLOAD( 0 ) ;
cJMP ( 2 6 ) ; NOP;

/ / ********** DIAGONAL MATRIX GENERATE ***************************
LB ( 1 5 ) ; cPARAM; NOP;

cVSUB ( 1 ) ; NOP;
cPARAM; CLOAD;
cNOP ; ADDRLD;
cNOP ; IXLOAD ;
cNOP ; WHEREZERO;
cNOP ; CLOAD; / / ! ! ! !
cNOP ; ELSEWHERE;
cNOP ; VLOAD( 0 ) ;
cNOP ; SENDSR ;
cNOP ; ENDWHERE;
cVLOAD( ‘p − 1 ) ; NOP;

LB ( 2 7 ) ; cNOP ; GETSR ;
cNOP ; RISTORE ( 1 ) ;
cBRNZDEC ( 2 7 ) ; GRSHIFT ;
cJMP ( 3 2 ) ; NOP;

C.3.2 High-Level Libraries

C.3.3 Performance Evaluation
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