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Introduction

... theories become clear and ‘reasonable’ only after incoherent
parts of them have been used for a long time.

Paul Feyerabend1

The price for the clarity and simplicity of a ’reasonable’ ap-
proach is its incompleteness.

Few legitimate questions about how to teach digital systems in Ten Giga-Gate Per Chip Era are
waiting for an answer.

1. What means a complex digital system? How complex systems are designed using small and simple
circuits?

2. How a digital system expands its size, increasing in the same time its speed? Are there simple
mechanisms to be emphasized?

3. Is there a special mechanism allowing a “hierarchical growing” in a digital system? Or, how new
features can be added in a digital system?

The first question occurs because already exist many different big systems which seem to have differ-
ent degree of complexity. For example: big memory circuits and big processors. Both are implemented
using a huge number of circuits, but the processors seem to be more “complicated” than the memories.
In almost all text books complexity is related only with the dimension of the system. Complexity means
currently only size, the concept being unable to make necessary distinctions in Ten Giga-Gate Per Chip
Era. The last improvements of the microelectronic technologies allow us to put on a Silicon die around
a billion of gates, but the design tools are faced with more than the size of the system to be realized in
this way. The size and the complexity of a digital system must be distinctly and carefully defined in order
to have a more flexible conceptual environment for designing, implementing and testing systems in Ten
Giga-Gate Per Chip Era.

The second question rises in the same context of the big and the complex systems. Growing a
digital system means both increasing its size and its complexity. How are correlated these two growing

1Paul Feyerabend (b.1924, d.1994), having studied science at the University of Vienna, moved into philosophy for his
doctoral thesis. He became a critic of philosophy of science itself, particularly of “rationalist” attempts to lay down or discover
rules of scientific method. His first book, Against Method (1975), sets out “epistemological anarchism”, whose main thesis was
that there is no such thing as the scientific method.
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processes? The dynamic of adding circuits and of adding adding features seems to be very different and
governed by distinct mechanisms.

The third question occurs in the hierarchical contexts in which the computation is defined. For
example, Kleene’s functional hierarchy or Chomsky’s grammatical hierarchy are defined to explain how
computation or formal languages used in computation evolve from simple to complex. Is this hierarchy
reflected in a corresponding hierarchical organization of digital circuits? It is obvious that a sort of
similar hierarchy must be hidden in the multitude of features already emphasized in the world of digital
circuits. Let be the following list of usual terms: boolean functions, storing elements, automata circuits,
finite automata, memory functions, processing functions, . . ., self-organizing processes, . . .. Is it possible
to disclose in this list a hierarchy, and more, is it possible to find similarities with previously exemplified
hierarchies?

The first answer will be derived from the Kolmogorov-Chaitin algorithmic complexity: the com-
plexity of a circuit is related with the dimension of its shortest formal description. A big circuit (a
circuit built using a big number o gates) can be simple or complex depending on the possibility to em-
phasize repetitive patterns in its structure. A no pattern circuit is a complex one because its description
has the dimension proportional with its size. Indeed, for a complex, no pattern circuit each gate must be
explicitly specified.

The second answer associate the composition with sizing and the loop with featuring. Composing
circuits results biggest structures with the same kind of functionality, while closing loops in a circuit new
kind of behaviors are induced. Each new loop adds more autonomy to the system, because increases the
dependency of the output signals in the detriment of the input signals. Shortly, appropriate loops means
more autonomy that is equivalent sometimes with a new level of functionality.

The third answer is given by proposing a taxonomy for digital systems based on the maximum number
of included loops closed in a certain digital system. The old distinction between combinational and
sequential, applied only to circuits, is complemented with a classification taking into the account the
functional and structural diversity of the digital systems used in the contemporary designs. More, the
resulting classification provides classes of circuits having direct correspondence with the levels belonging
to Kleene’s and Chomsky’s hierarchies.

The first part of the book – Digital Systems: a Bird’s-Eye View – is a general introduction in digital
systems framing the digital domain in the larger context of the computational sciences, introducing the
main formal tool for describing, simulating and synthesizing digital systems, and presenting the main
mechanisms used to structure digital systems. The second part of the book – Looping in Digital Systems
– deals with the main effects of the loop: more autonomy and segregation between the simple parts and
the complex parts in digital systems. Both, autonomy and segregation, are used to minimize size and
complexity. The book ends with two annexes containing short reviews of the prerequisite knowledge.

PART I: Digital Systems: a Bird’s-Eye View

The first chapter: What’s a Digital System? Few general questions are answered in this chapter. One
refers to the position of digital system domain in the larger class of the sciences of computation. Another
asks for presenting the ways we have to implement actual digital systems. The importance is also to
present the correlated techniques allowing to finalize a digital product.



5

The second chapter: Digital Circuits is an introductory text in the field of digital circuits seen from
the conventional perspective of combinational and sequential circuits. In this first step in approaching
the digital domain we become familiar with a Hardware Description Language (HDL) as the main tool
for mastering digital circuits and systems. The Verilog HDL is introduced and in the same time used to
present simple digital circuits. The distinction between behavioral descriptions and structural descrip-
tions is made when Verilog is used to describe and simulate combinational and sequential circuits. The
temporal behaviors are described, along with solutions to control them.

The third chapter: Growing & Speeding & Featuring The architecture and the organization of a
digital system are complex objectives. We can not be successful in designing big performance machine
without strong tools helping us to design the architecture and the high level organization of a desired
complex system. These mechanisms are three. One helps us to increase the brute force performance of
the system. It is composition. The second is used to compensate the slow-down of the system due to
excessive serial composition. It is pipelining. The last is used to add new features when they are asked by
the application. It is about closing loops inside the system in order to improve the autonomous behaviors.

The fourth chapter: The Taxonomy of Digital Systems A loop based taxonomy for digital systems
is proposed. It classifies digital systems in orders, as follows:

• 0-OS: zero-order systems - no-loop circuits - containing the combinational circuits;

• 1-OS: 1-order systems - one-loop circuits - the memory circuits, with the autonomy of the internal
state; they are used mainly for storing

• 2-OS: 2-order systems - two-loop circuits - the automata, with the behavioral autonomy in their
own state space, performing mainly the function of sequencing

• 3-OS: 3-order systems - three-loop circuits - the processors, with the autonomy in interpreting
their own internal states; they perform the function of controlling

• 4-OS: 4-order systems - four-loop circuits - the computers, which interpret autonomously the
programs according to the internal data

• . . .

• n-OS: n-order systems - n-loop circuits - systems in which the information is interpenetrated with
the physical structures involved in processing it; the distinction between data and programs is
surpassed and the main novelty is the self-organizing behavior.

The fifth chapter: Our Final Target A small and simple programmable machine, called toyMachine
is defined using a behavioral description. In the last chapter of the second part a structural design of this
machine will be provided using the main digital structure introduced meantime.

PART II: Looping in Digital Domain

The sixth chapter: Gates The combinational circuits (0-OS) are introduced using a functional ap-
proach. We start with the simplest functions and, using different compositions, the basic simple func-
tional modules are introduced. The distinction between simple and complex combinational circuits is
emphasized, presenting specific technics to deal with complexity.
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The seventh chapter: Memories There are two ways to close a loop over the simplest functional
combinational circuit: the one-input decoder. One of them offers the stable structure on which we ground
the class of memory circuits (1-OS) containing: the elementary latches, the master-slave structures (the
serial composition), the random access memory (the parallel composition) and the register (the serial-
parallel composition). Few applications of storing circuits (pipeline connection, register file, content
addressable memory, associative memory) are described.

The eight chapter: Automata Automata (2-OS) are presented in the fourth chapter. Due to the sec-
ond loop the circuit is able to evolve, more or less, autonomously in its own state space. This chapter
begins presenting the simplest automata: the T flip-flop and the JK flip-flop. Continues with composed
configurations of these simple structures: counters and related structures. Further, our approach makes
distinction between the big sized, but simple functional automata (with the loop closed through a simple,
recursive defined combinational circuit that can have any size) and the random, complex finite automata
(with the loop closed through a random combinational circuit having the size in the same order with
the size of its definition). The autonomy offered by the second loop is mainly used to generate or to
recognize specific sequences of binary configurations.

The ninth chapter: Processors The circuits having three loops (3-OS) are introduced. The third
loop may be closed in three ways: through a 0-OS, through an 1-OS or through a 2-OS, each of them
being meaningful in digital design. The first, because of the segregation process involved in designing
automata using JK flip-flops or counters as state register. The size of the random combinational circuits
that compute the state transition function is reduced, in the most of case, due to the increased autonomy
of the device playing the role of the register. The second type of loop, through a memory circuit, is also
useful because it increases the autonomy of the circuit so that the control exerted on it may be reduced
(the circuit “knows more about itself”). The third type of loop, that interconnects two automata (an
functional automaton and a control finite automaton), generates the most important digital circuits: the
processor.

The tenth chapter: Computing Machines The effects of the fourth loop are shortly enumerated in the
sixth chapter. The computer is the typical structure in 4-OS. It is also the support of the strongest seg-
regation between the simple physical structure of the machine and the complex structure of the program
(a symbolic structure). Starting from the fourth order the main functional up-dates are made structuring
the symbolic structures instead of restructuring circuits. Few new loops are added in actual designs only
for improving time or size performances, but not for adding new basic functional capabilities. For this
reason our systematic investigation concerning the loop induced hierarchy stops with the fourth loop.
The toyMachine behavioral description is revisited and substituted with a pure structural description.

The main stream of this book deals with the simple and the complex in digital systems, emphasizing
them in the segregation process that opposes simple structures of circuits to the complex structures of
symbols. The functional information offers the environment for segregating the simple circuits from the
complex binary configurations.

When the simple is mixed up with the complex, the apparent complexity of the system increases over
its actual complexity. We promote design methods which reduce the apparent complexity by segregating
the simple from the complex. The best way to substitute the apparent complexity with the actual com-
plexity is to drain out the chaos from order. One of the most important conclusions of this book is that
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the main role of the loop in digital systems is to segregate the simple from the complex, thus emphasizing
and using the hidden resources of autonomy.

In the digital systems domain prevails the art of disclosing the simplicity because there exists the
symbolic domain of functional information in which we may ostracize the complexity. But, the complex-
ity of the process of disclosing the simplicity exhausts huge resources of imagination. This book offers
only the starting point for the architectural thinking: the art of finding the right place of the interface
between simple and complex in computing systems.

Acknowledgments
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Part I

A BIRD’S-EYE VIEW ON DIGITAL
SYSTEMS

1





Chapter 1

WHAT’S A DIGITAL SYSTEM?

In the previous chapter
we can not find anything because it does not exist, but we suppose the reader is familiar with:

• fundamentals about what means computation

• basics about Boolean algebra and basic digital circuits (see Annexes Boolean Functions and
Basic circuits for a short refresh)

• the usual functions supposed to be implemented by digital sub-systems in the current audio,
video, communication, gaming, ... market products

In this chapter
general definitions related with the digital domain are used to reach the following targets:

• to frame the digital system domain in the larger area of the information technologies

• to present different ways the digital approach is involved in the design of the real market
products

• to enlist and shortly present the related domains, in order to integrate better the knowledge
and skills acquired by studying the digital system design domain

In the next chapter
is a friendly introduction in both, digital systems and a HDLs (Hardware Description Languages)
used to describe, simulate, and synthesized them. The HDL selected for this book is called Verilog.
The main topics are:

• the distinction between combinational and sequential circuits

• the two ways to describe a circuit: behavioral or structural

• how digital circuits behave in time.

3
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Talking about Apple, Steve said, “The system is
there is no system.” Then he added, “that does’t
mean we don’t have a process.” Making the dis-
tinction between process and system allows for a
certain amount of fluidity, spontaneity, and risk,
while in the same time it acknowledges the impor-
tance of defined roles and discipline.

J. Young & W. Simon1

A process is a strange mixture of rationally estab-
lished rules, of imaginatively driven chaos, and of
integrative mystery.

A possible good start in teaching about a complex domain is an informal one. The main problems
are introduced friendly, using an easy approach. Then, little by little, a more rigorous style will be able
to consolidate the knowledge and to offer formally grounded techniques. The digital domain will be
disclosed here alternating informal “bird’s-eye views” with simple, formalized real stuff. Rather than
imperatively presenting the digital domain we intend to disclose it in small steps using a project oriented
approach.

1.1 Framing the digital design domain

Digital domain can be defined starting from two different, but complementary view points: the structural
view point or the functional view point. The first version presents the digital domain as part of electronics,
while the second version sees the digital domain as part of computer science.

1.1.1 Digital domain as part of electronics

Electronics started as a technical domain involved in processing continuously variable signals. Now the
domain of electronics is divided in two sub-domains: analogue electronics, dealing with continuously
variable signals and digital electronics based on elementary signals, called bits, which take only two
different levels 0 and 1, but can be used to compose any complex signals. Indeed, a sequence of n bits
is used to represent any number between 0 and 2n − 1, while a sequence of numbers can be used to
approximate a continuously variable signal. Let us take first examples with 1-bit signals.

Example 1.1 A disciplined driver starts the car’s engine only if all four doors are closed and, in all
occupied seats, the seat belts are connected. The key contact and the previous condition are the ones that
start the engine. (This example is from [1].)

The car is equipped with sensors for each door (d1, d2, d3, d4), for each seat (s1, s2, s3,

s4), for each belt (b1, b2, b3, b4) and for the ignition key (k). The logic function that generates the
start bit (s) is as follows:

1They co-authored iCon. Steve Jobs. The Greatest Second Act in the History of Business, an unauthorized portrait of the
co-founder of Apple.
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s = (doors_are_closed) AND (each_occupied_with_belt_on) AND (key_is_on)

s = (d1 AND d2 AND d3 AND d4) AND

((b1 OR (NOT b1) AND (NOT s1)) AND

(b2 OR (NOT b2) AND (NOT s2)) AND

(b3 OR (NOT b3) AND (NOT s3)) AND

(b4 OR (NOT b4) AND (NOT s4))) AND

k)

In algebraic notation:

s = (d1 ·d2 ·d3 ·d4) · ((b1+b1′ · s1′) · (b2+b2′ · s2′) · (b3+b3′ · s3′) · (b4+b4′ · s4′)) · k

Because the operator AND, “·”, is usually omitted:

s = d1 d2 d3 d4 (b1+b1′ s1′)(b2+b2′ s2′)(b3+b3′ s3′)(b4+b4′ s4′)k

The expression ca be simplified because: a+a′b = a+b (half-absorbtion rule).
Indeed, the car can start if each place has the belt on or is not occupied. Results the simplified form:

s = d1 d2 d3 d4 (b1+ s1′)(b2+ s2′)(b3+ s3′)(b4+ s4′)k

The Verilog description is:

module i g n i t i o n K e y ( output s ,
input d1 , d2 , d3 , d4 , s1 , s2 , s3 , s4 ,

b1 , b2 , b3 , b4 , k ) ;
a s s i g n s = d1 & d2 & d3 & d4 & ( b1 | ˜ s1 ) &

( b2 | ˜ s2 ) &
( b3 | ˜ s3 ) &
( b4 | ˜ s4 ) & k ;

endmodule

The result provided by the Vivado tool is represented in Figure 1.1.

Figure 1.1: Ignition Key circuit.

⋄
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Example 1.2 Be a store where customer access is restricted to a maximum of N people. The access is
directed by a traffic light with two colors: green, allows access, and red, prohibits access. The access
door is equipped with two sensors: one signals, by a pulse, the entry of a client and another the exit of a
client by another pulse. When the number of customers in the store is greater than N, the traffic light is
red, otherwise it is green. The store has only one door, so the two pulses that indicate the change in the
number of customers cannot appear simultaneously.

The Verilog description is:

module c u s t o m e r L i m i t (
output l i g h t , / / 0 means green ; 1 means red
input i n P u l s e , / / c u s t o m e r e n t e r t h e s t o r e
input o u t P u l s e , / / c u s t o m e r l e a v e t h e s t o r e
input [ 3 : 0 ] l i m i t ) ; / / c u s t o m e r s a c c e p t e d

reg [ 1 0 : 0 ] i n C u s t R e g i s t e r ; / / r e c o r d s t h e number o f e n t r a n t s
reg [ 1 0 : 0 ] o u t C u s t R e g i s t e r ; / / r e c o r d s t h e number o f l e f t p e o p l e

i n i t i a l begin i n C u s t R e g i s t e r = 11 ’ b0 ; / / n o t recomended
o u t C u s t R e g i s t e r = 11 ’ b0 ; / / n o t recomended

end

always @( negedge i n P u l s e )
i n C u s t R e g i s t e r <= i n C u s t R e g i s t e r + 1 ;

always @( negedge o u t P u l s e )
o u t C u s t R e g i s t e r <= o u t C u s t R e g i s t e r + 1 ;

a s s i g n l i g h t = ( i n C u s t R e g i s t e r − o u t C u s t R e g i s t e r ) > l i m i t ;

endmodule

Figure 1.2: Customer Limit circuit.

⋄

Let us take now an example with mode than 1 bit input signals.
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Example 1.3 Let be the analogue, continuously variable, signal in Figure 1.3. It can be approximated
by values sampled in discrete moments of time determined by the positive transitions of a square wave
periodic signal called clock. It switches with a frequency of 1/T . The value of the signal is measured in
units u (for example, u = 100mV or u = 10µA). The operation is called analog to digital conversion, and
it is performed by an analog to digital converter – ADC. Results the following sequence of numbers:

6
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0

0

0

0 0 0 0 0
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0 0

0

0

0

0

0 0
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C=S[2]

B=S[1]

A=S[0]

6

-

W="(1<s<5)"

4 4 42 2 31 5 6 6 6 6 6 5 1 1 1 1 5 5 5

Figure 1.3: Analogue to digital conversion. The analog signal, s(t), is sampled at each T using the unit mea-
sure u, and results the three-bit digital signal S[2:0]. A first application: the one-bit digital signal W="(1<s<5)"
indicates, by its active value 1, the time interval when the digital signal is strictly included between 1u and 5u. The
three-bit result of conversion is S[2:0].

s(0×T ) = 1units ⇒ 001,
s(1×T ) = 4units ⇒ 100,
s(2×T ) = 5units ⇒ 101,
s(3×T ) = 6units ⇒ 110,
s(4×T ) = 6units ⇒ 110,
s(5×T ) = 6units ⇒ 110,
s(6×T ) = 6units ⇒ 110,



8 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

s(7×T ) = 6units ⇒ 110,
s(8×T ) = 5units ⇒ 101,
s(9×T ) = 4units ⇒ 100,
s(10×T ) = 2units ⇒ 010,
s(11×T ) = 1units ⇒ 001,
s(12×T ) = 1units ⇒ 001,
s(13×T ) = 1units ⇒ 001,
s(14×T ) = 1units ⇒ 001,
s(15×T ) = 2units ⇒ 010,
s(16×T ) = 3units ⇒ 011,
s(17×T ) = 4units ⇒ 100,
s(18×T ) = 5units ⇒ 101,
s(19×T ) = 5units ⇒ 101,
s(20×T ) = 5units ⇒ 101,
. . .

6

-

s(t)

t

-
t

6
clock

6666666666666666666666666666666666666666

1×u/2
2×u/2
3×u/2
4×u/2
5×u/2
6×u/2
7×u/2
8×u/2
9×u/2

10×u/2
11×u/2
12×u/2
13×u/2

0

1

Figure 1.4: More accurate analogue to digital. The analogous signal is sampled at each T/2 using the unit
measure u/2.

If a more accurate representation is requested, then both, the sampling period, T and the measure
units u must be reduced. For example, in Figure 1.4 both, T and u are halved. A better approximation
is obtained with the price of increasing the number of bits used for representation. Each sample is
represented on 4 bits instead of 3, and the number of samples is doubled. This second, more accurate,
conversion provides the following stream of binary data:
<0011, 0110, 1000, 1001, 1010, 1011, 1011, 1100, 1100, 1100, 1100, 1100, 1100,

1100, 1011, 1010, 1010, 1001, 1000, 0101, 0100, 0011, 0010, 0001, 0001, 0001,

0001, 0001, 0010, 0011, 0011, 0101, 0110, 0111, 1000, 1001, 1001, 1001, 1010,

1010, 1010, ...>

⋄

An ADC is characterized by two main parameters:
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• the sampling rate: expressed in samples per second – SPS – or by the sampling frequency – 1/T

• the resolution: the number of bits used to represent the value of a sample

Commercial ADC are provided with resolution in the range of 6 to 24 bits, and the sample rate exceeding
3 GSPS (giga SPS). At the highest sample rate the resolution is limited to 12 bits.

DAC1-ADC1

6 6

6 6

-

ADCM -

analogInput 1 analogOut put 1

DACN-
analogInput M

analogOut put N

DIGITAL

SYSTEM

6
clock

Figure 1.5: Generic digital electronic system.

The generic digital electronic system is represented in Figure 1.5, where:

• analogInput i, for i = 1, . . .M, provided by various sensors (microphones, ...), are sent to the input
of M ADCs

• ADCi converts analogInput i in a stream of binary coded numbers, using an appropriate sampling
interval and an appropriate number of bits for approximating the level of the input signal

• DIGITAL SYSTEM processes the M input streams of data providing on its outputs N streams of
data applied on the input of N Digital-to-Analog Converters (DAC)

• DAC j converts its input binary stream to analogOut put j

• analogOut put j, for j = 1, . . .N, are the outputs of the electronic system used to drive various
actuators (loudspeakers, ...)

• clock is the synchronizing signal applied to all the components of the system; it is used to trigger
the moments when the signals are ready to be used and the subsystems are ready to use the signals.

While loosing something at conversion, we are able to gain at the level of processing. The good
news is that the loosing process is under control, because both, the accuracy of conversion and of digital
processing are highly controllable.

In this stage we are able to understand that the internal structure of DIGITAL SYSTEM from Figure
1.5 must have the possibility to do deal with binary signals which must be stored & processed. The
signals are stored synchronized with the active edge of the clock signal, while for processing are used
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circuits dealing with two distinct values: 0 and 1. Usually, the value 0 is represented by the low voltage,
currently 0, while the value 1 by high voltage, currently ∼ 1V . Consequently, two distinct kinds of
circuits can be emphasized in this stage:

• registers: used to register, synchronously with the active edge of the clock signal, the n-bit binary
configuration applied on its inputs

• logic circuits: used to implement a correspondence between all the possible combinations of 0s
and 1s applied on its m-bit input and the binary configurations generated on its n-bit output.

Example 1.4 Let us consider a system with one analog input digitized with a low accuracy converter
which provides only three bits (like in the example presented in Figure 1.3). The one-bit output, w, of
the Boolean (logic) circuit2 to be designed, let’s call it window, must be active (on 1) each time when
the result of conversion is less than 5 and greater than 1. In Figure 1.3 the wave form represents the
signal w for the particular signal represented in the first wave form. The transfer function of the circuit
is represented in the table from Figure 1.6a, where: for three binary input configurations, S[2:0] =

{C,B,A} = 010 | 011 | 100, the output must take the value 1, while for the rest the output must be
0. Pseudo-formally, we write:

W = 1 when ((not C = 1) and (B = 1) and (not A = 1)) or

((not C = 1) and (B = 1) and (A = 1)) or

((C = 1) and (not B = 1) and (not A = 1))

Using the Boolean logic notation:

W =C′ ·B ·A′+C′ ·B ·A+C ·B′ ·A′ =C′B(A′+A)+CB′A′ =C′B+CB′A′

The resulting logic circuit is represented in Figure 1.6b, where:

• three NOT circuits are used for generating the negated values of the three input variables: C, B,

A

• one 2-input AND circuit computes C’B

• one 3-input AND circuit computes CB’A’

• one 2-input OP circuit computes the final OR between the previous two functions.

The circuit is simulated and synthesized using its description in the hardware description language
(HDL) Verilog, as follows:

2See details about Boolean logic in the appendix Boolan Functions.
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Figure 1.6: The circuit window. a. The truth table represents the behavior of the output for all binary configu-
rations on the input. b. The circuit implementation.

/ * ************************************************************************
F i l e name : window . v
C i r c u i t name : Window
D e s c r i p t i o n : t h e c i r c u i t d e t e c t t h e i n p u t i n t h e range o f ( 1 , 5 )
************************************************************************ * /
module window ( output W,

input C , B , A ) ;

wire w1 , w2 , w3 , w4 , w5 ; / / w i r e s f o r i n t e r n a l c o n n e c t i o n s

not n o t c ( w1 , C) , / / t h e i n s t a n c e ’ no tc ’ o f t h e g e n e r i c ’ not ’
no tb ( w2 , B) , / / t h e i n s t a n c e ’ notb ’ o f t h e g e n e r i c ’ not ’
n o t a ( w3 , A ) ; / / t h e i n s t a n c e ’ nota ’ o f t h e g e n e r i c ’ not ’

and and1 ( w4 , w1 , B) , / / t h e i n s t a n c e ’ and1 ’ o f t h e g e n e r i c ’ and ’
and2 ( w5 , C , w2 , w3 ) ; / / t h e i n s t a n c e ’ and2 ’ o f t h e g e n e r i c ’ and ’

or outOr (W, w4 , w5 ) ; / / t h e i n s t a n c e ’ outOr ’ o f t h e g e n e r i c ’ or ’

endmodule

In Verilog, the entire circuit is considered a module, whose description starts with the keyword
module and ends with the keyword endmodule, which contains:

• the declarations of two kinds of connections:

– external connections associated to the name of the module as a list containing:

* the output connections (only one, W, in our example)

* the input connections (C, B and A)
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– internal connections declared as wire, w1, w2, ... w5, used to interconnect the output
of the internal circuits to the input of the internal circuits

• the instantiation of previously defined modules; in our example these are generic logic circuits
expressed by keywords of the language, as follows:

– circuits not, instantiated as nota, notb, notc; the first connection in the list of connec-
tions is the output, while the second is the input

– circuits and, instantiated as and1, and2; the first connection in the list of connections is
the output, while the next are the inputs

– circuit or, instantiated as outOr; the first connection in the list of connections is the output,
while the next are the inputs

The Verilog description is used for simulating and for synthesizing the circuit.
The simulation is done by instantiating the circuit window inside the simulation module simWindow:

/ * ************************************************************************
F i l e name : simWindow . v
C i r c u i t name : S i m u l a t i o n module f o r simWindow . v
D e s c r i p t i o n : g e n e r a t e s t i m u l u s f o r t h e module simWindow . v
************************************************************************ * /

module simWindow ;

reg A, B , C ;
wire W ;

i n i t i a l begin {C , B , A} = 3 ’ b000 ;
#1 {C , B , A} = 3 ’ b001 ;
#1 {C , B , A} = 3 ’ b010 ;
#1 {C , B , A} = 3 ’ b011 ;
#1 {C , B , A} = 3 ’ b100 ;
#1 {C , B , A} = 3 ’ b101 ;
#1 {C , B , A} = 3 ’ b110 ;
#1 {C , B , A} = 3 ’ b111 ;
#1 $ s t o p ;

end

window d u t ( W, C , B , A ) ;

i n i t i a l $monitor ( ”S=%b W=%b ” ,
{C , B , A} , W) ;

endmodule

⋄

Example 1.5 The problem to be solved is to measure the length of objects on a transportation band
which moves with a constant speed. A photo-sensor is used to detect the object. It generates 1 during the
displacement of the object in front of the sensor. The occurrence of the signal must start the process of
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measurement, while the end of the signal must stop the process. Therefore, at every ends of the signal a
short impulse, of one clock cycle long, must be generated.
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66666666666666666666666
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Figure 1.7: The wave forms defining the start/stop circuit. The pulse signal is asynchronously pro-
vided by a sensor. The signal syncPulse captures synchronously the signal to be processed. The signal delPulse
is syncPulse delayed one clock cycle using a second one-bit register.

The problem is solved in the following steps:

1. the asynchronous signal pulse, generated by the sensor, is synchronized with the system clock;
now the actual signal is aproximated with a reasonable error by the signal syncPulse

2. the synchronized pulse is delayed one clock cycle and results delPulse

3. the relation between syncPulse and syncPulse is used to identify the beginning and the end of
the pulse with an accuracy given by the frequency of the clock signal (the higher the frequency the
higher the accuracy):

• only in the first clock cycle after the beginning of syncPulse the signal delPulse is 0; then

start = syncPulse · depPulse’

• only in the first clock cycle after the end of syncPulse the signal delPulse is 1; then
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stop = syncPulse’ · depPulse

R1 R2

- -

clock

syncPulse

delPulse

stop

w1

Combinatorial circuit

start

w2

pulse

ends

Figure 1.8: The ends circuit. The one-bit register R1 synchronises the raw signal pulse. The one-bit register
R2 delays the synchronized signal to provide the possibility to emphasize the two ends of the synchronized pulse.
The combinatorial circuit detects the two ends of the pulse signal approximated by the syncPulse signal.

The circuit (see Figure 1.8) used to perform the previous steps contains:

• the one-bit register R1 which synchronizes the one-bit digital signal pulse

• the one bit register R2 which delays with one clock cycle the synchronized signal

• the combinational circuit which computes the two-output logic function

The Verilog description of the circuit is:

/ * ************************************************************************
F i l e name : ends . v
C i r c u i t name : D e t e c t o r o f ends
D e s c r i p t i o n : used t o measure t h e l e n g t h o f a p u l s e
************************************************************************ * /

module ends ( output s t a r t ,
output s t o p ,
input p u l s e ,
input c l o c k ) ;

reg s y n c P u l s e ;
reg d e l P u l s e ;
wire w1 , w2 ;

always @( posedge c l o c k ) begin s y n c P u l s e <= p u l s e ;
d e l P u l s e <= s y n c P u l s e ;

end

not no t1 ( w1 , s y n c P u l s e ) ;
not no t2 ( w2 , d e l P u l s e ) ;
and s t a r t A n d ( s t a r t , s y n c P u l s e , w2) ;
and s topAnd ( s top , w1 , d e l P u l s e ) ;

endmodule
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Besides wire and gates, we have to declare now registers and we must show how their content change
with the active edge of clock.

⋄

1.1.2 Modules in Verilog vs. Classes in Object Oriented Languages

What kind of language is the Verilog HDL? We will show it is a sort of Object Oriented Language. Let
us design in Verilog a four-input adder modulo 28.

/ * ************************************************************************
F i l e : adder2 . v
D e s c r i b e s : two−i n p u t mod256 adder
************************************************************************ * /
module ad de r2 ( output [ 7 : 0 ] out ,

input [ 7 : 0 ] in0 , i n 1 ) ;

a s s i g n o u t = i n 0 + i n 1 ;

endmodule

/ * ************************************************************************
F i l e : adder4 . v
D e s c r i b e s : four −i n p u t mod256 adder
************************************************************************ * /
module ad de r4 ( output [ 7 : 0 ] out ,

input [ 7 : 0 ] in0 , in1 , in2 , i n 3 ) ;

wire [ 7 : 0 ] sum1 , sum2 ;

ad de r2 add1 ( sum1 , in0 , i n 1 ) ,
add1 ( sum2 , in2 , i n 3 ) ,
add1 ( out , sum1 , sum2 ) ;

endmodule

In C++ programming language the programm for adding four numbers can be write using, instead of
two modules, two classes, as follow:
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/ * ************************************************************************
F i l e : adder2 . cpp
D e s c r i b e s :

− C o n s t r u c t o r : d e s c r i b e s a two−i n p u t i n t e g e r adder
− Methods : d i s p l a y s t h e b e h a v i o r o f adder2 f o r t e s t

************************************************************************ * /
c l a s s ad de r2 { p u b l i c :

i n t in1 , in2 , o u t ;
/ / C o n s t r u c t o r
ad de r2 ( i n t a , i n t b ){

i n 1 = a ;
i n 2 = b ;
o u t = i n 1 + i n 2 ;

}
/ / Method
void d i sp l ayAdd2 ( ) {

c o u t << i n 1 << i n 2 << o u t << e n d l ;
}

} ;

/ * ************************************************************************
F i l e : adder4 . cpp
D e s c r i b e s :

− C o n s t r u c t o r : d e s c r i b e s a four −i n p u t i n t e g e r adder
+ u s e s t h r e e i n s t a n c e s o f adder2 : S1 , S2 , S3

− Methods : d i s p l a y s t h e b e h a v i o r o f adder4 f o r t e s t
************************************************************************ * /
c l a s s ad de r4 { p u b l i c :

i n t in1 , in2 , in3 , in4 , o u t ;
/ / C o n s t r u c t o r
ad de r4 ( i n t a , i n t b , i n t c , i n t d ){

i n 1 = a ;
i n 2 = b ;
i n 3 = c ;
i n 4 = d ;
ad de r2 S1 ( a , b ) ;
ad de r2 S2 ( c , d ) ;
ad de r2 S3 ( S1 . out , S2 . o u t ) ;
o u t = S3 . o u t ;

}
/ / Method
void d i sp l ayAdd4 ( ) {

c o u t << i n 1 << i n 2 << i n 3 << i n 4 << o u t << e n d l ;
}

} ;

The class adder2 describe the two-input adder used to build, three times instantiated in class adder4,
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a four input adder.
A class is more complex than a module because it can contain, as a method, the way the calss is

tested. In Verilog we have to define a distinct module, testAdde2 or testAdder4, for simulation.

1.1.3 Digital domain as part of computer science

The domain of digital systems is considered, form the functional view point, as part of computing sci-
ence. This, possible view point presents the digital systems as systems which compute their associated
transfer functions. A digital system is seen as a sort of electronic system because of the technology
used now to implement it. But, from a functional view point it is simply a computational system, be-
cause future technologies will impose maybe different physical ways to implement it (using, for example,
different kinds of nano-technologies, bio-technologies, photon-based devices, . . ..). Therefore, we de-
cided to start our approach using a functionally oriented introduction in digital systems, considered as
a sub-domain of computing science. Technology dependent knowledge is always presented only as a
supporting background for various design options.

Where can be framed the domain of digital systems in the larger context of computing science? A
simple, informal definition of computing science offers the appropriate context for introducing digital
systems.

ALGORITHMS

HARDWARE LANGUAGES

TECHNOLOGY APPLICATIONS

	

	

R

R

abstract

actual
?

digital systems

R

Figure 1.9: What is computer science? The domain of digital systems provides techniques for designing the
hardware involved in computation.

Definition 1.1 Computer science (see also Figure 1.9) means to study:

• algorithms,

• their hardware embodiment

• and their linguistic expression

with extensions toward

• hardware technologies

• and real applications. ⋄
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The initial and the most abstract level of computation is represented by the algorithmic level. Algo-
rithms specify what are the steps to be executed in order to perform a computation. The most actual level
consists in two realms: (1) the huge and complex domain of the application software and (2) the very
tangible domain of the real machines implemented in a certain technology. Both contribute to implement
real functions (asked, or aggressively imposed, my the so called free market). An intermediate level pro-
vides the means to be used for allowing an algorithm to be embodied in a physical structure of a machine
or in an informational structure of a program. It is about (1) the domain of the formal programming
languages, and (2) the domain of hardware architecture. Both of them are described using specific and
rigorous formal tools.

The hardware embodiment of computations is done in digital systems. What kind of formal tools are
used to describe, in the most flexible and efficient way, a complex digital system? Figure 1.10 presents
the formal context in which the description tools are considered. Pseudo-code language is an easy to
understand and easy to use way to express algorithms. Anything about computation can be expressed
using this kind of languages. By the rule, in a pseudo-code language we express, for our (human) mind,
preliminary, not very well formally expressed, ideas about an algorithm. The “main user” of this kind
of language is only the human mind. But, for building complex applications or for accessing advanced
technologies involved in building big digital systems, we need refined, rigorous formal languages and
specific styles to express computation. More, for a rigorous formal language we must take into account
that the “main user” is a merciless machine, instead of a tolerant human mind. Elaborated programming
languages (such as C++, Java, Prolog, Lisp) are needed for developing complex contexts for computation
and to write using them real applications. Also, for complex hardware embodiments specific hardware
description languages, HDL, (such as Verilog, VHDL, SystemC) are proposed.

	 R

PSEUDO-CODE
LANGUAGE

PROGRAMMING
LANGUAGES

HARDWARE DESCRIPTION
LANGUAGES

Figure 1.10: The linguistic context in computer science. Human mind uses pseudo-code languages to ex-
press informally a computation. To describe the circuit associated with the computation a rigorous HDL (hardware
description language) is needed, and to describe the program executing the computation rigorous programming
languages are used.

Both, general purpose programming languages and HDLs are designed to describe something for
another program, mainly for a compiler. Therefore, they are more complex and rigorous than a simple
pseudo-code language.

The starting point in designing a digital system is to describe it using what we call a specification,
shortly, a spec. There are many ways to specify a digital system. In real life a hierarchy of specs are used,
starting from high-level informal specs, and going down until the most detailed structural description is



1.2. DEFINING A DIGITAL SYSTEM 19

provided. In fact, de design process can be seen as a stream of descriptions which starts from an idea
about how the new object to be designed behaves, and continues with more detailed descriptions, in each
stage more behavioral descriptions being converted in structural descriptions. At the end of the process
a full structural description is provided. The design process is the long way from a spec about what we
intend to do to another spec describing how our intention can be fulfilled.

At one end of this process there are innovative minds driven by the will to change the world. In these
imaginative minds there is no knowledge about “how”, there is only willingness about “what”. At the
other end of this process there are very skilled entities “knowing” how to do very efficiently what the last
description provides. They do not care to much about the functionality they implement. Usually, they
are machines driven by complex programs.

In between we need a mixture of skills provided by very well instructed and trained people. The role
of the imagination and of the very specific knowledge are equally important.

How can be organized optimally a designing system to manage the huge complexity of this big chain,
leading from an idea to a product? There is no system able to manage such a complex process. No one can
teach us about how to organize a company to be successful in introducing, for example, a new processor
on the real market. The real process of designing and imposing a new product is trans-systemic. It is a
rationally adjusted chaotic process for which no formal rules can ever provided.

Designing a digital system means to be involved in the middle of this complex process, usually far
away from its ends. A digital system designer starts his involvement when the specs start to be almost
rigorously defined, and ends its contribution before the technological borders are reached.

However, a digital designer is faced in his work with few level of descriptions during the execution
of a project. More, the number of descriptions increases with the complexity of the project. For a
very simple project, it is enough to start from a spec and the structural description of the circuit can be
immediately provided. But for a very complex project, the spec must be split in specs for sub-systems,
each sub-system must be described first by its behavior. The process continue until enough simple sub-
systems are defined. For them structural descriptions can be provided. The entire system is simulated
and tested. If it works synthesisable descriptions are provided for each sub-system.

A good digital designer must be well trained in providing various description using an HDL. She/he
must have the ability to make, both behavioral and structural descriptions for circuits having any level of
complexity. Playing with inspired partitioning of the system, a skilled designer is one who is able to use
appropriate descriptions to manage the complexity of the design.

1.2 Defining a digital system

Digital systems belong to the wider class of the discrete systems (systems having a countable number of
states). Therefore, a general definition for digital system can be done as a special case of discrete system.

Definition 1.2 A digital system, DS, in its most general form is defined by specifying the five components
of the following quintuple:

DS = (X ,Y,S, f ,g)

where: X ⊆ {0,1}n is the input set of n-bit binary configurations, Y ⊆ {0,1}m is the output set of m-bit
binary configurations, S ⊆ {0,1}q is the set of internal states of q-bit binary configurations,

f : (X ×S)→ S

is the state transition function, and
g : (X ×S)→ Y
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is the output transition function.
⋄
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Figure 1.11: Digital system.

A digital system (see Figure 1.11) has two simultaneous evolutions:

• the evolution of its internal state which takes into account the current internal state and the current
input, generating the next state of the system

• the evolution of its output, which takes into account the current internal state and the current input
generating the current output.

The internal state of the system determines the partial autonomy of the system. The system behaves on
its outputs taking into account both, the current input and the current internal state.

Because all the sets involved in the previous definition have the form {0,1}b, each of the b one-bit
input, output, or state evolves in time switching between two values: 0 and 1. The previous definition
specifies a system having a n-bit input, an m-bit output and a q-bit internal state. If xt ∈ X = {0,1}n,
yt ∈Y = {0,1}m, st ∈ S = {0,1}q are values on input, output, and of state at the discrete moment of time
t, then the behavior of the system is described by:

st = f (xt−1,st−1)

yt = g(xt ,st)
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While the current output is computed from the current input and the current state, the current state was
computed using the previous input and the previous state. The two functions describing a discrete system
belong to two distinct class of functions:

sequential functions : used to generate a sequence of values each of them iterated from its predecessor
(an initial value is always provided, and the i-th value cannot be computed without computing all
the previous i−1 values); it is about functions such as st = f (xt−1,st−1)

non-sequential functions : used to compute an output value starting only from the current values ap-
plied on its inputs; it is about functions such as yt = g(xt ,st).

Depending on how the functions f and g are defined results a hierarchy of digital systems. More on
this in the next chapters.

The variable time is essential for the formal definition of the sequential functions, but for the formal
definition of the non-sequential ones it is meaningless. But, for the actual design of both, sequential and
non-sequential function the time is a very important parameter.

Results the following requests for the simplest embodiment of an actual digital systems:

• the elements of the sets X , Y and S are binary cods of n, m and q bits – 0s and 1s – which are be
codded by two electric levels; the current technologies work with 0 Volts for the value 0, and with
a tension level in the range of 1-2 Volts for the value 1; thus, the system receives on its inputs:

Xn−1,Xn−2, . . .X0

stores the internal state of form:
Sq−1,Sq−2, . . .S0

and generate on its outputs:
Ym−1,Ym−2, . . .Y0

where: Xi,S j,Yk ∈ {0,1}.

• physical modules (see Figure 1.12), called combinational logic circuits – CLC –, to compute
functions like f (xt ,st) or g(xt ,st), which continuously follow, by the evolution of their output
values delayed with the propagation time tp, any change on the inputs xt and st (the shaded time
interval on the wave out represent the transient value of the output)

• a “master of the discrete time” must be provided, in order to make consistent suggestions for the
simple ideas as “previous”, “now”, “next”; it is about the special signal, already introduced, having
form of a square wave periodic signal, with the period T which swings between the logic level 0
and the logic level 1; it is called clock, and is used to “tick” the discrete time with its active edge
(see Figure 1.13 where a clock signal, active on its positive edge, is shown)

• a storing support to memorize the state between two successive discrete moments of time is re-
quired; it is the register used to register, synchronized with the active edge of the clock signal, the
state computed at the moment t − 1 in order to be used at the next moment, t, to compute a new
state and a new output; the input must be stable a time interval tsu (set-up time) before the active
edge of clock, and must stay unchanged th (hold time) after; the propagation time after the clock
is tp.
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Figure 1.12: The module for non-sequential functions. a. The table used to define the function as a
correspondence between all input binary configurations in and binary configurations out. b. The logic symbol for
the combinatorial logic circuit – CLC – which computes out = F(in). c. The wave forms describing the time
behaviour of the circuit.
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Figure 1.13: The clock. This clock signal is active on its positive edge (negative edge as active edge is also
possible). The time interval between two positive transitions is the period Tclock of the clock signal. Each positive
transition marks a discrete moment of time.

(More complex embodiment are introduced later in this text book. Then, the state will have a structure
and the functional modules will result as multiple applications of this simple definition.)

The most complex part of defining a digital system is the description of the two functions f and g.
The complexity of defining how the system behaves is managed by using various Hardware Description
Languages – HDLs. The formal tool used in this text book is the Verilog HDL. The algebraic description
of a digital system provided in Definition 1.2 will be expressed as the Verilog definition.

Definition 1.3 A digital system is defined by the Verilog module digitalSystem, an object which con-
sists of:

external connections : lists the type, the size and the name of each connection

internal resources : of two types, as follows

storage resources : one or more registers used to store (to register) the internal state of the system

functional resources : of two types, computing the transition functions for

state : generating the nextState value from the current state and the current input
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Figure 1.14: The register. a. The wave forms describing timing details about how the register swithces around
the active edge of clock. b. The logic symbol used to define the static behaviour of the register when both, inputs
and outputs are stable between two active edges of the clock signal.

output : generating the current output value from the current state and the current input

The simplest Verilog definition of a digital system follows (see Figure 1.15). It is simple because the
state is defined only by the content of a single q-bit register (the state has no structure) and the functions
are computed by combinational circuits..

There are few keywords which any text editor emphasize using bolded and colored letters:

• module and endmodule are used to delimit the definition of an entity called module which is an
object with inputs and outputs

• input denotes an input connection whose dimension, in number of bits, is specified in the associ-
ated square brackets as follows: [n-1:0] which means the bits are indexed from n-1 to 0 from
left to right

• output denotes an output connection whose dimension, in number of bits, is specified in the asso-
ciated square brackets as follows: [n-1:0] which means the bits are indexed from n-1 to 0 from
left to right

• reg [n-1:0] defines a storage element able to store n bits synchronized with the active edge of the
clock signal

• wire [n-1:0] defines a n-bit internal connection used to interconnect two subsystems in the module

• always @(event) action specifies the action action triggered by the event event; in our first example
the event is the positive edge of clock (posedge clock) and the action is: the state register is loaded
with the new state stateRegister <= nextState
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• ‘include is the command used to include the content of another file

• "fileName.v" specifies the name of a Verilog file

Figure 1.15: The top module for the general form of a digital system.

The following two dummy modules are used to synthesize the top level of the system; their content
is not specified, because we do not define a specific system; only the frame of a possible definition is
provided.

/ * ************************************************************************
F i l e name : s t a t e T r a n s i t i o n . v
C i r c u i t name : S t a t e T r a n s i t i o n dummy module
D e s c r i p t i o n : t h e c o n n e c t i o n s o f t h e s t a t e t r a n s i t i o n module
************************************************************************ * /
module s t a t e T r a n s i t i o n # ( ‘ i n c l u d e ” 0 p a r a m e t e r . v ” )

( output [ q − 1 : 0 ] n e x t ,
input [ q − 1 : 0 ] s t a t e ,
input [ n − 1 : 0 ] i n ) ;

/ / d e s c r i b e here t h e s t a t e t r a n s i t i o n f u n c t i o n
endmodule
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/ * ************************************************************************
F i l e name : o u t p u t T r a n s i t i o n . v
C i r c u i t name : Outpu t T r a n s i o u t p u t t i o n
D e s c r i p t i o n : t h e c o n n e c t i o n s o f t h e o u t p u t t r a n s i t i o n module
************************************************************************ * /
module o u t p u t T r a n s i t i o n # ( ‘ i n c l u d e ” 0 p a r a m e t e r . v ” )

( output [m− 1 : 0 ] o u t ,
input [ q − 1 : 0 ] s t a t e ,
input [ n − 1 : 0 ] i n ) ;

/ / d e s c r i b e here t h e o u t p u t t r a n s i t i o n f u n c t i o n
endmodule

where the content of the file 0 parameter.v is:

/ * ************************************************************************
F i l e name : parame te r . v
C i r c u i t name : i t i s n o t a c i r c u i t
D e s c r i p t i o n : t h e p a r a m e t e r s i n v o l v e d i n a l l module o f t h e d e s i g n are

d e f i n e d here
************************************************************************ * /
parameter n = 8 , / / t h e i n p u t i s coded on 8 b i t s

m = 8 / / t h e o u t p u t i s coded on 8 b

It must be actually defined for synthesis reasons. The synthesis tool must “know” the size of the
internal and external connections, even if the actual content of the internal modules is not yet specified.

⋄

Figure 1.16: The result of the synthesis for the module digitalSystem.

The synthesis of the generic structure, just defined, is represented in Figure 1.16, where there are
represented three (sub-)modules:
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• the module fd which is a 4-bit state register whose output is called state[3:0]; it stores the
internal state of the system

• the module stateTransition instantiated as stateTrans; it computes the value of the state to
be loaded in the state register in triggered by the next active (positive, in our example) edge of
clock; this module closes a loop over the state register

• the module outputTransition instantiated as outTrans; it computes the output value from the
current states and the current input (for some applications the current input is not used directly to
generate the output, its contribution to the output being delayed through the state register).

The internal modules are interconnected using also the wire called next. The clock signal is applied
only to the register. The register module and the module stateTransition compute a sequential
function, while the outputTransition module computes a non-sequential, combinational function.

It’s the time for few example using the simplest forms for the functions f and g. Let us consider first
the simple case of a system with no internal state (S = Ø):

DS = (X ,Y,g)

where: X ⊆ {0,1}n is the input set of n-bit binary configurations, Y ⊆ {0,1}m is the output set of m-bit
binary configurations

g : X → Y

is the output transition function. Because the function g has the general form yt = g(qt ,xt) the time
evolution is not important and the actual system will be a clockless one with no internal registers to store
the state. The following examples give us only a flavor about what digital design means.

Example 1.6 Let us use the Verilog HDL to describe an adder for 4-bit numbers (see Figure 1.17a). The
description which follows is a behavioral one, because we know what we intend to design, but we do
not know yet how to design the internal structure of an adder.

adder

in0 in1

out
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in0 in1

out

?
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?
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4

inAdder

outAdder

�
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Figure 1.17: The first examples of digital systems. a. The two 4-bit numbers adder, called adder. b. The
structure of an adder for 3 4-bit numbers, called threeAdder.

The Verilog code describing the module adder is:
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/ * ************************************************************************
F i l e name : adder . v
C i r c u i t name : Adder
D e s c r i p t i o n : The module ’ adder ’ has 2 4− b i t i n p u t s and one 4− b i t o u t p u t

The c i r c u i t adds modulo 16; do n o t p r o v i d e c a r r y o u t p u t
************************************************************************ * /
module a d d e r ( out , in0 , i n 1 ) ;

output [ 3 : 0 ] o u t ; / / 4− b i t o u t p u t
input [ 3 : 0 ] i n 0 ; / / 4− b i t i n p u t
input [ 3 : 0 ] i n 1 ; / / 4− b i t i n p u t

a s s i g n o u t = i n 0 + i n 1 ;
endmodule

The story just told by the previous Verilog module is: “the 4-bit adder has two inputs, in0, in1,
one output, out, and its output is continuously assigned to the value obtained by adding modulo 16 the
two input numbers”.

⋄

What we just learned from the previous first simple example is summarized in the following Verilog-
Summary.

VerilogSummary 1 :

module : keyword which indicates the beginning of the description of a circuit as a module having the
name which immediately follows (in our example, the name is: adder)

endmodule : keyword which indicates the end of the module’s description which started with the pre-
vious keyword module

output : keyword used to declare a terminal as an output (in our example the terminal out is declared
as output)

input : keyword used to declare the terminal as an input (in our example the terminals in0 and in1 are
declared as inputs)

assign : keyword called the continuous assignment, used here to specify the function performed by the
module (the output out takes continuously the value computed by adding the two input numbers)

(...) : delimiters used to delimit the list of terminals (external connections)

, : delimiter to separate each terminal within a list of terminals

; : delimiter for end of line

[ . . . ]: delimiters which contains the definition of the bits associated with a connection, for example
[3:0] define the number of bits for the three connections in the previous example

+ : the operator add, the only one used in the previous example.



28 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

The description of a digital system is a hierarchical construct starting from a top module populated
by modules, which are similarly defined. The process continues until very simple module are directly
described. Thus, the functions f and g are specified by HDL programs (in our case, in the previous
example by a Verilog program).

The main characteristic of the digital design is modularity. A problem is decomposed in many
simpler problems, which are solved similarly, and so on until very simple problems are identified. Mod-
ularity means also to define as many as possible identical modules in each design. This allow to replicate
many times the same module, already designed and validated. Many & simple modules! Is the main
slogan of the digital designer. Let’s take another example which uses as module the one just defined in
the previous example.

Example 1.7 The previously exemplified module (adder) will be used to design a modulo 16 3-number
adder, called threeAdder (see Figure 1.17b). It adds 3 4-bit numbers providing a 4-bit result (modulo
16 sum). Follows the structural description:

/ * ************************************************************************
F i l e name : t h r e e A d d e r . v
C i r c u i t name : Three I n p u t Adder
D e s c r i p t i o n : The module ’ t h r ee Adder ’ has 3 4− b i t i n p u t s and one 4− b i t

o u t p u t . The c i r c u i t adds modulo 16 t h r e e numbers ;
do n o t p r o v i d e c a r r y o u t p u t

************************************************************************ * /
module t h r e e A d d e r ( output [ 3 : 0 ] out ,

input [ 3 : 0 ] in0 ,
input [ 3 : 0 ] in1 ,
input [ 3 : 0 ] i n 2 ) ;

wire [ 3 : 0 ] sum ;

a d d e r inAdder ( . o u t ( sum ) ,
. i n 0 ( i n 1 ) ,
. i n 1 ( i n 2 ) ) ,

ou tAdder ( . o u t ( o u t ) ,
. i n 0 ( i n 0 ) ,
. i n 1 ( sum ) ) ;

endmodule

Two modules of adder type (defined in the previous example) are instantiated as inAdder,
outAdder, they are interconnected using the wire sum, and are connected to the terminals of the
threeAdder module. The resulting structure computes the sum of three numbers. ⋄

VerilogSummary 2 :

• Another way to specify the type of terminals, inside the list of terminals
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• A new keyword: wire used to specify internal connections inside the current module (in our ex-
ample: the 4-bit (numbered from 3 to 0) connection, sum, between the output of a module and the
input of another module (see also Figure 1.17b))

• How a previously defined module (in our example: adder) is two times instantiated using two
different names (inAdder and outAdder in our example)

• A “safe” way to allocate the terminals for a module previously defined and instantiated inside
the current module: each original terminal name is preceded by a dot, and followed by a paren-
thesis containing the name of the wire or of the terminal where it is connected (in our example,
outAdder( ... .in1(sum)) means: the terminal in1 of the instance outAdder is connected
to the wire sum)

• The successive instantiations of the same module can be separated by a “,”.

While the module adder is a behavioral description, the module threeAdder is a structural one.
The first tells us what is the function of the module, and the second tells us how its functionality is
performed by using a structure containing two instantiation of a previously defined subsystems, and an
internal connection.

Once the design completed we need to know if the resulting circuit works correctly. A simple test
must be provided in what we call a simulation environment. It is a Verilog module which contains,
besides the device under test (dut) a stimulus generator and an “output device” used to monitor the
behavior of dut. In Figure 1.18 this simple simulation environment is presented.
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out
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out
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Figure 1.18: Simulation environment: the module threeAdderSim. The device under test – threeAdder
– is interconnected with a “module” which provides the inputs and monitors the output.

Example 1.8 The simulation for the circuit designed in the previous example is done using the following
Verilog module.
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/ * ************************************************************************
F i l e name : t h r e e A d d e r S i m . v
C i r c u i t name : S i m u l a t o r f o r Three I n p u t Adder
D e s c r i p t i o n : The module has t h r e e s e c t i o n s :

− s t i m u l u s s e c t i o n which :
− g e n e r a t e s t h e i n p u t s i g n a l s ( r e g s ) f o r s i m u l a t i o n
− p r o v i d e t h e c o n n e c t i o n s ( w i r e s ) f o r t h e m o n i t o r

− one i n s t a n c e o f t h e d e v i c e ( module ) under t e s t ( d u t )
− a m o n i t o r t o o b s e r v e t h e b e h a v i o u r o f t h e module

************************************************************************ * /
module t h r eeAdderS im ;

/ / STIMULUS
reg [ 3 : 0 ] in0 , in1 , i n 2 ; / / i n p u t s f o r d u t
wire [ 3 : 0 ] o u t ; / / o u t p u t o f d u t

i n i t i a l begin i n 0 = 4 ’ b0011 ;
i n 1 = 4 ’ b0100 ;
i n 2 = 4 ’ b1000 ;

#2 i n 0 = i n 0 + 1 ; / / a f t e r 2 t i m e u n i t s
#2 i n 2 = i n 2 + i n 0 ; / / a f t e r a n o t h e r 2 t i m e u n i t s
#2 i n 1 = 0 ;
#2 $ s t o p ; / / s t o p s t h e s i m u l a t i o n p r o c e s s

end

/ / DEVICE UNDER TEST
t h r e e A d d e r d u t ( out , in0 , in1 , i n 2 ) ;

/ / MONITOR SECTION
i n i t i a l

$monitor
( ” t ime = %d , i n 0 = %d , i n 1 = %d , i n 2 = %d , o u t = %d , o u t = %b ” ,

$t ime , in0 , in1 , in2 , out , o u t ) ;
endmodule

The module threeAdderSim includes the device under test – threeAdder module –, and a module
which provides the “environment” for the module to be tested. The environment-module contains regis-
ters used to store the input variables in0, in1, in2, and a “monitor” used to print the evolving values
on the terminals of the device under test.

The first initial block describes the evolution of the three input variables, starting from the time 0
until the end of simulation specified by $stop

The second initial block displays the evolution on the terminals of dut. The output terminal out is
twice displayed, once in decimal form and another time in binary form.

The two initial blocks are executed in parallel starting from the time 0 of the simulation.
The simulation provides the following result:

# t ime = 0 , i n 0 = 3 , i n 1 = 4 , i n 2 = 8 , o u t = 15 , o u t = 1111
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# t ime = 2 , i n 0 = 4 , i n 1 = 4 , i n 2 = 8 , o u t = 0 , o u t = 0000
# t ime = 4 , i n 0 = 4 , i n 1 = 4 , i n 2 = 12 , o u t = 4 , o u t = 0100
# t ime = 6 , i n 0 = 4 , i n 1 = 0 , i n 2 = 12 , o u t = 0 , o u t = 0000

⋄

VerilogSummary 3 :

reg[n-1:0 ]: is an n-bit register used to store an n-bit state variable; it is usually loaded using as trigger
the active edge of clock

test module is another circuit (usually without external connections), used to simulate the behavior of a
specific module, containing:

• registers, or other circuits, for providing the input variables of the tested circuit

• an instantiation of the tested circuit

• a monitor to display the behavior of the outputs of the tested circuit (or a signal inside the
tested circuit)

initial : initializes a block of commands executed only once, starting at the time 0 of the simulation

begin : used to delimit the beginning of a block of behavioral statements (equivalent with "{" in C
programming language)

end : used to delimit the end of a block of behavioral statements (equivalent with "}" in C programming
language)

#< number > : specifies a delay of < number > time units (a time unit is an arbitrary unit of time), and
is used in a description only for the purpose of simulating circuits, but not for synthesizing them

$stop : stops the process of simulation

$monitor : starts the simulation task of monitoring the signals selected in the associated list

$time : specify the time variable

%d : the number is represented as a decimal one

%b : the number is represented as a binary one

// : it is used to delimit the comment, the text which follows until the end of the current line.

The previous three examples represent a simple bottom-up approach in digital design. The first
example defined an elementary module, the adder. The second, uses the adder to build the structure of a
3-number adder. The first two examples offered a simple image about what a no-state circuit can be, and
about what the simulation is and how it can be used for a preliminary test for our design.

Next introductory example is to consider a simple digital system having an internal state.
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Let us consider the case of adding numbers represented on multiple of 4 bits using circuits able to
perform only 4-bit addition. As we know from elementary arithmetic the carry generated by each 4-bit
adder can be used to provide sums bigger than 15. If two 12-bit numbers are added, then the process
have three steps:

1. the least significant 4 bits of the two operands are added, results the least significant 4 bits of the
result and a value for the one-bit signal carry which will be stored to be used in the next step

2. the next 4 significant bits of the operands are added and the result is added with the one bit number
carry, resulting the next 4 significant bits of the result and a new value for carry to be stored for
the last step

3. the last step adds the most significant 4 bits and the value of carry, resulting the most significant
bits of the result. If the last value of carry is considered, then it is the 13th bit of the result.

The digital engine able to perform the previously described operations has an internal state, registered in
the 1-bit register called carry. It is considered always in the next step of the process. It is described in
the next example.

How the next step of the process is considered in our digital system? The time is marked by a special
one-bit signal called clock. The clock signal is a periodic pulse train.

Example 1.9 The digital system for the sequential addition has two 4-bit data inputs, in0, in1, one
2-bit command input, com, a clock input, clk, and the 4-bit output sum. The command input “tells” the
system what to do in each clock cycle: if com[1] = 0, then the state of the system do not change, else
the state of the system takes the value of the carry resulting from adding the current values applied on the
data inputs; if com[0] = 0, then the current addition ignores the value of carry stored as the internal
state of the system, else the addition takes into account the state as the carry generated in the previous
addition cycle.
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Figure 1.19: Sequential adder.

The Verilog code describing the system is the following:
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/ * ************************************************************************
F i l e name : s e q u e n t i a l A d d e r . v
C i r c u i t name : S e q u e n t i a l Adder
D e s c r i p t i o n : The b e h a v i o r o f t h e c i r c u i t i s d e f i n e d by ’com ’ :

com = 00 : { carry , sum} = { carry , i n 1 + i n 0 }
com = 01 : { carry , sum} = { carry , i n 1 + i n 0 + c a r r y }
com = 10 : { carry , sum} = i n 1 + i n 0
com = 11 : { carry , sum} = i n 1 + i n 0 + c a r r y

************************************************************************ * /
module s e q u e n t i a l A d d e r ( output [ 3 : 0 ] sum ,

input [ 3 : 0 ] in0 ,
input [ 3 : 0 ] in1 ,
input [ 1 : 0 ] com ,
input c l k ) ;

reg c a r r y ; / / t h e s t a t e r e g i s t e r o f t h e s y s t e m
wire c ryOut ;
wire c r y ;

a s s i g n c r y = com [ 0 ] ? c a r r y : 0 ;
a s s i g n { cryOut , sum} = i n 0 + i n 1 + c r y ;

always @( posedge c l k ) i f ( com [ 1 ] ) c a r r y = cryOut ;
endmodule

The way this module is used is explained in the following simulation:

/ * ************************************************************************
F i l e name : t e s t S e q u e n t i a l A d d e r . v
C i r c u i t name : S i m u l a t o r f o r S e q u e n t i a l Adder
D e s c r i p t i o n :
************************************************************************ * /
module t e s t S e q u e n t i a l A d d e r ;

reg [ 3 : 0 ] in0 , i n 1 ;
reg [ 1 : 0 ] com ;
reg c l k ;
wire [ 3 : 0 ] sum ;

i n i t i a l begin c l k = 0 ;
f o r e v e r #1 c l k = ˜ c l k ;

end
i n i t i a l begin com = 2 ’ b10 ;

i n 1 = 4 ’ b1000 ;
i n 0 = 4 ’ b1001 ;

#2 com = 2 ’ b11 ;
i n 1 = 4 ’ b0000 ;
i n 0 = 4 ’ b0001 ;

#2 com = 2 ’ b11 ;
i n 1 = 4 ’ b0010 ;
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i n 0 = 4 ’ b0011 ;
#2 com = 2 ’ b11 ;

i n 1 = 4 ’ b0010 ;
i n 0 = 4 ’ b0011 ;

#2 com = 2 ’ b00 ;
$ s t o p ;

end

s e q u e n t i a l A d d e r
d u t ( sum , in0 , in1 , com , c l k ) ;

i n i t i a l
$monitor
( ” t ime = %d c l k = %b i n 1 = %b i n 0 = %b com = %b sum = %b c a r r y = %b ” ,
$t ime , c lk , in1 , in0 , com , sum , d u t . c a r r y ) ;

endmodule

The result of simulation is:

# t ime = 0 c l k = 0 i n 1 = 1000 i n 0 = 1001 com = 10 sum = 0001 c a r r y = x
# t ime = 1 c l k = 1 i n 1 = 1000 i n 0 = 1001 com = 10 sum = 0001 c a r r y = 1
# t ime = 2 c l k = 0 i n 1 = 0000 i n 0 = 0001 com = 11 sum = 0010 c a r r y = 1
# t ime = 3 c l k = 1 i n 1 = 0000 i n 0 = 0001 com = 11 sum = 0001 c a r r y = 0
# t ime = 4 c l k = 0 i n 1 = 0010 i n 0 = 0011 com = 11 sum = 0101 c a r r y = 0
# t ime = 5 c l k = 1 i n 1 = 0010 i n 0 = 0011 com = 11 sum = 0101 c a r r y = 0
# t ime = 6 c l k = 0 i n 1 = 0010 i n 0 = 0011 com = 11 sum = 0101 c a r r y = 0
# t ime = 7 c l k = 1 i n 1 = 0010 i n 0 = 0011 com = 11 sum = 0101 c a r r y = 0

The result of synthesis is presented in Figure 1.19, where:

• the adder module adds two 4-bit numbers (in1[3:0], in2[3:0]) and the one-bit number cin
(carry-in) providing the 4-bit sum (out[3:0]) and the one bit number cout (carry-out)

• the one-bit register carry is used to store, synchronized with the positive edge of the clock signal
clk, the value of the carry signal, cout generated by the adder, only when the input ce (clock
enable) is 1 (com[1] = 1) enabling the switch of the register

• the 2-input AND gate applies the output of the register to the cin only when com[0] = 1; when
com[0] = 0, cin = 0

Both, simulation and synthesis are performed using specific software tools (for example: ModelSim
for simulations and Xilinx ISE for synthesis)

⋄

VerilogSummary 4 :

cond ? a : b : is the well known a C construct which selects a if cond = 1, else selects b
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{a, b} : represent the concatenation of a with b

always @( <activating condition> ) : is a Verilog construct activated whenever the condition
<activating condition> is fulfilled

posedge : keyword used to specify the positive edge of the clock signal (negedge specifies the negative
edge of the clock signal)

always @(posedge clock) : each positive transition of clock will trigger the action described inside the
body of the construct always

if (cond) ... : used to specify the conditioned execution

forever : keyword indicating an unending repetition of the subsequent action

name1.name2 : selects the signal name2 from the module name1

The previous examples offered a flavor about what the digital design is: using an HDL (Verilog, for
example) two kinds of descriptions can be provided – behavioral and structural – both, being used to
simulate and/or to synthesize a digital system. Shortly: describe, simulate, synthesize is the main triad
of the digital design.

1.3 Different embodiment of digital systems

The physical embodiment of a digital system evolved, in the second part of the previous century, from
circuits built using vacuum tubes to now a day complex systems implemented on a single die of sili-
con containing billions of components. We are here interested only by the actual stage of technology
characterized by an evolutionary development and a possible revolutionary transition.

The evolutionary development is from the multi-chip systems approach to the system on a chip (SoC)
implementations.

The revolutionary transition is from Application Specific Integrated Circuit (ASIC) approach to the
fully programmable solutions for SoC.

SoC means integrating on a die a big system which, sometimes, involve more than one technology.
Multi-chip approach was, and it is in many cases, necessary because of two reasons: (1) the big size
of the system and, more important, (2) the need of use of few incompatible technologies. For example,
there are big technological differences in implementing analog or digital circuits. If the circuit is analog,
there is also a radio frequency sub-domain to be considered. The digital domain has also its specific
sub-domain of the dynamic memories. Accommodating on the same silicon die different technologies
is possible but the price is sometimes too big. The good news is that there are continuous technological
developments providing cheap solutions for integrating previously incompatible technologies.

An ASIC provides very efficient solutions for well defined functions and for big markets. The main
concern with this approach is the lack of functional flexibility on a very fast evolving market. Another
problem with the ASIC approach is related with the “reusability” of the silicon area which is a very
expensive resource in a digital system. For example, if the multiplication function is used in few stages
of the algorithm performed by an ASIC, then a multiplication circuit must be designed and placed on
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silicon few times even if the circuits stay some- or many-times unused. An alternative solution provides
only one multiplier which is “shared” by different stages of the algorithm, if possible.

There are different types of “programmable” digital systems:

• reconfigurable systems: are physical structures, having a set of useful features, can be configured,
to perform a specific function, by the binary content of some specific storage registers called
configuring registers; the flexibility of this approach is limited to the targeted application domain

• programmable circuits: are general purpose structures whose interconnection and simple func-
tionality are both programmed providing any big and complex systems; but, once the functionality
in place, the system performs a fix function

• programmable systems: are designed using one or many programmable computing machines
able to provide any transfer function between its inputs and outputs.

All these solutions must be evaluated takeing into account their flexibility, speed performance, com-
plexity, power consumption, and price. The flexibility is minimal for configurable systems and maximal
for programmable circuits. Speed performance is easiest to be obtained with reconfigurable systems,
while the programmable circuits are the laziest at big complexities. Complexity is maximal for pro-
grammable circuits and limited for reconfigurable systems. Power consumption is minimal for recon-
figurable solutions, and maximal for programmable circuits. Price is minimal for reconfigurable sys-
tems, and maximal for programmable circuits. In all the previous evaluations programmable systems are
avoided. Maybe this is the reason for which they provide overall the best solution!

Designing digital circuits is about the hardware support of programmable systems. This book pro-
vides knowledge on circuits, but the final target is to teach how to build various programmable structures.
Optimizing a digital system means to have a good balance between the physical structure of circuits and
the informational structure of programs running on them. Because the future of complex systems be-
longs to the programmable systems, the hardware support offered by circuits must be oriented toward
programmable structures, whose functionality is actualized by the embedded information (program).

Focusing on programmable structures does not mean we ignore the skills involved in designing
ASICs or reconfigurable systems. All we discuss about programmable structures applies also to any
kind of digital structure. What will happen will be that at a certain level in the development of digital
systems features for accepting program control will be added.

1.4 Correlated domains

Digital design must be preceded and followed by other disciplines. There are various prerequisites for
attending a digital design course. These disciplines are requested for two reasons:

• the student must be prepared with an appropriate pool of knowledge

• the student must be motivated to acquire a new skill.

In an ideal world, a student is prepared to attend digital design classes by having knowledge about:
Boolean algebra (logic functions, canonic forms, minimizing logic expressions), Automata theory (for-
mal languages, finite automata, . . . Turing Machine), Electronic devices (MOS transistor, switching the-
ory), Switching circuits (CMOS structure, basic gates, transmission gate, static & dynamic behavior of
the basic structures).
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In the same ideal world, a student can be motivated to approach the digital design domain if he payed
attention to Theory of computation, Microprocessor architecture, Assembly languages.

Attending the classes of Digital Systems is only a very important step on a long journey which
suppose to attend a lot of other equally important disciplines. The most important are listed bellow.

Verification & testing For complex digital system verification and testing become very important
tasks. The design must be verified to be sure that the intended functionality is in place. Then in each
stage, on the way from the initial design to the fabrication of the actual chip, various tests are performed.
Specific techniques are developed for verification and testing depending on the complexity of the design.
Specific design techniques are used to increase the efficiency of testing. Design for testability is a well
developed sub-domain which helps us with design tricks for increasing the accuracy and speed of testing.

Physical design The digital system designer provides only a description. It is a program written in
a HDL. This description must be used to build accurately an actual chip containing many hundred of
million of circuits. It is a multi-stage process where after circuit design, simulation, synthesis, and
functional verification, done by the digital design team, follow layout design & verification, mask
preparation, wafer fabrication, die test. During this long process a lot of additional technical problem
must be solved. A partial enumeration of them follows.

• Clock distribution: The clock signal is a pulse signal distributed almost uniformly on the whole
area of the chip. For a big circuit the clock distribution is a critical problem because of the power
involved and because of the accuracy of the temporal relation imposed for it.

• Signal propagation: Besides clock there are a lot of other signals which can be critical if they
spread on big parts of the circuit area. The relation between these signals makes the problem
harder.

• Chip interface circuits: The electrical charge of an interface circuit is much bigger than for the
internal one. The capacitance load on pins being hundred times bigger the usual internal load, the
output current for pin driver must be correspondingly.

• Powering: The switching energy is provided from a DC power supply. The main problem is to
have enough energy right in time at the power connections of each circuit form the chip. Power
distribution is made difficult by the inductive effect of the power connections.

• Cooling: The electrical energy introduced in circuit, through the power system, must be then,
unfortunately, extracted as caloric energy (heat) by cooling it.

• Packaging: The silicon die is mounted in a package which must fulfil a lot of criteria. It must
allow powering and cooling the die it contains. Also, it must provide hundreds or even thousands
external connections. Not to mention protection to cosmic rays, . . ..

• Board design: The chips are designed to be mounted on boards where they are interconnected
with other electronic components. Because of the very high density of connections, designing a
board is a very complex job involving knowledge from a lot of related domains (electromagnetism,
mechanics, chemistry, . . .).
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• System design: Actual applications are finalized as packaged systems containing one or many
boards, sometimes interconnected with electro-mechanical devices. Putting together many com-
ponents, powering them, cooling them, protecting them from disturbing external (electromagnetic,
chemical, mechanical, . . .) factors, adding esthetic qualities require multi-disciplinary skills.

For all these problems specific knowledge must be acquired attending special classes, course modules,
or full courses.

Computer architecture Architectural thinking is a major tendency in the contemporary word. It is a
way to discuss about the functionality of an object ignoring its future actual implementation. The ar-
chitectural approach helps us to clarify first what we intend to build, unrestricted by the implementation
issues. Computer architecture is a very important sub-domain of computer science. It allow us to develop
independently the hardware domain and the software domain maintaining in the same time a high “com-
municating channel” between the two technologies: one referring to the physical structures and another
involving the informational structure of programs.

Embedded systems In an advanced stage of development of digital system the physical structure of
the circuits start to be interleaved with the informational structure of programs. Thus, the functional
flexibility of the system and its efficiency is maximized. A digital system tend to be more and more
a computational system. The computation become embedded into the core of a digital system. The
discipline of embedded system or embedded computation3 starts to be a finis coronat opus of digital
domain.

Project management Digital systems are complex systems. In order to finalize a real product a lot of
activities must be correlated. Therefore, an efficient management is mandatory for a successful project.
More, the management of the digital system project has some specific aspects to be taken into account.

Business & Marketing & Sales Digital systems are produced to be useful. Then, they must spread
in our human community in the most appropriate way. Additional, but very related skills are needed
to enforce on the market a new digital system. The knowledge about business, about marketing and
sales is crucial for imposing a new design. A good, even revolutionary idea is necessary, but absolutely
insufficient. The pure technical skills must be complemented by skills helping the access on the market,
the only place where a design receives authentic recognition.

1.5 Problems
Problem 1.1 Let be the full 4-bit adder described in the following Verilog module:

module f u l l A d d e r ( output [ 3 : 0 ] o u t ,
output c rOu t , / / c a r r y o u t p u t
input [ 3 : 0 ] i n 0 ,
input [ 3 : 0 ] i n 1 ,

3In DCAE chair of the Electronics Faculty, in Politehnica University of Bucharest this topics is taught as Functional Elec-
tronics, a course introduced in late 70s by the Professor Mihai Dr’ag’anescu.
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input c r I n ) ; / / c a r r y i n p u t

wire [ 4 : 0 ] sum ;

a s s i g n sum = i n 0 + i n 1 + c r I n ;
a s s i g n o u t = sum [ 3 : 0 ] ;
a s s i g n c rOu t = sum [ 4 ] ;

endmodule

Use the module fullAdder to design the following 16-bit full adder:

module bigAdder ( output [ 1 5 : 0 ] o u t ,
output c rOu t , / / c a r r y o u t p u t
input [ 1 5 : 0 ] i n 0 ,
input [ 1 5 : 0 ] i n 1 ,
input c r I n ) ; / / c a r r y i n p u t

/ / ???

endmodule

The resulting project will be simulated designing the appropriate test module.

Problem 1.2 Draw the block schematic of the following design:

module topModule ( output [ 7 : 0 ] out ,
input [ 7 : 0 ] in1 ,
input [ 7 : 0 ] in2 ,
input [ 7 : 0 ] i n 3 ) ;

wire [ 7 : 0 ] wire1 , wi re2 ;

bottomModule mod1 ( . o u t ( wi re1 ) ,
. i n 1 ( i n 1 ) ,
. i n 2 ( i n 2 ) ) ,

mod2 ( . o u t ( wi re2 ) ,
. i n 1 ( wi re1 ) ,
. i n 2 ( i n 3 ) ) ,

mod3 ( . o u t ( o u t ) ,
. i n 1 ( i n 3 ) ,
. i n 2 ( wi re2 ) ) ;

endmodule



40 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

module bottomModule ( output [ 7 : 0 ] out ,
input [ 7 : 0 ] in1 ,
input [ 7 : 0 ] i n 2 ) ;

/ / . . .
endmodule

Synthesize it to test your solution.

Problem 1.3 Let be the schematic representation of the design topSyst in Figure 1.20. Write the Ver-
ilog description of what is described in Figure 1.20. Test the result by synthesizing it.
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Figure 1.20: The schematic of the design topSyst. a. The top module topSyst b. The structure of the
module syst2.



Chapter 2

DIGITAL CIRCUITS

In the previous chapter
the concept of digital system was introduced by:

• differentiating it from analog system

• but integrating it, in the same time, in a hybrid electronic system

• defining formally what means a digital system

• and by stating the first target of this text book: the introducing the basic small and simple
digital circuits

In this chapter
general definitions related with the digital domain are used to reach the following targets:

• to frame the digital system domain in the larger area of the information technologies

• to present different ways the digital approach is involved in the design of the real market
products

• to enlist and shortly present the related domains, in order to integrate better the knowledge
and skills acquired by studying the digital system design domain

In the next chapter
is a friendly introduction in both, digital systems and a HDLs (Hardware Description Languages)
used to describe, simulate, and synthesized them. The HDL selected for this book is called Verilog.
The main topics are:

• the distinction between combinational and sequential circuits

• the two ways to describe a circuit: behavioral or structural

• how digital circuits behave in time.

41
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In the previous chapter we learned, from an example, that a simple digital system, assimilated with a
digital circuit, is built using two kinds of circuits:

• non-sequential circuits, whose outputs follow continuously, with a specific delay, the evolution of
input variable, providing a “combination” of input bits as the output value

• sequential circuits, whose output evolve triggered by the active edge of the special signal called
clock which is used to determine the “moment” when the a storage element changes its content.

Consequently, in this chapter are introduced, by simple examples and simple constructs, the two basic
types of digital circuits:

• combinational circuits, used to compute fcomb : X → Y , defined in X = {0,1}n with values in
Y = {0,1}m, where fcomb(x(t)) = y(t), with x(t) ∈ X , y(t) ∈ Y representing two values generated
in the same discrete unit of time t (discrete time is “ticked” by the active edge of clock)

• storage circuits, used to design sequential circuits, whose outputs follow the input values with
the delay of one clock cycle; fstore : X → X , defined in X = {0,1}n with values in X = {0,1}n,
where fstore(x(t)) = x(t−1), with x(t),x(t−1)∈ X , representing the same value considered in two
successive units of time, t −1 and t.

While a combinational circuit computes continuously its outputs according to each input change, the
output of the storage circuit changes only triggered by the active edge of clock.

In this chapter, the first section is for combinational circuits which are introduced by examples,
while, in the second section, the storage circuit called register is generated step by step starting from the
simplest combinational circuits.

2.1 Combinational circuits

Revisiting the Digital Pixel Corrector circuit, lets take the functional description of the output function:

i f ( s t a t e [2* n −1: n ] == 0) o u t = ( s t a t e [ n − 1 : 0 ] + s t a t e [ q −1:2* n ] ) / 2 ;
e l s e o u t = s t a t e [2* n −1: n ] ;

The previous form contains the following elementary functions:

• test function: state[2*n-1:n] == 0, defined in {0,1}n with value in {0,1}

• selection function:
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i f ( t e s t ) o u t = a c t i o n 1 ;
e l s e o u t = a c t i o n 2 ;

defined in the Cartesian product ({0,1}×{0,1}n ×{0,1}n) with values in {0,1}n

• Add function: state[n-1:0] + state[q-1:2*n], defined in ({0,1}n ×{0,1}n) with value in
{0,1}n

• Divide by 2 function: defined in {0,1}n with value in {0,1}n.

In Appendix D, section Elementary circuits: gates basic knowledge about Boolean logic and the
associated logic circuits are introduced. We use simple functions and circuits, like AND, OR, NOT,
XOR, ..., to design the previously emphasized combinational functions.

2.1.1 Zero circuit

The simplest test function tests if a n-bit binary configuration represents the number 0. The function OR
provides 1 if at least one of its inputs is 1, which means it provides 0 if all its inputs are 0. Then, inverting
– negating – the output of a n-input OR we obtain a circuit NOR – not OR – whose output is 1 only when
all its inputs are 0.

Definition 2.1 The n-input Zero circuit is a n-input NOR.
⋄

The Figure 2.1 represents few embodiment of the Zero circuit. The elementary, 2-input, Zero circuit is
represented in Figure 2.1a as a two-input NOR. For the n-input Zero circuit a n-input NOR is requested
(see Figure 2.1b) which can be implemented in two different ways (see Figure 2.1c and Figure 2.1d).
One level NOR (see Figure 2.1b) with more than 4 inputs are impractical (for reasons disclosed when we
will enter in the physical details of the actual implementations).

The two solution for the n-input NOR come from the two ways to expand an associative logic func-
tion. It is about how the parenthesis are used. The first form (see Figure 2.1c) comes from:

(a+b+ c+d + e+ f +g+h)′ = (((((((a+b)+ c)+d)+ e)+ f )+g)+h)′

generating a 7 level circuit (7 included parenthesis), while, the second form (see Figure 2.1d) comes
from:

(a+b+c+d+e+ f +g+h)′=((a+b)+(c+d)+(e+ f )+(g+h))′=(((a+b)+(c+d))+((e+ f )+(g+h)))′

providing a 3 level circuit (3 included parenthesis). The number of gates used is the same for the two
solution. We expect that the second solution provide a faster circuit.
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in[1]in[0] in[n-1:0]

Zero

?

?

n

in[n-1:0]

in[7:0] in[7:0]

out=Zero(in[1:0])

out=Zero(in[n-1:0])

out = Zero(in[n-1:0])

out = Zero(in[7:0])

out = Zero(in[7:0])

a. b. c. d. e.

Figure 2.1: The Zero circuit. a. The 2-input Zero circuit is a 2-input NOR. b. The n-input Zero circuit is a
n-input NOR. c. The 8-input Zero circuit as a degenerated tree of 2-input ORs. d. The 8-input Zero circuit as a
balanced tree of 2-input ORs. e. The logic symbol for the Zero circuit.

2.1.2 Selection

The selection circuit, called also multiplexer, is a three input circuit: a one-bit selection input – sel –,
and two selected inputs, one – in0 – selected to the output when sel=0 and another – in1 – selected for
sel=1. Let us take first the simplest case when both selected inputs are of 1 bit. This is the case for the
elementary multiplexer, EMUX. If the input are: sel, in0, in1, then the logic equation describing the
logic circuit is:

out = sel’ · in0 + sel · in1

Then the circuit consists of one NOT, two ANDs and one OR as it is shown in Figure 2.2. The AND
gates are opened by selection signal, sel, allowing to send out the value applied on the input in1, and
by the negation of the selection signal signal, sel’, allowing to send out the value applied on the input
in0. The OR circuit “sum up” the outputs of the two ANDs, because only one is “open” at a time.

The selection circuit for two n-bit inputs is functionally (behaviorally) described by the following
Verilog module:

/ * ************************************************************************
F i l e name : i f T h e n E l s e . v
C i r c u i t name : 2− i n p u t m u l t i p l e x e r
D e s c r i p t i o n : one o f i n p u t s in1 , i n 0 i s s e l e c t e d by s e l
************************************************************************ * /

module i f T h e n E l s e # ( parameter n = 4)
( output [ n − 1 : 0 ] out ,

input s e l ,
input [ n − 1 : 0 ] in1 , i n 0 ) ;

a s s i g n o u t = s e l ? i n 1 : i n 0 ;
endmodule
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Figure 2.2: The selection circuit. a. The logic schematic for the elementary selector, EMUX (elementary
multiplexer). b. The logic symbol for EMUX. c. The selector (multiplexor) for n-bit words, MUXn. d. The logic
symbol for MUXn.

In the previous code we decided to design a circuit for 4-bit data. Therefore, the parameter n is set to
4 only in the header of the module.

The structural description is much more complex because it specifies all the details until the level of
elementary gates. The description has two modules: the top module – ifThenElse – and the module
describing the simplest select circuit – eMux.

/ * ************************************************************************
F i l e name : eMux . v
C i r c u i t name : E l e m e n t a r y m u l t i p l e x e r
D e s c r i p t i o n : s e l ? i n 1 : i n 0
************************************************************************ * /

module eMux ( output out ,
input s e l , in1 , i n 0 ) ;

wire i n v S e l ;

not i n v e r t e r ( i n v S e l , s e l ) ;
and and1 ( out1 , s e l , i n 1 ) ,

and0 ( out0 , i n v S e l , i n 0 ) ;
or o u t G a t e ( out , out1 , ou t0 ) ;

endmodule
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/ * ************************************************************************
F i l e name : i f T h e n E l s e . v
C i r c u i t name : Two n−i n p u t m u l t i p l e x o r
D e s c r i p t i o n : t h e use o f g e n e r a t e s t a t e m e n t f o r a 2− i n p u t m u l t i p l e x o r
************************************************************************ * /
module i f T h e n E l s e # ( parameter n = 4)

( output [ n − 1 : 0 ] out ,
input s e l ,
input [ n − 1 : 0 ] in1 , i n 0 ) ;

genvar i ;
g e n e r a t e f o r ( i =0 ; i<n ; i = i +1)

begin : eMUX
eMux s e l e c t o r ( . o u t ( o u t [ i ] ) ,

. s e l ( s e l ) ,

. i n 1 ( i n 1 [ i ] ) ,

. i n 0 ( i n 0 [ i ] ) ) ;
end

endgenerate
endmodule

The repetitive structure of the circuit is described using the generate form.
To verify the design a test module is designed. This module generate stimuli for the input of the

device under test (dut), and monitors the inputs and the outputs of the circuit.

/ * ************************************************************************
F i l e name : t e s t I f T h e n E l s e . v
C i r c u i t name : S i m u l a t i o n module f o r i f T h e n E l s e . v
D e s c r i p t i o n : g e n e r a t e s t i m u l u s f o r a two−i n p u t m u l t i p l e x o r
************************************************************************ * /

module t e s t I f T h e n E l s e # ( parameter n = 4 ) ;
reg [ n − 1 : 0 ] in1 , i n 0 ;
reg s e l ;
wire [ n − 1 : 0 ] o u t ;
i n i t i a l begin i n 1 = 4 ’ b0101 ;

i n 0 = 4 ’ b1011 ;
s e l = 1 ’ b0 ;

#1 s e l = 1 ’ b1 ;
#1 i n 1 = 4 ’ b1100 ;
#1 $ s t o p ;

end
i f T h e n E l s e d u t ( out ,

s e l ,
in1 , i n 0 ) ;

i n i t i a l $monitor
( ” t ime = %d s e l = %b i n 1 = %b i n 0 = %b o u t = %b ” ,

$t ime , s e l , in1 , in0 , o u t ) ;
endmodule
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The result of simulation is:

# t ime = 0 s e l = 0 i n 1 = 0101 i n 0 = 1011 o u t = 1011
# t ime = 1 s e l = 1 i n 1 = 0101 i n 0 = 1011 o u t = 0101
# t ime = 2 s e l = 1 i n 1 = 1100 i n 0 = 1011 o u t = 1100

The result of synthesis is represented in Figure 2.3.

Figure 2.3: The result of the synthesis for the module ifThenElse.

2.1.3 Adder

A n-bit adder is defined as follows, using a Verilog behavioral description:

/ * ************************************************************************
F i l e name : adder . v
C i r c u i t name : 4− b i t words adder
D e s c r i p t i o n : t h e c i r c u i t adds numbers r e p r e s e n t e d on n b i t s , f o r n = 4
************************************************************************ * /

module a d d e r # ( parameter n = 4) / / d e f i n e s a n− b i t adder
( output [ n − 1 : 0 ] sum , / / t h e n− b i t r e s u l t

output c a r r y , / / c a r r y o u t p u t
input c , / / c a r r y i n p u t
input [ n − 1 : 0 ] a , b ) ; / / t h e two n− b i t numbers

a s s i g n { c a r r y , sum} = a + b + c ;
endmodule
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Fortunately, the previous module is synthesisable by the currently used synthesis tools. But, in this
stage, it is important for us to define the actuala internal structure of an adder. We start from a 1-bit
adder, whose output are described by the following Boolean equations:

sum = a⊕b⊕ c

carry = a ·b+a · c+b · c

where, a, b and c are one bit Boolean variables. Indeed, the sum output results as the sum of three bits:
the two numbers, a and b, and the carry bit, c, coming from the previous binary range. As we know, the
modulo 2 sum is performed by a XOR circuit. Then, a⊕ b is the sum of the two one-bit numbers. The
result must be added with c – (a⊕ b)⊕ c – using another XOR circuit. The carry signal is used by the
next binary stage. The expression for carry is written taking into account that the carry signal is one if
at least two of the input bits are one: carry is 1 if a and b or a and c or b and c (the function is the
majority function). Its expression is embodied also in logic circuits, but not before optimizing its form
as follows:

carry = a ·b+a · c+b · c = a ·b+ c · (a+b) = a ·b+ c · (a⊕b)

Because (a⊕b) is already computed for sum, the circuit for carry requests only two ANDs and an OR.
In Figure 2.4a the external connections of the 1-bit adder are represented. The input c receives the carry
signal from the previous binary range. The output carry generate the carry signal for the next binary or
range.

a b
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OneBitAdd

c

? ?

?

�

a[n-1] a[1] a[0]

� OneBitAdd
OneBitAdd

? ?

?

��

a b

ccarry

sum

? ?

?

��
?

OneBitAdd

b[n-1]

? ?

?

b[1] b[0]
carryIn

carryOut
sum[n-1] sum[1] sum[0]

a. b. c.

carry

Figure 2.4: The adder circuit. a. The logic symbol for one-bit adder. b. The logic schematic for the one-bit
adder. c. The block schematic for the n-bit adder.

The functions for the one bit adder are obtained formally, without any trick, starting from the truth
table defining the operation (see Figure 2.5).

The two expressions are extracted from the truth table as “sum” of “products”. Only the “products”
generating 1 to output are “summed”. Results:

sum = a′b′c+a′bc′+ab′c′+abc

carry = a′bc+ab′c+abc′+abc
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a b c sum carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.5: The truth table for the adder circuit. The first three columns contains all the three-bit binary
configuration the circuit could receive. The two last columns describe the behavior of the sum and carry output.

and, using the Boolean algebra rules the form are reduced to the previously written expressions.
For a circuit with more than one output, minimizing it means to minimize the overall design, not

only each expressions associated to its outputs. For our design – the one bit adder – the expression used
to implement the sum output is not minimal. It is more complex that the minimal form (instead of an
OR gate we used the more complicated gate XOR), but it contains a sub-circuit shared with the circuit
associated to carry output. It is about the first XOR circuit (see Figure 2.4b).

2.1.4 Divider

The divide operation – a/b – is, in the general case, a complex operation. But, in our application – Digital
Pixel Correction – it is about dividing by 2 a binary represented number. It is performed, without any cir-
cuit, simply by shifting the bits of the binary number one position to right. The number number[n-1:0]
divided by two become {1’b0, number[n-1:1]}.

2.2 Sequential circuits

In this section we intend to introduce the basic circuits used to build the sequential parts of a digital
system. It is about the sequential digital circuits. These circuits are mainly used to build the storing sub-
systems in a digital system. To store in a digital circuit means to maintain the value of a signal applied
on the input of the circuit. Simply speaking, the effect of the signal to be stored must be “re-applied” on
another input of the circuit, so as the effect of the input signal to be memorized is substituted. Namely,
the circuit must have a loop closed form one of its output to one of its input. The resulting circuit, instead
of providing the computation it performs without loop, it will provide a new kind of functionality: the
function of memorizing. Besides the function of memorizing, sequential circuits are used to design sim-
ple or complex automata (in this section we provide only examples of simple automata). The register, the
typical sequential circuit, is used also in designing complex systems allowing efficient interconnections
between various sub-systems.

2.2.1 Elementary Latches

This subsection is devoted to introduce the elementary structures whose internal loop allow the simplest
storing function: latching an event.
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The reset-only latch is the AND loop circuit represented in Figure 2.6a. The passive input value for
AND loop is 1 ((Reset)’ = 1), while the active input value is 0 ((Reset)’ = 0). If the passive input
value is applied, then the output of the circuits is not affected (the output depends only by the other input
of the AND circuit). It can be 0 or 1, depending by the previous values applied on the input. When the
active value is temporary applied, then the state of the circuit (the value of its output) switches in 0, with
a delay of tpHL (propagation time from high to low) and remains forever in this state, independent on the
following the input value. We conclude that the circuit is sensitive to the signal 0 temporarily applied on
its input, i.e., it is able to memorize forever the event 0. The circuit “catches” and “latches” the input
value only if the input in maintained on 0 until the second input of the AND circuit receives the value 0,
with a delay time tpHL. If the temporary input transition in 0 is too short the loop is unable to latch the
event.

The set-only latch is the OR loop circuit represented in Figure 2.6b. The passive value for OR loop is
0 (Set = 0) while the active input value is 1 (Set = 1). If the passive input value is applied, then the
output of the circuits is not affected (the output depends only by the other input of the OR circuit). It can
be 0 or 1, depending by the previous values applied on the input. When the active value is temporary
applied, then the state of the circuit (the value of its output) switches in 1 and remains forever in this
state, independent on the input value. We conclude that the circuit is sensitive to the signal 1 temporarily
applied on its input, i.e., it is able to memorize forever the event 1. The only condition, similar to that
applied for AND loop, is to have an enough long duration of temporary input transition in 1.

The heterogenous set-reset latch results by combining the previous two latches (see Figure 2.6c). The
circuit has two inputs: one active-low (active on 0) input, R’, to reset the circuit (out = 0), and another
active-high (active on 1) input, S, to set the circuit (out = 0). The value 0 must remain to the input R’
at least 2tpHL for a stable switching of the circuit into the state 0, because the loop depth in the state 1 is
given by the propagation time through both gates that switch from high to low. For a similar reason, the
value 1 must remain to the input S at least 2tpLH when the circuit must switch in 1. However, the output
of the circuit reacts faster to the set signal, because from the input set to the output of the circuit there
is only one gate, while from the other input to output the depth of the circuit is doubled.

The symmetric set-reset latches are obtained by applying De Morgan’s law to the heterogenous el-
ementary latch. In the first version, the OR circuit is transformed by De Morgan’s law (the form a +

b = (a’ b’)’ is used) resulting the circuit from Figure 2.7a. The second version (see Figure 2.7b) is
obtained applying the other form of the same law to the AND circuit (ab = (a’ + b’)’). The pas-
sive input value for the NAND elementary latch is 1, while for the NOR elementary latch it is 0. The
active input value for the NAND elementary latch is 0, while for the NOR elementary latch it is 1. The
symmetric structure of these latches have two outputs, Q and Q’.

Although, the structural description in an actual design does not go until such detail, it is useful to
use a simulation for understand how this small, simple, but fundamental circuit works. For the sake of
simulation only, the description of the circuit contains time assignment. If the module is supposed to by
eventually synthesised, then the time assignment must be removed.

VeriSim 2.1 The Verilog structural description of NAND latch is:
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Figure 2.6: The elementary latches. Using the loop, closed from the output to one input, elementary storage
elements are built. a. AND loop provides a reset-only latch. b. OR loop provides the set-only version of a storage
element. c. The heterogeneous elementary set-reset latch results combining the reset-only latch with the set-only
latch. d. The wave forms describing the behavior of the previous three latch circuits.

/ * ************************************************************************
F i l e name : l e m e n t a r y l a t c h . v
C i r c u i t name : E l e m e n t a r y l a t c h
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f an e l e m e n t a r y l a t c h
************************************************************************ * /
module e l e m e n t a r y l a t c h ( output out , n o t o u t ,

input n o t s e t , n o t r e s e t ) ;
nand #2 nand0 ( out , n o t o u t , n o t s e t ) ;
nand #2 nand1 ( n o t o u t , out , n o t r e s e t ) ;

endmodule

The two NAND gates considered in this simulation have the propagation time equal with 2 unit times
– #2.

For testing the behavior of the NAND latch just described, the following module is used:
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b.a.

Q Q’
Q’ Q
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Figure 2.7: Symmetric elementary latches. a. Symmetric elementary NAND latch with low-active commands
S’ and R’. b. Symmetric elementary NOR latch with high-active commands S and R.

/ * ************************************************************************
F i l e name : t e s t s h o r t e s t i n p u t . v
C i r c u i t name : T e s t e r f o r t h e e l e m e n t a r y l a t c h
D e s c r i p t i o n : t h e c i r c u i t g e n e r a t e s t i m u l u s f o r t h e e l e m e n t a r y l a t c h
************************************************************************ * /

module t e s t s h o r t e s t i n p u t ;
reg n o t s e t , n o t r e s e t ;

i n i t i a l begin n o t s e t = 1 ;
n o t r e s e t = 1 ;

#10 n o t r e s e t = 0 ; / / r e s e t
#10 n o t r e s e t = 1 ;
#10 n o t s e t = 0 ; / / s e t
#10 n o t s e t = 1 ; / / 1− s t e x p e r i m e n t
/ / #1 n o t s e t = 1; / / 2−nd e x p e r i m e n t
/ / #2 n o t s e t = 1; / / 3−rd e x p e r i m e n t
/ / #3 n o t s e t = 1; / / 4− t h e x p e r i m e n t
#10 n o t s e t = 0 ; / / a n o t h e r s e t
#10 n o t s e t = 1 ;
#10 n o t r e s e t = 0 ; / / r e s e t
#10 n o t r e s e t = 1 ;
#10 $ s t o p ;

end

e l e m e n t a r y l a t c h d u t ( out , n o t o u t , n o t s e t , n o t r e s e t ) ;
endmodule

In the first experiment the set signal is activated on 0 during 10ut (ut stands for unit time). In the
second experiment (comment the line 9 and de-comment the line 10 of the test module), a set signal of 1ut
is unable to switch the circuit. The third experiment, with 2ut set signal, generate an unstable simulated,
but non-actual, behavior (to be explained by the reader). The fourth experiment, with 3ut set signal,
determines the shortest set signal able to switch the latch (to be explained by the reader).

⋄

In order to use these latches in more complex applications we must solve two problems.
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The first latch problem : the inputs for indicating how the latch switches are the same as the inputs
for indicating when the latch switches; we must find a solution for declutching the two actions building
a version with distinct inputs for specifying “how” and “when”.

The second latch problem : if we apply synchronously S’=0 and R’=0 on the inputs of NAND latch
(or S=1 and R=1 on the inputs of OR latch), i.e., the latch is commanded “to switch in both states
simultaneously”, then we can not predict what is the state of the latch after the ending of these two active
signals.

The first latch problem will be partially solved in the next subsection, introducing the clocked latch,
but the problem will be completely solved only by introducing the master-slave structure. The second
latch problem will be solved, only in one of the chapter that follow, with the JK flip-flop, because the
circuit needs more autonomy to “solve” the contradictory command that “says him” to switch in both
states simultaneously.

Application: de-bouncing circuit Interfacing digital systems with the real world involves sometimes
the use of mechanical switching contacts. The bad news is that this kind of contact does not provide an
accurate transition. Usually when it closes, a lot of parasitic bounces come with the main transition (see
wave forms S’ and R’ in Figure 2.8).
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Figure 2.8: The de-bouncing circuit.

The debouncing circuit provide clean transitions when digital signals must generated by electro-
mechanical switches. In Figure 2.8 an RS latch is used to clear up the bounces generated by a two-
position electro-mechanical switch. The elementary latch latches the first transition from VDD to 0. The
bounces that follow have no effect on the output Q because the latch is already switched, by the first
transition, in the state they intend to lead the circuit.
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2.2.2 Elementary Clocked Latches

In order to start solving the first latch problem the elementary latch is supplemented with two gates used
to validate the data inputs only during the active level of clock. Thus the clocked elementary latch is
provided.

Q Q’

S R
CK

a.

RSL

? ??

? ?

S RCK

Q Q’

active level
z

b.

S’ R’

Figure 2.9: Elementary clocked latch. The transparent RS clocked latch is sensitive (transparent) to the input
signals during the active level of the clock (the high level in this example). a. The internal structure. b. The logic
symbol.

The NAND latch is used to exemplify (see Figure 2.9a) the partial separation between how and when.
The signals R’ and S’ for the NAND latch are generated using two 2-input NAND gates. If the latch must
be set, then on the input S we apply 1, R is maintained in 0 and, only after that, the clock is applied, i.e.,
the clock input CK switches temporary in 1. In this case the active level of the clock is the high level.
For reset, the procedure is similar: the input R is activated, the input S is inactivated, and then the clock
is applied.

We said that this approach allows only a partial declutching of how by when because on the active
level of CK the latch is transparent, i.e., any change on the inputs S and R can modify the state of the
circuit. Indeed, if CK = 1 and S or R is activated the latch is set or reset, and in this case how and when
are given only by the transition of these two signals, S for set or R for reset. The transparency will be
avoided only when, in the next subsection, the transition of the output will be triggered by the active edge
of clock.

The clocked latch does not solve the second latch problem, because for R = S = 1 the end of the
active level of CK switches the latch in an unpredictable state.

VeriSim 2.2 The following Verilog code can be used to understand how the elementary clocked latch
works.
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/ * ************************************************************************
F i l e name : c l o c k e d n a n d l a t c h . v
C i r c u i t name : Clocked l a t c h
D e s c r i p t i o n : t h e c i r c u i t i s a c l o c k e d l a t c h imp lemen ted w i t h NAND g a t e s
************************************************************************ * /

module c l o c k e d n a n d l a t c h ( output out , n o t o u t ,
input s e t , r e s e t , c l o c k ) ;

e l e m e n t a r y l a t c h t h e l a t c h ( out , n o t o u t , n o t s e t , n o t r e s e t ) ;
nand #2 nand2 ( n o t s e t , s e t , c l o c k ) ;
nand #2 nand3 ( n o t r e s e t , r e s e t , c l o c k ) ;

endmodule

⋄

2.2.3 Data Latch

The second latch problem can be only avoided, not removed in this stage of our approach, by introducin
a restriction on the inputs of the clocked latch. Indeed, introducing an inverter circuit between the inputs
of the RS clocked latch, as is shown in Figure 2.10a, the ambiguous command (simultaneous set and
reset) can not be applied. Now, the situation R = S = 1 becomes impossible. The output is synchronized
with the clock only if on the active level of CK the input D is stable.

We call the resulting one input with D (from Data). The circuit is called Data Latch, or simple
D-latch.

RSL DL

?

? ? ? ?

? ?

a. b.

D

S R

Q Q’ Q Q’

D CK

c. QQ’

D

CK

Figure 2.10: The data latch. Imposing the restriction R = S′ to an RS latch results the D latch without non-
predictable transitions (R = S = 1 is not anymore possible). a. The structure. b. The logic symbol. c. An improved
version for the data latch internal structure.

The output of this new circuit follows continuously the input D during the active level of clock.
Therefore, the autonomy of this circuit is questionable because act only in the time when the clock is
inactive (on the inactive level of the clock). We say D latch is transparent on the active level of the clock
signal, i.e, the output is sensitive, to any input change, during the active level of clock.

VeriSim 2.3 The following Verilog code can be used to describe the behavior of a D latch.
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/ * ************************************************************************
F i l e name : d a t a l a t c h . v
C i r c u i t name : Data La tch
D e s c r i p t i o n : da ta l a t c h t r a n s p a r e n t on t h e h igh l e v e l o f c l o c k
************************************************************************ * /

module d a t a l a t c h ( output reg out ,
output n o t o u t ,
input da t a , c l o c k ) ;

always @( * ) i f ( c l o c k ) o u t = d a t a ;
a s s i g n n o t o u t = ˜ o u t ;

endmodule

⋄

The main problem when data input D is separated by the timing input CK is the correlation between
them. When this two inputs change in the same time, or, more precisely, during the same small time
interval, some behavioral problems occur. In order to obtain a predictable behavior we must obey two
important time restrictions: the set-up time and the hold time.

In Figure 2.10c an improved version of the circuit is presented. The number of components are
minimized, the maximum depth of the circuit is maintained and the input load due to the input D is
reduced from 2 to 1, i.e., the circuit generating the signal D is loaded with one input instead of 2, in the
original circuit.

VeriSim 2.4 The following Verilog code can be used to understand how a D latch works.

module t e s t d a t a l a t c h ;
reg da t a , c l o c k ;

i n i t i a l begin c l o c k = 0 ;
f o r e v e r #10 c l o c k = ˜ c l o c k ;

end
i n i t i a l begin d a t a = 0 ;

#25 d a t a = 1 ;
#10 d a t a = 0 ;
#20 $ s t o p ;

end
d a t a l a t c h d u t ( out , n o t o u t , da t a , c l o c k ) ;

endmodule

module d a t a l a t c h ( output out , n o t o u t ,
input da t a , c l o c k ) ;

not #2 d a t a i n v e r t e r ( n o t d a t a , d a t a ) ;

c l o c k e d n a n d l a t c h r s l a t c h ( out , n o t o u t , da t a , n o t d a t a , c l o c k ) ;
endmodule
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The second initial construct from test data latch module can be used to apply data in different
relation with the clock.

⋄
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Figure 2.11: The optimized data latch. An optimized version is implemented closing the loop over an
elementary multiplexer, EMUX. a. The resulting minimized structure for the circuit represented in Figure 2.10a.
b. Implementing the minimized form using only inverting circuits.

The internal structure of the data latch (4 2-input NANDs and an inverter in Figure 2.10a) can be
minimized opening the loop by disconnecting the output Q from the input of the gate generating Q′, and
renaming it C. The resulting circuit is described by the following equation:

Q = ((D ·CK)′ · (C(D′ ·CK)′)′)′

which can be successively transformed as follows:

Q = ((D ·CK)+(C(D′ ·CK)′)

Q = ((D ·CK)+(C(D+CK′))

Q = D ·CK +C ·D+C ·CK′(anti−hasard redundancy1)

Q = D ·CK +C ·CK′

1Anti-hasard redundancy equivalence: f(a,b,c) = ab + ac + bc’ = ac + bc’

Proof:
f(a,b,c) = ab + ac + bc’ + cc’, cc’ is ORed because xx’ = 0 and x = x + 0

f(a,b,c) = a(b + c) + c’(b + c) = (b + c)(a + c’)

f(a,b,c) = ((b + c)’ + (a + c’)’)’, applying De Morgan law
f(a,b,c) = (b’c’ + a’c)’, applying again De Morgan law
f(a,b,c) = (ab’c’ + a’b’c’ + a’bc + a’b’c)’ = (m4 + m0 + m3 + m1)’, expanding to the disjunctive normal
form
f(a,b,c) = m2 + m5 + m6 + m7 = a’bc’ + ab’c + abc’ + abc, using the “complementary” minterms
f(a,b,c) = bc’(a + a’) + ac(b + b’) = ac + bc’, q.e.d.
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The resulting circuit is an elementary multiplexor (the selection input is CK and the selected inputs are
D, by CK = 1, and C, by CK = 0. Closing back the loop, by connecting Q to C, results the circuit
represented in Figure 2.11a. The actual circuit has also the inverted output Q′ and is implemented using
only inverted gates as in Figure 2.11b. The circuit from Figure 2.10a (using the RSL circuit from Figure
2.9a) is implemented with 18 transistors, instead of 12 transistors supposed by the minimized form Figure
2.11b.

VeriSim 2.5 The following Verilog code can be used as one of the shortest description for a D latch
represented in Figure 2.11a.

In the previous module the assign statement, describing an elementary multiplexer, contains the loop.
The variable q depends by itself. The code is synthesisable.

/ * ************************************************************************
F i l e name : m u x l a t c h . v
C i r c u i t name : E l e m e n t a r y m u u l t i p l e x o r
D e s c r i p t i o n : t h e m u l t i p l e x o r i s used t o imp lemen t a c l o c k e d da ta l a t c h
************************************************************************ * /

module m u x l a t c h ( output q ,
input d , ck ) ;

a s s i g n q = ck ? d : q ;
endmodule

⋄

We ended using the elementary multiplexer to describe the most complex latch. This latch is used
in structuring almost any storage sub-system in a digital system. Thus, one of the basic combinational
function, associated to the main control function if-then-else, is proved to be the basic circuit in designing
storage elements.

2.2.4 Master-Slave Principle

In order to remove the transparency of the clocked latches, disconnecting completely the how from the
when, the master-slave principle was introduced. This principle allows us to build a two state circuit
named flip-flop that switches synchronized with the rising or falling edge of the clock signal.

The principle consists in serially connecting two clocked latches and in applying the clock signal in
opposite on the two latches (see Figure 2.12a). In the exemplified embodiment the first latch is trans-
parent on the high level of clock and the second latch is transparent on the low level of clock. (The
symmetric situation is also possible: the first latch is transparent of the low level value of clock and the
second no the high value of clock.) Therefore, there is no time interval in which the entire structure is
transparent. In the first phase, CK = 1, the first latch is transparent - we call it the master latch - and it
switches according to the inputs S and R. In the second phase CK = 0 the second latch - the slave latch -
is transparent and it switches copying the state of the master latch. Thus the output of the entire structure
is modified only synchronized with the negative transition of CK, i.e., only at the transition from 1 to 0
of the clock, because the state of the master latch freezes until the clock switches back to 1. We say the
RS master-slave flip-flop switches always at (always @ expressed in Verilog) the falling (negative) edge
of the clock. (The version triggered by the positive edge of clock is also possible.)
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Figure 2.12: The master-slave principle. Serially connecting two RS latches, activated with different levels
of the clock signal, results a non-transparent storage element. a. The structure of a RS master-slave flip-flop, active
on the falling edge of the clock signal. b. The logic symbol of the RS flip-flop triggered by the negative edge of
clock. c. The logic symbol of the RS flip-flop triggered by the positive edge of clock.

The switching moment of a master-slave structure is determined exclusively by the active edge
of clock signal. Unlike the RS latch or data latch, which can sometimes be triggered (in the trans-
parency time interval) by the transitions of the input data (R, S or D), the master-slave flip-flop flips
only at the positive edge of clock (always @(posedge clock)) or at the negative edge of clock (always
@(negedge clock)) edge of clock, according with the values applied on the inputs R and S. The how is
now completely separated from the when. The first latch problem is finally solved.

VeriSim 2.6 The following Verilog code can be used to understand how a master-slave flip-flop works.

/ * ************************************************************************
F i l e name : m a s t e r s l a v e . v
C i r c u i t name : Master −S l a v e s e t − r e s e t f l i p − f l o p
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f a master −s l a v e f l i p − f l o p
************************************************************************ * /

module m a s t e r s l a v e ( output out , n o t o u t , input s e t , r e s e t , c l o c k ) ;

wire m a s t e r o u t , n o t m a s t e r o u t ;

c l o c k e d n a n d l a t c h m a s t e r l a t c h ( . o u t ( m a s t e r o u t ) ,
. n o t o u t ( n o t m a s t e r o u t ) ,
. s e t ( s e t ) ,
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ,

s l a v e l a t c h ( . o u t ( o u t ) ,
. n o t o u t ( n o t o u t ) ,
. s e t ( m a s t e r o u t ) ,
. r e s e t ( n o t m a s t e r o u t ) ,
. c l o c k ( ˜ c l o c k ) ) ;

endmodule

⋄
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There are some other embodiments of the master-slave principle, but all suppose to connect latches
serially.

Three very important time intervals (see Figure 2.13) must catch our attention in designing digital
systems with edge triggered flip-flops:

set-up time – (tSU ) – the time interval before the active edge of clock in which the inputs R and S must
stay unmodified allowing the correct switch of the flip-flop

edge transition time – (t+ or t−) – the positive or negative time transition of the clock signal

hold time – (tH) – the time interval after the active edge of CK in which the inputs R and S must be
stable (even if this time is zero or negative).

-
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-� �-�-

tsu t+ th

clock
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90%
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time
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Figure 2.13: Magnifying the transition of the active edge of the clock signal. The input data must be
stable around the active transition of the clock tsu (set-up time) before the beginning of the clock transition, during
the transition of the clock, t+ (active transition time), and th (hold time) after the end of the active edge.

In the switching “moment”, that is approximated by the time interval tSU + t++ tH or tSU + t−+ tH
“centered” on the active edge (+ or −), the data inputs must evidently be stable, because otherwise the
flip-flop “does not know” what is the state in which it must switch.

Now, the problem of decoupling the how by the when is better solved. Although, this solution is not
perfect, because the ”moment” of the switch is approximated by the short time interval tSU + t+/−+ tH .
But the ”moment” does not exist for a digital designer. Always it must be a time interval, enough over-
estimated for an accurate work of the designed machine.

2.2.5 Metastability

Any asynchronous signal applied the the input of a clocked circuit is a source of meta-stability
[webRef 1] [Alfke ’05] [webRef 4]. There is a dangerous timing window “centered” on the clock
transition edge specified by the sum of set-up time, edge transition time and hold time. If the data input
of a D-FF switches in this window, then there are three possible behaviors for its output:

• the output does not change according to the change on the flip-flop’s input (the flip-flop does not
catch the input variation)
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• the output change according to the change on the flip-flop’s input (the flip-flop catches the input
variation)

• the output goes meta-stable for tMS, then goes unpredictable in 1 or 0 (see the wave forms
[webRef 2]).

Figure 2.14: Metastability [webRef 4].

2.2.6 D Flip-Flop

Another tentative to remove the second latch problem leads to a solution that again avoids only the
problem. Now the RS master-slave flip-flop is restricted to R = S′ (see Figure 2.15a). The new input is
named also D, but now D means delay. Indeed, the flip-flop resulting by this restriction, besides avoiding
the unforeseeable transition of the flip-flop, gains a very useful function: the output of the D flip-flop
follows the D input with a delay of one clock cycle. Figure 2.15c illustrates the delay effect of this kind
of flip-flop.

Warrning! D latch is a transparent circuit during the active level of the clock, unlike the D flip-flop
which is no time transparent and switches only on the active edge of the clock.



62 CHAPTER 2. DIGITAL CIRCUITS

c.

? ? ? ? ?

CK

D

Q

6
-

t

6
-

t

6
-

t

?D

a.

b.

RSF-F
S R

Q Q’

? ?Q Q’

DF-F
D

Q Q’

?

? ?

?

Figure 2.15: The delay (D) flip-flop. Restricting the two inputs of an RS flip-flop to D = S = R′, results an FF
with predictable transitions. a. The structure. b. The logic symbol. c. The wave forms proving the delay effect of
the D flip-flop.

VeriSim 2.7 The structural Verilog description of a D flip-flop, provided only for simulation purpose,
follows.

/ * ************************************************************************
F i l e name : d f f . v
C i r c u i t name : Delay F l ip −Flop (DFF)
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f a DFF
************************************************************************ * /

module d f f ( output out , n o t o u t ,
input d , c l o c k ) ;

wire n o t d ;
not #2 d a t a i n v e r t e r ( no t d , d ) ;
m a s t e r s l a v e r s f f ( out , n o t o u t , d , no t d , c l o c k ) ;

endmodule

The functional description currently used for a D flip-flop active on the negative edge of clock is:

/ * ************************************************************************
F i l e name : d f f . v
C i r c u i t name : Delay F l ip −Flop (DFF)
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a DFF
************************************************************************ * /
module d f f ( output reg o u t ,

input d , c l o c k ) ;
always @( negedge c l o c k ) o u t <= d ;

endmodule

⋄

The main difference between latches and flip-flops is that over the D flip-flop we can close a new
loop in a very controllable fashion, unlike the D latch which allows a new loop, but the resulting behavior
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is not so controllable because of its transparency. Closing loops over D flip-flops result in synchronous
systems. Closing loops over D latches result in asynchronous systems. Both are useful, but in the first
kind of systems the complexity is easiest manageable.

2.2.7 Register

One of the most representative and useful storage circuit is the register. The main application of register
is to support the synchronous sequential processes in a digital system. There are two typical use of the
register:

• provides a delayed connection between sub-systems

• stores the internal state of a system (see section 1.2); the register is used to close of the internal
loop in a digital system.

The register circuit store synchronously the value applied on its inputs. Register is used mainly to
support the design of control structures in a digital system.

The skeleton of any contemporary digital design is based on registers, used to store, synchronously
with the system clock, the overall state of the system. The Verilog (or VHDL) description of a structured
digital design starts by defining the registers, and provides, usually, an Register Transfer Logic (RTL)
description. An RTL code describe a set of registers interconnected through more or less complex com-
binational blocks. For a register is a non-transparent structure any loop configurations are supported.
Therefore, the design is freed by the care of the uncontrollable loops.
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Figure 2.16: The n-bit register. a. The structure: a bunch of DF-F connected in parallel. b. The logic symbol.

Definition 2.2 An n-bit register, Rn, is made by parallel connecting a Rn−1 with a D (master-slave)
flip-flop (see Figure 2.16). R1 is a D flip-flop.

⋄

VeriSim 2.8 An 8-bit enabled and resetable register with 2 unit time delay is described by the following
Verilog module:
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/ * ************************************************************************
F i l e name : r e g i s t e r . v
C i r c u i t name : R e g i s t e r o f n b i t s
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a n− b i t r e g i s t e r
************************************************************************ * /

module r e g i s t e r # ( parameter n = 8)
( output reg [ n − 1 : 0 ] o u t ,

input [ n − 1 : 0 ] i n ,
input r e s e t , enab l e , c l o c k ) ;

always @( posedge c l o c k ) #2 i f ( r e s e t ) o u t <= 0 ;
e l s e i f ( e n a b l e ) o u t <= i n ;

e l s e o u t <= o u t ;
endmodule

The time behavior specified by #2 is added only for simulation purpose. The synthesizable version
must avoid this non-sinthesizable representation.

⋄

Something very important is introduced by the last two Verilog modules: the distinction between
blocking and non-blocking assignment:

• the blocking assignment, = : the whole statement is done before control passes to the next

• the non-blocking assignment, <= : evaluate all the right-hand sides in the project for the current
time unit and assign the left-hand sides only at the end of the time unit.

Let us use the following simulation to explain the very important difference between the two kinds of
assignment.

VeriSim 2.9 The following simulation used 6 clocked registers. All of them switch on the positive edge.
But, the code is written for three of them using the blocking assignment, while for the other three
using the non-blocking assignment. The resulting behavior show us the difference between the two
clock triggered assignment. The blocking assignment seems to be useless, because propagates the input
through all the three registers in one clock cycle. The non-blocking assignment shifts the input along the
three serially connected registers clock by clock. This second behavior can be used in real application
to obtain clock controlled delays.
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/ * ************************************************************************
F i l e name : b l o c k i n g N o n B l o c k i n g . v
C i r c u i t name : I l l u s t r a t i n g module f o r b l o c k i n g / n o n b l o c k i n g a s s i g n m e n t
D e s c r i p t i o n : shows t h e e f f e c t o f b l o c k i n g and n o o n b l o c k i n g a s s i g n m e n t s
************************************************************************ * /

module b l oc k i ng No n Bl oc k i n g ( output reg [ 1 : 0 ] b l o c k i n g O u t ,
output reg [ 1 : 0 ] nonBlock ingOut ,
input [ 1 : 0 ] i n ,
input c l o c k ) ;

reg [ 1 : 0 ] reg1 , reg2 , reg3 , r eg4 ;
always @( posedge c l o c k ) begin r eg1 = i n ;

r e g2 = reg1 ;
b l o c k i n g O u t = reg2 ; end

always @( posedge c l o c k ) begin r eg3 <= i n ;
r eg4 <= reg3 ;
nonBlock ingOut <= reg4 ; end

endmodule

/ * ************************************************************************
F i l e name : b l o c k i n g N o n B l o c k i n g S i m u l a t i o n . v
C i r c u i t name : T e s t b e n c h f o r b l o c k i n g N o n B l o c k i n g S i m u l a t i o n module
D e s c r i p t i o n : g e n e r a t e s t i m u l u s f o r b l o c k i n g N o n B l o c k i n g module
************************************************************************ * /

module b l o c k i n g N o n B l o c k i n g S i m u l a t i o n ;
reg c l o c k ;
reg [ 1 : 0 ] i n ;
wire [ 1 : 0 ] b lock ingOut , nonBlock ingOut ;
i n i t i a l begin c l o c k = 0 ; f o r e v e r #1 c l o c k = ˜ c l o c k ; end
i n i t i a l begin i n = 2 ’ b01 ;

#2 i n = 2 ’ b10 ;
#2 i n = 2 ’ b11 ;
#2 i n = 2 ’ b00 ;
#7 $ s t o p ; end

b l oc k i ng N on Bl oc k i n g d u t ( b lock ingOut , nonBlockingOut , in , c l o c k ) ;
i n i t i a l $monitor
( ” c l o c k=%b i n=%b reg1=%b reg2=%b bOut=%b reg3=%b reg4=%b nbOut=%b ” ,
c lock , in , d u t . reg1 , d u t . reg2 , b lock ingOu t , d u t . reg3 , d u t . reg4 ,
nonBlock ingOut ) ;

endmodule
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/ * ************************************************************************
The m o n i t o r o u t p u t
************************************************************************ * /

c l o c k =0 i n =01 reg1 =xx reg2 =xx bOut=xx reg3 =xx reg4 =xx nbOut=xx
c l o c k =1 i n =01 reg1 =01 reg2 =01 bOut =01 reg3 =01 reg4 =xx nbOut=xx
c l o c k =0 i n =10 reg1 =01 reg2 =01 bOut =01 reg3 =01 reg4 =xx nbOut=xx
c l o c k =1 i n =10 reg1 =10 reg2 =10 bOut =10 reg3 =10 reg4 =01 nbOut=xx
c l o c k =0 i n =11 reg1 =10 reg2 =10 bOut =10 reg3 =10 reg4 =01 nbOut=xx
c l o c k =1 i n =11 reg1 =11 reg2 =11 bOut =11 reg3 =11 reg4 =10 nbOut =01
c l o c k =0 i n =00 reg1 =11 reg2 =11 bOut =11 reg3 =11 reg4 =10 nbOut =01
c l o c k =1 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =11 nbOut =10
c l o c k =0 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =11 nbOut =10
c l o c k =1 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =00 nbOut =11
c l o c k =0 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =00 nbOut =11
c l o c k =1 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =00 nbOut =00
c l o c k =0 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =00 nbOut =00

It is obvious that the registers reg1 and reg2 are useless because they are somehow “transparent”.
⋄

The non-blocking version of assigning the content of a register will provide a clock controlled delay.
Anytime in a design there are more than one registers the non-blocking assignment must be used.

VerilogSummary 5 :

= : blocking assignment the whole statement is done before control passes to the next

<= : non-blocking assignment evaluate all the right-hand sides in the project for the current time unit
and assign the left-hand sides only at the end of the time unit.

The main feature of the register assures its non-transparency, excepting an ”undecided transparency”
during a short time interval, tSU + tedge + tH , centered on the active edge of the clock signal. Thus, a
new loop can be closed carelessly over a structure containing a register. Due to its non-transparency
the register will be properly loaded with any value, even with a value depending on its own current
content. This last feature is the main condition to close the loop of a synchronous automata - the structure
presented in the next chapter.

The register is used at least for the following purposes: to store, to buffer, to synchronize, to delay,
to loop, . . ..

Storing The enable input allows us to determine when (i.e., in what clock cycle) the input is loaded
into a register. If enable = 0, the registers stores the data loaded in the last clock cycle when the
condition enable = 1 was fulfilled. This means we can keep the content once stored into the register
as much time as it is needed.
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register my reg(.out (my out),

.in (my in ),

.enable (1’b1 ),

.reset (rst ),

.clock (clk ));
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Figure 2.17: Register at work. At each active edge of clock (in this example it is the positive edge) the register’s
output takes the value applied on its inputs if reset = 0 and enable = 1.

Buffering The registers can be used to buffer (to isolate, to separate) two distinct blocks so as some
behaviors are not transmitted through the register. For example, in Figure 2.17 the transitions from c to
d and from d to e at the input of the register are not transmitted to the output.

Synchronizing For various reasons the digital signals are generated “unaligned in time” to the inputs
of a system, but they are needed to be received very well controlled in time. We say usually, the signals
are applied asynchronously but they must be received synchronously. For example, in Figure 2.17 the
input of the register changes somehow chaotically related to the active edge of the clock, but the output
of the register switches with a constant delay after the positive edge of clock. We say the inputs are
synchronized to the output of the register. Their behavior is “time tempered”.

Delaying The input value applied in the clock cycle n to the input of a register is generated to the
output of the register in the clock cycle n+1. In other words, the input of a register is delayed one clock
cycle to its output. See in Figure 2.17 how the occurrence of a value in one clock cycle to the register’s
input is followed in the next clock cycle by the occurrence of the same value to the register’s output.

Looping Structuring a digital system means to make different kind of connections. One of the most
special, as we see in what follows, is a connection from some outputs to certain inputs in a digital
subsystem. This kind of connections are called loops. The register is an important structural element in
closing controllable loops inside a complex system.

2.2.8 Shift register

One of the simplest application of register is to perform shift operations. The numerical interpretation of
a shift is the multiplication by the power of 2, for left shift, or division with the of 2, for right shift. A
register used as shifter must be featured with four operation modes:
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00: nop – no operation mode; it is mandatory for any set of function associated with a circuit (the circuit
must be “able to stay doing nothing”)

01: load – the register’s state is initialized to the value applied on its inputs

10: leftShift – shift left with one binary position; if the register’s state is interpreted as a binary number,
then the operation performed is a multiplication by 2

11: rightShift – shift right with one binary position; if the register’s state is interpreted as a binary
number, then the operation performed is a division by 2

A synthesisable Verilog description of the circuit is:

/ * ************************************************************************
F i l e name : s h i f t R e g i s t e r . v
C i r c u i t name : S h i f t R e g i s t e r
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a l e f t / r i g h t s h i f t r e g i s t e r
************************************************************************ * /
module s h i f t R e g i s t e r ( output reg [ 1 5 : 0 ] o u t ,

input [ 1 5 : 0 ] i n ,
input [ 1 : 0 ] mode ,
input c l o c k ) ;

always @( posedge c l o c k )
case ( mode )

2 ’ b00 : o u t <= o u t ;
2 ’ b01 : o u t <= i n ;
2 ’ b10 : o u t <= o u t << 1 ;
2 ’ b11 : o u t <= o u t >> 1 ; / / f o r p o s i t i v e i n t e g e r s
/ / 2 ’ b11 : o u t <= { o u t [ 1 5 ] , o u t [ 1 5 : 1 ] } ; / / f o r s i g n e d i n t e g e r s

endcase
endmodule

The case construct describes a 4-input multiplexor, MUX4. Two versions are provided in the previ-
ous code, one for positive integer numbers and another for signed integers. The second is “commented”.

2.2.9 Counter

Let be the following circuit: its output is identical with its internal state, its state can take the value
received on its data input, its internal state can be modified incrementing the number which represents
its state or can stay unchanged. Let us call this circuit: presetable counter. Its Verilog behavioral
description, for an 8-bit state, is:
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/ * ************************************************************************
F i l e name : c o u n t e r . v
C i r c u i t name : P r e s e t a b l e Counter
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a p r e s e t a b l e c o u n t e r
************************************************************************ * /

module c o u n t e r ( output reg [ 7 : 0 ] o u t ,
input [ 7 : 0 ] i n ,
input i n i t , / / i n i t i a l i z e w i t h i n
input c o u n t , / / i n c r e m e n t s t a t e
input c l o c k ) ;

always @( posedge c l o c k ) / / a lways a t t h e p o s i t i v e edge o f c l o c k
i f ( i n i t ) o u t <= i n ;

e l s e i f ( c o u n t ) o u t <= o u t + 1 ;
endmodule

The init input has priority to the input count, if it is active (init = 1) the value of count is
ignored and the value of state is initialized to in. If init in not activated, then if count = 1 then the
value of counter is incremented modulo 256.

The actual structure of the circuit results (easy) from the previous Verilog description. Indeed, the
structure

if (init) ...

else ...

suggests a selector (a multiplexor), while

out <= out + 1;

imposes an increment circuit. Thus, the schematic represented in Figure 2.18 pops up in our mind.

The circuit INC8 in Figure 2.18 represents an increment circuit which outputs the input in incre-
mented when the input inc en (increment enable) is activated.

2.3 Putting all together

Now, going back to our first target enounced in section ??, let us put together what we learned about
digital circuits in this section. The RTL code for the Digital Pixel Corrector circuit can be written now
“more directly” as follows:



70 CHAPTER 2. DIGITAL CIRCUITS
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Figure 2.18: The internal structure of a counter. If init = 1, then the value of the register is initialized to
in, else if count = 1 each active edge of clock loads in register its incremented value.

/ * ************************************************************************
F i l e name : p i x e l C o r r e c t o r . v
C i r c u i t name : P i x e l C o r r e c t o r Sys tem
D e s c r i p t i o n : t h e c i r c u i t i n t e r p o l a t e s t h e m i s s i n g v a l u e s i n a v i d e o

s t r ea m
************************************************************************ * /
module p i x e l C o r r e c t o r # ( ‘ i n c l u d e ” 0 p a r a m P i x e l C o r . v ” )

( output [m− 1 : 0 ] o u t ,
input [ n − 1 : 0 ] i n ,

input c l o c k ) ;

reg [ q − 1 : 0 ] s t a t e ; / / t h e s t a t e r e g i s t e r

always @( posedge c l o c k ) s t a t e <= { s t a t e [ 7 : 0 ] , i n } ; / / s t a t e t r a n s i t i o n

a s s i g n o u t = ( s t a t e [ 7 : 4 ] == 0) ?
({1 ’ b0 , s t a t e [ 3 : 0 ] } + s t a t e [ 1 1 : 8 ] ) >> 1 : s t a t e [ 7 : 4 ] ;

endmodule

The schematic we have in mind while writing the previous code is represented in Figure 2.19, where:

• the state register, state, has three sections of 4 bits each; in each cycle the positive edge of clock
shifts left the content of state 4 binary positions, and in the freed locations loads the input value in

• the middle section is continuously tested, by the module Zero, if its value is zero
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• the first and the last sections of the state are continuously added and the result is divided by 2
(shifted one position right) and applied to the input 1 of the selector circuit

• the selector circuit, ifThenElse (the multiplexer), selects to the output, according to the test
performed by the module Zero, the middle section of state or the shifted output of the adder.
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divide circuit

ifThenElsesel 1
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? ?
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out
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?
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carry

Figure 2.19: The structure of the pixelCorrector circuit.

Each received value is loaded first as state[3:0], then it moves in the next section. Thus, an input
value cames in the position to be sent out only with a delay of two clock cycles. This two-cycle latency is
imposed by the interpolation algorithm which must wait for the next input value to be loaded as a stable
value.

2.4 Concluding about this short introduction in digital circuits

A digital circuit is build of combinational circuits and storage registers

Combinational logic can do both, control and arithmetic

Logic circuits, with appropriate loops, can memorize

HDL, as Verilog or VHDL, must be used to describe digital circuits

Growing, speeding and featuring digital circuits digital systems are obtained

2.5 Problems

Combinational circuits

Problem 2.1 Design the n-input Equal circuit which provides 1 on its output only when its two inputs,
of n-bits each, are equal.
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Problem 2.2 Design a 4-input selector. The selection code is sel[1:0] and the inputs are of 1 bit each:
in3, in2, in1, in0.

Problem 2.3 Provide the proof for the following Boolean equivalence:

a ·b+ c · (a+b) = a ·b+ c · (a⊕b)

Problem 2.4 Provide the Verilog structural description of the adder module for n = 8. Synthesise the
design and simulate it.

Problem 2.5 Draw the logic schematic for the XOR circuit.

Problem 2.6 Provide the proof that: a⊕b = (a′⊕b)′ = (a⊕b′)′.

Problem 2.7 Define the truth table for the one-bit subtractor and extract the two expressions describing
the associated circuit.

Problem 2.8 Design the structural description of a n-bit subtractor. Synthesise and simulate it.

Problem 2.9 Provide the structural Verilog description of the adder/subtractor circuit behaviorally de-
fined as follows:

/ * ************************************************************************
F i l e name : addSub . v
C i r c u i t name : Adder−S u b t r a c t e r
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f an adder s u b s t r a c t e r
************************************************************************ * /
module addSub #( parameter n = 4) / / d e f i n e s a n− b i t adder

( output [ n − 1 : 0 ] sum , / / t h e n− b i t r e s u l t
output c a r r y , / / c a r r y o u t p u t ( i t i s borrow f o r s u b t r a c t )
input sub , / / sub=1 ? sub : add
input c , / / c a r r y i n p u t ( borrow i n p u t f o r s u b t r a c t )
input [ n − 1 : 0 ] a , b ) ; / / t h e two n− b i t numbers

a s s i g n { c a r r y , sum} = sub ? a − b − c : a + b + c ;
endmodule

Simulate and synthesise the resulting design.

Flip-flops

Problem 2.10 Why, in Figure 2.6, we did not use a XOR gate to close a latching loop?

Problem 2.11 Design the structural description, in Verilog, for a NOR elementary latch. Simulate the
circuit in order to determine the shortest signal which is able to provide a stable transition of the circuit.

Try to use NOR gates with different propagation time.

Problem 2.12 When it is necessary to use a NOR elementary latch for a de-bouncing circuit?
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Problem 2.13 Try to use the structural simulation of an elementary latch to see how behaves the circuit
when the two inputs of the circuit are activated simultaneously (the second latch problem). If you are
sure the simulation is correct, but it goes spooky, then go to office ours to discuss with your teacher.

Problem 2.14 What if the NAND gates from the circuit represented in Figure 2.9 are substituted with
NOR gates?

Problem 2.15 Design and simulate structurally an elementary clocked latch, using only 4 gates, which
is transparent on the level 0 of the clock signal.

Problem 2.16 Provide the test module for the module data latch (see subsection 2.2.3) in order to
verify the design.

Problem 2.17 Draw, at the gate level, the internal structure of a master-slave RS flip-flop using

• NAND gates and an inverter

• NOR gates and an inverter

• NAND and NOR gates, for two versions:

– triggered by the positive edge of clock

– triggered by the negative edge of clock.

Applications

Problem 2.18 Draw the block schematic for the circuit performing pixel correction according to the
following interpolation rule:

s′(t) = (2× s(t −2)+6× s(t −1)+6× s(t +1)+6× s(t +2))/16

Using the schematic, write the Verilog code describing the circuit. Simulate and synthesise it.

Problem 2.19 Design a circuit which receives a stream of 8-bit numbers and sends, with a minimal
latency, instead of each received number the mean value of the last three received numbers.

Problem 2.20 Design a circuit which receives a stream of 8-bit signed numbers and sends, with one
clock cycle latency, instead of each received number its absolute value.

Problem 2.21 Draw the block schematic for the module shiftRegister, described in subsection 2.2.8,
using a register an two input multiplexers, MUX2. Provide a Verilog structural description for the
resulting circuit. Simulate and synthesise it.

Problem 2.22 Define a two-input DF-F using a DF-F and an EMUX. Use the new structure to describe
structurally a presetable shift right register. Add the possibility to perform logic or arithmetic shift.

Problem 2.23 Write the structural description for the increment circuit INC8 introduces in subsection
2.2.9.
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Problem 2.24 Write the structural description for the module counter defined in subsection 2.2.9. Sim-
ulate and synthesize it.

Problem 2.25 Define and design a reversible counter able to count-up and count-down. Simulate and
synthesize it.

Problem 2.26 Design the accumulator circuit able to add sequentially a clock synchronized sequence
of up to 256 16-bit signed integers. The connections of the circuit are

/ * ************************************************************************
F i l e name : a c c u m u l a t o r . v
C i r c u i t name : S e q u e n t i a l Accumula tor
D e s c r i p t i o n : i s a dummy module d e f i n i n g t h e c o n n e c t i o n s o n l y
************************************************************************ * /
module a c c u m u l a t o r

( output reg [ ? : 0 ] acc , / / r e g i s t e r used t o a c c u m u l a t e
input [ 1 5 : 0 ] number , / / i n p u t r e c e i v i n g t h e s t r ea m o f numbers
input [ 1 : 0 ] com , / / 00=nop , 01= i n i t , 10= a c c u m u l a t e
input c l o c k ) ;

. . .
endmodule

The init command initializes the state, by clearing the register, in order to start a new accumulation
process.

Problem 2.27 Design the two n-bit inputs combinational circuit which computes the absolute difference
of two numbers.

Problem 2.28 Define and design a circuit which receives a one-bit wave form and shows on its three
one-bit outputs, by one clock cycle long positive impulses, the following events:

• any positive transition of the input signal

• any negative transition of the input signal

• any transition of the input signal.

Problem 2.29 Design the combinational circuit which compute the absolute value of a signed number.



Chapter 3

GROWING & SPEEDING &
FEATURING

In the previous chapter
starting from simple algorithms small combinational and sequential circuits were designed, using
the Verilog HDL as tool to describe and simulate. From the first chapter is ggod to remember:

• Verilog can be used for both behavioral (what does the circuit?) and structural (how looks
the circuit?) descriptions

• the outputs of a combinational circuits follow continuously with delay any input change,
while a sequential one takes into account a shorter or a longer history of the input behavior

• the external time dependencies must be minimized if not avoided; each circuit must have its
own and independent time behavior in order to allow global optimizations

In this chapter
the three main mechanisms used to generate a digital system are introduced:

• composition: the mechanism allowing a digital circuit to increase its size and its computa-
tional power

• pipeline: is the way of interconnecting circuits to avoid the increase of the delays generated
by too many serial compositions

• loop: is a kind of connection responsible for adding new type of behaviors, mainly by in-
creasing the autonomy of the system

In the next chapter
a taxonomy based on the number of loops closed inside a digital system is proposed. Each digital
order, starting from 0, is characterized by the degree of the autonomy its behavior develops. While
digital circuits are combinational or sequential, digital systems will be:

• 0 order, no-loop circuits (the combinational circuits)
• first order, 1-loop circuits (simple flip-flops, ...)
• second order, 2-loop circuits (finite automata, ...)
• third order, 3-loop circuits (processors, ...)
• ...

75
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... there is no scientific theory about what can and
can’t be built.

David Deutsch1

Engineering only uses theories, but it is art.

In this section we talk about simple things which have multiple, sometime spectacular, followings.
What can be more obvious than that a system is composed by many subsystems and some special behav-
iors are reached only using appropriate connections.

Starting from the ways of composing big and complex digital systems by appropriately interconnect-
ing simple and small digital circuits, this book introduces a more detailed classification of digital systems.
The new taxonomy classifies digital systems in orders, based on the maximum number of included loops
closed inside each digital system. We start from the basic idea that a new loop closed in a digital system
adds new functional features in it. By composition, the system grows only by forwarded connections, but
by appropriately closed backward connections it gains new functional capabilities. Therefore, we will
be able to define many functional levels, starting with time independent combinational functions and
continuing with memory functions, sequencing functions, control functions and interpreting functions.
Basically, each new loop manifests itself by increasing the degree of autonomy of the system.

Therefore, the main goal of this section is to emphasize the fundamental developing mechanisms
in digital systems which consist in compositions & loops by which digital systems gain in size and in
functional complexity.

In order to better understand the correlation between functional aspects and structural aspect in
digital systems we need a suggestive image about how these systems grow in size and how they gain new
functional capabilities. The oldest distinction between combinational circuits and sequential circuits is
now obsolete because of the diversity of circuits and the diversity of their applications. In this section we
present a new idea about a mechanism which emphasizes a hierarchy in the world of digital system. This
world will be hierarchically organized in orders counted from 0 to n. At each new level a functional gain
is obtained as a consequence of the increased autonomy of the system.

Two are the mechanisms involved in the process of building digital systems. The first allows of sys-
tem to grow in size. It is the composition, which help us to put together, using only forward connections,
many subsystems in order to have a bigger system. The second mechanism is a special connection that
provides new functional features. It is the loop connection, simply the loop. Where a new loop is closed,
a new kind of behavior is expected. To behave means, mainly, to have autonomy. If a system use a part
of own outputs to drive some of its inputs, then “he drives himself” and an outsider receives this fact as
an autonomous process.

Let us present in a systematic way, in the following subsections, the two mechanisms. Both are very
simple, but our goal is to emphasize, in the same time, some specific side effects as consequences of
composing & looping, like the pipeline connection – used to accelerate the speed of the too deep circuits
– or the speculative mechanisms – used to allow loops to be closed in pipelined structures.

Building a real circuit means mainly to interconnect simple and small components in order to grow
an enough fast system appropriately featured. But, growing is a concept with no precise meaning. Many
people do not make distinction between “growing the size” and “growing the complexity” of a system,

1David Deutch’s work on quantum computation laid the foundation for that field, grounding new approaches in both physics
and the theory of computation. He is the author of The Fabric of Reality.
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for example. We will start making the necessary distinctions between “size” and “complexity” in the
process of growing a digital system.

3.1 Size vs. Complexity

The huge size of the actual circuits implemented on a single chip imposes a more precise distinction
between simple circuits and complex circuits. When we can integrated on a single chip more than 109

components, the size of the circuits becomes less important than their complexity. Unfortunately we
don’t make a clear distinction between size and complexity. We say usually: “the complexity of a com-
putation is given by the size of memory and by the CPU time”. But, if we have to design a circuit of
100 million transistors it is very important to distinguish between a circuit having an uniform structure
and a randomly structured ones. In the first case the circuit can be easy specified, easy described in an
HDL, easy tested and so on. Otherwise, if the structure is completely random, without any repetitive
substructure inside, it can be described using only a description having a similar dimension with the
circuit size. When the circuit is small, it is not a problem, but for million of components the problem
has no solution. Therefore, if the circuit is very big, it is not enough to deal only with its size, the most
important becomes also the degree of uniformity of the circuit. This degree of uniformity, the degree of
order inside the circuit can be specified by its complexity.

As a consequence we must distinguish more carefully the concept of size by the concept of complex-
ity. Follow the definitions of these terms with the meanings we will use in this book.

Definition 3.1 The size of a digital circuit, Sdigital circuit , is given by the dimension of the physical re-
sources used to implement it. ⋄

In order to provide a numerical expression for size we need a more detailed definition which takes
into account technological aspects. In the ’40s we counted electronic bulbs, in the ’50s we counted
transistors, in the ’60s we counted SSI2 and MSI3 packages. In the ’70s we started to use two measures:
sometimes the number of transistors or the number of 2-input gates on the Silicon die and other times
the Silicon die area. Thus, we propose two numerical measures for the size.

Definition 3.2 The gate size of a digital circuit, GSdigital circuit , is given by the total number of CMOS
pairs of transistors used for building the gates (see the appendix Basic circuits) used to implement it4. ⋄

This definition of size offers an almost accurate image about the Silicon area used to implement the
circuit, but the effects of lay-out, of fan-out and of speed are not catched by this definition.

Definition 3.3 The area size of a digital circuit, ASdigital circuit , is given by the dimension of the area on
Silicon used to implement it. ⋄

The area size is useful to compute the price of the implementation because when a circuit is produced
we pay for the number of wafers. If the circuit has a big area, the number of the circuits per wafer is
small and the yield is low5.

2Small Size Integrated circuits
3Medium Size Integrated circuits
4Sometimes gate size is expressed in the total number of 2-input gates necessary to implement the circuit. We prefer to

count CMOS pairs of transistors (almost identical with the number of inputs) instead of equivalent 2-input gates because is
simplest. Anyway, both ways are partially inaccurate because, for various reasons, the transistors used in implementing a gate
have different areas.

5The same number of errors make useless a bigger area of the wafer containing large circuits.
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Definition 3.4 The algorithmic complexity of a digital circuit, simply the complexity, Cdigital circuit , has
the magnitude order given by the minimal number of symbols needed to express its definition. ⋄

Definition 2.2 is inspired by Gregory Chaitin’s definition for the algorithmic complexity of a string
of symbols [Chaitin ’77]. The algorithmic complexity of a string is related to the dimension of the
smallest program that generates it. The program is interpreted by a machine (more in Chapter 12). Our
Cdigital circuit can be associated to the shortest unambiguous circuit description in a certain HDL (in the
most of cases it is about a behavioral description).

Definition 3.5 A simple circuit is a circuit having the complexity much smaller than its size:

Csimple circuit << Ssimple circuit .

Usually the complexity of a simple circuit is constant: Csimple circuit ∈ O(1). ⋄

Definition 3.6 A complex circuit is a circuit having the complexity in the same magnitude order with
its size:

Ccomplex circuit ∼ Scomplex circuit .⋄

Example 3.1 The following Verilog program describes a complex circuit, because the size of its defini-
tion (the program) is

Sde f . o f random circ = k1 + k2 ×Srandom circ ∈ O(Srandom circ).

/ * ************************************************************************
F i l e name : r a n d o m c i r c . v
C i r c u i t name : Example o f a complex c i r c u i t
D e s c r i p t i o n : a s m a l l complex ne twork o f g a t e s
************************************************************************ * /

module r a n d o m c i r c ( output f , g ,
input a , b , c , d , e ) ;

wire w1 , w2 ;

and and1 ( w1 , a , b ) ,
and2 ( w2 , c , d ) ;

or or1 ( f , w1 , c ) ,
o r2 ( g , e , w2 ) ;

endmodule

⋄

Example 3.2 The following Verilog program describes a simple circuit, because the program that define
completely the circuit is the same for any value of n.
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/ * ************************************************************************
F i l e name : o r p r e f i x e s . v
C i r c u i t name : Example o f s i m p l e c i r c u i t
D e s c r i p t i o n : a b i g s i m p l e c i r c u i t
************************************************************************ * /

module o r p r e f i x e s # ( parameter n = 256)
( output reg [ 0 : n −1] out ,

input [ 0 : n −1] i n ) ;

i n t e g e r k ;
always @( i n ) begin o u t [ 0 ] = i n [ 0 ] ;

f o r ( k =1; k<n ; k=k +1) o u t [ k ] = i n [ k ] | o u t [ k − 1 ] ;
end

endmodule

The prefixes of OR circuit consists in n OR2 gates connected in a very regular form. The definition
is the same for any value of n6. ⋄

Composing circuits generate not only biggest structures, but also deepest ones. The depth of the
circuit is related with the associated propagation time.

Definition 3.7 The depth of a combinational circuit is equal with the total number of serially connected
constant input gates (usually 2-input gates) on the longest path from inputs to the outputs of the circuit.
⋄

The previous definition offers also only an approximate image about the propagation time through a
combinational circuit. Inspecting the parameters of the gates listed in Appendix Standard cell libraries
you will see more complex dependence contributing to the delay introduced by a certain circuit. Also,
the contribution of the interconnecting wires must be considered when the actual propagation time in a
combinational circuit is evaluated.

Some digital functions can be described starting from the elementary circuit which performs them,
adding a recursive rule for building a circuit that executes the same function for any size of the input.
For the rest of the circuits, which don’t have such type of definitions, we must use a definition that
describes in detail the entire circuit. This description will be non-recursive and thus complex, because its
dimension is proportional with the size of circuit (each part of the circuit must be explicitly specified in
this kind of definition). We shall call random circuit a complex circuit, because there is no (simple) rule
for describing it.

The first type of circuits, having recursive definitions, are simple circuits. Indeed, the elementary
circuit has a constant (usually small) size and the recursive rule can be expressed using a constant number
of signs (symbolic expressions or drawings). Therefore, the dimension of the definition remains constant,
independent by n, for this kind of circuits. In this book, this distinction, between simple and complex,
will be exemplified and will be used to promote useful distinctions between different solutions.

At the current technological level the size becomes less important than the complexity, because we
can produce circuits having an increasing number of components, but we can describe only circuits

6A short discussion occurs when the dimension of the input is specified. To be extremely rigorous, the parameter n is
expressed using a string o symbols in O(log n). But usually this aspect can be ignored.
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having the range of complexity limited by our mental capacity to deal efficiently with complex represen-
tations. The first step to have a circuit is to express what it must do in a behavioral description written
in a certain HDL. If this ”definition” is too large, having the magnitude order of a huge multi-billion-
transistor circuit, we don’t have the possibility to write the program expressing our desire.

In the domain of circuit design we passed long ago beyond the stage of minimizing the number of
gates in a few gates circuit. Now, the most important thing, in the multi-billion-transistor circuit era,
is the ability to describe, by recursive definitions, simple (because we can’t write huge programs), big
(because we can produce more circuits on the same area) sized circuits. We must take into consideration
that the Moore’s Law applies to size not to complexity.

3.2 Time restrictions in digital systems

The most general form of a digital circuit (see Figure 3.1) includes both combinational and sequential
behaviors. It includes two combinational circuits – (comb circ 1 and comb circ 2) – and register.
There are four critical propagation paths in this digital circuit:

1. form input to register through comb circ 1, which determines minimum input arrival time
before clock: tin reg

2. from register to register through comb circ 1, which determines minimum period of clock:
treg reg = Tmin, or maximum frequency of clock: fmax = 1/T

3. from input to output through comb circ 2, which determines maximum combinational path
delay: tin out

4. from register to output through comb circ 2, which determines maximum output required time
after clock: treg out .

If the active transition of clock takes place at t0 and the input signal changes after t0 − tin reg, then the
effect of the input change will be not registered correctly at t0 in register. The input must be stable in
the time interval from t0 − tin reg to t0 in order to have a predictable behavior of the circuit.

The loop is properly closed only if Tmin > treg+tcc2 +tsu and th < treg+tcc2 , where: treg is the propaga-
tion time through register from active edge of clock to output, and tcc2 is the propagation time through
comb circ 1 on the path 2.

If the system works with the same clock, then tin out < Tmin, preferably tin out << Tmin. Similar
conditions are imposed for tin reg and treg out , because we suppose there are additional combinational
delays in the circuits connected to the inputs and to the outputs of this circuit, or at least a propagation
time through a register or set-up time to the input of a register.

Example 3.3 Let us compute the propagation times for the four critical propagation paths of the counter
circuit represented in Figure 2.18. If we consider #1 = 100ps results:

• tin reg = tp(mux2 8) = 0.1ns
(the set-up time for the register is considered too small to be considered)

• fmax = 1/T = 1/(tp(reg)+ tp(inc)+ tp(mux2 8)) = 1/(0.2+0.1+0.1)ns = 2.5 GHz

• tin out is not defined
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comb circ 1
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comb circ 2
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tin reg treg reg

tin out

treg out

clock

Figure 3.1: The four critical propagation paths in digital circuits. Input-to-register time (tin reg) is
recommended to be as small as possible in order to reduce the time dependency from the previous sub-system.
Register-to-register time (Tmin) must be minimal to allow a high frequency for the clock signal. Input-to-output
time (tin out) is good to be undefined to avoid hard to manage sub-systems interdependencies. Register-to-output
time (treg out ) must be minimal to reduce the time dependency for the next sub-system

• treg out = tp(reg) = 0.2ns ⋄

Example 3.4 Let be the circuit from Figure 3.2, where:

• register is characterized by: tp(register) = 150ps, tsu(register) = 35ps, th = 27ps

• adder with tp(adder) = 550ps

• selector with tp(selector) = 85ps

• comparator with tp(comparator) = 300ps

The circuit is used to accumulate a stream of numbers applied on the input data, and to compare it
against a threshold applied on the input thr. The accumulation process is initialized by the signal
reset, and is controlled by the signal acc.

The propagation time for the four critical propagation path of this circuit are:
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Figure 3.2: Accumulate & compare circuit. In the left-down corner of each rectangle is written the
propagation time of each module. If acc = 1 the circuit accumulates, else the content of register
does not change.

• tin reg = tp(adder)+ tp(selector)+ tsu(register) = (550+85+35)ps = 670ps

• fmax = 1/T = 1/(tp(register)+ tp(adder)+ tp(selector)+ tsu(register)) =
1/(150+550+85+35)ps = 1.21GHz

• tin out = tp(comparator) = 300ps

• treg out = tp(register)+ tp(comparator) = 450ps

⋄

While at the level of small and simple circuits no additional restriction are imposed, for complex
digital systems there are mandatory rules to be followed for an accurate design. Two main restrictions
occur:

1. the combinational path through the entire system must be completely avoided,

2. the combinational, usually called asynchronous, input and output path must be avoided as much
as possible if not completely omitted.

Combinational paths belonging to distinct modules are thus avoided. The main advantage is given by
the fact that design restrictions imposed in one module do not affect time restriction imposed in another
module. There are two ways to consider these restrictions, a weak one and a strong one. The first refers
to the pipeline connections, while the second to the fully buffered connections.
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3.2.1 Pipelined connections

For the pipelined connection between two complex modules the timing restrictions are the following:

1. from input to output through: it is not defined

2. from register to output through: treg out = treg – it does not depend by the internal combinational
structure of the module, i.e., the outputs are synchronous, because they are generated directly
from registers.

comb1

pr1

sr1

sys2

-

�

-
comb2

pr2

sr2

-

�

-- - -

sys1

clock

in1

in2

out1

out2 in2 out2

in1 out1

nextState nextState

Figure 3.3: Pipelined connections.

Only two combinational paths are accepted: (1) from register to register, and (2) form input to
register. In Figure 3.3 a generic configuration is presented. It is about two systems, sys1 and sys2,
pipeline connected using the output pipeline registers (pr1 between sys1 and sys2, and pr2 between
sys2 and an external system). For the internal state are used the state registers sr1 and sr2. The timing
restrictions for the two combinational circuits comb1 and comb2 are not correlated. The maximum clock
speed for each system does not depend by the design restrictions imposed for the other system.

The pipeline connection works well only if the two systems are interconnected with short wires,
i.e., the two systems are implemented on adjacent areas on the silicon die. No additional time must be
considered on connections because they a very short.

The system from Figure 3.3 is descried by the following code.
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/ * ************************************************************************
F i l e name : s y s . v
C i r c u i t name : P i p e l i n e c o n n e c t e d sub −s y s t e m s
D e s c r i p t i o n : i s a dummy code i l l u s t r a t i n g t h e p r i n c i p l e o f p i p e l i n e

c o n n e c t i o n i n a s y s t e m
************************************************************************ * /

module p i p e l i n e C o n n e c t i o n ( output [ 1 5 : 0 ] o u t ,
input [ 1 5 : 0 ] i n ,
input c l o c k ) ;

wire [ 1 5 : 0 ] p i p e C o n n e c t ;
s y s sys1 ( . p r ( p i p e C o n n e c t ) ,

. i n ( i n ) ,

. c l o c k ( c l o c k ) ) ,
sy s2 ( . p r ( o u t ) ,

. i n ( p i p e C o n n e c t ) ,

. c l o c k ( c l o c k ) ) ;
endmodule

module s y s ( output reg [ 1 5 : 0 ] p r ,
input [ 1 5 : 0 ] i n ,
input c l o c k ) ;

reg [ 7 : 0 ] s r ;
wire [ 7 : 0 ] n e x t S t a t e ;
wire [ 1 5 : 0 ] o u t ;
comb myComb ( . ou t1 ( n e x t S t a t e ) ,

. ou t2 ( o u t ) ,

. i n 1 ( s r ) ,

. i n 2 ( i n ) ) ;
always @ ( posedge c l o c k ) begin pr <= o u t ;

s r <= n e x t S t a t e ;
end

endmodule

module comb ( output [ 7 : 0 ] out1 ,
output [ 1 5 : 0 ] out2 ,
input [ 7 : 0 ] i n 1 ,
input [ 1 5 : 0 ] i n 2 ) ;

/ / . . .
endmodule

3.2.2 Fully buffered connections

The most safe approach, the synchronous one, supposes fully registered inputs and outputs (see Figure
3.4 where the functionality is implemented using combinatorial circuits and registers and the interface
with the rest of the system is implemented using only input register and output register).

The modular synchronous design of a big and complex system is the best approach for a robust
design, and the maximum modularity is achieved removing all possible time dependency between the
modules. Then, take care about the module partitioning in a complex system design!
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Two fully buffered modules can be placed on the silicon die with less restrictions, because even if
the resulting wires are long the signals have time to propagate because no gates are connected between
the output register of the sender system and the input register of the receiver system..

input register

comb circuits & registers

output register

?

?

?

?

clock input

output

Figure 3.4: The general structure of a module in a complex digital system. If any big module in a
complex design is buffered with input and output registers, then we are in the ideal situation when: tin reg and
treg out are minimized and tin out is not defined.

For the synchronously interfaced module represented in Figure 3.4 the timing restrictions are the
following:

1. form input to register: tin reg = tsu – it does not depend by the internal structure of the module

2. from register to register: Tmin, and fmax = 1/T – it is a system parameter

3. from input to output through: it is not defined

4. from register to output through: treg out = treg – it does not depend by the internal structure of the
module.

Results a very well encapsuled module easy to be integrate in a complex system. The price of this
approach consists in an increasing number of circuits (the interface registers) and some restrictions in
timing imposed by the additional pipeline stages introduced by the interface registers. These costs can
be reduced by a good system level module partitioning.
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3.3 Growing the size by composition

The mechanism of composition is well known to everyone who worked at least a little in mathematics.
We use forms like:

f (x) = g(h1(x), . . . ,hm(x))

to express the fact that computing the function f requests to compute first all the functions hi(x) and after
that the m-variable function g. We say: the function g is composed with the functions hi in order to have
computed the function f . In the domain digital systems a similar formalism is used to “compose” big
circuits from many smaller ones. We will define the composition mechanism in digital domain using a
Verilog-like formalism.

Definition 3.8 The composition (see Figure 3.5) is a two level construct, which performs the function f
using on the second level the m-ary function g and on the first level the functions h 1, h 2, ... h m,
described by the following, incompletely defined, but synthesisable, Verilog modules.

h 1 h 2 h m

g

? ? ?

?

? ? ?

in

out = f(in)

out 1 out 2 out m

Figure 3.5: The circuit performing composition. The function g is composed with the functions h 1, ...

h m using a two level circuit. The first level contains m circuits computing in parallel the functions h i, and on the
second level there is the circuit computing the reduction-like function g.
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/ * ************************************************************************
F i l e name : f . v
C i r c u i t name : F u n c t i o n f
D e s c r i p t i o n : i s a dummy V e r i l o g module d e s c r i b i n g t h e c o m p o s i t i o n r u l e
************************************************************************ * /

module f # ( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

wire [ s i z e 1 − 1 : 0 ] o u t 1 ;
wire [ s i z e 2 − 1 : 0 ] o u t 2 ;
/ / . . .
wire [ s ize m − 1 : 0 ] o u t
g s e c o n d l e v e l ( . o u t ( o u t ) ,

. i n 1 ( o u t 1 ) ,

. i n 2 ( o u t 2 ) ,
/ / . . .
. in m ( out m ) ) ;

h 1 f i r s t l e v e l 1 ( . o u t ( o u t 1 ) , . i n ( i n ) ) ;
h 2 f i r s t l e v e l 2 ( . o u t ( o u t 2 ) , . i n ( i n ) ) ;
/ / . . .
h m f i r s t l e v e l m ( . o u t ( out m ) , . i n ( i n ) ) ;

endmodule

module g #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e 1 − 1 : 0 ] i n 1 ,
input [ s i z e 2 − 1 : 0 ] i n 2 ,
/ / . . .
input [ s ize m − 1 : 0 ] in m ) ;

/ / . . .
endmodule

module h 1 #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e 1 − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

/ / . . .
endmodule

module h 2 #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e 2 − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

/ / . . .
endmodule

/ / . . .

module h m #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s ize m − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

/ / . . .
endmodule

The content of the file parameters.v is:
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/ * ************************************************************************
F i l e name : p a r a m e t e r s . v
C i r c u i t name : Parame ter s f i l e
D e s c r i p t i o n : d e f i n e t h e p a r a m e t e r s used i n a l l modules o f t h e d e s i g n
************************************************************************ * /

parameter s i z e O u t = 32 ,
s i z e I n = 8 ,
s i z e 1 = 12 ,
s i z e 2 = 16 ,
/ / . . .
s i z e m = 8

⋄

The general form of the composition, previously defined, can be called the serial-parallel composi-
tion, because the modules h 1, ... h m compute in parallel m functions, and all are serial connected
with the module g (we can call it reduction type function, because it reduces the vector generated by
the previous level to a value). There are two limit cases. One is the serial composition and another is
the parallel composition. Both are structurally trivial, but represent essential limit aspects regarding the
resources of parallelism in a digital system.

Definition 3.9 The serial composition (see Figure 3.6a) is the composition with m = 1. Results the
Verilog description:

/ * ************************************************************************
F i l e name : f . v
C i r c u i t name : Dummy d e s c r i p t i o n f o r s e r i a l c o m p o s i t i o n
D e s c r i p t i o n : shows t h e s e r i a l c o m p o s i t i o n o f two s y s t e m s
************************************************************************ * /

module f # ( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

wire [ s i z e 1 − 1 : 0 ] o u t 1 ;
g s e c o n d l e v e l ( . o u t ( o u t ) ,

. i n 1 ( o u t 1 ) ) ;
h 1 f i r s t l e v e l 1 ( . o u t ( o u t 1 ) , . i n ( i n ) ) ;

endmodule

module g #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e 1 − 1 : 0 ] i n 1 ) ;

/ / . . .
endmodule

module h 1 #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e 1 − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

/ / . . .
endmodule



3.3. GROWING THE SIZE BY COMPOSITION 89

⋄

? ? ?

?

h 1

?

in

g

b.

h 1 h 2 h m

? ? ?

in

out 2 out m

?
out 1

out
a.

Figure 3.6: The two limit forms of composition. a. The serial composition, for m = 1, imposing an inherent
sequential computation. b. The parallel composition, with no reduction-like function, performing data parallel
computation.

Definition 3.10 The parallel composition (see Figure 3.6b) is the composition in the particular case
when g is the identity function. Results the following Verilog description:

/ * ************************************************************************
F i l e name : f . v
C i r c u i t name : Dummy d e s c r i p t i o n f o r p a r a l l e l c o m p o s i t i o n
D e s c r i p t i o n : shows how are p a r a l l e l composed many s y s t e m s
************************************************************************ * /

module f # ( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

wire [ s i z e 1 − 1 : 0 ] o u t 1 ;
wire [ s i z e 2 − 1 : 0 ] o u t 2 ;
/ / . . .
wire [ s ize m − 1 : 0 ] out m ;
a s s i g n o u t = { out m ,

/ / . . .
ou t 2 ,
o u t 1 } ; / / g i s i d e n t i t y f u n c t i o n

h 1 f i r s t l e v e l 1 ( . o u t ( o u t 1 ) , . i n ( i n ) ) ;
/ / . . .
h m f i r s t l e v e l m ( . o u t ( out m ) , . i n ( i n ) ) ;

endmodule
module h 1 #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e 1 − 1 : 0 ] o u t ,

input [ s i z e I n − 1 : 0 ] i n ) ;
/ / . . .

endmodule
/ / . . .
module h m #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s ize m − 1 : 0 ] o u t ,

input [ s i z e I n − 1 : 0 ] i n ) ;
endmodule
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The content of the file parameters.v is now:

/ * ************************************************************************
F i l e name : p a r a m e t e r s . v
C i r c u i t name : Parameter f i l e
D e s c r i p t i o n : d e f i n e s t h e parame te r f o r t h e p a r a l l e l composed s y s t e m
************************************************************************ * /

parameter s i z e I n = 8 ,
s i z e 1 = 12 ,
/ / . . .
s i z e m = 8 ,
s i z e O u t = s i z e 1 +

/ / . . .
s i z e m

⋄

Example 3.5 Using the mechanism described in Definition 1.3 the circuit computing the scalar product
between two 4-component vectors will be defined, now in true Verilog. The test module for n = 8 is also
defined allowing to test the design.

/ * ************************************************************************
F i l e name : i n n e r p r o d . v
C i r c u i t name : I n n e r Produc t
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f t h e i n n e r p r o d u c t c i r c u i t
************************************************************************ * /

module i n n e r p r o d #( ‘ i n c l u d e ” p a r a m e t e r . v ” )
( output [ ( ( 2 * n + 2 ) − 1 ) : 0 ] out ,

input [ n − 1 : 0 ] a3 , a2 , a1 , a0 , b3 , b2 , b1 , b0 ) ;
wire [2* n − 1 : 0 ] p3 , p2 , p1 , p0 ;
mul t m3( p3 , a3 , b3 ) , m2( p2 , a2 , b2 ) , m1( p1 , a1 , b1 ) , m0( p0 , a0 , b0 ) ;
add4 add ( out , p3 , p2 , p1 , p0 ) ;

endmodule

/ * ************************************************************************
F i l e name : mu l t . v
C i r c u i t name : M u l t i p l i e r
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f t h e m u l t i p l y c i r c u i t
************************************************************************ * /

module mul t # ( ‘ i n c l u d e ” p a r a m e t e r . v ” )
( output [ ( 2 * n − 1 ) : 0 ] out , input [ n − 1 : 0 ] m1 , m0 ) ;

a s s i g n o u t = m1 * m0 ;
endmodule
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/ * ************************************************************************
F i l e name : add4 . v
C i r c u i t name : Four−number Adder
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a four −number adder
************************************************************************ * /

module add4 #( ‘ i n c l u d e ” p a r a m e t e r . v ” )
( output [ ( ( 2 * n + 2 ) − 1 ) : 0 ] out , input [ ( 2 * n − 1 ) : 0 ] t3 , t2 , t1 , t 0 ) ;

a s s i g n o u t = t 3 + t 2 + t 1 + t 0 ;
endmodule

m3

? ?

a3 b3

m2

? ?

a2 b2

m1

? ?

a1 b1

m0

? ?

a0 b0

add

????

?

p3 p2 p1 p0

out = a3*b3 + a2*b2 + a1*b1 + a0*b0

Figure 3.7: An example of composition. The circuit performs the scalar vector product for 4-element vectors.
The first level compute in parallel 4 multiplications generating the vectorial product, and the second level reduces
the resulting vector of products to a scalar.

The content of the file parameter.v is:

/ * ************************************************************************
F i l e name : parame te r . v
C i r c u i t name : Parameter module
D e s c r i p t i o n : d e f i n e s t h e parame te r used i n d e s i g n i n g t h e i n n e r p r o d u c t

c i r c u i t
************************************************************************ * /

parameter n = 8

The simulation is done by running the module:
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/ * ************************************************************************
F i l e name : t e s t i n n e r p r o d . v
C i r c u i t name : S i m u l a t o r f o r Inner −Produc t
D e s c r i p t i o n : g e n e r a t e t h e s i m u l a t i o n e n v i r o n m e n t o f t h e i n n e r −p r o d u c t

c i r c u i t
************************************************************************ * /

module t e s t i n n e r p r o d ;
reg [ 7 : 0 ] a3 , a2 , a1 , a0 , b3 , b2 , b1 , b0 ;
wire [ 1 7 : 0 ] o u t ;

i n i t i a l begin {a3 , a2 , a1 , a0} = {8 ’ d1 , 8 ’ d2 , 8 ’ d3 , 8 ’ d4 } ;
{b3 , b2 , b1 , b0} = {8 ’ d5 , 8 ’ d6 , 8 ’ d7 , 8 ’ d8 } ;

end
i n n e r p r o d d u t ( out , a3 , a2 , a1 , a0 , b3 , b2 , b1 , b0 ) ;
i n i t i a l $monitor ( ” o u t=%0d ” , o u t ) ;

endmodule

The test outputs: out = 70

The description is structural at the top level and behavioral for the internal sub-modules (corre-
sponding to our level of understanding digital systems). The resulting circuit is represented in Figure
3.7. ⋄

VerilogSummary 6 :

• The directive ‘include is used to add in any place inside a module the content of the file xxx.v
writing: ‘include "xxx.v"

• We just learned how to concatenate many variables to obtain a bigger one (in the definition of
the parallel composition the output of the system results as a concatenation of the outputs of the
sub-systems it contains)

• Is good to know there is also a risky way to specify the connections when a module is instantiated
into another: to put the name of connections in the appropriate positions in the connection list (in
the last example)

By composition we add new modules in the system, but we don’t change the class to which the system
belongs. The system gains the behaviors of the added modules but nothing more. By composition we
sum behaviors only, but we can not introduce in this way a new kind of behavior in the world of digital
machines. What we can’t do using new modules we can do with an appropriate connection: the loop.

3.4 Speeding by pipelining

One of the main limitation in applying the composition is due to the increased propagation time associ-
ated to the serially connected circuits. Indeed, the time for computing the function f is:

t f = max(th 1, . . . , th m)+ tg
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In the last example, the inner product is computed in:

tinner product = tmultiplication + t4 number add

If the 4-number add is also composed using 2-number add (as in usual systems) results:

tinner product = tmultiplication +2× taddition

For the general case of n-components vectors the inner product will be computed, using a similar ap-
proach, in:

tinner product(n) = tmultiplication + taddition × log2 n ∈ O(log n)

For this simple example, of computing the inner product of two vectors, results for n≥ n0 a computational
time bigger than can be accepted in some applications. Having enough multipliers, the multiplication
will not limit the speed of computation, but even if we have infinite 2-input adders the computing time
will remain dependent by n.

The typical case is given by the serial composition (see Figure 3.6a), where the function out =
f (in) = g(h 1(in)) must be computed using 2 serial connected circuits, h 1(in) and g(int out), in time:

t f = th 1 + tg.

A solution must be find to deal with the too deep circuits resulting from composing to many or to
“lazy” circuits.

First of all we must state that fast circuits are needed only when a lot of data is waiting to be com-
puted. If the function f (in) is rarely computed, then we do not care to much about the speed of the
associated circuit. But, if there is an application supposing a huge stream of data to be successively
submitted to the input of the circuit f , then it is very important to design a fast version of it.

Golden rule: only what is frequently computed must be accelerated!

3.4.1 Register transfer level

The good practice in a digital system is: any stream of data is received synchronously and it is sent out
synchronously. Any digital system can be reduced to a synchronous machine receiving a stream of input
data and generating another stream of output results. As we already stated, a “robust” digital design is a
fully buffered one because it provides a system interfaced to the external “world” with registers.

The general structure of a system performing the function f (x) is shown in Figure 3.8a, where it is
presented in the fully buffered version. This kind of approach is called register transfer level (RTL)
because data is transferred, modified by the function f , from a register, input reg, to another register,
output reg. If f = g(h 1(x)), then the clock frequency is limited to:

fclock max =
1

treg + t f + tsu
=

1
treg + th 1 + tg + tsu

The serial connection of the module computing h 1 and g is a fundamental limit. If f computation
is not critical for the system including the module f , then this solution is very good, else you must read
and assimilate the next, very important, paragraph.
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3.4.2 Pipeline structures

To increase the processing speed of a long stream of data the clock frequency must be increased. If the
stream has the length n, then the processing time is:

Tstream(n) =
1

fclock
× (n+2) = (treg + th 1 + tg + tsu)× (n+2)

input reg

f(x) = g(h 1(x))

output reg

?

?

?

?

clock in

sync in

out

sync out

input reg

?

?

clock in

sync in

h 1(x)

pipeline reg

?

int out

sync int out

a. b.

?

g(z)

output reg

?

?

out

sync out

Figure 3.8: Pipelined computation. a. A typical Register Transfer Logic (RTL) configuration. Usually it is
supposed a “deep” combinational circuit computes f (x). b. The pipeline structure splits the combinational circuit
associated with function f (x) in two less “deep” circuits and inserts the pipeline register in between.

The only way to increase the clock rate is to divide the circuit designed for f in two serially connected
circuits, one for h 1 and another for g, and to introduce between them a new register. Results the system
represented in Figure 3.8b. Its clock frequency is:

fclock max =
1

max(th 1, tg)+ treg + tsu

and the processing time for the same string is:

Tstream(n) = (max(th 1, tg)+ treg + tsu)× (n+3)

The two systems represented in Figure 3.8 are equivalent. The only difference between them is that
the second performs the processing in n+3 clock cycles instead of n+2 clock cycles for the first version.
For big n, the current case, this difference is a negligible quantity. We call latency the number of the
additional clock cycle. In this first example latency is: λ = 1.

This procedure can be applied many times, resulting a processing “pipe” with a latency equal with
the number of the inserted register added to the initial system. The resulting system is called a pipelined
system. The additional registers are called pipeline registers.
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The maximum efficiency of a pipeline system is obtained in the ideal case when, for an (m+1)-stage
pipeline, realized inserting m pipeline registers:

max(tstage 0, tstage 1, . . . , tstage m) =
tstage 0 + tstage 1 + . . .+ tstage m

m+1

max(tstage 0, tstage 1, . . . , tstage m)>> treg + tsu

λ = m << n

In this ideal case the speed is increased almost m times. Obviously, no one of these condition can be fully
accomplished, but there are a lot of real applications in which adding an appropriate number of pipeline
stages allows to reach the desired speed performance.

Example 3.6 The pseudo-Verilog code for the 2-stage pipeline system represented in Figure 3.8 is:

/ * ************************************************************************
F i l e name : p i p e l i n e d f . v
C i r c u i t name : Pseudo −V e r i l o g modules f o r d e f i n i n g t h e p i p e l i n e mechanism
D e s c r i p t i o n : dummy modules p i p e l i n e c o n n e c t e d
************************************************************************ * /

module p i p e l i n e d f ( output reg [ s i z e i n − 1 : 0 ] s y n c o u t ,
input [ s i z e o u t − 1 : 0 ] i n ) ;

reg [ s i z e i n − 1 : 0 ] s y n c i n ;
wire [ s i z e i n t − 1 : 0 ] i n t o u t ,
reg [ s i z e i n t − 1 : 0 ] s y n c i n t o u t ;
wire [ s i z e o u t − 1 : 0 ] o u t ;
h 1 t h i s h 1 ( . o u t ( i n t o u t ) ,

. i n ( s y n c i n ) ) ;
g t h i s g ( . o u t ( o u t ) ,

. i n ( s y n c i n t o u t ) ) ;
always @( posedge c l o c k ) begin s y n c i n <= #2 i n ;

s y n c i n t o u t <= #2 i n t o u t ;
s y n c o u t <= #2 o u t ;

end
endmodule

module h 1 ( output [ s i z e i n t − 1 : 0 ] out ,
input [ s i z e i n − 1 : 0 ] i n ) ;

a s s i g n #15 o u t = . . . ;
endmodule

module g ( output [ s i z e o u t − 1 : 0 ] out ,
input [ s i z e i n t − 1 : 0 ] i n ) ;

a s s i g n #18 o u t = . . . ;
endmodule

Suppose, the unit time is 1ns. The maximum clock frequency for the pipeline version is:

fclock =
1

max(15,18)+2
GHz = 50MHz
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This value must be compared with the frequency of the non-pipelined version, which is:

fclock =
1

15+18+2
GHz = 28.57MHz

Adding only a simple register and accepting a minimal latency (λ = 1), the speed of the system increased
with 75%. ⋄

3.4.3 Data parallelism vs. time parallelism

The two limit cases of composition correspond to the two extreme cases of parallelism in digital systems:

• the serial composition will allow the pipeline mechanism which is a sort of parallelism which
could be called diachronic parallelism or time parallelism

• the parallel composition is an obvious form of parallelism, which could be called synchronic par-
allelism or data parallelism.

The data parallelism is more obvious: m functions, h 1, . . . ,h m, are performed in parallel by m
circuits (see Figure 3.6b). But, time parallelism is not so obvious. It acts only in a pipelined serial
composition, where the first stage is involved in computing the most recently received data, the second
stage is involved in computing the previously received data, and so on. In an (m+ 1)-stage pipeline
structure m+ 1 elements of the input stream are in different stages of computation, and at each clock
cycle one result is provided. We can claim that in such a pipeline structure m+1 computations are done
in parallel with the price of a latency λ = m.

The previous example of a 2-stage pipeline accelerated the computation because of the time paral-
lelism which allows to work simultaneously on two input data, on one applying the function h 1 and in
another applying the function g. Both being simpler than the global function f , the increase of clock
frequency is possible allowing the system to deliver results at a higher rate.

Computer scientists stress on both type of parallelism, each having its own fundamental limitations.
More, each form of parallelism bounds the possibility of the other, so as the parallel processes are strictly
limited in now a day computation. But, for us it is very important to emphasize in this stage of the
approach that:

circuits are essentially parallel structures with both the possibilities and the limits given
by the mechanism of composition.

The parallel resources of circuits will be limited also, as we will see, in the process of closing loops
one after another with the hope to deal better with complexity.

Example 3.7 Let us revisit the problem of computing the scalar product. We redesign the circuit in a
pipelined version using only binary functions.
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Figure 3.9: The pipelined inner product circuit for 4-component vectors. Each multiplier and each adder
send its result in a pipeline register. For this application results a three level pipeline structure with different degree
of parallelism. The two kind of parallelism are exemplified. Data parallel has the maximum degree on the first
level. The degree of time parallelism is three: in each clock cycle three pairs of 4-element vectors are processed.
One pair in the first stage of multiplications, another pair is the second stage of performing two additions, and one
in the final stage of making the last addition.

/ * ************************************************************************
F i l e name : p i p e l i n e d i n n e r p r o d . v
C i r c u i t name : P i p e l i n e d I n n e r Produc t c i r c u i t
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f p i p e l i n e d i n n e r p r o d u c t

c i r c u i t f o r 2 v e c t o r s o f 4 8− b i t numbers
************************************************************************ * /

module p i p e l i n e d i n n e r p r o d
( output [ 1 7 : 0 ] out ,

input [ 7 : 0 ] a3 , a2 , a1 , a0 , b3 , b2 , b1 , b0 ,
input c l o c k ) ;

wire [ 1 5 : 0 ] p3 , p2 , p1 , p0 ;
wire [ 1 7 : 0 ] s1 , s0 ;
mul t mul t3 ( p3 , a3 , b3 , c l o c k ) ,

mul t2 ( p2 , a2 , b2 , c l o c k ) ,
mul t1 ( p1 , a1 , b1 , c l o c k ) ,
mul t0 ( p0 , a0 , b0 , c l o c k ) ;

add add11 ( s1 , {1 ’ b0 , p3 } , {1 ’ b0 , p2 } , c l o c k ) ,
add10 ( s0 , {1 ’ b0 , p1 } , {1 ’ b0 , p0 } , c l o c k ) ,
add0 ( out , s1 [ 1 6 : 0 ] , s0 [ 1 6 : 0 ] , c l o c k ) ;

endmodule
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/ * ************************************************************************
F i l e name : mu l t . v
C i r c u i t name : P i p e l i n e d 8− b i t m u l t i p l i e r
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f t h e p i p e l i n e d m u l t i p l i e r
************************************************************************ * /

module mul t ( output reg [ 1 5 : 0 ] out ,
input [ 7 : 0 ] m1 , m0 ,
input c l o c k ) ;

always @( posedge c l o c k ) o u t <= m1 * m0 ;
endmodule

/ * ************************************************************************
F i l e name : add . v
C i r c u i t name : P i p e l i n e d adder
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f t h e p i p e l i n e d adder
************************************************************************ * /

module add ( output reg [ 1 7 : 0 ] out ,
input [ 1 6 : 0 ] t1 , t0 ,
input c l o c k ) ;

always @( posedge c l o c k ) o u t <= t 1 + t 0 ;
endmodule

⋄

The structure of the pipelined inner product (dot product) circuit is represented in Figure 3.9. It
shows us the two dimensions of the parallel computation. The horizontal dimension is associated with
data parallelism, the vertical dimension is associated with time parallelism. The first stage allows 4
parallel computation, the second allows 2 parallel computation, and the last consists only in a single
addition. The mean value of the degree of data parallelism is 2.33. The system has latency 2, allowing
7 computations in parallel. The peak performance of this system is the whole degree of parallelism
which is 7. The peak performance is the performance obtained if the input stream of data is uninterrupted.
If it is interrupted because of the lack of data, or for another reason, the latency will act reducing the peak
performance, because some or all pipeline stages will be inactive.

3.5 Featuring by closing new loops

A loop connection is a very simple thing, but the effects introduced in the system in which it is closed
are sometimes surprising. All the time are beyond the evolutionary facts. The reason for these facts is
the spectacular effect of the autonomy whenever it manifests. The output of the system starts to behave
less conditioned by the evolution of inputs. The external behavior of the system starts to depend more
and more by something like an “internal state” continuing with a dependency by an “internal behavior”.
In the system starts to manifest internal processes seem to be only partially under the external control.
Because the loop allows of system to act on itself, the autonomy is the first and the main effect of the
mechanism of closing loops. But, the autonomy is only a first and most obvious effect. There are others,
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more subtle and hidden consequences of this apparent simple and silent mechanism. This book is devoted
to emphasize deep but not so obvious correlations between loops and complexity. Let’s start with the
definition and a simple example.

??

?

the loop

Y

loop

in

out

in0

out0

in1

out1

Figure 3.10: The loop closed into a digital system. The initial system has two inputs, in1 and in0, and two
outputs, out1 and out0. Connecting out0 to in0 results a new system with in and out only.

Definition 3.11 The loop consists in connecting some outputs of a system to some of its inputs (see
Figure 3.10), as in the pseudo-Verilog description that follows:

/ * ************************************************************************
F i l e name : l o o p s y s t e m . v
C i r c u i t name : Loop Sys tem
D e s c r i p t i o n : pseudo −V e r i l o g d e s c r i p t i o n o f t h e loop c l o s i n g i n a s y s t e m
************************************************************************ * /

module l o o p s y s t e m #( ‘ i n c l u d e ” p a r a m e t e r s . v ” )
( output [ ou t d im − 1 : 0 ] o u t ,

input [ in d im − 1 : 0 ] i n ) ;
wire [ loop dim − 1 : 0 ] t h e l o o p ;
n o l o o p s y s t e m our modu le ( . ou t1 ( o u t ) ,

. ou t0 ( t h e l o o p ) ,

. i n 1 ( i n ) ,

. i n 0 ( t h e l o o p ) ) ;
endmodule

module n o l o o p s y s t e m #( ‘ i n c l u d e ” p a r a m e t e r s . v ” )
( output [ ou t d im − 1 : 0 ] ou t1 ,

output [ loop dim − 1 : 0 ] ou t0 ,
input [ in d im − 1 : 0 ] i n 1 ,
input [ loop dim − 1 : 0 ] i n 0 ) ;

/ * The d e s c r i p t i o n o f ’ n o l o o p s y s t e m ’ module * /
endmodule

⋄

The most interesting thing in the previous definition is a “hidden variable” occurred in module

loop system(). The wire called the loop carries the non-apparent values of a variable evolving
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inside the system. This is the variable which evolves only internally, generating the autonomous be-
havior of the system. The explicit aspect of this behavior is hidden, justifying the generic name of the
“internal state evolution”.

The previous definition don’t introduce any restriction about how the loop must be closed. In order to
obtain desired effects the loop will be closed keeping into account restrictions depending by each actual
situation. There also are many technological restrictions that impose specific modalities to close loops at
different level in a complex digital system. Most of them will be discussed later in the next chapters.

Example 3.8 Let be a synchronous adder. It has the outputs synchronized with an positive edge clocked
register (see Figure 3.11a). If the output is connected back to one of its input, then results the structure
of an accumulator (see Figure 3.11b). The Verilog description follows.

/ * ************************************************************************
F i l e name : acc . v
C i r c u i t name : Accumula tor
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f t h e a c c u m u l a t o r c i r c u i t
************************************************************************ * /

module acc ( output [ 1 9 : 0 ] o u t ,
input [ 1 5 : 0 ] i n ,
input c lock , r e s e t ) ;

s y n c a d d o u r a d d ( out , in , out , c lock , r e s e t ) ;
endmodule

/ * ************************************************************************
F i l e name : s y n c a d . v
C i r c u i t name : Synchronous Adder
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a s y n c h r o n o u s adder
************************************************************************ * /

module s y n c a d d ( output reg [ 1 9 : 0 ] o u t ,
input [ 1 5 : 0 ] i n 1 ,
input [ 1 9 : 0 ] i n 2 ,
input c l o c k , r e s e t ) ;

always @( posedge c l o c k ) i f ( r e s e t ) o u t = 0 ;
e l s e o u t = i n 1 + i n 2 ;

endmodule

In order to make a simulation the next test acc module is written:
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Figure 3.11: Example of loop closed over an adder with synchronized output. If the output becomes
one of the inputs, results a circuit that accumulates at each clock cycle. a. The initial circuit: the synchronized
adder. b. The resulting circuit: the accumulator.

/ * ************************************************************************
F i l e name : t e s t a c c . v
C i r c u i t name : T e s t b e n c h f o r t h e a c c u m u l a t o r c i r c u i t
D e s c r i p t i o n : g e n e r a t e s t h e s t i m u l u s f o r a c c u m u l a t o r
************************************************************************ * /

module t e s t a c c ;
reg c lock , r e s e t ;
reg [ 1 5 : 0 ] i n ;
wire [ 1 9 : 0 ] o u t ;
i n i t i a l begin c l o c k = 0 ;

f o r e v e r #1 c l o c k = ˜ c l o c k ;
end / / t h e c l o c k

i n i t i a l begin r e s e t = 1 ;
#2 r e s e t = 0 ;
#10 $ s t o p ;

end
always @( posedge c l o c k ) i f ( r e s e t ) i n = 0 ;

e l s e i n = i n + 1 ;
acc d u t ( out , in , c lock , r e s e t ) ;
i n i t i a l $monitor ( ” t ime=%0d c l o c k=%b i n=%d o u t=%d ” ,

$t ime , c lock , in , d u t . o u t ) ;
endmodule

By simulation results the following behavior:
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/ * ************************************************************************
The o u t p u t o f t h e m o n i t o r
************************************************************************ * /
# t ime =0 c l o c k =0 i n = x o u t = x
# t ime =1 c l o c k =1 i n = 0 o u t = 0
# t ime =2 c l o c k =0 i n = 0 o u t = 0
# t ime =3 c l o c k =1 i n = 1 o u t = 1
# t ime =4 c l o c k =0 i n = 1 o u t = 1
# t ime =5 c l o c k =1 i n = 2 o u t = 3
# t ime =6 c l o c k =0 i n = 2 o u t = 3
# t ime =7 c l o c k =1 i n = 3 o u t = 6
# t ime =8 c l o c k =0 i n = 3 o u t = 6
# t ime =9 c l o c k =1 i n = 4 o u t = 10
# t ime =10 c l o c k =0 i n = 4 o u t = 10
# t ime =11 c l o c k =1 i n = 5 o u t = 15

⋄

The adder becomes an accumulator. What is spectacular in this fact? The step made by closing
the loop is important because an “obedient” circuit, whose outputs followed strictly the evolution of its
inputs, becomes a circuit with the output depending only partially by the evolution of its inputs. Indeed,
the the output of the circuit depends by the current input but, in the same time, depends by the content of
the register, i.e., by the “history accumulated” in it. The output of adder can be predicted starting from
the current inputs, but the output of the accumulator supplementary depends by the state of circuit (the
content of the register). It was only a simple example, but I hope, useful to pay more attention to loop.

3.6 Problems

Problem 3.1 Let be the design below. The modules instantiated in topModule are defined only by their
time behavior only.

1. Synthesise the circuit.

2. Compute the maximum click frequency.
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module topModule ( input [ 3 : 0 ] i n 1 ,
input [ 3 : 0 ] i n 2 ,
input [ 3 : 0 ] i n 3 ,
output reg [ 5 : 0 ] o u t , / / p r o p a g a t i o n t i m e : 50 ps

/ / ho ld t i m e 15: ps
/ / s e t −up t i m e : 20 ps

input c l o c k ) ;
reg [ 4 : 0 ] reg1 , r eg2 ; / / p r o p a g a t i o n t i m e : 50 ps

/ / ho ld t i m e 15: ps
/ / s e t −up t i m e : 20 ps

wire [ 4 : 0 ] w1 , w2 ;
wire [ 5 : 0 ] w3 ;

always @( posedge c l o c k ) begin r eg1 <= w1 ;
r eg2 <= w2 ;
o u t <= w3 ;

end

c l c 1 c1 ( . inA ( i n 1 ) ,
. inB ( i n 2 ) ,
. o u t ( w1 ) ) ;

c l c 2 c2 ( . inA ( w1 [ 3 : 0 ] ) ,
. inB ( i n 3 ) ,
. o u t ( w2 ) ) ;

c l c 3 c3 ( . inA ( reg1 ) ,
. inB ( r eg2 ) ,
. o u t ( w3 ) ) ;

endmodule

module c l c 1 ( input [ 3 : 0 ] inA ,
input [ 3 : 0 ] inB ,
output [ 4 : 0 ] o u t ) ;

/ / t i m p u l de propagare i n A 2 o u t = 200 ps
/ / t i m p u l de propagare i n B 2 o u t = 150 ps
/ / . . .

endmodule

module c l c 2 ( input [ 3 : 0 ] inA ,
input [ 3 : 0 ] inB ,
output [ 4 : 0 ] o u t ) ;

/ / t i m p u l de propagare i n A 2 o u t = 100 ps
/ / t i m p u l de propagare i n B 2 o u t = 250 ps
/ / . . .

endmodule

module c l c 3 ( input [ 4 : 0 ] inA ,
input [ 4 : 0 ] inB ,
output [ 5 : 0 ] o u t ) ;

/ / t i m p u l de propagare i n A 2 o u t = 400 ps
/ / t i m p u l de propagare i n B 2 o u t = 150 ps
/ / . . .

endmodule

3.7 Projects

Use Appendix How to make a project to learn how to proceed in implementing a project.

Project 3.1
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Chapter 4

THE TAXONOMY OF DIGITAL
SYSTEMS

In the previous chapter
the basic mechanisms involved in defining the architecture of a digital system were introduced:

• the parallel composing and the serial composing are the mechanism allowing two kind of
parallelism in digital systems – data parallelism & time parallelism – both involved in in-
creasing the “brute force” of a computing machine

• the pipeline connection supports the time parallelism, accelerating the inherent serial com-
putation

• closing loops new kinds of functionality are allowed (storing, behaving, interpreting, ... self-
organizing)

• speculating is the third type of parallelism introduced to compensate the limitations generated
by loops closed in pipelined systems

In this chapter
loops are used to classify digital systems in orders, takeing into account the increased degree of
autonomy generated by each new added loop. The main topics are:

• the autonomy of a digital system depends on the number of embedded loops closed inside
• the loop based taxonomy of digital systems developed to match the huge diversity of the

systems currently developed
• some preliminary remarks before starting to describe in detail digital circuits and how they

can be used to design digital systems

In the next chapter
the final target of our lessons on digital design is defined as the structure of the simplest machine
able to process a stream of input data providing another stream of output data. The functional
description of the machine is provided emphasizing:

• the external connections and how they are managed
• the internal control functions of the machine
• the internal operations performed on the received and internally stored data.
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A theory is a compression of data; comprehension
is compression.

Gregory Chaitin1

Any taxonomy is a compressed theory, i.e., a com-
pression of a compression. It contains, thus, illu-
minating beauties and dangerous insights for our
way to comprehend a technical domain. How can
we escape from this attractive trap? Trying to
comprehend beyond what the compressed data of-
fers.

4.1 Loops & Autonomy

The main and the obvious effect of the loop is the autonomy it can generate in a digital system. Indeed,
the first things we observe in a circuit in which a new loop is introduced are new and independent
behaviors. Starting with a simple example the things will become more clear in an easy way. We use an
example with a system initially defined by a transition table. Each output corresponds to an input with a
certain delay (one time unit, #1, in our example). After closing the loop, starts a sequential process, each
sequence taking time corresponding with the delay introduced by the initial system.

Example 4.1 Let be the digital system initSyst from Figure 4.1a, with two inputs, in, lp, and one
output, out. What hapend when is closed the loop from the output out to the input lp? Let’s make it.
The following Verilog modules describe the behavior of the resulting circuit.

/ * ************************************************************************
F i l e name : l o o p S y s t . v
C i r c u i t name : Loop Sys tem
D e s c r i p t i o n : t h e way a loo p i n c r e a s e autonomy o f t h e s y s t e m
************************************************************************ * /

module l o o p S y s t ( output [ 1 : 0 ] out ,
input i n ) ;

i n i t S y s t noLoopSyst ( . o u t ( o u t ) , . i n ( i n ) , . loop ( o u t ) ) ;
endmodule

1From [Chaitin ’06]
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/ * ************************************************************************
F i l e name : i n i t S y s t . v
C i r c u i t name : No−Loop Sys tem
D e s c r i p t i o n : d e s c r i b e t h e no−loo p s y s t e m
************************************************************************ * /

module i n i t S y s t ( output reg [ 1 : 0 ] o u t ,
input i n ,
input [ 1 : 0 ] loop ) ;

i n i t i a l o u t = 2 ’ b11 ; / / o n l y f o r s i m u l a t i o n purpose

always @( i n or loop ) #1 case ({ in , loop } )
3 ’ b000 : o u t = 2 ’ b01 ;
3 ’ b001 : o u t = 2 ’ b00 ;
3 ’ b010 : o u t = 2 ’ b00 ;
3 ’ b011 : o u t = 2 ’ b10 ;
3 ’ b100 : o u t = 2 ’ b01 ;
3 ’ b101 : o u t = 2 ’ b10 ;
3 ’ b110 : o u t = 2 ’ b11 ;
3 ’ b111 : o u t = 2 ’ b01 ;

endcase
endmodule

In order to see how behave loopSyst we will use the following test module which initialize (for
this example in a non-orthodox fashion because we don’t know nothing about the internal structure of
initSyst) the output of initSyst in 11 and put on the input in for 10 unit time the value 0 and for the
next 10 unit time the value 1.

/ * ************************************************************************
F i l e name : t e s t . v
C i r c u i t name : T e s t i n g Loop−Sys tem
D e s c r i p t i o n : g e n e r a t e s t h e s t i m u l u s f o r t e s t i n g t h e loop −s y s t e m
************************************************************************ * /

module t e s t ;
reg i n ;
wire [ 1 : 0 ] o u t ;

i n i t i a l begin i n = 0 ;
#10 i n = 1 ;
#10 $ s t o p ;

end
l o o p S y s t d u t ( out , i n ) ;
i n i t i a l $monitor ( ” t im e=%0d i n=%b o u t=%b ” ,

$t ime , in , d u t . o u t ) ;
endmodule

The simulation offers us the following behavior:
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1 00
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Figure 4.1: Example illustrating the autonomy. a. A system obtained from an initial system in which a
loop is closed from output to one of its input. b. The transition table of the initial system where each output strict
corresponds to the input value. c. The output evolution for constant input: in = 0. d. The output evolution for a
different constant input: in = 1.

/ * ************************************************************************
The m o n i t o r o u t p u t
************************************************************************ * /

# t ime =0 i n =0 o u t =11
# t ime =1 i n =0 o u t =10
# t ime =2 i n =0 o u t =00
# t ime =3 i n =0 o u t =01
# t ime =4 i n =0 o u t =00
# t ime =5 i n =0 o u t =01
# t ime =6 i n =0 o u t =00
# t ime =7 i n =0 o u t =01
# t ime =8 i n =0 o u t =00
# t ime =9 i n =0 o u t =01
# t ime =10 i n =1 o u t =00
# t ime =11 i n =1 o u t =01
# t ime =12 i n =1 o u t =10
# t ime =13 i n =1 o u t =11
# t ime =14 i n =1 o u t =01
# t ime =15 i n =1 o u t =10
# t ime =16 i n =1 o u t =11
# t ime =17 i n =1 o u t =01
# t ime =18 i n =1 o u t =10
# t ime =19 i n =1 o u t =11

The main effect we want to emphasize is the evolution of the output under no variation of the input
in. The initial system, defined in the previous case, has an output that switches only responding to the
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input changing (see also the table from Figure 4.1b). The system which results closing the loop has its
own behavior. This behavior depends by the input value, but is triggered by the events coming through
the loop. Figure 4.1c shows the output evolution for in = 0 and Figure 4.1d represents the evolution
for in = 1. ⋄

VerilogSummary 7 :

• the register reg[1:0] out defined in the module initSyst is nor a register, it is a Verilog vari-
able, whose value is computed by a case procedure anytime at least one of the two inputs change
(always @(in or lp))

• a register which changes its state “ignoring” a clock edge is not a register, it is a variable evolving
like the output of a combinational circuit

• what is the difference between an assign and an always (a or b or ...)? The body of
assign is continuously evaluated, rather than the body of always which is evaluated only if at
least an element of the list of sensitivity ((a or b or ...)) changes

• in running a simulation an assign is more computationally costly in time than an always which
is more costly in memory resources.

Until now we used in a non-rigorous manner the concept of autonomy. It is necessary for our next
step to define more clearly this concept in the digital system domain.

Definition 4.1 In a digital system a behavior is called autonomous iff for the same input dynamic there
are defined more than one distinct output transitions, which manifest in distinct moments. ⋄

If we take again the previous example we can see in the result of the simulation that in the moment
time = 2 the input switches from 0 to 0 and the output from 10 to 00. In the next moment input
switches the same, but output switches from 00 to 10. The input of the system remains the same, but the
output behaves distinctly. The explanations is for us obvious because we have access to the definition of
the initial system and in the transition table we look for the first transition in the line 010 and we find the
output 00 and for the second in the line 000 finding there 00. The input of the initial system is changed
because of the loop that generates a distinct response.

In our example the input dynamic is null for a certain output dynamic. There are example when
the output dynamic is null for some input transitions (will be found such examples when we talk about
memories).

Theorem 4.1 In the respect of the previous definition for autonomy, closing an internal loop generates
autonomous behaviors. ⋄

Proof Let be The description of ’no loop system’ module from Definition 3.4 described,
in the general form, by the following pseudo-Verilog construct:
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always @( i n 1 or i n 0 ) #1
ca se ( i n 1 )

. . . : case ( i n 0 )
. . . : { out1 , ou t0 } = f 0 0 ( in1 , i n 0 ) ;

. . .
. . . : { out1 , ou t0 } = f 0 p ( in1 , i n 0 ) ;

endcase
. . .

. . . : case ( i n 0 )
. . . : { out1 , ou t0 } = f q 0 ( in1 , i n 0 ) ;

. . .
. . . : { out1 , ou t0 } = f q p ( in1 , i n 0 ) ;

endcase
endcase

The various occurrences of {out1, out2} are given by the functions f ij(in1, in2) defined in
Verilog.

When the loop is closed, in0 = out0 = state, the in1 remains the single input of the resulting
system, but the internal structure of the system continue to receive both variable, in1 and in0. Thus, for
a certain value of in1 there are more Verilog functions describing the next value of {out1, out0}. If
in1 = const, then the previous description is reduced to:

always @( s t a t e ) #1 case ( s t a t e )
. . . : { out1 , s t a t e } = f i 0 ( c o n s t , s t a t e ) ;

. . .
. . . : { out1 , s t a t e } = f i p ( c o n s t , s t a t e } ;

endcase

The output of the system, out1, will be computed for each change of the variable state, using the
function f ji selected by the new value of state, which function depends by state. For each constant
value of in1 another set of functions is selected. In the two-level case, which describe no loop system,
this second level is responsible for the autonomous behavior.

⋄

4.2 Classifying Digital Systems

The two mechanisms, of composing and of ”looping”, give us a very good instrument for a new classifi-
cation of digital systems. If the system grows by different compositions, then it allows various kinds of
connections. In this context the loops are difficult to be avoided. They occur sometimes in large systems
without the explicit knowledge of the designer, disturbing the design process. But, usually we design
being aware of the effect introduced by this special connection – the loop. This mechanism leads us
to design a complex network of loops which include each other. Thus, in order to avoid ambiguities in
using the loops we must define what means ”included loop”. We shall use frequently in the next pages
this expression for describing how digital systems are built.
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Definition 4.2 A loop includes another loop only when it is closed over a serial or a serial-parallel
composition which have at least one subsystem containing an internal loop, called an included loop. ⋄

Attention! In a parallel composition a loop going through one of the parallel connected subsystem
does not include a loop closed over another parallel connected subsystem. A new loop of the kind
“grows” only a certain previously closed loop, but does not add a new one.

Example 4.2 In Figure 4.2 the loop (1) is included by the loop (2). In a serial composition built with S1
and S2 interconnected by (3), we use the connection (2) to add a new loop. ⋄

S2

S1

?

??

?

?

X

Y

(1)

(2) (3)

i
the serial connection

*

the included loop

1
the loop which includes

Figure 4.2: Included loops. The loop (2) includes loop (1), closed over the subsystem S2, because S2 is serially
connected with the subsystem S1 and loop (2) includes both S1 and S2.

Now we can use the next recursive definition for a new classification of digital systems. The classi-
fication contains orders, from 0 to n.

Definition 4.3 Let be a n-order system, n-OS. A (n+1)-OS can be built only adding a new loop which
includes the first n loops. The 0-OS contains only combinational circuits (the loop-less circuits). ⋄

This classification in orders is very consistent with the nowadays technological reality for n< 5. Over
this order the functions of digital systems are imposed mainly by information, this strange ingredient who
blinks in 2-OS, is born in 3-OS and grows in 4-OS monopolizing the functional control in digital systems
(see Chapter 16 in this book). But obviously, a function of a circuit belonging of certain order can be
performed also by circuits from any higher ones. For this reason we use currently circuits with more than
4 loops only for they allow us to apply different kind of optimizations. Even if a new loop is not imposed
by the desired functionality, we will use it sometimes because of its effect on the system complexity.
As will be exemplified, a good fitted loop allows the segregation of the simple part from an apparent
complex system, having as main effect a reduced complexity.

Our intention in the second part of this book is to propose and to show how works the following
classification:

0-OS - combinational circuits, with no autonomy

1-OS - memories, having the autonomy of internal state

2-OS - automata, with the autonomy to sequence

3-OS - processors, with the autonomy to control
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4-OS - computers, with the autonomy to interpret

. . .

n-OS - systems with the highest autonomy: to self-organize.
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Figure 4.3: Examples of circuits belonging to different orders. A combinational circuit is in 0-OS class
because has no loops. A memory circuit contains one-loop circuits and therefore it is in 1-OS class. Because the
register belongs to 1-OS class, closing a loop containing a register and a combinational circuit (which is in 0-OS
class) results an automaton: a circuit in 2-OS class. Two loop connected automata – a circuit in 3-OS class –
can work as a processor. An example of 4-OS is a simple computer obtained loop connecting a processor with a
memory. Cellular automata contains a number of loops related with the number of automata it contains.

This new classification can be exemplified2 (see also Figure 4.3) as follows:

• 0-OS: gate, elementary decoder (as the simplest parallel composition), buffered elementary de-
coder (the simplest serial-parallel composition), multiplexer, adder, priority encoder, ...

• 1-OS: elementary latch, master-slave flip-flop (serial composition), random access memory (par-
allel composition), register (serial-parallel composition), ...

2For almost all the readers the following enumeration is now meaningless. They are kindly invited to revisit this end of
chapter after assimilating the first 7 chapter of this book.
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• 2-OS: T flip-flop (the simplest two states automaton), J-K flip-flop (the simplest two input automa-
ton), counters, automata, finite automata, ...

• 3-OS: automaton using loop closed through K-J flip-flops or counters, stack-automata, elementary
processors, ...

• 4-OS: micro-controller, computer (as Processor & RAM loop connected), stack processor, co-
processor

• ...

• n-OS: cellular automaton.

The second part of this book is devoted to sketch a digital system theory based on these two-
mechanism principle of evolving in digital circuits: composing & looping. Starting with combinational,
loop-less circuits with no autonomy, the theory can be developed following the idea of the increasing
system autonomy with each additional loop. Our approach will be a functional one. We will start with
simple functions and we will end with complex structures with emphasis on the relation between loops
and complexity.

4.3 Preliminary Remarks On Digital Systems

The purpose of this first part of the book is to run over the general characteristics of digital systems using
an informal high level approach. If the reader become accustomed with the basic mechanisms already
described, then in the second part of this book he will find the necessary details to make useful the just
acquired knowledge. In the following paragraphs the governing ideas about digital systems are summed
up.

Combinational circuits vs. sequential circuits Digital systems receive symbols or stream of symbols
on their inputs and generate other symbols or stream of symbols on their outputs by computation. For
combinational systems each generated symbol depends only by the last recently received symbol. For
sequential systems at least certain output symbols are generated taking into account, instead of only one
input symbol, a stream of more than one input symbols. Thus, a sequential system is history sensitive,
memorizing the meaningful events for its own evolution in special circuits – called registers – using a
special synchronization signal – the clock.

Composing circuits & closing loops A big circuit results composing many small ones. A new kind
of feature can be added only closing a new loop. The structural composing corresponds the the mathe-
matical concept of composition. The loop corresponds somehow to the formal mechanism of recursion.
Composing is an “additive” process which means to put together different simple function to obtain a
bigger or a more complex one. Closing a loop new behaviors occur. Indeed, when a snake eats a mouse
nothing special happens, but if the Orouboros3 serpent bits its own tail something very special must be
expected.

3This symbol appears usually among the Gnostics and is depicted as a dragon, snake or serpent biting its own tail. In
the broadest sense, it is symbolic of time and the continuity of life. The Orouboros biting its own tail is symbolic of self-
fecundation, or the ”primitive” idea of a self-sufficient Nature - a Nature, that is continually returning, within a cyclic pattern,
to its own beginning.
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Composition allows data parallelism and time parallelism Digital systems perform in a “natural”
way parallel computation. The composition mechanism generate the context for the most frequent forms
of parallelism: data parallelism (in parallel composition) and time parallelism (in serial composition).
Time parallel computation is performed in pipeline systems, where the only limitation is the latency,
which means we must avoid to stop the flow of data through the “pipe”. The simplest data parallel
systems can be implemented as combinational circuits. The simplest time parallel systems must be
implemented as sequential circuits.

Closing loops disturbs time parallelism The price we pay for the additional features we get when a
new loop is closed is, sometimes, the necessity to stop the data flow through the pipelined circuits. The
stop is imposed by the latency and the effect can be loosing, totaly or partially, the benefit of the existing
time parallelism. Pipelines & loops is a bad mixture, because the pipe delays the data coming back from
the output of the system to its own input.

Speculation can restore time parallelism If the data used to decide comes back to late, the only
solution is to delay also the decision. Follows, instead of selecting what to do, the need to perform all
the computations envisaged by the decision and to select later only the desired result according to the
decision. To do all the computations means to perform speculative parallel computation. The structure
imposed for this mechanism is a MISD (multiple instruction single data) parallel computation on certain
pipeline stage(s). Concluding, three kind of parallel processes can be stated in a digital system: data
parallelism, time parallelism and speculative parallelism.

Closed loops increase system autonomy The features added by a loop closed in a digital system refer
mainly to different kinds of autonomy. The loop uses the just computed data to determine how the
computation must be continued. It is like an internal decision is partially driven by the system behavior.
Not all sort of autonomy is useful. Some times the increased autonomy makes the system too “stubborn”,
unable to react to external control signals. For this reason, only an appropriately closed loop generates an
useful autonomy, that autonomy which can be used to minimize the externally exercised control. More
about how to close proper loops in the next chapters.

Closing loops induces a functional hierarchy in digital systems The degree of autonomy is a good
criteria to classify digital systems. The proposed taxonomy establishes the degree of autonomy counting
the number of the included loops closed inside a system. Digital system are classified in orders: the
0-order systems contain no loop circuits, and n-order systems contain at least one circuit with n included
loops. This taxonomy corresponds with the structural and functional diversity of the circuits used in the
actual digital systems.

The top view of the digital circuits domain is almost completely characterized by the previous features.
Almost all of them are not technology dependent. In the following, the physical embodiment of these
concepts will be done using CMOS technology. The main assumptions grounding this approach may
change in time, but now they are enough robust and are simply stated as follows: computation is an
effective formally defined process, specified using finite descriptions, i.e., the length of the description is
not related with the dimension of the processed data, with the amount of time and of physical resources
involved.
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Important question: What are the rules for using composition and looping? No rules restrict us to
compose or to loop. The only restrictions come from our limited imagination.

4.4 Problems

Autonomous circuits

Problem 4.1 Prove the reciprocal of Theorem 1.1.

Problem 4.2 Let be the circuit from Problem 1.25. Use the Verilog simulator to prove its autonomous
behavior. After a starting sequence applied on its inputs, keep a constant set of values on the input and
see if the output is evolving.

Can be defined an input sequence which brings the circuit in a state from which the autonomous
behavior is the longest (maybe unending)? Find it if it exists.

Problem 4.3 Design a circuit which after the reset generates in each clock cycle the next Fibbonaci
number starting from zero, until the biggest Fibbonaci number smaller than 232. When the biggest
number is generated the machine will start in the next clock cycle from the beginning with 0. It is
supposed the biggest Fibbonaci number smaller than 232 in unknown at the design time.

Problem 4.4 To the previously designed machine add a new feature: an additional output generating
the index of the current Fibbonaci number.

4.5 Projects

Use Appendix How to make a project to learn how to proceed in implementing a project.

Project 4.1
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Chapter 5

OUR FINAL TARGET

In the previous chapter
a new, loop based taxonomy was introduced. Because each newly added loop increases the autonomy of the system,
results a functional circuit hierarchy:

• history free, no-loop, combinational circuits performing logic and arithmetic functions (decoders, multiplexors,
adders, comparators, ...)

• one-loop circuits used mainly as storage support (registers, random access memories, register files, shift registers,
...)

• two-loop, automata circuits used for recognition, generation, control, in simple (counters, ...) or complex (finite
automata) embodiments

• three-loop, processors systems: the simplest information & circuit entanglement used to perform complex func-
tions

• four-loop, computing machines: the simplest digital systems able to perform complex programmable functions,
because of the segregation between the simple structure of the circuit and the complex content of the program
memory

• ...

In this chapter
a very simple programmable circuit, called toyMachine, is described using the shortest Verilog
description which can be synthesized using the current tools. It is used to delimit the list of circuits
that must be taught for undergraduates students. This version of a programmable circuit is selected
because:

• its physical implementation contains only the basic structures involved in defining a digital
system

• it is a very small & simple entangled structure of circuits & information used for defining,
designing and building a digital system with a given transfer function

• it has a well weighted complexity so as, after describing all the basic circuits, an enough
meaningful structure can be synthesized.

In the next chapter
starts the second part of this book which describes digital circuits closing a new loop after each chapter. It starts with
the chapter about no-loop digital circuits, discussing about:

• simple (and large sized) uniform combinational circuits, easy to be described using a recursive pattern

• complex and size limited random combinational circuits, whose description’s size is in the same range with their
size

117
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We must do away with all explanation, and description
alone must take its place. . . . The problems are solved,
not by giving new information, but by arranging what we
have always known.

Ludwig Wittgenstein 1

Before proceeding to accomplish our targeted project we
must describe it using what we have always known.

Our final target, for these lessons on Digital Design, is described in this chapter as an architecture.
The term is borrowed from builders. They use it to define the external view and the functionality of a
building. Similarly, in computer science the term of architecture denotes the external connections and
the functions performed by a computing machine. The architecture does not tell anything about how
the defined functionality is actually implemented inside the system. Usually there are multiple possible
solutions for a given architecture.

The way from “what” to “how” is the content of the next part of this book. The architecture we will
describe here states what we intend to do, while for learning how to do, we must know a lot about simple
circuits and the way they can be put together in order to obtain more complex functions.

5.1 toyMachine: a small & simple computing machine

The architecture of one of the simplest meaningful machine will be defined by (1) its external connec-
tions, (2) its internal state and (3) its transition functions. The transition functions refer to how both,
the internal state (the function f from the general definition) and the outputs (the function g from the
general definition) switch.

Let us call the proposed system toyMachine. It is almost the simplest circuit whose functionality
can be defined by a program. Thus, our target is to provide the knowledge for building a simple pro-
grammable circuit in which both, the physical structure of the circuit and the informational structure of
the program contribute to the definition of a certain function.

The use of such a programmable circuit is presented in Figure 5.1, where inputStream[15:0]

represents the stream of data which is received by the toyMachine processor, it is processed according
to the program stored in programMemory, while, f needed, dataMemory stores intermediate data or
support data. The result is issued as the data stream outputStream[15:0].

The use of such a programmable circuit is presented in Figure 5.1, where inputStream[15:0]

represents the stream of data which is received by the toyMachine processor, it is processed according
to the program stored in programMemory, while, if needed, dataMemory stores intermediate data or
support data. The result is issued as the data stream outputStream[15:0].

For the purpose of this chapter, the internal structure of toyMachine is presented in Figure 5.2. The
internal state of toyMachine is stored in:

1From Witgenstein’s Philosophical Investigation (#109). His own very original approach looked for an alternative way to
the two main streams of the 20th Century philosophy: one originated in Frege’s formal positivism, and another in Husserl’s
phenomenology. Wittgenstein can be considered as a forerunner of the architectural approach, his vision being far beyond
his contemporary fellows were able to understand.
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toyMachinedataMemory programMemory� - � -
?

?

inStream

outStream

Programmable Logic Controller

Figure 5.1: Programmable Logic Controller designed with toyMachine.

programCounter : is a 32-bit register which stores the current address in the program memory; it
points in the program memory to the currently executed instruction; the reset signal sets its value
to zero; during the execution of each instruction its content is modified in order to read the next
instruction

intEnable : is a 1-bit state register which enable the action of the input int; the reset signal sets it
to 0, thus disabling the interrupt signal

regFile : the register file is a collection of 32 32-bit registers organized as a three port small memory
(array of storage elements):

• one port for write to the address destAddr

• one port for read the left operand from the address leftAddr

• one ort for read the right operand from the address rightAddr

used to store the most frequently used variables involved in each stage of the computation

carry : is a 1-bit register to store the value of the carry signal when an arithmetic operation is performed;
the value can be used for one of the next arithmetic operation

inRegister : is a 16-bit input register used as buffer

outRegister : is a 16-bit output register used as buffer

The external connections are of two types:

• data connections:

inStream : the input stream of data

outStream : the output stream of data

progAddr : the address for the programm memory

instruction : the instruction received from the program memory read using progAddr

dataAddr : the address for data memory

dataOut : the data sent to the data memory
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Figure 5.2: The internal state of toyMachine.

dataIn : the data received back from the data memory

• control connections:

empty : the input data on inStream is not valid, i.e., the system which provides the input stream
of data has noting to send for toyMachine

read : loads in inRegister the data provided by the sender only if empty = 0, else nothing
happens in toyMachine or in the sender

full : the receiver of the data is unable to receive data sent by toyMachine, i.e., the receiver

write : send the date to the receiver of outStream2

int : interrupt signal is an “intrusive” signal used to trigger a “special event”; the signal int acts,
only if the interrupt is enabled (intEnable = 1), as follows:

2The previously described four signals define one of the most frequently used interconnection device: the First-In-First-Out
buffer (FIFO). A FIFO (called also queue) is defined by the following data connections

– data input
– data output

and the following control connections:
– empty: the queue is empty, nothing to be read
– read: the read signal used to extract the last recently stored data
– full: the queue is full, no place to add new data
– write: add in queue the data input value

In our design, the sender’s output is the output of a FIFO, and the receiver’s input is the input of another FIFO, let us call them
outFIFO and inFIFO. The signals inStream, empty and read belong to the outFIFO of the sender, while outStream, full
and write belong to the inFIFO of the receiver.
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begin r e g F i l e [ 3 0 ] <= programCounte r ; / / one− l e v e l s t a c k
programCounte r <= r e g F i l e [ 3 1 ] ;

end

The location regFile[30] is loaded with the current value of programCounter when the
interrupt is acknowledged, and the content of regFile[31] is loaded as the next program
counter, i.e., the register 31 contains the address of the routine started by the occurrence of
the interrupt when it is acknowledged. The content of regFile[30] will be used to restore
the state of the machine when the program started by the acknowledged signal int ends.

inta : interrupt acknowledge

store : the write signal for the data memory; is is used to write dataOut at dataAddr in the
external data memory

reset : the synchronous reset signal is activated to initialize the system

clock : the clock signal

For the interconnections between the buffer registers, internal registers and the external signals area
is responsible the unspecified bloc Combinatorial logic.

The transition function is given by the program stored in an external memory called Program Mem-
ory (reg[31:0] programMemory[0:1023], for example). The program “decides” (1) when a new
value of the inStream is received, (2) when and how a new state of the machine is computed and (3)
when the output outStram is actualized. Thus, the output outStream evolves according to the inputs
of the machine and according to the history stored in its internal state.

The internal state of the above described engine is processed using combinational circuits, whose
functionality will be specified in this section using a Verilog behavioral description. At the end of the next
part of this book we will be able to synthesize the overall system using a Verilog structural description.

The toyMachine’s instruction set architecture (ISA) is a very small subset of any 32-bit processor
(for example, the MicroBlaze processor [MicroBlaze]).

Each location in the program memory contains one 32-bit instruction organized in two formats, as
follows:

instruction = {opCode[5:0], destAddr[4:0], leftAddr[4:0], rightAddr[4:0], 11’b0} |

{opCode[5:0], destAddr[4:0], leftAddr[4:0], immValue[15:0]};

where: opCode[5:0] : operation code

destAddr[4:0] : selects the destination in the register file

leftAddr[4:0] : selects the left operand from the register file

rightAddr[4:0]: selects the right operand from the register file

immValue[15:0]: immediate value

The actual content of the first field – opCode[5:0] – determines how the rest of the instruction
is interpreted, i.e., what kind of instruction format has the current instruction. The first format applies
the operation coded by opCode to the values selected by leftAddr and rightAddr from the register
file; the result is stored in register file to the location selected by destAddr. The second format uses
immValue extended with sign as a 32-bit value to be stored in register file at destAddr or as a relative
address for jump instructions.
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/ * ************************************************************************
F i l e name : t o y M a c h i n e A r c h i t e c t u r e . v . v
C i r c u i t name : I n s t r u c t i o n S e t A r c h i t e c t u r e
D e s c r i p t i o n : d e f i n e s t h e b i n a r y form o f t h e i n s t r u c t i o n s e t
************************************************************************ * /

parameter
nop = 6 ’ b000000 , / / no o p e r a t i o n : i n c r e m e n t programCounter

/ / CONTROL INSTRUCTIONS
jmp = 6 ’ b000001 , / / programCounter l oa de d form a r e g i s t e r
zjmp = 6 ’ b000010 , / / jump i f t h e s e l e c t e d r e g i s t e r i s 0
nzjmp = 6 ’ b000011 , / / jump i f t h e s e l e c t e d r e g i s t e r i s n o t 0
r jmp = 6 ’ b000100 , / / r e l a t i v e jump : pc = pc + immVal
e i = 6 ’ b000110 , / / e n a b l e i n t e r r u p t
d i = 6 ’ b000111 , / / d i s a b l e i n t e r r u p t
h a l t = 6 ’ b001000 , / / programCounter does n o t change

/ / DATA INSTRUCTIONS : pc = pc + 1
/ / A r i t h m e t i c & l o g i c i n s t r u c t i o n s

neg = 6 ’ b010000 , / / b i t w i s e n o t
bwand = 6 ’ b010001 , / / b i t w i s e and
bwor = 6 ’ b010010 , / / b i t w i s e or
bwxor = 6 ’ b010011 , / / b i t w i s e e x c l u s i v e or
add = 6 ’ b010100 , / / add
sub = 6 ’ b010101 , / / s u b t r a c t
addc = 6 ’ b010110 , / / add w i t h c a r r y
subc = 6 ’ b010111 , / / s u b t r a c t w i t h c a r r y
move = 6 ’ b011000 , / / move
a s h r = 6 ’ b011001 , / / a r i t h m e t i c s h i f t r i g h t one p o s i t i o n
v a l = 6 ’ b011010 , / / l oad immed ia t e w i t h s i g n e x t e n s i o n
h v a l = 6 ’ b011011 , / / append immed ia t e on h igh p o s i t i o n s

/ / I n p u t o u t p u t i n s t r u c t i o n s
r e c e i v e = 6 ’ b100000 , / / l oad i n R e g i s t e r i f empty = 0
i s s u e = 6 ’ b100001 , / / send o u t R e g i s t e r i f f u l l = 0
g e t = 6 ’ b100010 , / / l oad i n f i l e r e g i s t e r t h e i n R e g i s t e r
send = 6 ’ b100011 , / / l oad o u t R e g i s t e r r e g i s t e r ’ s c o n t e n t
d a t a r d = 6 ’ b100100 , / / read from da ta memory
da t a wr = 6 ’ b100101 ; / / w r i t e t o da ta memory

Figure 5.3: toyMachine’s ISA defined by the file 0 toyMachineArchitecture.v.
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The Instruction Set Architecture (ISA) of toyMachine is described in Figure 5.3, where are listed
two subset of instructions:

• control instructions: used to control the program flow by different kinds of jumps performed con-
ditioned, unconditioned or triggered by the acknowledged interrupt interrupt

• data instructions: used to modify the content of the file register, or to exchange data with the
external systems (each execution is accompanied with programCounter <= programCounter

+ 1).

The file is used to specify opCode, the binary codes associated to each instruction.
The detailed description of each instruction is given by the Verilog behavioral descriptions included

in the module toyMachine (see Figure 5.4).
The first ‘include includes the binary codes defined in 0 toyMachineArchitecture.v (see Fig-

ure 5.3) for each instruction executed by our simple machine.
The second ‘include includes the file used to describe how the instruction fields are structured.
The last two ‘include lines include the behavioral description for the two subset of instructions

performed by our simple machine. These last two files reflect the ignorance of the reader in the domain
of digital circuits. They are designed to express only what the designer intent to build, but she/he doesn’t
know yet how to do what must be done. The good news: the resulting description can be synthesized.
The bad news: the resulting structure is very big (far from optimal) and has a very complex form, i.e.,
no pattern can be emphasized. In order to provide a small & simple circuit, in the next part of this book
we will learn how to segregate the simple part from the complex part of the circuits used to provide
an optimal actual structure. Then, we will learn how to optimize both, the simple, pattern-dominated
circuits and the complex, pattern-less ones.

The file instructionStructure.v (see Figure 5.5) defines the fields of the instruction. For the
two forms of the instruction appropriate fields are provided, i.e., the instruction content is divided in
many forms, thus allowing different interpretation of it. The bits instruction[15:0] are used in two
ways according to the opCode. If the instruction uses two operands, and both are supplied by the content
of the register file, then instruction[15:0] = rightAddr, else the same bits are the most significant
5 bits of the 16-bit immediate value provided to be used as signed operand or as a relative jump address.

The file controlFunction.v (see Figure 5.6) describes the behavior of the control instructions.
The control of toyMachine refers to both, interrupt mechanism and the program flow mechanism.

The interrupt signal int is acknowledged, activating the signal inta only if intEnable = 1 (see
the assign on the first line in Figure 5.6). Initially, the interrupt is not allowed to act: reset signal
forces intEnable = 0. The program decides when the system is “prepared” to accept interrupts. Then,
the execution of the instruction ei (enable interrupt) determines intEnable = 1. When an interrupt is
acknowledged, the interrupt is disabled, letting the program decide when another interrupt is welcomed.
The interrupt is disabled by executing the instruction di – disable interrupt.

The program flow is controlled by unconditioned and conditioned jump instructions. But, the inta

signal once activated, has priority, allowing the load of the program counter with the value stored in
regFile[31] which was loaded, by the initialization program of the system, with the address of the
subroutine associated to the interrupt signal.

The value of the program counter, programCounter, is by default incremented with 1, but when a
control instruction is executed its value can be incremented with the signed integer instruction[15:0]
or set to the value of a register contained in the register file. The program control instructions are:



124 CHAPTER 5. OUR FINAL TARGET

/ * ************************************************************************
F i l e name : toyMachine . v
C i r c u i t name : Toy Machine
D e s c r i p t i o n : t h e t o p l e v e l o f t h e p r o c e s s o r Toy Machine
************************************************************************ * /
module toyMachine (

input [ 1 5 : 0 ] i n S t r e a m , / / i n p u t s t r ea m o f da ta
input empty , / / i n S t r e a m has no meaning
output r e a d , / / read from t h e s e n d e r
output [ 1 5 : 0 ] o u t S t r e a m , / / o u t p u t s t r ea m o f da ta
input f u l l , / / t h e r e c e i v e r i s f u l l
output w r i t e , / / w r i t e form o u t R e g i s t e r
input i n t e r r u p t , / / i n t e r r u p t i n p u t
output i n t a , / / i n t e r r u p t acknowledge
output [ 3 1 : 0 ] da taAddr , / / a d d r e s s f o r da ta memory
output [ 3 1 : 0 ] d a t a O u t , / / da ta f o r da ta memory
output s t o r e , / / s t o r e da taOut a t da taAddr
input [ 3 1 : 0 ] d a t a I n , / / da ta from da ta memory
output reg [ 3 1 : 0 ] programCounter , / / a d d r e s s f o r program memory
input [ 3 1 : 0 ] i n s t r u c t i o n , / / i n s t r u c t i o n from memory
input r e s e t , / / r e s e t i n p u t
input c l o c k ) ; / / c l o c k i n p u t / / 2429 LUTs

/ / INTERNAL STATE
reg [ 1 5 : 0 ] i n R e g i s t e r ;
reg [ 1 5 : 0 ] o u t R e g i s t e r ;
reg [ 3 1 : 0 ] r e g F i l e [ 0 : 3 1 ] ;
reg c a r r y ;
reg i n t E n a b l e ;

‘ i n c l u d e ” 0 t o y M a c h i n e A r c h i t e c t u r e . v ”
‘ i n c l u d e ” i n s t r u c t i o n S t r u c t u r e . v ”
‘ i n c l u d e ” c o n t r o l F u n c t i o n . v ”
‘ i n c l u d e ” d a t a F u n c t i o n . v ”

endmodule

Figure 5.4: The file toyMachine.v containing the toyMachine’s behavioral description.
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/ * ************************************************************************
F i l e name : i n s t r u c t i o n S t r u c t u r e . v
C i r c u i t name : I n s t r u c t i o n S t r u c t u r e
D e s c r i p t i o n : f i l e used t o d e t a i l t h e i n s t r u c t i o n ’ s s t r u c t u r e
************************************************************************ * /

wire [ 5 : 0 ] opCode ;
wire [ 4 : 0 ] d e s t A d d r ;
wire [ 4 : 0 ] l e f t A d d r ;
wire [ 4 : 0 ] r i g h t A d d r ;
wire [ 3 1 : 0 ] immValue ;

a s s i g n opCode = i n s t r u c t i o n [ 3 1 : 2 6 ] ;
a s s i g n d e s t A d d r = i n s t r u c t i o n [ 2 5 : 2 1 ] ;
a s s i g n l e f t A d d r = i n s t r u c t i o n [ 2 0 : 1 6 ] ;
a s s i g n r i g h t A d d r = i n s t r u c t i o n [ 1 5 : 1 1 ] ;
a s s i g n immValue = {{16{ i n s t r u c t i o n [ 1 5 ]}} , i n s t r u c t i o n [ 1 5 : 0 ] } ;

Figure 5.5: The file instructionStructure.v.

jmp : absolute jump with the value selected from the register file by the field leftAddr; the register
programCounter takes the value contained in the selected register

zjmp : relative jump with the signed value immValue if the content of the register selected by leftAddr
from the register file is 0, else programCounter = programCounter + 1

nzjmp : relative jump with the signed value immValue if the content of the register selected by
leftAddr from the register file is not 0, else programCounter = programCounter + 1

receive : relative jump with the signed value immValue if readyIn is 1, else programCounter =

programCounter + 1

issue : relative jump with the signed value immValue if readyOut is 1, else programCounter =

programCounter + 1

halt : the program execution halts, programCounter = programCounter (it is a sort of nop instruc-
tion without incrementing the register programCounter = programCounter).

Warning! If intEnable = 0 when the instruction halt is executed, then the overall system is
blocked. The only way to turn it back to life is to activate the reset signal.

The file dataFunction.v (see Figure 5.7) describes the behavior of the data instructions. The signal
inta has the highest priority. It forces the register 30 of the register file to store the current state of the
register programCounter. It will be used to continue the program, interrupted by the acknowledged
interrupt signal int, by executing a jmp instruction with the content of regFile[30].

The following data instructions are described in this file:

add : the content of the registers selected by leftAddr and rightAddr are added and the result is
stored in the register selected by destAddr; the value of the resulted carry is stored in the carry
one-bit register
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/ * ************************************************************************
F i l e name : c o n t r o l F u n c t i o n . v
C i r c u i t name : C o n t r o l F u n c t i o n
D e s c r i p t i o n : d e s c r i b e s t h e c o n t r o l f u n c t i o n o f t h e p r o c e s s o r
************************************************************************ * /
/ * ************************************************************************
F i l e name : c o n t r o l F u n c t i o n . v
C i r c u i t name : C o n t r o l F u n c t i o n
D e s c r i p t i o n : d e s c r i b e s t h e c o n t r o l f u n c t i o n o f t h e p r o c e s s o r
************************************************************************ * /

a s s i g n i n t a = i n t E n a b l e & i n t e r r u p t ;
always @( posedge c l o c k )

i f ( r e s e t ) i n t E n a b l e <= 0 ;
e l s e i f ( i n t a ) i n t E n a b l e <= 0 ;

e l s e i f ( opCode == e i ) i n t E n a b l e <= 1 ;
e l s e i f ( opCode == d i ) i n t E n a b l e <= 0 ;

always @( posedge c l o c k )
i f ( r e s e t ) p rogramCounte r <= 0 ;

e l s e
i f ( i n t a ) p rogramCounte r <= r e g F i l e [ 3 1 ] ;

e l s e case ( opCode )
jmp : p rogramCounte r <= r e g F i l e [ l e f t A d d r ] ;
zjmp : i f ( r e g F i l e [ l e f t A d d r ] == 0)

programCounte r <= programCounte r + immValue ;
e l s e programCounte r <= programCounte r + 1 ;

nzjmp : i f ( r e g F i l e [ l e f t A d d r ] !== 0)
p rogramCounte r <= programCounte r + immValue ;

e l s e programCounte r <= programCounte r + 1 ;
r jmp : p rogramCounte r <= programCounte r + immValue ;
r e c e i v e : i f ( ! empty )

p rogramCounte r <= programCounte r + 1 ;
e l s e programCounte r <= programCounte r ;

i s s u e : i f ( ! f u l l )
p rogramCounte r <= programCounte r + 1 ;

e l s e programCounte r <= programCounte r ;
h a l t : p rog ramCounte r <= programCounte r ;
d e f a u l t programCounte r <= programCounte r + 1 ;
endcase

Figure 5.6: The file controlFunction.v.
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sub : the content of the register selected by rightAddr is subtracted form the content of the register
selected by leftAddr, the result is stored in the register selected by destAddr; the value of the
resulted borrow is stored in the carry one-bit register

addc : add with carry - the content of the registers selected by leftAddr and rightAddr and the content
of the register carry are added and the result is stored in the register selected by destAddr; the
value of the resulted carry is stored in the carry one-bit register

subc : subtract with carry - the content of the register selected by rightAddr and the content of carry
are subtracted form the content of the register selected by leftAddr, the result is stored in the
register selected by destAddr; the value of the resulted borrow is stored in the carry one-bit
register

ashr : the content of the register selected by leftAddr is arithmetically shifted right one position and
stored in the register selected by destAddr

neg : every bit contained in the register selected by leftAddr are inverted and the result is stored in the
register selected by destAddr

bwand : the content of the register selected by leftAddr is AND-ed bit-by-bit with the content of the
register selected by rightAddr and the result is stored in the register selected by destAddr

bwor : the content of the register selected by leftAddr is OR-ed bit-by-bit with the content of the
register selected by rightAddr and the result is stored in the register selected by destAddr

bwxor : the content of the register selected by leftAddr is XOR-ed bit-by-bit with the content of the
register selected by rightAddr and the result is stored in the register selected by destAddr

val : the register selected by destAddr is loaded with the signed integer immValue

hval : is used to construct a 32-bit value placing instruction[15:0] on the 16 highest binary position
in the content of the register selected by leftAddr; the result is stored at destAddr in the register
file

get : the register selected by destAddr are loaded with the content of inRegister

send : the outRegister register is loaded with the least 15 significant bits of the register selected by
leftAddr

receive : if readyIn = 1, then the inRegister is loaded with the current varue applied on the input
inStream and the readIn signal is activated for the sender to “know” that the current value was
received

datard : the data accessed at the address dataAddr = leftOp = regFile[leftAddr] is loaded in
register file at th elocatioin destAddr

issue : generate, only when readyOut = 1, the signal writeOut used by the receiver to take the value
from the outRegister register

datawr : generate the signal write used by the data memory to write at the address
regFile[leftAddr] the data stored in regFile[rightAddr]
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/ * ************************************************************************
F i l e name : d a t a F u n c t i o n . v . v
C i r c u i t name : Data F u n c t i o n
D e s c r i p t i o n : d e s c r i b e s t h e da ta f u n c t i o n s o f t h e p r o c e s s o r
************************************************************************ * /

always @( posedge c l o c k )
i f ( i n t a ) r e g F i l e [ 3 0 ] <= programCounte r ;

e l s e
case ( opCode )

add : { c a r r y , r e g F i l e [ d e s t A d d r ]}
<= r e g F i l e [ l e f t A d d r ] + r e g F i l e [ r i g h t A d d r ] ;

sub : { c a r r y , r e g F i l e [ d e s t A d d r ]}
<= r e g F i l e [ l e f t A d d r ] − r e g F i l e [ r i g h t A d d r ] ;

addc : { c a r r y , r e g F i l e [ d e s t A d d r ]}
<= r e g F i l e [ l e f t A d d r ] + r e g F i l e [ r i g h t A d d r ] + c a r r y ;

subc : { c a r r y , r e g F i l e [ d e s t A d d r ]}
<= r e g F i l e [ l e f t A d d r ] − r e g F i l e [ r i g h t A d d r ] − c a r r y ;

move : r e g F i l e [ d e s t A d d r ] <= r e g F i l e [ l e f t A d d r ] ;
a s h r : r e g F i l e [ d e s t A d d r ]

<= { r e g F i l e [ l e f t A d d r ] [ 3 1 ] , r e g F i l e [ l e f t A d d r ] [ 3 1 : 1 ] } ;
neg : r e g F i l e [ d e s t A d d r ] <= ˜ r e g F i l e [ l e f t A d d r ] ;
bwand : r e g F i l e [ d e s t A d d r ]

<= r e g F i l e [ l e f t A d d r ] & r e g F i l e [ r i g h t A d d r ] ;
bwor : r e g F i l e [ d e s t A d d r ] <=

r e g F i l e [ l e f t A d d r ] | r e g F i l e [ r i g h t A d d r ] ;
bwxor : r e g F i l e [ d e s t A d d r ]

<= r e g F i l e [ l e f t A d d r ] ˆ r e g F i l e [ r i g h t A d d r ] ;
v a l : r e g F i l e [ d e s t A d d r ] <= immValue ;
h v a l : r e g F i l e [ d e s t A d d r ]

<= { immValue [ 1 5 : 0 ] , r e g F i l e [ l e f t A d d r ] [ 1 5 : 0 ] } ;
g e t : r e g F i l e [ d e s t A d d r ] <= i n R e g i s t e r ;
send : o u t R e g i s t e r <= r e g F i l e [ l e f t A d d r ] [ 1 5 : 0 ] ;
r e c e i v e : i f ( ! empty )

i n R e g i s t e r <= i n S t r e a m ;
d a t a r d : r e g F i l e [ d e s t A d d r ] <= d a t a I n ;
d e f a u l t r e g F i l e [ 0 ] <= r e g F i l e [ 0 ] ;

endcase

a s s i g n r e a d = ( opCode == r e c e i v e ) & ( ! empty ) ;
a s s i g n w r i t e = ( opCode == i s s u e ) & ( ! f u l l ) ;
a s s i g n s t o r e = ( opCode == d a t a wr ) ;
a s s i g n da taAddr = r e g F i l e [ l e f t A d d r ] ;
a s s i g n d a t a O u t = r e g F i l e [ r i g h t A d d r ] ;
a s s i g n o u t S t r e a m = o u t R e g i s t e r ;

Figure 5.7: The file dataFunction.v.
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5.2 How toyMachine works

The simplest, but not the easiest way to use toyMachine is to program it in machine language3, i.e.,
to write programs as sequence of binary coded instructions stored in programMemory starting from the
address 0.

The general way to solve digital problems using toyMachine, or a similar device, is (1) to define the
input stream, (2) to specify the output stream, and (3) to write the program which transforms the input
stream into the corresponding output stream. Usually, we suppose an input signal which is sampled at a
program controlled rate, and the results is an output stream of samples which is interpreted as the output
signal. The transfer function of the system is programmed in the binary sequence of instructions stored
in the program memory.

The above described method to implement a digital system is called programmed logic, because
a general purpose programmable machine is used to implement a certain function which generate an
output stream of data starting from an input stream of data. The main advantage of this method is its
flexibility, while the main disadvantages are the reduced speed and the increased size of the circuit. If
the complexity, price and time to market issues are important, then it can be the best solution.

At http://arh.pub.ro/gstefan/toyMachine.zip you can find the files used to simulate a toy-
Machine system.

5.2.1 The Code Generator

The file toyMachineCodeGenerator.v contains the description of the engine used to fill up the pro-
gram memory – progMem – containing the “executable” code, i.e., the binary form of the program to be
executed.

For the instructions we use capital letters with parameters in parenthesis, if needed. For example:
ADD(4, 3, 17) which stands for add in the register 4 the content of the register 3 with the content of
the register 17. To specify the jump addresses are used labels of form LB(2). When the instruction
ZJMP(2) is executed, the jump address is calculated using the address labeled with LB(2).

The full form of the file toyMachineCodeGenerator.v is in the folder pointed by
http://arh.pub.ro/gstefan/toyMachine.zip, while, in the following, a shorted form is presented
in order to explain only the way the code is generated and stored in the program memory.

3The next levels are to use an assembly language or a high level language (for example: C), but these approaches are
beyond our goal in this text book.
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/ * ************************************************************************
F i l e name : toyMachineCodeGenera tor . v
C i r c u i t name : S im p l e a s s e m b l e r f o r t o y Machine
D e s c r i p t i o n : g e n e r a t e s t h e b i n a r y code i n program memory ; o n l y t y p i c a l

i n s t r u c t i o n s are as semb led
************************************************************************ * /
/ / CODE GENERATOR

reg [ 5 : 0 ] opCode ;
reg [ 4 : 0 ] d e s t A d d r ;
reg [ 4 : 0 ] l e f t A d d r ;
reg [ 4 : 0 ] r i g h t A d d r ;
reg [ 1 0 : 0 ] v a l u e ;
reg [ 5 : 0 ] a d d r C o u n t e r ;
reg [ 5 : 0 ] l a b e l T a b [ 0 : 6 3 ] ;

‘ i n c l u d e ” 0 t o y M a c h i n e A r c h i t e c t u r e . v ”

ta sk endLine ;
begin

d u t . progMem [ a d d r C o u n t e r ] = {opCode ,
de s t A d d r ,
l e f t A d d r ,
r i g h t A d d r ,
v a l u e } ;

a d d r C o u n t e r = a d d r C o u n t e r + 1 ;
end

endtask
/ / LB t a s k s e t s l a b e l T a b i n t h e f i r s t pas s a s s o c i a t i n g ’ c o u n t e r ’
/ / w i t h ’ l a b e l I n d e x ’
ta sk LB ;

input [ 4 : 0 ] l a b e l I n d e x ;
l a b e l T a b [ l a b e l I n d e x ] = a d d r C o u n t e r ;

endtask
/ / ULB t a s k u s e s t h e c o n t e n t o f l a b e l T a b i n t h e second pass
ta sk ULB;

input [ 4 : 0 ] l a b e l I n d e x ;
{ r i g h t A d d r , v a l u e } = l a b e l T a b [ l a b e l I n d e x ] − a d d r C o u n t e r ;

endtask

task NOP;
begin opCode = nop ;

d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = 5 ’ b0 ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
endLine ;

end
endtask

task JMP ;
input [ 4 : 0 ] l e f t ;
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begin opCode = jmp ;
d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = l e f t ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
endLine ;

end
endtask

task ZJMP ;
input [ 4 : 0 ] l e f t ;
input [ 5 : 0 ] l a b e l ;
begin opCode = zjmp ;

d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = l e f t ;
ULB( l a b e l ) ;
endLine ;

end
endtask
/ / . . .
ta sk RJMP ;

input [ 5 : 0 ] l a b e l ;
begin opCode = rjmp ;

d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = 5 ’ b0 ;
ULB( l a b e l ) ;
endLine ;

end
endtask

task EI ;
begin opCode = e i ;

d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = 5 ’B0 ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
endLine ;

end
endtask
/ / . . .
ta sk AND;

input [ 4 : 0 ] d e s t ;
input [ 4 : 0 ] l e f t ;
input [ 4 : 0 ] r i g h t ;
begin opCode = bwand ;

d e s t A d d r = d e s t ;
l e f t A d d r = l e f t ;
{ r i g h t A d d r , v a l u e } = { r i g h t , 11 ’ b0 } ;
endLine ;

end
endtask
/ / . . .
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ta sk ADD;
input [ 4 : 0 ] d e s t ;
input [ 4 : 0 ] l e f t ;
input [ 4 : 0 ] r i g h t ;
begin opCode = add ;

de s t A d d r = d e s t ;
l e f t A d d r = l e f t ;
{ r i g h t A d d r , v a l u e } = { r i g h t , 11 ’ b0 } ;
endLine ;

end
endtask
/ / . . .
ta sk ADDC;

input [ 4 : 0 ] d e s t ;
input [ 4 : 0 ] l e f t ;
input [ 4 : 0 ] r i g h t ;
begin opCode = addc ;

de s t A d d r = d e s t ;
l e f t A d d r = l e f t ;
{ r i g h t A d d r , v a l u e } = { r i g h t , 11 ’ b0 } ;
endLine ;

end
endtask
/ / . . .
ta sk VAL;

input [ 4 : 0 ] d e s t ;
input [ 1 5 : 0 ] immVal ;
begin opCode = v a l ;

de s t A d d r = d e s t ;
l e f t A d d r = 5 ’B0 ;
{ r i g h t A d d r , v a l u e } = immVal ;
endLine ;

end
endtask
/ / . . .
ta sk RECEIVE ;

begin opCode = r e c e i v e ;
de s t A d d r = 5 ’ b0 ;
l e f t A d d r = 5 ’ b0 ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
endLine ;

end
endtask
/ / . . .
ta sk DATARD;

input [ 4 : 0 ] d e s t ;
begin opCode = d a t a r d ;

de s t A d d r = d e s t ;
l e f t A d d r = 5 ’ b0 ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
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endLine ;
end

endtask
/ / . . .
/ / RUNNING
i n i t i a l begin a d d r C o u n t e r = 0 ;

‘ i n c l u d e ” 0 t h e P r o g r a m . v ” ; / / f i r s t pas s
a d d r C o u n t e r = 0 ;
‘ i n c l u d e ” 0 t h e P r o g r a m . v ” ; / / s econd pas s

end

The code generator program is a two-pass generator (see RUNNING ... in the above code) which
uses, besides the program memory progMem, a counter, addrCounter, and a memory, called labelTab,
for storing the address labeled by LB(n). In the first pass, in labelTab are stored the addresses counted
by addrCounter (see task LB), while dummy jump addresses are computed using the not up-dated
content of the labelTab memory. In the second pass, the content of the labelTab memory is used by
task ULB to compute the correct jump addresses.

The main tasks involved are of two types:

• additional tasks used for generating the binary code

endLine : once a line of code is filled up by an instruction task (such as NOP, AND, OR, ...,

JMP, HALT, ...), the resulting binary code is loaded in the program memory at the address
given by addrCounter, and the counter addrCounter is incremented.

LB : the label’s argument is loaded in the labelTab memory at the address addrCounter; the
action make sense only at the first pass

ULB : uses, at the second pass, the content of the labelTab memory to compute the actual value
of the jump address; it is pointless at the fists pass

• instruction generating tasks, of type:

NOP : no operand instructions

JMP(n) : control instruction with one parameter, n, which is a number indicating the register to
be used

ZJMP(m,n) : control instruction with two parameters, n and m, indicating a register and a label to
be used for a conditioned jump

ADD(d,l,r) : three-parameter instruction indicating destination regiter, d, left operand register,
l, and right operand register, r

The program is sequence of tasks which is translated in binary code by the
0 toyMachineCodeGenerator.v program.

Example 5.1 The following simple program:

VAL(1, 5);

VAL(2, 6);

ADD(3, 2, 1);
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adds in the register 3 the numbers loaded in the registers 1 and 2. The code generator sees this program
as a sequence of three tasks and generates three 32-bit words in the program memory starting with the
address 0.

⋄

5.2.2 The Simulation Module

The simulation module (stored in the file 0 toyMachineSimulator.v under the name
toyMachineSimulator) is used for two purposes:

• as the verification environment for the correctness of the design

• as the verification environment for the correctness of the programs written for the toyMachine
simple processor.

The full form of the file toyMachineSimlator.v is in the folder pointed by
http://arh.pub.ro/gstefan/toyMachine.zip, while, in the following, a little edited form
is presented.

/ * ************************************************************************
F i l e name : t o y M a c h i n e S i m u l a t o r . v
C i r c u i t name : S i m u l a t o r module f o r Toy Machine
D e s c r i p t i o n : s i m u l a t e a s y s t e m w i t h Toy Machine
************************************************************************ * /
module t o y M a c h i n e S i m u l a t o r ;

reg [ 1 5 : 0 ] i n S t r e a m ; / / i n p u t s t r ea m o f da ta
reg empty ; / / i n p u t s t r ea m i s ready
wire r e a d ; / / read one e l e m e n t from t h e i n p u t s t r ea m
wire [ 1 5 : 0 ] o u t S t r e a m ; / / o u t p u t s t r ea m o f da ta
reg f u l l ; / / r eady t o r e c e i v e from t h e o u t p u t s t r ea m
wire w r i t e ; / / w r i t e t h e e l e m e n t form o u t R e g i s t e r
reg i n t e r r u p t ; / / i n t e r r u p t i n p u t
wire i n t a ; / / i n t e r r u p t acknowledge
reg r e s e t ; / / r e s e t i n p u t
reg c l o c k ; / / c l o c k i n p u t

i n t e g e r i ;

i n i t i a l begin c l o c k = 0 ;
f o r e v e r #1 c l o c k = ˜ c l o c k ;

end

‘ i n c l u d e ” 0 t o y M a c h i n e C o d e G e n e r a t o r . v ”

i n i t i a l f o r ( i =0 ; i <32; i = i +1)
$ d i s p l a y ( ”progMem[%0d ] = %b ” , i , d u t . progMem [ i ] ) ;

i n i t i a l begin r e s e t = 1 ;
i n S t r e a m = 0 ;
empty = 0 ;
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f u l l = 0 ;
#3 r e s e t = 0 ;
#380 $ s t o p ;

end

always @( posedge c l o c k )
i f ( r e s e t ) i n S t r e a m [ 2 : 0 ] <= 0 ;

e l s e i n S t r e a m [ 2 : 0 ] <= r e a d I n ? i n S t r e a m [ 2 : 0 ] + 1 :
i n S t r e a m [ 2 : 0 ] ;

toySys tem d u t ( i n S t r e a m ,
empty ,
r e a d ,
o u t S t r e a m ,
f u l l ,
w r i t e ,
i n t e r r u p t ,
i n t a ,
r e s e t ,
c l o c k ) ;

i n i t i a l
$monitor ( ” t ime=%0d \ t r s t =%b pc=%0d . . . ” , / / ! ! !

$t ime ,
r e s e t ,
d u t . p rogramCounter ,
d u t . tM . c a r r y ,
d u t . tM . r e g F i l e [ 0 ] ,
d u t . tM . r e g F i l e [ 1 ] ,
d u t . tM . r e g F i l e [ 2 ] ,
d u t . tM . r e g F i l e [ 3 ] ,
d u t . tM . r e g F i l e [ 4 ] ,
d u t . tM . r e g F i l e [ 5 ] ,
d u t . tM . r e g F i l e [ 6 ] ,
d u t . tM . r e g F i l e [ 7 ] ,
d u t . tM . read ,
d u t . tM . i n R e g i s t e r ,
d u t . tM . w r i t e ,
d u t . tM . o u t R e g i s t e r ) ;

endmodule

The toySystem module instantiated in the simulator contains, besides the processor, two memories:
one for data and another for programs (see Figure 5.1. The module toySystem described in a file con-
tained in the folder pointed by http://arh.pub.ro/gstefan/toyMachine.zip. It has the following
form:
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/ * ************************************************************************
F i l e name : t o y S y s t e m . v
C i r c u i t name : Toy Sys tem
D e s c r i p t i o n : a s y s t e m b u i l d around Toy Machine
************************************************************************ * /
module t oySys tem

( input [ 1 5 : 0 ] i n S t r e a m , / / i n p u t s t r ea m o f da ta
input empty , / / i n p u t s t r ea m i s ready
output r e a d , / / read one e l e m e n t from t h e s t r ea m
output [ 1 5 : 0 ] o u t S t r e a m , / / o u t p u t s t r ea m o f da ta
input f u l l , / / r eady t o r e c e i v e from o u t p u t s t r ea m
output w r i t e , / / w r i t e t h e e l e m e n t form o u t R e g i s t e r
input i n t e r r u p t , / / i n t e r r u p t i n p u t
output i n t a , / / i n t e r r u p t acknowledge
input r e s e t , / / r e s e t i n p u t
input c l o c k ) ; / / c l o c k i n p u t

reg [ 3 1 : 0 ] progMem [ 0 : 1 0 2 3 ] ; / / i s a read o n l y memory
reg [ 3 1 : 0 ] dataMem [ 0 : 1 0 2 3 ] ;
wire [ 3 1 : 0 ] da taAddr ; / / a d d r e s s f o r da ta memory
wire [ 3 1 : 0 ] d a t a O u t ; / / da ta o f be s t o r e d i n da ta memory
wire s t o r e ; / / w r i t e i n da ta memory
wire [ 3 1 : 0 ] d a t a I n ; / / da ta from da ta memory
wire [ 3 1 : 0 ] p rogramCounte r ; / / a d d r e s s f o r program memory
wire [ 3 1 : 0 ] i n s t r u c t i o n ; / / i n s t r u c t i o n form t h e memory

toyMachine tM ( i n S t r e a m ,
empty ,
r e a d ,
o u t S t r e a m ,
f u l l ,
w r i t e ,
i n t e r r u p t ,
i n t a ,
da t aAddr ,
d a t a O u t ,
s t o r e ,
d a t a I n ,
p rogramCounte r ,
i n s t r u c t i o n ,
r e s e t ,
c l o c k ) ;

always @( posedge c l o c k ) dataMem [ da taAddr [ 9 : 0 ] ] <= d a t a O u t ;
a s s i g n d a t a I n = dataMem [ da taAddr [ 9 : 0 ] ] ;
a s s i g n i n s t r u c t i o n = progMem [ programCounte r [ 9 : 0 ] ] ;

endmodule
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5.2.3 Programming toyMachine

A program, 0 theProgram.v, written by one user is an input for the code genera-
tor, 0 toyMachineCodGenerator.v, which at its turn uses the architecture, described in
0 toyMachineArchitecture.v, and is included in the simulator, 0 toyMachineSimulator.v.

Each line in the file 0 theProgram.v contains one instruction or a label followed by an instruction.
Each instruction or label represents a task for the cod generator program. The simulator starts by printing
the binary form of the program and ends by printing the behavior of the system.

Example 5.2 Let us revisit the pixel correction problem whose solution as circuit was presented in Chap-
ter 1. Now we consider a more elaborated environment (see Figure 5.8). The main difference is that
the transfers of the streams of data are now conditioned by specific dialog signals. The subSystem

generating pixels is interrogated, by empty, before its output is loaded in inRegister; receiving
the data is notified back by the signal read. Similarly, there is a dialog with the subSystem using

pixels. It is interrogated by full and notified by write.

toyMachine
subSystem
generating

pixels

subSystem
using
pixels

- -
-

�

-

�read

?

reset

?

clock

int

6

?

outStream

progAddr

programMemory

instruction

write

full

empty

inStream

Figure 5.8: Programmed logic implementation for the interpol circuit.

In this application the data memory is not needed and the int signal is not used. The corresponding
signals are omitted or connected to fix values in Figure 5.8.

The program (see Figure 5.9) is structured to use three sequences of instructions called pseudo-
macros4.

• The first, called input, reads the input dealing with the dialog signals, empty and read.

• The second, called output, controls the output stream dealing with the signals full and write.

• The third pseudo-macro tests if the correction is needed, and apply it if necessary.

The pseudo-macro input: The registers 0, 1, and 2 from regFile are used to store three successive
values of pixels from the input stream. Then, before receiving a new value, the content of register 1 is
moved in the register 2 and the content of register 0 is moved in register 1 (see the first two line in the
code printed in Figure 5.9 in the section called "input" pseudo-macro). Now the register 0 form the

4The true macros are used in assembly languages. For this level of the machine language a more rudimentary form of macro
is used.
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register file is ready to receive a new value. The next instruction loads in inRegister the value of the
input stream when it is valid. The instruction receive loops with the same value in programCounter

until the empty signal becomes 0. The input value, once buffered in the inRegister, could be loaded
in regFile[0].

The sequence of instructions just described performs the shift operation defined in the module
stateTransition which is instantiated in the module pixelCorrector used as example in our in-
troductory first chapter.

The pseudo-macro output: See the code printed in Figure 5.9 in the section called "output"

pseudo-macro. The value to be sent out as the next pixel is stored in the register 1. Then, outRegister
register must be loaded with the content of regFile[1] (SEND(1)) and the signal write must be kept
active until full becomes 0, i. e., the instruction ISSUE loops with the same value in programCounter

until full = 0.

/ / i n i t i a l i z i n g t h e n e v e r end in g loop
RECEIVE ; / / l oad i n R e g i s t e r i f ( empty = 0) e l s e w a i t
GET ( 0 ) ; / / r e g F i l e [ 0 ] <= i n R e g i s t e r
RECEIVE ; / / l oad i n R e g i s t e r i f ( empty = 0) e l s e w a i t
GET ( 1 ) ; / / r e g F i l e [ 1 ] <= i n R e g i s t e r

/ / ” i n p u t ” pseudo −macro
LB ( 1 ) ; MOVE( 2 , 1 ) ; / / r e g F i l e [ 2 ] <= r e g F i l e [ 1 ]

MOVE( 1 , 0 ) ; / / r e g F i l e [ 1 ] <= r e g F i l e [ 0 ]
RECEIVE ; / / l oad i n R e g i s t e r i f ( empty = 0) e l s e w a i t
GET ( 0 ) ; / / r e g F i l e [ 0 ] <= i n R e g i s t e r

/ / ”compute” pseudo −macro
NZJMP( 1 , 2 ) ; / / i f ( r e g F i l e [ 1 ] !== 0) t h e n jump t o ” o u t p u t ”
ADD( 1 , 0 , 2 ) ; / / r e g F i l e [ 1 ] = r e g F i l e [ 0 ] + r e g F i l e [ 2 ]
ASHR( 1 , 1 ) ; / / r e g F i l e [ 1 ] = r e g F i l e [ 1 ] / 2

/ / ” o u t p u t ” pseudo −macro
LB ( 2 ) ; SEND ( 1 ) ; / / o u t R e g i s t e r = r e g F i l e [ 1 ]

ISSUE ; / / da ta i s i s s u e d i f ( f u l l = 0 ) , e l s e w a i t

RJMP ( 1 ) ; / / u n c o n d i t i o n e d jump t o LB ( 1 )

Figure 5.9: Machine language program for interpol.

The pseudo-macro compute: This pseudo-macro first perform the test on the content of the register
1 (NZJMP(1,2)), and, if necessary, makes the correction adding in the register 1 the content of the
registers 0 and 1 (ADD(1,0,2)), and then dividing the result by two performing an arithmetic shift right
(ASHR(1,1)).

The actual program, stored in the internal program memory (see Figure 5.9), has a starting part
receiving two input values, followed by an unending loop which receives a new value, compute the value
to be sent out and sends it.

The behavior of the system, provided by the simulator, is:
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progMem [ 0 ] = 10000000000000000000000000000000
progMem [ 1 ] = 10001000000000000000000000000000
progMem [ 2 ] = 10000000000000000000000000000000
progMem [ 3 ] = 10001000001000000000000000000000
progMem [ 4 ] = 01100000010000010000000000000000
progMem [ 5 ] = 01100000001000000000000000000000
progMem [ 6 ] = 10000000000000000000000000000000
progMem [ 7 ] = 10001000000000000000000000000000
progMem [ 8 ] = 00001000000000010000000000000110
progMem [ 9 ] = 00000000000000000000000000000000
progMem [ 1 0 ] = 00000000000000000000000000000000
progMem [ 1 1 ] = 10001100000000010000000000000000
progMem [ 1 2 ] = 10000100000000000000000000000000
progMem [ 1 3 ] = 00010000000000001111111111110111
progMem [ 1 4 ] = 01010000001000000001000000000000
progMem [ 1 5 ] = 01100100001000010000000000000000
progMem [ 1 6 ] = 10001100000000010000000000000000
progMem [ 1 7 ] = 10000100000000000000000000000000
progMem [ 1 8 ] = 00010000000000001111111111110010

Figure 5.10: The binary form of the program for interpol.

t ime =0 r s t =1 pc=x c r =x r f [ 0 ] = x r f [ 1 ] = x r f [ 2 ] = x r e a d =x inReg=x w r i t e =x outReg=x
t ime =1 r s t =1 pc =0 c r =x r f [ 0 ] = x r f [ 1 ] = x r f [ 2 ] = x r e a d =1 inReg=x w r i t e =0 outReg=x
t ime =3 r s t =0 pc =1 c r =x r f [ 0 ] = x r f [ 1 ] = x r f [ 2 ] = x r e a d =0 inReg =0 w r i t e =0 outReg=x
t ime =5 r s t =0 pc =2 c r =x r f [ 0 ] = 0 r f [ 1 ] = x r f [ 2 ] = x r e a d =1 inReg =0 w r i t e =0 outReg=x
t ime =7 r s t =0 pc =3 c r =x r f [ 0 ] = 0 r f [ 1 ] = x r f [ 2 ] = x r e a d =0 inReg =1 w r i t e =0 outReg=x
t ime =9 r s t =0 pc =4 c r =x r f [ 0 ] = 0 r f [ 1 ] = 1 r f [ 2 ] = x r e a d =0 inReg =1 w r i t e =0 outReg=x
t ime =11 r s t =0 pc =5 c r =x r f [ 0 ] = 0 r f [ 1 ] = 1 r f [ 2 ] = 1 r e a d =0 inReg =1 w r i t e =0 outReg=x
t ime =13 r s t =0 pc =6 c r =x r f [ 0 ] = 0 r f [ 1 ] = 0 r f [ 2 ] = 1 r e a d =1 inReg =1 w r i t e =0 outReg=x
t ime =15 r s t =0 pc =7 c r =x r f [ 0 ] = 0 r f [ 1 ] = 0 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg=x
t ime =17 r s t =0 pc =8 c r =x r f [ 0 ] = 2 r f [ 1 ] = 0 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg=x
t ime =19 r s t =0 pc =9 c r =x r f [ 0 ] = 2 r f [ 1 ] = 0 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg=x
t ime =21 r s t =0 pc =10 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 3 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg=x
t ime =23 r s t =0 pc =11 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg=x
t ime =25 r s t =0 pc =12 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =1 outReg =1
t ime =27 r s t =0 pc =13 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg =1
t ime =29 r s t =0 pc =4 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg =1
t ime =31 r s t =0 pc =5 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg =1
t ime =33 r s t =0 pc =6 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =1 inReg =2 w r i t e =0 outReg =1
t ime =35 r s t =0 pc =7 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =1
t ime =37 r s t =0 pc =8 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =1
t ime =39 r s t =0 pc =11 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =1
t ime =41 r s t =0 pc =12 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =1 outReg =2
t ime =43 r s t =0 pc =13 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =2
t ime =45 r s t =0 pc =4 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =2
t ime =47 r s t =0 pc =5 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 2 r e a d =0 inReg =3 w r i t e =0 outReg =2
t ime =49 r s t =0 pc =6 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =1 inReg =3 w r i t e =0 outReg =2
t ime =51 r s t =0 pc =7 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =2
t ime =53 r s t =0 pc =8 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =2
t ime =55 r s t =0 pc =11 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =2
t ime =57 r s t =0 pc =12 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =1 outReg =3
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t ime =59 r s t =0 pc =13 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =3
t ime =61 r s t =0 pc =4 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =3
t ime =63 r s t =0 pc =5 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 3 r e a d =0 inReg =4 w r i t e =0 outReg =3
t ime =65 r s t =0 pc =6 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =1 inReg =4 w r i t e =0 outReg =3
t ime =67 r s t =0 pc =7 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =0 outReg =3
t ime =69 r s t =0 pc =8 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =0 outReg =3
t ime =71 r s t =0 pc =11 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =0 outReg =3
t ime =73 r s t =0 pc =12 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =1 outReg =4
t ime =75 r s t =0 pc =13 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =0 outReg =4
t ime =77 r s t =0 pc =4 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =0 outReg =4
t ime =79 r s t =0 pc =5 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 4 r f [ 2 ] = 4 r e a d =0 inReg =5 w r i t e =0 outReg =4
t ime =81 r s t =0 pc =6 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 5 r f [ 2 ] = 4 r e a d =1 inReg =5 w r i t e =0 outReg =4
t ime =83 r s t =0 pc =7 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 5 r f [ 2 ] = 4 r e a d =0 inReg =6 w r i t e =0 outReg =4
t ime =85 r s t =0 pc =8 c r =0 r f [ 0 ] = 6 r f [ 1 ] = 5 r f [ 2 ] = 4 r e a d =0 inReg =6 w r i t e =0 outReg =4
t ime =87 r s t =0 pc =11 c r =0 r f [ 0 ] = 6 r f [ 1 ] = 5 r f [ 2 ] = 4 r e a d =0 inReg =6 w r i t e =0 outReg =4
t ime =89 r s t =0 pc =12 c r =0 r f [ 0 ] = 6 r f [ 1 ] = 5 r f [ 2 ] = 4 r e a d =0 inReg =6 w r i t e =1 outReg =5
t ime =91 r s t =0 pc =13 c r =0 r f [ 0 ] = 6 r f [ 1 ] = 5 r f [ 2 ] = 4 r e a d =0 inReg =6 w r i t e =0 outReg =5
t ime =93 r s t =0 pc =4 c r =0 r f [ 0 ] = 6 r f [ 1 ] = 5 r f [ 2 ] = 4 r e a d =0 inReg =6 w r i t e =0 outReg =5
t ime =95 r s t =0 pc =5 c r =0 r f [ 0 ] = 6 r f [ 1 ] = 5 r f [ 2 ] = 5 r e a d =0 inReg =6 w r i t e =0 outReg =5
t ime =97 r s t =0 pc =6 c r =0 r f [ 0 ] = 6 r f [ 1 ] = 6 r f [ 2 ] = 5 r e a d =1 inReg =6 w r i t e =0 outReg =5
t ime =99 r s t =0 pc =7 c r =0 r f [ 0 ] = 6 r f [ 1 ] = 6 r f [ 2 ] = 5 r e a d =0 inReg =7 w r i t e =0 outReg =5
t ime =101 r s t =0 pc =8 c r =0 r f [ 0 ] = 7 r f [ 1 ] = 6 r f [ 2 ] = 5 r e a d =0 inReg =7 w r i t e =0 outReg =5
t ime =103 r s t =0 pc =11 c r =0 r f [ 0 ] = 7 r f [ 1 ] = 6 r f [ 2 ] = 5 r e a d =0 inReg =7 w r i t e =0 outReg =5
t ime =105 r s t =0 pc =12 c r =0 r f [ 0 ] = 7 r f [ 1 ] = 6 r f [ 2 ] = 5 r e a d =0 inReg =7 w r i t e =1 outReg =6
t ime =107 r s t =0 pc =13 c r =0 r f [ 0 ] = 7 r f [ 1 ] = 6 r f [ 2 ] = 5 r e a d =0 inReg =7 w r i t e =0 outReg =6
t ime =109 r s t =0 pc =4 c r =0 r f [ 0 ] = 7 r f [ 1 ] = 6 r f [ 2 ] = 5 r e a d =0 inReg =7 w r i t e =0 outReg =6
t ime =111 r s t =0 pc =5 c r =0 r f [ 0 ] = 7 r f [ 1 ] = 6 r f [ 2 ] = 6 r e a d =0 inReg =7 w r i t e =0 outReg =6
t ime =113 r s t =0 pc =6 c r =0 r f [ 0 ] = 7 r f [ 1 ] = 7 r f [ 2 ] = 6 r e a d =1 inReg =7 w r i t e =0 outReg =6
t ime =115 r s t =0 pc =7 c r =0 r f [ 0 ] = 7 r f [ 1 ] = 7 r f [ 2 ] = 6 r e a d =0 inReg =0 w r i t e =0 outReg =6
t ime =117 r s t =0 pc =8 c r =0 r f [ 0 ] = 0 r f [ 1 ] = 7 r f [ 2 ] = 6 r e a d =0 inReg =0 w r i t e =0 outReg =6
t ime =119 r s t =0 pc =11 c r =0 r f [ 0 ] = 0 r f [ 1 ] = 7 r f [ 2 ] = 6 r e a d =0 inReg =0 w r i t e =0 outReg =6
t ime =121 r s t =0 pc =12 c r =0 r f [ 0 ] = 0 r f [ 1 ] = 7 r f [ 2 ] = 6 r e a d =0 inReg =0 w r i t e =1 outReg =7
t ime =123 r s t =0 pc =13 c r =0 r f [ 0 ] = 0 r f [ 1 ] = 7 r f [ 2 ] = 6 r e a d =0 inReg =0 w r i t e =0 outReg =7
t ime =125 r s t =0 pc =4 c r =0 r f [ 0 ] = 0 r f [ 1 ] = 7 r f [ 2 ] = 6 r e a d =0 inReg =0 w r i t e =0 outReg =7
t ime =127 r s t =0 pc =5 c r =0 r f [ 0 ] = 0 r f [ 1 ] = 7 r f [ 2 ] = 7 r e a d =0 inReg =0 w r i t e =0 outReg =7
t ime =129 r s t =0 pc =6 c r =0 r f [ 0 ] = 0 r f [ 1 ] = 0 r f [ 2 ] = 7 r e a d =1 inReg =0 w r i t e =0 outReg =7
t ime =131 r s t =0 pc =7 c r =0 r f [ 0 ] = 0 r f [ 1 ] = 0 r f [ 2 ] = 7 r e a d =0 inReg =1 w r i t e =0 outReg =7
t ime =133 r s t =0 pc =8 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 0 r f [ 2 ] = 7 r e a d =0 inReg =1 w r i t e =0 outReg =7
t ime =135 r s t =0 pc =9 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 0 r f [ 2 ] = 7 r e a d =0 inReg =1 w r i t e =0 outReg =7
t ime =137 r s t =0 pc =10 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 8 r f [ 2 ] = 7 r e a d =0 inReg =1 w r i t e =0 outReg =7
t ime =139 r s t =0 pc =11 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 4 r f [ 2 ] = 7 r e a d =0 inReg =1 w r i t e =0 outReg =7
t ime =141 r s t =0 pc =12 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 4 r f [ 2 ] = 7 r e a d =0 inReg =1 w r i t e =1 outReg =4
t ime =143 r s t =0 pc =13 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 4 r f [ 2 ] = 7 r e a d =0 inReg =1 w r i t e =0 outReg =4
t ime =145 r s t =0 pc =4 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 4 r f [ 2 ] = 7 r e a d =0 inReg =1 w r i t e =0 outReg =4
t ime =147 r s t =0 pc =5 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 4 r f [ 2 ] = 4 r e a d =0 inReg =1 w r i t e =0 outReg =4
t ime =149 r s t =0 pc =6 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 1 r f [ 2 ] = 4 r e a d =1 inReg =1 w r i t e =0 outReg =4
t ime =151 r s t =0 pc =7 c r =0 r f [ 0 ] = 1 r f [ 1 ] = 1 r f [ 2 ] = 4 r e a d =0 inReg =2 w r i t e =0 outReg =4
t ime =153 r s t =0 pc =8 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 4 r e a d =0 inReg =2 w r i t e =0 outReg =4
t ime =155 r s t =0 pc =11 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 4 r e a d =0 inReg =2 w r i t e =0 outReg =4
t ime =157 r s t =0 pc =12 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 4 r e a d =0 inReg =2 w r i t e =1 outReg =1
t ime =159 r s t =0 pc =13 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 4 r e a d =0 inReg =2 w r i t e =0 outReg =1
t ime =161 r s t =0 pc =4 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 4 r e a d =0 inReg =2 w r i t e =0 outReg =1
t ime =163 r s t =0 pc =5 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 1 r f [ 2 ] = 1 r e a d =0 inReg =2 w r i t e =0 outReg =1
t ime =165 r s t =0 pc =6 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =1 inReg =2 w r i t e =0 outReg =1
t ime =167 r s t =0 pc =7 c r =0 r f [ 0 ] = 2 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =1
t ime =169 r s t =0 pc =8 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =1
t ime =171 r s t =0 pc =11 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =1
t ime =173 r s t =0 pc =12 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =1 outReg =2
t ime =175 r s t =0 pc =13 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =2
t ime =177 r s t =0 pc =4 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 1 r e a d =0 inReg =3 w r i t e =0 outReg =2
t ime =179 r s t =0 pc =5 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 2 r f [ 2 ] = 2 r e a d =0 inReg =3 w r i t e =0 outReg =2
t ime =181 r s t =0 pc =6 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =1 inReg =3 w r i t e =0 outReg =2
t ime =183 r s t =0 pc =7 c r =0 r f [ 0 ] = 3 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =2
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t ime =185 r s t =0 pc =8 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =2
t ime =187 r s t =0 pc =11 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =2
t ime =189 r s t =0 pc =12 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =1 outReg =3
t ime =191 r s t =0 pc =13 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =3
t ime =193 r s t =0 pc =4 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 2 r e a d =0 inReg =4 w r i t e =0 outReg =3
t ime =195 r s t =0 pc =5 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 3 r f [ 2 ] = 3 r e a d =0 inReg =4 w r i t e =0 outReg =3
t ime =197 r s t =0 pc =6 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =1 inReg =4 w r i t e =0 outReg =3
t ime =199 r s t =0 pc =7 c r =0 r f [ 0 ] = 4 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =0 outReg =3
t ime =201 r s t =0 pc =8 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =0 outReg =3
t ime =203 r s t =0 pc =11 c r =0 r f [ 0 ] = 5 r f [ 1 ] = 4 r f [ 2 ] = 3 r e a d =0 inReg =5 w r i t e =0 outReg =3

⋄

5.3 Concluding about toyMachine

Our final target is to be able to describe the actual structure of toyMachine using as much as possible
simple circuits. Maybe we just catched a glimpse about the circuits we must learn how to design. It
is almost obvious that the following circuits are useful for building toyMachine: adders, subtractors,
increment circuits, selection circuits, various logic circuits, registers, file-registers, memories, read-only
memories (for fix program memory). The next chapters present detailed descriptions of all above circuits,
and a little more.

The behavioral description of toyMachine is synthesisable , but the resulting structure is too big
and has a completely unstructured shape. The size increases the price, and the lack of structure make
impossible any optimization of area, of speed or of the energy consumption.

The main advantages of the just presented behavioral description is its simplicity, and the possibility
to use it as a more credible “witness” when the structural description will be verified.

Pros & cons for programmed logic :

• it is a very flexible tool, but can not provide hi-performance solutions

• very good time-to-market, but not for mass production

• good for simple one chip solution, but not to be integrated as an IP on a complex SoC solution.

5.4 Problems

Problem 5.1 Write for toyMachine the program which follows-up as fast as possible by the value on
outStream the number of 1s on the inputs inStream.

Problem 5.2 Redesign the interpol program for a more accurate interpolation rule:

pi = 0.2× pi−2 +0.3× pi−1 +0.3× pi+1 +0.2× pi+2

Problem 5.3
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5.5 Projects

Project 5.1 Design the test environment for toyMachine, and use it to test the example from this chapter.



Part II

LOOPING IN THE DIGITAL DOMAIN
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Chapter 6

GATES:
Zero order, no-loop digital systems

In the previous chapter
ended the first part of this book, where we learned to “talk” in the Verilog HDL about how to
build big systems composing circuits and smaller systems, how to accelerate the computation in
a lazy system, and how to increase the autonomy of a system closing appropriate loops. Where
introduced the following basic concepts:

• serial, parallel, and serial-parallel compositions used to increase the size of a digital system,
maintaining the functional capabilities at the same level

• data (synchronic) parallelism and time (diachronic) parallelism (the pipeline connection) as
the basic mechanism to improve the speed of processing in digital systems

• included loops, whose effect of limiting the time parallelism is avoided by speculating – the
third form of parallelism, usually ignored in the development of the parallel architectures

• classifying digital circuits in orders, the n-th order containing circuits with n levels of em-
bedded loops

The last chapter of the first part defines the architecture of the machine whose components will be
described in the second part of this book.

In this chapter
the zero order, no-loop circuits are presented with emphasis on:

• how to expand the size of a basic combinational circuit

• the distinction between simple and complex combinatorial circuits

• how to deal with the complexity of combinatorial circuits using “programmable” devices

In the next chapter
the first order, memory circuits are introduced presenting

• how a simple loop allows the occurrence of the memory function

• the basic memory circuits: elementary lathes, clocked latches, master-slave flip-flops

• memories and registers as basic systems composed using the basic memory circuits
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Belief #5: That qualitative as well as quantita-
tive aspects of information systems will be accel-
erated by Moore’s Law. . . . In the minds of some
of my colleagues, all you have to do is identify one
layer in a cybernetic system that’s capable of fast
change and then wait for Moore’s Law to work its
magic.

Jaron Lanier1

The Moore’s Law applies to size not to complexity.

In this chapter we will forget for the moment about loops. Composition is the only mechanism in-
volved in building a combinational digital system. No-loop circuits generate the class of history free
digital systems whose outputs depend only by the current input variables, and are reassigned “continu-
ously” at each change of inputs. Anytime the output results as a specific “combination” of inputs. No
autonomy in combinational circuits, whose outputs obey “not to say a word” to inputs.

The combinational functions with n 1-bit inputs and m 1-bit outputs are called Boolean function and
they have the following form:

f : {0,1}n →{0,1}m.

For n = 1 only the NOT function is meaningful in the set of the 4 one-input Boolean functions. For n = 2
from the set of 16 different functions only few functions are currently used: AND, OR, XOR, NAND,
NOR, NXOR. Starting with n = 3 the functions are defined only by composing 2-input functions. (For a
short refresh see Appendix Boolean functions.)

Composing small gates results big systems. The growing process was governed in the last 40 years
by Moore’s Law2. For a few more decades maybe the same growing law will act. But, starting from
millions of gates per chip, it is very important what kind of circuits grow exponentially!

Composing gates results two kinds of big circuits. Some of them are structured following some
repetitive patterns, thus providing simple circuits. Others grow patternless, providing complex circuits.

6.1 Simple, Recursive Defined Circuits

The first circuits used by designers were small and simple. When they were grew a little they were
called big or complex. But, now when they are huge we must talk, more carefully, about big sized simple
circuits or about big sized complex circuits. In this section we will talk about simple circuits which can
be actualized at any size, i.e., their definitions don’t depend by the number, n, of their inputs.

In the class of n-inputs circuits there are 22n
distinct circuits. From this tremendous huge number of

logical function we use currently an insignificant small number of simple functions. What is strange is
that these functions are sufficient for almost all the problem which we are confronted (or we are limited
to be confronted).

1Jaron Lanier coined the term virtual reality. He is a computer scientist and a musician.
2The Moore’s Law says the physical performances in microelectronics improve exponentially in time.
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One fact is clear: we can not design very big complex circuits because we can not specify them. The
complexity must get away in another place (we will see that this place is the world of symbols). If we
need big circuit they must remain simple.

In this section we deal with simple, if needed big, circuits and in the next with the complex circuits,
but only with ones having small size.

From the class of the simple circuits we will present only some very usual such as decoders, demul-
tiplexors, multiplexors, adders and arithmetic-logic units. There are many other interesting and useful
functions. Many of them are proposed as problems at the end of this chapter.

6.1.1 Decoders

The simplest problem to be solved with a combinational logic circuit (CLC) is to answer the question:
“what is the value applied to the input of this one-input circuit?”. The circuit which solves this problem
is an elementary decoder (EDCD). It is a decoder because decodes its one-bit input value by activating
distinct outputs for the two possible input values. It is elementary because does this for the smallest
input word: the one-bit word. By decoding, the value applied to the input of the circuit is emphasized
activating distinct signals (like lighting only one of n bulbs). This is one of the main functions in a digital
system. Before generating an answer to the applied signal, the circuit must “know” what signal arrived
on its inputs.

Informal definition

The n-input decoder circuit – DCDn – (see Figure 6.1) performs one of the basic function in digital
systems: with one of its m one-bit outputs specifies the binary configuration applied on its inputs. The
binary number applied on the inputs of DCDn takes values in the set X = {0,1, ...2n − 1}. For each of
these values there is one output – y0,y1, ...ym−1 – which is activated on 1 if its index corresponds with
the current input value. If, for example, the input of a DCD4 takes value 1010, then y10 = 1 and the rest
15 one-bit outputs take the value 0.

x0x1
. . .

xn−1
y0 y1 . . . ym−1

DCDn

--

-

? ? ?

Figure 6.1: The n-input decoder (DCDn).

Formal definition

In order to rigorously describe and to synthesize a decoder circuit a formal definition is requested. Using
Verilog HDL, such a definition is very compact certifying the non-complexity of this circuit.

Definition 6.1 DCDn is a combinational circuit with the n-bit input X, xn−1, . . . ,x0, and the m-bit output
Y , ym−1, . . . ,y0, where: m = 2n, with the behavioral Verilog description:
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/ * ************************************************************************
F i l e name : dec . v
C i r c u i t name : Decoder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n−i n p u t decoder
************************************************************************ * /

module dec # ( parameter inDim = n ) ( input [ inDim − 1 : 0 ] s e l ,
output [ ( 1 << inDim ) − 1 : 0 ] o u t ) ;

a s s i g n o u t = 1 << s e l ;
endmodule

⋄

The previous Verilog description is synthesisable by the current software tools which provide an efficient
solution. It happens because this function is simple and it is frequently used in designing digital systems.

Recursive definition

The decoder circuit DCDn for any n can be defined recursively in two steps:

• defining the elementary decoder circuit (EDCD = DCD1) as the smallest circuit performing the
decode function

• applying the divide & impera rule in order to provide the DCDn circuit using DCDn/2 circuits.

For the first step EDCD is defined as one of the simplest and smallest logical circuits. Two one-input
logical function are used to perform the decoding. Indeed, parallel composing (see Figure 6.2a) the
circuits performing the simplest functions: f 1

2 (x0) = y1 = x0 (identity function) and f 1
1 (x0) = y0 = x′0

(NOT function), we obtain an (EDCD). If the output y0 is active, it means the input is zero. If the output
y1 is active, then the input has the value 1.

EDCD

x0
y0

y1

a.

x0

y0

y1

b.

Figure 6.2: The elementary decoder (EDCD). a. The basic circuit. b. Buffered EDCD, a serial-parallel
composition.

In order to isolate the output from the input the buffered EDCD version is considered serial compos-
ing an additional inverter with the previous circuit (see Figure 6.2b). Hence, the fan-out of EDCD does
not depend on the fan-out of the circuit that drives the input.

The second step is to answer the question about how can be build a (DCDn) for decoding an n-bit
input word.

Definition 6.2 The structure of DCDn is recursive defined by the rule represented in Figure 6.3. The
DCD1 is an EDCD (see Figure 6.2b). ⋄
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DCDn/2

DCDn/2

-

6

xn−1 . . .x0

n/2

n/2

y0

y1

yp−1

y0 y1
yp−1

y0 y1 yp−1

yp

ym−1

n

Figure 6.3: The recursive definition of n-inputs decoder (DCDn). Two DCDn/2 are used to drive a two
dimension array of AND2 gates. The same rule is applied for the two DCDn/2, and so on until DCD1 = EDCD is
needed.

The previous definition is a constructive one, because provide an algorithm to construct a decoder
for any n. It falls into the class of the “divide & impera” algorithms which reduce the solution of the
problem for n to the solution of the same problem for n/2.

The quantitative evaluation of DCDn offers the following results:

Size: GSDCD(n) = 2nGSAND(2)+2GSDCD(n/2) = 2(2n +GSDCD(n/2))
GSDCD(1) = GSEDCD = 2
GSDCD(n) ∈ O(2n)

Depth: DDCD(n) = DAND(2)+DDCD(n/2) = 1+DDCD(n/2) ∈ O(log n)
DDCD(1) = DEDCD = 2

Complexity: CDCD ∈ O(1) because the definition occupies a constant drown area (Figure 6.3) or a con-
stant number of symbols in the Verilog description for any n.

The size, the complexity and the depth of this version of decoder is out of discussion because the
order of the size can not be reduced under the number of outputs (m = 2n), for complexity O(1) is the
minimal order of magnitude, and for depth O(log n) is optimal takeing into account we applied the
“divide & impera” rule to build the structure of the decoder.

Non-recursive description

An iterative structural version of the previous recursive constructive definition is possible, because the
outputs of the two DCDn/2 from Figure 6.3 are also 2-input AND circuits, the same as the circuits on
the output level. In this case we can apply the associative rule, implementing the last two levels by only
one level of 4-input ANDs. And so on, until the output level of the 2n n-input ANDs is driven by n
EDCDs. Now we have the decoder represented in Figure 6.4). Apparently it is a constant depth circuit,
but if we take into account that the number of inputs in the AND gates is not constant, then the depth
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is given by the depth of an n-input gate which is in O(log n). Indeed, an n-input AND has an efficient
implementation as as a binary tree of 2-input ANDs.

x0

x1

xn−1

y0 y1 ym−1

. . . . . . . . .

Figure 6.4: “Constant depth” DCD Applying the associative rule into the hierarchical network of AND2 gates
results the one level ANDn gates circuit driven by n EDCDs.

This “constant depth” DCD version – CDDCD – is faster than the previous for small values of n
(usually for n < 6; for more details see Appendix Basic circuits), but the size becomes SCDDCD(n) =
n×2n+2n ∈ O(n2n). The price is over-dimensioned related to the gain, but for small circuits sometimes
it can be accepted.

The pure structural description for DCD3 is:

/ * ************************************************************************
F i l e name : dec3 . v
C i r c u i t name : 3− i n p u t Decoder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a 3− i n p u t decoder
************************************************************************ * /
module dec3 ( output [ 7 : 0 ] out ,

input [ 2 : 0 ] i n ) ;
/ / i n t e r n a l c o n n e c t i o n s

wire in0 , nin0 , in1 , nin1 , in2 , n i n2 ;
/ / EDCD f o r i n [ 0 ]

not no t00 ( nin0 , i n [ 0 ] ) , no t01 ( in0 , n in0 ) ;
/ / EDCD f o r i n [ 1 ]

not no t10 ( nin1 , i n [ 1 ] ) , no t11 ( in1 , n in1 ) ;
/ / EDCD f o r i n [ 2 ]

not no t20 ( nin2 , i n [ 2 ] ) , no t21 ( in2 , n in2 ) ;
/ / t h e second l e v e l

and and0 ( o u t [ 0 ] , n in2 , nin1 , n in0 ) ; / / o u t p u t 0
and and1 ( o u t [ 1 ] , n in2 , nin1 , i n 0 ) ; / / o u t p u t 1
and and2 ( o u t [ 2 ] , n in2 , in1 , n in0 ) ; / / o u t p u t 2
and and3 ( o u t [ 3 ] , n in2 , in1 , i n 0 ) ; / / o u t p u t 3
and and4 ( o u t [ 4 ] , in2 , nin1 , n in0 ) ; / / o u t p u t 4
and and5 ( o u t [ 5 ] , in2 , nin1 , i n 0 ) ; / / o u t p u t 5
and and6 ( o u t [ 6 ] , in2 , in1 , n i n0 ) ; / / o u t p u t 6
and and7 ( o u t [ 7 ] , in2 , in1 , i n 0 ) ; / / o u t p u t 7

endmodule
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For n = 3 the size of this iterative version is identical with the size which results from the recursive
definition. There are meaningful differences only for big n. In real designs we do not need this kind of
pure structural descriptions because the current synthesis tools manage very well even pure behavioral
descriptions such that from the formal definition of the decoder.

Arithmetic interpretation

The decoder circuit is also an arithmetic circuit. It computes the numerical function of exponentiation:
Y = 2X . Indeed, for n = i only the output yi takes the value 1 and the rest of the outputs take the value 0.
Then, the number represented by the binary configuration Y is 2i.

Application

Because the expressions describing the m outputs of DCDn are:

y0 = x′n−1 · x′n−2 · . . .x′1 · x′0
y1 = x′n−1 · x′n−2 · . . .x′1 · x0
y2 = x′n−1 · x′n−2 · . . .x1 · x′0
...
ym−2 = xn−1 · xn−2 · . . .x1 · x′0
ym−1 = xn−1 · xn−2 · . . .x1 · x0

the logic interpretation of these outputs is that they represent all the min-terms for an n-input function.
Therefore, any n-input logic function can be implemented using a DCDn and an OR with maximum m−1
inputs.

Example 6.1 Let be the 3-input 2-output function defined in the table from Figure 6.5. A DCD3 is used
to compute all the min-terms of the 3 variables a, b, and c. A 3-input OR is used to “add” the min-terms
for the function X, and a 4-input OR is used to “add” the min-terms for the function Y.

x0
x1
x2

y0 y1 y2 y3 y4 y5 y6 y7

DCD3

X

Y

-
-
-a

b
c

0 0 0
100

1 00
0 1 1
1
1
1
1

1
1

1
0 0
0

0
1

a b c X Y

1

1
1

1
1

1

1

0

0 0
0
0 0

0 0

0

Figure 6.5:

Each min-term is computed only once, but it can be used as many times as the implemented functions
suppose.

⋄
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6.1.2 Demultiplexors

The structure of the decoder is included in the structure of the other usual circuits. Two of them are the
demultiplexor circuit and the multiplexer circuit. These complementary functions are very important in
digital systems because of their ability to perform “communication” functions. Indeed, demultiplexing
means to spread a signal from a source to many destinations, selected by a binary code and multiplexing
means the reverse operation to catch signals from distinct sources also selected using a selection code.
Inside of both circuits there is a decoder used to identify the source of the signal or the destination of the
signal by decoding the selection code.

Informal definition

The first informally described solution for implementing the function of an n-input demultiplexor is to
use a decoder with the same number of inputs and m 2-input AND connected as in Figure 6.6. The value
of the input enable is generated to the output of the gate opened by the activated output of the decoder
DCDn. It is obvious that a DCDn is a DMUXn with enable = 1. Therefore, the size, depth of DMUXs
are the same as for DCDs, because the depth is incremented by 1 and to the size is added a value which
is in O(2n).

y0 y1 ym−1

x0

DCDn

x1

xn−1

-
-

-

y0 y1 ym−1

enable

Figure 6.6: Demultiplexor. The n-input demultiplexor (DMUXn) includes a DCDn and 2n AND2 gates used to
distribute the input enable in 2n different places according to the n-bit selection code.

For example, if on the selection input X = s, then the outputs yi take the value 0 for i ̸= s and
ys = enable. The inactive value on the outputs of this DMEX is 0.

Formal definition

Definition 6.3 The n-input demultiplexor – DMUXn – is a combinational circuit which transfers the 1-
bit signal from the input enable to the one of the outputs ym−1, . . . ,y0 selected by the n-bit selection code
X = xn−1, . . . ,x0, where m = 2n. It has the following behavioral Verilog description:
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/ * ************************************************************************
F i l e name : dmux . v
C i r c u i t name : D e m u l t i p l e x o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r a n−i n p u t d e m u l t i p l e x o r
************************************************************************ * /

module dmux #( parameter inDim = n ) ( input [ inDim − 1 : 0 ] s e l ,
input enab le ,
output [ ( 1 << inDim ) − 1 : 0 ] o u t ) ;

a s s i g n o u t = e n a b l e << s e l ;
endmodule

⋄

Recursive definition

The DMUX circuit has also a recursive definition. The smallest DMUX, the elementary DMUX –
EDMUX –, is a 2-output one, with a one-bit selection input. EDMUX is represented in Figure 6.7.
It consists of an EDCD used to select, with its two outputs, the way for the signal enable. Thus, the
EDMUX is a circuit that offers the possibility to transfer the same signal (enable) in two places (y0 and
y1), according with the selection input (x0) (see Figure 6.7.

EDMUX-

? ?

?

x0

y0 y1

enable

a. b.

enable

x0
EDCD

y0 y1

Figure 6.7: The elementary demultiplexor. a. The internal structure of an elementary demultiplexor (ED-
MUX) consists in an elementary decoder, 2 AND2 gates, and an inverter circuit as input buffer. b. The logic
symbol.

The same rule – divide & impera – is used to define an n-input demultiplexor, as follows:

Definition 6.4 DMUXn is defined as the structure represented in Figure 6.8, where the two DMUXn−1
are used to select the outputs of an EDMUX. ⋄

If the recursive rule is applied until the end the resulting circuit is a binary tree of EDMUXs. It has
SDMUX(N)∈ O(2n) and DDMUX(n)∈ O(n). If this depth is considered too big for the current application,
the recursive process can be stopped at a convenient level and that level is implemented with a “constant
depth” DMUXs made using “constant depth” DCDs. The mixed procedures are always the best. The
previous definition is a suggestion for how to use small DMUXs to build bigger ones.
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DMUXn−1

? ?

�
-

enable

y0 y m
2 −1

DMUXn−1

? ?

�
-enable

y0

�
EDMUX

-

xn−2 , . . . ,x0

n−1

enable

x0

xn−1

y0 y1

y0

. . .

y m
2 −1 y m

2

. . .

ym−1

y m
2 −1

enable

Figure 6.8: The recursive definition of DMUXn. Applying the same rule for the two DMUXn−1 a new level
of 2 EDMUXs is added, and the output level is implemented using 4 DMUXn−2. And so on until the
output level is implemented using 2n−1 EDMUXs. The resulting circuit contains 2n −1 EDMUXs.

6.1.3 Multiplexors

Now about the inverse function of demultiplexing: the multiplexing, i.e., to take a bit of information
from a selected place and to send in one place. Instead of spreading by demultiplexing, now the multi-
plexing function gathers from many places in one place. Therefore, this function is also a communication
function, allowing the interconnecting between distinct places in a digital system. In the same time, this
circuit is very useful for implementing random, i.e. complex, logical functions, as we will see at the end
of this chapter. More, in the next chapter we will see that the smallest multiplexor is used to build the
basic memory circuits. Looks like this circuit is one of the most important basic circuit, and we must pay
a lot of attention to it.

Informal definition

The direct intuitive implementation of a multiplexor with n selection bits – MUXn – starts also from a
DCDn which is now serially connected with an AND-OR structure (see Figure 6.9). The outputs of the
decoder open, for a given input code, only one AND gate that transfers to the output the corresponding
selected input which, by turn, is OR-ed to the output y.

Applying in this structure the associativity rule, for the AND gates to the output of the decoder and
the supplementary added ANDs, results the actual structure of MUX. The structure AND-OR maintains
the size and the depth of MUX in the same orders as for DCD.

Formal definition

As for the previous two circuits – DCD and DMUX –, we can define the multiplexer using a behavioral
(functional) description.

Definition 6.5 A multiplexer MUXn is a combinational circuit having n selection inputs xn−1, . . . ,x0 that
selects to the output y one input from the m = 2n selectable inputs, im−1, . . . , i0. The Verilog description
is:
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y1

6
xn−1 , . . . ,x0

y0

ym−1

. . .

DCDn

. . .

n

i0 i1 im−1

y

. . .

Figure 6.9: Multiplexer. The n selection inputs multiplexer MUXn is made serial connecting a DCDn with an
AND-OR structure.

/ * ************************************************************************
F i l e name : mux . v
C i r c u i t name : M u l t i p l e x o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r a n s e l e c t i o n i n p u t s

m u l t i p l e x o r
************************************************************************ * /

module mux #( parameter inDim = n )
( input [ inDim − 1 : 0 ] s e l , / / s e l e c t i o n i n p u t s

input [(1<< inDim ) − 1 : 0 ] i n , / / s e l e c t e d i n p u t s
output o u t ) ;

a s s i g n o u t = i n [ s e l ] ;
endmodule

⋄

The MUX is obviously a simple function. Its formal description, for any number of inputs has a
constant size. The previous behavioral description is synthesisable efficiently by the current software
tools.

Recursive definition

There is also a rule for composing large MUSs from the smaller ones. As usual, we start from an
elementary structure. The elementary MUX – EMUX – is a selector that connects the signal i1 or i0
in y according to the value of the selection signal x0. The circuit is presented in Figure 6.10a, where
an EDCD with the input x0 opens only one of the two ANDs ”added” by the OR circuit in y. Another
version for EMUX uses tristate inverting drivers (see Figure 6.10c).

The definition of MUXn starts from EMUX, in a recursive manner. This definition will show us that
MUX is also a simple circuit (CMUX(n) ∈ O(1)). In the same time this recursive definition will be a
suggestion for the rule that composes big MUXs from the smaller ones.
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x0

i0 i1

y
a. b.

EMUX-

? ?

?

x0

y

i0 i1

c.

c’

c’

c

x0

yi1

i0

c

c’c

Figure 6.10: The elementary multiplexer (EMUX). a. The structure of EMUX containing an EDCD and
the smallest AND-OR structure. b. The logic symbol of EMUX. c. A version of EMUX using transmission gates
(see section Basic circuits).

Definition 6.6 MUXn can be made by serial connecting two parallel connected MUXn/2 with an EMUX
(see Figure 6.11 that is part of the definition), and MUX1 = EMUX. ⋄

MUXn−1

? ?

-
i0 i m

2 −1

y

MUXn−1

? ?

-
i0 i m

2 −1

y

EMUX

? ?

?

-

i0 i m
2 −1 i m

2 im−1

xn−2 , . . . ,x0

xn−1

y

y

x0
i0 i1

. . . . . .

. . . . . .

Figure 6.11: The recursive definition of MUXn. Each MUXn−1 has a similar definition (two MUXn−2 and
one EMUX), until the entire structure contains EMUXs. The resulting circuit is a binary tree of 2n −1 EMUXs.

Structural aspects

This definition leads us to a circuit having the size in O(2n) (very good, because we have m = 2n inputs
to be selected in y) and the depth in O(n). In order to reduce the depth we can apply step by step the next
procedure: for the first two levels in the tree of EMUXs we can write the equation

y = x1(x0i3 + x′0i2)+ x′1(x0i1 + x′0i0)

that becomes
y = x1x0i3 + x1x′0i2 + x′1x0i1 + x′1x′0i0.
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Using this procedure two or more levels (but not too many) of gates can be reduced to one. Carefully
applied this procedure accelerate the speed of the circuit.

Application

Because the logic expression of a n selection inputs multiplexor is:

y = xn−1 . . .x1x0im−1 + . . .+ x′n−1 . . .x
′
1x0i1 + x′n−1 . . .x

′
1x′0i0

any n-input logic function is specified by the binary vector {im−1, . . . i1, i0}. Thus any n input logic
function can be implemented with a MUXn having on its selected inputs the binary vector defining it.

Example 6.2 Let be function X defined in Figure 6.12 by its truth table. The implementation with a
MUX3 means to use the right side of the table as the defining binary vector.

x0
x1
x2

i0 i1 i2 i3 i4 i5 i6 i7

MUX3

???????
0 0 0

100
1 00

0 1 1
1
1
1
1

1
1

1
0 0
0

0
1

a b c X

?1

1
1 ?

y

X

0

0

0

0
0

0

0

1 0 0 01 1

-
-
-a

b
c

Figure 6.12:

⋄

6.1.4 Priority encoder

An encoder is a circuit which connected to the outputs of a decoder provides the value applied on the
input of the decoder. As we know only one output of a decoder is active at a time. Therefore, the encoder
compute the index of the activated output. But, a real application of an encoder is to encode binary
configurations provided by any kind of circuits. In this case, more than one input can be active and the
encoder must have a well defined behavior. One of this behavior is to encode the most significant bit and
to ignore the rest of bits. For this reason the encoder is a priority encoder.

The n-bit input, enabled priority encoder circuit, PE(n), receives xn−1,xn−2, . . .x0 and, if the enable
input is activated, en = 1, it generates the number Y = ym−1,ym−2, . . .y0, with n = 2m, where Y is the
biggest index associated with xi = 1 if any, else zero output is activated. (For example: if en = 1, for
n = 8, and x7,x6, . . .x0 = 00110001, then y2,y1,y0 = 101 and zero = 0) The following Verilog code
describe the behavior of PE(n).



158 CHAPTER 6. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

/ * ************************************************************************
F i l e name : p r i o r i t y e n c o d e r . v
C i r c u i t name : P r i o r i t y Encoder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an 8− b i t i n p u t p r i o r i t y encoder
************************************************************************ * /

module p r i o r i t y e n c o d e r # ( parameter m = 3)
( input [ ( 1 ’ b1<<m) − 1 : 0 ] i n ,

input e n a b l e ,
output reg [m− 1 : 0 ] o u t ,
output reg z e r o ) ;

i n t e g e r i ;
always @( * ) i f ( e n a b l e ) begin o u t = 0 ;

f o r ( i =(1 ’ b1 << m) −1; i >=0; i = i −1)
i f ( ( o u t == 0) && i n [ i ] ) o u t = i ;

i f ( i n == 0) z e r o = 1 ;
e l s e z e r o = 0 ;

end
e l s e begin o u t = 0 ;

z e r o = 1 ;
end

endmodule

For testing the previous description the following test module is used:
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/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module t e s t p r i o r i t y e n c o d e r # ( parameter m = 3 ) ;
reg [ ( 1 ’ b1<<m) − 1 : 0 ] i n ;
reg e n a b l e ;
wire [m− 1 : 0 ] o u t ;
wire z e r o ;
i n i t i a l begin e n a b l e = 0 ;

i n = 8 ’ b11111111 ;
#1 e n a b l e = 1 ;
#1 i n = 8 ’ b00000001 ;
#1 i n = 8 ’ b0000001x ;
#1 i n = 8 ’ b000001xx ;
#1 i n = 8 ’ b00001xxx ;
#1 i n = 8 ’ b0001xxxx ;
#1 i n = 8 ’ b001xxxxx ;
#1 i n = 8 ’ b01xxxxxx ;
#1 i n = 8 ’ b1xxxxxxx ;
#1 i n = 8 ’ b110 ;
#1 $ s t o p ;

end
p r i o r i t y e n c o d e r d u t ( i n ,

e n a b l e ,
o u t ,
z e r o ) ;

i n i t i a l $monitor ( $t ime , ” e n a b l e=%b i n=%b o u t=%b z e r o=%b ” ,
enab le , in , out , z e r o ) ;

endmodule

Running the previous code the simulation provides the following result:

t ime = 0 e n a b l e = 0 i n = 11111111 o u t = 000 z e r o = 1
t ime = 1 e n a b l e = 1 i n = 11111111 o u t = 111 z e r o = 0
t ime = 2 e n a b l e = 1 i n = 00000001 o u t = 000 z e r o = 0
t ime = 3 e n a b l e = 1 i n = 0000001 x o u t = 001 z e r o = 0
t ime = 4 e n a b l e = 1 i n = 000001 xx o u t = 010 z e r o = 0
t ime = 5 e n a b l e = 1 i n = 00001 xxx o u t = 011 z e r o = 0
t ime = 6 e n a b l e = 1 i n = 0001 xxxx o u t = 100 z e r o = 0
t ime = 7 e n a b l e = 1 i n = 001 xxxxx o u t = 101 z e r o = 0
t ime = 8 e n a b l e = 1 i n = 01 xxxxxx o u t = 110 z e r o = 0
t ime = 9 e n a b l e = 1 i n = 1 xxxxxxx o u t = 111 z e r o = 0
t ime =10 e n a b l e = 1 i n = 00000110 o u t = 010 z e r o = 0

It is obvious that this circuit computes the integer part of the base 2 logarithm. The output zero is
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used to notify that the input value is unappropriate for computing the logarithm, and “prevent” us from
takeing into account the output value.

6.1.5 Increment circuit

The simplest arithmetic operation is the increment. The combinational circuit performing this function
receives an n-bit number, xn−1, . . .x0, and a one-bit command, inc, enabling the operation. The outputs,
yn−1, . . .y0, and crn−1 behaves according to the value of the command:

If inc = 1, then
{crn−1,yn−1, . . .y0}= {xn−1, . . .x0}+1

else
{crn−1,yn−1, . . .y0}= {0,xn−1, . . .x0}.

EINC INCn−1

?

?

�� �

? ?

? ?

x0xn−2xn−1

yn−1 yn−2 y0

inccrn−1
crn−2

in

out

inccr

b.

EINC

in

out

inc
cr

a.

INCn

Figure 6.13: Increment circuit. a. The elementary increment circuit (called also half adder). b. The recursive
definition for an n-bit increment circuit.

The increment circuit is built using as “brick” the elementary increment circuit, EINC, represented
in Figure 6.13a, where the XOR circuit generate the increment of the input if inc = 1 (the current bit is
complemented), and the circuit AND generate the carry for the the next binary order (if the current bit
is incremented and it has the value 1). An n-bit increment circuit, INCn is recursively defined in Figure
6.13b: INCn is composed using an INCn−1 serially connected with an EINC, where INC0 = EINC.

6.1.6 Adders

Another usual digital functions is the sum. The circuit associated to this function can be also made
starting from a small elementary circuits, which adds two one-bit numbers, and looking for a simple
recursive definitions for n-bit numbers.

The elementary structure is the well known full adder which consists in two half adders and an OR2.
An n-bit adder could be done in a recursive manner as the following definition says.

Definition 6.7 The full adder, FA, is a circuit which adds three 1-bit numbers generating a 2-bit result:

FA(in1, in2, in3) = {out1,out0}

FA is used to build n-bit adders. For this purpose its connections are interpreted as follows:
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• in1, in2 represent the i-th bits if two numbers

• in3 represents the carry signal generated by the i−1 stage of the addition process

• out0 represents the i-th bit of the result

• out1 represents the carry generated for the i+1-th stage of the addition process

Follows the Verilog description:

/ * ************************************************************************
F i l e name : f u l l a d d e r . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a f u l l adder
************************************************************************ * /

module f u l l a d d e r ( output sum , c a r r y o u t , input in1 , in2 , c a r r y i n ) ;
h a l f a d d e r ha1 ( sum1 , c a r r y 1 , in1 , i n 2 ) ,

ha2 ( sum , c a r r y 2 , sum1 , c a r r y i n ) ;
a s s i g n c a r r y o u t = c a r r y 1 | c a r r y 2 ;

endmodule

/ * ************************************************************************
F i l e name : h a l f a d d e r . v
C i r c u i t name : Ha l f Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a h a l f adder
************************************************************************ * /

module h a l f a d d e r ( output sum , c a r r y , input in1 , i n 2 ) ;
a s s i g n sum = i n 1 ˆ in2 ,

c a r r y = i n 1 & i n 2 ;
endmodule

⋄

Note: The half adder circuit is also an elementary increment circuit (see Figure 6.13a).

Definition 6.8 The n-bits ripple carry adder, (ADDn), is made by serial connecting on the carry chain
an ADDn−1 with a FA (see Figure 6.14). ADD1 is a full adder.
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FA ADDn−1

A B
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Sn−2 S0

. . .
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Figure 6.14: The recursive defined n-bit ripple-carry adder (ADDn). ADDn is simply designed adding to
an ADDn−1 a full adder (FA), so as the carry signal ripples from one FA to the next.

/ * ************************************************************************
F i l e name : adder . v
C i r c u i t name : Adder
D e s c r i p t i o n : r e c u r s i v e s t r u c t u r a l d e s c r i p t i o n o f a n− b i t adder u s i n g

t h e c o n d i t i o n a l g e n e r a t e s t a t e m e n t
************************************************************************ * /

module a d d e r # ( parameter n = 4 ) ( output [ n − 1 : 0 ] o u t ,
output c r y ,
input [ n − 1 : 0 ] i n 1 ,
input [ n − 1 : 0 ] i n 2 ,
input c i n ) ;

wire [ n : 1 ] c a r r y ;
a s s i g n c r y = c a r r y [ n ] ;
g e n e r a t e
i f ( n == 1) f u l l A d d e r f i r s t A d e r ( . o u t ( o u t [ 0 ] ) ,

. c r y ( c a r r y [ 1 ] ) ,

. i n 1 ( i n 1 [ 0 ] ) ,

. i n 2 ( i n 2 [ 0 ] ) ,

. c i n ( c i n ) ) ;
e l s e begin a d d e r # ( . n ( n − 1 ) ) p a r t A d d e r ( . o u t ( o u t [ n − 2 : 0 ] ) ,

. c r y ( c a r r y [ n −1] ) ,

. i n 1 ( i n 1 [ n − 2 : 0 ] ) ,

. i n 2 ( i n 2 [ n − 2 : 0 ] ) ,

. c i n ( c i n ) ) ;
f u l l A d d e r l a s t A d d e r ( . o u t ( o u t [ n −1] ) ,

. c r y ( c a r r y [ n ] ) ,

. i n 1 ( i n 1 [ n −1] ) ,

. i n 2 ( i n 2 [ n −1] ) ,

. c i n ( c a r r y [ n −1] ) ) ;
end

endgenerate
endmodule
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/ * ************************************************************************
F i l e name : f u l l A d d e r . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a f u l l adder
************************************************************************ * /
module f u l l A d d e r ( output out , c r y ,

input in1 , in2 , c i n ) ;
a s s i g n c r y = i n 1 & i n 2 | ( i n 1 ˆ i n 2 ) & c i n ;
a s s i g n o u t = i n 1 ˆ i n 2 ˆ c i n ;

endmodule

⋄

The previous definition used the conditioned generation block.3 The Verilog code from the previous
recursive definition can be used to simulate and to synthesize the adder circuit. For this simple circuit this
definition is too sophisticated. It is presented here only to provide a simple example of how a recursive
definition is generated.

A simpler way to define an adder is provided in the next example where a generate block is used.

Example 6.3 Generated n-bit adder:

/ * ************************************************************************
F i l e name : add . v
C i r c u i t name : Adder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a n−i n p u t adder u s i n g t h e

g e n e r a t e s t a t e m n t
************************************************************************ * /

module add #( parameter n = 8 ) ( input [ n − 1 : 0 ] in1 , in2 ,
input c I n ,
output [ n − 1 : 0 ] o u t ,
output cOut ) ;

wire [ n : 0 ] c r ;
a s s i g n c r [ 0 ] = c I n ;
a s s i g n cOut = c r [ n ] ;
genvar i ;
g e n e r a t e f o r ( i =0 ; i<n ; i = i +1) begin : S

f a a d d e r ( . i n 1 ( i n 1 [ i ] ) ,
. i n 2 ( i n 2 [ i ] ) ,
. c I n ( c r [ i ] ) ,
. o u t ( o u t [ i ] ) ,
. cOut ( c r [ i + 1 ] ) ) ; end

endgenerate
endmodule

3The use of the conditioned generation block for recursive definition was suggested to me by my colleague Radu Hobincu.
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/ * ************************************************************************
F i l e name : f a . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a f u l l adder
************************************************************************ * /

module f a ( input in1 , in2 , c I n ,
output out , cOut ) ;

wire xr ;
a s s i g n xr = i n 1 ˆ i n 2 ;
a s s i g n o u t = xr ˆ c I n ;
a s s i g n cOut = i n 1 & i n 2 | c I n & xr ;

endmodule

⋄

Because the add function is very frequently used, the synthesis and simulation tools are able to
”understand” the simplest one-line behavioral description used in the following module:

/ * ************************************************************************
F i l e name : add . v
C i r c u i t name : Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an adder
************************************************************************ * /

module add #( parameter n = 8 ) ( input [ n − 1 : 0 ] in1 , in2 ,
input c I n ,
output [ n − 1 : 0 ] o u t ,
output cOut ) ;

a s s i g n {cOut , o u t } = i n 1 + i n 2 + c I n ;
endmodule

Carry-Look-Ahead Adder

The size of ADDn is in O(n) and the depth is unfortunately in the same order of magnitude. For improving
the speed of this very important circuit there was found a way for accelerating the computation of the
carry: the carry-look-ahead adder (CLAn). The fast carry-look-ahead adder can be made using a carry-
look-ahead (CL) circuit for fast computing all the carry signals Ci and for each bit an half adder and a
XOR (the modulo two adder)(see Figure 6.15). The half adder has two roles in the structure:

• sums the bits Ai and Bi on the output S

• computes the signals Gi (that generates carry as a local effect) and Pi (that allows the propagation
of the carry signal through the binary level i) on the outputs CR and P.

The XOR gate adds modulo 2 the value of the carry signal Ci to the sum S.
In order to compute the carry input for each binary order an additional fast circuit must be build: the

carry-look-ahead circuit. The equations describing it start from the next rule: the carry toward the level
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Figure 6.15: The fast n-bit adder. The n-bit Carry-Lookahead Adder (CLAn) consists in n HAs, n 2-input
XORs and the Carry-Lookahead Circuit used to compute faster the n Ci, for i = 1,2, . . .n.

(i+1) is generated if both Ai and Bi inputs are 1 or is propagated from the previous level if only one of
Ai or Bi are 1. Results:

Ci+1 = AiBi +(Ai +Bi)Ci = AiBi +(Ai ⊕Bi)Ci = Gi +PiCi.

Applying the previous rule we obtain the general form of Ci+1:

Ci+1 = Gi +PiGi−1 +PiPi−1Gi−2 +PiPi−1Pi−2Gi−3 + . . .+PiPi−1 . . .P1P0C0

for i = 0, . . . ,n.
Computing the size of the carry-look-ahead circuit results SCL(n) ∈ O(n3), and the theoretical depth

is only 2. But, for real circuits an n-input gates can not be considered as a one-level circuit. In Basic
circuits appendix (see section Many-Input Gates) is shown that an optimal implementation of an n-input
simple gate is realized as a binary tree of 2-input gates having the depth in O(log n). Therefore, in a real
implementation the depth of a carry-look ahead circuit has DCLA ∈ O(log n).

For small n the solution with carry-look-ahead circuit works very good. But for larger n the two
solutions, without carry-look-ahead circuit and with carry-look-ahead circuit, must be combined in many
fashions in order to obtain a good price/performance ratio. For example, the ripple carry version of ADDn

is divided in two equal sections and two carry look-ahead circuits are built for each, resulting two serial
connected CLAn/2. The state of the art in this domain is presented in [Omondi ’94].

It is obvious that the adder is a simple circuit. There exist constant sized definition for all the variants
of adders.

6.1.7 Arithmetic and Logic Unit

All the before presented circuits have had associated only one logic or one arithmetic function. Now is
the time to design the internal structure of a previously defined circuit having many functions, which can
be selected using a selection code: the arithmetic and logic unit – ALU. ALU is the main circuit in any
computational device, such as processors, controllers or embedded computation structures.

A generic version of a simple ALU is presented in the following example.

Example 6.4 The 8-function ALU working on 32-bit numbers is described by the following Verilog mod-
ule:
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Figure 6.16: The internal structure of the speculative version of an arithmetic and logic unit. Each
function is performed by a specific circuit and the output multiplexer selects the desired result.

/ * ************************************************************************
F i l e name : a l u . v
C i r c u i t name : a r i t h m e t i c and l o g i c u n i t
D e s c r i p t i o n : t h e c i r c u i t s e l e c t s , u s i n g t h e s e l e c t i o n code ’ func ’ , one

o f t h e 8 f u n c t i o n s
************************************************************************ * /
module ALU( input c a r r y I n ,

input [ 2 : 0 ] func ,
input [ 3 1 : 0 ] l e f t , r i g h t ,
output reg c a r r y O u t ,
output reg [ 3 1 : 0 ] o u t ) ;

always @( * )
ca se ( func )

3 ’ b000 : { ca r ryOu t , o u t } = l e f t + r i g h t + c a r r y I n ; / / add
3 ’ b001 : { ca r ryOu t , o u t } = l e f t − r i g h t − c a r r y I n ; / / sub
3 ’ b010 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t & r i g h t } ; / / and
3 ’ b011 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t | r i g h t } ; / / or
3 ’ b100 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t ˆ r i g h t } ; / / xor
3 ’ b101 : { ca r ryOu t , o u t } = {1 ’ b0 , ˜ l e f t } ; / / n o t
3 ’ b110 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t } ; / / l e f t
3 ’ b111 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t >> 1} ; / / s h r
d e f a u l t { ca r ryOu t , o u t } = 33 ’ b0 − 1 ’ b1 ;

endcase
endmodule

⋄

The ALU circuit can be implemented in many forms. One of them is the speculative version (see
Figure 6.16) described by the Verilog module from Example 6.4, where the case structure describes, in
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fact, an 8-input multiplexor for 33-bit words. We call this version speculative because all the possible
functions are computed in order to be all available to be select when the function code arrives to the func
input of ALU. This approach is efficient when the operands are available quickly and the function to be
performed “arrives” lately (because it is usually decoded from the instruction fetched from a program
memory). The circuit “speculates” computing all the defined functions offering 8 results from which
the func code selects one. (This approach will be useful for the ALU designed for the stack processor
described in Chapter 10.)

The speculative version provides a fast version in some specific designs. The price is the big size of
the resulting circuit (mainly because the arithmetic section contains and adder and an subtractor, instead
a smaller circuit performing add or subtract according to a bit used to complement the right operand and
the carryIn signal).

An area optimized solution is provided in the next example.

Example 6.5 Let be the 32-bit ALU with 8 functions described in Example 2.8. The implementation will
be done using an adder-subtractor circuit and a 1-bit slice for the logic functions. Results the following
Verilog description:

n×MUXE
add sub

logic

n×MUXE

n×MUXE

? ?????

? ?

? ?

?

- - -

-

-

-

sub

��

out

carryIncarryOut

left

right

func[0]

func[1]

func[2]

Figure 6.17: The internal structure of an area optimized version of an ALU. The add sub module is
smaller than an adder and a subtractor, but the operation “starts” only when func[0] is valid.
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/ * ************************************************************************
F i l e name : s t r u c t u r a l A l u . v
C i r c u i t name : ALU
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n f o r
************************************************************************ * /

module s t r u c t u r a l A l u ( output [ 3 1 : 0 ] o u t ,
output ca r ryOu t ,
input c a r r y I n ,
input [ 3 1 : 0 ] l e f t , r i g h t ,
input [ 2 : 0 ] func ) ;

wire [ 3 1 : 0 ] s h i f t , add sub , a r i t h , l o g i c ;

addSub addSub ( . o u t ( a d d s u b ) ,
. c o u t ( c a r r y O u t ) ,
. l e f t ( l e f t ) ,
. r i g h t ( r i g h t ) ,
. c i n ( c a r r y I n ) ,
. sub ( func [ 0 ] ) ) ;

l o g i c l o g ( . o u t ( l o g i c ) ,
. l e f t ( l e f t ) ,
. r i g h t ( r i g h t ) ,
. op ( func [ 1 : 0 ] ) ) ;

mux2 s h i f t Mu x ( . o u t ( s h i f t ) ,
. i n 0 ( l e f t ) ,
. i n 1 ({1 ’ b0 , l e f t [ 3 1 : 1 ] } ) ,
. s e l ( f unc [ 0 ] ) ) ,

a r i t hMux ( . o u t ( a r i t h ) ,
. i n 0 ( s h i f t ) ,
. i n 1 ( a d d su b ) ,
. s e l ( func [ 1 ] ) ) ,

outMux ( . o u t ( o u t ) ,
. i n 0 ( a r i t h ) ,
. i n 1 ( l o g i c ) ,
. s e l ( f unc [ 2 ] ) ) ;

endmodule

/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module mux2 ( input s e l ,
input [ 3 1 : 0 ] in0 , in1 ,
output [ 3 1 : 0 ] o u t ) ;

a s s i g n o u t = s e l ? i n 1 : i n 0 ;
endmodule
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/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module addSub ( output [ 3 1 : 0 ] o u t ,
output c o u t ,
input [ 3 1 : 0 ] l e f t , r i g h t ,
input c in , sub ) ;

a s s i g n { cout , o u t } = l e f t + ( r i g h t ˆ {32{ sub }} ) + ( c i n ˆ sub ) ;
endmodule

/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module l o g i c ( output reg [ 3 1 : 0 ] o u t ,
input [ 3 1 : 0 ] l e f t , r i g h t ,
input [ 1 : 0 ] op ) ;

i n t e g e r i ;
wire [ 3 : 0 ] f ;
a s s i g n f = {op [ 0 ] , ˜ ( ˜ op [ 1 ] & op [ 0 ] ) , op [ 1 ] , ˜ | op } ;
always @( l e f t or r i g h t or f )

f o r ( i =0 ; i <32; i = i +1) l o g i c S l i c e ( o u t [ i ] , l e f t [ i ] , r i g h t [ i ] , f ) ;

ta sk l o g i c S l i c e ;
output o ;
input l , r ;
input [ 3 : 0 ] f ;
o = f [{ l , r } ] ;

endtask
endmodule

The resulting circuit is represented in Figure 6.17. This version can be synthesized on a smaller area,
because the number of EMUXs is smaller, instead of an adder and a subtractor an adder/subtractor is
used. The price for this improvement is a smaller speed. Indeed, the add submodule “starts” to compute
the addition or the subtract only when the signal sub = func[0] is received. Usually, the code func

results from the decoding of the current operation to be performed, and, consequently, comes later. ⋄

We just learned a new feature of the Verilog language: how to use a task to describe a circuit used
many times in implementing a simple, repetitive structure.

The internal structure of ALU consists mainly in n slices, one for each input pair left[i],

rught[i] and a carry-look-ahead circuit(s) used for the arithmetic section. It is obvious that ALU
is also a simple circuit. The magnitude order of the size of ALU is given by the size of the carry-look-
ahead circuit because each slice has only a constant dimension and a constant depth. Therefore, the
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fastest version implies a size in O(n3) because of the carry-look-ahead circuit. But, let’s remind: the
price for the fastest solution is always too big! For optimal solutions see [Omondi ’94].

6.1.8 Comparator

Comparing functions are used in decisions. Numbers are compared to decide if they are equal or to
indicate the biggest one. The n-bit comparator, COMPn, is represented in Figure 6.18a. The numbers
to be compared are the n-bit positive integers a and b. Three are the outputs of the circuit: lt out,
indicating by 1 that a < b, eq out, indicating by 1 that a = b, and gt out, indicating by 1 that a > b.
Three additional inputs are used as expanding connections. On these inputs is provided information
about the comparison done on the higher range, if needed. If no higher ranges of the number under
comparison, then these thre inputs must be connected as follows: lt in = 0, eq in = 1, gt in = 0.

COMP

-
-
-

-
-
-

lt in

eq in

gt in

lt out

eq out

gt out

? ?

a[n-1:0] b[n-1:0]
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lt out

eq out

gt out

-
-
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-
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Figure 6.18: The n-bit comparator, COMPn. a. The n-bit comparator. b. The elementary comparator. c. A
recursive rule to built an COMPn, serially connecting an ECOMP with a COMPn−1

The comparison is a numerical operation which starts inspecting the most significant bits of the
numbers to be compared. If a[n−1] = b[n−2], then the result of the comparison is given by comparing
a[n−2 : 0] with b[n−1 : 0], else, the decision can be done comparing only a[n−1] with b[n−1] (using
an elementary comparator, ECOMP =COMP1 (see Figure 6.18b)), ignoring a[n−2 : 0] and b[n−2 : 0].
Results a recursive definition for the comparator circuit.

Definition 6.9 An n-bit comparator, COMPn, is obtained serially connecting an COMP1 with a
COMPn−1. The Verilog code describing COMP1 (ECOMP) follows:
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/ * ************************************************************************
F i l e name : e comp . v
C i r c u i t name : E l e m e n t a r y Comparator
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an e l e m e n t a r y compara tor
************************************************************************ * /

module e comp ( input a ,
b ,
l t i n , / / t h e p r e v i o u s e comp d e c i d e d l t
e q i n , / / t h e p r e v i o u s e comp d e c i d e d eq
g t i n , / / t h e p r e v i o u s e comp d e c i d e d g t

output l t o u t , / / a < b
e q o u t , / / a = b
g t o u t ) ; / / a > b ) ;

a s s i g n l t o u t = l t i n | e q i n & ˜ a & b ,
e q o u t = e q i n & ˜ ( a ˆ b ) ,
g t o u t = g t i n | e q i n & a & ˜ b ;

endmodule

⋄

The size and the depth of the circuit resulting from the previous definition are in O(n). The size is
very good, but the depth is too big for a high speed application.

An optimal comparator is defined using another recursive definition based on the divide et impera
principle.

Definition 6.10 An n-bit comparator, COMPn, is obtained using two COMPn/2, to compare the higher
and the lower half of the numbers (resulting {lt out high, eq out high, gt out high} and
{lt out low, eq out low, gt out low}), and a COMP1 to compare gt out low with lt out low

in the context of {lt out high, eq out high, gt out high}. The resulting circuit is represented in
Figure 6.19. ⋄

The resulting circuit is a log-level binary tree of ECOMPs. The size remains in the same order4, but
now the depth is in O(log n).

The bad news is: the HDL languages we have are unable to handle safely recursive definitions. The
good news is: the synthesis tools provide good solutions for the comparison functions starting from a
very simple behavioral description.

6.2 Complex, Randomly Defined Circuits

6.2.1 An Universal circuit

Besides the simple, recursively defined circuits there is the huge class of the complex or random circuits.
Is there a general solution for these category of circuits? A general solution asks a general circuit and

4The actual size of the circuit can be minimized takeing into account that: (1) the compared input of ECOMP cannot be
both 1, (2) the output eq out of one COMPn/2 is unused, and (3) the expansion inputs of both COMPn/2 are all connected to
fix values.
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Figure 6.19: The optimal n-bit comparator. Applying the divide et impera principle a COMPn is built using
two COMPn/2 and an ECOMP. Results a log-depth circuit with the size in O(n).

this circuit surprisingly exists. Now rises the problem of how to catch the huge diversity of random in
this approach. The following theorem will be the first step in solving the problem.

Theorem 6.1 For any n, all the functions of n binary-variables have a solution with a combinational
logic circuit. ⋄

Proof Any Boolean function of n variables can be written as:

f (xn−1, . . . ,x0) = x′n−1g(xn−2, . . . ,x0)+ xn−1h(xn−2, . . .x0).

where:
g(xn−2, . . . ,x0) = f (0,xn−2, . . . ,x0)

h(xn−2, . . . ,x0) = f (1,xn−2, . . . ,x0)

CLCg CLCh

emux

- -

-
? ?

?

xn−2 , . . . ,x0

n−1

xn−1

g(xn−2 , . . . ,x0) h(xn−2 , . . . ,x0)

i0 i1

y
x0

f (xn−1 , . . . ,x0)

Figure 6.20: The universal circuit. For any CLC f (n), where f (xn−1, . . . ,x0) this recursively defined structure
is a solution. EMUX behaves as an elementary universal circuit.

Therefore, the computation of any n-variable function can be reduced to the computation of two other
(n−1)-variables functions and an EMUX. The circuit, and in the same time the algorithm, is represented
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in Figure 6.20. For the functions g and h the same rule may applies. And so on until the two zero-variable
functions: the value 0 and the value 1. The solution is an n-level binary tree of EMUXs having applied
to the last level zero-variable functions. Therefore, solution is a MUXn and a binary string applied on
the 2n selected inputs. The binary sting has the length 2n. Thus, for each of the 22n

functions there is a
distinct string defining it. ⋄

The universal circuit is indeed the best example of a big simple circuit, because it is described by the
following code:

/ * ************************************************************************
F i l e name : n U c i r c u i t . v
C i r c u i t name : U n i v e r s a l Log ic C i r s u i t
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e n−i n p u t u n i v e r s a l l o g i c

c i r c u i t
************************************************************************ * /
module n U c i r c u i t # ( ‘ i n c l u d e ” p a r a m e t e r . v ” )

( output o u t ,
input [ ( 1 ’ b1 << n ) − 1 : 0 ] program ,
input [ n − 1 : 0 ] d a t a ) ;

a s s i g n o u t = program [ d a t a ] ;
endmodule

The file parameter.v contains the value for n. But, attention! The size of the circuit is:
SnU circuit(n) ∈ O(2n).

Thus, circuits are more powerful than Turing Machine (TM), because TM solve only problem having
the solution algorithmically expressed with a sequence of symbols that does not depend by n. Beyond
the Turing-computable function there are many functions for which the solution is a family of circuits.

The solution imposed by the previous theorem is an universal circuit for computing the n bi-
nary variable functions. Let us call it nU-circuit (see Figure 6.21). The size of this circuit is
Suniversal(n) ∈ O(2n) and its complexity is Cuniversal(n) ∈ O(1). The functions is specified by the “pro-
gram” P = mp−1,mp−2, . . .m0 which is applied on the selected inputs of the n-input multiplexer MUXn.
It is about a huge simple circuit. The functional complexity is associated with the “program” P, which is
a binary string.

This universal solution represents the strongest segregation between a simple physical structure -
the n-input MUX - and a complex symbolic structure - the string of 2n bits applied on the selected inputs
which works like a “program”. Therefore, this is THE SOLUTION, MUX is THE CIRCUIT and we can
stop here our discussion about digital circuits!? ... But, no! There are obvious reasons to continue our
walk in the world of digital circuits:

• first: the exponential size of the resulting physical structure

• second: the huge size of the “programs” which are in a tremendous majority represented by ran-
dom, uncompressible, strings (hard or impossible to be specified).

The strongest segregation between simple and complex is not productive in no-loop
circuits. Both resulting structure, the simple circuit and the complex binary string,
grow exponentially.
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Figure 6.21: The Universal Circuit as a tree of EMUXs. The depth of the circuit is equal with the number,
n, of binary input variables. The size of the circuit increases exponentially with n.

6.2.2 Using the Universal circuit

We have a chance to use MUXn to implement f (xn−1, . . . ,x0) only if one of the following conditions is
fulfilled:

1. n is small enough resulting realizable and efficient circuits

2. the “program” is a string with useful regularities (patterns) allowing strong minimization of the
resulting circuit

Follows few well selected examples. First is about an application with n enough small to provide an
useful circuit (it is used in Connection Machine as an “universal” circuit performing anyone of the 3-
input logic function [Hillis ’85]).

Example 6.6 Let be the following Verilog code:

/ * ************************************************************************
F i l e name : t h r e e i n p u t f u n c t i o n s . v
C i r c u i t name : Templa te f o r any 3− i n p u t l o g i c f u n c t i o n
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r any 3− i n p u t l o g i c f u n c t i o n
************************************************************************ * /

module t h r e e i n p u t f u n c t i o n s ( output o u t ,
input [ 7 : 0 ] func ,
input in0 , in1 , i n 2 ) ;

a s s i g n o u t = func [{ in0 , in1 , i n 2 } ] ;
endmodule
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The circuit three input functions can be programmed, using the 8-bit string func as “pro-
gram”, to perform anyone 3-input Boolean function. It is obviously a MUX3 performing

out = f (in0, in1, in2)

where the function f is specified (“programmed”) by an 8-bit word (“program”). ⋄

The “programmable” circuit for any 4-input Boolean function is obviously MUX4:

out = f (in0, in1, in2, in3)

where f is “programmed” by a 16-bit word applied on the selected inputs of the multiplexer.
The bad news is: we can not go to far on this way because the size of the resulting universal circuits

increases exponentially. The good news is: usually we do not need universal but particular solution. The
circuits are, in most of cases, specific not universal. They “execute” a specific “program”. But, when
a specific binary word is applied on the selected inputs of a multiplexer, the actual circuit is minimized
using the following removing rules and reduction rules.

An EMUX defined by:

out = x ? in1 : in0;

can be removed, if on its selected inputs specific 2-bit binary words are applied, according to the follow-
ing rules:

• if {in1, in0}= 00 then out = 0

• if {in1, in0}= 01 then out = x′

• if {in1, in0}= 10 then out = x

• if {in1, in0}= 11 then out = 1

or, if the same variable, y, is applied on both selected inputs:

• if {in1, in0}= yy then out = y

An EMUX can be reduced, if on one its selected inputs a 1-bit binary word are applied, being substituted
with a simpler circuit according to the following rules:

• if {in1, in0}= y0 then out = xy

• if {in1, in0}= y1 then out = y+ x′

• if {in1, in0}= 0y then out = x′y

• if {in1, in0}= 1y then out = x+ y

Results: the first level of 2n−1 EMUXs of a MUXn is reduced, and on the inputs of the second level
(of nn−2 EMUXs) is applied a word containing binary values (0s and 1s) and binary variables (x0s and
x′0s). For the next levels the removing rules or the reducing rules are applied.
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Figure 6.22: The majority function. The majority function for 3 binary variables is solved by a 3-level binary
tree of EMUXs. The actual “program” applied on the “leafs” will allow to minimize the tree.

Example 6.7 Let us solve the problem of majority function for three Boolean variable. The function
ma j(x2,x1,x0) returns 1 if the majority of inputs are 1, and 0 if not. In Figure 6.22 a “programmable”
circuit is used to solve the problem.

Because we intend to use the circuit only for the function ma j(x2,x1,x0) the first layer of EMUXs can
be removed resulting the circuit represented in Figure 6.23a.

On the resulting circuit the reduction rules are applied. The result is presented in Figure 6.23b. ⋄

The next examples refer to big n, but “program” containing repetitive patterns.

Example 6.8 If the ”program” is 128-bit string i127 . . . i0 = (10)64, it corresponds to a function of form:

f (x6, . . . ,x0)

where: the first bit, i0 is the value associated to the input configuration x6, . . . ,x0 = 0000000 and the last
bit i127 is the value associated to input configuration x6, . . . ,x0 = 1111111 (according with the represen-
tation from Figure 6.11 which is equivalent with Figure 6.20).

The obvious regularities of the “program” leads our mind to see what happened with the resulting
tree of EMUXs. Indeed, the structure collapses under this specific “program”. The upper layer of 64
EMUXs are selected by x0 and each have on their inputs i0 = 1 and i1 = 0, generating x′0 on their
outputs. Therefore, the second layer of EMUXs receive on all selected inputs the value x′0, and so on
until the output generates x′0. Therefore, the circuit performs the function f (x0) = x′0 and the structure is
reduced to a simple inverter.

In the same way the “program” (0011)32 programs the 7-input MUX to perform the function f (x1) =
x1 and the structure of EMUXs disappears.

For the function f (x1,x0) = x1x′0 the “program” is (0010)32.
For a 7-input AND the“program” is 01271, and the tree of MUXs degenerates in 7 EMUXs seri-

ally connected each having the input i0 connected to 0. Therefore, each EMUX become an AND2 and
applying the associativity principle results an AND7.

In a similar way, the same structure become an OR7 if it is “programmed” with 01127. ⋄
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Figure 6.23: The reduction process. a. For any function the first level of EMUSs is reduced to a binary
vector ((1,0) in this example). b. For the actual “program” of the 3-input majority function the second level is
supplementary reduced to simple gates (an AND2 and an OR2).

It is obvious that if the “program” has some uniformities, these uniformities allow to minimize the
size of the circuit in polynomial limits using removing and reduction rules. The simple “programs” lead
toward small circuits.

6.2.3 The many-output random circuit: Read Only Memory

The simple solution for the following many-output random circuits having the same inputs:

f (xn−1, . . .x0)

g(xn−1, . . .x0)

. . .

s(xn−1, . . .x0)

is to connect in parallel many one-output circuits. The inefficiency of the solution become obvious when
the structure of the MUX presented in Figure 6.9 is considered. Indeed, if we implement many MUXs
with the same selection inputs, then the decoder DCDn is replicated many time. One DCD is enough for
many MUXs if the structure from Figure 6.24a is adopted. The DCD circuit is shared for implementing
the functions f , g, . . .s. The shared DCD is used to compute all possible minterms (see Appendix C.4)
needed to compute an n-variable Boolean function.

Figure 6.24b is an example of using the generic structure from Figure 6.24a to implement a specific
many-output function. Each output is defined by a different binary string. A 0 removes the associated
AND, connecting the corresponding OR input to 0, and an 1 connects to the corresponding i-th input of
each OR to the i-th DCD output. The equivalent resulting circuit is represented in Figure 6.24c, where
some OR inputs are connected to ground and other directly to the DCD’s output. Therefore, we use a
technology allowing us to make “programmable” connections of some wires to other (each vertical line
must be connected to one horizontal line). The uniform structure is “programmed” with a more or less
random distribution of connections.
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Figure 6.24: Many-output random circuit. a. One DCD and many AND-OR circuits. b. An example. c.
The version using programmable connections.
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Figure 6.25: The internal structure of a Read Only Memory used as trans-coder. a. The internal
structure. b. The simplified logic symbol where a thick vertical line is used to represent an m-input NAND gate.

If De Morgan transformation is applied, the circuit from Figure 6.24c is transformed in the circuit
represented in Figure 6.25a, where instead of an active high outputs DCD an active low outputs DCD is
considered and the OR gates are substituted with NAND gates. The DCD’s outputs are generated using
NAND gates to decode the input binary word, the same as the gates used to encode the output binary
word. Thus, a multi-output Boolean function works like a trans-coder. A trans-coder works translating
all the binary input words into output binary words. The list of input words can by represented as an
ordered list of sorted binary numbers starting with 0 and ending with 2n −1. The table from Figure 6.26
represents the truth table for the multi-output function used to exemplify our approach. The left column
contains all binary numbers from 0 (on the first line) until 2n − 1 = 11 . . .1 (on the last line). In the
right column the desired function is defined associating to each input an output. If the left column is an
ordered list, the right column has a more or less random content (preferably more random for this type
of solution).

Input Output

00 ... 00 11 ... 0

... ...

11 ... 10 10 ... 0

11 ... 11 01 ... 1

Figure 6.26: The truth table for a multi-output Boolean function. The input rows can be seen as ad-
dresses, from 00 . . .0 to 11 . . .1 and the output columns as the content stored at the corresponding addresses.

The trans-coder circuit can be interpreted as a fix content memory. Indeed, it works like a memory
containing at the location 00...00 the word 11...0, ... at the location 11...10 the word 10...0, and at the last
location the word 01...1. The name of this kind of programmable device is read only memory, ROM.

Example 6.9 The trans-coder from the binary coded decimal numbers to 7 segments display is a com-
binational circuit with 4 inputs, a,b,c,d, and 7 outputs A,B,C,D,E,F,G, each associated to one of the
seven segments. Therefore we have to solve 7 functions of 4 variables (see the truth table from Figure
6.28).

The Verilog code describing the circuit is:
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/ * ************************************************************************
F i l e name : e v e n s e g m e n t s . v
C i r c u i t name : Seven −Segment T r a n s c o d e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e seven −segment t r a n s c o d e r
************************************************************************ * /

module s e v e n s e g m e n t s ( output reg [ 6 : 0 ] o u t ,
input [ 3 : 0 ] i n ) ;

always @( i n ) case ( i n )
4 ’ b0000 : o u t = 7 ’ b0000001 ;
4 ’ b0001 : o u t = 7 ’ b1001111 ;
4 ’ b0010 : o u t = 7 ’ b0010010 ;
4 ’ b0011 : o u t = 7 ’ b0000110 ;
4 ’ b0100 : o u t = 7 ’ b1001100 ;
4 ’ b0101 : o u t = 7 ’ b0100100 ;
4 ’ b0110 : o u t = 7 ’ b0100000 ;
4 ’ b0111 : o u t = 7 ’ b0001111 ;
4 ’ b1000 : o u t = 7 ’ b0000000 ;
4 ’ b1001 : o u t = 7 ’ b0000100 ;
d e f a u l t o u t = 7 ’ bxxxxxxx ;

endcase
endmodule

The first solution is a 16-location of 7-bit words ROM (see Figure 6.27a. If inverted outputs are
needed results the circuit from Figure 6.27b.

???????
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Figure 6.27: The CLC as trans-coder designed serially connecting a DCD with an encoder. Example:
BCD to 7-segment trans-coder. a. The solution for non-inverting functions. b. The solution for inverting functions.

⋄
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abcd ABCDEFG

0000 1111110

0001 0110000

0010 1101101

0011 1111001

0100 0110011

0101 1011011

0110 1011111

0111 1110000

1000 1111111

1001 1111011

1010 -------

.... .......

1111 -------

Figure 6.28: The truth table for the 7 segment trans-coder. Each binary represented decimal (in the left
columns of inputs) has associated a 7-bit command (in the right columns of outputs) for the segments used for
display. For unused input codes the output is “don’t care”.

6.3 Concluding about combinational circuits

The goal of this chapter was to introduce the main type of combinational circuits. Each presented circuit
is important first, for its specific function and second, as a suggestion for how to build similar ones. There
are a lot of important circuits undiscussed in this chapter. Some of them are introduced as problems at
the end of this chapter.

Simple circuits vs. complex circuits Two very distinct class of combinational circuits are emphasized.
The first contains simple circuits, the second contains complex circuits. The complexity of a circuit is
distinct from the size of a circuit. Complexity of a circuit is given by the size of the definition used
to specify that circuit. Simple circuits can achieve big sizes because they are defined using a repetitive
pattern. A complex circuit can not be very big because its definition is dimensioned related with its size.

Simple circuits have recursive definitions Each simple circuit is defined initially as an elementary
module performing the needed function on the smallest input. Follows a recursive definition about how
can be used the elementary circuit to define a circuit working for any input dimension. Therefore, any
big simple circuit is a network of elementary modules which expands according to a specific rule. Unfor-
tunately, the actual HDL, Verilog included, are not able to manage without (strong) restrictions recursive
definitions neither in simulation nor in synthesis. The recursiveness is a property of simple circuits to be
fully used only for our mental experiences.

Speeding circuits means increase their size Depth and size evolve in opposite directions. If the speed
increases, the pay is done in size, which also increases. We agree to pay, but in digital systems the pay is
not fair. We conjecture the bigger is performance the bigger is the unit price. Therefore, the pay increases
more than the units we buy. It is like paying urgency tax. If the speed increases n times, then the size of
the circuit increases more than n times, which is not fair but it is real life and we must obey.
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Big sized complex circuits require programmable circuits There are software tolls for simulating
and synthesizing complex circuits, but the control on what they generate is very low. A higher level
of control we have using programmable circuits such as ROMs or PLA. PLA are efficient only if non-
arithmetic functions are implemented. For arithmetic functions there are a lot of simple circuits to be
used. ROM are efficient only if the randomness of the function is very high.

Circuits represent a strong but ineffective computational model Combinational circuits represent
a theoretical solution for any Boolean function, but not an effective one. Circuits can do more than
algorithms can describe. The price for their universal completeness is their ineffectiveness. In the general
case, both the needed physical structure (a tree of EMUXs) and the symbolic specification (a binary
string) increase exponentially with n (the number of binary input variables). More, in the general case
only a family of circuits represents the solution.

To provide an effective computational tool new features must be added to a digital machine and some
restrictions must be imposed on what is to be computable. The next chapters will propose improvements
induced by successively closing appropriate loops inside the digital systems.

6.4 Problems

Gates

Problem 6.1 Determine the relation between the total number, N, of n-input m-output Boolean functions
( f : {0,1}n →{0,1}m) and the numbers n and m.

Problem 6.2 Let be a circuit implemented using 32 3-input AND gates. Using the appendix evaluate the
area if 3-input gates are used and compare with a solution using 2-input gates. Analyze two cases: (1)
the fan-out of each gate is 1, (2) the fan-out of each gate is 4.

Decoders

Problem 6.3 Draw DCD4 according to Definition 2.9. Evaluate the area of the circuit, using the cell
library from Appendis E, with the placement efficiency5 70%. Estimate the maximum propagation time.
The wires are considered enough short to be ignored their contribution in delaying signals.

Problem 6.4 Design a constant depth DCD4. Draw it. Evaluate the area and the maximum propagation
time using the cell library from Appendix E. Compare the results with the results of the previous problem.

Problem 6.5 Propose a recursive definition for DCDn using EDMUXs. Evaluate the size and the depth
of the resulting structure.

Multiplexors

Problem 6.6 Draw MUX4 using EMUX. Make the structural Verilog design for the resulting circuit.
Organize the Verilog modules as hierarchical as possible. Design a tester and use it to test the circuit.

5For various reason the area used to place gates on Silicon can not completely used. Some unused spaces remain between
gates. Area efficiency measures the degree of area use.
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Problem 6.7 Define the 2-input XOR circuit using an EDCD and an EMUX.

Problem 6.8 Make the Verilog behavioral description for a constant depth left shifter by maximum m−1
positions for m-bit numbers, where m = 2n. The “header” of the project is:

module l e f t s h i f t ( output [2m− 2 : 0 ] o u t ,
input [m− 1 : 0 ] i n ,
input [ n − 1 : 0 ] s h i f t ) ;

. . .
endmodule

Problem 6.9 Make the Verilog structural description of a log-depth (the depth is log216 = 4) left shifter
by 16 positions for 16-bit numbers. Draw the resulting circuit. Estimate the size and the depth comparing
the results with a similar shifter designed using the solution of the previous problem.

Problem 6.10 Draw the circuit described by the Verilog module leftRotate in the subsection Shifters.

Problem 6.11 A barrel shifter for m-bit numbers is a circuit which rotate the bits the input word a
number of positions indicated by the shift code. The “header” of the project is:

module b a r r e l s h i f t ( output [m− 1 : 0 ] o u t ,
input [m− 1 : 0 ] i n ,
input [ n − 1 : 0 ] s h i f t ) ;

. . .
endmodule

Write a behavioral code and a minimal structural version in Verilog.

6.4.1 Recursive circuits

Problem 6.12 A comparator is circuit designed to compare two n-bit positive integers. Its definition is:

module c o m p a r a t o r ( input [ n − 1 : 0 ] i n 1 , / / f i r s t operand
input [ n − 1 : 0 ] i n 2 , / / s econd operand
output eq , / / i n 1 = i n 2
output l t , / / i n 1 < i n 2
output g t ) ; / / i n 1 > i n 2

. . .
endmodule

1. write the behavioral description in Verilog

2. write a structural description optimized for size
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3. design a tester which compare the results of the simulations of the two descriptions: the behavioral
description and the structural description

4. design a version optimized for depth

5. define an expandable structure to be used in designing comparators for bigger numbers in two
versions: (1) optimized for depth, (2) optimized for size.

Problem 6.13 Design a comparator for signed integers in two versions: (1) for negative numbers rep-
resented in 2s complement, (2) for negative numbers represented a sign and number.

Problem 6.14 Design an expandable priority encoder with minimal size starting from an elementary
priority encoder, EPE, defined for n = 2. Evaluate its depth.

Problem 6.15 Design the Verilog structural descriptions for an 8-input adder in two versions: (1) using
8 FAs and a ripple carry connection, (2) using 8 HAs and a carry look ahead circuit. Evaluate both
solutions using the cell library from Appendix E.

Problem 6.16 Design an expandable carry look-ahead adder starting from an elementary circuit.

Problem 6.17 Design an enabled incrementer/decrementer circuit for n-bit numbers. If en = 1, then the
circuit increments the input value if inc = 1 or decrements the input value if inc = 0, else, if en = 0, the
output value is equal with the input value.

Problem 6.18 Design an expandable adder/subtracter circuit for 16-bit numbers. The circuit has a
carry input and a carry output to allow expandability. The 1-bit command input is sub. For sub = 0 the
circuit performs addition, else it subtracts. Evaluate the area and the propagation time of the resulting
circuit using the cell library from Appendix E.

6.4.2 Random circuits

Problem 6.19 The Gray counting means to count, starting from 0, so as at each step only one bit is
changed. Example: the three-bit counting means 000, 001, 011, 010, 110, 111, 101, 100, 000, ... Design
a circuit to convert the binary counting into the Gray counting for 8-bit numbers.

Problem 6.20 Design a converter from Gray counting to binary counting for n-bit numbers.

Problem 6.21 Write a Verilog structural description for ALU described in Example 2.3. Identify the
longest path in the resulting circuit. Draw the circuit for n = 8.

Problem 6.22 Design in Verilog the behavioral and the structural description of a multiply and accu-
mulate circuit, MACC, performing the function: (a×b)+ c, where a and b are 16-bit numbers and c is
a 24-bit number.

Problem 6.23 Design the combinational circuit for computing

c =
7

∑
i=0

ai ×bi

where: ai,bi are 16-bit numbers. Optimize the size and the depth of the 8-number adder using a technique
learned in one of the previous problem.
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Problem 6.24 Exemplify the serial composition, the parallel composition and the serial-parallel com-
position in 0 order systems.

Problem 6.25 Write the logic equations for the BCD to 7-segment trans-coder circuit in both high active
outputs version and low active outputs version. Minimize each of them individually. Minimize all of them
globally.

Problem 6.26 Applying removing rules and reduction rules find the functions performed by 5-level uni-
versal circuit programmed by the following binary strings:

1. (0100)8

2. (01000010)4

3. (0100001011001010)2

4. 024(01000010)

5. 00000001001001001111000011000011

Problem 6.27 Compute the biggest size and the biggest depth of an n-input, 1-output circuit imple-
mented using the universal circuit.

6.5 Projects

Project 6.1 Finalize Project 1.1 using the knowledge acquired about the combinational structures in
this chapter.

Project 6.2 Design a combinational floating point single precision (32 bit) multiplier according to the
ANSI/IEEE Standard 754-1985, Standard for Binary Floating Point Arithmetic.
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Chapter 7

MEMORIES:
First order, 1-loop digital systems

In the previous chapter
the main combinational, no-loop circuits were presented with emphasis on

• the simple, pattern-based basic combinational circuits performing functions like: decode using demultiplexors,
selection using multiplexors, increment, add, various selectable functions using arithmetic and logic units, com-
pare, shift, priority encoding, ...

• the difference between the simple circuits, which grow according to recursive rules, and the complex, pattern-less
circuits whose complexity must be kept at lowest possible level

• the compromise between area and speed, i.e., how to save area accepting to give up the speed, or how can be
increased the speed accepting to enlarge the circuit’s area.

In this chapter
the first order, one-loop circuits are introduced studying

• how to close the first loop inside a combinational circuit in order to obtain a stable and useful
behavior

• the elementary storage support – the latch – and the way to expand it using the serial, parallel,
and serial-parallel compositions leading to the basic memory circuits, such as: the master-
slave flip-flop, the random access memory and the register

• how to use first order circuits to design basic circuits for real applications, such as register
files, content addressable memories, associative memories or systolic systems.

In the next chapter
the second order, automata circuits are described. While the first order circuits have the smallest degree of autonomy –
they are able only to maintain a certain state – the second order circuits have an autonomous behavior induced by the
loop just added. The following circuits will be described:

• the simplest and smallest elementary, two-state automata: the T flip-flop and JK flip-flop, which besides the
storing function allow an autonomous behavior under a less restrictive external command

• simple automata performing recursive functions, generated by expanding the function of the simplest two-state
automata (example: n-bit counters)

• the complex, finite automata used for control or for recognition and generation of regular streams of symbols.

187



188 CHAPTER 7. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

The magic images were placed on the wheel of the memory sys-
tem to which correspondent other wheels on which were remem-
bered all the physical contents of the terrestrial world – ele-
ments, stones, metals, herbs, and plants, animals, birds, and so
on – and the whole sum of the human knowledge accumulated
through the centuries through the images of one hundred and
fifty great men and inventors. The possessor of this system thus
rose above time and reflected the whole universe of nature and
of man in his mind.

Frances A. Yates1

A true memory is an associative one. Please do not confuse the
physical support – the random access memory – with the func-
tion – the associative memory.

According to the mechanisms described in Chapter 3 of this book, the step toward a new class of
circuits means to close a new loop. This will be the first loop which closed over the combinational circuits
already presented. Thus, a first degree of autonomy will be reached in digital systems: the autonomy of
the state of the circuit. Indeed, the state of the circuit will be partially independent by the input signals,
i.e., the output of the circuits do not depend on or not respond to certain input switching.

In this chapter we introduce some of the most important circuits used for building digital systems.
The basic function in which they are involved is the memory function. Some events on the input of a
memory circuit are significant for the state of the circuits and some are not. Thus, the circuit “memo-
rizes”, by the state it reaches, the significant events and “ignores” the rest. The possibility to have an
“attitude” against the input signals is given to the circuit by the autonomy induced by its internal loop.
In fact, this first loop closed over a simple combinational circuit makes insignificant some input signals
because the circuit is able to compensate their effect using the signals received back from its output.

The main circuits with one internal loop are:

• the elementary latch - the basic circuit in 1-OS, containing two appropriately loop-coupled gates;
the circuit has two stable states being able to store 1 bit of information

• the clocked latch - the first digital circuit which accepts the clock signal as an input distinct from
data inputs; the clock signal determines by its active level when the latch is triggered, while the
data input determines how the latch switches

• the master-slave flip-flop - the serial composition in 1-OS, built by two clocked latches serially
connected; results a circuit triggered by the active transition of clock

• the random access memory (RAM) - the parallel composition in 1-OS, containing a set of n
clocked elementary latches accessed with a DMUXlog2 n and a MUXlog2 n

• the register - the serial-parallel composition in 1-OS, made by parallel connecting master-slave
flip-flops.

1She was Reader in the History of the Renaissance at the University of London. The quote is from Giordano Bruno and the
Hermetic Tradition. Her other books include The Art of Memory.
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These first order circuits don’t have a direct computational functionality, but are involved in support-
ing the following main processes in a computational machine:

• offer the storage support for implementing various memory functions (register files, stacks, queues,
content addressable memories, associative memories, ...)

• are used for synchronizing different subsystems in a complex system (supports the pipeline mech-
anism, implements delay lines, stores the state of automata circuits).

7.1 Stable/Unstable Loops

There are two main types of loops closed over a combinational logic circuit: loops generating a stable
behavior and loops generating an unstable behavior. We are interested in the first kind of loop that
generates a stable state inside the circuit. The other loop cannot be used to build anything useful for
computational purposes, except some low performance signal generators.

The distinction between the two types of loops is easy exemplified closing loops over the simplest
circuit presented in the previous chapter, the elementary decoder (see Figure 7.1a).

The unstable loop is closed connecting the output y0 of the elementary decoder to its input x0 (see
Figure 7.1b). Suppose that y0 = 0 = x0. After the time interval equal with tpLH

2 the output y0 becomes
1. After another time interval equal with tpHL the output y0 becomes again 0. And so on, the two outputs
of the decoder are unstable oscillating between 0 and 1 with a period of time Tosc = tpLH + tpHL, or the
frequency fosc = 1/(tpLH + tpHL).

y1

EDCD
x0

y0

y1

EDCD
x0

y0

x0

y0

y1

out1

out2

a.

b. c.

Figure 7.1: The two loops closed over an elementary decoder. a. The simplest combinational circuit: the
one-input, elementary decoder. b. The unstable, inverting loop containing one (odd) inverting logic level(s). c.
The stable, non-inverting loop containing two (even) inverting levels.

The stable loop is obtained connecting the output y1 of the elementary decoder to the input x0 (see
Figure 7.1c). If y1 = 0 = x0, then y0 = 1 fixing again the value 0 to the output y1. If y1 = 1 = x0,
then y0 = 0 fixing again the value 1 to the output y1. Therefore, the circuit has two stable states. (For
the moment we don’t know how to switch from one state to another state, because the circuit has no input
to command the switching from 0 to 1 or conversely. The solution comes soon.)

2the propagation time through the inverter when the output switches from the low logic level to the high level.
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What is the main structural distinction between the two loops?

• The unstable loop has an odd number of inverting levels, thus the signal comes back to the output
having the complementary value.

• The stable loop has an even number of inverting levels, thus the signal comes back to the output
having the same value.

Example 7.1 Let be the circuit from Figure 7.2a, with 3 inverting levels on its internal loop. If the
command input C is 0, then the loop is “opened”, i.e., the flow of the signal through the circular way is
interrupted. If C switches in 1, then the behavior of the circuit is described by the wave forms represented
in Figure 7.2b. The circuit generates a periodic signal with the period Tosc = 3(tpLH +tpHL) and frequency
fosc = 1/3(tpLH + tpHL). (To keep the example simple we consider that tpLH and tpHL have the same value
for the three circuits.)⋄
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Figure 7.2: The unstable loop. The circuit version used for a low-cost and low-performance clock generator.
a. The circuit with a three (odd) inverting circuits loop coupled. b. The wave forms drawn takeing into account
the propagation times associated to the low-high transitions (tpLH ) and to the high-low transitions (tpHL).

In order to be useful in digital applications, a loop closed over a combinational logic circuit must
contain an even number of inverting levels for all binary combinations applied to its inputs. Else, for
certain or for all input binary configurations, the circuit becomes unstable, unuseful for implementing
computational functions. In the following, only even (in most of cases two) number of inverting levels
are used for building the circuits belonging to 1-OS.

7.2 The Serial Composition: the Edge Triggered Flip-Flop

The first composition in 1-order systems is the serial composition, represented mainly by:

• the master-slave structure as the main mechanism that avoids the transparency of the storage struc-
tures
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• the delay flip-flop, the basic storage circuit that allows to close the second loop in the synchronous
digital systems

• the serial register, the fist big and simple memory circuit having a recursive definition.

This class of circuits allows us to design synchronous digital systems. Starting from this point the
inputs in a digital system are divided in two categories:

• clock inputs for synchronizing different parts of a digital system

• data and control inputs that receive the “informational” flow inside a digital system.

7.2.1 The Serial Register

Starting from the delay function of the last presented circuit (see Figure 2.15) a very important function
and the associated structure can be defined: the serial register. It is very easy to give a recursive definition
to this simple circuit.

Definition 7.1 An n-bit serial register, SRn, is made by serially connecting a D flip-flop with an SRn−1.
SR1 is a D flip-flop. ⋄

In Figure 7.3 is shown a SRn. It is obvious that SRn introduces a n clock cycle delay between its input
and its output. The current application is for building digital controlled “delay lines”.
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Q

Q’-

- -- . . .

. . .

. . .

IN

CK

OUT

Figure 7.3: The n-bit serial register (SRn). Triggered by the active edge of the clock, the content of each
RSF-F is loaded with the content of the previous RSF-F.

We hope that now it is very clear what is the role of the master-slave structure. Let us imagine a
“serial register built with D latches”! The transparency of each element generates the strange situation
in which at each clock cycle the input is loaded in a number of latches that depends by the length of the
active level of the clock signal and by the propagation time through each latch. Results an uncontrolled
system, useless for any application. Therefore, for controlling the propagation with the clock signal
we must use the master-slave, non-transparent structure of D flip-flop that switches on the positive or
negative edge of clock.

VeriSim 7.1 The functional description currently used for an n-bit serial register active on the positive
edge of clock is:
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/ * ************************************************************************
F i l e name : s e r i a l r e g i s t e r . v
C i r c u i t name : S e r i a l r e g i s t e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n− b i t s e r i a l r e g i s t e r
************************************************************************ * /

module s e r i a l r e g i s t e r # ( parameter n = 1024)
( output o u t ,

input in , enab l e , c l o c k ) ;
reg [ 0 : n −1] s e r i a l r e g ;

a s s i g n o u t = s e r i a l r e g [ n − 1 ] ;
always @( posedge c l o c k )

i f ( e n a b l e ) s e r i a l r e g <= { in , s e r i a l r e g [ 0 : n − 2 ]} ;
endmodule

⋄

7.3 The Parallel Composition: the Random Access Memory

The parallel composition in 1-OS provides the random access memory (RAM), which is the main storage
support in digital systems. Both, data and programs are stored on this physical support in different forms.
Usually we call these circuits improperly memories, even if the memory function is something more
complex, which suppose besides a storage device a specific access mechanism for the stored information.
A true memory is, for example, an associative memory (see the next subchapters about applications), or
a stack memory (see next chapter).

This subchapter introduces two structures:

• a trivial composition, but a very useful circuit: the n-bit latch

• the asynchronous random access memory (RAM),

both involved in building big but simple recursive structures.

7.3.1 The n-Bit Latch

The n-bit latch, Ln, is made by parallel connecting n data latches clocked by the same CK. The system
has n inputs and n outputs and stores an n-bit word. Ln is a transparent structure on the active level of the
CK signal. The n-bit latch must be distinguished by the n-bit register (see the next section) that switches
on the edge of the clock. In a synchronous digital system is forbidden to close a combinational loop over
Ln.

VeriSim 7.2 A 16-bit latch is described in Verilog as follows:
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/ * ************************************************************************
F i l e name : n l a t c h . v
C i r c u i t name : n−B i t La tch
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n− b i t l a t c h
************************************************************************ * /

module n l a t c h # ( parameter n = 1 6 ) ( output reg [ n − 1 : 0 ] o u t ,
input [ n − 1 : 0 ] i n ,
input c l o c k ) ;

always @( i n or c l o c k )
i f ( c l o c k == 1) / / t h e a c t i v e −h igh c l o c k v e r s i o n
/ / i f ( c l o c k == 0) / / t h e a c t i v e −low c l o c k v e r s i o n

o u t = i n ;
endmodule

⋄

The n-bit latch works like a memory, storing n bits. The only deficiency of this circuit is due to the
access mechanism. We must control the value applied on all n inputs when the latch changes its content.
More, we can not use selectively the content of the latch. The two problems are solved adding some
combinational circuits to limit both the changes and the use of the stored bits.

7.3.2 Asynchronous Random Access Memory

Adding combinational circuits for accessing in a more flexible way an m-bit latch for write and read
operations, results one of the most important circuits in digital systems: the random access memory.
This circuit is the biggest and simplest digital circuit. And we can say it can be the biggest because it is
the simplest.

Definition 7.2 The m-bit random access memory, RAMm, is a linear collection of m D (data) latches par-
allel connected, with the 1-bit common data inputs, DIN. Each latch receives the clock signal distributed
by a DMUXlog2 m. Each latch is accessed for reading through a MUXlog2 m. The selection code is com-
mon for DMUX and MUX and is represented by the p-bit address code: Ap−1, . . . ,A0, where p = log2m.
⋄

The logic diagram associated with the previous definition is shown in Figure 7.4. Because no one
of the input signal is clock related, this version of RAM is considered an asynchronous one. The signal
WE ′ is the low-active write enable signal. For WE ′ = 0 the write operation is performed in the memory
cell selected by the address An−1, . . . ,A0.3 The wave forme describing the relation between the input
and output signals of a RAM are represented in Figure 7.5, where the main time restrictions are the
followings:

• tACC: access time - the propagation time from address input to data output when the read operation
is performed; it is defined as a minimal value

3The actual implementation of this system uses optimized circuits for each 1-bit storage element and for the access circuits.
See Appendix C for more details.)
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DMUXp

O′
m−1E’

O′
1

O′
0

.

.

.

DL

CK D

Q

DL

CK D

Q

DL

CK D

Q

MUXp

i0
i1

im−1

? ? ?

�
�

�

.

.

.

. . .

. . .

? ? ?
6

?

Ap−1 . . .A0

DIN

DOUT�

-WE’

Figure 7.4: The principle of the random access memory (RAM). The clock is distributed by a DMUX to
one of m = 2p DLs, and the data is selected by a MUX from one of the m DLs. Both, DMUX and MUX use as
selection code a p-bit address. The one-bit data DIN can be stored in the clocked DL.

• tW : write signal width - the length of active level of the write enable signal; it is defined as the
shortest time interval for a secure writing

• tASU : address set-up time related to the occurrence of the write enable signal; it is defined as a
minimal value for avoiding to disturb the content of other than the storing cell selected by the
current address applied on the address inputs

• tAH : address hold time related to the end transition of the write enable signal; it is defined as a
minimal value for similar reasons

• tDSU : data set-up time related to the end transition of the write enable signal; it is defined as a
minimal value that ensure a proper writing

• tDH : data hold time related to the end transition of the write enable signal; it is defined as a minimal
value for similar reasons.

The just described version of a RAM represents only the asynchronous core of a memory subsystem,
which must have a synchronous behavior in order to be easy integrated in a robust design. In Figure 7.4
there is no clock signal applied to the inputs of the RAM. In order to synchronize the behavior of this
circuit with the external world, additional circuits must be added (see the first application in the next
subchapter: Synchronous RAM).

The actual organization of an asynchronous RAM is more elaborated in order to provide the storage
support for a big number of m-bit words.

VeriSim 7.3 The functional description of a asynchronous n = 2p m-bit words RAM follows:
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Figure 7.5: Read and write cycles for an asynchronous RAM. Reading is a combinational process of
selecting. The access time, tACC, is given by the propagation through a big MUX. The write enable signal must be
strictly included in the time interval when the address is stable (see tASU and tAH ). Data must be stable related to
the positive transition of WE ′ (see tDSU and tDH ).

/ * ************************************************************************
F i l e name : ram . v
C i r c u i t name : Asynchronous RAM
D e s c r i p t i o n : b e h a v i o r a l d e s c r i i p t i o n o f an a s y n c h r o n o u s random−a c c e s s

memory
************************************************************************ * /

module ram ( input [m− 1 : 0 ] d i n , / / da ta i n p u t
input [ p − 1 : 0 ] addr , / / a d d r e s s
input we , / / w r i t e e n a b l e
output [m− 1 : 0 ] dou t ) ; / / da ta o u t

reg [m− 1 : 0 ] mem[ ( 1 ’ b1<<p ) − 1 : 0 ] ; / / t h e memory

a s s i g n dou t = mem[ add r ] ; / / r e a d i n g

always @( d i n or add r or we ) i f ( we ) mem[ add r ] = d i n ; / / w r i t i n g
endmodule

⋄

The real structural version of the storage array will be presented in two stages. First the number of
bits per word will be expanded, then the e solution for a big number of words number of words will be
presented.
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Expanding the number of bits per word

The pure logic description offered in Figure 7.4 must be reconsidered in order (1) to optimize it and
(2) to show how the principle it describe can be used for designing a many-bit word RAM. The circuit
structure from Figure 7.6 represents the m-bit word RAM. The circuit is organized in m columns, one for
each bit of the m-bit word. The DMUX structure is shared all by the m columns, while each column has
it own MUX structure. Let us remember that both, the DMUX and MUX circuits are structured around
a DCD. See Figure 6.6 and 6.9, where the first level in both circuits is a decoder, followed by a linear
network of 2-input ANDs for DMUX, and by an AND-OR circuit for MUX. Then, only one decoder,
DCDp, must be provided for the entire memory. It is shared by the demultiplexing function and by the
m multiplexors. Indeed, the outputs of the decoder, LINEn−1, ... LINE1, LINE0, are used to drive:

• one AND2 gate associate cu each line in the array, whose output clocks the DL latches associated
to one word; with these gates the decoder forms the demultimplexing circuit used to clock, when
WE = 1, the latches selected (addressed) by the current value of the address: Ap−1, . . .A0

• m AND2 gates, one in each column, selecting the read word to be ORed to the outputs DOUTm−1,
DOUTm−2, ... DOUT0; with the AND-OR circuit from each COLUMN the decoder forms the
multiplexor circuit associated to each output bit of the memory.

The array of lathes is organized in n and m columns. Each line is driven for write by the output
of a demultiplexer, while for the read function the addressed line (word) is selected by the output of a
decoder. The output value is gathered from the array using m multiplexors.

The reading process is a pure combinational one, while the writing mechanism is an asynchronous
sequential one. The relation between the WE signal and the address bits is very sensitive. Due to the
combinational hazard to the output of DCD, the WE’ signal must be activated only when the DCD’s
outputs are stabilized to the final value, i.e., tASU before the fall edge of WE’ or tH after the rise edge of
WE’.

Expanding the number of words by two dimension addressing

The factor form on silicon of the memory described in Figure 7.6 is very unbalanced for n >>> m.
Expanding the number of words for the a RAM in the previous, one block version is not efficient because
request a complex lay-out involving very long wires. We are looking for a more “squarish” version of
the lay-out for a big memory. The solution is to connect in parallel many m-column blocks, thus defining
a many-word from which to select one word using another level of multiplexing. The reading process
selects the many-word containing the requested word from which the requested word is selected.

The internal organization of memory is now a two dimension array of rows and columns. Each
row contains a many-word of 2q words. Each column contains a number of 2r words. The memory is
addressed using the (p = r+q)-bit address:

addr[p-1:0] = {rowAddr[r-1:0], colAddr[q-1:0]}

The row address rowAddr[r-1:0] selects a many-word, while from the selected many-word, the column
address colAddr[q-1:0] selects the word addressed by the address addr[p-1:0]. Playing with the
values of r and q an appropriate lay-out of the memory array can be designed.

In Figure 7.7 the block schematic for the resulting memory is presented. The second decoder –
COLUMN DECODE – selects from the s m-bit words provided by the s COLUMN BLOCKs the word
addressed by addr[p-1:0].
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Figure 7.6: The asynchronous m-bit word RAM. Expanding the number of bits per word means to connect
in parallel one-bit word memories which share the same decoder. Each COLUMN contains the storing latches and
the AND-OR circuits for one bit.

While the size decoder for a one block memory version is in the same order with the number of words
(SDCDp ∈ 2p), the sum of the sizes of the two decoders in the two dimension version is much smaller,
because usually 2p >> 2r +2q, for p = r+q. Thus, the area of the memory circuit is dominated only by
the storage elements.

The second level of selection is based also on a shared decoder – COLUMN DECODER. It forms,
with the s two-input ANDs a DMUXq – the q-input DMUX in Figure 7.7 – which distributes the write
enable signals, we, to the selected m-column block. The same decoder is shared by the m s-input MUXs
used to select the output word from the many-word selected by ROW DECODE.

The well known principle of ”divide et impera” (divide and conquer) is applied when the address is
divided in two parts, one for selecting a row and another for selecting a column. The access circuits is
thus minimized.

Unfortunately, RAM has not the function of memorizing. It is only a storage support. Indeed, if we
want to “memorize” the number 13, for example, we must store it to the address 131313, for example,
and to keep in mind (to memorize) the value 131313, the place where the number is stored. And than,
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Figure 7.7: RAM version with two dimension storage array. A number of m-bit blocks are parallel
connected and driven by the same row decoder. The column decoder selects to outoput an m-bit word from the
(s×m)-bit row.
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what’s the help provided us by a the famous RAM memory? No one. Because RAM is not a memory,
it becomes a memory only if the associated processor runs an appropriate procedure which allows us to
forget about the address 131313. Another solution is provided by additional circuits used to improve the
functionality (see the subsection about Associative Memories.)

7.4 Applications

Composing basic memory circuits with combinational structures result typical system configurations or
typical functions to be used in structuring digital machines. The pipeline connection, for example, is
a system configuration for speeding up a digital system using a sort of parallelism. This mechanism
is already described in the subsections 2.5.1 Pipelined connections, and 3.3.2 Pipeline structures. Few
other applications of the circuits belonging to 1-OS are described in this section. The first is a frequent
application of 1-OS: the synchronous memory, obtained adding clock triggered structures to an asyn-
chronous memory. The next is the file register – a typical storage subsystem used in the kernel of the
almost all computational structures. The basic building block in one of the most popular digital device,
the Field Programmable Gate Array, is also SRAM based structure. Follows the content addressable
memory which is a hardware mechanism useful in controlling complex digital systems or for designing
genuine memory structures: the associative memories.

7.4.1 Synchronous RAM

It is very hard to consider the time restriction imposed by the wave forms presented in Figure 7.5 when the
system is requested to work at high speed. The system designer will be more comfortable with a memory
circuit having all the time restrictions defined related only to the active edge of the system clock. The
synchronous RAM (SRAM) is conceived to have all time relations defined related to the active edge of
the clock signal. SRAM is the preferred embodiment of a storage circuit in the contemporary designs.
It performs write and read operations synchronized with the active edge of the clock signal (see Figure
7.8).

VeriSim 7.4 The functional description of a synchronous RAM (0.5K of 64-bit words) follows:

/ * ************************************************************************
F i l e name : sram . v
C i r c u i t name : Synchronous RAM
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a s y n c h r o n o u s RAM
************************************************************************ * /

module sram ( input [ 6 3 : 0 ] d i n ,
input [ 8 : 0 ] addr ,
output reg [ 6 3 : 0 ] dout ,
input we , c l k ) ;

reg [ 6 3 : 0 ] mem[ 5 1 1 : 0 ] ;
always @( posedge c l k ) i f ( we ) d ou t <= d i n ;

e l s e dou t <= mem[ add r ] ; / / r e a d i n g
always @( posedge c l k ) i f ( we ) mem[ add r ] <= d i n ; / / w r i t i n g

endmodule
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Figure 7.8: Read and write cycles for SRAM. For the flow-through version of a SRAM the time behavior
is similar to a register. The set-up and hold time are defined related to the active edge of clock for all the input
connections: data, write-enable, and address. The data output is also related to the same edge.

⋄

The previously described SRAM is the flow-through version of a SRAM. A pipelined version is also
possible. It introduces another clock cycle delay for the output data.

7.4.2 Register File

The most accessible data in a computational system is stored in a small and fast memory whose locations
are usually called machine registers or simply registers. In most usual embodiment they have actually
the physical structure of a register. The machine registers of a computational (processing) element are
organized in what is called register file. Because computation supposes two operands and one result in
most of cases, two read ports and one write port are currently provided to the small memory used as
register file (see Figure 7.9).

VeriSim 7.5 Follows the Verilog description of a register file containing 32 32-bit registers. In each
clock cycle any two pair of registers can be accessed to be used as operands and a result can be stored
in any one register.
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register file m n

-

-

-

-

-

-

?

write enable clock

left operand[m-1:0]

right operand[m-1:0]

left addr[n-1:0]

right addr[n-1:0]

dest addr[n-1:0]

result[m-1:0]

Figure 7.9: Register file. In this example it contains 2n m-bit registers. In each clock cycle any two registers
can be read and writing can be performed in anyone.

/ * ************************************************************************
F i l e name : r e g i s t e r f i l e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module r e g i s t e r f i l e ( output [ 3 1 : 0 ] l e f t o p e r a n d ,

output [ 3 1 : 0 ] r i g h t o p e r a n d ,
input [ 3 1 : 0 ] r e s u l t ,
input [ 4 : 0 ] l e f t a d d r ,
input [ 4 : 0 ] r i g h t a d d r ,
input [ 4 : 0 ] d e s t a d d r ,
input w r i t e e n a b l e ,
input c l o c k ) ;

reg [ 3 1 : 0 ] f i l e [ 0 : 3 1 ] ;
a s s i g n l e f t o p e r a n d = f i l e [ l e f t a d d r ] ,

r i g h t o p e r a n d = f i l e [ r i g h t a d d r ] ;
always @( posedge c l o c k ) i f ( w r i t e e n a b l e ) f i l e [ d e s t a d d r ] <= r e s u l t ;

endmodule

⋄

The internal structure of a register file can be optimized using m× 2n 1-bit clocked latches to store
data and 2 m-bit clocked latches to implement the master-slave mechanism.

7.4.3 Field Programmable Gate Array – FPGA

Few decades ago the prototype of a digital system was realized in a technology very similar with the one
used for the final form of the product. Different types of standard integrated circuits where connected
according to the design on boards using a more or less flexible interconnection technique. Now we do
not have anymore standard integrated circuits, and making an Application Specific Integrated Circuit
(ASIC) is a very expensive adventure. Fortunately, now there is a wonderful technology for prototyping
(which can be used also for small production chains). It is based on a one-chip system called Field
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Programmable Gate Array – FPGA. The name comes from its flexibility to be configured by the user
after manufacturing, i.e., “in the field”. This generic circuit can be programmed to perform any digital
function.

In this subsection the basic configuration of an FPGA circuit will be described4. The internal cellular
structure of the system is described for the simplest implementation, letting aside details and improve-
ments used by different producer on this very diverse market (each new generation of FPGA integrates
different usual digital blocks in order to help efficient implementations; for example: multipliers, block
RAMs, ...; learn more about this from the on-line documentation provided by the FPGA producers).

CLB CLB

CLB CLB

I/O I/O I/O

I/O

I/O

I/O

=

Switch matrix

Long connection

�

Local connection

)

Figure 7.10: Top level organization of FPGA.

The system level organization of an FPGA

The FPGA chip has a cellular structure with three main programmable components, whose function is
defined by setting on 0 or on 1 control bits stored in memory elements. An FPGA can be seen as a big
structured memory containing million of bits used to control the state of million of switches. The main
type of cells are:

• Configurable Logic Blocks (CLB) used to perform a programmable combinational and/or se-
quential function

4The terminology introduced in this section follows the Xlilinx style in order to support the associated lab work.
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• Switch Nodes which interconnect in the most flexible way the CLB modules and some of them to
the IO pins, using a matrix of programmed switches

• Input-Output Interfaces are two-direction programmable interfaces, each one associated with an
IO pin.

Figure 7.10 provides a simplified representation of the internal structure of an FPGA at the top level.
The area of the chip is filled up with two interleaved arrays. One of the CLBs and another of the Switch
Nodes. The chip is boarded by IO interfaces.

The entire functionality of the system can be programmed by an appropriate binary configuration
distributed in all the cells. For each IO pin is enough one bit to define if the pin is an input or an output.
For a Switch Node more bits are needed because each switch asks for 6 bits to be configured. But,
most of bits (in some implementations more than 100 per CLB) are used to program the functions of the
combinational and sequential circuits in each node containing a CLB.

The IO interface

Each signal pin of the FPGA chip can be assigned to be an input or an output. The simplest form of the
interface associated to each IO pin is presented in Figure 7.11, where:

• D-FF0: is the D master-slave flip-flop which synchronously receives the value of the I/O pin
through the associated input non-inverting buffer

• m: the storage element which contains the 1-bit program for the input interface used to command
the tristate buffer; if m = 1 then the tristate buffer is enabled and interface is in the output mode,
else the tristate buffer is disabled and interface is in the input mode

• D-FF1: is the flip-flop loaded synchronously with the output bit to be sent to the I/O pin if m = 1.

D-FF0

D-FF1

m

� -

D

D-

�

Q

Q

clock

I
I/O pin

Programmable memory element

+

Figure 7.11: Input-Output interface.

The storage element m is part of the big distributed RAM containing all the storage elements used to
program the FPGA.
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The switch node

The switch node (Figure 7.12a) consists of a number of programmable switches (4 in our description).
Each switch (Figure 7.12b) manages 4 wires, connection them in different configurations using 6 nMOS
transistors, each commanded by the state of 1-bit memory (Figure 7.12c). If mi = 1 then the associated
nMOS transistor is on and between its drain end source the resistor has a small value. If mi = 0 then the
associated nMOS transistor is off and the two ends of the switch are not connected.
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Figure 7.12: The structure of a Switch Node. a. A Switch Node with 4 switches. b. The organization of a
switch. c. A line switch. d. An example of actual connections.

For example, the configuration shown in Figure 7.12d is programmed as follows:

switch 0 : {m0, m1, m2, m3, m4, m5} = 011010;

switch 1 : {m0, m1, m2, m3, m4, m5} = 101000;

switch 2 : {m0, m1, m2, m3, m4, m5} = 000001;

switch 3 : {m0, m1, m2, m3, m4, m5} = 010000;

Any connection is a two-direction connection.

The basic building block

Because any digital circuit can be composed by properly interconnected gates and flip-flops, each CLB
contains a number of basic building blocks, called bit slices (BSs), each able to provide at least an
n-input, 1-output programmable combinational circuit and an 1-bit register.

In the previous chapter was presented an Universal combinational circuit: the n-input multiplexer
able to perform any n-variable Boolean function. It was programmed applying on its selected inputs
an m-bit binary configuration (where m = 2n). Thereby, an MUXn and a memory for storing the m-bit
program provide the structure able to be programmed to perform any n-input 1-output combinational
circuit. In Figure 7.13 it is represented, for n = 4, by the multiplexer MUX and the 16 memory elements
m0, m1, ... m15. The entire sub-module is called LUT (from look-up table). The memory elements
m0, m1, ... m15, being part of the big distributed RAM of the FPGA chip, can be loaded with any
out of 65536 binary configuration used to define the same number of 4-input Boolean function.

Because the arithmetic operations are very frequently used the BS contains a specific circuit for any
arithmetic operation: the circuit computing the value of the carry signal. The module carry Figure
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Figure 7.13: The basic building block: the bit slice (BS).

7.13 has also its specific propagation path defined by a specific input, carryIn, and a specific output
carryOut.

The BS module contains also the one-bit register D-FF. Its contribution can be considered in the
current design if the memory element md is programmed appropriately. Indeed, if md = 1, then the
output of the BS comes form the output of D-FF, else the output of the BS is a combinational one, the
flip-flop being shortcut.

The memory element mc is used to program the selection of the LUT output or of the Carry output
to be considered as the programmable combinational function of this BS.

The total number of bits used to program the function of the BS previously described is 18. Real
FPGA circuits are now featured with much more complex BSs (please search on their web pages for
details).

There are two kinds of BS: logic type and memory type. The logic type uses LUT to implement
combinational functions. The memory type uses LUT for implementing both, combinatorial functions
and memory function (RAM or serial shift register).

The configurable logic block

The main cell used to build an FPGA, CLB (see Figure 7.10) contains many BSs organized in slices. The
most frequent organization is of 2 slices, each having 4 BSs (see Figure 7.14). There are slices containing
logic type BSs (usually called SLICEL), or slices containing memory type BSs (usually called SLICEM).
Some CLBs are composed by two SLICEL, others are composed by one SLICEL and one SLICEM.

A slice has some fix connections between its BSs. In our simple description, the fix connections
refers to the carry chain connections. Obviously, we can afford to make fix connections for circuits
having specific function.
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Figure 7.14: Configurable logic block.

7.5 Concluding About Memory Circuits

For the first time, in this chapter, both composition and loop are used to construct digital systems. The
loop adds a new feature and the composition expands it. The chapter introduced only the basic concepts
and the main ways to use them in implementing actual digital systems.

The first closed loop in digital circuits latches events Closing properly simple loops in small com-
binational circuits vey useful effects are obtained. The most useful is the “latch effect” allowing to store
certain temporal events. An internal loop is able to determine an internal state of the circuit which is
independent in some extent from the input signals (the circuit controls a part of its inputs using its own
outputs). Associating different internal states to different input events the circuit is able to store the input
event in its internal states. The first loop introduces the first degree of autonomy in a digital system: the
autonomy of the internal state. The resulting basic circuit for building memory systems is the elementary
latch.

Meaningful circuits occur by composing latches The elementary latches are composed in different
modes to obtain the main memory systems. The serial composition generates the master-slave flip-flop
which is triggered by the active edge of the clock signal. The parallel composition introduces the concept
of random access memory. The serial-parallel composition defines the concept of register.

Distinguishing between “how?” and “when?” At the level of the first order systems occurs a very
special signal called clock. The clock signal becomes responsible for the history sensitive processes
in a digital system. Each “clocked” system has inputs receiving information about “how” to switch
and another special input – the clock input acting on one of its edge called the active edge of clock –
and another special input indicating “when” the system switches. We call this kind of digital systems
synchronous systems, because any change inside the system is triggered synchronously by the same edge
(positive or negative) of the clock signal.

Registers and RAMs are basic structures First order systems provide few of the most important type
of digital circuits used to support the future developments when new loops will be closed. The register
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is a synchronous subsystem which, because of its non-transparency, allows closing the next loop leading
to the second order digital systems. Registers are used also for accelerating the processing by designing
pipelined systems. The random access memory will be used as storage element in developing systems
for processing a big amount of data or systems performing very complex computations. Both, data and
programs are stored in RAMs.

RAM is not a memory, it is only a physical support Unfortunately RAM has not the function of
memorizing. It is only a storage element. Indeed, when the word W is stored at the address A we must
memorize the address A in order to be able to retrieve the word W . Thus, instead of memorizing W we
must memorize A, or, as usual, we must have a mechanism to regenerate the address A. In conjunction
with other circuits RAM can be used to build systems having the function of memorizing. Any memory
system contains a RAM but not only a RAM, because memorizing means more than storing.

Memorizing means to associate Memorizing means both to store data and to retrieve it. The most
“natural” way to design a memory system is to provide a mechanism able to associate the stored data
with its location. In an associative memory to read means to find, and to write means to find a free
location. The associative memory is the most perfect way of designing a memory, even if it is not
always the most optimal as area (price), time and power.

To solve ambiguities a new loop is needed At the level of the first order systems the second latch
problem can not be solved. The system must be more “intelligent” to solve the ambiguity of receiving
synchronously contradictory commands. The system must know more about itself in order to be “able”
to behave under ambiguous circumstances. Only a new loop will help the system to behave coherently.
The next chapter, dealing with the second level of loops, will offer a robust solution to the second latch
problem.

The storing and memory functions, typical for the first order systems, are not true computational
features. We will see that they are only useful ingredients allowing to make digital computational systems
efficient.

7.6 Problems

Stable/unstable loops

Problem 7.1 Simulate in Verilog the unstable circuit described in Example 3.1. Use 2 unit time (#2)
delay for each circuit and measure the frequency of the output signal.

Problem 7.2 Draw the circuits described by the following expressions and analyze their stability taking
into account all the possible combinations applied on their inputs:

d = b(ad)′+ c

d = (b(ad)′+ c)′

c = (ac′+bc)′

c = (a⊕ c)⊕b.
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Simple latches

Problem 7.3 Illustrate the second latch problem with a Verilog simulation. Use also versions of the
elementary latch with the two gates having distinct propagation times.

Problem 7.4 Design and simulate an elementary clocked latch using a NOR latch as elementary latch.

Problem 7.5 Let be the circuit from Figure 7.15. Indicate the functionality and explain it.
Hint: emphasize the structure of an elementary multiplexer.

ck

d

c

c’

q

c

c

c’ c’

Figure 7.15: ?

Problem 7.6 Explain how it works and find an application for the circuit represented in Figure 7.16.
Hint: Imagine the tristate drivers are parts of two big multiplexors.

in

out1

out2

Figure 7.16: ?

Master-slave flip-flops

Problem 7.7 Design an asynchronously presetable master-slave flip-flop.
Hint: to the slave latch must be added asynchronous set and reset inputs (S’ and R’ in the NAND latch
version, or S and R in the NOR latch version).

Problem 7.8 Design and simulate in Verilog a positive edge triggered master-slave structure.

Problem 7.9 Design a positive edge triggered master slave structure without the clock inverter.
Hint: use an appropriate combination of latches, one transparent on the low level of the clock and
another transparent on the high level of the clock.
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Problem 7.10 Design the simulation environment for illustrating the master-slave principle with em-
phasis on the set-up time and the hold time.

Problem 7.11 Let be the circuit from Figure 7.17. Indicate the functionality and explain it. Modify the
circuit to be triggered by the other edge of the clock.
Hint: emphasize the structures of two clocked latches and explain how they interact.
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Figure 7.17: ?

Problem 7.12 Let be the circuit from Figure 7.18. Indicate the functionality and explain it. Assign a
name for the questioned input. What happens if the NANDs are substituted with NORs. Rename the
questioned input. Combine both functionality designing a more complex structure.
Hint: go back to Figure 2.6c.
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Figure 7.18: ?

Enabled circuits

Problem 7.13 An n-bit latch stores the n-bit value applied on its inputs. It is transparent on the low
level of the clock. Design an enabled n-bit latch which stores only in the clock cycle in which the enable
input, en, take the value 1 synchronized with the positive edge of the clock. Define the set-up time and
the hold time related to the appropriate clock edge for data input and for the enable signal.

Problem 7.14 Provide a recursive Verilog description for an n-bit enabled latch.
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RAMs

Problem 7.15 Explain the reason for tASU and for tAH in terms of the combinational hazard.

Problem 7.16 Explain the reason for tDSU and for tDH .

Problem 7.17 Provide a structural description of the RAM circuit represented in Figure 7.4 for m= 256.
Compute the size of the circuit emphasizing both the weight of storing circuits and the weight of the access
circuits.

Problem 7.18 Design a 256-bit RAM using a two-dimensional array of 16 × 16 latches in order to
balance the weight of the storing circuits with the weight of the accessing circuits.

Problem 7.19 Design the flow-through version of SRAM defined in Figure 7.8.
Hint: use additional storage circuits for address and input data, and relate the WE ′ signal with the clock
signal.

Problem 7.20 Design the register to latch version of SRAM defined in Figure 7.19.
Hint: the write process is identical with the flow-through version.
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Figure 7.19: Read cycles. Read cycle for the register to latch version and for the pipeline version of SRAM.

Problem 7.21 Design the pipeline version of SRAM defined in Figure 7.19.
Hint: only the output storage device must be adapted.

Registers

Problem 7.22 Provide a recursive description of an n-bit register. Prove that the (algorithmic) complex-
ity of the concept of register is in O(n) and the complexity of a ceratin register is in O(log n).
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Problem 7.23 Draw the schematic for an 8-bit enabled and resetable register. Provide the Verilog envi-
ronment for testing the resulting circuit. Main restriction: the clock signal must be applied only directly
to each D flip-flop.
Hint: an enabled device performs its function only if the enable signal is active; to reset a register means
to load it with the value 0.

Problem 7.24 Add to the register designed in the previous problem the following feature: the content of
the register is shifted one binary position right (the content is divided by two neglecting the reminder)
and on most significant bit (MSB) position is loaded the value of the one input bit called SI (serial input).
The resulting circuit will be commanded with a 2-bit code having the following meanings:

nop : the content of the register remains unchanged (the circuit is disabled)

reset : the content of the register becomes zero

load : the register takes the value applied on its data inputs

shift : the content of the register is shifted.

Problem 7.25 Design a serial-parallel register which shifts 16 16-bit numbers.

Definition 7.3 The serial-parallel register, SPRn×m, is made by a SPR(n−1)×m serial connected with a
Rm. The SPR1×m is Rm. ⋄

Hint: the serial-parallel register, SPRn×m can be seen in two manners. SPRn×m consists in m parallel
connected serial registers SRn, or SPRn×m consists in n serially connected registers Rm. We prefer usually
the second approach. In Figure 7.20 is shown the serial-parallel SPRn×m.

Rm - Rm - Rm --. . .-

. . .

IN OUT

CK

SPRn×m- -IN OUT

a.

b.
CK

Figure 7.20: The serial-parallel register. a. The structure. b. The logic symbol.

Problem 7.26 Let be tSU , tH , tp, for a register and tpCLC the propagation time associated with the CLC
loop connected with the register. The maximal and minimal value of each is provided. Write the relations
governing these time intervals which must be fulfilled for a proper functioning of the loop.

Pipeline systems

Problem 7.27 Explain what is wrong in the following always construct used to describe a pipelined
system.
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module p i p e l i n e # ( parameter n = 8 , m = 16 , p = 20)
( output reg [m− 1 : ] o u t p u t r e g ,

input wire [ n − 1 : 0 ] in ,
c l o c k ) ;

reg [ n − 1 : 0 ] i n p u t r e g ;
reg [ p − 1 : 0 ] p i p e l i n e r e g ;
wire [ p − 1 : 0 ] ou t1 ;
wire [m− 1 : 0 ] ou t2 ;
c l c 1 f i r s t c l c ( out1 , i n p u t r e g ) ;
c l c 2 s e c o n d c l c ( out2 , p i p e l i n e r e g ) ;

always @( posedge c l o c k ) begin i n p u t r e g = i n ;
p i p e l i n e r e g = ou t1 ;
o u t p u t r e g = ou t2 ;

end
endmodule
module c l c 1 ( out1 , i n 1 ) ;

/ / . . .
endmodule
module c l c 2 ( out2 , i n 2 ) ;

/ / . . .
endmodule

Hint: revisit the explanation about blocking and nonblocking evaluation in Verilog.

Register file

Problem 7.28 Draw register file 16 4 at the level of registers, multiplexors and decoders.

Problem 7.29 Evaluate for register file 32 5 minimum input arrival time before clock (tin reg),
minimum period of clock (Tmin), maximum combinational path delay (tin out) and maximum output re-
quired time after clock (treg out) using circuit timing from Appendix Standard cell libraries.

7.7 Projects
Project 7.1 Let be the module system containing system1 and system2 interconnected through the
two-direction memory buffer module bufferMemory. The signal mode controls the sense of the transfer:
for mode = 0 system1 is in read mode and system2 in write mode, while for mode = 1 system2 is in
read mode and system1 in write mode. The module library provide the memory block described by the
module memory.

module sys tem ( input [m− 1 : 0 ] i n 1 ,
input [ n − 1 : 0 ] i n 2 ,
output [ p − 1 : 0 ] ou t1 ,
output [ q − 1 : 0 ] ou t2 ,
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input c l o c k ) ;
wire [ 6 3 : 0 ] memOut1 ;
wire [ 6 3 : 0 ] memIn1 ;
wire [ 1 3 : 0 ] ] addr1 ;
wire we1 ;
wire [ 2 5 5 : 0 ] memOut2 ;
wire [ 2 5 5 : 0 ] memIn2 ;
wire [ 1 1 : 0 ] addr2 ;
wire we2 ;
wire mode ; / / mode = 0: s y s t e m 1 reads , s y s t e m 2 w r i t e s

/ / mode = 1: s y s t e m 2 reads , s y s t e m 1 w r i t e s
wire [ 1 : 0 ] com12 , com21 ;
sys tem1 sys tem1 ( in1 , out1 , com12 , com21 ,

memOut1 ,
memIn1 ,
addr1 ,
we1 ,
mode ,
c l o c k ) ;

sys tem2 sys tem2 ( in2 , out2 , com12 , com21 ,
memOut2 ,
memIn2 ,
addr2 ,
we2 ,
c l o c k ) ;

bufferMemory bufferMemory ( memOut1 ,
memIn1 ,
addr1 ,
we1 ,
memOut2 ,
memIn2 ,
addr2 ,
we2 ,
mode ,
c l o c k ) ;

endmodule

module memory #( parameter n =32 , m=10)
( output reg [ n − 1 : 0 ] d a t a O u t , / / da ta o u t p u t

input [ n − 1 : 0 ] d a t a I n , / / da ta i n p u t
input [m− 1 : 0 ] readAddr , / / read a d d r e s s
input [m− 1 : 0 ] w r i t e A d d r , / / w r i t e a d d r e s s
input we , / / w r i t e e n a b l e
input e n a b l e , / / module e n a b l e
input c l o c k ) ;

reg [ n − 1 : 0 ] memory [ 0 : ( 1 << m) − 1 ] ;
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always @( posedge c l o c k ) i f ( e n a b l e ) begin
i f ( we ) memory [ w r i t e A d d r ] <= d a t a I n ;
d a t a O u t <= memory [ readAddr ] ;

end
endmodule

Design the module bufferMemory.

Project 7.2 Design a systolic system for multiplying a band matrix of maximum width 16 with a vector.
The operands are stored in serial registers.



Chapter 8

AUTOMATA:
Second order, 2-loop digital systems

In the previous chapter
the memory circuit were described discussing about

• how is built an elementary memory cell

• how applying all type of compositions the basic memory structures (flip-flops, registers,
RAMs) can be obtained

• how the basic memory structures are in used real applications

In this chapter
the second order, two-loop circuits are presented with emphasis on

• defining what is an automaton

• the smallest 2-state automata, such as T flip-flop and JK flip-flop

• big and simple automata exemplified by the binary counters

• small and complex finite automata exemplified by the control automata

In the next chapter
the third order, three-loop systems are described taking into account the type of system through
which the third loop is closed:

• combinational circuit - resulting optimized design procedures for automata

• memory systems - supposing simplified control

• automata - with the processor as typical structure.

215
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The Tao of heaven is impartial.
If you perpetuate it, it perpetuates you.

Lao Tzu1

Perpetuating the inner behavior is the
magic of the second loop.

The next step in building digital systems is to add a new loop over systems containing 1-OS. This
new loop must be introduced carefully so as the system remains stable and controllable. One of the most
reliable ways is to build synchronous structures, that means to close the loop through a way containing a
register. The non-transparency of registers allows us to separate with great accuracy the current state of
the machine from the next state of the same machine.

This second loop increases the autonomous behavior of the system including it. As we shall see, in
2-OS each system has the autonomy of evolving in the state space, partially independent from the input
dynamics, rather than in 1-OS in which the system has only the autonomy of preserving a certain state.

The basic structure in 2-OS is the automaton, a digital system with outputs evolving according to two
variables: the input variable and a “hidden” internal variable named the internal state variable, simply
the em state. The autonomy is given by the internal effect of the state. The behavior of the circuit output
can not be explained only by the evolution of the input, the circuit has an internal autonomous evolution
that “memorizes” previous events. Thus the response of the circuit to the actual input takes into account
the more or less recent history. The state space is the space of the internal state and its dimension is
responsible for the behavioral complexity. Thus, the degree of autonomy depends on the dimension of
the state space.

clock

b.a.

Unclocked Latch

CLC

Cloked Lathes

?
6

6 1-OS

1-OS
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6 0/1-OS
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Uncloked Lathes

?

1-OS

?

register

1-OS

0-OS

clock

Cloked Lathes

?
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6
clock

Figure 8.1: The two type of 2-OS. a. The asynchronous automata with a hazardous loop over a transparent
latch. b. The synchronous automata with a edge clock controlled loop closed over a non-transparent register.

An automaton is built closing a loop over a 1-OS represented by a collection of latches. The loop
can be structured using the previous two type of systems. Thus, there are two type of automata:

1Quote from Tao Te King of Lao Tzu translated by Brian Browne Walker.
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• asynchronous automata, for which the loop is closed over unclocked latches, through combina-
tional circuit and/or unclocked latches as in Figure 8.1a

• synchronous automata, having the loop closed through an 1-OS and all latches are clocked latches
connected on the loop in master-slave configurations (see Figure 8.1b).

Our approach will be focused on the synchronous automata, after considering only in the first subchapter
an asynchronous automaton used to optimize the internal structure of the widely used flip-flop: DFF.

8.1 Basic definitions in automata theory

Definition 8.1 An automaton, A, is defined by the following 5-uple:

A = (X ,Y,Q, f ,g)

where:

X : the finite set of input variables

Y : the finite set of output variables

Q : the set of state variables

f : the state transition function, described by f : X ×Q → Q

g : the output transition function, with one of the following definitions:

• g : X ×Q → Y for Mealy type automaton

• g : Q → Y for Moore type automaton

• g(q) = q for Y ≡ Q, where q ∈ Q for half-automaton, symbolized with A1/2.

At each clock cycle the state of the automaton switches and the output takes the value according to the
new state (and the current input, in Mealy’s approach). ⋄

Definition 8.2 A finite automaton, FA, is an automaton with Q a finite set. ⋄

FA is a complex circuit because the size of its definition depends by |Q|.

Definition 8.3 A recursively defined n-state automaton, n-SA, is an automaton with |Q| ∈ O( f (n)). ⋄

An n-SA has a finite (usually short) definition depending by one or many parameters. Its size will
depend by parameters. Therefore, it is a simple circuit.

Definition 8.4 An initial state is a state having no predecessor state. ⋄

Definition 8.5 An initial automaton is an automaton having a set of initial states, Q′, which is a subset
of Q, Q′ ⊂ Q. ⋄

Definition 8.6 A strict initial automaton is an automaton having only one initial state, Q′ = {q0}. ⋄
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A strict initial automaton is defined by:

A = (X ,Y,Q, f ,g;q0)

and has a special input, called reset, used to led the automaton in the initial state q0. If the automaton is
initial only, the input reset switches the automaton in one, specially selected, initial state.

Definition 8.7 The delayed (Mealy or Moore) automaton is an automaton with the output values gener-
ated through a (delay) register, thus the current output value corresponds to the previous internal state
of the automaton, instead of the current value of the state, as in non-delayed version. ⋄

The half automaton is an automaton with identity function as the output function (see Figure 8.2a,b)
defined for two reasons:

• many optimization techniques are related only with the loop circuits of the automaton. The main
feature of an automaton is the autonomy and the associated half-automaton, concept which de-
scribes especially this type of behavior

• there are applications that use directly the state as outputs.

All kind of automata can be described starting from a half-automaton, adding only combinational
(no loops) circuits and/or memory (one loop) circuits. In Figure 8.2 are presented all the four types of
automata:

Mealy automaton : results connecting to the “output” of an A1/2 the output CLC that receives also the
input X (Figure 8.2c) and computes the output function g; a combinational way occurs between
the input and the output of this automaton allowing a fast response, in the same clock cycle, to the
input variation

Moore automaton : results connecting to the “output” of an A1/2 the output CLC (Figure 8.2d) that
computes the output function g; this automaton reacts to the input signal in the next clock cycle

delayed Mealy automaton : results serially connecting a register, R, to the output of the Mealy au-
tomaton (Figure 8.2e); this automaton reacts also to the input signal in the next clock cycle, but
the output is hazard free because it is registered

delayed Moore automaton : results serially connecting a register, R, to the output of the Moore au-
tomaton (Figure 8.2f); this automaton reacts to the input signal with a two clock cycles delay.

Real applications use all the previous type of automata, because they react with different delay to the
input change. The registered outputs are preferred if possible.

Theorem 8.1 The time relation between the input value and the output value is the following for the four
types of automata:

1. for Mealy automaton the output to the moment t, y(t) ∈ Y depends on the current input value,
x(t) ∈ X, and by the current state, q(t) ∈ Q, i.e., y(t) = g(x(t),q(t))

2. for delayed Mealy automaton and Moore automaton the output corresponds with the input value
from the previous clock cycle:
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Figure 8.2: Automata types. a. The structure of the half-automaton (A1/2), the no-output automaton: the state is
generated by the previous state and the previous input. b. The logic symbol of half-automaton. c. Immediate Mealy
automaton: the output is generated by the current state and the current input. d. Immediate Moore automaton: the
output is generated by the current state. e. Delayed Mealy automaton: the output is generated by the previous state
and the previous input. f. Delayed Moore automaton: the output is generated by the previous state.

• y(t) = g(x(t −1),q(t −1)) for Mealy delayed automaton

• y(t) = g(q(t)) = g( f (x(t −1),q(t −1)) for Moore automaton

3. for delayed Moore automaton the input transition acts on the output transition delayed with two
clock cycles:

y(t) = g(q(t −1)) = g( f (x(t −2),q(t −2)).⋄

Proof The proof is evident starting from the previous two definitions. ⋄
The possibility emphasized by this theorem is that we dispose of automata with different time re-

action to the input variations. The Mealy automaton follows immediate the input transitions, delayed
Mealy and Moore automata react with one clock cycle delay to the input transitions and delayed Moore
automaton delays with two cycles the response to the input.
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The symbols from the sets X , Y , and Q are binary coded using bits specified by X0,X1, . . . for X ,
Y0,Y1, . . . for Y , Q0,Q1, . . . for Q.

Actually, all implementable automata are finite. Traditionally, the term finite automaton is used to
distinguish a subset of automata whose behavior is described using a constant number of states. Even if
the input string is infinite, the behavior of the automaton is limited to a trajectory traversing a constant
(finite) number of states. A finite automaton will be an automaton having a random combinational
function for its transition functions f and g. Therefore, a finite automaton is a complex structure.

A “non-finite” automaton that is an automaton designed to evolve in a state space proportional with
the length of the input string. Now, if the input string is “infinite” the number of states must be also
“infinite”. Such an automaton can be defined only if its transition function is simple. Its combinational
loop is a simple circuit even if it can be a big one. The “non-finite” automaton has a number of states
that does not affect the definition (see the following examples of counters, for sum prefix automaton, ...).
We classify the automata in two categories:

• “non-finite”, recursive defined, simple automata, called functional automata, or simply automata

• non-recursive defined, complex automata, called finite automata.

We continue this chapter with an example of asynchronous circuit, because of its utility and because
we intend to show how complex is the management of its behavior. We will continue presenting only
synchronous automata, starting with small automata having only two states (the smallest state space).
We will continue with simple, recursive defined automata and we will end with finite automata, that are
the most complex automata.

8.2 Two States Automata

The smallest two-state half-automata can be explored almost systematically. Indeed, there are only 16
one-input two-state half-automata and 256 with two inputs. We choose only two of them: the T flip-flop,
the JK flip-flop, which are automata with Q = Y and f = g. For simple 2-operand computations 2-input
automata can be used. One of them is the adder automaton. This section ends with a small and simple
universal automaton having 2 inputs and 2 states.

8.2.1 Optimizing DFF with an asynchronous automaton

The very important feature added by the master-slave configuration – that of edge triggering the flip-flop
– was paid by increasing two times the size of the structure. An improvement is possible for DFF (the
master-slave D flip-flop) using the structure presented in Figure 8.3, where instead of 8 2-input NANDs
and 2 invertors only 6 2-input gates are used. The circuit contains three elementary unclocked latches:
the output latch, with the inputs R’ and S’ commanded by the outputs of the other two latches, L1 and
L2. L1 and L2 are loop connected building up a very simple asynchronous automaton with two inputs –
D and CK – and two outputs – R’ and S’.

The explanation of how this DFF, designed as a 2-OS, works uses the static values on the inputs of
the latches. For describing the process of switching in 1 the triplets (x,y,z) are used, while for switching
in 0 are used [x,y,z], where:

x : is the stable value in the set-up time interval (in a time interval, equal with tsu, before the positive
transition of CK)
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y : is the stable value in the hold time interval (in a time interval of th, after the positive transition of
CK; the transition time, t+ is considered very small and is neglected)

z : is a possible value after the hold time interval (after th measured from the positive transition of CK)

For the process of transition in 1 we follow the triplets (x,y,z) in Figure 8.3:

in set-up time interval : CK = 0 forces the values R’ and S’ to 1, does not matter what is the value on
D. Thus, the output latch receives passive values on both of its inputs.

in hold time interval : CK = 1 frees L1 and L2 to follow the signals they receive on their inputs. The
first order and the second order loops are now closed. L2 switches to S’ = 0, because of the 0
received from L1, which maintains its state because D and CK have passive values and the output
S’ of L2 reinforces its state to R’ = 1. The output latch is then set because of S’ = 0.

after the hold time interval : the possible transition in 0 of D after the hold time does not affect the
output of the circuit, because the second loop, from L2 to L1, forces the output R’ to 1, while L2
is not affected by the transition of its input to the passive value because of D = 0. Now, the second
loop allow the system to “ignore” the switch of D after the hold time.

D

CK

Q’ Q
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L2

R’ S’

(0,1,1)

[0,1,1]

(1,1,1)

[1,0,0]

(1,0,0)
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(1,1,0)
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(1,1,1)

[0,0,0]

Figure 8.3: The D flip-flop implemented as a 2-OS system. The asynchronous automaton built up loop
connecting two unclocked latches allows to trigger the output latch according to the input data value available at
the positive transition of clock.

For the process of transition in 0 we follow the triplets [x,y,z] in Figure 8.3:

in set-up time interval : CK = 0 forces the values R’ and S’ to 1, does not matter what is the value on
D. Thus, the output latch receives passive values on both of its inputs. The output of L1 applied to
L2 is also forced to 1, because of the input D = 0.
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in hold time interval : CK = 1 frees L1 and L2 to follow the signals they receive on their inputs. The
first order and the second order loops are now closed. L1 switches to R’ = 0, because of the 0
maintained on D. L2 does not change its state because the input received from L1 has the passive
value and the CK input switches also in the passive value. The output latch is then reset because
of R’ = 0.

after the hold time interval : the possible transition in 1 of D after the hold time does not affect the
state of the circuit, because 1 is a passive value for a NAND elementary latch.

The effect of the second order loop is to “inform” the circuit that the set signal was, and still is,
activated by the positive transition of CK and any possible transition on the input D must be ignored.
The asynchronous automaton L1 & L2 behaves as an autonomous agent who “knows” what to do in the
critical situation when the input D takes an active value in an unappropriate time interval.

8.2.2 The Smallest Automaton: the T Flip-Flop

The size and the complexity of an automaton depends at least on the dimension of the sets defining it.
Thus, the smallest (and also the simplest) automaton has two states, Q = {0,1} (represented with one
bit), one-bit input, T = {0,1}, and Q = Y . The associated structure in represented in Figure 8.4, where
is represented a circuit with one-bit input, T, having a one-bit register, a D flip-flop, for storing the 1-bit
coded state, and a combinational logic circuit, CLC, for computing the function f .

What can be the meaning of an one-bit “message”, received on the input T, by a machine having only
two states? We can “express” with the two values of T only the following things:

no op : T = 0 - the state of the automaton remains the same

switch : T = 1 - the state of the automaton switches.
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Q

CLC

??

?

T
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Figure 8.4: The T flip-flop. a. It is the simplest automaton because: has 1-bit state register (a DF-F), a 2-input
loop circuit (one as automaton input and another to close the loop), and direct output from the state register. b. The
structure of the T flip-flop: the XOR2 circuits complements the state is T = 1. c. The logic symbol.

The resulting automaton is the well known T flip-flop. The actual structure of a T flip-flop is obtained
connecting on the loop a commanded invertor, i.e., a XOR gate (see Figure 8.4b). The command input
is T and the value to be inverted is Q, the state and the output of the circuit.

This small and simple circuit can be seen as a 2-modulo counter because for T = 1 the output “says”:
01010101... Another interpretation of this circuit is: the T flip-flop is a frequency divider. Indeed, if the
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clock frequency is fCK , then the frequency of the signal received to the output Q is fCK/2 (after each
clock cycle the circuit comes back in the same state).

8.2.3 The JK Automaton: the Greatest Flip-Flop

The “next” automaton in an imaginary hierarchy is one having two inputs. Let’s call them J and K. Thus,
we can define the famous JK flip-flop. Also, the function of this automaton results univocally. For an
automaton having only two states the four input messages coded with J and K will be compulsory:

no op : J = K = 0 - the flip-flop output does not change (the same as T = 0 for T flip-flop)

reset : J = 0, K = 1 - the flip-flop output takes the value 0 (specific for D flip-flop)

set : J = 1, K = 0 - the flip-flop output takes the value 1 (specific for D flip-flop)

switch : J = K = 1 - the flip-flop output switches in the complementary state (the same as T = 1 for T
flip-flop)

Only for the last function the loop acts specific for a second order circuit. The flip-flop must “tell
to itself” what is its own state in order “to knows” how to switch in the other state. Executing this
command the circuit asserts its own autonomy. The vagueness of the command “switch” imposes a
sort of autonomy to determine a precise behavior. The loop that assures this needed autonomy is closed
through two AND gates (see Figure 8.5a).

RSF-F

JKF-F

??

? ?

? ?

J K

J K

CK

S R

Q’ Q

Q’ Q

Q Q’

a. b.

6

Figure 8.5: The JK flip-flop. It is the simplest two-input automaton. a. The structure: the loop is closed over a
master-slave RSF-F using only two AND2. b. The logic symbol.

Finally, we solved the second latch problem. We have a two state machine with two command
inputs and for each input configuration the circuit has a predictable behavior. The JK flip-flop is the best
flip-flop ever defined. All the previous ones can be reduced to this circuit with minimal modifications
(J = K = T for T flip-flop or K′ = J = D for D flip-flop).

8.3 Functional Automata: the Simple Automata

The smallest automata before presented are used in recursively extended configuration to perform similar
functions for any n. From this category of circuits we will present in this section only the binary counters.
The next circuit will be also a simple one, having the definition independent by size. It is a sum-prefix
automaton. The last subject will be a multiply-accumulate circuit built with two simple automata serially
connected.
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8.3.1 Counters

The first simple automaton is a composition starting from one of the function of T flip-flop: the counting.
If one T flip-flop counts modulo-21, maybe two T flip-flops will count modulo-22 and so on. Seems to
be right, but we must find the way for connecting many T flip-flops to perform the counter function.

For the synchronous counter2 built with n T flip-flops, Tn−1, . . . ,T0, the formal rule is very simple:
if INC0, then the first flip-flop, T0, switches, and the i-th flip-flop, for i = 1, . . . ,n− 1, switches only if
all the previous flip-flops are in the state 1. Therefore, in order to detect the switch condition for i-th
flip-flop an ANDi+1 must be used.

Definition 8.8 The n-bit synchronous counter, COUNTn, has a clock input, CK, a command input, INC0,
an n-bit data output, Qn−1, . . .Q0, and an expansion output, INCn. If INC0 = 1, the active edge of clock
increments the value on the data output (see Figure 8.6). ⋄

There is also a recursive, constructive, definition for COUNTn.

Definition 8.9 An n-bit synchronous counter, COUNTn is made by expanding a COUNTn−1 with a T flip-
flop with the output Qn−1, and an ANDn+1, with the inputs INC0, Qn−1, . . . ,Q0, which computes INCn

(see Figure 8.6). COUNT1 is a T flip-flop and an AND2 with the inputs Q0 and INC0 which generates
INC1. ⋄

Tn−1 COUNTn−1

T

Q

INC0

Q0Qn−2

Qn−1

? ?

? ?

. . .

?

CK

INC0

INCn

. . .

Qn−2 Q0. . .

. . .

INCn−1

Figure 8.6: The synchronous counter. The recursive definition of a synchronous counter has SCOUNT (n) ∈
O(n2) and TCOUNT (n) ∈ O(log n), because for the i-th range one TF-F and one ANDi are added.

Example 8.1 ∗The Verilog description of a synchronous counter follows:

2There exist also asinchronous counters. They are simpler but less performant.
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/ * ************************************************************************
F i l e name : s y n c c o u n t e r . v
C i r c u i t name : Synchronous Counter
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a s y n c h r o n o u s c o u n t e r as a

T−t y p e r e g i s t e r l oop c o n n e c t e d w i t h an AND p r e f i x ne twork
************************************************************************ * /

module s y n c c o u n t e r # ( parameter n = 8 ) ( output [ n − 1 : 0 ] o u t ,
output i n c n ,
input i n c 0 ,

r e s e t ,
c l o c k ) ;

t r e g t r e g ( . o u t ( o u t ) ,
. i n ( p r e f i x o u t [ n − 1 : 0 ] ) ,
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ;

a n d p r e f i x a n d p r e f i x ( . o u t ( p r e f i x o u t ) ,
. i n ({ out , i n c 0 } ) ) ;

a s s i g n i n c n = p r e f i x o u t [ n ] ;
endmodule

/ * ************************************************************************
F i l e name : t r e g . v
C i r c u i t name : T−t y p e R e g i s t e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a r e g i s t e r b u i l t u s i n g T−t y p e

f l i p − f l o p s i n s t e a d o f D−t y p e f l i p f l o p s
************************************************************************ * /
module t r e g # ( parameter n = 8 ) ( output reg [ n − 1 : 0 ] o u t ,

input [ n − 1 : 0 ] i n ,
input r e s e t ,

c l o c k ) ;
always @( posedge c l o c k ) i f ( r e s e t ) o u t <= 0 ;

e l s e o u t <= o u t ˆ i n ;
endmodule

The reset input is added because it is used in real applications. Also, a reset input is good in simulation
because makes the simulation possible allowing an initial value for the flip-flops (reg[n-1:0] out in module
t reg) used in design. ⋄

It is obvious that CCOUNT (n) ∈ O(1) because the definition for any n has the same, constant size (in
number of symbols used to write the Verilog description for it or in the area occupied by the drawing
of COUNTn). The size of COUNTn, according to the Definition 4.4, can be computed starting from the
following iterative form:

SCOUNT (n) = SCOUNT (n−1)+(n+1)+ST
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and results:
SCOUNT (n) ∈ O(n2)

because of the AND gates network used to command the T flip-flop. The counting time is the clock
period. The minimal clock period is limited by the propagation time inside the structure. It is computed
as follows:

TCOUNT (n) = tpT + tpANDn + tSU ∈ O(log n)

where: tpT ∈ O(1) is the propagation time through the T flip-flop, tpANDn ∈ O(log n) is the propagation
time through the ANDn (in the fastest version it is implemented using a tree of AND2 gates) gate and
tSU ∈ O(1) is the set-up time at the input of T flip-flop.

In order to reduce the size of the counter we must find another way to solve the function performed
by the network of ANDs. Obviously, the network of ANDs is an AND prefix-network. Thus, the problem
could be reduced to the problem of the general form of prefix-network. The optimal solution exists and
has the size in O(n) and the time in O(log n) (see in this respect the section 8.2).

Finishing this short discussion about counters must be emphasized the autonomy of this circuit which
consists in switching in the next state according to the current state. We “tell” simply to the circuit
“please count”, and the circuit know what to do. The loop allow “him to know” how to behave.

Real applications uses more complex counters able to be initialized in any states or the count in both
ways, up and down. Such a counter is described by the following code:

/ * ************************************************************************
F i l e name : f u l l c o u n t e r . v
C i r c u i t name : F u l l Counter
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a c o u n t e r w i t h a l l t h e p o s s i b l e

f e a t u r e s ( r e s e t , load , up−count , down−c o u n t )
************************************************************************ * /

module f u l l c o u n t e r # ( parameter n = 4 ) ( output reg [ n − 1 : 0 ] o u t ,
input [ n − 1 : 0 ] i n ,
input r e s e t ,

l o a d ,
down ,
c o u n t ,
c l o c k ) ;

always @( posedge c l o c k )
i f ( r e s e t ) o u t <= 0 ;

e l s e i f ( l o a d ) o u t <= i n ;
e l s e i f ( c o u n t ) i f ( down ) o u t <= o u t − 1 ;

e l s e o u t <= o u t + 1 ;
e l s e o u t <= o u t ;

endmodule

The reset operation has the highest priority, and the counting operations have the lowest priority.

8.3.2 Linear Feedback Shift Registers

Linear feedback shift registers (LFSR) provide a simple way for generating non-sequential lists of num-
bers which behaves as a random sequence of numbers. For this reason LFSR are called also pseudo-
random number generators. Thus, generating a sequence of pseudo-random numbers only requires a
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shift register and a number of XORs. The mathematical description of these circuits is based on the
Galois Field theory3.

The structure is very simple: a n-bit left shift serial register whose serial input is feeded with the
output of a XOR circuit. The inputs of the XOR circuit are selected from the n outputs of the register. A
loop of 2-input XORs is closed as the second loop. The LFSR is, thus, a simple automaton.

Example 8.2 Let’s consider a 4-bit left shift register, sReg[3:0], and the loop closed through a 2-input
XOR in two versions:

• from sReg[3] and sReg[0] (see Figure 8.7a)

• from sReg[3] and sReg[1] (see Figure 8.7b)

Let’s consider the initial state in both cases: sReg = 4’b0001. The circuit from Figure 8.7a generates
the following periodic sequence starting from the initial state:

0001

0011

0111

1111

1110

1101

1010

0101

1011

0110

1100

1001

0010

0100

1000

0001

...

while the circuit form Figure 8.7b generate a shorter periodic sequence, as follow:

0001

0010

0101

1010

0100

1000

0001

...

Important note: the initial state sReg = 4’b0000 must be avoided, because from this state there is
no evolution.

⋄
3See a tutorial at: http://homepages.cae.wisc.edu/ẽce553/handouts/LFSR-notes.PDF
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sReg

? ? ? ?

clk

sReg[3] sReg[2] sReg[1] sReg[0]

sReg

? ? ? ?

clk

sReg[3] sReg[2] sReg[1] sReg[0]

a. b.

Figure 8.7: Examples of LFSR.

The LFSR of interest are mainly those who generate the longest periodic sequence. Because form
00...0 there is no evolution, the longest sequence generated by a n-bit LFSR is of 2n − 1 numbers.
The length of the period depends of the loop. More specific, it is about what outputs of the register are
XORed. If the XORs considered have at least 2 inputs, then there are 2n − (n+ 1) version of LFSRs.
They are specified by the binary sequence used to select the outputs. For example: if the register is
sReg[7 : 0] and the loop is selected by A2, then it corresponds to the loop having the logic function:

sReg[7]⊕ sReg[5]⊕ sReg[1]

the 3 inputs to the 3-input XOR being selected by the 1s of the selection code A2 = 1010 0010. For
n = 8 the following selection codes: 8E 95 96 A6 AF B1 B2 B4 B8 C3 C6 D4 E1 E7 F3 FA correspond
to the LFSRs with cycles of 255 numbers, which are maximal4. Therefore, LFSR(C3) stands for the
LFSR with the loop characterized by the 8-bit number C3.

Experiments with LFSRs suppose:

• to initialize the register is a certain state

• to select the loop configuration, i.e., select the output of the register to be XORed to the serial input

The following circuit can be used to simulate the 8-bit LFSRs:

4https://users.ece.cmu.edu/∼koopman/lfsr/index.html
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/ * ************************************************************************
F i l e : progLFSR . v
C i r c u i t name : Programmable L i n e a r Feedback S h i f t R e g i s t e r
D e s c r i p t i o n : Used as pseudo −random numbers g e n e r a t o r

The i n p u t prog i s used f o r :
− s e t t h e i n i t i a l s t a t e o f t h e r e g i s t e r when r s t = 1; i t

must be d i f f e r e n t from 0000 0000
− ”programming ” , i . e . , s e l e c t t h e o u t p u t s t o be XORed t o

t h e i n p u t o f t h e r e g i s t e r ; when r s t = 0

The 16 ”programs” f o r t h e l o n g e s t c y c l e ( s e q u e n c e o f 255 8− b i t
numbers ) :

8E 95 96 A6 AF B1 B2 B4 B8 C3 C6 D4 E1 E7 F3 FA
************************************************************************ * /
module progLFSR ( output reg [ 7 : 0 ] o u t ,

input [ 7 : 0 ] prog ,
input r s t ,
input c l k ) ;

always @( posedge c l k ) i f ( r s t ) o u t <= prog ;
e l s e o u t <= { o u t [ 6 : 0 ] , ˆ ( o u t & prog ) } ;

endmodule

In order to use LFSR(AF) initialized at 0000 0011, during at least one clock cycle apply prog =

8’b0000 0011 with rst = 1, then switch to rst = 0 with prog = 8’b1010 1111.

8.3.3 RALU: Registers with Arithmetic-Logic Unit

For very big sized state space the associated combinational circuits used to compute the next state and
the output become too big to be efficiently implemented. Therefore, a possible solution is to structure
the state so as in each cycle only a part of the state will be affected by the transition. Thus the the time
for provide a transition of the entire state will increase linearly, but the size of the circuits associated to
the functions f and g will decrease exponentially.

Structured State Space Automaton(S3A)

Definition 8.10 The function:
P(i,n,x0,x1, . . . ,xn−1) = xi

is the projection (selection) function which returns the i-th element from a set of n elements.
⋄

Definition 8.11 A 3-port S3A is defined by: S3A = (F ×X ×D×L×R;Y ;S ; f ,g) where:

• S = (S0 ×S1 × . . . ,×Sm−1) with Si = {0,1}n for i = 0, . . . ,m−1 is the structured state space

• H = {0,1}log2 p is used to select a function from the set {h0,h1, . . . ,hp}

• X = {0,1}n is the finite set of inputs binary represented on n bits
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• Y = ({0,1}n ×{0,1}n) is the finite set of outputs binary represented by two n-bit words

• D = L = R = {0,1}log2 m are sets of pointers in the Cartesian product S

• g : (L×R)→ (SL ×SR) is the output transition function

• f : (H ×X ×D×L×R×S )→ SD is the state transition function of form hH : (X ,SL,SR)→ SD.

⋄

An S3A is implemented using a synchronous RAM to store the state. The inputs D,L,R are the
address which select the elements of the Cartesian product stored in the m locations of the RAM. The
efficiency of this approach could be evaluated as follows. The execution time for a full transition of
S3A is m times bigger than for the equivalent standard automaton, because only one element of the
Cartesian product can be computed in one cycle. Therefore the time performance is 1/m. The size of the
combinational circuit for f belongs, in the worst case, to O(22n+log2 p), while for the standard automaton
it belongs, in the worst case, to Omn+log2 p. Results a decrease in size belonging to O(2n(m−2)). The time
performance decreases linearly with m, while the size decreases exponentially with m. There is no room
for debate: when possible, the S3A is the solution.

Multi-port S3A

Because the binary functions dominate the class of arithmetic and logic functions, multi-port S3As are
used in designing the executing core of any processing element. The most frequently used multi-port
S3A is a 3-port S3A. Two ports are used to fetch the operands and the third for selecting the destination
of the result. The following definition refers only the the half-automaton, because only the way the
loop is closed in important. We can get the output of the system in various ways, depending on the
application.gg

Definition 8.12 A 3-port Structured State Space Half-Automaton, S3HA is defined as following:

S3HA = (X ×DA×LA×RA,Q, f )

where:

• Q= (Q0×Q1× . . . ,×Qs−1) : is the structured state space described as a Cartesian set of elements
binary represented on m bits

• X : the finite set of inputs binary represented on p bits

• DA : the finite set of codes used to select the element of the set Q to be modified (is the destination
of the change) in the current state transition

• LA : the finite set of codes used to select the element of the set Q to be used as left operand in the
current state transition

• RA : the finite set of codes used to select the element of the set Q to be used as right operand in
the current state transition

• f : (X ×LA×RA×Q) = (X ×P(i,s,Q)×P( j,s,Q)) = (X ×Qi ×Q j) → P(k,s,Q) = Qk is the
state transition function where i ∈ LA, j ∈ RA, k ∈ DA
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� write enable
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dest addr

left addr

right addr

?
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MUX
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clock

out

-load

Figure 8.8: 32-bit RALU.

⋄

Example 8.3 Let be a RALU designed with two modules already presented in the previous sections:
the ALU exemplified in Example 6.4 and the register file presented in Simulation 7.5. In Figure 8.8 is
represented the schematic of a 32-bit RALU.
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/ * ************************************************************************
F i l e : RALU . v
C i r c u i t name : RALU: R e g i s t e r f i l e w i t h A r i t h m e t i c and Log ic Un i t
D e s c r i p t i o n : r e g i s t e r f i l e w i t h 16 32− b i t r e g i s t e r and an ALU w i t h 8

g e n e r i c a r i t h m e t i c and l o g i c f u n c t i o n s .
************************************************************************ * /
module RALU( output [ 3 1 : 0 ] l e f t o u t ,

output [ 3 1 : 0 ] r i g h t o u t ,
output c a r r y O u t ,
input l o a d ,
input [ 3 : 0 ] l e f t a d d r ,
input [ 3 : 0 ] r i g h t a d d r ,
input [ 3 : 0 ] d e s t a d d r ,
input w r i t e e n a b l e ,
input [ 3 1 : 0 ] i n ,
input c a r r y I n ,
input [ 2 : 0 ] func ,
input c l o c k ) ;

wire [ 3 1 : 0 ] o u t ;

r e g i s t e r f i l e r f ( . l e f t o p e r a n d ( l e f t o u t ) ,
. r i g h t o p e r a n d ( r i g h t o u t ) ,
. r e s u l t ( o u t ) ,
. l e f t a d d r ( l e f t a d d r ) ,
. r i g h t a d d r ( r i g h t a d d r ) ,
. d e s t a d d r ( d e s t a d d r ) ,
. w r i t e e n a b l e ( w r i t e e n a b l e ) ,
. c l o c k ( c l o c k ) ) ;

ALU a l u ( . c a r r y I n ( c a r r y I n ) ,
. f unc ( func ) ,
. l e f t ( l o a d ? i n : l e f t o u t ) ,
. r i g h t ( r i g h t o u t ) ,
. c a r r y O u t ( c a r r y O u t ) ,
. o u t ( o u t ) ) ;

endmodule

⋄

8.4 Finite Automata: the Complex Automata

After presenting the elementary small automata and the large and simple functional automata it is the
time to discuss about the complex automata. The main property of these automata is to use a random
combinational circuit, CLC, for computing the state transition function and the output transition function.
Designing a finite automaton means mainly to design two CLC: the loop CLC (associated to the state
transition function f ) and the output CLC (associated to the output transition function g).
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8.4.1 Representing finite automata

A finite automaton is represented by defining its transition functions f , the state transition function, and
g, the output transition function. For a half-automaton only the function f defined.

Flow-charts

A flow-chart contains for each state a circle and for each type of transition an arrow. In each clock cycle
the automaton “runs” on an arrow going from the current state to the next state. In our simple model the
“race” on arrow is done in the moment of the active edge of the clock.

The flow-chart for a half-automaton The first version is a pure symbolic representation, where the
flow chart is marked on each circle with the name of the state, and on each arrow with the transition
condition, if any. The initial states can be additionally marked with the minus sign (-), and the final states
can be additionally marked with the plus sign (+).

R R

I

�

�

q0 , - q1

q2 , +

a

a

b

b

X0

X0

q1

q2

q0

0

0

1

1

a. b.

reset

Figure 8.9: Example of flow-chart for a half-automaton. The machine is a “double b detector”. It stops
when the first bb occurs.

The second version is used when the input are considered in the binary form. Instead of arches are
used rhombuses containing the symbol denoting a binary variable.

Example 8.4 Let be a finite half-automaton that receives on its input strings containing symbols from
the alphabet X = {a,b}. The machine stops in the final state when the first sequence bb is received. The
first version of the associated flow-chart is in Figure 8.9a. Here is how the machine works:

• the initial state is q0; if a is received the machine remains in the same state, else, if b is received,
then the machine switch in the state q1
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• in the state q1 the machine “knows” that one b was just received; if a is received the half-
automaton switch back in q0, else, if b is received, then the machine switch in q2

• q2 is the final state; the next state is unconditionally q2.

The second version uses tests represented by a rhombus containing the tested binary input variable (see
(Figure 8.9b). The input I takes the binary value 0 for the the symbol a and the binary value 1 for the
symbol b. ⋄

The second version is used mainly when a circuit implementation is envisaged.

The flow-chart for a Moore automaton When an automaton is represented the output behavior must
be also included.

The first, pure symbolic version contains in each circle besides, the name of the sate, the value of
the output in that sates. The output of the automaton shows something which is meaningful for the user.
Each state generates an output value that can be different from the state’s name. The output set of value
are used to classify the state set. The input events are mapped into the state set, and the state set is
mapped into the output set.

R R

I

�

�

q0/0, - q1/0

q2/1, +

a

a

b

b

0

0

10

01

1

X0

X0

reset

a. b.

q0

q1

q2

Figure 8.10: Example of flow-chart for a Moore automaton. The output of this automaton tells us: “bb
was already detected”.

The second uses for each pair state/output one rectangle. Inside of the rectangle is the value of the
output and near to it is marked the state (by its name, by its binary code,, or both).

Example 8.5 The problem solved in the previous example is revisited using an automaton. The output
set is Y = {0,1}. If the output takes the value 1, then we learn that a double b was already received. The
state set Q = {q0,q1,q2} is divided in two classes: Q0 = {q0,q1} and Q1 = {q2}. If the automaton stays
in Q0 with out = 1, then it is looking for bb. If the automaton stays in Q1 with out = 1, then it stopped
investigating the input because a double b was already received.
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The associated flow-chart is in, in the first version represented by Figure 8.10a. The states q0 and q1
belong to Q0 because in the corresponding circles we have q0/0 and q1/0. The state q2 belongs to Q1

because in the corresponding circle we have q2/1. Because the evolution from q2 does not depend by
input, the arrow emerging from the corresponding circle is not labelled.

The second version (see Figure 8.10b) uses three rectangles, one for each state. ⋄

A meaningful event on the input of a Moore automaton is shown on the output with a delay of a clock
cycle. All goes through the state set. In the previous example, if the second b from bb is applied on the
input in the period Ti of the clock cycle, then the automaton points out the event in the period Ti+1 of the
clock cycle.

The flow-chart for a Mealy automaton The first, pure symbolic version contains on each arrow be-
sides, the name of the condition, the value of the output generated in the state where the arrow starts with
the input specified on the arrow.

The Mealy automaton reacts on its outputs more promptly to a meaningful input event. The output
value depends on the input value from the same clock cycle.

The second, implementation oriented version uses rectangles to specify the output’s behavior.

Example 8.6 Let us solve again the same problem of bb detection using a Mealy automaton. The result-
ing flow-chart is in Figure 8.11a. Now the output is activated (out = 1) when the automaton is in the
state q1 (one b was detected in the previous cycle) and the input takes the value b. The same condition
triggers the switch in the state q2. In the final state q2 the output is unconditionally 1. In the notation
−/1 the sign − stands for “don’t care”.

Figure 8.11b represents the second representation. ⋄

We can say the Mealy automaton is a “transparent” automaton, because a meaningful change on its
inputs goes directly to its output.

Transition diagrams

Flow-charts are very good to offer an intuitive image about how automata behave. The concept is very
well represented. But, automata are also actual machines. In order to help us to provide the real design
we need different representation. Transition diagrams are less intuitive, but they work better for helping
us to provide the image of the circuit performing the function of a certain automaton.

Transition diagrams uses Vetch-Karnaugh diagrams, VKD, for representing the transition functions.
The representation maps the VKD describing the state set of the automaton into the VKDs defining the
function f and the function g.

Transition diagrams are about real stuff. Therefore, the symbols like a,b,q0, . . . must be codded
binary, because a real machine work with bits, 0 and 1, not with symbols.

The output is already codded binary. For the input symbols the code is established by “the user”
of the machine (similarly the output codes have been established by “the user”). Let say, for the input
variable, X0, was decided the following codification: a → X0 = 0 and b → X0 = 1.

Because the actual value of the state is “hidden” from the user, the designer has the freedom to
assign the binary values according to its own (engineering) criteria. Because the present approach is a
theoretical one, we do not have engineering criteria. Therefore, we are completely free to assign the
binary codes. Two option are presented:
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Figure 8.11: Example of flow-chart for a Mealy automaton. The occurrence of the second b from bb is
detected as fast as possible.

option 1: q0 = 00, q1 = 01, q2 = 10

option 2: q0 = 00, q1 = 10, q2 = 11

For both the external behavior of the automaton must be the same.

Transition diagrams for half-automata The transition diagram maps the reference VKD into the next
state VKD, thus defining the state transition function. Results a representation ready to be used to design
and to optimize the physical structure of a finite half-automaton.

Example 8.7 The flow-chart from Figure 8.9 has two different correspondent representations as transi-
tion diagrams in Figure 8.12, one for the option 1 of coding (Figure 8.12a), and another for the option 2
(Figure 8.12b).

In VKD S1,S0 each box contains a 2-bit code. Three of them are used to code the states, and one
will be ignored. VKD S+1 ,S

+
0 represents the transition from the corresponding states. Thus, for the first

coding option:
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Figure 8.12: Example of transition diagram for a half-automaton. a. For the option 1 of coding. b. For
the option 2 of coding.

• from the state codded 00 the automaton switch in the state 0x, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 01 (q1)

• from the state codded 01 the automaton switch in the state x0, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 10 (q2)

• from the state codded 10 the automaton switch in the same state, 10 that is the final state

• the transition from 11 is not defined.

If in the clock cycle Ti the state of the automaton is S1,S0 (defined in the reference VKD), then in the next
clock cycle, Ti+1, the automaton switches in the state S+1 ,S

+
0 (defined in the next state VKD).

For the second coding option:

• from the state codded 00 the automaton switch in the state X00, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 10 (q1)

• from the state codded 10 the automaton switch in the state X0X0, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 11 (q2)

• from the state codded 11 the automaton switch in the same state, 11 that is the final state

• the transition from 01 is not defined.
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⋄

The transition diagram can be used to extract the Boolean functions of the loop of the half-automaton.

Example 8.8 The Boolean function of the half-automaton working as “double b detector” can be ex-
tracted from the transition diagram represented in Figure 8.12a (for the first coding option). Results:

S+1 = S1 +X0S0

S+0 = X0S′1S′0

⋄

Transition diagrams Moore automata The transition diagrams define the two transition functions
of a finite automaton. To the VKDs describing the associated half-automaton is added another VKD
describing the output’s behavior.

Example 8.9 The flow-chart from Figure 8.10 have a correspondent representation in the transition
diagrams from Figure 8.13a or Figure 8.13b. Besides the transition diagram for the state, the output
transition diagrams are presented for the two coding options.

For the first coding option:

• for the states coded with 00 and 01 the output has the value 0

• for the state coded with 10 the output has the value 1

• we do not care about how works the function g for the state coded with 11 because this code is
not used in defining our automaton (the output value can 0 or 1 with no consequences on the
automaton’s behavior).

⋄
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Figure 8.13: Example of transition diagram for a Moore automaton.
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Example 8.10 The resulting output function is:

out = S1.

Now the resulting automaton circuit can be physically implemented, in the version resulting from the first
coding option, as a system containing a 2-bit register and few gates. Results the circuit in Figure 8.14,
where:

• the 2-bit register is implemented using two resetable D flip-flops

• the combinational loop for state transition function consists in few simple gates

• the output transition function is so simple as no circuit are needed to implement it.

When reset = 1 the two flip-flops switch in 0. When reset = 0 the circuit starts to analyze the stream
received on input symbol by symbol. In each clock cycle a new symbol is received and the automaton
switches according to the new state computed by three gates. ⋄
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DFF
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DFF

D

QQ’

R

S+0

S1

-
Q’

R-

S0
2-bit register

loop combinational circuit

*

�

-

clock

reset

out

in = X0

Figure 8.14: The Moore version of “bb detector” automaton.

Transition diagrams Mealy automata The transition diagrams for a Mealy automaton are a little
different from those of Moore, because the output transition function depends also by the input variable.
Therefore the VKD defining g contains, besides 0s and 1s, the input variable.

Example 8.11 Revisiting the same problem result, in Figure 8.15 the transition diagrams associated to
the flow-chart from Figure 8.11.
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Figure 8.15: Example of transition diagram for a Mealy automaton.

The two functions f are the same. The function g is defined for the first coding option (Figure 8.15a)
as follows:

• in the state coded by 00 (q0) the output takes value 0

• in the state coded by 01 (q1) the output takes value x

• in the state coded by 10 (q2) the output takes value 1

• in the state coded by 11 (unused) the output takes the “don’t care” value

Extracting the function out results:
out = S1 +X0S0

a more complex from compared with the Moore version. (But fortunately out = S+1 , and the same circuits
can be used to compute both functions. Please ignore. Engineering stuff.)

⋄
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Procedures

The examples used to explain how the finite automata can be represented are simple because of obvious
reasons. The real life is much more complex and we need tools to face its real challenges. For real
problems software tools are used to provide actual machines. Therefore, software oriented representation
must be provided for representing automata. The so called Hardware Description Languages, HDLs, are
widely used to manage complex applications. (The Verilog HDL is used to exemplify the procedural
way to specify a finite automaton.)
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HDL representations for Moore automata A HDL (Verilog, in our example) representation consists
in a program module describing the connections and the behavior of the automaton.

Example 8.12 The same “bb detector” is used to exemplify the procedures used for the Moore automa-
ton representation.

/ * ************************************************************************
F i l e name : moore automaton . v
C i r c u i t name : An example o f Moore−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Moore f i n i t e automaton

d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am o f symbo l s b e l o n g i n g
t o t h e s e t {a , b}

************************************************************************ * /
module moore au tomaton ( out , in , r e s e t , c l o c k ) ;

/ / i n p u t codes
parameter a = 1 ’ b0 ,

b = 1 ’ b1 ;
/ / s t a t e codes

parameter i n i t s t a t e = 2 ’ b00 , / / t h e i n i t i a l s t a t e
o n e b s t a t e = 2 ’ b01 , / / t h e s t a t e f o r one b r e c e i v e d
f i n a l s t a t e = 2 ’ b10 ; / / t h e f i n a l s t a t e

/ / o u t p u t codes
parameter no = 1 ’ b0 , / / no bb y e t r e c e i v e d

yes = 1 ’ b1 ; / / two s u c c e s s i v e b have been r e c e i v e d
/ / e x t e r n a l c o n n e c t i o n s

input in , r e s e t , c l o c k ;
output o u t ;

reg [ 1 : 0 ] s t a t e ; / / s t a t e r e g i s t e r
reg o u t ; / / o u t p u t v a r i a b l e

/ / f : t h e s t a t e s e q u e n t i a l t r a n s i t i o n f u n c t i o n
always @( posedge c l o c k )

i f ( r e s e t ) s t a t e <= i n i t s t a t e ;
e l s e case ( s t a t e )

i n i t s t a t e : i f ( i n == b ) s t a t e <= o n e b s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

o n e b s t a t e : i f ( i n == b ) s t a t e <= f i n a l s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

f i n a l s t a t e : s t a t e <= f i n a l s t a t e ;
endcase

/ / g : t h e o u t p u t c o m b i n a t i o n a l t r a n s i t i o n f u n c t i o n
always @( s t a t e ) case ( s t a t e )

i n i t s t a t e : o u t = no ;
o n e b s t a t e : o u t = no ;
f i n a l s t a t e : o u t = yes ;
d e f a u l t : o u t = 1 ’ bx ;

endcase
endmodule
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For the delayed version there is the following code:

/ * ************************************************************************
F i l e name : m o o r e d e l a y e d a u t o m a t o n . v
C i r c u i t name : An example o f Moore−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e d e l a y e d Moore f i n i t e

automaton d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am o f symbo l s
b e l o n g i n g t o t h e s e t {a , b}

************************************************************************ * /
module m o o r e d e l a y e d a u t o m a t o n ( out , in , r e s e t , c l o c k ) ;
/ / i n p u t codes

parameter a = 1 ’ b0 ,
b = 1 ’ b1 ;

/ / s t a t e codes
parameter i n i t s t a t e = 2 ’ b00 , / / t h e i n i t i a l s t a t e

o n e b s t a t e = 2 ’ b01 , / / t h e s t a t e f o r one b r e c e i v e d
f i n a l s t a t e = 2 ’ b10 ; / / t h e f i n a l s t a t e

/ / o u t p u t codes
parameter no = 1 ’ b0 , / / no bb y e t r e c e i v e d

yes = 1 ’ b1 ; / / two s u c c e s s i v e b have been r e c e i v e d
/ / e x t e r n a l c o n n e c t i o n s

input in , r e s e t , c l o c k ;
output o u t ;

reg [ 1 : 0 ] s t a t e ; / / s t a t e r e g i s t e r
reg o u t ; / / o u t p u t r e g i s t e r

/ / f : t h e s t a t e s e q u e n t i a l t r a n s i t i o n f u n c t i o n
always @( posedge c l o c k )

i f ( r e s e t ) s t a t e <= i n i t s t a t e ;
e l s e case ( s t a t e )

i n i t s t a t e : i f ( i n == b ) s t a t e <= o n e b s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

o n e b s t a t e : i f ( i n == b ) s t a t e <= f i n a l s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

f i n a l s t a t e : s t a t e <= f i n a l s t a t e ;
endcase

/ / g : t h e d e l a y e d t r a n s i t i o n f u n c t i o n
always @( posedge c l o c k ) case ( s t a t e )

i n i t s t a t e : o u t <= no ;
o n e b s t a t e : o u t <= no ;
f i n a l s t a t e : o u t <= yes ;

endcase
endmodule

⋄
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HDL representations for Mealy automata A Verilog description consists in a program module de-
scribing the connections and the behavior of the automaton.

Example 8.13 The same “bb detector” is used to exemplify the procedures used for the Mealy automa-
ton representation.

/ * ************************************************************************
F i l e name : mea ly au toma ton . v
C i r c u i t name : An example o f Mealy−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Mealy f i n i t e automaton

d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am o f symbo l s b e l o n g i n g
t o t h e s e t {a , b}

************************************************************************ * /
module mea ly au toma ton ( out , in , r e s e t , c l o c k ) ;

parameter a = 1 ’ b0 ,
b = 1 ’ b1 ;

parameter i n i t s t a t e = 2 ’ b00 , / / t h e i n i t i a l s t a t e
o n e b s t a t e = 2 ’ b01 , / / t h e s t a t e f o r one b r e c e i v e d
f i n a l s t a t e = 2 ’ b10 ; / / t h e f i n a l s t a t e

parameter no = 1 ’ b0 , / / no bb y e t r e c e i v e d
yes = 1 ’ b1 ; / / two s u c c e s s i v e b have been r e c e i v e d

input in , r e s e t , c l o c k ;
output o u t ;
reg [ 1 : 0 ] s t a t e ;
reg o u t ;
always @( posedge c l o c k )

i f ( r e s e t ) s t a t e <= i n i t s t a t e ;
e l s e case ( s t a t e )

i n i t s t a t e : i f ( i n == b ) s t a t e <= o n e b s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

o n e b s t a t e : i f ( i n == b ) s t a t e <= f i n a l s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

f i n a l s t a t e : s t a t e <= f i n a l s t a t e ;
endcase

always @( s t a t e or i n ) case ( s t a t e )
i n i t s t a t e : o u t = no ;
o n e b s t a t e : i f ( i n == b ) o u t = yes ;

e l s e o u t = no ;
f i n a l s t a t e : o u t = yes ;
d e f a u l t : o u t = 1 ’ bx ;

endcase
endmodule
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For the delayed version:

/ * ************************************************************************
F i l e name : m e a l y d e l a y e d a u t o m a t o n . v
C i r c u i t name : An example o f Mealy−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Mealy f i n i t e automaton

d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am o f symbo l s b e l o n g i n g
t o t h e s e t {a , b}

************************************************************************ * /
module m e a l y d e l a y e d a u t o m a t o n ( out , in , r e s e t , c l o c k ) ;

parameter a = 1 ’ b0 ,
b = 1 ’ b1 ;

parameter i n i t s t a t e = 2 ’ b00 , / / t h e i n i t i a l s t a t e
o n e b s t a t e = 2 ’ b01 , / / t h e s t a t e f o r one b r e c e i v e d
f i n a l s t a t e = 2 ’ b10 ; / / t h e f i n a l s t a t e

parameter no = 1 ’ b0 , / / no bb y e t r e c e i v e d
yes = 1 ’ b1 ; / / two s u c c e s s i v e b have been r e c e i v e d

input in , r e s e t , c l o c k ;
output reg o u t ;
reg [ 1 : 0 ] s t a t e ;
always @( posedge c l o c k )

i f ( r e s e t ) s t a t e <= i n i t s t a t e ;
e l s e case ( s t a t e )

i n i t s t a t e : i f ( i n == b ) s t a t e <= o n e b s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

o n e b s t a t e : i f ( i n == b ) s t a t e <= f i n a l s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

f i n a l s t a t e : s t a t e <= f i n a l s t a t e ;
endcase

always @( posedge c l o c k )
case ( s t a t e )

i n i t s t a t e : o u t <= no ;
o n e b s t a t e : i f ( i n == b ) o u t <= yes ;

e l s e o u t <= no ;
f i n a l s t a t e : o u t <= yes ;

endcase
endmodule

⋄

The procedural representations are used as inputs for automatic design tools.

8.4.2 Designing Finite Automata

Preliminary Examples

The behavior of a finite automaton can be defined in many ways. Graphs, transition tables, flow-charts,
transition V/K diagrams or HDL description are very good for defining the transition functions f and
g. All this forms provide non-recursive definitions. Thus, the resulting automata has the size of the
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definition in the same order with the size of the structure. Therefore, the finite automata are complex
structures even when they have small size.

In order to exemplify the design procedure for a finite automaton let be two examples, one dealing
with a 1-bit input string and another related with a system built around the multiply-accumulate circuit
(MAC) previously described.

Example 8.14 The binary strings 1n0m, for n ≥ 1 and m ≥ 1, are recognized by a finite half-automaton
by its internal states. Let’s define and design it. The transition diagram defining the behavior of the
half-automaton is presented in Figure 8.16, where:

q0

q1

q2

q3

1

1

0

0

�^

-

}

�

�U

1

0

w

reset

[10]

[11]

[01]

[00]

Figure 8.16: Transition diagram. The transition diagram for the half-automaton which recognizes strings of
form 1n0m, for n ≥ 1 and m ≥ 1. Each circle represent a state, each (marked) arrow represent a (conditioned)
transition.

• q0 - is the initial state in which 1 must be received, if not the the half-automaton switches in q3, the
error state

• q1 - in this state at least one 1 was received and the first 0 will switch the machine in q2

• q2 - this state acknowledges a well formed string: one or more 1s and at least one 0 are already
received

• q3 - the error state: an incorrect string was received.

The first step in implementing the structure of the just defined half-automaton is to assign binary
codes to each state.

In this stage we have the absolute freedom. Any assignment can be used. The only difference will be
in the resulting structure but not in the resulting behavior.

For a first version let be the codes assigned int square brackets in Figure 8.16. Results the transition
diagram presented in Figure 8.17. The resulting transition functions are:

Q+
1 = Q1 ·X0 = ((Q1 ·X0)

′)′
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Figure 8.17: VK transition maps. The VK transition map for the half-automaton used to recognize 1n0m, for
n ≥ 1 and m ≥ 1. a. The state transition function f . b. The VK diagram for the next most significant state bit,
extracted from the previous full diagram. c. The VK diagram for the next least significant state bit.
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Figure 8.18: A 4-state finite half-automaton. The structure of the finite half-automaton used to recognize
binary string belonging to the 1n0m set of strings.

Q+
0 = Q1 ·X0 +Q0 ·X ′

0 = ((Q1 ·X0)
′ · (Q0 ·X ′

0))
′

(The 1 from q+0 map is double covered. Therefore, it is taken into consideration as a “don’t care”.) The
circuit is represented in Figure 8.46 in a version using inverted gated only. The 2-bit state register is
designed by 2 D flip-flops. The reset input is applied on the set input of D-FF1 and on the reset input
of D-FF0.
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The Verilog behavioral description of the automaton is:

/ * ************************************************************************
F i l e name : r e c a u t . v
C i r c u i t name : R e c o g n i z i n g Automaton f o r s t r e a m s o f form a ˆ nb ˆm
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e automaton used t o r e c o g n i z e

s t r e a m s o f symbo l s o f form a ˆ nb ˆm
************************************************************************ * /
module r e c a u t ( output reg [ 1 : 0 ] s t a t e ,

input i n ,
input r e s e t ,
input c l o c k ) ;

always @( posedge c l o c k )
i f ( r e s e t ) s t a t e <= 2 ’ b10 ;

e l s e case ( s t a t e )
2 ’ b00 : s t a t e <= 2 ’ b00 ;
2 ’ b01 : s t a t e <= {1 ’ b0 , ˜ i n } ;
2 ’ b10 : s t a t e <= { in , i n } ;
2 ’ b11 : s t a t e <= { in , 1 ’ b1} ;

endcase
endmodule

⋄

Example 8.15 Let us revisit the previous example in a more accurate implementation. Now a stream
of characters to be recognized is delimited by the empty character e. Therefore an actual stream to be
recognized has the form:
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Figure 8.19:
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. . .eeaa . . .abb . . .bee . . .

The stream is considers recognized only when it ends. The graph describing the automaton has one state
more compared with the previous approach, without the delimiting symbol e. It is represented in Figure
8.19. The automaton has the following 5 states:

q2 q1 q0 x1 x0 q2+ q1+ q0+ y1 y0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 1
0 0 0 1 0 0 1 1 0 1
0 0 0 1 1 - - - - -
0 0 1 0 0 0 1 1 0 1
0 0 1 0 1 0 0 1 1 1
0 0 1 1 0 0 1 0 1 1
0 0 1 1 1 - - - - -
0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 1 1 0 1
0 1 0 1 0 0 1 0 1 1
0 1 0 1 1 - - - - -
0 1 1 0 0 0 1 1 0 1
0 1 1 0 1 0 1 1 0 1
0 1 1 1 0 0 1 1 0 1
0 1 1 1 1 - - - - -
1 0 0 0 0 1 0 0 1 0
1 0 0 0 1 1 0 0 1 0
1 0 0 1 0 1 0 0 1 0
1 0 0 1 1 - - - - -
1 0 1 0 0 - - - - -
...

...
...

...
... - - - - -

Table 8.1: The truth table for the transition functions.

q0 : the initial state in which the automaton goes by reset, and if

in = a the automaton switches in q1 signaling that it entered in the search state

in = b the automaton switches in q3 signaling that the stream started wrong and the search process
failed

in = e the automaton remains in q0 waiting the start of an input stream of as and bs

q1 : the state waiting the flow of as

q2 : the state waiting the flow of bs

q3 : the state indicating that the string does not belong to the set 1n0m|n,m ≥ 1



250 CHAPTER 8. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1

q2

q1

q0

x1
1

1

1

1

1

1

1

-

-
1

1

1

1

-

-

-

-
1

1

1

1

1

-

-

-

-

-

-

-

-

-

-

-

-

x0 x0

x0

x0’

x0’

q2+ q1+ q0+

q2

q1

q0

x1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

1

-

-

-

-

-

-

-

-

-

-

-

- 1

1

1

x0 x0 x0

x0x0’

y1 y0

Figure 8.20: The V-K diagrams for the state and output transition functions.

q4 : the state indicating that the string belongs to the set 1n0m|n,m ≥ 1

The symbols used to describe the automaton are binary codded as follows:

X = {a, b, e} = {01, 10, 00}

Y = {wait, search, not, yes} = {00, 11, 01, 10}

Q = {q0, q1, q2, q3, q4} = {000, 001, 010, 011, 100}

The sets X and Y are defined by the user (the one who proposed the design), while the state coding is at
the discretion of the designer. Then, the Table 8.1 describing the state transition function and the output
transition function.

We have to solve 5 functions of 5 variables. Let us use V-K diagrams for 4 variables (q2, q1, q0,

x1) and the 5th variable, x0, will be used to define the value of some boxes belonging to the diagrams.
In Figure 8.20, we represented first the reference diagram to help us in defining the diagrams for f and
g. We will explain at length how the diagram for the function q2+ is built:

• in the box 0 is filled with 0, because for {q2, q1, q0, x1} = {0 0 0 0} the output q2+ does
not depend on x0 and takes the value 0

• in the box 1 in filled with 0, because for {q2, q1, q0, x1} = {0 0 0 1} the output q2+ could
be considered 0 if we decide to select for the don’t care value the value 0

• in the box 2 we fill up as in the box 0

• in the box 3 we fill up as in the box 1

• in the box 4 is filled with x0’, because for {q2, q1, q0, x1} = {0 1 0 0} the output q2+
takes the value 1, if x0 = 0 and the value 0 if x0 = 1
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Figure 8.21: The first stage in the extracting algebraic expressions from V-K diagrams: the functions
included in diagrams are ignored.
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Figure 8.22: The second stage in the extracting algebraic expressions from V-K diagrams: the 1s are
considered “don’t care”s.
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Figure 8.23: The first stage in the extracting algebraic expressions from V-K diagrams.

• in the boxes 5 and 7 we do as for the box 1

• in the box 6 we do as for the box 0

• in the box 8 in the box 1, because for {q2, q1, q0, x1} = {1 0 0 0} the output q2+ does not
depend on x0 and takes the value 1

• in the box 9 in filled with 1, because for {q2, q1, q0, x1} = {1 0 0 1} the output q2+ could
be considered 1 if we decide to select for the don’t care value the value 1

• in the boxes 10 to 15 we fill up with don’t cares

The 5 function are extracted from the V-K diagrams in two stages. The first stage (which consider
only the 1s from the diagram) is represented in Figure 8.21. The second stage (which considers the 1s as
“don’t care”s) is represented in Figure 8.22 The resulting expressions are the following:

q2+ = q2 + q1 q0’ x1’ x0’

q1+ = q2’ x1 + q1 q0 + q0 x0’ + q1 x0

q0+ = q1 q0 + q0 x1’ + q2’ q1’ q0’ x1 + q2’ x1’ x0

y1 = q2 + q1’q0 x1 + q1 q0’ x1 + q1 q0’ x0’ + q1’ x1’ x0

y0 = q0 + q2’ x1 + q2’x0

Until now we minimized each of the 5 functions independently. Each function is minimal, but what
about the whole circuit? The global minimization supposes the maximization of the number of gates
shared in the implementation of the 5 functions. Therefore, we must try to define the surfaces in the
V-K diagram so as to maximize the number of identical surfaces, even if we will be pushed to avoid the
minimal form for some functions.

In Figure 8.23 the diagram for y0 is modified: instead of the surface q0, emphasize in Figure 8.21,
here we have a smaller one, q0 x1’, because this surface is selected also in the diagram for q0+. The
impact on the final circuit is minimal: the fan-out of the D-FF0 is reduced.
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Figure 8.24: The second stage in the extracting algebraic expressions from V-K diagrams.
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Figure 8.25: The resulting circuit.
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The impact of this approach in the second stage is more important: the NAND circuit for q2’ q1’

x0 is shared for the implementation of q0+ and y0, and the NAND circuit for q1 q0’ x1’ x0’ is shared
for the implementation of q2+ and y1.

The resulting expressions are (with various brackets are emphasized the shared logic products):

q2+ = q2 + [q1 q0’ x1’ x0’]

q1+ = q2’ x1 + <q1 q0> + q0 x0’ + q1 x0

q0+ = <q1 q0> + (q0 x1’) + q2’ q1’ q0’ x1 + {q2’ x1’ x0}

y1 = q2 + q1’q0 x1 + q1 q0’ x1 + [q1 q0’ x1’ x0’] + q1’ x1’ x0

y0 = (q0 x1’) + q2’ x1 + {q2’ x1’ x0}

In Figure 8.25 is represented the resulting circuit, where the state register is implemented using 3
delay-flip-flops (D-FF) with their pair of outputs, one for Q and another for Q’. Thus, we do not need
inverters for the bits codding the state. The circuit is implemented using NAND gates by applying the de
Morgan law which transforms the AND-OR structure in a NAND-NAND configuration.

⋄

Example 8.16 Let us revisit the previous example using another state coding:

Q = {q0, q1, q2, q3, q4} = {000, 001, 111, 011, 010}

Then, the Table ?? describes the state transition function and the output transition function for the new
coding.

The transition functions are represented with 3-variable V-K diagrams in Figure 8.26

0 x1 (x1 + x0)

0 0

(x1 + x0)

0

x0’x1x1 1

1 1

1

1-

- -

-

-

- -- -

q2

q1

q0q2+ q1+ q0+

q2

q1

q0y1 y0

(x1 + x0)x0’ (x1 + x0) (x1 + x0) x0

0 01

1

1-

-

-

-

- -

Figure 8.26:

From V-K diagrams result the following expressions :

q2+ = q1’ q0 x1

q1+ = q2 + q1 + q0 x0’ + q0’ x1

q0+ = q2’ q0 + q1 (x1 + x0)

y1 = q1 q0’ + q2 x0’ + q0’ x0 + q2’ q1’ q0 (x1 + x0)

y0 = q2’ q0 + q1’ (x1 + x0) = q0+

The resulting circuit is represented in Figure 8.27
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Figure 8.27: The circuit for the codding dominated by the reduce dependency coding style.

The size of the combinational circuits is only 70% from the previous solution. This reduction was
obtained only by changing the state coding.

⋄

Example 8.17 ∗ The execution time of the MAC circuit is data dependent, depends on how many 1s contains the
multiplicand. Therefore, the data flow through it has no a fix rate. The best way to interconnect this version of MAC
circuit supposes two FIFOs, one to its input and another to its output. Thus, a flexible buffered way to interconnect
MAC is provided.

A complex finite automaton must be added to manage the signals and the commands associated with the three
simple subsystems: IN FIFO, OUT FIFO, and MAC (see Figure 8.28). The flow-chart describing the version for
performing multiplications is presented in Figure 8.29, where:

q0 : wait first state – the system waits to have at least one operand in IN FIFO, clearing in the same time the
output register of the accumulator automaton, when empty = 0 reads the first operand from IN FIFO and
loads it in MAC

q1 : wait second state – if IN FIFO is empty, the system waits for the second operand

q2 : multiply state – the system perform multiplication while done = 0

q3 : write state – the system writes the result in OUT FIFO and read the second operand from IN FIFO if full
= 0 to access the first operand for the next operation, else waits while full = 1.

The flow chart can be translated into VK transition maps (see Figure 8.30) or in a Verilog description. From
the VK transition maps result the following equations describing the combinational circuits for the loop (q1+,q0+)
and for the outputs.
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Figure 8.28: The Multiply-Accumulate System. The system consists in a multiply-accumulate circuit
(MAC), two FIFOs and a finite automaton (FA) controlling all of them.
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Figure 8.29: Flow chart describing a Mealy finite automaton. The flow-chart describes the finite automa-
ton FA from Figure 8.28, which controls MAC and the two FIFOs in MAC system. (The state coding shown in
parenthesis will be used in the next chapter.)
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Figure 8.30: Veitch-Karnaugh transition diagrams. The transition VK diagrams for FA (see Figure 8.28).
The reference diagram has a box for each state. The state transition diagram, Q+

1 Q+
1 , contains in the same positions

the description of the next state. For each output a diagram describe the output’s behavior in the corresponding
state.

q+0

read

write

load

clear

nop

empty

full

done

clock

DF-F

Q’

Q

D

DF-F

Q’

Q

D

q0

q1

q+1

Half-automaton

Figure 8.31: FA’s structure. The FA is implemented with a two-bit register and a PLA with 5 input variables
(2 for state bits, and 3 for the input sibnals), 7 outputs and 10 products.
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The resulting circuit is represented in Figure 8.31, where the state register is implemented using 2 D flip-flops
and the combinational circuits are implemented using a PLA.

If we intend to use a software tool to implement the circuit the following Verilog description is a must.

/ * ************************************************************************
F i l e name : m a c c c o n t r o l . v
C i r c u i t name : M u l t i p l y & Accumula te C o n t r o l au tomaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e automaton used t o c o n t r o l a

o f FIFOs used t o f e e d and d i s c a r d a MACC u n i t
************************************************************************ * /
module m a c c c o n t r o l ( output r e a d , / / read from IN FIFO

output w r i t e , / / w r i t e i n OUT FIFO
output l o a d , / / l oad t h e m u l t i p l i e r i n MAC
output c l e a r , / / r e s e t t h e o u t p u t o f MAC
output nop , / / s t o p s t h e m u l t i p l i c a t i o n
input empty , / / IN FIFO i s empty
input f u l l , / / OUT FIFO i s f u l l
input done , / / m u l t i p l i c a t i o n ended
input r e s e t , c l o c k ) ;

reg [ 1 : 0 ] s t a t e ;
reg read , w r i t e , load , c l e a r , nop ; / / as v a r i a b l e s
parameter w a i t f i r s t = 2 ’ b00 ,

w a i t s e c o n d = 2 ’ b01 ,
m u l t i p l y = 2 ’ b11 ,
w r i t e r e s u l t = 2 ’ b10 ;

/ / THE STATE TRANSITION FUNCTION
always @( posedge c l o c k ) i f ( r e s e t ) s t a t e <= w a i t f i r s t ;

e l s e case ( s t a t e )
w a i t f i r s t : i f ( empty ) s t a t e <= w a i t f i r s t ;

e l s e s t a t e <= w a i t s e c o n d ;
w a i t s e c o n d : i f ( empty ) s t a t e <= w a i t s e c o n d ;

e l s e s t a t e <= m u l t i p l y ;
m u l t i p l y : i f ( done ) s t a t e <= w r i t e r e s u l t ;

e l s e s t a t e <= m u l t i p l y ;
w r i t e r e s u l t : i f ( f u l l ) s t a t e <= w r i t e r e s u l t ;

e l s e s t a t e <= w a i t f i r s t ;
endcase

/ / THE OUTPUT TRANSITION FUNCTION (MEALY IMMEDIATE )
always @( * )

case ( s t a t e )
w a i t f i r s t : i f ( empty ) { read , w r i t e , load , c l e a r , nop} = 5 ’ b00011 ;

e l s e { read , w r i t e , load , c l e a r , nop} = 5 ’ b10111 ;
w a i t s e c o n d : i f ( empty ) { read , w r i t e , load , c l e a r , nop} = 5 ’ b00001 ;

e l s e { read , w r i t e , load , c l e a r , nop} = 5 ’ b00000 ;
m u l t i p l y : { read , w r i t e , load , c l e a r , nop} = 5 ’ b00000 ;
w r i t e r e s u l t : i f ( f u l l ) { read , w r i t e , load , c l e a r , nop} = 5 ’ b00000 ;

e l s e { read , w r i t e , load , c l e a r , nop} = 5 ’ b11000 ;
endcase

endmodule



8.4. FINITE AUTOMATA: THE COMPLEX AUTOMATA 259

The resulting circuit will depend by the synthesis tool used because the previous description is “too” behav-
ioral. There are tools which will synthesize the circuit codding the four states using four bits ....!!!!!. If we intend
to impose a certain solution, then a more structural description is needed. For example, the following “very”
structural code which translate directly the transition equations extracted from VK transition maps.

/ * ************************************************************************
F i l e name : m a c c c o n t r o l . v
C i r c u i t name : M u l t i p l y & Accumula te C o n t r o l au tomaton
D e s c r i p t i o n : a more d e t a i l e d d e s c r i p t i o n o f t h e automaton used t o

c o n t r o l a o f FIFOs used t o f e e d and d i s c a r d a MACC u n i t
************************************************************************ * /
module m a c c c o n t r o l ( output r e a d , / / read from IN FIFO

output w r i t e , / / w r i t e i n OUT FIFO
output l o a d , / / l oad t h e m u l t i p l i e r i n MAC
output c l e a r , / / r e s e t t h e o u t p u t o f MAC
output nop , / / s t o p s t h e m u l t i p l i c a t i o n
input empty , / / IN FIFO i s empty
input f u l l , / / OUT FIFO i s f u l l
input done , / / t h e m u l t i p l i c a t i o n i s c o n c l u d e d
input r e s e t , c l o c k ) ;

reg [ 1 : 0 ] s t ; / / s t a t e r e g i s t e r
/ / THE STATE TRANSITION FUNCTION

always @( posedge c l o c k )
i f ( r e s e t ) s t <= 2 ’ b00 ;

e l s e s t <= { ( s t [ 1 ] & s t [ 0 ] | s t [ 0 ] & ˜ empty | s t [ 1 ] & f u l l ) ,
( ˜ s t [ 1 ] & s t [ 0 ] | s t [ 0 ] & ˜ done | ˜ s t [ 1 ] & ˜ empty ) } ;

a s s i g n r e a d = ˜ s t [ 1 ] & ˜ s t [ 0 ] & ˜ empty | s t [ 1 ] & ˜ s t [ 0 ] & ˜ f u l l ,
w r i t e = s t [ 1 ] & ˜ s t [ 0 ] & ˜ f u l l ,
l o a d = ˜ s t [ 1 ] & ˜ s t [ 0 ] & ˜ empty ,
c l e a r = ˜ s t [ 1 ] & ˜ s t [ 0 ] ,
nop = ˜ s t [ 1 ] & ˜ s t [ 0 ] | ˜ s t [ 1 ] & empty ;

endmodule

The resulting circuit will be eventually an optimized form of the version represented in Figure 8.31 because
instead a PLA, the current tools use an minimized network of gates.

For delayed Mealy version the code is:
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/ * ************************************************************************
F i l e name : m a c c c o n t r o l . v
C i r c u i t name : M u l t i p l y & Accumula te C o n t r o l au tomaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e d e l a y e d automaton used t o

c o n t r o l a o f FIFOs used t o f e e d and d i s c a r d a MACC u n i t
************************************************************************ * /
module m a c c d e l a y e d c o n t r o l

( output reg r e a d , / / read from IN FIFO
output reg w r i t e , / / w r i t e i n OUT FIFO
output reg l o a d , / / l oad t h e m u l t i p l i e r i n MAC
output reg c l e a r , / / r e s e t t h e o u t p u t o f MAC
output reg nop , / / s t o p s t h e m u l t i p l i c a t i o n
input empty , / / IN FIFO i s empty
input f u l l , / / OUT FIFO i s f u l l
input done , / / m u l t i p l i c a t i o n ended
input r e s e t , c l o c k ) ;

reg [ 1 : 0 ] s t a t e ;
parameter w a i t f i r s t = 2 ’ b00 ,

w a i t s e c o n d = 2 ’ b01 ,
m u l t i p l y = 2 ’ b11 ,
w r i t e r e s u l t = 2 ’ b10 ;

/ / THE STATE TRANSITION FUNCTION
always @( posedge c l o c k ) i f ( r e s e t ) s t a t e <= w a i t f i r s t ;

e l s e case ( s t a t e )
w a i t f i r s t : i f ( empty ) s t a t e <= w a i t f i r s t ;

e l s e s t a t e <= w a i t s e c o n d ;
w a i t s e c o n d : i f ( empty ) s t a t e <= w a i t s e c o n d ;

e l s e s t a t e <= m u l t i p l y ;
m u l t i p l y : i f ( done ) s t a t e <= w r i t e r e s u l t ;

e l s e s t a t e <= m u l t i p l y ;
w r i t e r e s u l t : i f ( f u l l ) s t a t e <= w r i t e r e s u l t ;

e l s e s t a t e <= w a i t f i r s t ;
endcase

/ / THE OUTPUT TRANSITION FUNCTION (DELAYED MEALY)
always @( posedge c l o c k )

case ( s t a t e )
w a i t f i r s t : i f ( empty ) { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00011 ;

e l s e { read , w r i t e , load , c l e a r , nop} <= 5 ’ b10111 ;
w a i t s e c o n d : i f ( empty ) { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00001 ;

e l s e { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00000 ;
m u l t i p l y : { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00000 ;
w r i t e r e s u l t : i f ( f u l l ) { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00000 ;

e l s e { read , w r i t e , load , c l e a r , nop} <= 5 ’ b11000 ;
endcase

endmodule

⋄

The finite automaton has two distinct parts:
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• the simple, recursive defined part, that consists in the state register; it can be minimized only by
minimizing the definition of the automaton

• the complex part, that consists in the PLA that computes functions f and g and this is the part
submitted to the main minimization process.

Our main goal in designing finite automaton is to reduce the random part of the automaton, even if the
price is to enlarge the recursive defined part. In the current VLSI technologies we prefer big size instead
of big complexity. A big sized circuit has now a technological solution, but for describing very complex
circuits we have not yet efficient solutions (maybe never).

State Coding

The function performed by an automaton does not depend by the way its states are encoded, because the
value of the state is a “hidden variable”. But, the actual structure of a finite automaton and its proper
functioning are very sensitive to the state encoding.

The designer uses the freedom to code in different way the internal state of a finite automaton for
its own purposes. A finite automaton is a concept embodied in physical structures. The transition from
concept to an actual structure is a process with many traps and corner cases. Many of them are avoided
using an appropriate codding style.

Example 8.18 Let be a first example showing the structural dependency by the state encoding. The
automaton described in Figure 8.32a has three state. The first codding version for this automaton is:
q0 = 00, q1 = 01, q2 = 10. We compute the next state Q1, Q+

0 , and the output Y1, Y0 using the first two
VK transition diagrams from Figure 8.32b:

Q+
1 = Q0 +X0Q′

1

Q+
0 = Q′

1Q′
0X ′

0

Y1 = Q0 +X0Q′
1

Y0 = Q′
1Q′

0.

The second codding version for the same automaton is: q0 = 00, q1 = 01, q2 = 11. Only the code
for q2 is different. Results, using the last two VK transition diagrams from Figure 8.32b:

Q+
1 = Q′

1Q0 +X0Q′
1 = (Q1 +(Q0 +X0)

′)′

Q+
0 = Q′

1

Y1 = Q′
1Q0 +X0Q′

1 = (Q1 +(Q0 +X0)
′)′

Y0 = Q′
0.

Obviously the second codding version provides a simpler and smaller combinational circuit associ-
ated to the same external behavior. In Figure 8.33 the resulting circuit is represented. ⋄
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Figure 8.32: A 3-state automaton with two different state encoding. a. The flow-chart describing the
behavior. b. The VK diagrams used to implement the automaton: the reference diagram for states, two transition
diagrams used for the first code assignment, and two for the second state assignment.

Minimal variation encoding Minimal variation state assignment (or encoding) refers to the codes
assigned to successive states.

Definition 8.13 Codding with minimal variation means successive state are codded with minimal Ham-
ming distance. ⋄

Example 8.19 Let be the fragment of a flow chart represented in Figure 8.34a. The state qi is followed
by the state q j and the assigned codes differ only by the least significant bit. The same for qk and ql
which both follow the state q j. ⋄

Example 8.20 Some times the minimal variation encoding is not possible. An example is presented in
Figure 8.34b, where qk can not be codded with minimal variation. ⋄

The minimal variation codding generates a minimal difference between the reference VK diagram
and the state transition diagram. Therefore, the state transition logical function extracted form the VK
diagram can be minimal.

Reduced dependency encoding Reduced dependency encoding refers to states which conditionally
follow the same state. The reduced dependency is related to the condition tested.
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Figure 8.33: The resulting circuit It is done for the second state assignment of the automaton defined in Figure
8.32a.
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Figure 8.34: Minimal variation encoding. a. An example. b. An example where the minimal variation
encoding is not possible.

Definition 8.14 Reduced dependency encoding means the states which conditionally follow a certain
state to be codded with binary configurations which differs minimal (have the Hamming distance mini-
mal). ⋄

Example 8.21 In Figure 8.35a the states q j and qk follow, conditioned by the value of 1-bit variable
X0, the state qi. The assigned codes for the first two differ only in the most significant bit, and they are
not related with the code of their predecessor. The most significant bit used to code the successors of qi

depends by X0, and it is X ′
0. We say: the next states of qi are X ′

011, for X0=0 the next state is 111, and for
X0=1 it is 011. Reduced dependency means: only one bit of the codes associated with the successors of
qi depends by X0, the variable tested in qi. ⋄

Example 8.22 In Figure 8.35b the transition from the state qi depends by two 1-bit variable, X0 and
X1. A reduced dependency codding is possible by only one of them. Without parenthesis is a reduced
dependency codding by the variable X1. With parenthesis is a reduced dependency codding by X0. ⋄

The reader is invited to provide the proof for the following theorem.
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Figure 8.35: Examples of reduced dependency encoding. a. The transition from the state is conditioned
by the value of a single 1-bit variable. b. The transition from the state is conditioned by two 1-bit variables.

Theorem 8.2 If the transition from a certain state depends by more than one 1-bit variable, the reduced
dependency encoding can not be provided for more than one of them. ⋄

The reduced dependency encoding is used to minimize the transition function because it allows to
minimize the number of included variables in the VK state transition diagrams. Also, we will learn soon
that this encoding style is very helpful in dealing with asynchronous input variables.

Incremental codding The incremental encoding provides an efficient encoding when we are able to
use simple circuits to compute the value of the next state. An incrementer is the simple circuit used to
design the simple automaton called counter. The incremental encoding allows sometimes to center the
implementation of a big half-automaton on a presetable counter.

Definition 8.15 Incremental encoding means to assign, whenever it is possible, for a state following qi

a code determined by incrementing the code of qi. ⋄

Incremental encoding can be useful for reducing the complexity of a big automaton, even if some-
times the price will be to increase the size. But, as we more frequently learn, bigger size is a good price
for reducing complexity.

One-hot state encoding The register is the simple part of an automaton and the combinational cir-
cuits computing the state transition function and the output function represent the complex part of the
automaton. More, the speed of the automaton is limited mainly by the size and depth of the associated
combinational circuits. Therefore, in order to increase the simplicity and the speed of an automaton we
can use a codding stile which increase the dimension of the register reducing in the same time the size
and the depth of the combinational circuits. Many times a good balance can be established using the
one-hot state encoding.

Definition 8.16 The one-hot state encoding associates to each state a bit, and consequently the state
register has a number of flip-flops equal with the number of states. ⋄

All previous state encodings used a log-number of bits to encode the state. The size of the state reg-
ister will grow, using one-hot encoding, from O(log n) to O(n) for an n-state finite automaton. Deserves
to pay sometimes this price for various reasons, such as speed, signal accuracy, simplicity, . . ..
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Minimizing finite automata

There are formal procedure to minimize an automaton by minimizing the number of internal states. All
these procedures refer to the concept. When the conceptual aspects are solved remain the problems
related with the minimal physical implementation. Follow a short discussion about minimizing the size
and about minimizing the complexity.

Minimizing the size by an appropriate state codding There are some simple rules to be applied in
order to generate the possibility to reach a minimal implementation. Applying all of these rules is not
always possible or an easy task and the result is not always guarantee. But it is good to try to apply them
as much as possible.

A secure and simple way to optimize the state assignment process is to evaluate all possible codding
versions and to choose the one which provide a minimal implementation. But this is not an effective way
to solve the problem because the number of different versions is in O(n!). For this reason are very useful
some simple rules able to provide a good solution instead of an optimal one.

A lucky, inspired, or trained designer will discover an almost optimal solution applying the following
rule in the order they are enounced.

Rule 1 : apply the reduced dependency codding style whenever it is possible. This rule allows a minimal
occurrence of the input variable in the VK state transition diagrams. Almost all the time this
minimal occurrence has as the main effect reducing the size of the state transition combinational
circuits.

Rule 2 : the states having the same successor with identical test conditions (if it is the case) will have
assigned adjacent codes (with the Hamming distance 1). It is useful because brings in adjacent
locations of a VK diagrams identical codes, thus generating the conditions to maximize the arrays
defined in the minimizing process.

Rule 3 : apply minimal variation for unconditioned transitions. This rule generates the conditions in
which the VK transition diagram differs minimally from the reference diagram, thus increasing
the chance to find bigger surfaces in the minimizing process.

Rule 4 : the states with identical outputs are codded with minimal Hamming distance (1 if possible).
Generates similar effects as Rule 2.

To see at work these rules let’s take an example.

Example 8.23 Let be the finite automaton described by the flow-chart from Figure 8.36. Are proposed
two codding versions, a good one (the first), using the codding rules previously listed, and a bad one (the
second with the codes written in parenthesis), ignoring the rules.

For the first codding version results the expressions:

Q+
2 = Q2Q′

0 +Q′
2Q1

Q+
1 = Q1Q′

0 +Q′
2Q′

1Q0 +Q′
2Q0X0

Q+
0 = Q′

0 +Q′
2Q′

1X ′
0

Y2 = Q2 +Q1Q0
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Figure 8.36: Minimizing the structure of a finite automaton. Applying appropriate codding rules the
occurrence of the input variable X0 in the transition diagrams can be minimized, thus resulting smaller Boolean
forms.
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Y1 = Q2Q1Q′
0 +Q′

2Q′
1

Y0 = Q2 +Q′
1 +Q′

0

the resulting circuit having the size SCLCver1 = 37.
For the second codding version results the expressions:

Q+
2 = Q2Q1Q′

0 +Q′
1Q0 +Q′

2Q0X0 +Q1Q′
0X ′

0

Q+
1 = Q′

1Q0 +Q′
2Q′

1 +Q′
2X ′

0

Q+
0 = Q′

1Q0 +Q′
2Q′

1 +Q′
2X0

Y2 = Q2Q′
0 +Q2Q1 +Q′

2Q′
1Q0 +Q1Q′

0

Y1 = Q′
2Q0 +Q′

2Q′
1

Y0 = Q2 +Q′
1 +Q0

the resulting circuit having the size SCLCver2 = 50. ⋄

Minimizing the complexity by one-hot encoding Implementing an automaton with one-hot encoded
states means increasing the simple part of the structure, the state register. It is expected at least a part
of this additional structure to be compensated by a reduced combinational circuit used to compute the
transition functions. But, for sure the entire complexity is reduced because of a simpler combinational
circuit.

Example 8.24 Let be the automaton described by the flow-chart from Figure 8.37, for which two codding
version are proposed: a one-hot encoding using 6 bits (Q6 . . .Q1), and a compact binary encoding using
only 3 bits (Q2Q1Q0).

Y1=1

X0
0 1

Y2=1 Y3=1

X0
0 1

X0
0 1

Y4=1 Y5=1 Y6=1

Q1 = 1

Q2 = 1 Q3 = 1

Q5 = 1 Q6 = 1Q4 = 1

000

011 111

010 110

100

Figure 8.37: Minimizing the complexity using one-hot encoding.

The outputs are Y6, . . . ,Y1 each active in a distinct state.
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Version 1: with ”one-hot” encoding The state transition functions, Q+
i , i = 1, . . . ,Q+

6 , can be written
directly inspecting the definition. Results:

Q+
1 = Q4 +Q5 +Q6

Q+
2 = Q1X ′

0

Q+
3 = Q1X0

Q+
4 = Q2X ′

0

Q+
5 = Q2X0 +Q3X ′

0

Q+
6 = Q3X0

Because in each state only one output bit is active, results:

Yi = Qi, pentru i = 1, . . . ,6.

The combinational circuit associated with the state transition function is very simple, and for outputs no
circuits are needed. The size of the entire combinational circuit is SCLC,var1 = 18, with the big advantage
that the outputs come directly from a flip-flop without additional unbalanced delays or other parasitic
effects (like different kinds of hazards).

Version 2: compact binary codding The state transition functions for this codding version (see Figure
8.37 for the actual binary codes) are:

Q+
2 = Q2Q0 +Q0X0 +Q′

2Q′
1X0

Q+
1 = Q′

2Q0 +Q′
2Q′

1 +Q0X ′
0

Q+
0 = Q′

2Q′
1

For the output transition function an additional decoder, DCD3, is needed. The resulting combinational
circuit has the size SCLC,var2 = 44, with the additional disadvantage of generating the outputs signal
using a combinational circuit, the decoder. ⋄

Asynchronous inputs

A real automaton is connected to the “external world” from which it receives of where it sends signals
only partially are controlled. This happens mainly when the connection is not sequential, mediated by a
synchronous register, because sometimes this is not possible. The designer controls very well the signals
on the loop. But, the uncontrolled arriving signals can by very dangerous for the proper functioning of
an automaton. Similarly, an uncontrolled output signal can have “hazardous” behaviors.

An automaton is implemented as a synchronous circuit changing its internal states at each active
(positive or negative) edge of clock. Let us remember the main restrictions imposed by the set-up time
and hold time related to the active edge of a clock applied to a flip-flop. No input signal can change in
the time interval beginning tSU before the clock transition and ending tH after the clock transition. Call it
the prohibited time interval. But, if at least one input of a certain finite automaton determines a switch on
at least one input of the state register, then no one can guarantee a proper functioning of that automaton.

Let be a finite automaton with one input, A, changing unrelated with the system clock. Its transition
can determine a transition on the input of a state flip-flop in the prohibited time interval. We call this
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kind of variable asynchronous input variable or simply asynchronous variable, and we use for it the
notation A∗. If, in a certain state the automaton test A∗ and switches in 1AA0 (which means in 1000 if
A∗ = 0, or 1110 is A∗= 1), then we are in trouble. The actual behavior of the automaton will allow also
the transition in 1010 and in 1100, which means the actual transition of the automaton will be in fact
in 1xx0, where x ∈ {0,1}. Indeed, if A∗ determine the transition of two state flip-flops in the prohibited
time interval, any binary configuration can be loaded in that flip-flops, not only 11 or 00.

The case of one asynchronous input What is the solution for this pathological behavior induced by
one asynchronous variable? To use reduced dependency codding for the transition from the state in which
X∗

0 is tested. If the state assignment will allow, for example, a transition to 11X00, then the behavior of the
automaton becomes coherent. Indeed, if X∗

0 determine a transition in the prohibited time interval on only
one state flip-flop, then the next state will be only 1110 or 1100. In both cases the automaton behaves
according to its definition. If the transition of X∗

0 is considered then the behavior of the automaton is
correct, but even if the transition is not catched it will be considered at the net clock cycle.

Example 8.25 In Figure 8.38 is defined a 3-state automaton with the asynchronous input variable X∗
0 .

Two code assignment are proposed. The first one uses the minimal variation kind of codding, and the
second uses for the transition from the state q0 a reduced dependency codding.

The first codding is:
q0 = 01, q1 = 00, q2 = 10, q3 = 11.

Results the following circuits for state transition:

Q+
1 = Q′

0 +Q′
1X0

Q+
0 = Q1 +Q0X0.

The transition from the state Q1Q0 = 01 is dangerous for the proper functioning of the finite automaton.
Indeed, from q0 the transition is defined by:

Q+
1 = X0, Q+

0 = X0

and the transition of X0 can generate changing signals on the state flip-flops in the prohibited time
interval. Therefore, the state q0 can be followed by any state.

The second codding, with reduced (minimal) dependency, is:

q0 = 01, q1 = 00, q2 = 11, q3 = 10

Results the following equations describing the loop circuits:

Q+
1 = Q1Q0 +Q′

1Q′
0 +Q0X0

Q+
0 = Q′

0.

The transition from the critical state, q0, is

Q+
1 = A, Q+

0 = Q′
0.

Only Q+
1 depends by the asynchronous input.

The size, the depth and the complexity of the resulting circuit is similar, but the behavior is correct
only for the second version. The correctness is achieved only by a proper encoding. ⋄
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Figure 8.38: Implementing a finite automaton with an asynchronous input.

Obviously, transition determined by more than one asynchronous variable must be avoided, because,
as we already know, the reduced dependency codding can be done only for one asynchronous variable
in each state. But, what is the solution for more than one asynchronous input variable? Introducing new
states in the definition of the automaton, so as in each state no more than one asynchronous variable will
be tested.

The case of more than one asynchronous inputs If there are more than one asynchronous inputs the
danger occurs when more than one of such variables are tested in the same state. Let be these asyn-
chronous variables A∗ and B∗, and, for example, there are a transition in 1A∗B∗0. Then, this transition
become equivalent with the transition in 1xx0. According to Theorem 8.2, the reduce dependency encod-
ing, at the transition from each state, is possible only for one asynchronous variable. What can be done
in this case?

We can tray to synchronize the two variable, A∗ and B∗, using a register. This attempt is represented in
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Figure 8.39. But, unfortunately, this solution does’t work. Because, the two asynchronous variables can
switch in the prohibited time interval, the active edge of clock in the t2 moment can load in the register
any 2-bit binary configuration. Thus, in the flow of input data could be inserted parasitic configurations
such as 10 → 00 → 01 or 10 → 11 → 01 instead of the correct flow of data represented by 10 → 10 → 01
or by 10 → 01 → 01.
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Figure 8.39:

We must conclude that synchronizing binary configurations consisting in more than on bit is not
possible in a digital system.

For our 2-input asynchronous input we must propose the following solution: in the flowchart a
supplementary state must be introduces so as in each state no more than one asynchronous input variable
is tested.

Example 8.26 Let be the fragment of flowchart from Figure 8.40a, where two asynchronous variable,
A∗ and B∗, are tested. An additional state is added in Figure 8.40b. In this new state the output is the
same with the first state.

⋄

Hazard

Some additional problems must be solved to provide accurate signals to the outputs of the immediate
finite automata. The output combinational circuit introduces, besides a delay due to the propagation time
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Figure 8.40: Reduce dependency coding. a. The coding is possible only related to one asynchronous
variable. The first version is according to B∗, while the second (in in square brackets) is according to A∗.
b. The second version added a new state, doubling the first state.

through the gate used to build it, some parasitic effects due to a kind of “indecision” in establishing the
output value. Each bit on the output is computed using a different network o gates and the effect of an
input switch reaches the output going trough different logic path. The propagation trough these various
circuits can provide hazardous transient behaviors on certain outputs.

Hazard generated by asynchronous inputs A first form of hazardous behavior, or simply hazard, is
generated by the impossibility to have synchronous transitions to the input of a combinational circuit.

Let be circuit from Figure 8.41a representing the typical gates receiving the signal A and B, ideally
represented in Figure 8.41b. Ideally means the two signals switches synchronously. They are considered
ideal because no synchronous signal can be actually generated. In Figure 8.41c and Figure 8.41d two
actual relations between the signals A and B are represented (other two are possible, but our purpose this
two cases will allow to emphasize the main effects of the actual asynchronicity).

Ideally, the AND gate must have the output continuously on 0, and the OR and XOR gates on 1.
Because of the inherent asynchronnicity between the input signals some parasitic transitions occur to the
outputs of the three gates (see Figure 8.41c and Figure 8.41d). Ideally, to the inputs of the three gates
are applied only two binary configurations: AB = 10 and AB = 01. But, because of the asynchronicity
between the two inputs, all possible binary configurations are applied, two of them for long time (AB= 10
and AB = 01) and the other two (AB = 00 and AB = 11) only for short (transitory) time. Consequently,
transitory effects are generated, by hazard, on the outputs of the three circuits.

Some times the transitory unexpected effects can be ignored including them into the transition time
of the circuit. But, there are applications where they can generate big disfunctionalities. For example,
when one of the hazardous output is applied on a set or reset input of a latch.

In order to offer an additional explanation for this kind of hazard VK diagrams are used in Figure
8.42, where in the first column of diagrams the ideal case is presented (the input switches directly to the
desired value). In the next two column the input reach the final value through an intermediary value.
Some times the intermediary value is associated with a parasitic transition of the output.

When between two subsystems multi-bit binary configurations are transferred, parasitic configuration
must be considered because of the asynchronicity. The hazardous effects can be “healed” being “patient”
waiting for the hazardous transition to disappear. But, we can wait only if we know when the transition
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Figure 8.41: How the asynchronous inputs generate hazard.

occurred, i.e., the hazard is easy to be avoided in synchronous systems.
Simply, when more than one input of a combinational is changing we must expect hazardous transi-

tions at least on some outputs.

Propagation hazard Besides the hazard generated by the two or many switching inputs there exists
hazard due to the transition of only one input. In this case the internal propagations inside of the com-
binational circuit generate the hazard. It could by a sort of asynchronicity generated by the different
propagation paths inside the circuit.

Let be a simple example of the circuit represented in Figure 8.43a, where two input are stable (A =
C = 1) and only one input switches. The problem of asynchronoous inputs is not an issue because only
one input is in transition. In Figure 8.43b the detailed wave forms allow us to emphasize a parasitic
transition on the output D. For A =C = 1 the output must stay on 1 independent by the value applied on
B. The actual behavior of the circuit introduces a parasitic (hazardous) transition in 0 due to the switch
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Figure 8.42: VK diagrams explaining the hazard due to the asynchronous inputs. ”A < B” means the
input A switch before the input B, and ”A > B” means the input B switch before the input A.

of B from 1 to 0. An ideal circuit with zero propagation times should maintain its output on 1.
A simple way to explain this kind of hazard is to say that in the VK diagram of the circuit (see Figure

8.43c) when the input “flies” from one surface of 1s to another it goes through the 0 surface generating
a temporary transition to 0. In order to avoid this transitory journey through the 0 surface an additional
surface (see Figure 8.43d) is added to transform the VK diagram in a surface containing two contiguous
surfaces, one for 0s and one for 1s. The resulting equation of the circuit has an additional term: AC. The
circuit with the same logic behavior, but without hazardous transitions is represented in Figure 8.43e.

Example 8.27 Let be the function presented in VK diagram from Figure 8.44a. An immediate solution
is shown in Figure 8.44b, where a square surface is added in the middle. But this solution is partial
because ignores the fact that the VK diagram is defined as a thor, with a three-dimensional adjacency.
Consequently the surfaces A′BCD′ and A′B′CD′ are adjacent, and the same for AB′C′D and A′B′C′D.
Therefore, the solution to completely avoid the hazard is presented in Figure 8.44c, where two additional
surfaces are added. ⋄

Theorem 8.3 If the expression of the Boolean function

f (xn−1, . . .x0)

takes the form
xi + x′i
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Figure 8.43: The typical example of propagation hazard. a. The circuit. b. The wave forms. c. The VK
diagram of the function executed by the circuit. d. The added surface allowing the behavior of the circuit
to have a continuous 1 surface. e. The equivalent circuit without hazard.

for at least one combination of the other variables than xi, then the actual associated circuit generates
hazard when xi switches. (The theorem of hazard) ⋄

Example 8.28 The function f (A,B,C) = AB′+BC, is hazardous because: f (1,B,1) = B′+B.
The function g(A,B,C,D) = AD + BC + A′B′ is hazardous because: g(A,0,−,1) = A + A′, and

g(0,B,1,−) = B+B′. Therefore, there are 4 input binary configuration generating hazardous condi-
tions. ⋄

Dynamic hazard The hazard generated by asynchronous inputs occurs in circuits after a first level of
gates. The propagation hazard needs a logic sum of products (2 or 3 levels of gates). The dynamic hazard
is generated by similar causes but manifests in circuits having more than 3 layers of gates. In Figure 8.45
few simple dynamic hazards are shown.

There are complex and not very efficient techniques to avoid dynamic hazard. Usually it is preferred
to transform the logic in sums of products (enlarging the circuit) and to apply procedures used to remove
propagation hazard (enlarging again the circuit).
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Figure 8.45: Examples of dynamic hazards.

Fundamental limits in implementing automata

Because of the problems generated in the real world by the hazardous behaviors some fundamental
limitations are applied when an actual automaton works.

1. The asynchronous input bits can be interpreted only independently in distinct states. In each
clock cycle the automaton interprets the bits used to determine the transition form the current
state. If more than one of these bits are asynchronous the reduced dependency coding style must
be applied for all of them. But, as we know, this is impossible, only one bit can be considered with
reduced dependency. Therefore, in each state no more than one tested bit can be asynchronous. If
more than one is asynchronous, then the definition of the automaton must be modified introducing
additional states.

2. Immediate Mealy automaton with asynchronous inputs has no actual implementation The
outputs of an immediate Mealy automaton are combinational conditioned by inputs. Therefore, an
asynchronous input will determine untolerable asynchronous transitions on some or on all of the
outputs.

3. Delayed Mealy automaton can not be implemented with asynchronous input variables Even
if all the asynchronous inputs are took into consideration properly when the state code are assigned,
the assemble formed by the state register plus the output register works wrong. Indeed, if at least
one state bit and one output bit change triggered by an asynchronous input there is the risk that the
output register to be loaded with a value unrelated with the value loaded into the state register.
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4. Hazard free Moore automaton with asynchronous inputs has no actual implementation
Asynchronous inputs involve coding with reduced dependency encoding. Hazard free outputs
ask coding with minimal variation. But, these two codding styles are incompatible.

8.5 Concluding about automata

A new step is made in this chapter in order to increase the autonomous behavior of digital systems. The
second loop looks justified by new useful behaviors.

Synchronous automata need non-transparent state registers The first loop, closed for gain the stor-
ing function, is applied carefully to obtain stable circuits. Tough restrictions can be applied (even number
of inverting levels on the loop) because of the functional simplicity. The functional complexity of au-
tomata rejects any functional restrictions applied for the transfer function associated to loop circuits. The
unstable behavior is avoided using non-transparent memories (registers) to store the state5. Thus, the
state switches synchronized by clock. The output switches synchronously for delayed version of the
implementation. The output is asynchronous for the immediate versions.

The second loop means the behavior’s autonomy Using the first loop to store the state and the second
to compute any transition function, a half-automaton is able to evolve in the state space. The evolution
depends by state and by input. The state dependence allows an evolution even if the input is constant.
Therefore, the automaton manifests its autonomy being able to behave, evolving in the state space, under
constant input. An automaton can be used as “pure” generator of more or less complex sequence of
binary configuration. the complexity of the sequence depends by the complexity of the state transition
function. A simple function on the second loop determine a simple behavior (a simple increment circuit
on the second loop transforms a register in a counter which generate the simple sequence of numbers in
the strict increasing order).

Simple automata can have n states When we say n states, this means n can be very big, it is not
limited by our ability to define the automaton, it is limited only by the possibility to implement it using the
accessible technologies. A simple automata can have n states because the state register contains logn flip-
flops, and its second loop contains a simple (constant defined) circuit having the size in O( f (logn)). The
simple automata can be big because they can be specified easy, and they can be generated automatically
using the current software tools.

Complex automata have only finite number of states Finite number of states means: a number of
states unrelated with the length (theoretically accepted as infinite) of the input sequence, i.e., the number
of states is constant. The definition must describe the specific behavior of the automaton in each state.
Therefore, the definition is complex having the size (at least) linearly related with the number of states.
Complex automata must be small because they suppose combinational loops closed through complex
circuits having the description in the same magnitude order with their size.

5Asynchronous automata are possible but their design is restricted by to complex additional criteria. Therefore, asyn-
chronous design is avoided until stronger reason will force us to use it.
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Control automata suggest the third loop Control automata evolve according to their state and they
take into account the signals received from the controlled system. Because the controlled system receives
commands from the same control automaton a third loop prefigures. Usually finite automata are used as
control automata. Only the simple automata are involved directly in processing data.

An important final question: adding new loops the functional power of digital systems is expanded
or only helpful features are added? And, if indeed new helpful features occur, who is helped by these
additional features?

8.6 Problems

Problem 8.1 Draw the JK flip-flop structure (see Figure 8.5) at the gate level. Analyze the set-up time
related to both edges of the clock.

Problem 8.2 Design a JK FF using a D flip-flop by closing the appropriate combinational loop. Com-
pare the set-up time of this implementation with the set-up time of the version resulting in the previous
problem.

Problem 8.3 Design the sequential version for the circuit which computes the n-bit AND prefixes. Fol-
low the approach used to design the serial n-bit adder (see Figure ??).

Problem 8.4 Write the Verilog structural description for the universal 2-input, 2-state programmable
automaton.

Problem 8.5 Draw at the gate level the universal 2-input, 2-state programmable automaton.

Problem 8.6 Use the universal 2-input, 2-state automaton to implement the following circuits:

• n-bit serial adder

• n-bit serial subtractor

• n-bit serial comparator for equality

• n-bit serial comparator for inequality

• n-bit serial parity generator (returns 1 if odd)

Problem 8.7 Define the synchronous n-bit counter as a simple n-bit Increment Automaton.

Problem 8.8 Design a Verilog tester for the resetable synchronous counter from Example 4.1.

Problem 8.9 Evaluate the size and the speed of the counter defined in Example 4.1.

Problem 8.10 Improve the speed of the counter designed in Example 4.1 designing an improved version
for the module and prefix.

Problem 8.11 Design a reversible counter defined as follows:
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module s m a r t e s t c o u n t e r # ( parameter n = 16)
( output [ n − 1 : 0 ] o u t ,

input [ n − 1 : 0 ] i n , / / p r e s e t v a l u e
input r e s e t , / / r e s e t c o u n t e r t o z e r o
input l o a d , / / l oad c o u n t e r w i t h ’ in ’
input down , / / c o u n t s down i f ( c o u n t )
input c o u n t , / / c o u n t s up or down
input c l o c k ) ;

/ / . . .
endmodule

Problem 8.12 Simulate a 3-bit counter with different delay on its outputs. It is the case in real world
because the flop-flops can not be identical and their load could be different. Use it as input for a three
input decoder implemented in two versions. One without delays and another assigning delays to the
inverters and the the gates used to implement the decoder. Visualize the outputs of the decoder in both
cases and interpret what you will find.
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Solution:

/ * ************************************************************************
F i l e name : d e c s p y k e . v
C i r c u i t name : S i m u l a t i o n module t o emphas i z e t h e s p y k e t o t h e o u t p u t o f

decoder d r i v e n by a c o u n t e r
D e s c r i p t i o n : d e s c r i b e s a s y s t e m w i t h a c l o c k g e n e r a t o r , a c o u n t e r and

a decoder , i n two v e r s i o n s : w i t h d e l a y s and w i t h o u t
d e l a y s a s s o c i a t e d t o t h e g a t e s

************************************************************************ * /
module d e c s p y k e ;

reg c lock ,
e n a b l e ;

reg [ 2 : 0 ] c o u n t e r ;
wire out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 ;

i n i t i a l begin c l o c k = 0 ;
e n a b l e = 1 ;
c o u n t e r = 0 ;
f o r e v e r #20 c l o c k = ˜ c l o c k ;

end

i n i t i a l #400 $ s t o p ;

always @( posedge c l o c k )
begin c o u n t e r [ 0 ] <= #3 ˜ c o u n t e r [ 0 ] ;

i f ( c o u n t e r [ 0 ] ) c o u n t e r [ 1 ] <= #4 ˜ c o u n t e r [ 1 ] ;
i f (& c o u n t e r [ 1 : 0 ] ) c o u n t e r [ 2 ] <= #5 ˜ c o u n t e r [ 2 ] ;

end

dmux dmux ( . ou t0 ( ou t0 ) ,
. ou t1 ( ou t1 ) ,
. ou t2 ( ou t2 ) ,
. ou t3 ( ou t3 ) ,
. ou t4 ( ou t4 ) ,
. ou t5 ( ou t5 ) ,
. ou t6 ( ou t6 ) ,
. ou t7 ( ou t7 ) ,
. i n ( c o u n t e r ) ,
. e n a b l e ( e n a b l e ) ) ;

i n i t i a l $vw dumpvars ;

endmodule
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/ * ************************************************************************
F i l e name : dmux . v
C i r c u i t name : DMUX
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a DMUX w i t h and w i t h o u t d e l a y s

a s s o c i a t e d t o t h e g a t e s
************************************************************************ * /

module dmux ( out0 , out1 , out2 , out3 , out4 , out5 , out6 , out7 , in , e n a b l e ) ;

input e n a b l e ;
input [ 2 : 0 ] i n ;
output out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 ;

/ / w i t h no d e l a y v e r s i o n
/ *

a s s i g n { out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 } = 1 ’ b1 << i n ;
/ / * /
/ / w i t h d e l a y s v e r s i o n
/ / *

not #1 no t0 ( nin2 , i n [ 2 ] ) ;
not #1 no t1 ( nin1 , i n [ 1 ] ) ;
not #1 no t2 ( nin0 , i n [ 0 ] ) ;
not #1 no t3 ( in2 , n in2 ) ;
not #1 no t4 ( in1 , n in1 ) ;
not #1 no t5 ( in0 , n in0 ) ;

nand #2 nand0 ( out0 , nin2 , nin1 , nin0 , e n a b l e ) ;
nand #2 nand1 ( out1 , nin2 , nin1 , in0 , e n a b l e ) ;
nand #2 nand2 ( out2 , nin2 , in1 , nin0 , e n a b l e ) ;
nand #2 nand3 ( out3 , nin2 , in1 , in0 , e n a b l e ) ;
nand #2 nand4 ( out4 , in2 , nin1 , nin0 , e n a b l e ) ;
nand #2 nand5 ( out5 , in2 , nin1 , in0 , e n a b l e ) ;
nand #2 nand6 ( out6 , in2 , in1 , nin0 , e n a b l e ) ;
nand #2 nand7 ( out7 , in2 , in1 , in0 , e n a b l e ) ;

/ / * /
endmodule

Problem 8.13 Justify the reason for which the LIFO circuit works properly without a reset input, i.e.,
the initial state of the address counter does not matter.

Problem 8.14 How behaves simple stack .

Problem 8.15 Design a LIFO memory using a synchronous RAM (SRAM) instead of an asynchronous
one as in the embodiment represented in Figure ??.

Problem 8.16 Some applications ask the access to the last two data stored into the LIFO. Call them
tos, for the last pushed data, and prev tos for the previously pushed data. Both accessed data can
be popped from stack. Double push is allowed. The accessed data can be rearranged swapping their
position. Both, tos and prev tos can be pushed again in the top of stack. Design such a LIFO defined
as follows:
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module t w o h e a d l i f o ( output [ 3 1 : 0 ] t o s ,
output [ 3 1 : 0 ] p r e v t o s ,
input [ 3 1 : 0 ] i n ,
input [ 3 1 : 0 ] s e c o n d i n ,
input [ 2 : 0 ] com , / / t h e o p e r a t i o n
input c l o c k ) ;

/ / t h e s e m a n t i c s o f ’com ’
parameter nop = 3 ’ b000 , / / no o p e r a t i o n

swap = 3 ’ b001 , / / swap t h e f i r s t two
pop = 3 ’ b010 , / / pop t o s
pop2 = 3 ’ b011 , / / pop t o s and p r e v t o s
push = 3 ’ b100 , / / push i n as new t o s
push2 = 3 ’ b101 , / / push ’ in ’ and ’ s e c o n d i n ’
p u s h t o s = 3 ’110 b , / / push ’ t o s ’ ( d ou b l e t o s )
p u s h p r e v = 3 ’ b111 ; / / push ’ p r e v t o s ’

/ / . . .
endmodule

Problem 8.17 Write the Verilog description of the FIFO memory represented in Figure ??.

Problem 8.18 Redesign the FIFO memory represented in Figure ?? using a synchronous RAM (SRAM)
instead of the asynchronous RAM.

Problem 8.19 There are application asking for a warning signal before the FIFO memory is full or
empty. Sometimes full and empty come to late for the system using the FIFO memory. For example,
no more then 3 write operation are allowed, or no more than 7 read operation are allowed are very
useful in systems designed using pipeline techniques. The threshold for this warning signals is good
to be programmable. Design a 256 8-bit entries FIFO with warnings activated using a programmable
threshold. The interconnection of this design are:

module t h f i f o ( output [ 7 : 0 ] o u t ,
input [ 7 : 0 ] i n ,
input [ 3 : 0 ] w r i t e t h , / / w r i t e t h r e s h o l d
input [ 3 : 0 ] r e a d t h , / / read t h r e s h o l d
input w r i t e ,
input r e a d ,
output w warn , / / w r i t e warning
output r w a r n , / / read warning
output f u l l ,
output empty ,
input r e s e t ,
input c l o c k ) ;

/ / . . .
endmodule
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Problem 8.20 A synchronous FIFO memory is written or read using the same clock signal. There are
many applications which use a FIFO to interconnect two subsystems working with different clock signals.
In this cases the FIFO memory has an additional role: to cross from the clock domain clock in into
another clock domain, clock out. Design an asynchronous FIFO using a synchronous RAM.

Problem 8.21 A serial memory implements the data structure of a fix length circular list. The first
location is accessed, for write or read operation, activating the input init. Each read or write operation
move the access point one position right. Design an 8-bit word serial memory using a synchronous RAM
as follows:

module s e r i a l m e m o r y ( output [ 7 : 0 ] o u t ,
input [ 7 : 0 ] i n ,
input i n i t ,
input w r i t e ,
input r e a d ,
input c l o c k ) ;

endmodule

Problem 8.22 A list memory is a circuit in which a list can be constructed by insert, can be accessed
by read forward, read back, and modified by insert, delete. Design such a circuit using two
LIFOs.

Problem 8.23 Design a sequential multiplier using as combinational resources only an adder, a multi-
plexors.

Problem 8.24 Write the behavioral and the structural Verilog description for the MAC circuit repre-
sented in Figure ??. Test it using a special test module.

Problem 8.25 Redesign the MAC circuit represented in Figure ?? adding pipeline register(s) to improve
the execution time. Evaluate the resulting speed performance using the parameters form Appendix E.

Problem 8.26 How many 2-bit code assignment for the half-automaton from Example 4.2 exist? Revisit
the implementation of the half-automaton for four of them different from the one already used. Compare
the resulting circuits and try to explain the differences.

Problem 8.27 Ad to the definition of the half-automaton from Example 4.2 the output circuits for: (1)
error, a bit indicating the detection of an incorrectly formed string, (2)ack, another bit indicating the
acknowledge of a well formed sting.

Problem 8.28 Multiplier control automaton can be defined testing more than one input variable in some
states. The number of states will be reduced and the behavior of the entire system will change. Design
this version of the multiply automaton and compare it with the circuit resulted in Example 4.3. Reevaluate
also the execution time for the multiply operation.

Problem 8.29 Revisit the system described in Example 4.3 and design the finite automaton for multiply
and accumulate (MACC) function. The system perform MACC until the input FIFO is empty and end =

1.
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Problem 8.30 Design the structure of TC in the CROM defined in 4.4.3 (see Figure ??). Define the codes
associated to the four modes of transition (jmp, cjmp, init, inc) so as to minimize the number of
gates.

Problem 8.31 Design an easy to actualize Verilog description for the CROM unit represented in Figure
??.

Problem 8.32 Generate the binary code for the ROM described using the symbolic definition in Example
4.4.

Problem 8.33 Design a fast multiplier converting a sequential multiplier into a combinational circuit.

Problem 8.34 Let be the finite automaton defined in Figure 8.46. Do the following:
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reset

0 1

Figure 8.46:

1. assign the sate codes in two versions:

(a) according priority to the reduce dependency coding style

(b) according priority to the minimal variation coding style

2. implement the finite automaton in the resulting two versions by:

• drawing the transition VK diagrams

• extracting the logic functions for Q+
2 ,Q

+
1 ,Q

+
0 ,Y2,Y1,Y0

• drawing the logic schematic of the resulting automaton

Problem 8.35 Describe in Verilog the automaton defined in Problem 8.34 and simulate it.
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8.7 Projects

Project 8.1 Finalize Project 1.2 using the knowledge acquired about the combinational and sequential
structures in this chapter and in the previous two.

Project 8.2 The idea of simple FIFO presented in this chapter can be used to design an actual block
having the following additional features:

• fully buffered inputs and outputs

• programmable thresholds for generating the empty and full signals

• asynchronous clock signals for input and for output (the design must take into consideration that
the two clocks – clockIn, clockOut – are considered completely asynchronous)

• the read or write commands are executed only if the it is possible (reads only if not-empty, or
writes only if not-full).

The module header is the following:

module asyncFIFO #( ‘ i n c l u d e ” f i f o P a r a m e t e r s . v ” )
( output reg [ n − 1 : 0 ] o u t ,

output reg empty ,
output reg f u l l ,
input [ n − 1 : 0 ] i n ,
input w r i t e ,
input r e a d ,
input [m− 1 : 0 ] inTh , / / i n p u t t h r e s h o l d
input [m− 1 : 0 ] outTh , / / o u t p u t t h r e s h o l d
input r e s e t ,
input c l o c k I n ,
input c l o c k O u t ) ;

/ / . . .
endmodule

The file fifoParameters.v has the content:

parameter n = 16 , / / word s i z e
m = 8 / / number o f l e v e l s

Project 8.3 Design a stack execution unit with a 32-bit ALU. The stack is 16-level depth (stack0,
stack1, ... stack15) with stack0 assigned as the top of stack. ALU has the following functions:

• add: addition
{stack0, stack1, stack2, ...} <= {(stack0 + stack1), stack2, stack3,...}

• sub: subtract
{stack0, stack1, stack2, ...} <= {(stack0 - stack1), stack2, stack3,...}
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• inc: increment
{stack0, stack1, stack2, ...} <= {(stack0 + 1), stack1, stack2, ...}

• dec: decrement
{stack0, stack1, stack2, ...} <= {(stack0 - 1), stack1, stack2, ...},

• and: bitwise AND
{stack0, stack1, stack2, ...} <= {(stack0 & stack1), stack2, stack3,...}

• or: bitwise OR
{stack0, stack1, stack2, ...} <= {(stack0 | stack1), stack2, stack3,...}

• xor: bitwise XOR
{stack0, stack1, stack2, ...} <= {(stack0 ⊕ stack1), stack2, stack3,...}

• not: bitwise NOT
{stack0, stack1, stack2, ...} <= {(∼stack0), stack1, stack2, ...}

• over:
{stack0, stack1, stack2, ...} <= {stack1, stack0, stack1, stack2, ...}

• dup: duplicate
{stack0, stack1, stack2, ...} <= {stack0, stack0, stack1, stack2, ...}

• rightShift: right shift one position (integer division)
{stack0, stack1, ...} <= {({1’b0, stack0[31:1]}), stack1, ...}

• arithShift: arithmetic right shift one position
{stack0, stack1, ...} <= {({stack0[31], stack0[31:1]}), stack1, ...}

• get: push dataIn in top of stack
{stack0, stack1, stack2, ...} <= {dataIn, stack0, stack1, ...},

• acc: accumulate dataIn
{stack0, stack1, stack2, ...} <= {(stack0 + dataIn), stack1, stack2, ...},

• swp: swap the last two recordings in stack
{stack0, stack1, stack2, ...} <= {stack1, stack0, stack2, ...}

• nop: no operation
{stack0, stack1, stack2, ...} <= {stack0, stack1, stack2, ...}.

All the register buffered external connections are the following:

• dataIn[31:0] : data input provided by the external subsystem

• dataOut[31:0] : data output sent from the top of stack to the external subsystem

• aluCom[3:0] : command code executed by the unit

• carryIn : carry input

• carryOut : carry output
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• eqFlag : is one if (stack0 == stack1)

• ltFlag : is one if (stack0 ¡ stack1)

• zeroFlag : is one if (stack0 == 0)

Project 8.4
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Chapter 9

PROCESSORS:
Third order, 3-loop digital systems

In the previous chapter
the circuits having an autonomous behavior were introduced pointing on

• how the increased autonomy adds new functional features in digital systems

• the distinction between finite automata and uniform automata

• the segregation mechanism used to reduce the complexity

In this chapter
the third order, three-loop systems are studied presenting

• how a “smart register” can reduce the complexity of a finite automaton

• how an additional memory helps for designing easy controllable systems

• how the general processing functions can be performed loop connecting two appropriate
automata forming a processor

In the next chapter
the fourth order, four-loop systems are suggested with emphasis on

• the four types of loops used for generating different kind of computational structures

• the strongest segregation which occurs between the simple circuits and the complex programs

289
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The soft overcomes the hard in the world
as a gentle rider controls a galloping horse.

Lao Tzu1

The third loop allows the softness of symbols to act im-
posing the system’s function.

In order to add more autonomy in digital systems the third loop must be closed. Thus, new effects
of the autonomy are used in order to reduce the complexity of the system. One of them will allow us to
reduce the apparent complexity of an automaton, another, to reduce the complexity of the sequence of
commands, but, the main form of manifesting of this third loop will be the control process.

Automaton

? ?

? ?

?

6
2-OS

Automaton

? ?

? ?

?

6
2-OS

Automaton

? ?

? ?

?

6
2-OS

CLC

Memory

Automaton

0-OS

1-OS

2-OS

a.

b.

c.

simpler (& smalleer)

Processor

easier to control

automaton

automaton

Figure 9.1: The three types of 3-OS machines. a. The third loop is closed through a combinational circuit
resulting less complex, sometimes smaller, finite automaton. b. The third loop is closed through memories allowing
a simplest control. c. The third loop is closed through another automaton resulting the Processor: the most
complex and powerful circuit.

The third loop can be closed in three manners, using the three types of circuits presented in the
previous chapters.

• The first 3-OS type system is a system having the third loop closed through a combinational circuit,
i.e., over an automaton or a network of automata the loop is closed through a 0-OS (see Figure
9.1a).

• The second type (see Figure 9.1b) has on the loop a memory circuit (1-OS).

1Quote from Tao Te King of Lao Tzu translated by Brian Browne Walker.
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• The third type connects in a loop two automata (see Figure 9.1c). This last type is typical for 3-OS,
having the processor as the main component.

All these types of loops will be exemplified emphasizing a new and very important process appearing
at the level of the third order system: the segregation of the simple from the complex in order to
reduce the global (apparent) complexity.

9.1 Implementing finite automata with ”intelligent registers”

The automaton function rises at the second order level, but this function can be better implemented using
the facilities offered by the systems having a higher order. Thus, in this section we resume a previous
example using the feature offered by 3-OS. The main effect of these new approaches: the ratio between
the simple circuits and the complex circuits grows, without spectacular changes in the size of circuits.
The main conclusion of this section: more autonomy means less complexity.

9.1.1 Automata with JK “registers”

In the first example we will substitute the state register with a more autonomous device: a “register”
made by JK flip-flops. The “JK register” is not a register, it is a network of parallel connected simple
automata. We shall prove that, using this more complicated flip-flop, the random part of the system will
be reduced and in most of big sized cases the entire size of the system could be also reduced. Thus, both
the size and the complexity diminishes when we work with autonomous (“smart”) components.

But let’s start to disclose the promised magic method which, using flip-flops having two inputs in-
stead of one, offers a minimized solution for the combinational circuit performing the loop’s function f .
The main step is to offer a simple rule to substitute a D flip-flop with a JK flip-flop in the structure of the
automaton.

The JK flip-flop has more autonomy than the D flip-flop. The first is an automaton and the second is
only a storage element used to delay. The JK flip-flop has one more loop than the D flip-flop. Therefore,
for switching from a state to another the input signals of a JK flip-flop accepts more “ambiguity” than
the signal to the input of a D flip-flop. The JK flip-flop transition can be commanded as follows:

• for 0 → 0 transition, JK can be 00 or 01, i.e., JK=0– (“–” means “don’t care” value)

• for 0 → 1 transition, JK can be 11 or 10, i.e., JK=1–

• for 1 → 0 transition, JK can be 11 or 01, i.e., JK=–1

• for 1 → 1 transition, JK can be 00 or 10, i.e., JK=–0

From the previous rule results the following rule:

• for 0 → A, JK=A–

• for 1 → A, JK=–A’.

Using these rules, each transition diagram for Q+
i can be translated in two transition diagrams for Ji and

Ki. Results: twice numbers of equations. But surprisingly, the entire size of the random circuit which
computes the state transition will diminish.
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Figure 9.2: Translating D transition diagrams in the corresponding JK transition diagrams. The
transition VK diagrams for the JK implementation of the finite half-automaton used to recognize binary string
belonging to the 1n0m set of strings.

Example 9.1 The half-automaton designed in Example 8.4 is reconsidered in order to be designed using
JK flip-flops instead of D flip-flops. The transition map from Figure 8.17 (reproduces in Figure 9.2a) is
translated in JK transition maps in Figure 9.2b. The resulting circuit is represented in Figure 9.2c.

The size of the random circuit which computes the state transition function is now smaller (from the
size 8 for D–FF to size 5 for JK–FF). The increased autonomy of the now used flip-flops allows a smaller
“effort” for the same functionality. ⋄

Example 9.2 ∗ Let’s revisit also Example 8.5. Applying the transformation rules results the VK diagrams from
Figure 9.3 from which we extract:

J1 = Q0 · empty′

K1 = Q′
0 · f ull′

J0 = Q′
1 · empty′

K0 = Q1 ·done

If we compare with the previous D flip-flop solution where the loop circuit is defined by

Q+
1 = Q1 ·Q0 +Q0 · empty′+Q1 · f ull

Q+
0 = Q′

1 ·Q0 +Q0 ·done′+Q′
1 · empty′

results a big reduction of complexity. ⋄

In this new approach, using a “smart register”, a part of loopCLC from the automaton built with a
true register was segregated in the uniform structure of the “JK register”. Indeed, the size of loopCLC
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Figure 9.3: Translating D transition diagrams in the corresponding JK transition diagrams. The
transition VK diagrams for the JK implementation of the finite automaton used to control MAC circuit (see Exam-
ple 4.3).

decreases, but the size of each flip-flop increases with 3 units (instead of an inverter between S and R in
D flip-flop, there are two AND2 in JK flip-flop). Thus, in this new variant the size of loopCLC decreases
on the account of the size of the “JK register”.

This method acts as a mechanism that emphasizes more uniformities in the designing process and al-
lows to build for the same function a less complex and, only sometimes, a smaller circuit. The efficiency
of this method increases with the complexity and the size of the system.

We can say that loopCLC of the first versions has only an apparent complexity, because of a certain
quantity of “order” distributed, maybe hidden, among the effective random parts of it. Because the
“order” sunken in “disorder” can not be easy recognized we say that “disorder + order” means “disorder”.
In this respect, the apparent complexity must be defined. The apparent complexity of a circuit is reduced
segregating the “hidden order”, until the circuit remains really random. The first step is done. The next
step, in the following subsection.

What is the explanation for this segregation that implies the above presented minimization in the ran-
dom part of the system? Shortly: because the “JK register” is a “smart register” having more autonomy
than the true register built by D flip-flops. A D flip-flop has only the partial autonomy of staying in a
certain state, instead of the JK flip-flop that has the autonomy to evolve in the state space. Indeed, for a D
flip-flop we must all the time “say” on the input what will be the next state, 0 or 1, but for a JK flip-flop
we have the vague, almost “evasive”, command J = K = 1 that says: “switch in the other state”, without
indicating precisely, as for D flip-flop, the next state, because the JK “knows”, aided by the second loop,
what is its present state.

Because of the second loop, that informs the JK flip-flop about its own state, the expressions for
Ji and Ki do not depend by Qi, rather than Q+

i that depends on Qi. Thus, Ji and Ki are simplified. More
autonomy means less control. For this reason the PLA that closes the third loop over a “JK register” is
smaller than a PLA that closes the second loop over a true register.

9.1.2 Automata using counters as registers

Are there ways to “extract” more “simplicity” by segregation from the PLA associated to an automaton?
For some particular problems there is at least one more solution: to use a synchronous setable counter,
SCOUNTn. The synchronous setable counter is a circuit that combines two functions, it is a register
(loaded on the command L) and in the same time it is a counter (counting up under the command U).
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Figure 9.4: Finite automaton with smart “JK register”. The new implementation of FA from Figure
8.28 using a ”JK register” as a state register. The associated half-automaton is simpler (the corresponding PLA is
smaller).

The load has priority before the count.
Instead of using few one-bit counters, i.e. JK flip-flops, one few-bit counter is used to store the state

and to simplify, if possible, the control of the state transition. The coding style used is the incremen-
tal encoding (see E.4.3), which provides the possibility that some state transitions to be performed by
counting (increment).

Warning: using setable counters is not always an efficient solution!
Follows two example. One is extremely encouraging, and another is more realistic.

Example 9.3 The half-automaton associated to the codes assignment written in parenthesis in Figure
8.29 is implemented using an SCOUNTn with n = 2. Because the states are codded using increment
encoding, the state transitions in the flow-chart can be interpreted as follows:

• in the state q0 if empty = 0, then the state code is incremented, else it remains the same

• in the state q1 if empty = 0, then the state code is incremented, else it remains the same

• in the state q2 if done = 1, then the state code is incremented, else it remains the same

• in the state q3 if f ull = 0, then the state code is incremented, else it remains the same

Results the very simple (not necessarily very small) implementation represented in Figure 9.5, where
a 4-input multiplexer selects according to the state the way the counter switches: by increment (up = 1)
or by loading (load = 1).

Comparing with the half-automaton part in the circuit represented in Figure 9.4, the version with
counter is simpler, eventually smaller. But, the most important effect is the reducing complexity. ⋄
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Figure 9.5: Finite half-automaton implemented with a setable counter. The last implementation of the
half-automaton associated with FA from Figure 8.28 (with the function defined in Figure 8.29 where the states
coded in parenthesis). A synchronous two-bit counter is used as state register. The simple four-input MUX
commands the counter.

Example 9.4 This example is also a remake. The half-automaton of the automaton which controls the
operation macc in Example 4.6 will be implemented using a presetable counter as register. See Figure
?? for the state encoding. The idea is to have in the flow-chart as many as possible transitions by
incrementing.

Building the solution starts from a SCOUNT4 and a MUX4 connected as in Figure 9.6. The multi-
plexer selects the counter’s operation (load or up-increment) in each state according to the flow-chart
description. For example in the state 0000 the transition is made by counting if empty = 0, else the state
remains the same. Therefore, the multiplexer selects the value of empty′ to the input U of the counter.

The main idea is that the loading inputs I3, I2, I1 and I0 must have correct values only if in the
current state the transition can be made by loading a certain value in the counter. Thus, in the definition
of the logical functions associated with these inputs we have many “don’t care”s. Results the circuit
represented in Figure 9.6. The random part of the circuit is designed using the transition diagrams from
Figure 9.7.

The resulting structure has a minimized random part. We assumed even the risk of increasing the
recursive defined part of the circuit in order to reduce the random part of it. ⋄

Now, the autonomous device that allows reducing the randomness is the counter used as state register.
An adequate state assignment implies many transitions by incrementing the state code. Thus, the basic
function of the counter is many times involved in the state transition. Therefore, the second loop of the
system, the simple defined “loop that counts”, is frequently used by the third loop, the random loop. The
simple command UP, on the third loop, is like a complex “macro” executed by the second loop using
simple circuits. This hierarchy of autonomies simplifies the system, because at the higher level the loop
uses simple commands for complex actions. Let us remember:

• the loop over a true register (in 2-OS) uses the simple commands for the simplest actions: load 0
in D flip-flop and load 1 in D flip-flop

• the loop over a “JK register” (in 3-OS) uses beside the previous commands the following: no op
(remain in the same state!) and switch (switch in the complementary state!)

• the loop over a SCOUNTn substitutes the command switch with the same simple expressed, but
more powerful, command increment.
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Figure 9.6: Finite half-automaton for controlling the function macc. The function was previously imple-
mented using a CROM in Example 4.6.

The “architecture” used on the third loop is more powerful than the two previous. Therefore, the effort
of this loop to implement the same function is smaller, having the simpler expression: a reduced random
circuit.

The segregation process is more deep, thus we imply in the designing process more simple, recursive
defined, circuits. The apparent complexity of the previous solution is reduced towards, maybe on, the
actual complexity. The complexity of the simple part is a little increased in order to “pay the price” for a
strong minimization of the random part of the system. The quantitative aspects of our small example are
not very significant. Only the design of the actual large systems offers a meaningful example concerning
the quantitative effects.

9.2 Loops closed through memories

Because the storage elements do not perform logical or arithmetical functions - they only store - a loop
closed through the 1-OS seems to be unuseful or at least strange. But a selective memorizing action is
used sometimes to optimize the computational process! The key is to know what can be useful in the
next steps.

The previous two examples of the third order systems belongs to the subclass having a combinational
loop. The function performed remains the same, only the efficiency is affected. In this section, because
automata having the loop closed through a memory is presented, we expect the occurrence of some
supplementary effects.

In order to exemplify how a trough memory loop works an Arithmetic & Logic Automaton – ALA
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Figure 9.7: Transition diagrams for the presetable counter used as state register. The complex (ran-
dom) part of the automaton is represented by the loop closed to the load input of the presetable counter.

– will be used (see Figure 9.8a). This circuit performs logic and arithmetic functions on data stored in
its own state register called accumulator – ACC –, used as left operand and on the data received on its
input in, used as right operand. A first version uses a control automaton to send commands to ALA,
receiving back one flag: crout.

A second version of the system contains an additional D flip-flop used to store the value of the CRout

signal, in each clock cycle when it is enabled (E = 1), in order to be applied on the CRin input of ALU.
The control automaton is now substituted with a command automaton, used only to issue commands,
without receiving back any flag.

Follow two example of using this ALA, one without an additional loop and another with the third
loop closed trough a simple D flip-flop.

Version 1: the controlled Arithmetic & Logic Automaton

In the first case ALA is controlled (see Figure 9.8a) using the following definition for the undefined
fields of < microinstruction> specified in 8.4.3:

<command> ::= <func> <carry>;

<func> ::= and | or | xor | add | sub | inc | shl | right;

<test> ::= crout | -;

Let be the sequence of commands that controls the increment of a double-length number:

inc cjmp crout bubu // ACC = in + 1

right jmp cucu // ACC = in

bubu inc // ACC = in + 1

cucu ...

The first increment command is followed by different operarion according to the value of crout. If
crout = 1 then the next command is an increment, else the next command is a simple load of the upper
bits of the double-length operand into the accumulator. The control automaton decides according to the
result of the first increment and behaves accordingly.
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Figure 9.8: The third loop closed over an arithmetic and logic automaton. a. The basic structure: a
simple automaton (its loop is closed through a simple combinational circuit: ALU) working under the supervision
of a control automaton. b. The improved version, with an additional 1-bit state register to store the carry signal.
The control is simpler if the third loop “tells” back to the arithmetic automaton the value of the carry signal in the
previous cycle.

Version 2: the commanded Arithmetic & Logic Automaton

The second version of Arithmetic & Logic Automaton is a 3-OS because of the additional loop closed
through the D flip-flop. The role of this new loop is to reduce, to simplify and to speed up the routine
that performs the same operation. Now the microinstruction is actualized differently:

<command> ::= <func>;

<func> ::= right | and | or | xor | add |

sub | inc | shl | addcr | subcr | inccr | shlcr;

<test> ::= - ;

The field <test> is not used, and the control automaton can be substituted by a command automaton.
The field <func> is codded so as one of its bit is 1 for all arithmetic functions. This bit is used to enable
the switch of D-FF. New functions are added: addcr, subcr, inccr, shlcr. The instructions xxxcr
operates with the value of carry F-F. The set of operations are defined now on in, ACC, carry with
values in carry, ACC, as follows:

right: {carry, ACC} <= {carry, in}

and: {carry, ACC} <= {carry, ACC & in}

or: {carry, ACC} <= {carry, ACC | in}

xor: {carry, ACC} <= {carry, ACC ^ in}

add: {carry, ACC} <= ACC + in
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sub: {carry, ACC} <= ACC - in

inc: {carry, ACC} <= in + 1

shl: {carry, ACC} <= {in, 0}

addcr: {carry, ACC} <= ACC + in + carry

subcr: {carry, ACC} <= ACC - in - carry

inccr: {carry, ACC} <= in + carry

shlcr: {carry, ACC} <= {in, carry}

The resulting difference in how the system works is that in each clock cycle CRin is given by the
content of the D flip-flop. Thus, the sequence of commands that performs the same action becomes:

inc // ACC = in + 1

inccr // ACC = in + Q

In the two previous use of the arithmetic and logic automaton the execution time remains the same,
but the expression used to command the structure in the second version is shorter and simpler. The
explanation for this effect is the improved autonomy of the second version of the ALA. The first version
was a 2-OS but the second version is a 3-OS. A significant part of the random content of the ROM from
CROM can be removed by this simple new loop. Again, more autonomy means less control. A small
circuit added as a new loop can save much from the random part of the structure. Therefore, this kind of
loop acts as a segregation method.

Specific for this type of loop is that adding simple circuits we save random, i.e., complex, structured
symbolic structures. The circuits grow by simple physical structure and the complex symbolic structures
are partially avoided.

In the first version the sequence of commands are executed by the automaton all the time in the same
manner. In the second version, a simpler sequence of commands are executed different, according to
the processed data that impose different values in the carry flop-flop. This “different execution” can be
thought as an “interpretation”.

In fact, the execution is substituted by the interpretation, so as the apparent complexity of the sym-
bolic structure is reduced based on the additional autonomy due to the third structural loop. The au-
tonomy introduced by the new loop through the D flip-flop allowed the interpretation of the commands
received from the sequencer, according to the value of CR.

The third loop allows the simplest form of interpretation, we will call it static interpretation. The
fourth loop allows a dynamic interpretation, as we will see in the next chapter.

9.3 Loop coupled automata

This last step in building 3-OS stresses specifically on the maximal segregation between the simple
physical structure and the complex symbolic structures. The third loop allows us to make a deeper
segregation between simple and complex.

We are in the point where the process of segregation between simple and complex physical structures
ends. The physical structures reach the stage from which the evolution can be done only coupled with
the symbolic structures. From this point a machine means: circuits that execute or interpret bit configu-
rations structured under restrictions imposed by the formal languages used to describe the functionality
to be performed.
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9.3.1 Counter extended automata (CEA)

Let us revisit Example 8.14 and try to solve the problem for m = n.

9.3.2 The elementary processor

The most representative circuit in the class of 3-OS is the processor. The processor is maybe the most
important digital circuit because of its flexibility to compute any computable function.

Definition 9.1 The processor, P, is a circuit realized loop connecting a functional automaton with a finite
(control) automaton. ⋄

The function of a processor P is specified by the sequences of commands “stored” in the loopCLC of
the finite automaton used for control. (In a microprogrammed processor each sequence represents a mi-
croprogram. A microprogram consists in a sequence of microinstructions each containing the commands
executed by the functional automaton and fields that allow to select the next microinstruction.)

In order to understand the main mechanisms involved by the third loop closed in digital systems we
will present initially only how an elementary processor works.

Definition 9.2 The elementary processor, EP, is a processor executing only one control sequence, i.e.,
the associated finite automaton is a strict initial automaton. ⋄

An EP performs only one function. It is a structure having a fix, nonprogrammable function. The
two parts of an EP are very different. One, the control automaton, is a complex structure, while another,
the functional automaton, is a simple circuit assembled from few recursively defined circuits (registers,
ALU, file registers, multiplexors, and the kind). This strong segregation between the simple part and the
complex part of a circuit is the key idea on which the efficiency of this approach is based.

Even on this basic level the main aspect of computation manifest. It is about control and execution.
The finite automaton performs the control, while the functional automaton executes the logic or arith-
metic operations on data. The control depends on the function to be computed (the 2nd level loop at the
level of the automaton) and on the actual data received by the system (the 3rd level loop at the system
level).

Example 9.5 Let’s revisit Example 5.2 in order to implement the function interpol using an EP. The
organization of the EP intepolEP is presented in Figure 9.9.

The functional automaton consists of a register file, an Arithmetic and Logic Unit and a 2-way
multiplexer. Such a simple functional automaton can be called RALU (Registers & ALU). In each clock
cycle two operands are read from the register file, they are operated in ALU, and the result is stored back
at destination register in the register file. The multiplexor is used to load the register file with data. The
loop closed from the ALU’s output to the MUX’s input is a 2nd level loop, because each register in the
file register contains a first level loop.

The system has fully buffered connections. Synchronization signals (send, get, sendAck,

getAck) are connected through D–FFs (one-bit registers) and data through two 8-bit registers: inR

and outR.
The control of the system is performed by the finite automaton FA. It is initialized by the reset signal,

and evolve by testing three independent 1-bit signals: send (the sending external subsystem provides a
new input byte), get (the receiving external subsystem is getting the data provided by the EP), zero
(means the current output of ALU has the value 0). The last 1-bit signal closes the third loop of the
system. The transition function is described in the following lines:
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Figure 9.9: The elementary processor interpolEP.

STATE FUNCTION TEST EXT. SIGNAL NEXT STATE

waitSend reg0 <= inReg, if (send) sendAck, next = test;

else next = waitSend;

test reg1 <= reg1, if (zero) next = add;

else next = waitGet;

waitGet outReg <= reg1, if (get) getAck, next = move1;

else next = waitGet;

move1 reg2 <= reg1, next = move0;

move0 reg1 <= reg0, next = waitSend;

add reg1 <= reg0 + reg2, next = divide;

divide reg1 <= reg1 >> 1, next = waitGet;

The outputs of the automaton provide the command for the acknowledge signals for the external
subsystems, and the internal command signals for RALU and output register outR. ⋄

Example 9.6 ∗ The EP structure is exemplified framed inside the simple system represented in Figure 9.10, where:

inFIFO : provides the input data for EP when read = 1 if empty = 0

outFIFO : receives the output data generated by EP when write = 1 if full = 0

LIFO : stores intermediary data for EP if push = 1 and send back the last sent data if pop

Elementary Processor : is one of the simplest embodiment of an EP containing:

Control Automaton : a strict initial control automaton (see CROM from Figure ??)
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Figure 9.10: An example of elementary processor (EP). The third loop is closed between a simple execution
automaton (alu & acc reg) and a complex control automaton used to generate the sequence of operations to be
performed by alu and to control the data flow between EP and the associated memory resources: LIFO, inFIFO,

outFIFO.

alu : an Arithmeetic & Logic Unit

acc reg : an accumulator register, used as state register for Arithmetic & Logic Automaton which is a
functional automaton

mux : is the multiplexer for select the left operand from inFIFO or from LIFO.

The control automaton is a one function CROM that commands the functional automaton, receiving from it only
the carry output, cr, of the adder embedded in ALU.

The description of PE must be supplemented with the associated microprogramming language, as follows:

<microinstruction> ::= <label> <command> <mod> <test> <next>;

<label> ::= <any string having maximum 6 symbols>;

<command> ::= <func> <inout>;

<mod> ::= jmp | cjmp | - ;

<test> ::= zero | notzero | cr | notcr | empty | nempty | full | nfull;

<next> ::= <label>;

<func> ::= left | add | half0 | half1 | - ;

<inout> ::= read | write | push | pop ;

where:

notcr: inverted cr

nempty: inverted empty

nfull: inverted full

left: acc_reg <= left

add: acc_reg <= left + acc_reg

half0: acc_reg <= {0, acc_reg[n-1:1]}

half1: acc_reg <= {1, acc_reg[n-1:1]}

left = read ? out(inFIFO) : out(LIFO)

and by default command are:
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inc for <mode>

right: acc_reg <= acc_reg

The only microprogram executed by the previous described EP receives a string of numbers and generates
another string of numbers representing the mean values of the successive two received numbers. The numbers are
positive integers. Using the previous defined microprogramming language results the following microprogram:

microprogram mean;

bubu read, cjmp, empty, bubu, left;

cucu cjmp, empty, cucu;

read, add, cjmp, cr, one;

half0;

out write, cjmp, full, out;

jmp, bubu;

one half1, jmp, out;

endmicroprogram

On the first line PE waits for non-empty inFIFO; when empty becomes inactive the last left command puts
in the accumulator register the correct value. The second microinstruction PE waits for the second number, when
the number arrives the microprogram goes to the next line. The third line adds the content of the register with the
just read number from inFIFO. If cr = 1, the next microinstruction will be one, else the next will be the following
microinstruction. The fourth and the last microinstructions performs the right shift setting the most significant bit
on 0, i.e., the division for finishing to compute the mean between the two received numbers. The line out send
out the result when full = 0. The jump to bubu restart again the procedure, and so on unending. The line one

performs a right shift setting the most significant bit on 1. ⋄

The entire physical structure of EP is not relevant for the actual function it performs. The function
is defined only by the loopCLC of the finite automaton. The control performed by the finite automaton
combines the simple functional facilities of the functional automaton that is a simple logic-arithmetic
automaton. The randomness is now concentrated in the structure of loopCLC which is the single complex
structure in the system. If loopCLC is implemented as a ROM, then its internal structure is a symbolic
one. As we said at the beginning of this section, at the level of 3-OS the complexity is segregated in
the symbolic domain. The complexity is driven away from the circuits being lodged inside the symbolic
structures supported by ROM. The complexity can not be avoided, it can be only transferred in the more
controllable space of the symbolic structures.

9.3.3 Executing instructions vs. interpreting instructions

A processor is a machine which composes & loops functions performed by elementary processors.
Let us call them elementary computations or, simply, instructions. But now it is not about composing
circuits. The big difference from a physical composition or a physical looping, already discussed, is that
now the composition and looping are done ”in the symbolic domain”.

As we know, an EP computes a function of variables received from an external sub-system (in the
previous example from inFIFO), and sends the result to an external sub-system (in the previous example
to outFIFO). Besides input variables a processor receives also functions. The results are stored sometimes
internally or in specific external resources (for example a LIFO memory), and only at the end of a
complex computation a result or a partial result is outputed.

The ”symbolic composition” is performed applying the computation g on the results of computations
hm, . . .h0. Let’s call now g, hi, or other similar simple computations, instructions.
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The ”symbolic looping” means to apply the same string of instructions to the same variables as many
time as needed.

Any processor is characterized by its instruction set architecture (ISA). As we mentioned, an in-
struction is equivalent with an elementary computation performed by an EP, and its code is used to
specify:

• the operation to be performed (<op code>)

• sometimes an immediate operand, i.e., a value known at the moment the computation is defined
(<value>),

therefore, in the simplest cases instruction ::= <op code> <value>

A program is a sequence of instructions allowing to compose and to loop more or less complex
computations.

There are two ways to perform an instruction:

• to execute it: to transcode op code in one or many elementary operations executed in one clock
cycle

• to interpret it: to expand op code is a sequence of operations performed in many clock cycles.

Accordingly, two kind of processors are defined:

• executing processors

• interpreting processors.

VARIABLES

ALU

PROCESSOR

NEXT PC

storage elements

DATA
&

PROGRAMS

elementary functions composing & looping

w
�

PROGRAM

COUNTER

EXECUTION UNIT
or

INTERPRETATION UNIT

storage elements

decoding or µ-composing & µ-looping

Y

Figure 9.11: The processor (P) in its environment. P works loop connected with an external memory
containing data and programs. Inside P elementary function, applied to a small set of very accessible variables,
are composed in linear or looped sequences. The instructions read from the external memory are executed in one
(constant) clock cycle(s) or they are interpreted by a sequence of elementary functions.

In Figure 9.11 the processing module is framed in a typical context. The data to be computed and the
instructions to be used perform the computation are stored in a RAM module (see in Figure 9.11 DATA
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& PROGRAMS). PROCESSOR is a separate unit used to compose and to loop strings of instructions.
The internal resources of a processor consists, usually, in:

• a block to perform elementary computations, containing:

– an ALU performing at least simple arithmetic operations and the basic logic operations

– a memory support for storing the most used variable

• the block used to transform each instruction in an executable internal mico-code, with two possible
versions:

– a simple decoder allowing the execution of each instruction in one clock cycle

– a microprogrammed unit used to ”expand” each instruction in a microprogram, thus allowing
the interpretation of each instruction in a sequence of actions

• the block used to compose and to loop by:

– reading the successive instructions organized as a program (by incrementing the PROGRAM
COUNTER register) from the external memory devices, here grouped under the name DATA
& PROGRAMS

– jumping in the program space (by adding signed value to PROGRAM COUNTER)

In this section we introduce only the executing processors (in Chapter 11 the interpreting processor
will be used to exemplify how the functional information works).

Informally, the processor architecture consists in two main components:

• the internal organization of the processor at the top level used to specify:

– how are interconnected the top levels blocks of processor

– the micro-architecture: the set of operations performed by each top level block

• the instruction set architecture (ISA) associated to the top level internal organization.

Von Neumann architecture / Harvard architecture

When the instruction must be executed (in one clock cycle) two distinct memories are mandatory, one
for programs and one for data, because in each cycle a new instruction must be fetched and sometimes
data must be exchanged between the external memory and the processor. But, when an instructions
is interpreted in many clock cycles it is possible to have only one external memory, because, if a data
transfer is needed, then it can be performed adding one or few extra cycles to the process of interpretation.

Two kind of computer architecture where imposed from the beginning of the history of computers:

• Harvard architecture with two external memories, one for data and another for programs (see
Figure 9.12a)

• von Neumann architecture with only one external memory used for storing both data and pro-
grams (see Figure 9.12b).
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Figure 9.12: The two main computer architectures. a. Harvard Architecture: data and programs are stored
in two different memories. b. Von Neumann Architecture: both data and programs are stored in the same memory.

The preferred embodiment for an executing processor is a Hardvare architecture, and the preferred
embodiment for an interpreting processor is a von Neumann architecture. For technological reasons
in the first few decades of development of computing the von Neumann architecture was more taken
into account. Now the technology being freed by a lot of restriction, we pay attention to both kind of
architectures.

In the next two subsections both, executing processor (commercially called Reduced Instruction Set
Computer – RISC – processors) and interpreting processor (commercially called Complex Instruction
Set Computer – CISC – processors) are exemplified by implementing very simple versions.

9.3.4 An executing processor

The executing processor is simpler than an interpreting processor. The complexity of computation moves
almost completely from the physical structure of the processor into the programs executed by the proces-
sor, because a RISC processor has an organization containing mainly simple, recursively defined circuits.

The organization

The Harvard architecture of a RISC executing machine (see Figure 9.12a) determine the internal struc-
ture of the processor to have mechanisms allowing in each clock cycle cu address both, the program
memory and the data memory. Thus, the RALU-type functional automaton, directly interfaced with the
data memory, is loop-connected with a control automaton designed to fetch in each clock cycle a new
instruction from the program memory. The control automaton does not “know” the function to be per-
formed, as it does for the elementary processor, rather he “knows” how to “fetch the function” from an
external storage support, the program memory2.

The organization of the simple executive processortoyRISC is given in Figure 9.13, where the RALU
subsystem is connected with the Control subsystem, thus closing a 3rd loop.

Control section is simple functional automaton whose state, stored in the register called Program
Counter (PC), is used to compute in each clock cycle the address from where the next instruction is
fetched. There are two modes to compute the next address: incrementing, with 1 or signed number the

2The relation between an elementary processor and a processor is somehow similar with the relation between a Turing
Machine and an Universal Turing Machine.
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Figure 9.13: The organization of toyRISC processor.

current address. The next address can be set, independently from the current value of PC, using a value
fetched from an internal register or a value generated by the currently executed instruction. The way the
address is computed can be determined by the value, 0 or different from 0, of a selected register. More,
the current pc+1 can be stored in an internal register when the control of the program call a new function
and a return is needed. For all the previously described behaviors the combinational circuit NextPC is
designed. It contains outCLC and loopCLC of the automaton whose state is stored in PC.

RALU section accepts data coming form data memory, from the currently executed instruction, or
from the Control automaton, thus closing the 3dr loop.

Both, the Control automaton and the RALU automaton are simple, recursively defined automata.
The computational complexity is completely moved in the code stored inside the program memory.

The instruction set architecture

The architecture of toyRISC processor is described in Figure 9.14.
The 32-bit instruction has two forms: (1) control form, and (2) arithmetic-logic & memory form.

The first field, opCode, is used to determine what is the form of the current instruction. Each instruction
is executed in one clock cycle.

Implementing toyRISC

The structure of toyRISC will be implemented as part of a bigger project realized for a SoC, where the
program memory and data memory are on the same chip, tightly coupled with our design. Therefore, the
connections of the module are not very rigorously buffered.

The Figure 9.15 describe the structure of the top level of our design, which is composed by two
simple modules and a small and complex one.
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/ * ************************************************************************
INSTRUCTION SET ARCHITECTURE
reg [ 1 5 : 0 ] pc ; / / program c o u n t e r
reg [ 3 1 : 0 ] programMemory [ 0 : 6 5 5 3 5 ] ;
reg [ 3 1 : 0 ] dataMemory [ 0 : n −1];
i n s t r u c t i o n [ 3 1 : 0 ] =

{opCode [ 5 : 0 ] , d e s t [ 4 : 0 ] , l e f t [ 4 : 0 ] , v a l u e [ 1 5 : 0 ]} |
{opCode [ 5 : 0 ] , d e s t [ 4 : 0 ] , l e f t [ 4 : 0 ] , r i g h t [ 4 : 0 ] , noUse [ 1 0 : 0 ] } ;

************************************************************************ * /
parameter
/ / CONTROL
nop = 6 ’ b00 0000 , / / no o p e r a t i o n : pc = pc +1;
r jmp = 6 ’ b00 0001 , / / r e l a t i v e jump : pc = pc + v a l u e ;
zjpm = 6 ’ b00 0010 , / / pc = ( r f [ l e f t ] = 0) ? pc + v a l u e : pc+1
nzjmp = 6 ’ b00 0011 , / / pc = ! ( r f [ l e f t ] = 0) ? pc + v a l u e : pc+1
r e t = 6 ’ b00 0101 , / / r e t u r n from s u b r o u t i n e : pc = r f [ l e f t ] [ 1 5 : 0 ] ;
ajmp = 6 ’ b00 0110 , / / pc = v a l u e ;
c a l l = 6 ’ b00 0111 , / / s u b r o u t i n e c a l l : pc = v a l u e ; r f [ d e s t ] = pc +1;
/ / ARITHMETIC & LOGIC , f o r a l l t h e s e i n s t r u c t i o n s : pc = pc +1;
i n c = 6 ’ b11 0000 , / / r f [ d e s t ] = r f [ l e f t ] + 1;
dec = 6 ’ b11 0001 , / / r f [ d e s t ] = r f [ l e f t ] − 1;
add = 6 ’ b11 0010 , / / r f [ d e s t ] = r f [ l e f t ] + r f [ r i g h t ] ;
sub = 6 ’ b11 0011 , / / r f [ d e s t ] = r f [ l e f t ] − r f [ r i g h t ] ;
i n c c r = 6 ’ b11 0100 , / / r f [ d e s t ] = ( r f [ l e f t ] + 1 ) [ 3 2 ] ;
d e c c r = 6 ’ b11 0101 , / / r f [ d e s t ] = ( r f [ l e f t ] − 1 ) [ 3 2 ] ;
a d d c r = 6 ’ b11 0110 , / / r f [ d e s t ] = ( r f [ l e f t ] + r f [ r i g h t ] ) [ 3 2 ] ;
s u b c r = 6 ’ b11 0111 , / / r f [ d e s t ] = ( r f [ l e f t ] − r f [ r i g h t ] ) [ 3 2 ] ;
l s h = 6 ’ b11 1000 , / / r f [ d e s t ] = r f [ l e f t ] >> 1;
ash = 6 ’ b11 1001 , / / r f [ d e s t ] = { r f [ l e f t ] [ 3 1 ] , r f [ l e f t ] [ 3 1 : 1 ] } ;
move = 6 ’ b11 1010 , / / r f [ d e s t ] = r f [ l e f t ] ;
swap = 6 ’ b11 1011 , / / r f [ d e s t ] = { r f [ l e f t ] [ 1 5 : 0 ] , r f [ l e f t ] [ 3 1 : 1 6 ] } ;
neg = 6 ’ b11 1100 , / / r f [ d e s t ] = ˜ r f [ l e f t ] ;
bwand = 6 ’ b11 1101 , / / r f [ d e s t ] = r f [ l e f t ] & r f [ r i g h t ] ;
bwor = 6 ’ b11 1110 , / / r f [ d e s t ] = r f [ l e f t ] | r f [ r i g h t ] ;
bwxor = 6 ’ b11 1111 , / / r f [ d e s t ] = r f [ l e f t ] ˆ r f [ r i g h t ] ;
/ / MEMORY, f o r a l l t h e s e i n s t r u c t i o n s : pc = pc +1;
r e a d = 6 ’ b10 0000 , / / read from dataMemory [ r f [ r i g h t ] ] ;
l o a d = 6 ’ b10 0111 , / / r f [ d e s t ] = dataOut ;
s t o r e = 6 ’ b10 1000 , / / dataMemory [ r f [ r i g h t ] ] = r f [ l e f t ] ;
v a l = 6 ’ b01 0111 ; / / r f [ d e s t ] = {{16*{ v a l u e [ 1 5 ]}} , v a l u e } ;

Figure 9.14: The architecture of toyRISC processor.



9.3. LOOP COUPLED AUTOMATA 309

/ * ************************************************************************
F i l e name : toyRISC . v
C i r c u i t name : Toy R i s c
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f Toy R i s c p r o c e s s o r
************************************************************************ * /

module toyRISC
( output [ 1 5 : 0 ] i n s t r A d d r , / / program memory a d d r e s s

input [ 3 1 : 0 ] i n s t r u c t i o n , / / i n s t r u c t i o n from program memory
output [ 3 1 : 0 ] da taAddr , / / da ta memory a d d r e s s
output [ 3 1 : 0 ] d a t a O u t , / / da ta send t o da ta memory
input [ 3 1 : 0 ] d a t a I n , / / da ta r e c e i v e d from da ta memory
output we , / / w r i t e e n a b l e f o r da ta memory
input r e s e t ,
input c l o c k ) ;

wire w r i t e E n a b l e ;
wire [ 1 5 : 0 ] i n c P c ;
wire [ 3 1 : 0 ] l e f t O p ;

Decode Decode ( . we ( we ) ,
. w r i t e E n a b l e ( w r i t e E n a b l e ) ,
. opCode ( i n s t r u c t i o n [ 3 1 : 2 6 ] ) ) ;

C o n t r o l C o n t r o l ( i n s t r A d d r ,
i n s t r u c t i o n ,
i n c P c ,
l e f t O p ,
r e s e t ,
c l o c k ) ;

RALU RALU( i n s t r u c t i o n ,
da taAddr ,
d a t a O u t ,
d a t a I n ,
i n c P c ,
l e f t O p ,
w r i t e E n a b l e ,
c l o c k ) ;

endmodule

Figure 9.15: The top module of toyRISC processor. The modules Control and RALU of the design are
simple circuits, while the module Decode is a small complex module.
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/ * ************************************************************************
F i l e name : Decode . v
C i r c u i t name : I n s t r u c t i o n Decodeer
D e s c r i p t i o n : d e s c r i b e t h e d e c o d i n g c i r c u i t s f o r Toy RISC p r o c e s s o r
************************************************************************ * /

module Decode ( output we ,
output w r i t e E n a b l e ,
input [ 5 : 0 ] opCode ) ;

a s s i g n we = opCode == 6 ’ b101000 ;
a s s i g n w r i t e E n a b l e = &opCode [ 5 : 4 ] | &opCode [ 2 : 0 ] ;

endmodule

Figure 9.16: The module Decode of the toyRISC processor.

/ * ************************************************************************
F i l e name : C o n t r o l . v
C i r c u i t name : C o n t r o l S e c t i o n o f toyRISC P r o c e s s o r
D e s c r i p t i o n : s t r u c u t r u r a l d e s c r i p t i o n o f t h e c o n t r o l s e c t i o n i n

toyRISC P r o c e s s o r
************************************************************************ * /
module C o n t r o l ( output [ 1 5 : 0 ] i n s t r A d d r ,

input [ 3 1 : 0 ] i n s t r u c t i o n ,
output [ 1 5 : 0 ] i n c P c ,
input [ 3 1 : 0 ] l e f t O p ,
input r e s e t ,
input c l o c k ) ;

reg [ 1 5 : 0 ] pc ;

always @( posedge c l o c k ) i f ( r e s e t ) pc <=0 ;
e l s e pc <= i n s t r A d d r ;

nex tP c nex tP c ( . add r ( i n s t r A d d r ) ,
. i n c P c ( i n c P c ) ,
. pc ( pc ) ,
. jmpVal ( i n s t r u c t i o n [ 1 5 : 0 ] ) ,
. l e f t O p ( l e f t O p ) ,
. opCode ( i n s t r u c t i o n [ 3 1 : 2 6 ] ) ) ;

endmodule

Figure 9.17: The module Control of the toyRISC processor.



9.3. LOOP COUPLED AUTOMATA 311

/ * ************************************************************************
F i l e name : RALU . v
C i r c u i t name : R e g i s t e r & A r i t h m e t i c −Log ic Un i t
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f t h e RALU used i n toyRISC
************************************************************************ * /

module RALU( input [ 3 1 : 0 ] i n s t r u c t i o n ,
output [ 3 1 : 0 ] da taAddr ,
output [ 3 1 : 0 ] d a t a O u t ,
input [ 3 1 : 0 ] d a t a I n ,
input [ 1 5 : 0 ] i n c P c ,
output [ 3 1 : 0 ] l e f t O p ,
input w r i t e E n a b l e ,
input c l o c k ) ;

wire [ 3 1 : 0 ] a l uO u t ;
wire [ 3 1 : 0 ] r i g h t O p ;
wire [ 3 1 : 0 ] r e g F i l e I n ;

a s s i g n da taAddr = r i g h t O p ;
a s s i g n d a t a O u t = l e f t O p ;

f i l e R e g f i l e R e g ( . l e f t O u t ( l e f t O p ) ,
. r i g h t O u t ( r i g h t O p ) ,
. i n ( r e g F i l e I n ) ,
. l e f t A d d r ( i n s t r u c t i o n [ 1 5 : 1 1 ] ) ,
. r i g h t A d d r ( i n s t r u c t i o n [ 2 0 : 1 6 ] ) ,
. d e s t A d d r ( i n s t r u c t i o n [ 2 5 : 2 1 ] ) ,
. w r i t e E n a b l e ( w r i t e E n a b l e ) ,
. c l o c k ( c l o c k ) ) ;

mux4 32 mux ( . o u t ( r e g F i l e I n ) ,
. i n 0 ({16 ’ b0 , i n c P c } ) ,
. i n 1 ({{16{ i n s t r u c t i o n [ 1 5 ]}} , i n s t r u c t i o n [ 1 5 : 0 ] } ) ,
. i n 2 ( d a t a I n ) ,
. i n 3 ( a l uO u t ) ,
. s e l ( i n s t r u c t i o n [ 3 1 : 3 0 ] ) ) ;

a l u a l u ( . o u t ( a lu Ou t ) ,
. l e f t I n ( l e f t O p ) ,
. r i g h t I n ( r i g h t O p ) ,
. f unc ( i n s t r u c t i o n [ 2 9 : 2 6 ] ) ,
. c l o c k ( c l o c k ) ) ;

endmodule

Figure 9.18: The module RALU of the toyRISC processor.
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/ * ************************************************************************
F i l e name : a r i t h m e t i c . v
C i r c u i t name : A r i t h m e t i c S e c t i o n o f ALU ( f i r s t v e r s i o n )
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e a r i t h m e t i c s e c t i o n o f ALU
************************************************************************ * /
module a r i t h m e t i c ( output reg [ 3 1 : 0 ] a r i t h O u t ,

input [ 3 1 : 0 ] l e f t I n ,
input [ 3 1 : 0 ] r i g h t I n ,
input [ 2 : 0 ] func ,
input c l o c k ) ;

reg c a r r y ;
reg n e x t C a r r y ;

always @( posedge c l o c k ) c a r r y <= n e x t C a r r y ;

always @( * )
case ( func )

3 ’ b000 : { n e x t C a r r y , a r i t h O u t } = l e f t I n + 1 ’ b1 ; / / i n c
3 ’ b001 : { n e x t C a r r y , a r i t h O u t } = l e f t I n − 1 ’ b1 ; / / dec
3 ’ b010 : { n e x t C a r r y , a r i t h O u t } = l e f t I n + r i g h t I n ; / / add
3 ’ b011 : { n e x t C a r r y , a r i t h O u t } = l e f t I n − r i g h t I n ; / / sub
3 ’ b100 : { n e x t C a r r y , a r i t h O u t } = l e f t I n + c a r r y ; / / i n c c r
3 ’ b101 : { n e x t C a r r y , a r i t h O u t } = l e f t I n − c a r r y ; / / d e c c r
3 ’ b110 : { n e x t C a r r y , a r i t h O u t } = l e f t I n + r i g h t I n + c a r r y ; / / addcr
3 ’ b111 : { n e x t C a r r y , a r i t h O u t } = l e f t I n − r i g h t I n − c a r r y ; / / s u b c r

endcase
endmodule

Figure 9.19: The version 1 of the module alu of the toyRISC processor.
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/ * ************************************************************************
F i l e name : a r i t h m e t i c . v
C i r c u i t name : A r i t h m e t i c S e c t i o n o f ALU ( second v e r s i o n )
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e a r i t h m e t i c s e c t i o n o f ALU
************************************************************************ * /

module a r i t h m e t i c ( output [ 3 1 : 0 ] a r i t h O u t ,
input [ 3 1 : 0 ] l e f t I n ,
input [ 3 1 : 0 ] r i g h t I n ,
input [ 2 : 0 ] func ,
input c l o c k ) ;

reg c a r r y ;
wire n e x t C a r r y ;

always @( posedge c l o c k ) c a r r y <= n e x t C a r r y ;

a s s i g n { n e x t C a r r y , a r i t h O u t } =
l e f t I n +
{32{ func [ 0 ]}} ˆ ( func [ 1 ] ? r i g h t I n :

{{31{1 ’ b0 }} , ˜ f unc [ 2 ] } ) +
func [ 0 ] ˆ ( func [ 2 ] ? c a r r y : 1 ’ b0 ) ;

endmodule

Figure 9.20: The version 2 of the module alu of the toyRISC processor.
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/ * ************************************************************************
F i l e name : a r i t h m e t i c . v
C i r c u i t name : A r i t h m e t i c S e c t i o n o f ALU ( t h i r d v e r s i o n )
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e a r i t h m e t i c s e c t i o n o f ALU
************************************************************************ * /
module a r i t h m e t i c ( output [ 3 1 : 0 ] a r i t h O u t ,

input [ 3 1 : 0 ] l e f t I n ,
input [ 3 1 : 0 ] r i g h t I n ,
input [ 2 : 0 ] func ,
input c l o c k ) ;

reg c a r r y ;
wire n e x t C a r r y ;
wire [ 3 1 : 0 ] r i g h t O p ;
wire c r ;

always @( posedge c l o c k ) c a r r y <= n e x t C a r r y ;

a s s i g n r i g h t O p = {32{ func [ 0 ]}} ˆ ( func [ 1 ] ? r i g h t I n :
{{31{1 ’ b0 }} , ˜ f unc [ 2 ] } ) ;

a s s i g n c r = func [ 0 ] ˆ ( func [ 2 ] ? c a r r y : 1 ’ b0 ) ;
a s s i g n { n e x t C a r r y , a r i t h O u t } = l e f t I n + r i g h t O p + c r ;

endmodule

Figure 9.21: The version 3 of the module alu of the toyRISC processor.

The time performance

The longest combinational path in a system using our toyRISC, which imposes the minimum clock
period, is:

Tclock = tclock to instruction + tle f tAddr to le f tOp + tthroughALU + tthroughMUX + t f ileRegSU

Because the system is not buffered the clock frequency depends also by the time behavior of the system
directly connected with toyRISC. In this case tclock to instruction – the access time of the program memory,
related to the active edge of the clock – is an extra-system parameter limiting the speed of our design.
The internal propagation time to be considered are: the read time from the file register (tle f tAddr to le f tOp
or trightAddr to rightOp), the maximum propagation time through ALU (dominated by the time for an 32-bit
arithmetic operation), the propagation time through a 4-way 32-bit multiplexer, and the set-up time on
the file register’s data inputs. The way from the output of the file register through Next PC circuit is
“shorter” because it contains a 16-bit adder, comparing with the 32-bit one of the ALU.

9.4 Concluding about the third loop

The third loop is closed through simple automata avoiding the fast increasing of the complexity in
digital circuit domain. It allows the autonomy of the control mechanism.
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”Intelligent registers” ask less structural control maintaining the complexity of a finite automaton
at the smallest possible level. Intelligent, loop driven circuits can be controlled using smaller complex
circuits.

The loop through a storage element ask less symbolic control at the micro-architectural level. Less
symbols are used to determine the same behavior because the local loop through a memory element
generates additional information about the recent history.

Looping through a memory circuit allows a more complex “understanding” because the controlled
circuits “knows” more about its behavior in the previous clock cycle. The circuit is somehow “conscious”
about what it did before, thus being more “responsible” for the operation it performs now.

Looping through an automaton allows any effective computation. Using the theory of computation
(see chapter Recursive Functions & Loops in this book) can be proved that any effective computation
can be done using a three loop digital system. More than three loops are needed only for improving the
efficiency of the computational structures.

The third loop allows the symbolic functional control using the arbitrary meaning associated to
the binary codes embodied in instructions or micro-instructions. Both, the coding and the decoding
process being controlled at the design level, the binary symbols act actualizing the potential structure of
a programmable machine.

Real processors use circuit level parallelism discussed in the first chapter of this book. They are:
data parallelism, time parallelism and speculative parallelism. How all these kind of parallelism are used
is a computer architecture topic, beyond the goal of these lecture notes.

9.5 Problems

Problem 9.1 Interrupt automaton with asynchronous input.

Problem 9.2 Solving the second degree equations with an elementary processor.

Problem 9.3 Compute y if x, m and n is given with an elementary processor..

Problem 9.4 Modify the unending loop of the processor to avoid spending time in testing if a new in-
struction is in inFIFO when it is there.

Problem 9.5 Define an instruction set for the processor described in this chapter using its microarchi-
tecture.

Problem 9.6 Our CISC Processor: how must be codded the instruction set to avoid FUNC MUX?
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9.6 Projects

Project 9.1 Design a specialized elementary processor for rasterization function.

Project 9.2 Design a system integrating in a parallel computational structure 8 rasterization processors
designed in the previous project.

Project 9.3 Design a floating point arithmetic coprocessor.

Project 9.4 Design the RISC processor defined by the following Verilog behavioral description:

module risc_processor(

);

endmodule

Project 9.5 Design a version of Stack Processor modifying SALU as follows: move MUX4 to the output
of ALU and the input of STACK.



Chapter 10

COMPUTING MACHINES:
≥4–loop digital systems

In the previous chapter
was introduced the main digital system - the processor - and we discussed how works the third
loop in a digital system emphasizing

• effects on the size of digital circuits

• effects on the complexity of digital systems

• how the apparent complexity can be reduced to the actual complexity in a digital system

In this chapter
a very short introduction in the systems having more than three internal loops is provided, talking
abut

• how are defined the basic computational structures: microcontrollers, computers, stack ma-
chines, co-processors

• how the classification in orders starts to become obsolete with the fourth order systems

• the concept of embedded computation

In the next chapter
some futuristic systems are described as N-th order systems having the following features:

• they can behave as self-organizing systems

• they are cellular systems easy to be expanded in very large and simple powerful computa-
tional systems

317
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Software is getting slower more rapidly than hardware
becomes faster.

Wirth’s law1

To compensate the effects of the bad behavior of software
guys, besides the job done by the Moore law a lot of ar-
chitectural work must be added.

The last examples of the previous chapter emphasized a process that appears as a ”turning point” in
3-OS: the function of the system becomes lesser and lesser dependent on the physical structure and the
function is more and more assumed by a symbolic structure (the program or the microprogram). The
physical structure (the circuit) remains simple, rather than the symbolic structure, “stored” in program
memory of in a ROM, that establishes the functional complexity. The fourth loop creates the condition
for a total functional dependence on the symbolic structure. By the rule, at this level an universal circuit -
the processor - executes (in RISC machines) or interprets (in CISC machines) symbolic structures stored
in an additional device: the program memory.

10.1 Types of fourth order systems

There are four main types of fourth order systems (see Figure 10.1) depending on the order of the system
through which the loop is closed:

1. P & ROM is a 4-OS with loop closed through a 0-OS - in Figure 10.1a the combinational circuit
is a ROM containing only the programs executed or interpreted by the processor

2. P & RAM is a 4-OS with loop closed through a 1-OS - is the computer, the most representative
structure in this order, having on the loop a RAM (see Figure 10.1b) that stores both data and
programs

3. P & LIFO is a 4-OS with loop closed through a 2-OS - in Figure 10.1c the automaton is repre-
sented by a push-down stack containing, by the rule, data (or sequences in which the distinction
between data and programs does not make sense, as in the Lisp programming language, for exam-
ple)

4. P & CO-P is a 4-OS with loop closed through a 3-OS - in Figure 10.1d COPROCESSOR is also
a processor but a specialized one executing efficiently critical functions in the system (in most of
cases the coprocessor is a floating point arithmetic processor).

The representative system in the class of P & ROM is the microcontroller the most successful circuit
in 4-OS. The microcontroller is a “best seller” circuit realized as a one-chip computer. The core of a
microcontroller is a processor executing/interpreting the programs stored in a ROM.

1Niklaus Wirth is an already legendary Swiss born computer scientist with many contributions in developing various pro-
gramming languages. The best known is Pascal. Wirth’s law is a sentence which Wirth made popular, but he attributed it to
Martin Reiser.
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Figure 10.1: The four types of 4-OS machines. a. Fix program computers usual in embedded computation. b.
General purpose computer. c. Specialized computer working working on a restricted data structure. d. Accelerated
computation supported by a specialized co-processor.
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The representative structure in the class of P & RAM is the computer. More precisely, the struc-
ture Processor - Channel - Memory represents the physical support for the well known von Neumann
architecture. Almost all present-day computers are based on this architecture.

The third type of system seems to be strange, but a recent developed architecture is a stack oriented
architecture defined for the successful Java language. Naturally, a real Java machine is endowed also
with the program memory.

The third and the fourth types are machines in which the segregation process emphasized physical
structures, a stack or a coprocessor. In both cases the segregated structures are also simple. The con-
sequence is that the whole system is also a simple system. But, the first two systems are very complex
systems in which the simple is net segregated by the random. The support of the random part is the ROM
physical structure in the first case and the symbolic content of the RAM memory in the second.

The actual computing machines have currently more than order 4, because the processors involved
in the applications have additional features. Many of these features are introduced by new loops that
increase the autonomy of certain subsystems. But theoretically, the computer function asks at least four
loops.

10.1.1 The computer – support for the strongest segregation

The ROM content is defined symbolically and after that it is converted in the actual physical structure
of ROM. Instead, the RAM content remains in symbolic form and has, in consequence, more flexibil-
ity. This is the main reason for considering the PROCESSOR & RAM = COMPUTER as the most
representative in 4-OS.

The computer is not a circuit. It is a new entity with a special functional definition, currently called
computer architecture. Mainly, the computer architecture is given by the machine language. A program
written in this language is interpreted or executed by the processor. The program is stored in the RAM
memory. In the same subsystem are stored data on which the program “acts”. Each architecture can have
many associated computer structures (organizations).

Starting from the level of four order systems the behavior of the system is controlled mainly by the
symbolic structure of programs. The architectural approach settles the distinction between the physical
structures and the symbolic structures. Therefore, any computing machine supposes the following triadic
definition (suggested by [”Milutinovic” ’89]):

• the machine language (usually called architecture)

• the storage containing programs written in the machine language

• the machine that interprets the programs, containing:

– the machine language ...

– the storage ...

– the machine ... containing:

* ...

and so on until the machine executes the programs.
Does it make any sense to add new loops? Yes, but not too much! It can be justified to add loops

inside the processor structure to improve its capacity to interpret fast the machine language by using
simple circuits. Another way is to see PROCESSOR & COPROCESSOR or PROCESSOR & LIFO as
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performant processors and to add over them the loop through RAM. But, mainly these machines remain
structures having the computer function. The computer needs at least four loops to be competent, but
currently it is implemented on system having more loops in order to become performant.

10.2 Embedded computation

Now we are prepared to revisit the Chapter OUR FINAL TARGET in order to offer an optimal imple-
mentation for the small & simple system toyMachine. The main application for such a machine is in the
domain of the embedded computation. The technology of embedded computation uses programmable
machines of various complexity to implement by programming functions formerly implemented by big
& complex circuits.

Instead of the behavioral description by the module toyMachine (see Figure 5.4) we are able to pro-
vide now a structural description. Even if the behavioral description offered by the module toyMachine
is synthesisable will we see that the following structural version provides a half sized circuit.

10.2.1 The structural description of toyMachine

A structural description is supposed to be a detailed description which provide a hierarchical description
of the design using on the “leafs of the tree” simple and optimal circuits. A structural description answers
the question of “how”.

The top module

In the top module of the design – toyMachineStructure – there are two structures (see Figure 10.2):

controlSection : manages the instruction flow read from the program memory and executed, one per
clock cycle, by the entire system; the specific control instructions are executed by this module
using data, when needed, provided by the other modules (“dialog” bits for the stream flow, values
from controlSection); the asynchronous inta signal constrains the specific action of jumping
to the instruction addressed with the content of refFile[31]

dataSection : performs the functional aspect of computation, operating on data internally stored by the
register file, or received from the external world; it generate also the output signals loading the
output register outRegister with the results of the internal computation.

The block dataSection is a third order (3-loop) digital system having the third loop closed over the
regFile through alu with carry (see Figure 10.3). The second loop is closed over alu and the carry
flip-flop. The first loop in this section is closed in the latches used to build the module regFile and the
flip-flop carry.

The block controlSection is a second order (2-loop) digital system, because the first loop is
closed in the master-slave flip-flops of the (programCounter module, the second loop is closed over
programCounter through pcMux inc and add (see Figure 10.3).

Thus, the toyMachine system is a fourth order digital system, the last loop being closed through
dataSection and controlSection. The module controlSection sends to the dataSection the
value progAddr as the return address from the sub-routine associated to the interruupt. The module
dataSection sends back to the module controlSection the absolute jump address.
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Figure 10.2: The top level block schematic of the toyMachine design.

See in Figure 10.4 the code describing the top module. Unlike the module toyMachine (see Chapter
OUR FINAL TARGET), which describe on one level design the behavior of toyMachine, the module
toyMachineStucture is a pure structural description providing only the top level description of the
same digital system. It contains two modules, one for each main sub-system of or design.

The interrupt

There are many ways to solve the problem of the interrupt signal in a computing machine. The solutions
are different depending on the way the signals int and inta are connected to the external systems.
The solution provided here is the simplest one. It is supposed that both signals are synchronous with
the toyMachine structure. This simple solution consists of a 2-state half-automaton (the one-bit register
intEnable and the multiplexer ieMux).

Because the input int is considered synchronously generated with the system clock, the signal inta
is combinational generated.

The next subsection provides an enhanced version of this module which is able to manage asyn-
chronous int signal.

The control section

This unit fetches in each clock cycle a new instruction from the program memory. The instruction is
decoded locally for its use and is also sent for the use of the data unit. For each instruction there is
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/ * ************************************************************************
F i l e name : t o y M a c h i n e S t r u c t u r e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module t o y M a c h i n e S t r u c t u r e

( input [ 1 5 : 0 ] i n S t r e a m ,
input [ 3 1 : 0 ] d a t a I n , i n s t r u c t i o n ,
input r e a d y I n , readyOut , i n t , r e s e t , c lock ,
output r e a d I n , wr i t eOu t , i n t a , w r i t e ,
output [ 1 5 : 0 ] o u t S t r e a m ,
output [ 3 1 : 0 ] dataAddr , da taOut , progAddr ) ;

wire [ 3 1 : 0 ] l e f t O p , immValue , p rogramCoun te r ;
wire [ 5 : 0 ] opCode ;
wire [ 4 : 0 ] des tAddr , l e f t A d d r , r i g h t A d d r ;
a s s i g n opCode = i n s t r u c t i o n [ 3 1 : 2 6 ] ;
a s s i g n d e s t A d d r = i n s t r u c t i o n [ 2 5 : 2 1 ] ;
a s s i g n l e f t A d d r = i n s t r u c t i o n [ 2 0 : 1 6 ] ;
a s s i g n r i g h t A d d r = i n s t r u c t i o n [ 1 5 : 1 1 ] ;
a s s i g n immValue = {{16{ i n s t r u c t i o n [ 1 5 ]}} , i n s t r u c t i o n [ 1 5 : 0 ] } ;
d a t a S e c t i o n d a t a S e c t i o n ( i n S t r e a m ,

r e a d y I n , readyOut , i n t a , c l o c k ,
r e a d I n , w r i t e ,
o u t S t r e a m ,
w r i t e O u t ,
da taAddr , d a t a O u t ,
d a t a I n , programCounter , immValue ,
opCode ,
des tAddr , l e f t A d d r , r i g h t A d d r ) ;

c o n t r o l S e c t i o n c o n t r o l S e c t i o n ( i n t , r e a d y I n , readyOut , r e s e t , c lock ,
i n t a ,
progAddr , p rogramCoun te r ,
da taAddr , immValue ,
opCode ) ;

endmodule

Figure 10.4: The top module toyMachineStructure. (Implemented on 321 LUTs, at 205 MHz)



10.2. EMBEDDED COMPUTATION 325

module c o n t r o l S e c t i o n
( input i n t , r e a d y I n , readyOut , r e s e t , c l o c k ,

output i n t a ,
output [ 3 1 : 0 ] progAddr , p rogramCoun te r ,
input [ 3 1 : 0 ] dataAddr , immValue ,
input [ 5 : 0 ] opCode ) ;

reg [ 3 1 : 0 ] p rogramCounte r ;
reg i n t E n a b l e ;
wire [ 1 : 0 ] n e x t P c S e l , n e x t I E S e l ;
wire n e x t I E ;
a s s i g n i n t a = i n t E n a b l e & i n t ;
con t rDecode

con t rDecode ( opCode ,
da taAddr ,
i n t a ,
r e a d y I n ,
r eadyOut ,
n e x t P c S e l ,
n e x t I E S e l ) ;

always @( posedge c l o c k )
i f ( r e s e t ) begin programCounte r <= 32 ’ b0 ;

i n t E n a b l e <= 1 ’ b0 ;
end

e l s e begin programCounte r <= progAddr ;
i n t E n a b l e <= n e x t I E ;

end
mux4 32 pcMux ( . o u t ( progAddr ) ,

. i n 0 ( p rogramCoun te r ) ,

. i n 1 ( p rogramCoun te r + 1 ) ,

. i n 2 ( p rogramCoun te r + immValue ) ,

. i n 3 ( da taAddr ) ,

. s e l ( n e x t P c S e l ) ) ;
mux4 1 ieMux ( . o u t ( n e x t I E ) ,

. i n 0 ( i n t E n a b l e ) ,

. i n 1 ( 1 ’ b0 ) ,

. i n 2 ( 1 ’ b1 ) ,

. i n 3 ( 1 ’ b0 ) ,

. s e l ( n e x t I E S e l ) ) ;
endmodule

Figure 10.5: The module controlSection.
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/ * ************************************************************************
F i l e name : con t rDecode . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module con t rDecode ( input [ 5 : 0 ] opCode ,

input [ 3 1 : 0 ] da taAddr ,
input i n t a ,
input r e a d y I n ,
input r eadyOut ,
output reg [ 1 : 0 ] n e x t P c S e l ,
output reg [ 1 : 0 ] n e x t I E S e l ) ;

‘ i n c l u d e ” 0 t o y M a c h i n e A r c h i t e c t u r e . v ”
always @( * )

i f ( i n t a ) n e x t I E S e l = 2 ’ b10 ;
e l s e i f ( opCode == e i ) n e x t I E S e l = 2 ’ b01 ;

e l s e i f ( opCode == d i ) n e x t I E S e l = 2 ’ b10 ;
e l s e n e x t I E S e l = 2 ’ b00 ;

always @( * )
i f ( i n t a ) n e x t P c S e l = 2 ’ b11 ;

e l s e case ( opCode )
jmp : n e x t P c S e l = 2 ’ b11 ;
zjmp : i f ( da t aAddr == 0) n e x t P c S e l = 2 ’ b10 ;

e l s e n e x t P c S e l = 2 ’ b01 ;
nzjmp : i f ( da t aAddr !== 0) n e x t P c S e l = 2 ’ b10 ;

e l s e n e x t P c S e l = 2 ’ b01 ;
r e c e i v e : i f ( r e a d y I n ) n e x t P c S e l = 2 ’ b01 ;

e l s e n e x t P c S e l = 2 ’ b00 ;
i s s u e : i f ( r eadyOut ) n e x t P c S e l = 2 ’ b01 ;

e l s e n e x t P c S e l = 2 ’ b00 ;
h a l t : n e x t P c S e l = 2 ’ b00 ;
d e f a u l t n e x t P c S e l = 2 ’ b01 ;

endcase
endmodule

Figure 10.6: The module contrDecode.
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a specific way to use the content of the program counter in order to compute the address of the next
instruction. For data and interrupt instructions (see Figure 5.3) the next instruction is always fetched
form the address programCounter + 1. For the control instructions (see Figure 5.3) there are different
modes for each instruction. The internal structure of the module controlSection is designed to provide
the specific modes of computing the next value for the program counter.

The multiplexers pcMux from the control section (see Figure 10.3) is used to select the next value of
the program counter, providing the value of progAddr, as follows:

• program counter keep its own value for the halt instruction or in the wait instructions for input or
output to become ready

• program counter is incremented for the linear part of the program

• program counter is added to the immValue provided by the current instruction

• program counter is set to the value provided by regFile[leftAddr] for unconditioned jump

The selection bits for pcMux are generated by the contrDecode. It uses for generating the selections for
the multiplexers opCode from instruction, asyncInta, the content of regFile[leftAddr] and the
input signals readyIn, readyOut.

The only complex module in the control section is the combinational circuit described in
contrDecode (see Figure 10.6). The type reg in this description must be understood as a variable.
The actual structure of a register is not generated.

The data section

The module dataSection includes mainly the data storage resources and the combinational circuits
allowing the execution of each data instruction in one clock cycle.

Data is stored in the register file, regFile, which allows to read two variable as operands for the cur-
rent instruction, selected by leftAddr and rightAddr, and to store the result of the current instruction
to the location selected by desrAddr (except the case when inta = 1 forces reading leftOp form the
location 30, to be used as absolute jump address, and loading the location 31 with the current value of
programCounter).

The arithmetic-logic unit, alu, operate in each clock cycle on the operands received from the two
outputs of the register file: leftOp and rightOp. The operation code is given directly from the output
of the dataDecode block described by the module dataDecode (see Figure 10.12).

The input of the register file is provided from the alu output and from other four sources:

• inRegister: because the input bits can be submitted to arithmetic and logic processing only if
they are stored in the register file first

• immValue: is used to generate immediate values for the purpose of the program

• dataIn: data provided by the external data memory addressed by leftOp

• programCounter: is saved as the “return” address to be used after running the program started
by the acknowledged interrupt
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/ * ************************************************************************
F i l e name : d a t a S e c t i o n . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module d a t a S e c t i o n ( input [ 1 5 : 0 ] i n S t r e a m ,

input r e a d y I n , readyOut , i n t a , c l o c k ,
output r e a d I n , w r i t e ,
output [ 1 5 : 0 ] o u t S t r e a m ,
output w r i t e O u t ,
output [ 3 1 : 0 ] dataAddr , d a t a O u t ,
input [ 3 1 : 0 ] d a t a I n , programCounter , immValue ,
input [ 5 : 0 ] opCode ,
input [ 4 : 0 ] des tAddr , l e f t A d d r , r i g h t A d d r ) ;

reg [ 1 5 : 0 ] i n R e g i s t e r , o u t R e g i s t e r ;
reg c a r r y ;
wire [ 3 1 : 0 ] r e s u l t , l e f t O p , r i g h t O p ;
wire [ 1 : 0 ] a r i t hLogOp ;
wire [ 2 : 0 ] r e s u l t S e l ;
wire wri t eBack , c a r ryO u t , inRegEnable , outRegEnable ,

c a r r y E n a b l e ;
a s s i g n da taAddr = l e f t O p ;
a s s i g n d a t a O u t = l e f t O p ;
a s s i g n o u t S t r e a m = o u t R e g i s t e r ;
da taDecode da taDecode

( ar i thLogOp , r e s u l t S e l , wr i t eBack , inRegEnable , outRegEnable ,
c a r r y E n a b l e , r e a d I n , wr i t eOu t , w r i t e , opCode , r e a d y I n ,
readyOut , i n t a ) ;

always @( posedge c l o c k )
begin i f ( inRegEnab le ) i n R e g i s t e r <= i n S t r e a m ;

i f ( ou tRegEnab le ) o u t R e g i s t e r <= l e f t O p [ 1 5 : 0 ] ;
i f ( c a r r y E n a b l e ) c a r r y <= c a r r y O u t ;

end
r e g F i l e

r e g F i l e ( . d e s t A d d r ( i n t a ? 5 ’ b11110 : d e s t A d d r ) ,
. w r i t e B a c k ( w r i t e B a c k ) ,
. l e f t A d d r ( i n t a ? 5 ’ b11111 : l e f t A d d r ) ,
. r i g h t A d d r ( r i g h t A d d r ) ,
. i n ( r e s u l t ) ,
. l e f t O u t ( l e f t O p ) ,
. r i g h t O u t ( r i g h t O p ) ,
. c l o c k ( c l o c k ) ) ;

a l u a l u ( r e s u l t , c a r ryOu t , l e f t O p , r igh tOp , c a r r y , i n R e g i s t e r ,
p rogramCounter , d a t a I n , immValue , a r i thLogOp , r e s u l t S e l ) ;

endmodule

Figure 10.7: The module dataSection.
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/ * ************************************************************************
F i l e name : r e g F i l e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module r e g F i l e ( input [ 4 : 0 ] d e s t A d d r ,

input w r i t e B a c k ,
input [ 4 : 0 ] l e f t A d d r ,
input [ 4 : 0 ] r i g h t A d d r ,
input [ 3 1 : 0 ] i n ,
output [ 3 1 : 0 ] l e f t O u t ,
output [ 3 1 : 0 ] r i g h t O u t ,
input c l o c k ) ;

reg [ 3 1 : 0 ] r e g F i l e [ 0 : 3 1 ] ;

always @( posedge c l o c k ) i f ( w r i t e B a c k ) r e g F i l e [ d e s t A d d r ] <= i n ;

a s s i g n l e f t O u t = r e g F i l e [ l e f t A d d r ] ;
a s s i g n r i g h t O u t = r e g F i l e [ r i g h t A d d r ] ;

endmodule

Figure 10.8: The module regFile.
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/ * ************************************************************************
F i l e name : a l u . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module a l u ( output [ 3 1 : 0 ] r e s u l t ,

output c a r r y O u t ,
input [ 3 1 : 0 ] l e f t O p ,
input [ 3 1 : 0 ] r i g h t O p ,
input c a r r y ,
input [ 1 5 : 0 ] i n R e g i s t e r ,
input [ 3 1 : 0 ] p rogramCoun te r ,
input [ 3 1 : 0 ] d a t a I n ,
input [ 3 1 : 0 ] immValue ,
input [ 1 : 0 ] a r i t hLogOp ,
input [ 2 : 0 ] r e s u l t S e l ) ;

wire [ 3 1 : 0 ] l o g i c R e s u l t ;
wire [ 3 1 : 0 ] a r i t h R e s u l t ;

l og i cModu le
log i cModu le ( l e f t O p ,

r i g h t O p ,
a r i t hLogOp ,
l o g i c R e s u l t ) ;

a r i t h M o d u l e
a r i t h M o d u l e ( l e f t O p ,

r i g h t O p ,
c a r r y ,
a r i t hLogOp ,
a r i t h R e s u l t ,
c a r r y O u t ) ;

mux8 32 r e s u l t M u x ( . o u t ( r e s u l t ) ,
. i n 0 ( a r i t h R e s u l t ) ,
. i n 1 ( l o g i c R e s u l t ) ,
. i n 2 ({ l e f t O p [ 3 1 ] , l e f t O p [ 3 1 : 1 ] } ) ,
. i n 3 ( immValue ) ,
. i n 4 ({ immValue [ 1 5 : 0 ] , l e f t O p [ 1 5 : 0 ] } ) ,
. i n 5 ({{16{ i n R e g i s t e r [ 1 5 ]}} , i n R e g i s t e r } ) ,
. i n 6 ( p rogramCoun te r ) ,
. i n 7 ( d a t a I n ) ,
. s e l ( r e s u l t S e l ) ) ;

Figure 10.9: The module alu.



10.2. EMBEDDED COMPUTATION 331

/ * ************************************************************************
F i l e name : a r i t h M o d u l e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module a r i t h M o d u l e ( input [ 3 1 : 0 ] l e f t O p ,

input [ 3 1 : 0 ] r i g h t O p ,
input c a r r y ,
input [ 1 : 0 ] a r i t hLogOp ,
output [ 3 1 : 0 ] a r i t h R e s u l t ,
output c a r r y O u t ) ;

a s s i g n { ca r ryOu t , a r i t h R e s u l t } =
l e f t O p + ( r i g h t O p ˆ {32{ a r i t hLogOp [ 0 ] } } ) +
( a r i t hLogOp [ 1 ] & ( a r i t hLogOp [ 0 ] ˆ c a r r y ) ) ;

endmodule

Figure 10.10: The module arithModule.

/ * ************************************************************************
F i l e name : l o g i c M o d u l e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module l og i cModu le ( input [ 3 1 : 0 ] l e f t O p ,

input [ 3 1 : 0 ] r i g h t O p ,
input [ 1 : 0 ] a r i t hLogOp ,
output reg [ 3 1 : 0 ] l o g i c R e s u l t ) ;

always @( * ) case ( a r i t hLogOp )
2 ’ b00 : l o g i c R e s u l t = ˜ l e f t O p ;
2 ’ b01 : l o g i c R e s u l t = l e f t O p & r i g h t O p ;
2 ’ b10 : l o g i c R e s u l t = l e f t O p | r i g h t O p ;
2 ’ b11 : l o g i c R e s u l t = l e f t O p ˆ r i g h t O p ;

endcase
endmodule

Figure 10.11: The module logicModule.
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/ * ************************************************************************
F i l e name : dataDecode . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module da taDecode ( output reg [ 1 : 0 ] a r i t hLogOp ,

output reg [ 2 : 0 ] r e s u l t S e l ,
output reg w r i t e B a c k ,
output reg i nRegEnab le , outRegEnable ,

c a r r y E n a b l e , r e a d I n , wr i t eOu t , w r i t e ,
input [ 5 : 0 ] opCode ,
input r e a d y I n , readyOut , i n t a ) ;

‘ i n c l u d e ” 0 t o y M a c h i n e A r c h i t e c t u r e . v ”
always @( * ) begin a r i t hLogOp = 2 ’ b00 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b0 ;
inRegEnab le = 1 ’ b0 ;
ou tRegEnab le = 1 ’ b0 ;
c a r r y E n a b l e = 1 ’ b0 ;
r e a d I n = 1 ’ b0 ;
w r i t e O u t = 1 ’ b0 ;
w r i t e = 1 ’ b0 ;
i f ( i n t a ) begin r e s u l t S e l = 3 ’ b110 ;

w r i t e B a c k = 1 ’ b1 ;
end

e l s e c ase ( opCode )
add : begin a r i t hLogOp = 2 ’ b00 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b1 ;
c a r r y E n a b l e = 1 ’ b1 ;

end
sub : begin a r i t hLogOp = 2 ’ b01 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b1 ;
c a r r y E n a b l e = 1 ’ b1 ;

end
addc : begin a r i t hLogOp = 2 ’ b10 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b1 ;
c a r r y E n a b l e = 1 ’ b1 ;

end
subc : begin a r i t hLogOp = 2 ’ b11 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b1 ;
c a r r y E n a b l e = 1 ’ b1 ;

end
a s h r : begin r e s u l t S e l = 3 ’ b010 ;

w r i t e B a c k = 1 ’ b1 ;
end

Figure 10.12: The module dataDecode.
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/ * ************************************************************************
F i l e name : dataDecode . v ( c o n t i n u e d )
************************************************************************ * /

neg : begin a r i t hLogOp = 2 ’ b00 ;
r e s u l t S e l = 3 ’ b001 ;
w r i t e B a c k = 1 ’ b1 ;

end
bwand : begin a r i t hLogOp = 2 ’ b01 ;

r e s u l t S e l = 3 ’ b001 ;
w r i t e B a c k = 1 ’ b1 ;

end
bwor : begin a r i t hLogOp = 2 ’ b10 ;

r e s u l t S e l = 3 ’ b001 ;
w r i t e B a c k = 1 ’ b1 ;

end
bwxor : begin a r i t hLogOp = 2 ’ b11 ;

r e s u l t S e l = 3 ’ b001 ;
w r i t e B a c k = 1 ’ b1 ;

end
v a l : begin r e s u l t S e l = 3 ’ b011 ;

w r i t e B a c k = 1 ’ b1 ;
end

h v a l : begin r e s u l t S e l = 3 ’ b100 ;
w r i t e B a c k = 1 ’ b1 ;

end
g e t : begin r e s u l t S e l = 3 ’ b101 ;

w r i t e B a c k = 1 ’ b1 ;
end

send : ou tRegEnab le = 1 ’ b1 ;
r e c e i v e : i f ( r e a d y I n )

begin i nRegEnab le = 1 ’ b1 ;
r e a d I n = 1 ’ b1 ;

end
i s s u e : i f ( r eadyOut ) w r i t e O u t = 1 ’ b1 ;
da t a wr : w r i t e = 1 ’ b1 ;
d a t a r d : begin r e s u l t S e l = 3 ’ b111 ;

w r i t e B a c k = 1 ’ b1 ;
end

d e f a u l t begin a r i t hLogOp = 2 ’ b00 ;
r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b0 ;
inRegEnab le = 1 ’ b0 ;
ou tRegEnab le = 1 ’ b0 ;
c a r r y E n a b l e = 1 ’ b0 ;
r e a d I n = 1 ’ b0 ;
w r i t e O u t = 1 ’ b0 ;
w r i t e = 1 ’ b0 ;

end
endcase

end
endmodule

Figure 10.13: The module dataDecode (continuation).
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The first three of these inputs are selected according to the current instructions by the selection code
resultSel generated by the module dataDecode for the multiplexor resultMux. The last one is
forced at the input of the register file by the occurrence of the signal inta.

The register file description uses the code presented in the subsection Register file. Only the sizes
are adapted to our design (see Figure 10.8.

The module called alu (see Figure 10.9) performs the arithmetic-logic functions of our small instruc-
tion set. Because the current synthesis tools are able to synthesize very efficiently uniform arithmetic
and logic circuits, this Verilog contains a behavioral description.

The dataDecode block, described in our design by the Verilog module dataDecoder, takes the
opCode field from instruction, the dialog signals, readyIn and readyOut, and inta and trans-codes
them. This is the only complex module from the data section.

Multiplexors

The design of toyMachine uses a lot of multiplexors. Their description is part of the project.
As for the usual functions from an ALU, or small combinational circuits, for multiplexors behavioral

descriptions work very well because the software synthesis tools are enough “smart” to “know” how to
provide optimal solutions.

Concluding about toyMachine

For the same system – toyMachine – we have now two distinct descriptions: toyMachine, the
initial behavioral description (see Chapter OUR FINAL TARGET), and the structural description
toyMachineStructure just laid down in this subsection. Both descriptions, the structural and the
behavioral, are synthesisable, but the resulting structures are very different.

The synthesis of toyMachine design provides a number of components 5.85 times bigger than the
synthesis of the module toyMachineStructure. A detailed description (about 7105 symbols, without
spaces) provided a smallest structure then the structure provided by the behavioral description (about
3083 symbols, without spaces).

The actual structure generated by the behavioral description is not only bigger, but it is completely
unstructured. The structured version provided by the alternative design is easy to understand, to debug
and to optimize.

10.2.2 Interrupt automaton: the asynchronous version

Sometimes for the interrupt automaton a more rigorous solution is requested. In the already provided
solution the int signal must be stable until inta is activated. In many systems this is an unacceptable
restriction. Another restriction is the synchronous switch of int.

This new version for the interrupt automaton accepts an asynchronous int signal having any width
exceeding the period of the clock. The flow chart describing the automaton is in Figure 10.15. It has 4
states:

dis : the initial state of the automaton when the interrupt action is disabled

en : the state when the interrupt action is enabled

mem : is the state memorizing the occurrence of an interrupt when interrupt is disabled
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/ * ************************************************************************
D e s c r i p t i o n : v a r i o u s m u l t i p l e x o r s
************************************************************************ * /
module mux4 32 ( output reg [ 3 1 : 0 ] o u t ,

input [ 3 1 : 0 ] in0 , in1 , in2 , i n 3 ,
input [ 1 : 0 ] s e l ) ;

always @( * ) case ( s e l )
2 ’ b00 : o u t = i n 0 ;
2 ’ b01 : o u t = i n 1 ;
2 ’ b10 : o u t = i n 2 ;
2 ’ b11 : o u t = i n 3 ;

endcase
endmodule

module mux4 1 ( output reg o u t ,
input i n 0 , i n 1 , i n 2 , i n 3 ,
input [ 1 : 0 ] s e l ) ;

always @( * ) case ( s e l )
2 ’ b00 : o u t = i n 0 ;
2 ’ b01 : o u t = i n 1 ;
2 ’ b10 : o u t = i n 2 ;
2 ’ b11 : o u t = i n 3 ;

endcase
endmodule

module mux8 32 ( output reg [ 3 1 : 0 ] o u t ,
input [ 3 1 : 0 ] in0 , in1 , in2 , i n 3 ,

in4 , in5 , in6 , i n 7 ,
input [ 2 : 0 ] s e l ) ;

always @( * ) case ( s e l )
3 ’ b000 : o u t = i n 0 ;
3 ’ b001 : o u t = i n 1 ;
3 ’ b010 : o u t = i n 2 ;
3 ’ b011 : o u t = i n 3 ;
3 ’ b100 : o u t = i n 4 ;
3 ’ b101 : o u t = i n 5 ;
3 ’ b110 : o u t = i n 6 ;
3 ’ b111 : o u t = i n 7 ;

endcase
endmodule

Figure 10.14: The multiplexor modules multiplexors.
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inta : is the acknowledge state.

The input signals are:

int : is the asynchronous interrupt signal

ei : is a synchronous bit resulting from the decode of the instruction ei (enable interrupt)

di : is a synchronous bit resulting from the decode of the instruction di (disable interrupt)

The output signal is asyncInta. It is in fact a synchronous hazardous signal which will be synchronized
using a D–FF.

Because int is asynchronous it must be used to switch the automaton in another state in which
asyncInta will be eventually generated.

The state codding style applied for this automaton is imposed by a asynchronous int signal. It will
be of the reduced dependency by the asynchronous input variable int. Let us try first the following
binary codes (see the codes in square brackets in Figure 10.15) for the four states of the automaton:

dis : Q1Q0 = 00

en : Q1Q0 = 11

mem : Q1Q0 = 01

inta : Q1Q0 = 10

The critical transitions are from the states dis and en, where the asynchronous input int is tested. There-
fore, the transitions from these two states takes place as follows:

• from state dis = 00: if (ei = 0) then {Q+
1 ,Q

+
0 }= {0, int}; else {Q+

1 ,Q
+
0 }= {1, int ′}; therefore:

{Q+
1 ,Q

+
0 }= {ei,ei⊕ int}

• from state en = 11: if (di = 0) then {Q+
1 ,Q

+
0 }= {1, int ′}; else {Q+

1 ,Q
+
0 }= {0, int}; therefore:

{Q+
1 ,Q

+
0 }= {di′,di′⊕ int}

Therefore, the transitions triggered by the asynchronous input int influence always only one state bit.
For an implementation with registers results the following equations for the state transition and output

functions:
Q+

1 = Q1Q0di′+Q′
1Q′

0ei

Q+
0 = Q1Q0(di′⊕ int)+Q′

1Q0ei+Q′
1Q′

0(ei⊕ int)

asyncInta = Q1Q′
0 +Q′

1Q0ei

We are not very happy about the resulting circuits because the size is too big to my taste. Deserve to
try another equivalent state coding, preserving the condition that the transitions depending on the int

input are reduced dependency type. The second coding proposal is (see the un-bracketed codes in Figure
10.15):

dis : Q1Q0 = 00

en : Q1Q0 = 10

mem : Q1Q0 = 01
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dis

int∗

eiei

en mem

ei

int∗

di di

asyncInta

inta

asyncInta

0

0 0

0

0 0

0

1

1 1

1

1 1

reset

1

01 [01]

00 [00]

10 [11]

11 [10]

Figure 10.15: Interrupt automaton for a limited width and an asynchronous int signal.

inta : Q1Q0 = 11

The new state transition functions are:

Q+
1 = Q1Q′

0di′+Q′
1Q′

0ei

Q+
0 = Q′

0int +Q′
1Q0ei′

The Verilog behavioral description for this version is presented in Figure 10.16.
If we make another step re-designing the loop for an “intelligent” JK register, then results for the

loop the following expressions:
J1 = Q′

0ei

K1 = di+Q0

J0 = int

K0 = Q1 + ei

and for the output transition:
asyncInta = Q0(Q1 + ei) = Q0K0

A total of 4 2-input gates for the complex part of the automaton. The final count: 2 JK-FFs, 2 ANDs,
2 ORs. Not bad! The structural description for this version is presented in Figure 10.17 and in Figure
10.18
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/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module i n t e r r u p t A u t o m a t o n ( input i n t ,
input e i ,
input d i ,
output r e g a s y n c I n t ,
input r e s e t ,
input c l o c k ) ;

reg [ 1 : 0 ] s t a t e ;
reg [ 1 : 0 ] n e x t S t a t e ;

always @( posedge c l o c k ) i f ( r e s e t ) s t a t e <= 0 ;
e l s e s t a t e <= n e x t S t a t e ;

always @( i n t or e i or d i or s t a t e )
case ( s t a t e )

2 ’ b00 : i f ( i n t ) i f ( e i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b11 0 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b01 0 ;

e l s e i f ( e i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b10 0 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b00 0 ;

2 ’ b01 : i f ( e i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b00 1 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b01 0 ;

2 ’ b10 : i f ( i n t ) i f ( d i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b01 0 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b11 0 ;

e l s e i f ( d i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b00 0 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b10 0 ;

2 ’ b11 : { n e x t S t a t e , a s y n c I n t } = 3 ’ b00 1 ;
endcase

endmodule

Figure 10.16: The module interruptAutomaton.
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/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
/ * ************************************************************************
F i l e name : i n t e r r u p t A u t o m a t o n . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module i n t e r r u p t A u t o m a t o n ( input i n t ,
input e i , d i ,
output a s y n c I n t a ,
input r e s e t ,
input c l o c k ) ;

wire q1 , q0 , notq1 , no tq0 ;
J K f l i p F l o p f f 1 ( . Q ( q1 ) ,

. notQ ( no tq1 ) ,

. J ( no tq0 & e i ) ,

.K ( d i | q0 ) ,

. r e s e t ( r e s e t ) ,

. c l o c k ( c l o c k ) ) ;
J K f l i p F l o p f f 0 ( . Q( q0 ) ,

. notQ ( no tq0 ) ,

. J ( i n t ) ,

.K ( q1 | e i ) ,

. r e s e t ( r e s e t ) ,

. c l o c k ( c l o c k ) ) ;
a s s i g n a s y n c I n t a = q0 & ( q1 | e i ) ;

endmodule

Figure 10.17: The structural description of the module interruptAutomaton implemented using
JK-FFs..
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/ * ************************************************************************
F i l e name : J K f l i p F l o p . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module J K f l i p F l o p ( output reg Q ,
output notQ ,
input J , K,
input r e s e t ,
input c l o c k ) ;

a s s i g n notQ = ˜Q;
always @( posedge c l o c k ) i f ( r e s e t ) Q <= 0 ;

e l s e Q <= J & notQ | ˜K & Q;
endmodule

Figure 10.18: The module JKflipFlop.

The synthesis process will provide a very small circuit with the complex part implemented using only
4 gates. The module interruptUnit in the toyMachine design must be redesigned including the just
presented module interruptAutomaton. The size of the overall project will increase, but the interrupt
mechanism will work with less electrical restrictions imposed to the external connections.

10.3 Problems

Problem 10.1 Interpretative processor with distinct program counter block.

10.4 Projects

Project 10.1
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Appendix A

Boolean functions

Searching the truth, dealing with numbers and behaving automatically are all based on logic. Starting
from the very elementary level we will see that logic can be “interpreted” arithmetically. We intend to
offer a physical support for both the numerical functions and logical mechanisms. The logic circuit is
the fundamental brick used to build the physical computational structures.

A.1 Short History
There are some significant historical steps on the way from logic to numerical circuits. In the following some of
them are pointed.

Aristotle of Stagira (382-322) a Greek philosopher considered as founder for many scientific domains. Among
them logics. All his writings in logic are grouped under the name Organon, that means instrument of scientific
investigation. He worked with two logic values: true and false.

George Boole (1815-1864) is an English mathematician who formalized the Aristotelian logic like an algebra.
The algebraic logic he proposed in 1854, now called Boolean logic, deals with the truth and the false of complex
expressions of binary variables.

Claude Elwood Shannon (1916-2001) obtained a master degree in electrical engineering and PhD in math-
ematics at MIT. His Master’s thesis, A Symbolic Analysis of Relay and Switching Circuits [Shannon ’38], used
Boolean logic to establish a theoretical background of digital circuits.

A.2 Elementary circuits: gates

Definition A.1 A binary variable takes values in the set {0,1}. We call it bit.

The set of numbers {0,1} is interpreted in logic using the correspondences: 0 → f alse,1 → true in
what is called positive logic, or 1 → f alse,0 → true in what is called negative logic. In the following we
use positive logic.

Definition A.2 We call n-bit binary variable an element of the set {0,1}n.

Definition A.3 A logic function is a function having the form f : {0,1}n →{0,1}m with n≥ 0 and m> 0.
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In the following we will deal with m = 1. The parallel composition will provide the possibility to
build systems with m > 1.

A.2.1 Zero-input logic circuits

Definition A.4 The 0-bit logic function are f 0
0 = 0 (the false-function) which generates the one bit

coded 0, and f 0
1 = 1 (the true-function) which generate the one bit coded 1.

They are useful for generating initial values in computation (see the zero function as basic function
in partial recursivity).

A.2.2 One input logic circuits

Definition A.5 The 1-bit logic functions, represented by true-tables in Figure A.1, are:

• f 1
0 (x) = 0 – the false function

• f 1
1 (x) = x′ – the invert (not) function

• f 1
2 (x) = x – the driver or identity function

• f 1
3 (x) = 1 – the true function

x f 1
0 f 1

1 f 1
2 f 1

3
0 0 1 0 1

1 0 0 1 1

a.

-

b. c.

x x’
-

“1” = VDD

x

d.

x

e.

Figure A.1: One-bit logic functions. a. The truth table for 1-variable logic functions. b. The circuit for “0”
(false) by connecting to the ground potential. c. The logic symbol for the inverter circuit. d. The logic symbol for
driver function. e. The circuit for “1” (true) by connecting to the high potential.

Numerical interpretation of the NOT circuit: one-bit incrementer. Indeed, the output represents the
modulo 2 increment of the inputs.

A.2.3 Two inputs logic circuits

Definition A.6 The 2-bit logic functions are represented by true-tables in Figure A.2.

Interpretations for some of 2-input logic circuits:

• f 2
8 : AND function is:

– a multiplier for 1-bit numbers

– a gate, because x opens the gate for y:
if (x = 1) output = y; else output = 0;

• f 2
6 : XOR (exclusiv OR) is:
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x y f 2
0 f 2

1 f 2
2 f 2

3 f 2
4 f 2

5 f 2
6 f 2

7 f 2
8 f 2

9 f 2
A f 2

B f 2
C f 2

D f 2
E f 2

F
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

a.

x

y

x

y

x

y

x

y

x

y

x

y

f 2
8 = xy f 2

7 = (xy)′

f 2
E = x+ y f 2

1 = (x+ y)′

f 2
6 = x⊕ y f 2

9 = (x⊕ y)′

b. c.

d. e.

f. g.

Figure A.2: Two-bit logic functions. a. The table of all two-bit logic functions. b. AND gate – the original
gate. c. NAND gate – the most used gate. d. OR gate. e. NOR gate. f. XOR gate – modulo2 adder. g. NXOR gate
– coincidence circuit.

– the 2-modulo adder

– NEQ (not-equal) circuit, a comparator pointing out when the two 1-bit numbers on the input
are inequal

– an enabled inverter:
if x = 1 output is y′; else output is y;

– a modulo 2 incrementer.

• f 2
B : the logic implication is also used to compare 1-bit numbers because the output is 1 for y < x

• f 2
1 : NOR function detects when 2-bit numbers have the value zero.

All logic circuits are gates, even if a true gate is only the AND gate.

A.2.4 Many input logic circuits

For enumerating the 3-input function a table with 8 line is needed. On the left side there are 3 columns
and on the right side 256 columns (one for each 8-bit binary configuration defining a logic function).

Theorem A.1 The number of n-input one output logic (Boolean) functions is N = 22n
. ⋄

Enumerating is not a solution starting with n = 3. Maybe the 3-input function can be defined using
the 2-input functions.

A.3 How to Deal with Logic Functions

The systematic and formal development of the theory of logical functions means: (1) a set of elementary
functions, (2) a minimal set of axioms (of formulas considered true), and (3) some rule of deduction.

Because our approach is a pragmatic one: (1) we use an extended (non-minimal) set of elementary
functions containing: NOT, AND, OR, XOR (a minimal one contains only NAND, or only NOR), and
(2) we will list a set of useful principles, i.e., a set of equivalences.
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Identity principle Even if the natural tendency of existence is becoming, we stone the value a to be
identical with itself: a = a. Here is one of the fundamental limits of digital systems and of computation
based on them.

Double negation principle The negation is a “reversible” function, i.e., if we know the output we can
deduce the input (it is a very rare, somehow unique, feature in the world of logical function): (a′)′) = a.
Actually, we can not found the reversibility in existence. There are logics that don’t accept this principle
(see the intuitionist logic of Heyting & Brower).

Associativity Having 2-input gates, how can be built gates with much more inputs? For some
functions the associativity helps us.
a+(b+ c) = (a+b)+ c = a+b+ c
a(bc) = (ab)c = abc
a⊕ (b⊕ c) = (a⊕b)⊕ c = a⊕b⊕ c.

Commutativity Commutativity allows us to connect to the inputs of some gates the variable in any
order.
a+b = b+a
ab = ba
a⊕b = b⊕a

Distributivity Distributivity offers the possibility to define all logical functions as sum of products or
as product of sums.
a(b+ c) = ab+ac
a+bc = (a+b)(a+ c)
a(b⊕ c) = ab⊕ac.
Not all distributions are possible. For example:

a⊕bc ̸= (a⊕b)(b⊕ c).

The table in Figure A.3 can be used to prove the previous inequality.

a b c bc a ⊕ bc a⊕b a⊕c (a⊕b)(a⊕c)
0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 0 0

1 1 0 0 1 0 1 0

1 1 1 1 0 0 0 0

Figure A.3: Proving by tables. Proof of inequality a⊕bc ̸= (a⊕b)(b⊕ c).
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Absorbtion Absorbtion simplify the logic expression.
a+a′ = 1
a+a = a
aa′ = 0
aa = a
a+ab = a
a(a+b) = a
Tertium non datur: a+a′ = 1.

Half-absorbtion The half-absorbtion allows only a smaller, but non-neglecting, simplification.
a+a′b = a+b
a(a′+b) = ab.

Substitution The substitution principles say us what happen when a variable is substituted with a
value.
a+0 = a
a+1 = 1
a0 = 0
a1 = a
a⊕0 = a
a⊕1 = a′.

Exclusion The most powerful simplification occurs when the exclusion principle is applicable.
ab+a′b = b
(a+b)(a′+b) = b.

Proof. For the first form:
ab+a′b = b

applying successively distribution, absorbtion and substitution results:

ab+a′b = b(a+a′) = b1 = b.

For the second form we have the following sequence:

(a+b)(a′+b) = (a+b)a′+(a+b)b = aa′+a′b+ab+bb =

0+(a′b+ab+b) = a′b+ab+b = a′b+b = b.

De Morgan laws Some times we are interested to use inverting gates instead of non-inverting gates,
or conversely. De Morgan laws will help us.
a+b = (a′b′)′ ab = (a′+b′)′

a′+b′ = (ab)′ a′b′ = (a+b)′
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A.4 Minimizing Boolean functions

Minimizing logic functions is the first operation to be done after defining a logical function. Minimizing
a logical function means to express it in the simplest form (with minimal symbols). To a simple form a
small associated circuit is expected. The minimization process starts from canonical forms.

A.4.1 Canonical forms

The initial definition of a logic function is usually expressed in a canonical form. The canonical form is
given by a truth table or by the rough expression extracted from it.

Definition A.7 A minterm associated to an n-input logic function is a logic product (AND logic func-
tion) depending by all n binary variable. ⋄

Definition A.8 A maxterm associated to an n-input logic function is a logic sum (OR logic function)
depending by all n binary variable. ⋄

Definition A.9 The disjunctive normal form, DNF, of an n-input logic function is a logic sum of
minterms. ⋄

Definition A.10 The conjunctive normal form, CNF, of an n-input logic function is a logic product of
maxterms. ⋄

Example A.1 Let be the combinational multiplier for 2 2-bit numbers described in Figure A.4. One
number is the 2-bit number {a,b} and the other is {c,d}. The result is the 4-bit number {p3, p2, p1, p0}.
The logic equations result direct as 4 DNFs, one for each output bit:
p3 = abcd
p2 = ab’cd’ + ab’cd + abcd’
p1 = a’bcd’ + a’bcd + ab’c’d + ab’cd + abc’d + abcd’
p0 = a′bc′d +a′bcd +abc′d +abcd.
Indeed, the p3 bit takes the value 1 only if a = 1 and b = 1 and c = 1 and d = 1. The bit p2 is 1 only
one of the following three 4-input ADNs takes the value 1: ab′cd′, ab′cd, abcd′. And so on for the other
bits.

Applying the De Morgan rule the equations become: p3 = ((abcd)′)′

p2 = ((ab′cd′)′(ab′cd)′(abcd′)′)′

p1 = ((a′bcd′)′(a′bcd′(ab′c′d)′(ab′cd)′(abc′d)′(abcd′)′)′

p0 = ((a′bc′d)′(a′bcd)′(abc′d)′(abcd)′)′.

These forms are more efficient in implementation because involve the same type of circuits (NANDs),
and because the inverting circuits are usually faster.

The resulting circuit is represented in Figure A.5. It consists in two layers of ADNs. The first layer
computes only minterms and the second “adds” the minterms thus computing the 4 outputs.

The logic depth of the circuit is 2. But in real implementation it can be bigger because of the fact
that big input gates are composed from smaller ones. Maybe a real implementation has the depth 3. The
propagation time is also influenced by the number of inputs and by the fan-out of the circuits.

The size of the resulting circuit is very big also: Smult2 = 54. ⋄
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ab cd p3 p2 p1 p0

00 00 0 0 0 0

00 01 0 0 0 0

00 10 0 0 0 0

00 11 0 0 0 0

01 00 0 0 0 0

01 01 0 0 0 1

01 10 0 0 1 0

01 11 0 0 1 1

10 00 0 0 0 0

10 01 0 0 1 0

10 10 0 1 0 0

10 11 0 1 1 0

11 00 0 0 0 0

11 01 0 0 1 1

11 10 0 1 1 0

11 11 1 0 0 1

Figure A.4: Combinatinal circuit represented a a truth table. The truth table of the combinational circuit
performing 2-bit multiplication.

a

b

c

d

p2

p0

p1

p3

Figure A.5: Direct implementation of a combinational circuit. The direct implementation starting from
DNF of the 2-bit multiplier.

A.4.2 Algebraic minimization

Minimal depth minimization

Example A.2 Let’s revisit the previous example for minimizing independently each function. The least
significant output has the following form:

p0 = a′bc′d +a′bcd +abc′d +abcd.

We will apply the following steps:

p0 = (a′bd)c′+(a′bd)c+(abd)c′+(abd)c

to emphasize the possibility of applying twice the exclusion principle, resulting

p0 = a′bd +abd.
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Applying again the same principle results:

p0 = bd(a′+a) = bd1 = bd.

The exclusion principle allowed us to reduce the size of the circuit from 22 to 2.
We continue with the next output:

p1 = a′bcd′+a′bcd +ab′c′d +ab′cd +abc′d +abcd′ =

= a′bc(d′+d)+ab′d(c′+ c)+abc′d +abcd′ =
= a′bc+ab′d +abc′d +abcd′ =
= bc(a′+ad′)+ad(b′+bc′) =
= bc(a′+d′)+ad(b′+ c′) =
= a′bc+bcd′+ab′d +ac′d.
Now we used also the half-absorbtion principle reducing the size from 28 to 16.

Follows the minimization of p2:

p2 = ab′cd′+ab′cd +abcd′ =

= ab′c+abcd′ =
= ab′c+acd′

The p3 output can not be minimized. De Morgan law is used to transform the expressions to be imple-
mented with NANDs.

p3 = ((abcd)′)′

p2 = ((ab′c)′(acd′)′)′

p1 = ((a′bc)′(bcd′)′(ab′d)′(ac′d)′)′

p1 = ((abcd)′)′.
Results the circuit from Figure A.6. ⋄

a

b

c

d

p3

p2

p1

p0

Figure A.6: Minimal depth minimiztion The first, minimal depth minimization of the 2-bit multiplier.
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Multi-level minimization

Example A.3 The same circuit for multiplying 2-bit numbers is used to exemplify the multilevel mini-
mization. Results:

p3 = abcd

p2 = ab′c+acd′ = ac(b′+d′) = ac(bd)′

p1 = a′bc+bcd′+ab′d +ac′d = bc(a′+d′)+ad(b′+ c′) = bc(ad)′+ad(bc)′ = (bc)⊕ (ad)
p0 = bd.
Using for XOR the following form:

x⊕ y = ((x⊕ y)′)′ = (xy+ x′y′)′ = (xy)′(x′y′)′ = (xy)′(x+ y)

results the circuit from Figure A.7 with size 22. ⋄

a
b
c
d

p3 p1 p2 p0

Figure A.7: Multi-level minimization. The second, multi-level minimization of the 2-bit multiplier.

Many output circuit minimization

Example A.4 Inspecting carefully the schematics from Figure A.7 results: (1) the output p3 can be
obtained inverting the NAND’s output from the circuit of p2, (2) the output p0 is computed by a part of
the circuit used for p2. Thus, we are encouraged to rewrite same of the functions in order to maximize
the common circuits used in implementation. Results:

x⊕ y = (xy)′(x+ y) = ((xy)+(x+ y)′)′.

p2 = ac(bd)′ = ((ac)′+bd)′

allowing the simplified circuit from Figure A.8. The size is 16 and the depth is 3. But, more important:
(1) the circuits contains only 2-input gates and (2) the maximum fan-out is 2. Both last characteristics
led to small area and high speed. ⋄

A.4.3 Veitch-Karnaugh diagrams

In order to apply efficiently the exclusion principle we need to group carefully the minterms. Two
dimension diagrams allow to emphasize the best grouping. Formally, the two minterms are adjacent if
the Hamming distance in minimal.
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a
b
c
d

p3 p2p1 p0

Figure A.8: Multiple-output minimization. The third, multiple-output minimization of the 2-bit multiplier.

Definition A.11 The Hamming distance between two minterms is given by the total numbers of binary
variable which occur distinct in the two minterms. ⋄

Example A.5 The Hamming distance between m9 = ab′c′d and m4 = a′bc′d′ is 3, because only the
variable b occurs in the same form in both minterms.

The Hamming distance between m9 = ab′c′d and m1 = a′b′c′d is 1, because only the variable which
occurs distinct in the two minterms is a. ⋄

Two n-variable terms having the Hamming distance 1 are minimized, using the exclusion principle,
to one (n−1)-variable term. The size of the associated circuit is reduced from 2(n+1) to n−1.

A n-input Veitch diagram is a two dimensioned surface containing 2n squares, one for each n-value
minterm. The adjacent minterms (minterms having the Hamming distance equal with 1) are placed in
adjacent squares. In Figure A.9 are presented the Veitch diagrams for 2, 3 and 4-variable logic functions.
For example, the 4-input diagram contains in the left half all minterms true for a = 1, in the upper half
all minterms true for b = 1, in the two middle columns all the minterms true for c = 1, and in the two
middle lines all the minterms true for d = 1. Results the lateral columns are adjacent and the lateral line
are also adjacent. Actually the surface can be seen as a toroid.

a. b. c.

m0m1

m2m3

m4 m5

m6 m7

m0

m1

m2

m3

a

b

c

a

b

m0

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m13

m12 m14

m15

a

b

c

d

Figure A.9: Veitch diagrams. The Veitch diagrams for 2, 3, and 4 variables.

Example A.6 Let be the function p1 and p2, two outputs of the 2-bit multiplier. Rewriting them using
minterms results::

p1 = m6 +m7 +m9 +m11 +m13 +m14

p2 = m10 +m11 +m14.



A.4. MINIMIZING BOOLEAN FUNCTIONS 353

In Figure A.10 p1 and p2 are represented.
⋄

1 1

1

11

1

1

1

a.

1

b.

a

b

c

d

a

b

c

d

p1 p2

Figure A.10: Using Veitch diagrams. The Veitch diagrams for the functions p1 and p2.

The Karnaugh diagrams have the same property. The only difference is the way in which the
minterms are assigned to squares. For example, in a 4-input Karnaugh diagram each column is asso-
ciated to a pair of input variable and each line is associated with a pair containing the other variables.
The columns are numbered in Gray sequence (successive binary configurations are adjacent). The first
column contains all minterms true for ab= 00, the second column contains all minterms true for ab= 01,
the third column contains all minterms true for ab = 11, the last column contains all minterms true for
ab = 10. A similar association is made for lines. The Gray numbering provides a similar adjacency as in
Veitch diagrams.

00 01 11 10

00 01 11 10

0

1

00

01

11

10

ab

ab

c

cd

m0 m1 m2m3

m4 m5 m6m7

m0 m1 m2m3

m4 m5 m6m7

m8 m9 m10m11

m12 m13 m14m15

Figure A.11: Karnaugh diagrams. The Karnaugh diagrams for 3 and 4 variables.

In Figure A.12 the same functions, p1 and p2, are represented. The distribution of the surface is
different but the degree of adjacency is identical.

In the following we will use Veitch diagrams, but we will name the them V-K diagrams to be fair
with both Veitch and Karnaugh.

Minimizing with V-K diagrams

The rule to extract the minimized form of a function from a V-K diagram supposes:

• to define:

– the smallest number
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00 01 11 10

00

01

11

10

ab
cd 00 01 11 10

00

01

11

10

ab
cd

p1 p2

1

1

1

1

1

1 1

1

1

Figure A.12: Using Karnaugh diagrams. The Karnaugh diagrams for the functions p1 and p2.

– of rectangular surfaces containing only 1’s

– including all the 1’s

– each surface having a maximal area

– and containing a power of two number of 1’s

• to extract the logic terms (logic product of Boolean variables) associated with each previously
emphasized surface

• to provide de minimized function adding logically (logical OR function) the terms associated with
the surfaces.

1 1

1

11

1

1

1

a.

1

b.

a

b

c

d

a

b

c

d

p1 p2

bcd′

N

a′bc

=
ac′d -

ab′d

1

acd′

)

/

ab′c -

Figure A.13: Minimizing with V-K diagrams. Minimizing the functions p1 and p2.

Example A.7 Let’s take the V-K diagrams from Figure A.10. In the V-K diagram for p1 there are four
2-square surfaces. The upper horizontal surface is included in the upper half of V-K diagram where
b = 1, it is also included in the two middle columns where c = 1 and it is included in the surface formed
by the two horizontal edges of the diagram where d = 0. Therefore, the associated term is bcd′ which is
true for: (b = 1)AND(c = 1)AND(d = 0).

Because the horizontal edges are considered adjacent, in the V-K diagram for p2 m14 and m10 are
adjacent forming a surface having acd′ as associated term.

The previously known form of p1 and p2 result if the terms resulting from the two diagrams are
logically added. ⋄
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Minimizing incomplete defined functions

There are logic functions incompletely defined, which means for some binary input configurations the
output value does not matter. For example, the designer knows that some inputs do not occur anytime.
This lack in definition can be used to make an advanced minimization. In the V-K diagrams the corre-
sponding minterms are marked as “don’t care”s with “-”. When the surfaces are maximized the “don’t
care”s can be used to increase the area of 1’s. Thus, some “don’t care”s will take the value 1 (those which
are included in the surfaces of 1’s) and some of “don’t care”s will take the value 0 (those which are not
included in the surfaces of 1’s).

a

b

c

d

a

b

c

d

1

1

1

1 1

1

1

1

1

1 1

1

-

-

-

--

-

a′b

a′c




i

b

c

^

:

a. b.

Figure A.14: Minimizing incomplete defined functions. a. The minimization of y (Example 1.8) ignoring
the “don’t care” terms. b. The minimization of y (Example 1.8) considering the “don’t care” terms.

Example A.8 Let be the 4-input circuit receiving the binary codded decimals (from 0000 to 1001) indi-
cating on its output if the received number is contained in the interval [2,7]. It is supposed the binary
configurations from 1010 to 1111 are not applied on the input of the circuit. If by hazard the circuit
receives a meaningless input we do not care about the value generated by the circuit on its output.

In Figure A.14a the V-K diagram is presented for the version ignoring the “don’t care”s. Results the
function: y = a′b+a′c = a′(b+ c).

If “don’t care”s are considered results the V-K diagram from Figure A.14b. Now each of the two
surfaces are doubled resulting a more simplified form: y = b+ c. ⋄

V-K diagrams with included functions

For various reasons in a V-K diagram we need to include instead of a logic value, 0 or 1, a logic function
of variables which are different from the variables associated with the V-K diagram. For example, a
minterm depending on a,b,c,d can be defined as taking a value which is depending on another logic
2-variable function by s, t.

A simplified rule to extract the minimized form of a function from a V-K diagram containing included
functions is the following:

1. consider first only the 1s from the diagram and the rest of the diagram filed only with 0s and extract
the resulting function

2. consider the 1s as “don’t care”s for surfaces containing the same function and extract the resulting
function “multiplying” the terms with the function
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3. “add” the two functions.

a. b c.

a

b

c

d
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a’bc’
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bc’d




b’c
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U

acde

U
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b

c
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1 1

11

1

1 1

a

b

c

d

e

e′ e′

Figure A.15: An example of V-K diagram with included functions. a. The initial form. b. The form
considered in the first step. c. The form considered in the second step.

Example A.9 Let be the function defined in Figure A.15a. The first step means to define the surfaces of
1s ignoring the squares containing functions. In Figure A.15b are defined 3 surfaces which provide the
first form depending only by the variables a,b,c,d:

bc′d +a′bc′+b′c

The second step is based on the diagram represented in Figure A.15c, where a surface (c′d) is defined
for the function e′ and a smaller one (acd) for the function e. Results:

c′de′+acde

In the third step the two forms are “added” resulting:

f (a,b,c,d,e) = bc′d +a′bc′+b′c+ c′de′+acde.

⋄

Sometimes, an additional algebraic minimization is needed. But, it deserves because including func-
tions in V-K diagrams is a way to expand the number of variable of the functions represented with a
manageable V-K diagram.

A.5 Problems

Problem A.1



Appendix B

Basic circuits

Basic CMOS circuits implementing the main logic gates are described in this appendix. They are based
on simple switching circuits realized using MOS transistors. The inverting circuit consists in a pair of
two complementary transistors (see the third section). The main gates described are the NAND gate and
the NOR gate. They are built by appropriately connecting two pairs of complementary MOS transistors
(see the fourth section). Tristate buffers generate an additional, third “state” (the Hi-Z state) to the output
of a logic circuit, when the output pair of complementary MOS transistors are driven by appropriate
signals (see the sixth section). Parallel connecting a pair of complementary MOS transistors provides the
transmission gate (see the seventh section).

B.1 Actual digital signals

The ideal logic signals are 0 Volts for false, or 0, and VDD for true, or 1. Real signals are more complex.
The first step in defining real parameters is represented in Figure B.1, where is defined the boundary
between the values interpreted as 0 and the values interpreted as 1.

6

-

v

time

VDD/2

”1”

”0”

6

?
6

?

Valid 1

Valid 0

0

VDD

VDD/2 VHmin =VLmax

VDD

Figure B.1: Defining 0-logic and 1-logic. The circuit is supposed to interpret any value under VDD/2 as 0, and
any value bigger than VDD/2 are interpreted as 1.

This first definition is impossible to be applied because supposes:

VHmin =VLmax.

There is no engineering method to apply the previous relation. A practical solution supposes:

VHmin >VLmax

357
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generating a “forbidden region” for any actual logic signal. Results a more refined definition of the logic
signals represented in Figure B.2, where VL <VLmax and VH >VHmin.

6

-

v

time

VHmin

Valid 1

Valid 0

0

VDD

VLmax

VHmin

VLmax

Forbidden
region

Figure B.2: Defining the “forbidden region” for logic values. A robust design asks a net distinction
between the electrical values interpreted as 0 and the electrical values interpreted as 1.

In real applications we‘are faced with nasty realities. A signal generated to the output of a gate is
sometimes received to the input of the receiving gate distorted by parasitic signals. In Figure B.3 the
noise generator simulate the parasitic effects of the circuits switching in a small neighborhood.

6
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v

time

Valid 1

Valid 0
0

VDD

1 noise
margin

0 noise

Forbidden
region

margin

VOH

VIL

VOH

VOL

VIH

VIH

VIL

VOL

Sender

gate

Receiver

gate

- +

noise generator

Figure B.3: The noise margin. The output signal must be generated with more restrictions to allow the receivers
to “understand” correct input signals loaded with noise.

Because of the noise captured from the “environment” a noise margin must be added to expand the
forbidden region with two noise margin regions, one for 0 level, NM0, and another for 1 level, NM1.
They are defined as follows:

NM0 =VIL −VOL

NM1 =VOH −VIH
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making the necessary distinctions between the VOH , the 1 at the output of the sender gate, and VIH , the 1
at the input of the receiver gate.

B.2 CMOS switches

A logic gates consists in a network of interconnected switches implemented using the two type of MOS
transistors: p-MOS and n-MOS. How behaves the two type of transistors in specific configurations is
presented in Figure B.4.

A switch connected to VDD is implemented using a p-MOS transistor. It is represented in Figure B.4a
off (generating z, which means Hi-Z: no signal, neither 0, nor 1) and in Figure B.4b it is represented on
(generating 1 logic, or truth).

A switch connected to ground is implemented using a n-MOS transistor. It is represented in Figure
B.4c off (generating z, which means Hi-Z: no signal, neither 0, nor 1) and in Figure B.4e it is represented
on (generating 0 logic, or false).

z 0
VDD

z VDD

VDD

�

VDD

�

z

VDD

VDD

-

z

-

0VDD

a. b. c. d.

Figure B.4: Basic switches. a. Open switch connected to VDD. b. Closed switch connected to VDD. c. Open
switch connected to ground. d. Closed switch connected to ground.

A MOS transistor works very well as an on-off switch connecting its drain to a certain potential. A p-
MOS transistor can be used to connect its drain to a high potential when its gates is connected to ground,
and an n-MOS transistor can connect its drain to ground if its gates is connected to a high potential. This
complementary behavior is used to build the elementary logic circuits.

In Figure B.5 is presented the switch-resistor-capacitor model (SRC). If VGS <VT then the transistor
is off, if VGS ≥ VT then the transistor is on. In both cases the input of the transistor behaves like a
capacitor, the gate-source capacitor CGS.

When the transistor is on its drain-source resistance is:

RON = Rn
L
W

where: L is the channel length, W is the channel width, and Rn is the resistance per square. The length
L is a constant characterizing a certain technology. For example, if L = 0.13µm this means it is about a
0.13µm process.
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The input capacitor has the value:

CGS =
εOX LW

d
.

The value:
COX =

εOX

d
where: εOX ≈ 3.9ε0 is the permittivity of the silicon dioxide, is the gate-to-channel capacitance per unit
area of the MOSFET gate.

In this conditions the gate input current is:

iG =CGS
dvGS

dt

-

D

S

G G

D

S

CGS

G

D

S

CGS

RON

VGS <VT VGS ≥VT

Figure B.5: The MOSFET switch. The switch-resistor-capacitor model consists in the two states: OF (VGS <

VT ), and ON (VGS ≥VT ). In both states the input is defined by the capacitor CGS.

Example B.1 For an AND gate with low strength, with W = 1.8µm, in 0.13µm technology, supposing
COX = 4 f F/µm2, results the input capacitance:

CGS = 4×0.13×1.8 f F = 0.936 f F

Assuming Rn = 5KΩ, results for the same gate:

RON = 5× 0.13
1.8

KΩ = 361Ω

⋄

B.3 The Inverter

B.3.1 The static behavior

The smallest and simplest logic circuit – the invertor – can be built using a pair of complementary
transistors, connecting together the two gates as input and the two drains as output, while the n-MOS
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Figure B.6: Building an invertor. a. The invertor circuit. b. The logic symbol for the invertor circuit.

source is connected to ground (interpreted as logic 0) and the p-MOS source to VDD (interpreted as logic
1). Results the circuit represented in Figure B.6.

The behavior of the invertor consist in combining the behaviors of the two switches previously de-
fined. For in = 0 pMOS is on and nMOS is o f f the output generating VDD which means 1. For in = 1
pMOS is o f f and nMOS is on the output generating 0.

The static behavior of the inverter (or NOT) circuit can be easy explained starting from the switches
described in Figure B.4. Connecting together a switch generating z with a switch generating 1 or 0, the
connection point will generate 0 or 1.

B.3.2 Dynamic behavior

The propagation time of an inverter can be analyzed using the two serially connected invertors repre-
sented in Figure B.7. The delay of the first invertor is generated by its capacitive load, CL, composed
by:

• its parasitic drain/bulk capacitance, CDB, is the intrinsic output capacitance of the first invertor

• wiring capacitance, Cwire, which depends on the length of the wire (of width Ww and of length Lw)
connected between the two invertors:

Cwire =CthickoxWwLw

• next stage input capacitance, CG, approximated by summing the gate capacitance for pMOC and
nMOS transistors:

CG =CGp +CGn =Cox(WpLp +WnLn)

The total load capacitance
CL =CDB +Cwire +CG
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Figure B.7: The propagation time.

is sometimes dominated by Cwire. For short connections CG dominates, while for big fan-out both, Cwire

and CG must be considered.
The signal VA is used to measure the propagation time of the first NOT in Figure B.7a. It is generated

by an ideal pulse generator with output impedance 0. Thus, the rising time and the falling time of this
signal are considered 0 (the input capacitance of the NOT circuit is charged or discharged in no time).

The two delay times (see Figure B.7c) associated to an invertor (to a gate in the general case) are
defined as follows:

• tpLH : the time interval between the moment the input switches in 0 and the output reaches VOH/2
coming from 0

• tpHL: the time interval between the moment the input switches in 1 and the output reaches VOH/2
coming from VOH

Let us consider the transition of VA from 0 to VOH at tr (rise edge). Before transition, at t−r , CL is fully
charged and VB =VOH . In Figure B.7b is represented the equivalent circuit at t+r , when pMOS is off and
nMOS is on. In this moment starts the process of discharging the capacitance CL at the constant current

IDn(sat) =
1
2

µnCox
Wn

Ln
(VOH −VT n)

2

In Figure B.8, at t−r the transistor is cut, IDn = 0. At t+r the nMOS transistor switch in saturation and
becomes an ideal constant current generator which starts to discharge CL linearly at the constant current
IDn(sat). The process continue until VOUT =VOH , according to the definition of tpHL.

In order to compute tpHL we take into consideration the constant value of the discharging current
which provide a linear variation of vOUT .

dvout

dt
=

d
dt
(

qL

CL
) =

−IDn(sat)

CL

dvout

dt
=

VOH
2 −VOH

tpHL
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�
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t+r
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Figure B.8: The output characteristic of the nMOS transistor.

We solve the equations for tpHL:

tpHL =CL
1

µnCox
Wn
Ln
(VOH −VT n)

VOH

VOH −VT n

Because:

RONn =
1

µnCox
Wn
Ln
(VOH −VT n)

results:

tpHL =CLRONn
1

1− VT n
VOH

= knRONnCL = knτnL

where:

• τnL is the constant time associated to the H-L transition

• kn is a constant associated to the technology we use; it goes down when VOH increases or VT

decreases

The speed of a gate depends by its dimension and by the capacitive load it drives. For a big W the
value of RON is small charging or discharging CL faster.

For tpLH the approach is similar. Results: tpLH = kpτpL.
By definition the propagation time associated to a circuit is:

tp = (tpLH + tpHL)/2

its value being dominated by the value of CL and the size (width) of the two transistors, Wn and Wp.
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B.3.3 Buffering

It is usual to be confronted, in designing a big systems, with the buffering problem: a logic signal
generated by a small, “weak” driver must be used to drive a big, “strong” circuit (see Figure B.9a)
maintaining in the same time a high clock frequency. The driver is an invertor with a small Wn =Wp =
Wdrive (to make the model simple), unable to provide an enough small RON to move fast the charge from
the load capacitance of a circuit with a big Wn =Wp =Wload . Therefore the delay introduced between A
and B is very big. For our simplified model,

tp = tp0
Wload

Wdriver

where: tp0 is the propagation time when the driver circuit and the load circuit are of the same size.
The solution is to interpose, between the small driver and the big load, additional drivers with pro-

gressively increased area as in Figure B.9b. The logic is preserved, because two NOTs are serially
connected. While the no-buffer solution provides, between A and B, the propagation time:

tp(no−bu f f er) = tp0
Wload

Wdriver

the buffered solution provide the propagation time:

tp(bu f f ered) = tp0(
W1

Wdriver
+

W2

W1
+

Wload

W2
)

How are related the area of the circuits in order to obtain a minimal delay, i.e., how are related Wdriver,
W1 and W2? The relation is given by the minimizing of the delay introduced by the two intermediary
circuits. Then, the first derivative of

W2

W1
+

Wload

W2

must be 0. Results:
W2 =

√
W1Wload

W2

W1
=

Wload

W2
=

√
Wload

W1

We conclude: in order to add a minimal delay, the size ratio of successive drivers in a chain must be the
same.

W1
W2

Wdriver

b.

BA

Wload

a.

A B

Wdriver

Wload

Figure B.9: Buffered connection. a. An invertor with small W is not able to handle at high frequency a circuit
with big W . b. The buffered connection with two intermediary buffers.

In order to design the size of the circuits in Figure B.9b, let us consider Wload
Wdriver

= n. Then,

W1

Wdriver
=

W2

W1
=

Wload

W2
= 3
√

n
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The acceleration is

α =
tp(no−bu f f er)

tp(bu f f ered)
=

3
√

n2

3

For example, for n = 1000 the acceleration is α = 33.3.
The hand calculation, just presented, is approximative, but has the advantages to provide an intuitive

understanding about the propagation phenomenon, with emphasis on the buffering mechanism.
The price for the acceleration obtained by buffering is the area and energy consumed by the two

additional circuits.

B.3.4 Power dissipation

There are three major physical processes involved in the energy requested by a digital circuit to work:

• switching energy: due to charging and discharging of load capacitances, CL

• short-circuit energy: due to non-zero rise/fall times of the signals

• leakage current energy: which becomes more and more important with the decreasing of device
sizes

From the power supply, which provide VDD with enough current, the circuit absorbs as much as needed
current.

Switching power

The average switching power dissipated is the energy dissipated in a clock cycle divided by the clock
cycle time, T . Suppose the clock is applied to the input of an invertor. When clock = 0 the load capacitor
is loaded from the power supply with the charge:

QL =CLVDD

CL

vout

VDD

CL

vout

RONn

?

i

RON p

?

i

Figure B.10: The main power consuming process. For Vin = 0 CL is loaded by the current provided by
RON p. The charge from CL is transferred to the ground through RONn for Vin =VOH .

We assume in T/2 the capacitor is charged (else the frequency is too big for the investigated circuit).
During the next half-period, when clock = 1, the same charge is transferred from the capacitor to ground.
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Therefore the charge QL is transferred from VDD to ground in the time T . The amount of energy used for
this transfer is VDDQL, and the switching power results:

pswitch =
VDDCLVDD

T
=CLV 2

DD fclock

While a big VOH = VDD helped us in reducing tp, now we have difficulties due to the square depen-
dency of switching power by the same VDD.

Short-circuit power

When the output of the invertor switches between the two logic levels, for a very short time interval
around the moment when VOUT = VDD/2, both transistors have IDD ̸= 0 (see Figure B.11). Thus is
consumed the short-circuit power.

6

-
time

6

-
time

VIN

IDD

IDD(mean)

Figure B.11: Direct flow of current from VDD to ground. This current due to the non-zero edge to the
circuit input can be neglected.

The amount of power wasted by these temporary short-cuts is:

psc = IDD(mean)VDD

where IDD(mean) is the mean value of the current spikes. If the edge of the signal is short and the mean
frequency of switchings is low, then the resulting value is low.

Leakage power

The last source of energy waste is generated by the leakage current. It will start to be very important in
sub 65nm technologies (for 65nm the leakage power is 40% of the total power consumption). The leakage
current and the associated power is increasing exponentially with each new technology generation and is
expected to become the dominant part of total power. Device threshold voltage scaling, shrinking device
dimensions, and larger circuit sizes are causing this dramatic increase in leakage. Thus, increasing the
amount of leakage is critical for power constraint integrated circuits.

pleakage = IleakageVDD

where Ileakage is the sum of subthreshold and gate oxide leakage current. In Figure B.12 the two compo-
nents of the leakage current are presented for a NOT circuit with Vin = 0.



B.4. GATES 367

} ?

Diode leakage

Sub-threshold leakage

-

Vout =VDD

�

-

VDD

?

Gate leakage

3

Figure B.12: The two main components of the leakage current. .

B.4 Gates

The 2-input AND circuit, a · b, works like a “gate” opened by the signal a for the signal b. Indeed, the
gate is “open” for b only if a = 1. This is the reason for which the AND circuit was baptised gate. Then,
the use imposed this alias as the generic name for any logic circuit. Thus, AND, OR, XOR, NAND, ...
are all called gates.

B.4.1 NAND & NOR gates

The static behavior of gates

For 2-input NAND and 2-input NOR gates the same principle will be applied, interconnecting 2 pairs of
complementary transistors to obtain the needed behaviors.

There are two kind of interconnecting rules for the same type of transistors, p-MOS or n-MOS. They
can be interconnected serially or parallel.

A serial connection will establish an on configuration only if both transistors of the same type are on,
and the connection is off if at least one transistor is off.

A parallel connection will establish an on configuration if at least one is on, and the connection is off
only if both are off.

Applying the previous rules result the circuits presented in Figures B.13 and B.14.
For the NAND gate the output is 0 if both n-MOS transistors are on, and the output is one when at

least on p-MOS transistor is on. Indeed, if A = B = 1 both n transistors are on and both p transistors are
off. The output corresponds with the definition, it is 0. If A = 0 or B = 0 the output is 1, because at least
one p transistor is on and at least one n transistor is off.

A similar explanation works for the NOR gate. The main idea is to design a gate so as to avoid the
simultaneous connection of VDD and ground potential to the output of the gate.

For designing an AND or an OR gate we will use an additional NOT connected to the output of
an AND or an OR gate. The area will be a little bigger (maybe!), but the strength of the circuit will be
increased because the NOT circuit works as a buffer improving the time performance of the non-inverting
gate.
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Figure B.13: The NAND gate. a. The internal structure of a NAND gate: the output is 1 when at least one
input is 0. b. The logic symbol for NAND.

The propagation time for the 2-input main gates is computed in a similar way as the propagation for
NOT circuit is computed. The only differences are due to the fact that sometimes RON must be substituted
with 2×RON .

Propagation time

Propagation time for NAND gate becomes, in the worst case when only one input switches:

tHL = kn(2RONn)CL

tLH = kp(RON p)CL

because the capacitor CL is charged through one pMOS transistor and is discharged through two, serially
connected, nMOS transistors.

Propagation time for NOR gate becomes, in the worst case when only one input switches:

tHL = kn(RONn)CL

tLH = kp(2RON p)CL

because the capacitor CL is charged through two, serially connected, pMOS transistors and is discharged
through one nMOS transistor.

It is obvious that we must prefer, when is is possible, the use of NAND gates instead of NOR gates,
because, for the same area, RON p > RONn.
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Figure B.14: The NOR gate. a. The internal structure of a NOR gate: the output is 1 only when both inputs
are 0. b. The logic symbol for NOR.

Power consumption & switching activity

The power consumption is determined by the 0 to 1 transitions of the output of a logic gates. The problem
is meaningless for a NOT circuit because the transitions of the output has the same probability as of the
transition of the input. But, for a n-input gate the probability of an output transition depends on the
function performed by the gate.

For a certain gate, with unbiased 0 and 1 applied on the inputs, the output probability of switching
from 0 to 1, P0−1, is given by the logic function. We define switching activity, σ , this probability of
switching from 0 to 1.

Switching activity for 2-input AND with the inputs A and B is:

σ = P0−1 = POUT=0POUT=1 = (1−PAPB)PAPB

where: PA is the probability of having 1 on the input A, PB is the probability of having 1 on the input B,
and POUT=0 is the probability of having 0 on output, while POUT=1 = PAB is the probability of having 1
on output (see Figure B.15a).

A

B
C

D

A

BB

A

C

PAB = 1/4
PABC = 1/8

PB = 1/2

σ = 3/16

PD = 1/2

PA = 1/2

PC = 1/2

σ = 7/64

PABCD = 1/16

σ = 15/256

a. b. c.

Figure B.15: Switching activity σ and the output probability of 1. a. For 2-input AND. b. For 3-input
AND. c. For 4-input AND.
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If the input are not conditioned, PA = PB = 0.5, then the switching activity for a 2-input NAND is
σNAND2 = 3/16 (see Figure B.15a).

Switching activity for 3-input AND with the inputs A, B, and C is σNAND3 = 7/64 (see Figure B.158).
The probability of 1 to the output of a 3-input AND is only 1/8 leading to a smaller σ .

Switching activity for n-input AND is:

σNANDn =
2n −1

22n ≃ 1
2n

The switching activity decreases exponentially with the number of inputs in AND, OR, NAND, NOR
gates. This is a very good news.

Now, we must reconsider the computation of the power substituting CL with σCL:

pswitch = σCLV 2
DD fclock

In big systems, a conservative assumption is that the mean value of the inputs of the logic gates is 3,
and, therefore a global value for switching activity could be σglobal ≃ 1/8. Actual measurements provide
frequently σglobal ≃ 1/10.

Power consumption & glitching

In the previous paragraph we learned that the output of a circuit switch due to the change on the inputs.
This is an ideal situation. Depending on the circuit configuration and on the various delays introduced by
gates, unexpected “activity” manifests sometimes in our network of gates. See the simple example form
Figure B.16. From the logical point of view, when the inputs switch form ABC = 010 to ABC = 111 the

O1
O2

B=1

A=C

O2

O1

6
-

t

6
-

t

6
-

A

t

C

tpHLO2

- �

- �

tpHLO1

- � tpLHO2

Figure B.16: Glitching effect. When the input value switch from ABC = 010 to ABC = 111 the output of the
circuit must remain on 1. But, a short glitch occurs because of the delay, tpHLO1, introduced by the first NAND.

output must maintain its value on 1. Unfortunately, because the effect of the inputs A and B are affected
by the extra delay introduced by the first gate, the unexpected glitch manifests to the output. Follow the
wave forms form Figure B.16 to understand why.

The glitch is undesired for various reasons. The most important are two:
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• the signal can be latched by a memory circuit (such an elementary latch), thus triggering the switch
of a memory circuit; a careful design can avoid this effect

• the temporary, useless transition discharge and charge back the load capacitor increasing the energy
consumed by the circuit.

Let us go back to the Zero circuit represented in two versions in Figure 2.1c and Figure 2.1d. We
have now an additional reason to prefer the second version. The balanced delays to the inputs of the
intermediary circuits allow us to avoid almost totaly the glitching contribution to the power consumption.

B.4.2 Many-Input Gates

How can be built 3-input NAND or a 3-input NOR applying the same rule? For a 3-input NAND 3
n-MOS transistors will be connected serially and 3 p-MOS transistors will be connected parallel. Similar
for the 3-input NOR gate.

How “much” this rule can be applied to built n-input gates? Not too much because of the propagation
time which is increased when too many serially connected RON resistors will be used to transfer the
electrical charge in or out from the load capacitor CL. A 4-input NAND, for example, discharge CL

trough 4 serially connected RONn, while a 4-input NOR loads CL with a constant time 4RON pCL. The
mean worst case (when only one input switches) time constants used to compute tp become:

(4RONn+RON p)/2

for NAND, and
(4RON p+RONn)/2

for NOR.
Fortunately, there is another way to increase the number of inputs of a certain gate. It is by composing

the function using an appropriate number of 2-input gates organized as a balanced binary tree.
For example, an 8-input NAND gate, see Figure B.17a, is recommended to be designed as a binary

tree of two input gates, see Figure B.17b, as follows:

(a ·b · c ·d · e · f ·g ·h)′ = (((a ·b)′+(c ·d)′)′ · ((e · f )′+(g ·h)′)′)′

The form results as the application of the De Morgan law.
In the first case, represented in Figure B.17a, an 8-input NAND uses a similar arrangement as in

Figure B.13a, where instead of two parallel connected pMOS transistors and two serially connected
nMOS transistors are used 8 pMOSs and 8 nMOSs. Generally speaking, for each new input an additional
pair, nMOS & pMOS, is added.

Increasing in this way the number of inputs the propagation time is increased linearly because of
the serially connected channels of the nMOS transistors. The load capacitor is discharged to the ground
through m×RON , where m represents the number of inputs.

The second solution, see Figure B.17b, is to build a balanced tree of gates. In the first case the
propagation time is in O(n), while in the second it is in O(log n) for implementations using transistors
having the same size.

For an m-input gate results a log2 m depth network of 2-input gates. For example, see Figure B.17,
where an 8-input NAND is implemented using a 3-level network of gates (first to the 8-input gate the di-
vide & impera principle is applied, and then the De Morgan rule transformed the first level of four ANDs
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Figure B.17: How to manage a many-input gate. a An NAND8 gate with fan-out n. b. The log-depth
equivalent circuit.

in four NANDs and the second level of two ANDs in two NORs). While the maximum propagation time
for the 8-input NAND is

tpHL(one−level) = kn ×8×RONn × (n×Cin)

where Cin is the value of the input capacitor in a typical gate and n is the fan-out of the circuit, the
maximum propagation time for the equivalent log-depth net of gates is

tpHL(log−levels) = kn((2×2×RONn ×Cin)+2×RONn × (n×Cin))

For n = 3 results a 2.4 times faster circuit if the log-depth version is adopted, while for n = 4 the accel-
eration is 2.67.

Generally, for fan-in equal with m and fan-out equal with n result the acceleration for the log-depth
solutions, α , expressed by the formula:

α =
m×n

2× (n−1+ logm)

Example: n = 4, m = 32, α = 8.
The log-depth circuit has two advantages:

• the intermediary (−1+ logm) stages are loaded with a constant and minimal capacitor – Cin –
given by only one input

• only the final stage drives the real load of the circuit – n×Cin – but its driving capability does not
depend by fan-in.
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Various other solutions can be used to speed-up a many-input gate. For example:

(a ·b · c ·d · e · f ·g ·h)′ = (((a ·b · c ·d)′+(e · f ·g ·h)′)′)′

could be a better solution for an 8-input NAND, mainly because the output is generated by a NOT circuit
and the internal capacitors are minimal, making the 4-input NANDs harmless.

B.4.3 AND-NOR gates

For implementing the logic function:

(AB+CD)′

besides the solution of composing it from the previously described circuits, there is a direct solution
using 4 CMOS pairs of transistors, one associated for each input. The resulting circuit is represented in
Figure B.18.
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Figure B.18: The AND-NOR gate. a. The circuit. b. The logic symbol for the AND-NOR gate.

The size of the circuit according to Definition 2.2 is 4. (Implementing the function using 2 NANDs,
2 invertors, and a NOR provides the size 8. Even if the de Morgan rule is applied results 3 NANDs and
and invertor, which means the size is 7.)

The same rule can be applied for implementing any NOR of ANDs. For example, the circuit per-
forming the logic function

f (A,B,C) = (A(B+C))′

has a simple implementation using a similar approach. The price will be the limited speed or the over-
dimensioned transistors.
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B.5 The Tristate Buffers

A tristate circuit has the output able to generate three values: 0, 1, x (which means nothing). The output
value x is unable to impose a specific value, we say the output of the circuit is unconnected or it is off.

Two versions of this kind of circuit are presented in Figures B.19 and B.20.

�
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�

enable’

enable

out

�
in/out
-

in

c.

enable’

enable

in out

b.

-

-

VDD

-
out

in

enable

enable’

en1’

en1
en2’

en2

System 1 System 2

d.

Figure B.19: Tristate inverting buffer. a. The circuit. b. The logic symbol for the inverting tristate buffer.
c. Two-direction connection on one wire. For enable = 1, in/out = out’, while for enable = 0, in =

in/out’. d. Interconnecting two systems. For en1 = 1, en2 = 0, System 1 sends and System
2 receives; for en1 = 0, en2 = 1, System 2 sends and System 1 receives; en1 = en2 = 0 booth
systems are receivers, while en1 = en2 = 1 is not allowed.

The inverting version of the tristate buffer uses one additional pair of complementary transistors to
disconnect the output from any potential. If enable = 0 the CMOS transistors connected to the output
are both off. Only if enable = 1 the circuit works as an inverter.

For the non-inverting version the two additional logic gates are used to control the gates of the two
output transistors. Only if enable = 0 the two logic gates transfer the input signal inverted to the gates of
the two output transistor.
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Figure B.20: Tristate non-inverting buffer. a. The circuit. b. The logic symbol for the non-inverting tristate
buffer.

B.6 The Transmission Gate

A simple and small version of a gate is the transmission gate which works connecting directly the signal
from a source to a destination. Figure B.21a represents the CMOS version. If enable = 1 then out = in
because at least on transistors is on. If in = 0 the signal is transmitted by the n-MOS transistor, else, if
in = 1 the signal is transmitted by the p-MOS transistor.

The transmission gate is not a regenerative gate in contrast to the previously described gates which
were regenerative gates. A transmission gate performs a true two-direction electrical connection, with
all its goods and bad involved.

The main limitation introduced by the transmission gate is its RON which is serially connected to the
CL increasing the constant time associated to the delay.

The main advantage of this gate is the absence of a connection to the ground or to VDD. Thus, the
energy consumed by this gate is lowered.

One of the frequently used application of the transmission gate is the inverting multiplexor (see
Figure B.21c). The two transmission gates are enabled by in a complementary mode. Thus, only one
gate is active at a time, avoiding the “fight” of two opposite signals to impose the value to the inverter’s
input.

When the propagation time is not critical the use of this gate is recommended because, both, area
and power are saved.
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a.
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en’
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in1
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Figure B.21: The transmission gate. a. The complementary transmission gate. b. The logic symbol. c. An
application: the elementary inverting multiplexer.

B.7 Memory Circuits

B.7.1 Flip-flops

Data latches and their transparency

Master-slave DF-F

Resetable DF-F

B.7.2 # Static memory cell

B.7.3 # Array of cells

B.7.4 # Dynamic memory cell

B.8 Problems

Gates

Problem B.1

Problem B.2

Problem B.3

Problem B.4

Flop-flops

Problem B.5

Problem B.6
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D DCK CK

Q QQ’ Q’

Figure B.22: Data latches. a. Transparent from D to Q (D = Q) for ck = 0. For ck = 1 the loop is closed and
D input has no effect on output. b. Transparent from D to Q for ck = 1. For ck = 0 the loop is closed and D
input has no effect on output.

Problem B.7

Problem B.8
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Slave inverting MUX

b.

c.
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Figure B.23: Master-slave delay flip-flop (DF-F) with the clock signal active on the positive transi-
tion. a. Implemented with data latches based on transmission gates. b. The equivalent schematic for ck = 0. c.
The equivalent schematic for ck = 1.

MiMUX
SiMUX

RST

D Q

RST’

Figure B.24: Master-slave delay flip-flop with asynchronous reset.



Appendix C

Introduction in ADC & DAC Convertors

This appendix contains a brief introduction to AD conversion and DA conversion. The aim is to give
a preliminary picture of what it means to convert from analog to digital and vice versa. Presentation
involves knowledge of the concept of operational amplifier and how it is used to deal with a comparator
and a voltage amplifier. Also, the function of the digital priority encoder circuit must be known (see
subsection 6.1.4).

C.1 Analog circuits

The operational amplifier is a concept that refers to an ideal circuit that is quite well approximated by
real circuits.

Figure C.1 shows the symbol used for the operational amplifier. In the ideal case the amplification
A is infinite (in reality it is very large, usually 10,000+). Another important characteristic of operational
amplifiers is that they have a high input impedance Zin. Input impedance is measured between the
negative and positive input terminals, and its ideal value is infinity, which minimizes loading of the
source. Also, an operational amplifier ideally has zero output impedance, Zout .

+

+

-

-

V1

V2

Zin ∼ Vout

+V

−V

Zout
A(V2 −V1)

-

+

Figure C.1: Operational amplifier

We will use the operational amplifier in two established configurations: to implement the analog
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comparison function and to perform the amplification used for the analog summation.
The operation of an analog comparator (see Figure C.2a) is the generation of binary-valued voltages

that switch between the two levels when an analog input crosses a threshold voltage, Vth. Because

+

-

6

6

6
6

Vin Vout

R1

R2 Vth

A
+

A
-

R1

R2

Vin
Vout

a. b.

Figure C.2: Operational amplifier applications. a. Analog comparator. b. Amplifier.

Vout = A(Vin −Vth)

a practical approximate model for the comparator is given by:

Vout =Vz for Vin >Vth
Vout ≃ 0 for Vin <Vth

where Vz is the Zener voltage. Because A is infinite (actually very big) the output switches as soon as the
input value reaches the threshold value, ensuring a very accurate threshold detection.

An inverting operational amplifiers (see Figure C.2b) is based on the fat that the operational ampli-
fiers forces the negative terminal to equal the positive terminal, which is connected to ground. Indeed,
the very high value of A generates an appropriate value on the output for a very small, practically zero,
value of V1 −V2. Thus, V2, the inverting input, is practically connected to zero. Therefore the currents
flowing through the resistors R1 and R2 are identical. Results:

Vin

R1
=−Vout

R2

and the transfer function of the inverting amplifier is:

a =
Vout

Vin
=−R2

R1
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C.2 ADC

The analog-digital conversion is based on the use of comparators and a resistor network. The accuracy
with which the conversion is performed depends on the accuracy with which the resistance of the resistors
is ensured and on the accuracy with which the comparators work.

For Vin = 0 all comparators have zero output. For Vin > 0 a number of comparators are activated and
the encoder inputs are active from I0 to Ii. Then the output of the encoder will generate the number i
represented in binary code.

+
-C1

R R R R R R R R

+
-C2

+
-C3

+
-C4

+
-
C5

+
-
C6

+
-C7

Priority
Encoder

-
-
-

Vre f

Vin

B0

B1

B2

I1

I2

I3

I4

I5

I6

I7

I0

Figure C.3: ADC

C.3 DAC

For digital-to-analog conversion, a multi-input amplifier is used that allows the summation of several
currents passing through resistors subjected to the same potential. The size of the resistors is inversely
proportional to the associated binary order. Figure C.4 shows a DAC that converts 3-bit binary numbers.
MSB is associated with the lowest resistance, of R value. The middle bit controls the current through a
2R value resistor, and the LSB commands a 4R value resistor. The sum of the currents passing through
these resistors is equal to the current flowing through the reaction resistor R connected from the output
of the operational amplifier to its reversing input.

If Bi, for = 0,1,2, takes value in the set {0,1} and the truth value 0 is represented by 0 V and the truth
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value 1 is represented by VDD, then because the input current on the inverting input of the operational
amplifier is zero we can write:

B0

22 +
B1

21 +
B2

20 =−Vout

R
and the output of the circuit represented in Figure C.4 results:

Vout =−VDD(B2/20 +B1/21 +B0/22)

B2

B1

B0
Vout

20 ×R

21 ×R

22 ×R

R

-

+
A

Figure C.4: DAC

For example, if {B2,B1,B0}= 101, then the value on the output of the amplifier is: 1.25VDD.
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[Ştefan ’85] Gheorghe Ştefan, A. Pǎun, “Compatibilitatea functie - structura ca mecanism al evolutiei arhitec-
turale”, in Calculatoarele electronice ale generatiei a cincea, Ed. Academiei RSR, Bucuresti, 1985. p. 113 -
135.
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[Ştefan ’97a] Gheorghe Ştefan, Mihaela Maliţa: “ The Splicing Mechanism and the Connex Memory”, Proceed-
ings of the 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, April 13 - 16,
1997. p. 225-229.
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[Ştefan ’06e] Gheorghe Ştefan: “The CA1024: A Massively Parallel Processor for Cost-Effective HDTV”, in
SPRING PROCESSOR FORUM JAPAN, June 8-9, 2006, Tokyo.
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