Lecture notes
on
COMPUTER ARCHITECTURE

*

(work in progress)

Gheorghe M. Stefan

— 2024-25 academic year —

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

This document was prepared with IETEX 2,

Introduction

In this introductory course on Computer Architecture we will travel fast, without required prerequisite,
and hopefully efficient, the path from Boolean algebra and digital circuits to Instruction Set Architecture
(in short Architecture) and computer organization. From the syllabus of this course we quote:

"TCOMP-245 INTRO COMPUTER ARCHITECTURE (3 Credits) This course is an intro-
duction to the building blocks and organization of computers. Topics include: registers,
memories and other logic building blocks; central processing unit pipelines; integer and
floating point computer arithmetic;, memory and cache design, paging and mass-storage
systems; interrupt strategies, system bus protocols and shared-memory multiprocessors;
contemporary input/output buses and techniques; and the interactions between hardware
and the operating system.”

The course is based on the description of the structures and the simulation of their behavior in the
System Verilog HDL. For this, the students will install the Vivado Design Suite on their computers (from
https://www.xilinx.com/content/xilinx/en/support/download.html/).

The activity in this course involves theoretical exposure sessions interspersed with design and simu-
lation sessions made in System Verilog and run in the Vivado environment. Homework is given weekly.

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Contents

Combinational Circuits: No-Loop, Zero-Order Systems (0-OS)

1.1 Digital Domain e
1.2 One-input combinational circuits oL
1.3 Two-input gates o L e e e e e e e e e
1.4 Many-input Sates ot e e e e e e e e e e e e e
1.5 Generic combinational circuits Lo oL
1.6 Function oriented combinational circuits oL
1.7 Problems e
Memory Circuits: One-Loop, First-Order Systems (1-OS)

2.1 Latch . . . o . e
2.2 Serial extension: Master-Slave Principle oL oL
2.3 Serial-parallel extension: Register oo
2.4 Parallel extension: Random-Access Memory
2.5 Problems e
Automata: Two-Loop, Second-Order Systems (2-OS)

3.1 Definitions oL e e e e
3.2 Finite (complex) Automatao
3.3 Simple Automatao Lo e e e e e e
34 Problems
Processors: Three-Loop, Third-Order Systems (3-OS)

4.1 Architecture vs. Organization o e e
4.2 Processor: Three-Loop, Three-Order System (3-OS)
4.3 von Neumann Computer Version: Four-Loop, Four-Order System (4-OS)
4.4 Harvard Computer Version: Five-Loop, Five-Order System (5-OS)
4.5 ToyRISC Processor i it e
4.6 How is Designed an Instruction Set Architecture
477 Problems e
Instruction-Level Parallelism

5.1 Pipelining e e
5.2 Hazards Generated by Dependencies
5.3 Superscalar Processor e
54 Problems e e

12
16
19
23
28

35
35
38
40
42
48

51
51
57
63
70

71
71
72
75
75
76
88
&9

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

6 Computers: Four-Loop, Fourth-Order Systems (4-OS)
6.1 Memory e e e e e e e
6.2 System Organization e
6.3 O . . e e e e

7 Open Problems
7.1 Parallelism e e e e e e
7.2 Main Limits in Computation i

A Simulations
A.1 Waveforms Generator e e e e e e e e e
A.2 Combo Simulations e e
A3 Memory Simulations L e e e e e

B toyRISC Structural Implementation
B.1 Structure. e e e e e e
B.2 Codegenerator e e e
B.3 Simulator e e e e e e
B4 Testing. e e e e

C Pipelined toyRISC
C.l Structure e e e e e e e e e
C.2 Code generator v i v it e e e e e e e e e
C.3 Simulator e e e e
Cd Testing o it e e

D Forwarding toyRISC
D.1 Structure e
D.2 Codegenerator e
D.3 Simulator e e
D4 Testing. o e e e

Bibliography

Index

113
114
121
122

129
129
133

139
139
140
141

145
145
151
159
161

163
163
172
180
181

183
183
194
201
203

205

209

Contents (detailed)

1 Combinational Circuits: No-Loop, Zero-Order Systems (0-OS) 1
1.1 Digital Domain e e e e e e 2
1.1.1 Signalsin Digital Domain, 2

1.1.2 Behavioral vs. Structural Descriptions 4

1.2 One-input combinational Circuits 7
1.2.1 Formal Description 7

1.2.2 Physical Implementation of NOT Circuit 7
CMOS switches e 7

Thelnverter 9

The staticbehavior. o 9

Dynamic behavior. 9

1.3 Two-input gates o e e e e e e e e e e 12
1.3.1 Formal Description i 12

1.3.2 Physical Implementation of NAND & NOR Gates 14

The static behaviorof gates 15
Propagationtime 16

Propagation time for NAND gate 16

Propagation time for NOR gate 16

1.4 Many-input ateS o e e e e e e e e e e e e e e e e 16
1.4.1 Seven-Segment Display 17

1.5 Generic combinational circuits L. L.l 19
1.5.1 Decoder o . e 19

1.5.2 Multiplexor e e e 20

1.5.3 Elementary multiplexor oo 20

1.5.4 Many-input multiplexor L L oL 21

1.5.5 Demultiplexor e 22

1.6 Function oriented combinational circuits 23
1.6.1 Half Adder e 23

1.6.2 Increment e e e e e e 24

1.6.3 Adder/subtractor e e e e e 24

1.6.4 Arithmetic & Logic Unit 25

1.7 Problems e e e e e 28
1.7.1 Waveforms e e e e e e e 28

1.7.2 Combinatorial Circuits e 29

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

2 Memory Circuits: One-Loop, First-Order Systems (1-OS)
2.1 Latch
2.1.1 Closingthefirstloop
212 Clockedlatch
2.2 Serial extension: Master-Slave Principle Lo,
2.3 Serial-parallel extension: Register
2.3.1 Structureo e e e e e
232 Applications e
Storing e
Buffering
Synchronizing
Delaying e
Looping e
Pipelining
2.4 Parallel extension: Random-Access Memory
24.1 Generic StruCture v v v i e e e e e e e e e
242 Synchronous RAM
2.4.3 Synchronous pipelined RAM oL
244 Registerfile e
2.5 Problems
251 Registerso e e e e
252 MEMOTIeS v v i i e e e e e e e
Automata: Two-Loop, Second-Order Systems (2-OS)
3.1 Definitions o oL e e e e
3.1.1 Generic Definition
3.1.2 Sizevs.complexity
3.1.3 Taxonomy e e e
3.2 Finite (complex) Automata e
3.2.1 Recognizingautomata e e e e e
3.22 Control automata e e
3.3 Simple Automata e e
331 Counters e e
TFlip-Flop e
Generic Counter e e e
3.3.2 Program Counter
3.3.3 Registers with Arithmetic & Logic Unit (RALU)
34 Problems
340
342 e
Processors: Three-Loop, Third-Order Systems (3-OS)
4.1 Architecture vs. Organization e e
4.2 Processor: Three-Loop, Three-Order System (3-OS)
4.2.1 Interpreting Processor (CISC processor)
4.2.2 Executing Processor (RISC processor)

8

35
35
36
37
38
40
40
41
41
41
41
41
41
42
42
42
45
46
47
48
48
50

51
51
52
52
55
57
57
62
63
64
64
64
65
66
70
70
70

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

4.3 von Neumann Computer Version: Four-Loop, Four-Order System (4-OS) 75
4.4 Harvard Computer Version: Five-Loop, Five-Order System (5-OS) 75
4.5 ToyRISC Processor o v i it et e e e e e e 76
4.5.1 Organization e e e e e e e e e 76
Control e 77

RALU . . . e e 77

Interrupt section L. e 77

4.5.2 Instruction Set Architecture Lo 78

453 AssemblyCode L 80

Toy Assembler L 80

Simulator L e 84

Assembly Programs L o 84

4.5.4 Time performance e 87

4.6 How is Designed an Instruction Set Architecture 88
477 Problems e e 89
AT.1 89

4772 e 89
Instruction-Level Parallelism 91
5.1 Pipelining e e e e 91
5.1.1 Pipeline Acceleration 91

5.1.2 Pipelined Version of toyRISC 92
Structure L e e e e 92
Micro-architecture 93

Architecture 95

513 Latency o . e e e e e e 96

5.2 Hazards Generated by Dependencies 96
5.2.1 Datadependency 97
Stalling e e e 99

Reordering 100

Forwarding 100

5.2.2 Control Dependency 102
Stalling e e 104

Reordering 105

Static Branch Prediction L oL oL 106

Dynamic Branch Prediction 107

Last-time, one-bit predictor, 107

Two-Bit Counter Based Predictor 108

5.3 Superscalar Processor 108
5.3.1 Registerrenaming ol e e e e 108

5.3.2 Out-of-Order Execution, 109
Floating-point representation of real numbers 111

Tomasulo’s Algorithm L 111

54 Problems e e 112
SAL 112

SA2 e 112

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

6 Computers: Four-Loop, Fourth-Order Systems (4-OS)

6.1 Memory
6.1.1 MemoryGap e
Locality principle o
6.1.2 Memory Hierarchy
6.1.3 Virtual Memory Mechanism,
6.1.4 Associative Memory-Based Page Translator
Content-Addressable Memory
Associative Memory e e e
Translation Lookaside Buffer (TLB)
6.2 System Organization
6.3 TO . . e
6.3.1 Bus
6.3.2 DMA . . .
6.3.3 FIFO e
6.34 T/ODevices
HardDisk o
Optical Disks e
FlashMemory
Tapes e e

7 Open Problems
7.1 Parallelism
7.1.1 AdHocParallelism
7.1.2 Mathematical Model-Based Parallelism
7.2 Main Limits in Computation
7.2.1 Technological Limitations
John von Neumann Bottleneck
Speed L
Energy e
7.2.2 Theoretical Limitations
N=NP . .
BigOnotation
Halting Problem

A Simulations

A.1 Waveforms Generator
A2 Combo Simulations L
A2.1 ALUSimulation
A3 Memory Simulations
A.3.1 Pipelined Three Number Adder
A.3.2 Read-During-Write Register File
A3 3 e
A4 e
A5 e

113
114
114
115
115
116
116
116
119
120
121
122
122
124
124
125
125
126
126
127

129
129
131
132
133
134
134
134
135
135
135
135
136

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

B toyRISC Structural Implementation

B.1 Structure
B.2 Code generator
B.3 Simulator . . .
B.4 Testing.

C Pipelined toyRISC
C.1 Structure
C.2 Code generator
C.3 Simulator . . .
C4 Testing.

D Forwarding toyRISC
D.1 Structure
D.2 Code generator
D.3 Simulator . . .
D.4 Testing.

Bibliography

Index

11

145
145
151
159
161

163
163
172
180
181

183
183
194
201
203

205

209

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

12

Section 1

Combinational Circuits: No-Loop,
Zero-Order Systems (0-OS)

Contents
1.1 DigitalDomain 0 0 i i e e e e e e e e e e e 2
1.1.1 Signals in Digital Domain 2
1.1.2 Behavioral vs. Structural Descriptions 4
1.2 One-input combinational circuits 7
1.2.1 Formal Description e 7
1.2.2 Physical Implementation of NOT Circuit 7
1.3 Two-inputgates o v i i i i i i it ittt ettt et et 12
1.3.1 Formal Description e 12
1.3.2 Physical Implementation of NAND & NOR Gates 14
14 Many-input gates v v v v v i i ittt e e e e e e e e 16
1.4.1 Seven-SegmentDisplay 17
1.5 Generic combinational circuits 0 0 oo e 19
1.5.1 Decoder e 19
1.5.2 Multiplexor e e 20
1.5.3 Elementary multiplexor 20
1.5.4 Many-input multiplexor 21
1.5.5 Demultiplexor e 22
1.6 Function oriented combinational circuits 23
1.6.1 Half Adder 23
1.6.2 Increment e e e e e 24
1.6.3 Adder/subtractor 24
1.6.4 Arithmetic & Logic Unit 25
1.7 Problems ittt it e e e e e e e e e 28
1.7.1 Waveforms 28
1.7.2 Combinatorial Circuits o i 29

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

In this first lesson, and in the next one, we make a compromise between a brief recapitulation and a
quick introduction to the field of digital circuits in such a way as not to bore the already knowledgeable
and not to stress the novices. We will introduce strictly those notions that are necessary to understand
the principles on which the organization and architecture of computers are based. We will focus on
concepts and less on optimizing the way of implementation. We will focus more on the competence
of the described structures than on their performance. The functional approach will prevail over the
structural one in the description of the components used to design a computer system. We will focus on
some possible optimizations, in the last lessons, only at the level of organization and architecture of a
computing system.

1.1 Digital Domain

1.1.1 Signals in Digital Domain

In the electronic digital domain we work with two values only (see Figure 1.1):

0/false 1/true

Figure 1.1: The two levels of the signal in the digital domain. Low level (O Volt) for 0 or false, and
high level (Vpp Volt) for 1 or true.

* 0, represented by the electrical value 0 V, having two meanings:

— the numerical value 0

— the logic value false
* 1, represented by the electrical value Vpp V, having two meanings:

— the numerical value 1

— the logic value true

The signals used in a digital system are of two types:

* non-periodic, with a certain structure ("random”) adapted to the process of simulating the operation
of a digital system

* periods, usually with a strictly alternating structure, used as clock signals by which the operation
of a digital system is synchronized.

In the following System Verilog module, two waveforms are generated, one “random” and one usable as
a signal. (See the simulation result of this module in Section A.1)

2

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

/***************>l<***
File name: waveFormGenerator. sv
Circuit name: no circuit, only wave formes
Description: two waveforms are generated, a “"random” one and a periodical
one: a clock signal

***/
module waveFormGenerator ();

logic randomWave;

logic clock ;

initial begin randomWave = 0 ;
#2 randomWave = 1
#6 randomWave = 0 ;
#4 randomWave = 1 ;
#8 randomWave = 0 ;
#5 $stop 2
end
initial begin clock = 0 ;
forever #2 clock = “clock ;
end
endmodule
a A3 Az A] Ao Bg Bz Bl B()

5 T [Py bl
_/

BZ - 2 CRaul Adder CRln
By —— e C ¢

— e Ll

d S3 S ST So

a. b.

Figure 1.2: The version of digital circuits. a. Logic circuit: trans-coder for seven-segment display. b.
Numeric circuit: four-bit numbers adder.

Consequently, there are two kinds of circuits (see Figure 1.2):

* logic circuits (Fig. 1.2a)

* numeric circuits (Fig. 1.2b)

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

1.1.2 Behavioral vs. Structural Descriptions

The description of a digital circuit can be done in two ways:
* by describing the functional behavior
* by describing the internal structure of the circuit

We exemplify the two methods in the case of the addition function.

Example 1.1 Let us use the System Verilog HDL to describe an adder for 4-bit numbers (see Figure
1.3a). The description which follows is a behavioral one, because we know what we intend to design,
but we do not know yet how to design the internal structure of an adder.

i i inAdder

in0 inil

|

|

|

|

|

| |

| |

| |

| |

| |
adder [1

I sum |

| y | outAdder

|

| ; ;

|

|

|

|

|

|

out

Figure 1.3: The first examples of digital systems. a. The two 4-bit numbers adder, called adder. b. The
structure of an adder for 3 4-bit numbers, called threeAdder.

The Verilog code describing the module adder is:

/* koo sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk ok sk sk sk ok skosk sk ok sk sk sk okosk sk ok skoskosk ok skosk ok
File name: adder. sv

Circuit name: Adder
Description: The module ’adder’ has 2 4-bit inputs and one 4-bit output
The circuit adds modulo 16; do not use or provide carry
signal
***/
module adder (output logic [3:0] out , // 4-bit output
input logic [3:0] in0 , // 4-bit input

input logic [3:0] inl); // 4-bit input

assign out = in0 + inl;
endmodule

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The story just told by the previous Verilog module is: “the 4-bit adder has two inputs, in0, inl,
one output, out, and its output is continuously assigned to the value obtained by adding modulo 16 the
two input numbers”.

o

What we just learned from the previous first simple example is summarized in the following Sys-
temVerilogSummary.

System VerilogSummary 1 :

/* : begin comment
*/ : end comment

module : keyword which indicates the beginning of the description of a circuit as a module having the
name which immediately follows (in our example, the name is: adder)

endmodule : keyword which indicates the end of the module’s description which started with the pre-
vious keyword module

output : keyword used to declare a terminal as an output (in our example the terminal out is declared
as output)

input : keyword used to declare the terminal as an input (in our example the terminals in0 and in1 are
declared as inputs)

logic : a data type with 4-state bits: 0, 1, x, z where 0 means low, 1 means high, x means unknown,
and z means an undriven net.

initial : a block which starts at the beginning of simulation
begin ... end : block delimiters

: indicate a raw value

forever : indicate an unending operation

~ : negation operator

assign : keyword called the continuous assignment, used here to specify the function performed by the
module (the output out takes continuously the value computed by adding the two input numbers)

(...) : delimiters used to delimit the list of terminals (external connections)
, . delimiter to separate each terminal within a list of terminals
; : delimiter for end of line

[... 1: delimiters which contains the definition of the bits associated with a connection, for example
[3:0] define the number of bits for the three connections in the previous example

+ : the operator add, the only one used in the previous example.

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The description of a digital system is a hierarchical construct starting from a top module populated
by modules, which are similarly defined. The process continues until very simple module are directly
described. Thus, the functions f and g are specified by HDL programs (in our case, in the previous
example by a Verilog program).

The main characteristic of the digital design is modularity. A problem is decomposed in many
simpler problems, which are solved similarly, and so on until very simple problems are identified. Mod-
ularity means also to define as many as possible identical modules in each design. This allow to replicate
many times the same module, already designed and validated. Many & simple modules! Is the main
slogan of the digital designer. Let’s take another example which uses as module the one just defined in
the previous example.

Example 1.2 The previously exemplified module (adder) will be used to design a modulo 16 3-number
adder, called threeAdder (see Figure 1.3b). It adds 3 4-bit numbers providing a 4-bit result (modulo
16 sum). Follows the structural description:

/3 ok sk ok s o ko ok o R R R KR kR R R SR sk R sk R sk ok o ok o o ok R kR KR kR R R SR sk R ok R s ok ok ok R R
File name: threeAdder. sv
Circuit name: Three Input Adder
Description : The module ’threeAdder’ has 3 4—bit inputs and one 4-Dbit
output. The circuit adds modulo 16 three numbers;
do not provide carry output
>k>l<**********>l<>l<>l<****>l<>k>l<*****************>l<>k>l<****>l<>l<>l<************************/
module threeAdder(output logic [3:0] out,
input logic [3:0] in0O,
input logic [3:0] inl,
input logic [3:0] in2);

logic [3:0] sum ;

adder inAdder (. out (sum),
.in0 (inl),
.inl (in2)),
outAdder (. out(out),
.in0 (in0) ,
.inl (sum));
endmodule

Two modules of adder type (defined in the previous example) are instantiated as inAdder,
outAdder, they are interconnected using the wire sum, and are connected to the terminals of the
threeAdder module. The resulting structure computes the sum of three numbers. ©

SystemVerilogSummary 2 :

* How a previously defined module (in our example: adder) is two times instantiated using two
different names (inAdder and outAdder in our example)

6

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

* A “safe” way to allocate the terminals for a module previously defined and instantiated inside
the current module: each original terminal name is preceded by a dot, and followed by a paren-
thesis containing the name of the wire or of the terminal where it is connected (in our example,
outAdder(... .inl(sum)) means: the terminal in1 of the instance outAdder is connected
to the wire sum)

* The successive instantiations of the same module can be separated by a .’

9 .

While the module adder is a behavioral description, the module threeAdder is a structural one.
The first tells us what is the function of the module, and the second tells us how its functionality is
performed by using a structure containing two instantiation of a previously defined subsystems, and an
internal connection.

1.2 One-input combinational circuits

1.2.1 Formal Description

Table 1.1: One-input circuits.

| A]| [NOT | BUFFER | |
0ol 1 0
1L]o] o 1

>O |
A A A | A

NOT BUFFER

Figure 1.4: Graphic representation of the NOT and BUFFER circuits.

1.2.2 Physical Implementation of NOT Circuit
CMOS switches

A logic gates consists in a network of interconnected switches implemented using the two type of MOS
transistors: p-MOS and n-MOS. How behaves the two type of transistors in specific configurations is
presented in Figure 1.5.

A switch connected to Vpp is implemented using a p-MOS transistor. It is represented in Figure 1.5a
off (generating z, which means Hi-Z: no signal, neither 0, nor 1) and in Figure 1.5b it is represented on
(generating 1 logic, or truth).

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Vbp Voo

I— z Vbp

{
R

Figure 1.5: Basic switches. a. Open switch connected to Vpp. b. Closed switch connected to Vpp. ¢. Open
switch connected to ground. d. Closed switch connected to ground.

A switch connected to ground is implemented using a n-MOS transistor. It is represented in Figure
1.5¢ off (generating z, which means Hi-Z: no signal, neither 0, nor 1) and in Figure 1.5e it is represented
on (generating 0 logic, or false).

A MOS transistor works very well as an on-off switch connecting its drain to a certain potential. A p-
MOS transistor can be used to connect its drain to a high potential when its gates is connected to ground,
and an n-MOS transistor can connect its drain to ground if its gates is connected to a high potential. This
complementary behavior is used to build the elementary logic circuits.

In Figure 1.6 is presented the switch-resistor-capacitor model (SRC). If Vg < Vr then the transistor
is off, if Vg > Vr then the transistor is on. In both cases the input of the transistor behaves like a
capacitor, the gate-source capacitor Cgs.

When the transistor is on its drain-source resistance is:

Ron =R L
ON — nW
where: L is the channel length, W is the channel width, and R, is the resistance per square. The length
L is a constant characterizing a certain technology. For example, if L = 0.13um this means it is about a
0.13um process.
The input capacitor has the value:

Eox LW
The value:
Cox = 2
d
where: €px =~ 3.9¢y is the permittivity of the silicon dioxide, is the gate-to-channel capacitance per unit
area of the MOSFET gate.
In this conditions the gate input current is:
. dvgs
ic = Cgs I

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Vs <Vr Ves 2 Vr

Figure 1.6: The MOSFET switch. The switch-resistor-capacitor model consists in the two states: OF (Vgs <
Vr), and ON (Vgs > Vr). In both states the input is defined by the capacitor Cgs.

Example 1.3 For an AND gate with low strength, with W = 1.8um, in 0.13um technology, supposing
Cox = 4fF /um?, results the input capacitance:

Cos =4 x0.13 x 1.8fF = 0.936fF

Assuming R, = SKQ, results for the same gate:

A
RON:SX%KQ:?)QQ

The Inverter

The static behavior. The smallest and simplest logic circuit — the invertor — can be built using a pair
of complementary transistors, connecting together the two gates as input and the two drains as output,
while the n-MOS source is connected to ground (interpreted as logic 0) and the p-MOS source to Vpp
(interpreted as logic 1). Results the circuit represented in Figure 1.7.

The behavior of the invertor consist in combining the behaviors of the two switches previously de-
fined. For in = 0 pMOS is on and nMOS is of f the output generating Vpp which means 1. For in = 1
pMOS is of f and nMOS is on the output generating 0.

The static behavior of the inverter (or NOT) circuit can be easy explained starting from the switches
described in Figure 1.5. Connecting together a switch generating z with a switch generating 1 or 0, the
connection point will generate O or 1.

Dynamic behavior. The propagation time of an inverter can be analyzed using the two serially con-
nected invertors represented in Figure 1.8. The delay of the first invertor is generated by its capacitive
load, Cr,, composed by:

* its parasitic drain/bulk capacitance, Cpg, is the intrinsic output capacitance of the first invertor

9

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Vbp

Vpp/2 ! VD
Vn Vpp = |Vrpl

Figure 1.7: Building an invertor. a. The invertor circuit. b. The logic symbol for the invertor circuit.
* wiring capacitance, C,;r., Which depends on the length of the wire (of width W,, and of length L,,)
connected between the two invertors:

Cwire = Cthickox WWLW

* next stage input capacitance, Cg, approximated by summing the gate capacitance for pMOC and
nMOS transistors:
C6=Cgp+Cqn = Cox(Wpr +W,Ly,)

«>So—~[>o0— oy

Vou -

v(r) Vg

— Vou

Ronn
— Vou/2 -
-_ CL

Cesn+Casp L

Figure 1.8: The propagation time.

The total load capacitance
CL = Cpp + Cyire +Cq

10

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

is sometimes dominated by C,,;.. For short connections C¢ dominates, while for big fan-out both, C,,ie
and C; must be considered.

The signal Vy is used to measure the propagation time of the first NOT in Figure 1.8a. It is generated
by an ideal pulse generator with output impedance 0. Thus, the rising time and the falling time of this
signal are considered O (the input capacitance of the NOT circuit is charged or discharged in no time).

The two delay times (see Figure 1.8c) associated to an invertor (to a gate in the general case) are
defined as follows:

* tprr: the time interval between the moment the input switches in 0 and the output reaches Vop /2
coming from 0

e tpyL: the time interval between the moment the input switches in 1 and the output reaches Voy /2
coming from Vpy

Let us consider the transition of V4 from 0 to Vg at ¢, (rise edge). Before transition, at ¢, Cy, is fully
charged and Vi = Vg . In Figure 1.8b is represented the equivalent circuit at ¢,¥, when pMOS is off and
nMOS is on. In this moment starts the process of discharging the capacitance Cy, at the constant current

1 W,
IDn(sat) = E.uncox?nO/OH - VTn)2
n

In Figure 1.9, at ¢, the transistor is cut, Ip, = 0. At ¢;* the nMOS transistor switch in saturation and
becomes an ideal constant current generator which starts to discharge Cy linearly at the constant current
Ipn(sar)- The process continue until Voyr = Vog, according to the definition of z,y; .

tr +tpHL
1

D

y

| I Vin =Vour
Ipn F------>] »

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

: : Vin=0

WA
! ! Vour
Vor /2 Vou

Figure 1.9: The output characteristic of the nMOS transistor.

In order to compute 7,y; we take into consideration the constant value of the discharging current
which provide a linear variation of voy7.

dvous _ d qr

o —ai'c,

—Ip, (sar)
CL

)=

\7
dvou . gH —Vou

dt IpHL

11

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

We solve the equations for 7,5 :

1 Voun
HnCax%’ (Vor —Vra) Vo —Vra

tour = Cr

Because: |
Rown = NnC()x%(VOH —Vra)
results:
tprir. = CLRONn —— = knRonnCL = knTar
Von
where:

e 1,7 1S the constant time associated to the H-L transition

* k, is a constant associated to the technology we use; it goes down when Vpg increases or Vp
decreases

The speed of a gate depends by its dimension and by the capacitive load it drives. For a big W the
value of Roy is small charging or discharging C;, faster.

For 1, 5 the approach is similar. Results: 7,15 = k, Ty

By definition the propagation time associated to a circuit is:

tp = (tpLr +1prr) /2

its value being dominated by the value of C;, and the size (width) of the two transistors, W, and W,,.

1.3 Two-input gates

1.3.1 Formal Description

Table 1.2: Two-input gates.

A[B] [NOR| | | | |[XOR|[NAND|[AND [NXOR| | | | |OR]| |
o[ofo[1 JoJ1Jo[r] 0 1 0 1 Jof[r]oJir[o1
O[1f]o] o Jr[1]ofo] 1 1 0 0 [1]1Jofo] 1 |1
1[of[o] o JoJof1]1] 1 1 0 0 JoJo[r[r] 1 |1
1[1]o] o JoJoJoJo] o© 0 1 1 1111

The currently used two-input gates are (see Tab. 1.2):

AND : A-B=AB =1 only if both A and B are 1, else AB =0
Numerical interpretation: arithmetic product
Symbolic interpretation: gate because A=1 opens the way for B

NAND : (AB)’ =0 only if both A and B are 1, else AB = 1

12

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

OR : A+B =only if at least one of A and Bis 1, else A+B =0

NOR : (A+B) =0 only if at least one of A and B is 1, else A+B =1

XOR : exclusive OR, because it is excluded the case A=B=1 in determining 1 on the output
A®B =1 when only one of the input, A or B, is one
Logic interpretation: conditioned inverter, i.e., if A = 0 then A®B = B else A®B = B’ Numerical
interpretation: modulo-2 sum
Symbolic interpretation: anticoincidence

NXOR : (AgB’)
Symbolic interpretation: coincidence

A A s
Bj} AB Bj} 4B)
AND NAND
A A s
8 @—A+B 8 ®O—(A+B)
OR NOR
A A ,
A j&ws A jD)— (AGB)
XOR NXOR

Figure 1.10: Graphical representation of the most used two-input gates.

13

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

A | | | |
/—\ /—\
| | | |
| | | |
| | | | t
| | | |
| | | |
B | | | |
| | | |
: ‘ : : -
| | | |
| | | |
y
AND | | | g
| | | ' | ‘\
| | | |
|
| | | |
l l l ! t
| | | | :
OR - | | 3
| / T T ™)
L | | |
YA I I I \
1 . . . -
ﬁ*} - | | | : t
[I I I 1y
(. | | "y
XOR 1 Ly ! K '
[L]
| / | | \ '
1 | o\ 1
| | [[.
— ! — — — — t
IpLH [IpHL

Figure 1.11: Wave forms for the non-inverting gates.

In Figure 1.11 is represented the behavior of the main gates, AND, OR and XOR, driven by the signal
A snd B represented in the first two wave forms. Besides the logic response to the inputs A and B there
are represented the main time characteristics:

* ¢, the positive transition time (the duration of the positive edge)

* t_: the negative transition time (the duration of the negative edge)

* tp.n: the propagation time of the signal through the gate for the transition from Low to High
* tpnL: the propagation time of the signal through the gate for the transition from High to Low

All the previous times are different from positive and negative transition and from a type of gate to
another. For our approach differences are small and unimportant.

1.3.2 Physical Implementation of NAND & NOR Gates

The 2-input AND circuit, a - b, works like a “gate” opened by the signal a for the signal b. Indeed, the
gate is “open” for b only if @ = 1. This is the reason for which the AND circuit was baptised gate. Then,
the use imposed this alias as the generic name for any logic circuit. Thus, AND, OR, XOR, NAND, ...
are all called gates.

14

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The static behavior of gates

For 2-input NAND and 2-input NOR gates the same principle will be applied, interconnecting 2 pairs of
complementary transistors to obtain the needed behaviors.

There are two kind of interconnecting rules for the same type of transistors, p-MOS or n-MOS. They
can be interconnected serially or parallel.

A serial connection will establish an on configuration only if both transistors of the same type are on,
and the connection is off if at least one transistor is off.

A parallel connection will establish an on configuration if at least one is on, and the connection is off
only if both are off.

VoD

o
©

A
(ABY
(AB)’ B

a. b.

Figure 1.12: The NAND gate. a. The internal structure of a NAND gate: the output is 1 when at least one input
is 0. b. The logic symbol for NAND.

Applying the previous rules result the circuits presented in Figures 1.12 and 1.13.

VoD

A
o > (A+B)’
(A+B)’ B

Figure 1.13: The NOR gate. a. The internal structure of a NOR gate: the output is 1 only when both inputs are
0. b. The logic symbol for NOR.

For the NAND gate the output is O if both n-MOS transistors are on, and the output is one when at

15

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

least on p-MOS transistor is on. Indeed, if A = B = 1 both n transistors are on and both p transistors are
off. The output corresponds with the definition, it is 0. If A = 0 or B = 0 the output is 1, because at least
one p transistor is on and at least one n transistor is off.

A similar explanation works for the NOR gate. The main idea is to design a gate so as to avoid the
simultaneous connection of Vpp and ground potential to the output of the gate.

For designing an AND or an OR gate we will use an additional NOT connected to the output of
an AND or an OR gate. The area will be a little bigger (maybe!), but the strength of the circuit will be
increased because the NOT circuit works as a buffer improving the time performance of the non-inverting
gate.

The propagation time for the 2-input main gates is computed in a similar way as the propagation for
NOT circuit is computed. The only differences are due to the fact that sometimes Roy must be substituted
with 2 X Ropn.

Propagation time
Propagation time for NAND gate becomes, in the worst case when only one input switches:
tur = kn(2Ronn)CL

tta = kp(Ronp)CL

because the capacitor Cy, is charged through one pMOS transistor and is discharged through two, serially
connected, nMOS transistors.

Propagation time for NOR gate becomes, in the worst case when only one input switches:
tar = ka(Rownn)CL

thtH = k,,(ZRONp)CL

because the capacitor Cy, is charged through two, serially connected, pMOS transistors and is discharged
through one nMOS transistor.

It is obvious that we must prefer, when is is possible, the use of NAND gates instead of NOR gates,
because, for the same area, Roy, > Ronn-

1.4 Many-input gates

The number N of n-input gates is: N, because the number of input binary configuration is 2. Therefore,
they cannot be listed. For n > 2 the Boolean functions are managed using Boolean algebra rules.
Let’s consider some significant examples:

« () =A
« AB+AB'=AB+B)=A-1=A

because, when B=1 the expression takes the value A, and when B=0 the expression still takes the
value A, we conclude that the value of B does not matter and the expression takes the value A.

16

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

* A+AB=A+B
to prove it the method of truth table is used, as follow:

Table 1.3: Example of proof using the truth table.

|A[B||A[AB|A+AB || A+B |
ofo[1] o0 0 0
o111 1 1
1jofo] o 1 1
1j1Jof o 1 1

cADB=(AOBY=(AGB)=A 3B

* de Morganrule: A+ B =(A’B’)
A or B is 1 is equivalent to the fact that it is not true that A is 0 and B is 0.

* de Morgan rule: AB =(A’ + B’)’
A and B are 1 is equivalent to the fact that it is not true that A is 0 or B is 0.

Fortunately for us, synthesis software tools (Hardware Description Languages (HDLs) such as Ver-
ilog or VHDL) “know” how to use Boolean algebra very efficiently, saving us the effort of minimizing
combinational logic circuits.

1.4.1 Seven-Segment Display

A seven-segment display is driven by a trans-coder which receives four-bit coded decimal numbers, from
0 to 9, and convert them in 7-bit codes, a to g, indicating the segments to be activated, according to Table
1.4.

The logic expression for the output a is:

a:Bg'B/z-Bll -B6+B/3-B/2'Bl -B6+B’3~B/2-Bl -Bo+B/3-Bz~B/1 -Bo+
Bg‘BQ‘B] 'B6+B/3'Bz'31 ‘B()—I—B3‘B,2'B/1 'B6+B3'B/2‘B,1 -By

or a simpler version by negatin the negated function:

a= (a')’ = (Bg ~B/2 'Bll -By +B/3 -B> ~B/1 ~B6)/ = (Bg ~B/1 . (Bz EBB())), =B3+B;+ (32 @Bo)/

17

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Table 1.4: Seven-segment display.
2B [Bofafblc[d]e]|f]e]

o
W

=
oy

|

oOy0,0(0¢Yf1|11}j1]1]1]0
O,0,01)0|111]0]0]0]|O0
OO0 | 1101
o101 1|1
010|010
O 11011
O 1|1]0(1
o 11111
1 10]0 0|1
110011

The System Verilog description of the circuit is sketched in the following:

/3 sk s o sk o ok ok ok ok R R KR kR R R s R sk R s R s ok o o ok ok R R R R R R sk R sk R s R ok ok ok o ok
File name: sevenSegmDys . sv
Circuit name: Seven—Segment Display
Description :
**********************>l<*******************>l<******************************/
module sevenSegmDys (output logic [6:0] seg ,

input logic [3:0] number);

always_comb case (number)

4°b0000: seg = 7°b1111110 ;
4°b0001: seg = 7°b0110000 ;
4°b0010: seg = 7’b
4°b0011: seg = 7°b
4°b0100: seg = 7°b
4°b0101: seg = 7°b
4°b0110: seg = 7’b
4°b0111: seg = 7’b
4°b1000: seg = 7°b
4°b1001: seg = 7°b
default: seg = 7°’b ;

endcase
endmodule

SystemVerilogSummary 3 :

always_comb : defines a block which describes the behavior of a combinational computed variable (seg
in the previous module). The blocking assignment, =, is used to assure the combinational behavior.

4’b0010 : instantiate a variable as a 4-bit number

case : selects a block of code to be executed based on the value of a given signal in our design. Once a
match is found for the input signal value, the action associated with that value will be executed

18

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

default : if no condition is fulfilled, the default action is selected for execution.

1.5 Generic combinational circuits

1.5.1 Decoder

Decoding means to identify with a one bit signal each binary code applied to the input of the circuit.
Therefor, a n-bit input code applied on the input of a decoder implies a number of 2" outputs. Only one
output is active at a time corresponding to the input code. Thus, for the decoder represented in Figure

1.14,if {x,—1,...,x0} = 00...0101, then ys = 1 and all the other outputs are 0.
X0 —
X1 —>
: : DCDn
‘ .%_Pgi

o !

Yo Y1 Ym—1
Figure 1.14: Decoder with n-bit input (DCDn).

The System Verilog code for the decoder circuit follows. The description is behavioral.

System VerilogSummary 4 :

<< : shift left logical, i.e., multiplication with 2 to the power of the number of binary shifts

/***
File name: dcd. sv

Circuit name: 4—input decoder

Description :
***/

module dcd(output logic [15:0] dcdOut
input logic [3:0] dcdIn)

assign dcdOut = 1 << dcdIn ;
endmodule

In Figure 1.15a, is represented the smallest decoder, the elementary DCD, eDCD. Using two eDCD
and 4 ANDs, a two-input decoder, DCD2, is designed (see Figure 1.15b). The rule to increase the number
of inputs becomes evident with the third example: DCD3 (see Figure 1.15¢).

19

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

0o
eDCD E E
] k 0 0,
| : : |
o
Iy | | 0y ! 6
l l @

0y 03

0y 0,
—_— eDCD

= 1 = 1]

Al

03 Os 07

T =L =L =1 1
- Y Y |Y Y
ol gy e

Io

— o 0, 0, 03
I DCD2

I

C.

Figure 1.15: Recursively defined 3-input decoder (DCD). a. Elementary decoder (eDCD). b. Two-input
decoder (DCD?2). ¢. Three-input DCD (DCD3).

1.5.2 Multiplexor
1.5.3 Elementary multiplexor

Any combinational circuit can be expressed using NAND function. But a more interesting “fundamental
brick” could be a circuit corresponding to the ubiquitous if-then-ellse statement. It is the elementary
multiplexor (eMUX) represented in Figure 1.16, where:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,

a.

Figure 1.16: Elementary multiplexor (eMUX). a. The circuit structure: an eDCD serially connected with
an AND-OR circuit. b. The logic symbol.

20

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

O =if (S) then I1 else 10

1.5.4 Many-input multiplexor

The multiplexor grabs bits from m = 2" inputs selected by a n-bit code.

SystemVerilogSummary 5 :

a[b]: selects the bit indicated by b from the binary word a

/***
File name: mux. sv

Circuit name: 4—input multiplexor

Description :
***/

module mux(output logic muxOut
input logic [15:0] muxIn ,
input logic [3:0] muxSel);
assign muxOut = muxIn[muxSel] ;
endmodule

21

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Ym—1
DCD,,
Y1 i i Im—1
Yo i i im—l T ‘ ‘
Lo 1 m-1)
%I’l Xn—1s--+,X0
Xn—1s--+,X0)
a b.

Figure 1.17: The general definition of the multiplexor circuit (MUXn). a. The structure of MUXn: a
DCDn serially connected with a m = 2" ANDs on the first level of an AND-OR structure. b. The logic
symbol for MUXn.

1.5.5 Demultiplexor

The demultiplexer transfers the input signal X to one of the m = 2" outputs, yg, y1,...,Vm—1, indicated by
the n-bit selection input, xgp,xq,...,X,—1. In Figure 1.18 a demultiplexer is built using a decoder which
open only one of the m AND gate sending the X input to the selected output.

Figure 1.18: Demultiplexor as a DCD whose outputs are ANDed with the one bit signal to be distributed
according to the n-bit input code.

For example: if
{xXn—1Xn—2,...,x1,x0} =00...011

22

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

then
m—1Ym—2--.yoy1} = 00...0X000

The code describing behaviorally the circuit follows:

[% kkkckkkkkk Rk Rk Rk Rk ok kkkk Rk Rk Rk kkokkkk kR kR kR kkkkkk Rk Rk Rk ok kkkkkk Rk kk ok kkkkwk k%

File name: dMux . sv

Circuit name: 4—input demultiplexor

Description: Demultiplexor is an enabled decoder

3 kR R R R KR R R R R ok sk ok ok ok ok ok R ok ok R Sk K R kR R KRR R R R R R R R R R Rk ok Rk ok Rk ok Rk R Rk R Rk R Rk R Rk %k %/

module dMux(output logic [15:0] dMuxOut ,
input logic [3:0] dMuxIn ,
input logic dMuxEnable);

assign dMuxOut = dMuxEnable << dMuxIn ;
endmodule

Now, instead of left-shifting the number 1 as in the decoder, the one-bit value X is left-positioned.

1.6 Function oriented combinational circuits

1.6.1 Half Adder

As we have seen, the XOR circuit calculates the sum modulo 2 but does not differentiate between 0+0
and 1+1. This differentiation involves the calculation of the arithmetical overshoot, which we denote by
carry (to the next binary order). Carry signal is activated when both inputs are 1. Therefore, besides the
XOR gate we must add an AND gate as in Figure 1.19. We call the resulting circuit half adder because
it does not take into account the carry signal provided by the previous binary order.

Figure 1.19: Half adder (HA).The XOR circuit compute the modulo-2 sum while the AND gate compute
the carry value.

23

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

1.6.2 Increment

Incrementing means adding 1 to a number. The schematic for a 4-bit increment circuit, INC4, is repre-
sented in Figure 1.20, where if inc = 1 the output outy <= inj and cr of HA,, if it is activated command
the increment for HA;, and so on.

i}’l3 in2 in1 ino
in . in . in . in .
<r cr nc cr nc Ccr nc cr mee——_—
mc
HA; HA, HA, HA,
out out out out
outy outy out| outy

Figure 1.20: Increment circuit for 4-bit numbers (INC4) implemented by serially connected 4 HAs.

1.6.3 Adder/subtractor

Full adder (FA) adds two one-bit numbers with the carry provided from the previous binary position and
generate the sum and the carry value for the next binary position. In Figure 1.21a, a FA is composed from
two HAs and an OR circuit used to grab the carry generated by the first HA or by the second HA. The
first FA adds the two input bits, A and B, while the second FA adds the value of the carry, C, generated
by the previous binary order.

A B
! % %
: in inc
l HAs
I Az B3 Ay B Ay B Ag By
|
‘ T o S SRS TN SR A R
|
|
|
|

: in inc Cout FA FA, FA FA C
|

: HA3 S S S S

: oo l |]]

|

ST _.__._ i ., $3 S S So

S
a b.

Figure 1.21: Adder. a. Full Adder (FA). b. 4-bit adder (ADD4).

The main problem to be solved, but not in this lecture, is the execution time, i.e., the maximum time
interval from the moment when an input changes until the moment when all the outputs of the circuit
reach the correct final value. This time interval is due to propagation through logic gates on the longest

24

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

path. In our case, the longest path is the one from input C to output C,,,. On this path there are 8 logic
gates, one AND and one OR for each binary order. In the general case, the time is proportional to n (it is
in O(n)).

B3 B, By By C
M 1L 1L 1L Ll
Ay 7 A 7 A 7 Ao 7
A B A B A B A B
CUT Cmn‘ F A3 C Cnm‘ F A2 C Cnm‘ F A1 C C{mt F A() C
S S S

47
-]
-]

LHNe—w»

Figure 1.22: Adder/Substractor

Subtract operation is performed by adding the 2s complement:

+5 = 0_0101
-5 =1_1010 + 1 = 1_1011
+5 = 0_0100 + 1 = 0_0101
-5+ 2 =1_1011 +
0_0010 =
1_1101 = -3, because 0_0010 + 1 = 0_0011 = 3

Therefore, each B; is complemented and the increment with 1 is generated by inverting the carry
input. All the inversions are performed under de command sub applied to 5 XORs.

1.6.4 Arithmetic & Logic Unit

An Arithmetic & Logic Unit (ALU) has two kinds of connections: data inputs and outputs, for the n-bit
operands, and command inputs for the operations applied to operands (see Fig 1.23). In Figure 1.24, is
represented the generic form of an ALU with 15 functions each performed in a distinct module, funcoO,

., func1b, whose outputs are selected by a multiplexor as the result by the func code. The two
operands, leftOp[n-1:0], rightOp[n-1:0], are applied to all the 15 modules.

rightOp[n-1:0] ——»{
ALU l&—— func[m-1:0]

L

crOut result[n-1:0]

leftOp[n-1:0] ——»

[— crln

Figure 1.23: ALU.

25

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

rigthOp[n-1:0] - - - -

leftOp[n-1:0] - - - -
Y Y Y A4 1 Y

funcO funcl [------- funcl15

func[3:0]74L(0 1------ 15)
l

result[n-1:0]

Figure 1.24: The generic form of a 16-function Arithmetic & Logic Unit for n-bit words (ALUn).

[k kwckokkkokkkokokkkokokkokokokkokokokkokokkk ok ok kokokkkokokkokokokkokokkkokokkk ok ok kokok sk kokokkkok ok kokokkkokok k%

File name: alu. sv
Circuit name: arithmetic and logic unit
Description: the circuit selects , using the selection code ’func’, one

of the 8 functions
module ALU(input logic crln ,
input logic [2:0] func ,
input logic [31:0] left, right ,

output logic crOut
output logic [31:0] out)
always_comb case (func)

3°b000: {crOut, out} = left + right + crln; // add
3°b001: {crOut, out} = left — right — crln; // sub
3’b010: {crOut, out} = {1°b0, left & right}; // and
3’b011: {crOut, out} = {1°b0, left | right}; //or
3’b100: {crOut, out} = {1°b0, left ~ right}; // xor
3’b101: {crOut, out} = {1°b0, “left}; //not
3'b110: {crOut, out} = {1°b0, left}; //left
3’bl111: {crOut, out} = {1°b0, left >> 1}; // shr

default {crOut, out} = 33°b0 - 1°bl;
endcase
endmodule

System VerilogSummary 6 :

{a,b} : concatenates the binary word b to the binary word a
- : is the operator minus
& : is the operator bitwise AND

| : is the operator bitwise OR

26

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

~ . is the operator bitwise XOR

>> :is the operator shift right logical

Actual implementations are sometimes optimized by implementing two ore more modules sharing
partially the same circuits. A small and simple example is represented in Figure 1.25, where:

e func[2:0] to select the function:

func = 000 add: {crOut, result} = leftOp + rightOp + crln
func = 100 sub: {crOut, result} = leftOp - rightOp - crln
func = 010 and: {crOut, result} = {1°b0, leftOp & rightOp} (bitwise AND)
{1°b0, leftOp @ rightOp} (bitwise XOR)
{1eftOp[0], serialln, leftOp[n-1:11}

func = 001 xor: {crOut, result}
011 shr: {crOut, result}

func
* leftOp[n-1:0]
* rightOp[n-1:0]
e crln
e crOut

* serialln: the value loaded in the most significant position in the shift right operation, shr, allowing the
following types of shifts:

— shr: {crOut, result}
- ash: {crOut, result}
- rot: {crOut, result}
- csh: {crOut, result}

{leftOp[0], 1’b0, leftOp[n-1:11}
{1eftOp[0], leftOp[n-11, leftOp[n-1:11}
{left0p[0], leftOp[0], leftOp[n-1:1]1}
{left0p[0], crIn, leftOp[n-1:1]1}

e result[n-1:0]

leftOp[n-1] leftOp[n-2] leftOp[0]

rightOp[n-1]

‘rightOp[n—Z] ‘rightOp[O]
FRUEERR S S USRI SR N SN I SRR S ,,,,,,,,,,,func[z]
| | = | | | |
! in inc Lo in inc ! ! in inc !
} HA P HA } } HA }
i cr_out P cr_out i i cr_out i
wou <] 1< Tl T T
! in inc| |' in inc| | ! in inc|
3 HA L HA 3 3 HA 3
i Cr _out i i Cr_out i i Cr _out i
!] L] L. !] !
serialln! | ‘ Lo | ‘ ! } | ‘ }
! 2 0) ;;{{'3 2 0) ;{{'3 2 0)
result[n-1] result[n-2] result[0] func1:0]

Figure 1.25: A simple Arithmetic & Logic Unit for n-bit words (ALUn).

27

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The implementation takes into account the fact that a HA is implemented using an AND gate and
a XOR gate (see Figure 1.19). Thus, in each of the n slices of ALU only an adder/subtractor is imple-
mented, a XOR is added for the subtract function and for the two logic functions the outputs of the first
HA are directly used.

1.7 Problems

1.7.1 Waveforms

Problem 1.1 Generate the following waveforms:
W = a’c*ba?

where: a=2'b01, b =2'b10, c = 2'b11. and each value is maintained 2 time units (#2).
o

Solution

Because each symbol is codded on 2 bits, results 2 wave forms: w; and wy, as follows:

wom]_fooo 1111100
Tlwo] 1111111011

/***
File name: waveforml . sv
Description : W = aaaccccbaa =
***/
module waveforml ;

logic [1:0] W;

parameter a = 2°b01,
= 2’°bl0,
c = 2’bll;
initial begin W= a ;
#6 W = ¢ ;
#8 W =0 ;
#2 W = a ;
#4 $stop 0

end
endmodule

The resulting waveforms are captured in Figure 1.26.

28

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

> ®3[1:.0]
> ®b[1:0]
> Bc[1:0]

Figure 1.26:

Problem 1.2 Generate the following waveforms:
(ab*c)?

where: W = a=2'b11, b= 2'b10, ¢ = 2'b01, and each value is maintained 2 time units (#4).
o

Problem 1.3 Generate a clock signal with 2 time units period and the following waveforms:

(a’b?c)?
where: W =a=2'b11, b =2'b10, c = 2'b01, and each value is changed synchronously with the negative
edge of the clock signal.
o

1.7.2 Combinatorial Circuits

Problem 1.4 Design in System Verilog the structural solution at the gate level for a half adder.
o

Solution
A half adder is defined by the following Boolean expressions:

sum=adb

cr=a-b

/****>I<******>I<*****>I<******>I<******>I<*****>I<******>I<****************************
File name: halfAdder . sv
Description :
3 kR R R R KR R R R R ok R sk ok ok ok ok ok R ok ok R Sk ok R Sk ok R SRR R R R R R R R R R R ok sk ok Rk ok R sk ok Rk ok R kR R kR Rk R Rk %k %/
module halfAdder (input logic a, b,

output logic sum, cr);

xor myXor(sum, a, b);

and myAnd(cr, a, b);
endmodule

29

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Using Vivado toll the elaborated design represented in Figure 1.27 is provided.

myAnd_i

10
a
o
b > RTLAND

Figure 1.27:

Problem 1.5 Design in System Verilog the structural solution at the gate level for a full-half adder using
two solutions:

* describe at the gate level

* a hierarchical approach based on the solution of the previous problem using a top module where
two half-adders are instantiated.

Provide the simulation of the circuit to test exhaustively its behavior.
o

Solution
For the first solution we have the following design:

/3 sk s o ok ok ok ok ok R R R kR R R R s R s R s o ok ok ok R R R R R R s R s R R Rk ok sk ok ok ok
File name: fullAdder . sv

Description :
sk sk sk sk ok sk sk sk skt sk skosk sk sk sk skok sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk skosk ok sk kosk sk */

module fullAdder (input logic a, b, crin,
output logic sum, crOut);
logic sum0O, crO, crl;

xor myXor(sum0O, a, b);

xor outXor(sum, sumO, crln);

and myAndl(crO, a, b);

and myAnd2(crl, sumO, crln);

or myOr(crOut, crO, crl);
endmodule

Using Vivado toll the elaborated design represented in Figure 1.28 is provided.

30

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

myAnd1_i

10
a > N o 0 _myori
" e]
" > crOut
1o L myXori RTL_AND
o RTL_.OR
n
D
RTL_XOR 10 L QutXori
. o
.) D—D o
1 ° RTL_XOR
crin >
RTL_AND
Figure 1.28:

For the second solution we have the following design:

/% s ok ok sk sk s ok ok ok sk ok ok sk sk s ok ok ok sk o ok ok ok ok ok ok sk ok ok sk ok ok ok ok sk o ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok o ok ok ok ok ok sk ok kR Kok sk R Rk
File name: hFullAdder . sv
Description : Hierarchical Full-Adder
***/
module hFullAdder(input logic a, b, crin,
output logic sum, crOut);
logic sumO, crO, crl;

halfAdder haO(.a (a),
.b (b Do
.sum (sumO),
.cr (cr0),
hal (.a (sumO),
.b (crln),
. sum (sum),
.cr (crl));
or outOr(crOut, cr0, crl);

endmodule

Using Vivado toll the elaborated design represented in Figure 1.29 is provided.

31

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

ha0

0 myAnd_i

o |

crin

RTL_AND

10 myXor_i

”JD—O—

hat

10 myAnd_i

[¢]

cr

n|

(=S

RTL_XOR

halfAdder

RTL_AND

10 myXor_i
[¢]

10 outOr_i
1 crOut
RTL_.OR

RTL_XOR

halfAdder

Figure 1.29:

For testing the functionality of the full-adder the following module is designed:

/% sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk s sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk ok sk sk sk sk sk s s s sk sk ok ok ok ok sk ok sk sk sk sk sk sk sk sk ok ok
testFullAdder . sv
Hierarchical Full-Adder
sk skosk ok sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk sk ok skosk sk sk sk sk sk skosk sk sk skosk sk skoskosk ok skosk sk skoskosk ok */

module testFullAdder ();

File name:

Description :

logic a, b,

crin ,

hFullAdder dut(a,

initial begin

endmodule

#1
#1
#1
#1
#1
#1
#1
#1
end

sum ,

b 2

crOut ;

crln, sum,

{a,b,crIn}
{a,b,crln}
{a,b,crIn}
{a,b,crln}
{a,b,crln}
{a,b,crln}
{a,b,crln}
{a,b,crln}
$stop

crOut);

3°b000 ;
3°b001 ;
3°b010 ;
3°b011 ;
3°b100 ;
3°b101 ;
3°b110 ;
3°’blll ;

32

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Name Value

Figure 1.30:

Problem 1.6 Design a 4-bit number adder with carry input and output.
o

Problem 1.7 Design a 4-bit number subtractor with carry input and output.
o

Problem 1.8 Design a 4-bit number adder/subtractor with carry input and output. The input op desig-
nates addition for op = 0, and subtract for op = 1.
o

Problem 1.9 Fill in the missing lines in Table 1.4 and complete the project partially defined by
sevenSegDys.sv. Test the correct operation.
o

Problem 1.10 Write a full tester for dcd. sv amd run it.
o

Problem 1.11 Design in System Verilog a 4-input decoder using the recursive definition provided in
Figure 1.15. Test its correct functioning.
o

Problem 1.12 Design in System Verilog a 4-input demultiplexor using DCD4 designed as solution for
Problem 1.11. Test its correct functioning.
o

Problem 1.13 Design in System Verilog a 4-input multiplexor using DCD4 designed as solution for
Problem 1.11. Test its correct functioning
o

Problem 1.14 Consider a decoder with 4 inputs, denoted A[3:0], whose outputs are connected to the
selected inputs of a multiplexer with output F and with 4 selection inputs, denoted B[3:0]. What is the
transfer function, F = f(A,B), of the system with two 4-bit inputs, A and B and a one-bit output F ?

o

33

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Problem 1.15 Provide an optimal solution for a circuit which receives 2 8-bit words, A[7:0] and
B[7:0], and provide one bit output, EQ, telling if the two words are identical or not:

Eo—{! YA==B (1.1)
0 ifAl==B

o

Problem 1.16 7Test the behavior of the ALU defined by alu.sv in Section 1.6.4.
o

Problem 1.17 Modify the module alu.sv from Section 1.6.4 to save the bit 1left [0], when the right
shift is performed, to the output crOut.
o

Problem 1.18 Add to the module alu.sv from Section 1.6.4 the following functionality and test it:
* right shift with crIn on the most significant position
* arithmetic (right) shift which maintains the sign of the signed integer
* rotate left
* rotate right
* equality comparison: left == right
* inequality comparison: left >= right
* select the maximum: out = (left =< right) 7 left : right
o select minimum: out = (left > right) 7 left : right

o
Problem 1.19 Design structurally at the gate level in System Verilog the slice of the simple ALU defined
in Figure 1.25.

o

Problem 1.20 ¢

34

Section 2

Memory Circuits: One-Loop, First-Order
Systems (1-OS)

Contents
21 Latch 0 e e e e e e e e e e e 35
2.1.1 Closingthefirstloop e 36
2.1.2 Clockedlatch 37
2.2 Serial extension: Master-Slave Principle 38
2.3 Serial-parallel extension: Register 40
23,1 Structure e e e e e e e e e 40
2.3.2 Applications 41
2.4 Parallel extension: Random-Access MemMOryo v v v o v v oo oo 42
24.1 GeneriC StruCture v v v vttt e e e e e e 42
242 SynchronousRAM 45
2.4.3 Synchronous pipelined RAM L oo 46
2.4.4 Registerfile 47
25 Problems e e e e e e e e e e e e e e e 48
2.5.1 Registerso e 48
252 Memories e e 50

In the second lesson we will introduce the memory circuits that are obtained through a first loop that
brings to the input of a circuit the effect of applying a signal to another input. This reverse connection
allows the circuit to maintain a state according to a command. Thus the memory function is obtained.

We will not go into details because we have a precise target: the internal structure of a computing
system that includes a processor, with its internal storage resources, and the memories in which data and
software are stored.

2.1 Latch

The simplest circuit will allow the latching of the simplest event: the temporary transition of a digital
signal from 1 to 0, or the temporary transition of some circuit from O to 1.

35

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

2.1.1 Closing the first loop

Closing a feedback loop requires an output of a logic circuit to be connected to one of its inputs. In the
Figure 2.1a, the output of an AND gate is connected to one of the inputs, and the (Reset)’ pulses are
applied to the other input. If the transition to zero lasts long enough so that the signal propagates through
the circuit to the second input, then the output is fixed at the zero value and the signal (Reset)’ from the
input can disappear. The transition event from the input is fixed to the output forever.

(Reset)’ ‘ ‘
y
I I
(Reset)’ \ / [\ /
I I
1 I >
| | t
I I
Set ! ‘
andLoopOut : :
a. I I
I I
Set I | t
andLoopOut: :
y 1 IpHL
—_ ~ |
I
N 1
orLoopQOut — T g
b. . I t
orLoopDut‘ :
R’ ! '\ hpLH
I — —
| |
| | !
S ‘ [t
| [
setRestLatchOut ' :
A ! | 2tpHL 'y IpLH
F
I Y \ /
setRestLatchOut | \ !
C. ! | [Vt
o 1
d. !

Figure 2.1: The elementary latches. Using the loop, closed from the output to one input, elementary storage
elements are built. a. AND loop provides a reset-only latch. b. OR loop provides the sef-only version of a storage
element. c¢. The heterogeneous elementary set-reset latch results combining the reset-only latch with the set-only
latch. d. The wave forms describing the behavior of the previous three latch circuits.

Now let’s take an OR gate and connect its output to one of the inputs, and on the other, apply a
transition from O to 1. If the duration of the input signal allows the propagation of its effect on the
reaction loop, the output of the circuit will be permanently fixed on the value 1.

The good news is that we can capture temporary events indefinitely. We say that the two circuits
memorize, one the temporary transition to O, the other the temporary transition to 1. The bad news

36

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

is that we cannot make these circuits “forget” what they have memorized. But, by combining the two
circuits, we manage to obtain a fundamental memory structure that can change its state according to the
set command, S, to 1 or according to the reset command, R’, to 0. The set command is active on 1, in
while the reset command is active on 0.

Q Q
a. b.

Figure 2.2: Symmetric elementary latches. a. Symmetric elementary NAND latch with low-active commands
S’ and R’. b. Symmetric elementary NOR latch with high-active commands S and R.

We obtained a circuit with two states between which it can switch according to asymmetrical com-
mands, one active on zero and the other active on one. For reasons of use, it is preferable that both
commands are of the same type. We will use the two forms of Morgan’s law to transform the circuit in
Figure 2.1c and we will obtain two symmetrical structures ordered with signals of the same type. Using
the de Morgan rule A + B = (A’B’)’, the latch from Figure 2.1c becomes the latch from Figure 2.2a, and
using the de Morgan rule AB = (A’+B’)’, the latch from Figure 2.1c becomes the latch from Figure 2.2b.

2.1.2 Clocked latch

For the clocked latch two NAND gate are added (see Figure 2.3) to allow the R and R inputs conditioned
by clock;,

active level
o« J L

n je——
P
w f—

CK

RSL

~—]e

-

Figure 2.3: Elementary clocked latch. The transparent RS clocked latch is sensitive (transparent) to the input
signals during the active level of the clock (the high level in this example). a. The internal structure. b. The logic
symbol.

37

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The first latch problem: the inputs for indicating sow the latch switches are the same as the inputs
for indicating when the latch switches; we must find a solution for declutching the two actions building
a version with distinct inputs for specifying “how” and “when”.

The second latch problem: if we apply synchronously S’=0 and R’=0 on the inputs of NAND
latch (or S=1 and R=1 on the inputs of OR latch), i.e., the latch is commanded “to switch in both states
simultaneously”, then we can not predict what is the state of the latch after the ending of these two active
signals.

The first problem is solved in Figure 2.3a by conditioning the application of signals S’ and R’ to the
latch in Figure 2.2a by an additional signal that we will call clock, CK. Thus, we will use the S and R
inputs to specify how the circuit switches, and the CK input to specify when the circuit switches. In this
way, the decoupling of "when” from “how” is obtained.

For the second problem, we have a more “brutal” solution achieved through a restriction. We will
connect between the two inputs a NOT that will not allow the simultaneous application of setting and
resetting the circuit (see Figure 2.4a). The problem is not solved. We avoid doing a wrong use.

R o e ’
— s </

RSL DL

Figure 2.4: The data latch. Imposing the restriction R = S’ to an RS latch results the D latch without non-
predictable transitions (R = S = 1 is not anymore possible). a. The structure. b. The logic symbol. ¢. An improved
version for the data latch internal structure.

For the time interval in which the clock is active, CK = 1, it says that the latch is transparent to the
control signal S and R. The latch becomes non-transparent in the time interval in which CK = 0. Indeed,
in the period in which the latch is transparent, the decoupling between “when” and ”how” is not achieved,
and the circuit switches conditioned by the evolution of the S and R inputs. A correct use of the latch
assumes that during the transparency period the S and R inputs are stable.

We have to admit that we did not separate the "when” from the “how” rigorously enough. We will
do it in the following.

2.2 Serial extension: Master-Slave Principle

The clocked latch, in the SR version as well as in the D version (data latch), allows switching at any
time during the transparency. This fact limits the applications of this circuit. Many applications require
switching precisely determined by the active, positive or negative transition of the clock signal. Applying
the master-slave principle will allow this behavior.

Figure 2.5a shows a structure where transparency is blocked by the fact that the two RS latches have
the clock applied in antiphase. On the active level of the clock, the positive one, the first latch, the master,

38

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

is transparent, a fact that allows it to be switched according to the S and R inputs without affecting the
output of the circuit because the second latch is not transparent. On the inactive level of the clock, the
second latch, the slave, copies the state of the master which can no longer be changed. In this way, the
entire circuit switches as a consequence of the negative transition of the clock signal. So, the active edge
of the clock applied to the master-slave structure is the negative one. In Figure 2.5b, the logical symbol
of the structure in Figure 2.5a is represented.

S R active edge active edge
o T | e S
S CK R
Rt L4 Ll

T Q Q S R S R
RSF-F RSF-F

S CK R Q Q Q Q
RSL I ' ' '
Q Q b c
a Qt o

Figure 2.5: The master-slave principle. Serially connecting two RS latches, activated with different levels of
the clock signal, results a non-transparent storage element. a. The structure of a RS master-slave flip-flop, active
on the falling edge of the clock signal. b. The logic symbol of the RS flip-flop triggered by the negative edge of
clock. c. The logic symbol of the RS flip-flop triggered by the positive edge of clock.

=0 1 CK
D S
’7 4 Y Y Y 4
S R ‘t
RSF-F l l l l l
L P 1 1 | : |
a Q¢ Q’L : [; : [
1 | [l | [l [l 't
! [| l | l l
b Q 1 1 1
DF-F | r i
Q Q 1 1 1 r
l l o

b. ¢ L [\

Figure 2.6: The delay (D) flip-flop. Restricting the two inputs of an RS flip-flop to D = § = R/, results an FF
with predictable transitions. a. The structure. b. The logic symbol. ¢. The wave forms proving the delay effect of
the D flip-flop.

The second latch problem also propagates at the level of the master-slave structure. The solution we
can come up with at this level is the one that introduces the limitation by connecting the inputs through

39

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

an inverter circuit (see Figure 2.6a). The result is the D-FF (delay flip-flop) circuit. The name is justified
by the waveforms represented in Figure 2.6¢ where the output of the circuit follows the evolution of the
input with a delay equal to the period of the clock signal.

2.3 Serial-parallel extension: Register

2.3.1 Structure

The serial-parallel extension in the field of first-order systems (1-OS) is represented by the register.
By connecting in parallel n serially extended structures (the delay flip-flop type master-slave circuit) is
obtained a register by applying the same clock signal on each D-FF (see Figure 2.7a). A register stores
an n-bit configuration synchronously with the active edge of the clock.

Iy =) Iy
| [[I
D D D jL
DF-F DE-F o DF-F CK— Ry
Q Q Q L o
L On—1 L Op—2 L Oo
a b.

Figure 2.7: The n-bit register. a. The structure: a bunch of DF-F connected in parallel. b. The logic symbol.

The Figure 2.8 shows the effect of the transfer through a register.

clock
. y | | | |
my_in
y my_reg | | | |
l / A A A {
in enable [«—*“1” —
clk — register | | | | time
out reset f«— rst ‘ ‘ ‘ ‘
| | | |
l iy L 1 1
my_out T — T T
L : L L L >
——————————————————————————— I ;! ! | time
| register my_reg(.out (my_out), | ! e : ‘
| .in (my_in), : Isu : : :
! .emable (1’b1), | o4 oo | |
\ .reset (rst), ! : : : ‘ ‘
| | I I I I
‘ .clock (clk)); \ a ¢ b | c | e
*************************** | | | | | o
| | | | | .
time
! —! — ! !
tp

Figure 2.8: Register at work. At each active edge of clock (in this example it is the positive edge) the register’s
output takes the value applied on its inputs if reset = 0 and enable = 1.

40

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The time behavior is mainly characterized by two times interval:

minimal set-up time : 75y, is the minimum time interval that the input must be kept stable before the
active edge of the clock so that the transition of the output corresponds to the input

maximal propagation time : ¢, is the propagation time to the output related to the active edge of clock.

2.3.2 Applications

Follows the list of the main applications of the register in digital systems.

Storing

The enable input allows us to determine when (i.e., in what clock cycle) the input is loaded into a
register. If enable = 0, the registers stores the data loaded in the last clock cycle when the condition
enable = 1 was fulfilled. This means we can keep the content once stored into the register as much
time as it is needed.

Buffering

The registers can be used to buffer (to isolate, to separate) two distinct blocks so as some behaviors are
not transmitted through the register. For example, in Figure 2.8 the transitions from c to d and from d to
e at the input of the register are not transmitted to the output.

Synchronizing

For various reasons the digital signals are generated “unaligned in time” to the inputs of a system, but
they are needed to be received very well controlled in time. We say usually, the signals are applied
asynchronously but they must be received synchronously. For example, in Figure 2.8 the input of the
register changes somehow chaotically related to the active edge of the clock, but the output of the register
switches with a constant delay after the positive edge of clock. We say the inputs are synchronized to the
output of the register. Their behavior is “time tempered”.

Delaying

The input value applied in the clock cycle n to the input of a register is generated to the output of the
register in the clock cycle n+1. In other words, the input of a register is delayed one clock cycle to
its output. See in Figure 2.8 how the occurrence of a value in one clock cycle to the register’s input is
followed in the next clock cycle by the occurrence of the same value to the register’s output.

Looping

Structuring a digital system means to make different kind of connections. One of the most special, as we
see in what follows, is a connection from some outputs to certain inputs in a digital subsystem. This kind
of connections are called loops. The register is an important structural element in closing controllable
loops inside a complex system.

41

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Pipelining
Example 2.1 The previously exemplified threeAdder . sv module performs the addition of three num-

bers in twice the time of the sum of two numbers. We can reduce the execution time through a pipeline
solution that uses two registers. The solution is presented in the following module:

[% kkkckkckkk ok Rk Rk Rk Rk ko k ko Rk Rk Rk Rk ok ok ok Rk Rk kR kR kR ok ok kkwk Rk Rk Rk ok ok ok kk Rk Rk kkkk ok kkw k%

File name: pipelinedThreeAdder. sv
Circuit name: pipelined Three Input Adder
Description : The module ’threeAdder’ has 3 4-bit inputs and one 4-Dbit

output. The circuit adds modulo 16 three numbers;
do not provide carry output
***/
module pipelinedThreeAdder(output logic [3:0] out R
input logic [3:0] inO ,
input logic [3:0] inl ,
input logic [3:0] in2

input logic clock)

logic [3:0] syncReg ;
logic [3:0] pipeReg ;
logic [3:0] sum ;

adder inAdder (.out (sum),

.in0 (in0),

.inl (inl),

outAdder (.out(out),

.in0 (syncReg),
.inl (pipeReg));
always_ff @(posedge clock) begin syncReg <= in2 ;
pipeReg <= sum ;
end
endmodule

Two modules of adder defined Example 1.1 are instantiated as inAdder and outAdder, they are
interconnected using the pipeline register pipeReg. The register subcReg is used to synchronize the in2
input with the pipelined result provided by inAdder.

&

2.4 Parallel extension: Random-Access Memory

The parallel extension in first-order systems (1-OS) is represented by random access memory (RAM).

2.4.1 Generic structure

The generic structure of a memory with 2”7 one-bit locations is represented in the Figure 2.9.

42

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

WE’
— E’ 0, 1
DMUX,
O/
0,1 DIN
A e
b4] l
CK D CK D CK D
Ap*l .- ~A0
— DL DL e DL
Q Q Q

DOUT

Figure 2.9: The principle of the random access memory (RAM). The clock is distributed by a DMUX to
one of m = 2P DLs, and the data is selected by a MUX from one of the m DLs. Both, DMUX and MUX use as
selection code a p-bit address. The one-bit data DIN can be stored in the clocked DL.

Ay_1...Ap
| | | | | [| I | |
I I [I I [I
1 al | ><a2 | ><33 [| I | iX
L L Ll L L Ll L -
| I I I I I [I I [I I Vt
I I I I I [I I [I I
we L e L o]
“ | | | | | [| I [I I
, , , , , o | - , ,
I I I [I I
U I I [I I -
| | | [| | 't
[tw | Uty ! |
t——— i pe——p!

Figure 2.10: Read and write cycles for an asynchronous RAM. Reading is a combinational process of
selecting. The access time, t4¢c, is given by the propagation through a big MUX. The write enable signal must be
strictly included in the time interval when the address is stable (see t4sy and t45). Data must be stable related to
the positive transition of WE' (see tpsy and tpy).

43

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The waveforms that define the operation of the structure in Figure 2.9 are represented in Figure A.1
where the main restrictions are represented by:

tasy : address set-up time represents the time interval in which the address must be stable before the
activation of the WE signal to allow the decoder in the DMUX to do its work.

tpsy : data set-up time represents the time interval in which DIN must be stable before de-activating the
WE signal to allow the correct closing of the reaction loop in the selected latch.

tpy : data hold represents the time interval in which DIN must be stable after deactivating the WE signal
to allow the correct closing of the reaction loop in the selected latch.

tw : width of the write enable signal which ensures correct writing in the selected latch

tag : address hold time is the time interval in which the address must be maintained after the WE signal
is provided

tacc . access time is the time interval after which the content of the selected cell is accessible at the
output

All the previously listed times are minimum values.

0,
ot I 1 I I 1
I 1 I I 1
I 1 I I 1
| L CK [| | [
I 1 I I 1
I DL ;Di 1 I I 1
| D Q [| | [
I 1 I I 1
I 1 I I 1
I 1 I I 1
" 1 I I 1
[1 I I 1
I 1 I I 1
DCD)p | : COLUMN,,,_, 1 COLUMN,,_» I I COLUMN, 1
I 1 I I 1
! 1 1 1 1
0 I 1 I I 1
! I 1 I I 1
I 1 I I 1
I 1 I I 1
| L CK [| | [
I — 1 I I 1
I DL 1 I I 1
1 ¢—— D Q [| | [
I 1 I I 1
I 1 I I 1
I 1 I I 1
i " | | "
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1
I 1 I I 1

DIN,,_; DOUT,,_, DIN,,_» DOUT,,_, DINy DOUT,

Figure 2.11: The asynchronous m-bit word RAM. Expanding the number of bits per word means to connect
in parallel one-bit word memories which share the same decoder. Each COLUMN contains storing latches and
AND-OR circuits for one bit.

44

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

How can you build a RAM memory that stores words of m bits? The generic solution is presented in
Figure 2.11 where for each bit a column containing 27 latches is defined.

In Figure 2.11, DCD,, is shared between the DMUX and the MUX in Figure 2.9. The ANDs as-
sociated with the demultiplexing function are selected with the WE signal. The AND-OR structure is
repeated m times, once in each COLU M N; column.

2.4.2 Synchronous RAM

At very high speeds, on the order of GHz, the time restrictions illustrated in Figure A.1 are very difficult
to fulfill in the already described asynchronous version. To increase the degree of controllability of our
projects, synchronous RAM memories are used. In Figure 2.12, the behavior of a synchronous memory
(SRAM) is illustrated in the sense that all the time intervals that characterize the behavior of the memory
are related to the active edge of a clock signal. In this case, the designer of a system that includes a
synchronous memory can more rigorously control the time behavior of the system.

For the memories used by the system designer, memory libraries are provided by specialized com-
panies in the form of IPs (intellectual property), guaranteeing the correctness of the code used in the
description.

X ey L

Figure 2.12: Read and write cycles for Synchronous RAM (SRAM). For the flow-through version of a
SRAM the time behavior is similar to a register. The set-up and hold time are defined related to the active edge of
clock for all the input connections: data, write-enable, and address. The data output is also related to the same
edge.

45

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

/% % ok ok ok ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk oK sk ok ok ok o sk ok sk ok sk oK sk ok ok o sk ok sk ok sk ok sk ok sk ok ok sk ok sk sk ok ok sk ok ok sk ok sk ok sk ok Rk ok ok kK

File name: syncRAM . sv
Circuit name: Synchronous RAM
Description : 4096 32—bit words synchronous RAM; asynchronous read
***/
module syncRAM(output logic [31:0] out ,

input logic [31:0] in ,

input logic [12:0] addr ,

input logic we ,

input logic clock)

logic [31:0] mem[0:4095] ;

always _ff @(posedge clock) if (we) mem[addr] <= in ;
assign out = mem[addr] ;
endmodule

2.4.3 Synchronous pipelined RAM

The time #4¢c¢ offered by a RAM can sometimes be too high for the speed requirements of the system.
To increase the clock frequency, a register is used at the memory output. Thus, the data is obtained at
the new output very quickly: z4cc is the propagation time through the register. But there is a price: the
latency of one clock cycle (we remember that the register consists of delay flip-flops).

A skilled designer will almost always be able to hide the effect of latency and take advantage of the
increase in system frequency obtained through the pipeline register from the RAM output.

[k wkkckkckkkk Rk Rk Rk Rk ok k kR kR kR ok kk ko k kR ko wk Rk Rk Rk ok kkkk Rk Rk Rk ok ok ok ok kwk Rk Rk ok ok ok ok kwk kK

File name: syncPipeRAM . sv
Circuit name: Synchronous pipelined RAM
Description : 4096 32—-bit words synchronous pipelined RAM
***/
module syncPipeRAM(output logic [31:0] out ,

input logic [31:0] in ,

input logic [12:0] addr ,

input logic we ,

input logic clock)

logic [31:0] mem[0:4095] ;

always _ff @(posedge clock) begin if (we) mem[addr] <= in ;
out <= mem[addr] ;
end
endmodule

46

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

2.44 Register file

A register file is a battery of registers from which, in each clock cycle, any two registers can be accessed
for reading and any register for writing. The implementation of such a circuit is done with a synchronous
memory with three ports: two for reading and one for writing (see Figure 2.13), where:

writeEnable clock

|

rightAddr [n-1:0] —
- rightOut [m-1:0]
destAddr [n-1:0] —>
registerFilemn
in[m-1:0] —>
leftAddr[n-1:0] — | E—— leftOut [m-1:0]

Figure 2.13: Register file. In this example it contains 2" m-bit registers. In each clock cycle any two registers
can be read and writing can be performed in anyone.

leftAddr[n-1:0]: is the address used to select data to the 1eftOut [m-1:0] output
rightAddr [n-1:0]: is the address used to select data to the rightOut [m-1:0] output

destAddr[n-1:0]: is the address used to select the location where the value applied on input
in[m-1:0] is stored at the positive edge of the clock signal

writeEnable: is the write enable command.

The internal structure of a file register is characterized by the two multiplexers that ensure access to any
pair of stored values.

/% % sk ok ok % sk ok sk ok sk sk ok sk o sk o sk ok sk ok sk ok ok sk ok sk o sk ok sk ok sk ok o sk ok ok ok sk o sk ok sk ok sk sk ok ok o ok ok sk ok sk ok ok sk ook ok sk sk ok k kR kR

File name: regFile. sv
Circuit name: Register File
Description: Three—port, 32 32-bit words implemented with a

synchronous RAM
3 ok R R R KR R R R Sk ok R sk ok ok ok ok ok R ok ok R Sk ok R Sk ok KRR R R R R R R R Rk ok sk ok Rk ok R sk ok Rk kR kR Rk R Rk R Rk %k %/

module regFile (output logic [31:0] leftOut s
output logic [31:0] rightOut ,
input logic [31:0] in ,

47

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

input logic [4:0] leftAddr ,
input logic [4:0] rightAddr ,
input logic [4:0] destAddr ,
input logic we ,
input logic clock)

logic [31:0] mem[0:31] ;
always _ff @(posedge clock) if (we) mem[destAddr] <= in ;

mem[leftAddr] ;
mem[rightAddr];

assign leftOut
assign rightOut

endmodule

System VerilogSummary 7 :

logic [m-1:0] mem[0:n-1]: defines a block of memory of n m-bit words

always_ff : defines a block which describes the behavior of register-like sequential circuits; it is followed
always at least by @(posedge clock) or @(negedge clock) specifying the clock signal and it
active edge. The non-blocking assignment, <=, is used to assure the sequential behavior.

2.5 Problems

2.5.1 Registers

Problem 2.1 Design a system that receives a signed integer in each clock cycle and outputs the sum
of the last four received numbers. When the system is reset, it is considered that the last four received
numbers had the value 0.

Iftsy,,, = #1, t, =#5, tgun = #50, then what is the minimum period of the clock at which the system
can present a correct result when entering a register.
o

Solution

The system consists in 4 registers, regO, ..., reg3, serially connected and a tree of three adders
used to sum the content of the registers. The first register, reg0, receives in each clock cycle the input
value, in. Register regl receives the content of regl, reg?2 receives the content of regl, and reg3 the
content of reg?2. The first two and the last two registers are added using two adders whose outputs are
added using the output adder. The division by 4 is simply performed selecting the 32 most significant
bits from the output of the last adder.

48

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

/* skosk sk sk sk sk sk sk sk sk sk sk sk oskoske sk sk sk sk sk skoske sk sk sk sk sk sk sk ok sk sk sk sk skoske ok sk sk sk sk skoske ok sk sk sk sk sk sk ok sk sk sk sk skosk ok sk skoske sk skosk ok sk skosk ok skoskook
File name: mean. sV

Circuit name:

Description :

sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk oSk sk sk sk sk sk sk sk sk ok sk sk sk skosk sk ok sk sk sk skosk sk ok sk skosk ok skosk ok skoskosk sk sk */

module mean(output logic [31:0] out ,
input logic [31:0] in ,
input logic reset ,
input logic clock)
logic [31:0] reg0;
logic [31:0] regl;
logic [31:0] reg?;
logic [31:0] reg3;
logic [32:0] sumO ;
logic [32:0] suml ;
logic [33:0] sum ;
always _ff @(posedge clock) if(reset) begin reg0 <= 0 ;
regl <=0 ;
reg2 <=0 ;
reg3 <=0 ;
end
else begin reg0 <= in
regl <= reg0;
reg2 <= regl;
reg3d <= reg2;
end
assign sum0O = reg0 + regl ;
assign suml = reg2 + reg3 ;
assign sum = sumO + suml ;
assign out = sum[33:2] ;

endmodule

The minimal period of clock is: Tejpex = tp +2 X tgym +tsu,,, = #106

Problem 2.2 Revisit the Problem 2.1 and insert the first two adders and the output adder pipe registers.
1. What is the resulting minimal period of clock
2. Design this pipelined version
3. Simulate the resulting design.

o
Problem 2.3 ¢

Problem 2.4 ¢

49

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

2.5.2 Memories

Problem 2.5 Design a synchronous pipelined RAM for 2444r¢ssSize (vordSize)-bit words.

o

Solution

/***
File name: defines .vh
***/
‘define wordSize 32

‘define addressSize 16

/% % ok ok ok ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok o sk ok sk oK sk ok sk ok ok ok ok sk ok sk oK sk ok sk ok ok ok ok ok sk ok sk ok 3k ok sk ok ok ok o sk ok sk ok sk ok sk ok ok sk Rk

File name: syncPipeRAM . sv
Circuit name: Synchronous pipelined RAM
Description : 2°(‘addressSize) locations of (‘wordSize)—bit words

synchronous pipelined RAM

kokk Rk Rk kkk Rk Rk Rk kokkkk ok k ok k Rk kkkkkkkw ok Rk kokkkkkkkkkkkkkkkkkwkwkkkkkkwkxkw ok %/

‘include ”DEFINES.vh”

module syncPipeRAM(output logic [‘wordSize —1:0] out ,
input logic [‘wordSize —1:0] in ,
input logic [‘addressSize —1:0] addr ,
input logic we ,
input logic clock);

logic [‘wordSize —1:0] mem[0:2+x{ ‘addressSize } —1] ;

always_ff @(posedge clock) begin if (we) mem[addr] <= in ;
out <= mem[addr] ;
end
endmodule

Problem 2.6 Consider memory modules of 1KB and design with them a memory of 4K 32-bit word.
o

Problem 2.7 ¢

50

Section 3

Automata: Two-Loop, Second-Order
Systems (2-OS)

Contents
31 Definitions 00 it e e e e e e e e e e e 51
3.1.1 Generic Definition 52
3.1.2 Sizevs.complexity 52
3.1.3 TaxOnomy . . . v v v v v i e e e e e e e e e e 55
3.2 Finite (complex) Automata vttt vt vttt et 57
3.2.1 Recognizing automata 57
3.2.2 Controlautomata 62
33 SimpleAutomata. L L L e e e e e e e e e e e e e e e e 63
33,1 Counters e e e e 64
3.3.2 Program Counter 65
3.3.3 Registers with Arithmetic & Logic Unit (RALU) 66
34 Problems e e e e e e e e e e e 70
BAL 70
342 70

In this lesson we will close a second feedback loop in digital systems. This loop will increase the
autonomy of the system. If in 0-OS, because we had no loop, the output of the combinational systems
is a combination that derives strictly from the current value applied to the input, then in 1-OS a partial
autonomy was obtained: the autonomy of the state that could be maintained outside the range of during
which the signal that determined it acted. The second loop, which defines 2-OS, will allow the autonomy
of the behavior of the system in which it closes, that is, we will obtain the possibility of an evolution of

the output even in the absence of a variation of the input signal.
Our final target in this lesson is RALU: Registers with Arithmetic & Logic Unit.

3.1 Definitions

The typical circuit in 2-OS is the automaton. We will highlight two categories of automata: small &

complex finite automata and large & simple functional automata.

51

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

3.1.1 Generic Definition

We will start with a generic definition because it applies to all kinds of automata introduced in this
lecture.

Definition 3.1 An automaton, A, is defined by the following 5-uple:
A=(X.,Y,0,f.8)

where:

X : the finite set of input variables

Y : the finite set of output variables

Q : the set of state variables

f : the state transition function, described by f: X x Q — Q

g : the output transition function, with one of the following definitions:

* g:X X Q —Y forthe Mealy type automaton
* g:0Q —Y for the Moore type automaton
* g(q) = qforY = Q, where q € Q for the half-automaton, symbolized with A >.

At each clock cycle the state of the automaton switches and the output takes the value according to the
new state (and the current input, in Mealy’s approach).
o

A strict initial automaton is defined by:

A= (X,Y,0,f,8490)

and has a special input, called reset, used to led the automaton in the initial state gg. If the automaton is
initial, the input reset switches the automaton in one, specially selected, initial state.

3.1.2 Size vs. complexity

The huge size of the actual circuits implemented on a single chip imposes a more precise distinction
between simple circuits and complex circuits. When we can integrated on a single chip more than 10°
components, the size of the circuits becomes less important than their complexity. Unfortunately we
don’t make a clear distinction between size and complexity. We say usually: “the complexity of a com-
putation is given by the size of memory and by the CPU time”. But, if we have to design a circuit of
100 million transistors it is very important to distinguish between a circuit having an uniform structure
and a randomly structured ones. In the first case the circuit can be easy specified, easy described in an
HDL, easy tested and so on. Otherwise, if the structure is completely random, without any repetitive
substructure inside, it can be described using only a description having a similar dimension with the
circuit size. When the circuit is small, it is not a problem, but for million of components the problem
has no solution. Therefore, if the circuit is very big, it is not enough to deal only with its size, the most
important becomes also the degree of uniformity of the circuit. This degree of uniformity, the degree of
order inside the circuit can be specified by its complexity.

As a consequence we must distinguish more carefully the concept of size by the concept of complex-
ity. Follow the definitions of these terms with the meanings we will use in this book.

52

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Definition 3.2 The size of a digital circuit, Sgigital circuir» 1S given by the dimension of the physical re-
sources used to implement it.
o

In order to provide a numerical expression for size we need a more detailed definition which takes
into account technological aspects. In the ’40s we counted electronic bulbs, in the ’50s we counted
transistors, in the 60s we counted SSI' and MSI? packages. In the *70s we started to use two measures:
sometimes the number of transistors or the number of 2-input gates on the Silicon die and other times
the Silicon die area. Thus, we propose two numerical measures for the size.

Definition 3.3 The gate size of a digital circuit, GSgigital circuir» 15 given by the total number of CMOS
pairs of transistors used for building the gates used to implement it’.
o

This definition of size offers an almost accurate image about the silicon area used to implement the
circuit, but the effects of lay-out, of fan-out and of speed are not catched by this definition.

Definition 3.4 The area size of a digital circuit, ASgigiral circuir» i given by the dimension of the area on
silicon used to implement it.
o

The area size is useful to compute the price of the implementation because when a circuit is produced
we pay for the number of wafers. If the circuit has a big area, the number of the circuits per wafer is
small and the yield is low?”.

Definition 3.5 The algorithmic complexity of a digital circuit, simply the complexity, Cyjqira circuir» has
the magnitude order given by the minimal number of symbols needed to express its definition.
©

Definition 3.5 is inspired by Gregory Chaitin’s definition for the algorithmic complexity of a string
of symbols [Chaitin *77]. The algorithmic complexity of a string is related to the dimension of the
smallest program that generates it. Our Cygital circuir €an be associated to the shortest unambiguous circuit
description in a certain HDL (in the most of cases it is about a behavioral description).

Definition 3.6 A simple circuit is a circuit having the complexity much smaller than its size:

Csimple circuit << Ssimple circuit +

Usually the complexity of a simple circuit is constant: Cgimpie circuir € o(1).
o

YSmall Size Integrated circuits

2Medium Size Integrated circuits

3Sometimes gate size is expressed in the total number of 2-input gates necessary to implement the circuit. We prefer to
count CMOS pairs of transistors (almost identical with the number of inputs) instead of equivalent 2-input gates because is
simplest. Anyway, both ways are partially inaccurate because, for various reasons, the transistors used in implementing a gate
have different areas.

4The same number of errors make useless a bigger area of the wafer containing large circuits.

53

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Definition 3.7 A complex circuit is a circuit having the complexity in the same magnitude order with
its size:

Ccampl ex circuit ™ Scom plex circuit

o

Example 3.1 The following Verilog program describes a complex circuit, because the size of its defini-
tion (the program) is

Sdef. of random_circ — kl + k2 X Srandom,circ S O(Srandom,circ)-

[k kkkkkkkkkkk kR kR Rk k kR ko kk kR kR Rk Rk Rk ok ok ok ok kk kR kR Rk Rk k ok ok ok ok ok kk kR Rk Rk kR k ok kR kR k kR kR KKK KK

File name: random _circ . sv
Circuit name: Example of a complex circuit
Description : a small complex network of gates
s R SR R R R SRR R R R R R R R R R R R R R R R SRR SR R R SR R R R R R R R R R kR Rk Rk kR %/
module random_circ (output logic f, g,
input logic a, b, c, d, e);
logic wl, w2;

and andl(wl, a, b),

and2 (w2, c, d);

or orl(f, wl, c),

or2(g, e, w2);
endmodule

o

Example 3.2 The following Verilog program describes a simple circuit, because the program that define
completely the circuit is the same for any value of n.

/3 sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok sk sk sk ok ok sk sk oK sk sk sk ok sk sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk sk ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk ok K ok ok

File name: or_prefixes.svy
Circuit name: Example of simple circuit
Description : a big simple circuit

Hok ok okkk ok ok k ok kR R R KRR R Rk ko k ok kR kR KRR Rk k ok ok k ko kR kR Rk E R E Rk ok ok kkk kR kR Rk Kk kR ok ok ok kkk kR xxHxK %/
module or_prefixes #(parameter n = 256)

(output logic [0:n-1] out,
input logic [0:n-1] in);

integer k;
always_comb begin out[0] = in[0];

for (k=1; k<n; k=k+1) out[k] = in[k] | out[k-1];
end
endmodule

The prefixes of OR circuit consists in n OR, gates connected in a very regular form. The definition
is the same for any value of n.>
o

SA short discussion occurs when the dimension of the input is specified. To be extremely rigorous, the parameter 7 is
expressed using a string o symbols in O(log n). But usually this aspect can be ignored.

54

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

System VerilogSummary 8 :

and, or, xor, not : are reserved names for predefined circuits which can be instantiated under specific
names

parameter : used to define a local parameter
integer k: defined a positive integer

for : defined the well known loop running under the index k

Composing circuits generate not only biggest structures, but also deepest ones. The depth of the
circuit is related with the associated propagation time.

Definition 3.8 The depth of a combinational circuit is equal with the total number of serially connected
constant input gates (usually 2-input gates) on the longest path from inputs to the outputs of the circuit.
o

At the current technological level the size becomes less important than the complexity, because we
can produce circuits having an increasing number of components, but we can describe only circuits
having the range of complexity limited by our mental capacity to deal efficiently with complex represen-
tations. The first step to have a circuit is to express what it must do in a behavioral description written
in a certain HDL. If this “definition” is too large, having the magnitude order of a huge multi-billion-
transistor circuit, we don’t have the possibility to write the program expressing our desire.

In the domain of circuit design we passed long ago beyond the stage of minimizing the number of
gates in a few gates circuit. Now, the most important thing, in the multi-billion-transistor circuit era,
is the ability to describe simple (because we can’t write huge programs), big (because we can produce
more circuits on the same area) sized circuits. We must take into consideration that the Moore’s Law
applies to size not to complexity.

3.1.3 Taxonomy

Starting from the generic definition, in Figure 3.1 are represented the generic structures of the automata
used in digital design.
The structures found in current practice are:

half automaton : is an automaton whose output is identical to the internal state (the combinational
circuit that transforms the state into the output is missing); the latency of the Y output compared
to the X input is one clock cycle

Mealy immediate automaton : is an automaton whose output is calculated by a combinational circuit
depending on state and input; the latency of the Y output compared to the X input is zero

Moore immediate automaton : is an automaton whose output is calculated by a combinational circuit
depending only by the state; the latency of the Y output compared to the X input is one clock cycle

Mealy delayed automaton : is a Mealy immediate automaton with the output delayed through a
pipeline register; the latency of the Y output compared to the X input is one clock cycle

55

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Moore delayed automaton : is a Moore immediate automaton with the output delayed through a
pipeline register; the latency of the Y output compared to the X input is two clock cycles.

Depending on the way the machine is integrated into the system we are designing, we will choose the
most suitable version. Latency can sometimes be advantageous.

X
¥ Jo
loopCLC
¢ halfAut
X CK
CK | stateReg ¢
a b.
halfAut halfAut
X CK X_, CK
outCLC outCLC
c Y d. Y
halfAut halfAut
X | CK X | CK
outCLC outCLC
outReg < outReg <
e Y £, Y

Figure 3.1: Automata types. a. The structure of the half-automaton (A4 /2), the no-output function automaton:
the state is generated by the previous state and the previous input. b. The logic symbol of half-automaton. c.
Immediate Mealy automaton: the output is generated by the current state and the current input. d. Immediate
Moore automaton: the output is generated by the current state. e. Delayed Mealy automaton: the output is
generated by the previous state and the previous input. f. Delayed Moore automaton: the output is generated by
the previous state.

We will make another important distinction: that between complex automata and simple ones.

56

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Definition 3.9 A complex automaton has a description proportional with the number of state it has.
o

Definition 3.10 A simple automaton has a description of constant size, independent of the number of its
states.
o

3.2 Finite (complex) Automata

Definition 3.11 A finite automaton is characterized by |Q| € O(1), i.e., the size of the set Q is constant
and independent on the length of the string of symbols it receives.
o

We will exemplify with two typical cases: a recognizing automaton and a control automaton.

3.2.1 Recognizing automata

Example 3.3 The binary strings 1"0™, for n > 1 and m > 1, are recognized by a finite automaton. Let’s
define and design it. The transition diagram defining the behavior of the automaton is presented in Figure
3.2, where the state set Q contains:

reset

0/recO 1/fail

Figure 3.2: Transition diagram. The transition diagram for the half-automaton which recognizes strings of
form 1"0™, for n > 1 and m > 1. Each circle represent a state, each (marked) arrow represent a (conditioned)
transition.

* qo - is the initial state in which:

— if 1 is received, the output is recl and the automaton switches in the state q

57

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

— if 0 is received the automaton generate on output fail and switches in g3
* g1 - in this state at least one 1 was received and

— if 1 is received, the output is recl and the state remains the same

— if O is received, the output is recO the the state becomes q;
* gy - this state acknowledges a well formed string:

— if 1 is received, the output is £ail and the state switches in q3
— if 0 is received, the output is recO and the state remains the same

* g3 - is the error state because an incorrect string was; the state remains unconditionally the same
until a new reset is aplied. received.

The first step in implementing the structure of the just defined automaton is to assign binary codes o
each state. In this stage we have the absolute freedom. Any assignment can be used. The only difference
will be in the resulting structure but not in the resulting behavior.

Table 3.1: Transition state table.
(0] [X[of o/ [V]X

0]071]0 0 0 1|1
0] 01 0 0 1|1
0 110 0 1 0|1
0 1|1 0 0 1|1
1 010 0 0 1|1
1 0|1 1 1 110
1 110 0 1 0|1
1 1|1 1 1 110

Let be the codes, symbolized by Q1 and Q», assigned in square brackets in Figure 3.2. For the
outputs, the symbols Y| and Y, are used with the following meanings:

recO: 01
recl: 10
fail: 11

The input signal is symbolized by X.
Results the transition table, for the functions f and g, presented in Table 3.1. The resulting transition
functions the resulting immediate Mealy automaton are:

O =01-X=((01-X)")

OF =01 X+00-X =((01-X)(Qo- X))
Y1 = (Qo-X)'
Yo=01-X'= (0] +X)

58

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

clock X reset

loopCLC

rer] o
D D
L 1" prr D-FF0 © | =
Q Q Q Q
|
01

outCLC

Figure 3.3: A 4-state finite automaton. The structure of the finite automaton used to recognize binary string
belonging to the 1”0™ set of strings.

The circuit is represented in Figure 3.3 in a version using inverted gated only. The 2-bit state register
is designed by 2 D flip-flops. The reset input is applied on the set input of D-FF1 and on the reset input
of D-FFO.

The recognition process begins with the application of the reset signal through which the automaton
goes to the initial state, qo, coded by Q1,00 = 10. A correct string must start with 1, otherwise the
automaton goes to the final state, g3, which signals fail. In state qi, the automaton receives 1s, until
the first 0 is applied to the input and the automaton passes to state q in which it signals, through recO,
that the string received is correct. If in state q; it is received in 1, then the string is cataloged as not
belonging to those recognized by blocking the automaton in state g3.

o

Designing a finite automaton using a description in System Verilog HDL involves writing the fol-
lowing files:

* defines.vh in which the binary values that the state, input and output variables take are defined

* topAutomaton.sv in which the module that describes the automaton defining the state register,
instantiating the combinational calculation module of the loop, 10opCLC, and the module outCLC
that describes the output circuit is defined

* loopCLC. sv which describes the state transition function

59

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

* outCLC.sv which describes the output transition function.

Example 3.4 Let’s revisit the previous example, recognizing the language L = (a"b™|n,m > 0), and
solve the design using a System Verilog description.

/**
File name: defines.vh
Description: binary codes for input, output and state variables
****>l<*****>l<******>l<************>l<******>l<*****>l<****************************/
// input codes

‘define a 1°bl

‘define b 1°b0
// output codes

‘define recA 2°bl10 // automaton receivs a

‘define recB 2°b01 // automaton receivs b

‘define fail 2°b00 // automaton faild to receive correct string
// internal states

‘define init 2°bl0 // initial state

‘define runA 2°bll // automaton received at least one b

‘define runB 2°b01 // automaton received at least one a

‘define eror 2°b00 // fail state

/3 sk s o oo ko ok ok ok o R R R R R SRR R R s R s R s s o ok ok ok R R R R R R R sk R kR Rk Rk
File name: reglLang.sv
Circuit name: Automaton that tecognize the regular language
L= (anb’m | n,m >0)

Description: structural description of the immediate Mealy automaton

designed to recognize the language L
***>l</
‘include ”defines.vh”

module reglang(input logic in ,
output logic [1:0] out ,

input logic reset ,

clock);

logic [1:0] state , nextState ;

always_ff @(posedge clock) begin: state_register
if (reset) state <= ‘init ;
else state <= nextState;

end: state_register

loopCLC 1C(in s

state ,

nextState)
outCLC oC(state R

in s

out);

endmodule

60

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

/% %k ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok ok o sk oK sk oK sk ok ok ok o sk ok sk ok sk ok sk ok ok ok o sk ok sk ok sk ok sk ok ok ok ok ok o sk ok sk ok sk ok ok ok ok ko ok

File name: loopCLC. sv
Circuit name: loopCLCimmMealy
Description : combinational circuit used to compute the loop for

immediate Mealy language L detector automaton
**/
‘include ”defines.vh”
module loopCLC(input logic in
input logic [1:0] state ,
output logic [1:0] nextState)

£}

always_comb begin: loop_clc
case(state)

‘init : nextState = (in == ‘a) ? ‘runA : ‘error
‘runA : nextState = (in == ‘a) ? ‘runA : ‘runB
‘runB : nextState = (in == ‘b) ? ‘runB : ‘error
‘error : nextState = ‘error ;
endcase
end: loop_clc

endmodule

/**

File name: outCLC. sv

Circuit name: outputCLCimmMmealy

Description: combinational circuit used to compute the output for
immediate Mealy bcb detector automaton

**/

‘include “defines.vh”

module outCLC(input [1:0] state .
input in ,
output bit [1:0] out);

always_comb begin: out_clc
case(state)

‘init : out = (in == ‘a) ? ‘recA : ‘fail ;
‘runA : out = (in == ‘a) ? ‘recA : ‘recB ;
‘runB : out = (in == ‘a) ? ‘fail : ‘recB ;
‘error : out = ‘fail ;
endcase
end: out_clc
endmodule
<

System VerilogSummary 9 :

‘define : used to define global variable

61

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

‘include fileName.vh” : used to include code already defined

‘name : used to assert a name already defined using ‘define.

The main point: for any values for m and n, the number of states of the finite automaton is constant,
equal with 4. But the description of the of the automaton’s behavior is proportional with the number of
states (see the number of lines of the truth table defining the state transition) and independent by values
m and n.

3.2.2 Control automata

Another use of a finite automaton is to control. Controlling means to send a sequence of commands to a
digital systems and to determine the evolution of this sequence according to signals receiving back from
the controlled system. Thus, the evolution in the state space depends: (1) on the internal loop of the
automat and (2) on the flags received form the controlled system.

operation[p-1:0]
e =
”What to do”
flags[q-1:0] L o
—— Combinational Logic Circuit (CLC)
”What happens”

state[n-1:0]

Q+

command [m-1:0]
-]

”The command”

Figure 3.4: Control Automaton. The functional definition of control automaton. Control means to issue
commands and to receive back signals (flags) characterizing the effect of the command.

In Figure 3.4, a Mealy delayed version is presented. It works as follows:

* the input operation[p-1:0] is a binary code used to initialize the automaton in 27 different
initial states, each associated to a control sequence of commands to be issued to the controlled
system

* the inputs flags [q-1:0] represent independent bits used to characterise the behavior of the con-
trolled system (for example if an arithmetic operation provided carry)

* the output command [m-1:0] represent the command issued in each clock cycle toward the control
system; it can be organized in one ore few fields to control different part of the system

* state[n-1:0] represent the inner loop of the control automaton

62

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The size of the CLC of this generic version is, in most of cases, to big to be optimally implementable.
Indeed, because in the general case a CLC with N inputs is proportional with 2V, our CLC could have a
size proportional with 2P T4+,

But, to our luck, real applications have certain characteristics that allow a drastic simplification of
the generic solution. We present it in the Figure 3.5.

operation[n-1:0]

-

CLC

N
3
2
1
0

o/

command [m-1:0]

flags[q-1:0]

Figure 3.5: The simplest Controller. The Moore version of a control automaton is optimized by: (1) using
a multiplexor to select, using MOD and T combined by clc, the next state from different sources, (2) using an
increment circuit (INC) to compute the most frequent next address for CLC, and (3) using a multiplexor to select,
using TEST, for each cycle the appropriate flag.

We arrived at the structure in Figure 3.5 starting from the following observations:

1. the entry operation is taken into account in the calculation of the transition only in certain states,
those of initializing a new command sequence

2. the flags entries are not all significant in every state

3. the command sequences contain subsequences that are chained unconditionally, a fact that allows
their encoding by incrementing

3.3 Simple Automata

A simple automaton has the loop closed through a simple combinatorial circuit. We will provide two
examples on our way to build a computing engine.

63

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

3.3.1 Counters
T Flip-Flop

The smallest and the simplest automaton is a half-automaton with 2 states and one input (see Figure
3.6a). What could be the behavior of an automaton with only two internal states (Q and Q’) and a single
input bit T? The only solution:

0=T20:0

T T

S LI
CK j CK CK

D
DF-F DF-F
Q
a. 'Q b. J Q c.

Figure 3.6: The T flip-flop. a. It is the simplest automaton because: has 1-bit state register (a DF-F), a 2-input
loop circuit (one as automaton input and another to close the loop), and direct output from the state register. b. The

TF-F

-+

structure of the T flip-flop: the XOR; circuits complements the state if 7 = 1. ¢. The logic symbol.

Let us remember on of the XOR’s function: commanded inverter. Then the actual structure of the
smallest and simplest automaton is represented in Figure 3.6b.

The numerical function of the TF-F is 2 modulo counter under the command T. If T=1 then the circuit
counts, else it preserves the last state.

Generic Counter

The counter is basically a simple half-automaton that has an increment circuit on the reverse connection.
Each active edge of the clock loads the incremented state register value into the state register. In real
application, the functionality is extended to the following set of operations:

* op = 00 = nop: out <= out

* op = 01 = reset: out <=0
* op = 10 = load: out <= in
* op = 11 = count: out <= down ? out -1 : out + 1

* down: 2’s complement of out to the increment circuit’s input

The structure of the generic counter is represented in Figure 3.7.

64

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Lol O

Increment

inc

— L 3

Co 3 21)—0p

Register

Y
out

Figure 3.7: Counter.

3.3.2 Program Counter

A specific application of the counter simple automaton is the system used to compute the next address in
the process of running a program (see Figure 3.8). The set of functions, specified on the input next, is:

value

[—— next
Program Counter

l

address

~—— cond

Figure 3.8: Program Counter.

* nop: addres <= address for halt instruction

* rst: address <= O for system reset

* inc: address <= address + 1 for program counter increment
* rjmp: address <= address + relValue for relative jump

* crjmp: address <= (absValue = 0) ? address + relValue : address + 1 for
conditioned branch

* ajmp: address <= absValue for absolute jump

65

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

/*>l<******>l<*******************>l<***
File name: programCounter. sv

Circuit name: Program Counter

Description :
**/
module programCounter #(parameter n=32)

(output logic [31:0] progAddr ,
input logic [2:0] sel ,
input logic [31:0] relValue ,
input logic [31:0] absValue ,
input logic reset ,
input logic clock)

logic [31:0] pc 5
logic [31:0] nextPC

always _ff @(posedge clock) if (reset) pc <=0 ;
else pc <= nextPC;
always_comb
case(sel)
3°b000: nextPC = pc
3°b001: nextPC pc + relValue ;
3°b010: nextPC (absValue == 0) ? pc + relValue : pc + 1 ;
3°b011: nextPC (absValue == 0) ? pc + 1 : pc + relValue ;
3°’b100: nextPC absValue :
default: nextPC = pc + 1
endcase

assign progAddr = pc ; // for pipelined version
//assign progAddr = nextPC ; // for non—-pipelined version
endmodule

3.3.3 Registers with Arithmetic & Logic Unit (RALU)

If we connect in a loop a register file with a logical-arithmetic unit we will obtain the simplest form of
an executive core of a processor (see Figure 3.9). The external connections of a Register with Arithmetic
& Logic Unit (RALU) type module are:

func[3:0] : selects one of the maximum 8 functions performed by ALU
carryIn : carry input for arithmetic functions (is borrow for subtract)
carry0Out : carry output for arithmetic function (is borrow for subtract)
in[31:0] : data input

load : selects data input as left operand for ALU

leftAddr[4:0] : selects left output or left operand for ALU when load = 0

rightAddr[4:0] : selects right output or right operand for ALU

66

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

clock : is the clock signal active on the positive edge

we : write enable for the register file

destAddr[4:0] : destination address for the value out provided by ALU
leftOut[31:0] : left output of RALU

rightOut [31:0] : right output of RALU

According to the connection list, RALU performs no more than 8 functions, on 32-bit words stored in a
32-word register file.

e — we
clock
[e— destAddr
registerFile
— leftAddr
|l&—— rightAddr
in —— > leftOut

rightOut

10ad4——<:_l___ 0)
“ func
ALU
carryQut /

out

Figure 3.9: 32-bit RALU.

In each clock cycle, the function func is applied on two operands selected from the register file and
the result, out, is loaded back in the register file if writeEnable = 1. If load = 1, then leftOp =
in. If writeEnable = O, the content of the register file remains unchanged and the only purpose of the
operation is to send toward the external systems the outputs: carryOut, leftOut, rightOut.

The code func selects the functions defined in the file define. vh:

/* sk ok sk sk sk sk sk sk sk sk sk
File name: define .vh
Circuit name:

Description :
sk sk sk sk ok sk sk sk skt sk skook sk sk sk skok sk sk sk sk sk sk skook sk sk sk sk sk sk sk sk sk sk sk sksk sk sk sk sk sk sk skeosk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk ok sk sk sk sk */

67

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

‘define bigv 4°b0001 // rf[dest] = {rf[left][15:0],rf[right][15:0]}
‘define add 4°b0010 // rf[dest] = rf[left] + rf[right]

‘define sub 4°b0011 // rf[dest] = rf[left] — rf[right]

‘define addcr 4°b0100 // rf[dest] = (rf[left] + rf[right])[32]
‘define subcr 4°b0101 // rf[dest] = (rf[left] — rf[right])[32]
‘define Ish 4°b1000 // rf[dest] = rf[left] >> 1

‘define ash 4°b1001 // rff[dest] = {rf[left][31],rf[left][31:1]}
‘define move 4°bl1010 // rf[dest] = rf[left]

‘define mult 4°bl011 // rf[dest] = rf[left] = rf[right]

‘define bwand 4°b1101 // rf[dest] = rf[left] & rf[right]

‘define bwor 4°bl110 // rf[dest] = rf[left] | rf[right]

‘define bwxor 4’bll1l // rf[dest] = rf[left] ~ rf[right]

The top module is:

/**>l<************************
File name: RALU. sv

Circuit name: register file with arithmetic and logic unit

Description :
***/

module RALU(output logic [31:0] leftOut ,
output logic [31:0] righttOut ,
output logic crOut ,
input logic [4:0] leftAddr ,
input logic [4:0] rightAddr ,
input logic [4:0] destAddr ,
input logic [31:0] in ,
input logic load ,
input logic we ,
input logic [3:0] func ,
input logic clock)
logic [31:0] out
regFile rf(.leftOut (leftOut),
.righttOut (righttOut),
.in (out),
.leftAddr (leftAddr),
.rightAddr (rightAddr),
.destAddr (destAddr),
.we (we),
.clock (clock));
ALU alu (. func (func),
.left (load ? in leftOut),
.right (righttOut),
.crOut (crOut),
.out (out));

endmodule

68

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

/% % ok ok ok ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk oK sk ok ok ok o sk ok sk ok sk oK sk ok ok o sk ok sk ok sk ok sk ok sk ok ok sk ok sk sk ok ok sk ok ok sk ok sk ok sk ok Rk ok ok kK

File name: regFile. sv
Circuit name: Register File
Description : Three—pport, 32 32—bit words implemented with a

synchronous RAM

kkkkckkkkkk Rk Rk Rk Rk ok ok kR ko w kR ok Rk ok ok ok kkwk Rk kkkkkkkkk Rk kkkkkkkwkkkkkkkkwkwkwkx %/

module regFile (output logic [31:0] leftOut ,
output logic [31:0] righttOut ,
input logic [31:0] in s
input logic [4:0] leftAddr ,
input logic [4:0] rightAddr ,
input logic [4:0] destAddr ,
input logic we ,
input logic clock)

logic [31:0] mem[0:31] ;
always _ff @(posedge clock) if (we) mem[destAddr] <= in ;

assign leftOut = mem[leftAddr] ;
assign rightOut mem[rightAddr];

endmodule

/***
File name: alu . sv
Circuit name: arithmetic and logic unit
Description: the circuit selects, using the selection code ’func’, one
of the 8 functions
***/
‘include ”define.vh”
module ALU(input logic [3:0] func ,
input logic [31:0] left
input logic [31:0] right ,
output logic crOut ,
output logic [31:0] out)
logic [32:0] sum ;
logic [32:0] dif ;

assign sum
assign dif
always_comb
case (func)
‘bigv : {crOut, out} <= {1°b0, left[15:0], right[15:0]};
‘add : {crOut, out} <= sum 2
‘sub : {crOut, out} <= dif ;
‘addcr : {crOut, out} <= {32°b0, sum[32]} ;
‘subcr : {crOut, out} <= {32°b0, dif[32]} ;

left + right ;
left — right ;

69

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

‘Ish : {crOut, out} <= {left[0], left[31:1]} ;
‘ash : {crOut, out} <= {left[31], left[31:1]} ;
‘move : {crOut, out} <= {1’b0, left} ;
‘mult : {crOut, out} <= {1°b0, left * right} ;
‘bwand : {crOut, out} <= {1°b0, left & right} ;
‘bwor : {crOut, out} <= {1°b0, left | right} ;
‘bwxor : {crOut, out} <= {1°'b0, left "~ right} ;
default {crOut, out} <= 33°b0 — 1’bl 0
endcase
endmodule

Let us use the RALU unit we just defined to exemplify simple calculations.

Example 3.5 The following sequence o operations: load two numbers (12 and 5) in register file, add
them, divide the result by 4, add with 23, and send out the result on the right output.

Table 3.2: Sequence of commands applied to RALU in Example 3.5

| func | in [load | leftAddr | rightAddr | we | destAddr | COMMENT
1111 | xx 0 00000 00000 1 00000 RO <=0
0010 | 12 1 XXXXX 00000 1 00001 R1 <= 12+RO
0010 | 5 1 XXXXX 00000 1 00010 R2 <= 54RO
0010 | xx 0 00001 00010 1 00011 R3 <= R1+R2
1001 | xx 0 00011 XXXXX 1 00011 R3 <= R3/2
1001 | xx 0 00011 XXXXX 1 00011 R3 <= R3/2
0010 | 23 1 XXXXX 00011 1 00011 R3 <= R3+23
XXXX | XX X XXXXX 00011 0 XXXXX rightOut = R3

3.4 Problems

34.1
34.2

70

Section 4

Processors: Three-Loop, Third-Order
Systems (3-OS)

Contents
4.1 Architecture vs. Organization00iiiiiininnnn. 71
4.2 Processor: Three-Loop, Three-Order System (3-OS) 72
4.2.1 Interpreting Processor (CISC processor) 73
4.2.2 Executing Processor (RISC processor) 74
4.3 von Neumann Computer Version: Four-Loop, Four-Order System (4-OS) 75
4.4 Harvard Computer Version: Five-Loop, Five-Order System (5-0OS) 75
4.5 ToYyRISCProcessOr . . . o v v v v v v o v o o o ot o ot oo o oo oo oo s aas 76
4.5.1 Organization e e e e e e e e e 76
4.5.2 Instruction Set Architectureo 78
453 AssemblyCode 80
454 Time performanceo e 87
4.6 How is Designed an Instruction Set Architecture 88
47 Problems e e e e e e e e i e e e 89
O 89
4772 89

In this lesson we will accelerate the closing of the loops, but we will focus on the third loop that
allows us to introduce the concept of the processor exemplified with a simple engine called toyRISC.
We will practice the processor concept in the context provided by the fifth loop, the one that defines the
computer concept in the currently practiced understanding, that of Reduced Instruction Set Computer
(RISC) type computing systems. Only for those interested and familiar with Verilog HDL, at the end of

this text there is an appendix that allows the simulation of the system described in this lesson.

4.1 Architecture vs. Organization

Architecture: describes what the computer does.
Organization: describes how it does it.

71

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

In the beginning it was only the hardware and the software. At some point there was a need for an
interface that would provide the software with a more friendly development environment. What it is? If
in a suite of hardware implementations the set of instructions changes radically with each new version,
then the programs written for previous versions are thrown into the trash every time a new hardware
version is instantiated. This bad habit is cured with the design, at the beginning of the 1960s, of the IBM
System/360. At that moment it was decided that:

to describe the attributes of a system as seen by the programmer, i.e., the conceptual
structure and functional behavior, as distinct from the organization of the data flow and

controls, the logical design, and the physical implementation. [Amdahl *64]

And so the Hardware — Software duet turned into the Hardware — Architecture — Software triplet. Archi-
tecture being the short form for Instruction Set Architecture.

Table 4.1: Architecture vs. Organization.

| Architecture | Organization
describes what the computer does describes how it does it
deals with the functional behavior deals with a structural relationship
architecture is fixed first organization is decided after
comprises instruction sets, registers, data | consists of multiplexors, adders, multipli-
types, and addressing modes ers, peripherals, memories, ...
the software developer is aware of it it escapes the software programmer’s de-

tection

4.2 Processor: Three-Loop, Three-Order System (3-OS)

There are several ways to close the third loop over a generic 2-OS represented by an automaton in order
to obtain the generic structure o a processor. On the closed loop over an automaton we can connect a
0-OS (a combinational circuit), a 1-OS (a memory), or a 2-OS (an automaton). The last version is the
most significant (see Figure 4.1). It is the subject of this lesson.

The two machines that configure a processor have distinct functions:

* functional automaton that performs data processing functions; it is a simple automaton

* control automaton that ensures the sequential operation of the processor implemented in two pos-
sible versions:

— a complex controller of the type presented in 3.2.2, when, in addition to fetching the in-
struction from the program memory, it is also necessary to break it down into a sequence of
micro-instructions executed by the functional automaton

— a simple controller of the counter type presented in 3.3.2, when it is sufficient to bring the
instruction from the program memory because the instruction is simple enough to be executed
directly by the functional automaton

72

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

to/from memory to/from memory
[T J'[Processor T J'[[
[[
\ < [
[Functional 3rd Control [
[| [
[Automaton loop Automaton [
| > |
[[

Figure 4.1: Generic Processor

The two types of control generate two types of processors, as follows in the next section.

4.2.1 Interpreting Processor (CISC processor)

The first type of processor, the one that interprets the instruction by decomposing it into a sequence of
microinstructions, is represented in Figure 4.2, where the control is performed with a complex automaton.
An instruction can involve complex operations implemented sequentially through a series of micro-
instructions sent by the controller to the functional automaton that can send back to the controller flags
that can characterize the result of the application of each micro-instruction. For this reason, this processor
version is called CISC (Complex Instruction Set Computer).

Program & Data memory

Data Address Data & Instruction Control
[y J A
Data Instruction

r———* T - -t -"-"-"7T " -"""""-"-—"-"""""""""-"""""""""""""""""""-""7"TYTY"YF Y-t = - - - !
| |
| v Processor v v |
| _ Microinstruction |
: Functional 3rd Control :
[Automata loop Automata [
| > |
| Flags |
S — J

Figure 4.2: Interpreting Processor

For each instruction the CISC processor must perform:
1. instruction fetch
2. instruction execute

3. compute the address for the next instruction

73

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

so that an instruction is executed in a variable number of at least several clock cycles.

4.2.2 Executing Processor (RISC processor)

The second type of processor is designed in such a way that it executes each instruction in constant time,
usually one clock cycle, but no more than two clock cycles. Because each instruction requires fetching
it from memory, and some instructions also require writing or reading data from memory, it is necessary
to structure the memory into two sub-memories, one for programs and another for data. This results in
the structure in Figure 4.3, where the processor has two access paths to memory resources. In this case,
the control automaton can only take care of fetching the instructions from the program memory and the
functional automaton will execute sufficiently simple instructions to require only one clock cycle to be

operated.

How did you get to this way of designing a processor that executes only simple, executable instruc-
tions in one clock cycle? Around 1980, the following facts were evident:

Program
Data Memory
Memory
Control Address Data Instr Address
X 7\ Jy

r-----* T T "- " *T--"7*T*T-""-"""”QT"”"""7""-""""""-"—"—"—"—-—-- - -’ -_-_-_-- -0 -h9T - - - — l
: v v v Processor v :
[< [
! Functional 3rd Program \
[] [
[Automata loop Counter [
[> [
[[

Figure 4.3: Executing Processor

* the frequency with which the instructions of a CISC processor appeared in the programs was very
variable: a small number of instructions had a very high frequency of use, and the majority were
used with low frequencies

» if the instructions were listed in descending order of frequency of use, then a line could be drawn
in this list delimiting a set of frequently used instructions that also had the quality of being able to
implement the instructions below the line through a suitable sequencing of them

* the pleasant surprise was that only simple functions were found above the line

* thus, for frequent operations, the effector structure could be imagined to work quickly, and for the
less frequent ones, the possibility of their performance is ensured

Thus, a RISC processor executes instead of interpreting. Programs represent sequences of simple
instructions, which are executed in parallel with the control of their evolution. Indeed, the functional
automaton operates on the data while the control automaton calculates the address from which the next

74

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

instruction will be read. Both types of operations fall into the category of simple ones, the fact that it
allows us to consider a RISC processor as simple to distinguish it from a CISC one which is complex
due to the control automaton.

4.3 von Neumann Computer Version: Four-Loop, Four-Order System (4-
0OS)

The two types of processors defined in the previous section were used to define two abstract computer
models.

Historical note: in the 1940s, the first electronic computers were made in two versions that gen-
erated two models for the subsequent evolution. Traditionally, but erroneously, these models are called
architectures. The concept of architecture appeared in the 1960s. For this reason, we will call these
concepts abstract models instead of architectures.

Y

Processor Memory
P

Figure 4.4: The abstract model of computer proposed by John von Neumann.

A

The interpretive processor is used in the definition of the von Neumann abstract model, in which the
processor is loop connected to a single memory in which both programs and data are stored (see Figure
4.4). Thus, a 4-OS is obtained by connecting a 3-OS (Processor) with a 1-OS (Memory).

4.4 Harvard Computer Version: Five-Loop, Five-Order System (5-OS)

The Harvard abstract model assumes a fifth loop. The processor together with the program memory
forms a 4-OS, and by closing another loop through the data memory, a 5-OS is obtained (see Figure 4.5).

Y
Y

A

[

[[[
[[[
[: [
! Data \ 4th Program \
[Memory [Processor t Memory [
[[loop [
[: [
[[[
[[[
[

Figure 4.5: The Harvard abstract model of computer.

75

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

We will continue to focus, for obvious reasons, on RISC-type processors that allow the implementa-
tion of the Harvard abstract model.

4.5 ToyRISC Processor

The executing processor is simpler than an interpreting processor. The complexity of computation moves
almost completely from the physical structure of the processor into the programs executed by the proces-
sor, because this kind of processor (called Reduced Instruction Set Computer, RISC) has an organization
containing mainly simple, recursively defined circuits.

4.5.1 Organization

The Harvard abstract model of a RISC executing machine determines the internal structure of the pro-
cessor to have mechanisms allowing in each clock cycle cu address both, the program memory and the
data memory. Thus, the RALU-type functional automaton, directly interfaced with the data memory, is
loop-connected with a control automaton designed to fetch in each clock cycle a new instruction from
the program memory. The control automaton does not “know” the function to be performed, it “knows”
how to “fetch the function” from an external storage support, the program memory.

\ \
| | [
: intAddr : Program Memory Data Memory o
: in : 01_programMemory.v 01_memory.v o
I i " I addr instruction dataln dataOut addr I
\ interru \ I
| 1 ! 1 memories.v 4 J .
\ e e B e e el \
el R e B . R \
| | | |
| | r-- - - -—- -t---- - e T e S - - == | |
R L - 1 o
| | | | | | | |
ro intSect + Decode.v) ! | ! ! !
Lo P\) \ \ \ \
Lo \ \ \ \ \
| | | + + 2nd 301 2 | | |
Lo I c+ 1 I I I
Lo \ P \ \ \ \
		\ 4				
		Y				
b pc nextPC.vl		} alu.v regFile.v S				
		>				
I 7y !	A A leftOp rightOp					
Lo \ \ \ \ \						
Lo % \ \ \ \ \						
Lo \ \ \ \ \						
Lo : : \ \ \						
1 1 Control.v ! " RALU.v ! !
At et | |
I 1 toyRISC.v I I

|

|

Figure 4.6: The organization of the foyRISC processor in its simulation environment where the program
memory and data memory are included.

Important note: the organization presented in the following is designed only from the circuit point
of view with emphasis on the competence of the system. In order to maximize the performance the design

76

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

must apply specific techniques to increase the frequency of the clock cycle. This concern goes beyond the
aims of this lecture. We will partially address these issues in the next lesson. Books on the organization
and architecture of computing systems deal extensively with issues of maximizing performance. (Books
on the architecture and organization of computers written by John Hennessy and David Patterson are
recommended [Hennessy *19] [Patterson ’05].)

In Figure 4.6, the organization of the processor toyRISC is represented. It contains two loop-
connected automata, Control and RALU, serially connected with the with the interrupt section, intSect.

Control

The Control section is a simple functional automaton whose state, stored in the register called Program
Counter, (pc), is used to compute in each clock cycle the address in Program Memory from where the
next instruction is fetched. There are two modes to compute the next address: (1) incrementing, with 1
or a signed number, the current address, or (2) independently from the current value of Program Counter,
using a value fetched from an internal register or a value generated by the currently executed instruction.
More, the current pc+1 can be stored in an internal register when the control of the program calls a
function and a return is needed. For all the previously described behaviors the combinational circuit
nextPC (described in nextPc.v module of the design presented in Appendix B) is designed to close the
loop over the Program Counter register.

RALU

The RALU section is also a simple functional automaton whose state is structured as an array of variables
and is stored in a Register File (a small memory with two output ports and one input port). In each clock
cycle two values are fetched from this memory and are submitted to be operated in the ALU unit. The
result is write back in a location selected by a destination address. The section accepts data coming form
the data memory, from the currently executed instruction, or from the Control automaton, thus closing
the 3rd loop.

Both, the Control automaton and the RALU automaton are simple, recursively defined automata.
The computational complexity is completely moved in the code stored inside the program memory.

Interrupt section

In computers, an interrupt is a signal (interrupt) for the processor to interrupt currently executing
code. If the interrupt is accepted, the processor will suspend its current activities, save its state, and
execute the function requested by the interrupt. This interruption is temporary, allowing the software to
resume normal activities after the program associated to the interrupt finishes.

There are two types of interrupts:

* Hardware interrupts when the interrupt signal generated from external devices (for example, in a
keyboard if we press a key to do some action this pressing of the keyboard generates a signal that
is given to the processor to do action). They are classified into two types:

— Maskable Interrupt: interrupts that can be delayed when a highest priority interrupt has oc-
curred to the processor.

— Non Maskable Interrupt: that cannot be delayed and immediately be serviced by the proces-
sor.

77

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

» Software interrupts generated from internal devices divided into two types:

In our very simple example we illustrated a maskable hardware interrupt. The circuit intSect con-
sists of a finite automaton with two states, enableInterrupt and disableInterrupt, controlled with
the instructions ei and di. When the system is reset, the machine switches to the disableInterrupt
state. If the automaton is in the enableInterrupt state and the interrupt signal is activated, then
inta (interrupt acknowledge) is generated, the pc+1 value is saved in regFile, to be able to return
the program to the point where it was interrupted, and the instruction from intAddr where the program
associated with the interruption treatment is located is read. This program ends with an unconditional

— Normal Interrupts: are caused by the software instructions are called software instructions.

— Exception: an unplanned interruption while executing a program (for example, while execut-

ing a program if we got a value that is divided by zero).

jump to the address saved in regFile.

4.5.2 Instruction Set Architecture

The storage resources on which the ISA definition is based are the following:

reg
reg
reg
reg
reg

[31:0]
[31:0]
[15:0]
[31:0]

programMemory [0:65535]
dataMemory [0:1023]

pc

registers[0:31]
intEnable

I
b
’
b

b

// program counter
// register file
// interrupt enable FF

The structure of the arithmetic & logic instructions have two forms:

* destinationRegiste <=

* destinationRegiste <=

with the following two formats:

Instruction Set Architecture, ISA, of the toyRISC processor is described in the Figure 4.7. ISA, in
short the architecture of a computing system includes at least the following types of instructions:

instruction[31:0] = {opCode[5:0],
dest[4:0],
left[4:0],
right[4:0],
noUse[10:0]}

{opCode[5:0],

dest[4:0],
left[4:0],

leftOperamd OP rightOperand

leftOperamd OP immediateValue

// operation code

// destination register
// left operand

// right operand

immediate[15:0]%} // value

1. control instructions

78

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

2. arithmetic and logic instructions

3. memory access instructions

4. interrupt control instructions

File name: DEFINES. vh
MICROARCHITECTURE

*************************>|<*************>|<*********************************/
// CONTROL
‘define nop 6°b00.0000 // no operation: pc<=pc+I;
‘define rjmp 6°b00-0001 // relative jump: pc<=pc+v;
‘define zbr 6°b00.0010 // pc<=(rf[l]=0) ? pc+v:pc+l
‘define nzbr 6°b00.0011 // pc<=!(rf[l]=0) ? pc+v:pc+l
‘define ret 6°b00.0101 // return: pc<=rf[l][15:0];
‘define halt 6°b00_.0110 // halt unitil interrupt
‘define eint 6°b00.1000 // set enable interrupt; pc<=pc+I;
‘define dint 6°b00.1001 // set disable interrupt; pc<=pc+I;
// ARITHMETIC & LOGIC, for these instructions: pc<=pc+lI;
‘define add 6°b11.0000 // rfld]<=rf[l]+rf[r];
‘define sub 6°b11.0001 // rf[d]<=rf[l]-rf[r];
‘define addv 6°b11.0010 // rf[d]<=rf[l]+v;
‘define mult 6°b11.0011 // rfld]<=rf[l]xrf[r];
‘define multv 6°b11.0100 // rfld]<=rf[l]=v;
‘define addc 6’b11.0101 // rf[d]<=(rf[l]+rf[r]}[32];
‘define subc 6°b11.0110 // rfld]<=(rf[l]-rf[r])[32];
‘define addvc 6°b11.0111 // rfld]<=(rf[l]+v)[32];
‘define 1sh 6°b11_1000 // rfld]<=rf[l] > I;
‘define ash 6’b11_1001 // rf[d]<=

// <s{rf[l][31],rf[L][31:1]};
‘define move 6°b11_1010 // rfld]j<=rf[l];
‘define swap 6°b11_1011 // rfld]<=

/0 <= rfl[L][15:0], rf[1][31:16]};
‘define bwnot 6°b11_1100 // rfld]<="rf[l];
‘define bwand 6°b11_1101 // rfld]<=rf[l]&rf[r];
‘define bwor 6’bl1_1110 // rfld]<=rf[L]|rf[r];
‘define bwxor 6°’bl1_1111 // rfldi<=rf[l]"rf[r];
// DATA TRANSFER, for these instructions: pc=pc+I1;
‘define read 6’b10.0000 // read from dataMemory[rf[l]];
‘define load 6°b10.0111 // rf[d]<=dataOut;
‘define store 6°b10.1000 // dataMemory[rf[l]]<=rf[r];
‘define val 6’b01-0111 // rffd]<={{16+{v[I5]}},v};

Figure 4.7: toyRISC ISA: 0_ISAdefine.vh.

The first field of the instruction, opCode, contains the information used to determine what is the
the action performed by the current instruction. Each instruction is executed in one clock cycle. In
Appendix B the entire design is listed. This design is meant to illustrate mainly the competence of the
circuits without aiming to reach some performances in execution. In order to maximize the performance,

79

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

it is necessary to apply special techniques (usually in the category of pipelines) related to the field of
quantitative optimization of the organization of the computer system. See more on the quantitative
approach in [Hennessy *07].

4.5.3 Assembly Code

In order to generate the code executable by the toyRISC processor, a code generator translates the
mnemonics into binary code. In Table 4.2, the mnemonics used to write assembly programs are listed.
In the second column the action performed specified and in the last column the binary codes are listed.
The binary code is organized in 5 or 4 fields. The first field represents the operation code, the second the
destination address of the result in the register file (ddddd is the binary code of the actual value when it
matters), the third field represents the address for the left operand (11111 is the binary code of the actual
value when it matters). The least significant 16 bits are organized in 2 fields or in one field. In the first
case 5 bits (rrrrr is the binary code of the actual value when it matters) represents the address of the
right operand and the rest 11 bits have no meaning, while in the second case all the 16 bits represents a
value (vvvvvvvvvvvvvvvy is the binary code of the actual value when it matters).

Table 4.2: Assembly language mnemonics, their meanings and binary form.

l Mnemonics [Description [Binary form

NOP pc <=pc + 1 000000-00000-00000-00000-00000000000
RJMP (label) pc <= pc + value 000001-00000-00000_vVVVVVVVVVVVVVV

BRZ(left,label) pc <= (left = 0) ? pc+immediate : pc+l 000010.00000_11111_vVVVVVVVVVVVVVV

BRNZ (left,label) pc <= (left = 0) ? pc+l : pc+immediate 000011_.00000_11111_vVVVVVVVVVVVVVV

RET pc <= rf[left] 000101_.00000.11111_00000_00000000000
HALT pc <= pc 000110.00000_.00000_00000_00000000000
EINT intEnable <= 1 (enable interrupt) 001000_.00000_00000_00000_00000000000
DINT intEnable <= 0 (disable interrupt) 001001_-00000-00000-00000-00000000000
ADD(dest,left,right) rf[dest] <= rf[left] + rfl[right] 110000.ddddd-11111_rrrrr_00000000000
SUB(dest,left,right) rf[dest] <= rf[left] - rfl[right] 110001_.ddddd_11111_rrrrr_00000000000
ADDV (dest,left,value) rf[dest] <= rf[left] + value 110010.ddddd_11111_vVVVVVVVVVVVVVV

MULT (dest,left,right) rf[dest] <= rf[left] * rf[right] 110011.ddddd_11111_rrrrr_00000000000
MULTV(dest,left,value) rf[dest] <= rf[left] * rflright] 110100.ddddd_11111_vVVVVVVVVVVVVVV

ADDC(dest,left,right) rf[dest] <= (rf[left] + rflright]) [32] 110101_ddddd_11111_rrrrr_00000000000
SUBC(dest,left,right) rf[dest] <= (rflleft] - rflright]) [32] 110110_ddddd_11111_rrrrr_00000000000
ADDVC(dest,left,value) rf[dest] <= (rfl[left] + value) [32] 110111.ddddd_ 11111 _vVVVVVVVVVVVVVV

LSH(dest, left) rf[dest] <= {0, rfl[left][31:1]} 111000_ddddd_11111_00000_00000000000
ASH(dest,left) rf[dest] <= {rflleft][31],rf[left][31:1]} 111001_ddddd_11111_00000_00000000000
MOVE(dest,left) rf[dest] <= rf[left] 111010.ddddd-11111_00000.00000000000
SWAP (dest,left) rf[dest] <= rf[left][15:0],rf[left] [31:16] 111011.ddddd-11111_.00000.00000000000
NOT (dest,left) rf[dest] <= rfl[left] 111100-ddddd-11111_00000-00000000000
AND(dest,left,right) rf[dest] <= rf[left & rf[right] 111101.ddddd_11111 _rrrrr_00000000000
OR(dest,left,right) rf[dest] <= rf[left] | rflright] 111110.ddddd_-11111_rrrrr_00000000000
XOR(dest,left,right) rf[dest] <= rf[left] & rf[right] 111111.ddddd-11111_rrrrr_00000000000

READ (left)

read from dataMemory[left]

100000.00000-11111_00000_.00000000000

LOAD(dest)

rf[dest] <= dataOut

100111_ddddd_00000_.00000_00000000000

STORE(left,right)

dataMemory[left] <= rf[right]

101000.00000-11111_rrrrr_00000000000

VAL (dest,val)

rf[dest] <= {11val[20], value}

010111_.ddddd_00000_vvvVVVVVVVVVVVVV

Toy Assembler

The binary codes in the 4.2 table are generated, for reasons of maintaining a simple design and simulation
environment, using a program also written in System Verilog. This program, RISCcodeGenerator. sv,

80

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

receives a sequence of instructions in the file program.sv and generates the executable binary code in
the program memory progMemory. A portion of this generator is listed below to illustrate the idea of
two-pass encoding; the whole is attached in the B.2 section. In the first pass, the absolute positions of the
labels are identified through the LB task in the 1abelTab table, and in the second pass through the ULB
task, the relative jump is calculated, which is correctly completed in the code binary. The two tasks are
necessary because some relative jumps are at advanced locations compared to the position of the jump
instruction.

/* skosk sk sk sk sk sk sk sk sk sk sk skoskeosk sk sk sk sk sk sk sk sk sk sk skoske sk sk sk sk sk skoske sk sk sk sk sk skoskeosk sk skoske sk skoske sk sk skoske sk sk sk sk skoske sk skosk ok sk skosk ok skosk
File name: RISCcodeGenerator. sv
Circuit name:
Description :
ks sk sk sk sk sk sk sk skosk sk sk sk sk ks sk ok sk skosk sk sk sk sk sk skosk sk sk sk sk sk skoskeoskosk sk sk sk skoske sk sk sk sk sk skoske sk sk sk sk skoskosk sk sk sk sk sk skosk ok sk skosk sk skosk */
reg [5:0] opCode ;
reg [4:0] d ;
reg [4:0] 1 ;
reg [4:0] r ;
reg [15:0] v ;
reg [9:0] addrCounter ;
reg [9:0] labelTab[0:1023];

‘include ”DEFINES.vh”

task endLine; // assemble the executable code line by line

begin
progMemory [addrCounter [[31:0] =
{ opCode ,
d :
1 :
v } ;
addrCounter = addrCounter + 1 ;
end
endtask

// sets labelTab in the first pass
// associating ’'counter’ with ’labellndex’
task LB ;

input [5:0] labellndex;

labelTab[labellndex] = addrCounter;
endtask
// uses the content of labelTab in the second pass
task ULB;

input [5:0] labellndex;

v = labelTab|[labellndex] — addrCounter;
endtask

// CONTROL INSTRUCTIONS
task NOP; // no operation

81

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

begin

end
endtask

opCode = ‘addv
d = 5°b0
1 = 5°b0
A% = 16°b0
endLine

task RIMP; // relative jump

input [15:0] label
begin opCode = ‘rjmp
d = 5°b0
1 = 5’b0
ULB(label)
endLine
end
endtask
task BRZ; // branch if zero
input [4:0] left
input [9:0] label
begin opCode = ‘zbr
d = 5’b0
1 = left
ULB(label)
endLine
end
endtask
//
task El; // enable interrupt
begin opCode = ‘eint
d = 5°b0
1 = 5°b0
% = 16°b0
endLine
end
endtask
//

// ARITHMETIC & LOGIC INSTRUCTIONS

task ADD; // addition

input
input
input

[4:0] dest
[4:0] left
[4:0] right

)

]
)
)

)

)

)

82

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

begin opCode = ‘add ;

d = dest ;

1 = left 2

v = {right, 11°b0};

endLine ;
end
endtask

//

task SUBC; // carry from subtract
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘subc ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

//

task AND; // bitwise AND
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwand ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

//

// DATA TRANSFER INSTRUCTIONS
task READ; // data read
input [4:0] left ;

begin opCode = ‘read ;
d = 5’b0 ;

83

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

1 = left ;
% = 16’b0 ;
endLine ;
end
endtask
/7 ...
// RUNNING

initial begin addrCounter = 0;
‘include ”program.sv” // first pass
addrCounter = 0;
‘include “program.sv’

)

// second pass
end

SystemVerilogSummary 10 :

task taskName; input [...:...] inputName; ... begin taskBody end endtask : describes the task
taskName of parameters inputName ... which performs the actions defined by taskBody.

Simulator

The simulator used to validate the processor design is described in detail in the ?? section, where the
processor was instantiated and the data, dataMemory, and program, ProgMemory memories were added.
The interrupt signal intIn has been activated, which will be taken into account immediately by the
instruction DI will allow it.

Assembly Programs

Example 4.1 Let by a following simple program:

NOP ;
VAL(0,1) ;
VAL(1,2) ;
VAL(2,3) ;
VAL(3,4) ;
VAL (4,5) ;
ADD(0,0,1)
ADD(0,0,2) ;
ADD(0,0,3) ;
ADD(0,0,4) ;
HALT ;

The code generator loads in the program memory the following binary form of the program:

progMemory [0] = 11001000000000000000000000000000
progMemory [1] = 01011100000000000000000000000001
progMemory [2] = 01011100001000000000000000000010

84

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

progMemory [3] = 01011100010000000000000000000011
progMemory [4] = 01011100011000000000000000000100
progMemory [5] = 01011100100000000000000000000101
progMemory [6] = 11000000000000000000100000000000
progMemory [7] = 11000000000000000001000000000000
progMemory [8] = 11000000000000000001100000000000
progMemory [9] = 11000000000000000010000000000000
progMemory [10] = 00011000000000000000000000000000
progMemory [11] = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

The clock period is equal with 2 time units. The program starts at the time unit t=5 after the 4 time
units action of the reset signal. The value of the program counter and of the first 2 registers in the
register file evolve as follows:

t=0 \bigotimespc= x RF=[x, x, x, x] ei=x inta=x
t=1 pc=1023 RF=[x, x, x, x] ei=0 inta=0
t=56 pc= 0 RF=[x, x, x, x] ei=0 inta=0
t=7 pc= 1 RF=[x, x, x, x] ei=0 inta=0
t=9 pc= 2 RF=[1, x, x, x] ei=0 inta=0
t=11 pc= 3 RF=[1, 2, x, x] ei=0 inta=0
t=13 pc= 4 RF=[1, 2, 3, x] ei=0 inta=0
t=15 pc= 5 RF=[1, 2, 3, 4] ei=0 inta=0
t=17 pc= 6 RF=[1, 2, 3, 4] ei=0 inta=0
t=19 pc= 7 RF=[3, 2, 3, 4] ei=0 inta=0
t=21 pc= 8 RF=[6, 2, 3, 4] ei=0 inta=0
t=23 pc= 9 RF=[10, 2, 3, 4] ei=0 inta=0
t=25 pc= 10 RF=[15, 2, 3, 4] ei=0 inta=0

Example 4.2 Let us take an example to show how the interrupt acts. The interrupt is applied from the
beginning of the test, but it is enabled only after the instruction EI runs.

VAL(31,10) ;
VAL(2,23)
VAL(0,13)
EI ;
ADDV(0,0,2) ;
NOP ;
ADDV(0,0,4) ;
HALT ;
NOP ;
NOP ;
// subroutine triggered by interrupt
DI ;
VAL(3,44) ;
RET(30) 5

The toy assembler generates in progMemory the following executable code:

progMemory [0] = 01011111111000000000000000001010
progMemory [1] = 01011100010000000000000000010111
progMemory [2] = 01011100000000000000000000001101

85

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

progMemory [3] 00100000000000000000000000000000
progMemory [4] 11001000000000000000000000000010
progMemory [5] 11001000000000000000000000000000
progMemory [6] 11001000000000000000000000000100
progMemory [7] 00011000000000000000000000000000
progMemory [8] 11001000000000000000000000000000
progMemory [9] 11001000000000000000000000000000
progMemory [10] 00100100000000000000000000000000
progMemory [11] 01011100011000000000000000101100
progMemory [12] 00010100000111100000000000000000
progMemory[13] = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXX

The simulation provides:

t=0 pc= x RF=[x, x, x, x] ei=x inta=x
t=1 pc=1023 RF=[x, x, x, x] ei=0 inta=0
t=5 pc= 0 RF=[x, x, x, %] ei=0 inta=0
t=7 pc= 1 RF=[x, x, x, x] ei=0 inta=0
t=9 pc= 2 RF=[x, x, 23, x] ei=0 inta=0
t=11 pc= 3 RF=[13, x, 23, x] ei=0 inta=0
t=13 pc= 4 RF=[13, x, 23, x] ei=1 inta=1
t=15 pc= 10 RF=[13, x, 23, x] ei=0 inta=0
t=17 pc= 11 RF=[13, x, 23, x] ei=0 inta=0
t=19 pc= 12 RF=[13, x, 23, 44] ei=0 inta=0
t=21 pc= 4 RF=[13, x, 23, 44] ei=0 inta=0
t=23 pc= 5 RF=[15, x, 23, 44] ei=0 inta=0
t=25 pc= 6 RF=[15, x, 23, 44] ei=0 inta=0
t=27 pc= 7 RF=[19, x, 23, 44] ei=0 inta=0
(o

Example 4.3 Let be a wrong program which runs forever because of an unconditional jump.

VAL(0,3) ;
LB(1); ADDV(0,0,-1);
NOP 5
RJIMP (1) H
HALT ;

The simulation provides:

t=0 pc= x RF=[x, x, x, x] ei=x inta=x
t=1 pc=1023 RF=[x, x, x, x] ei=0 inta=0
t=5 pc= 0 RF=[3, x, x, x] ei=0 inta=0
t=7 pc= 1 RF=[3, x, x, x] ei=0 inta=0
t=9 pc= 2 RF=[2, x, x, x] ei=0 inta=0
t=11 pc= 3 RF=[2, x, x, x] ei=0 inta=0
t=13 pc= 1 RF=[2, x, x, x] ei=0 inta=0
t=15 pc= 2 RF=[1, x, x, x] ei=0 inta=0
t=17 pc= 3 RF=[1, x, x, x] ei=0 inta=0
t=19 pc= 1 RF=[1, x, x, x] ei=0 inta=0
t=21 pc= 2 RF=[0, x, x, x] ei=0 inta=0
t=23 pc= 3 RF=[0, x, x, x] ei=0 inta=0

86

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

t=25 pc= 1 RF=[0, x, x, x] ei=0 inta=0

t=27 pc= 2 RF=[4294967295, x, x, x] ei=0 inta=0
t=29 pc= 3 RF=[4294967295, x, x, x] ei=0 inta=0
t=31 pc= 1 RF=[4294967295, x, x, x] ei=0 inta=0
t=33 pc= 2 RF=[4294967294, x, x, x] ei=0 inta=0
t=35 pc= 3 RF=[4294967294, x, x, x] ei=0 inta=0
t=37 pc= 1 RF=[4294967294, x, x, x] ei=0 inta=0
t=39 pc= 2 RF=[4294967293, x, x, x] ei=0 inta=0
t=41 pc= 3 RF=[4294967293, x, x, x] ei=0 inta=0
t=43 pc= 1 RF=[4294967293, x, x, x] ei=0 inta=0

<&

Example 4.4 Let be a program which works with dataMemory.

VAL(0,1) ;
VAL(1,55) ;
STORE(0,1) ;
READ (0) ;
LOAD(2) ;
HALT ;

The simulation provides:

t=0 pc= x RF=[x, x, x, %] ei=x inta=x
t=1 pc=1023 RF=[x, x, x, x] ei=0 inta=0
t=5 pc= 0 RF=[1, x, x, x] ei=0 inta=0
t=7 pc= 1 RF=[1, x, x, x] ei=0 inta=0
t=9 pc= 2 RF=[1, 55, x, x] ei=0 inta=0
t=11 pc= 3 RF=[1, 55, x, x] ei=0 inta=0
t=13 pc= 4 RF=[1, 55, x, x] ei=0 inta=0
t=15 pc= 5 RF=[1, 55, 55, x] ei=0 inta=0

4.5.4 Time performance

The longest combinational path in a system using our foyRISC, which imposes the minimum clock
period, is:

Te1ock = telock to-instruction + tleftAddrjoJeftOp + tthroughALU + tthroughMUX + tfileRegSU

Because the system is not buffered the clock frequency depends also by the time behavior of the
system directly connected with toyRISC. In this case f.jock_ro_instruction — the access time of the program
memory, related to the active edge of the clock — is an extra-system parameter limiting the speed of
our design. The internal propagation time to be considered are: the read time from the file register
(t1e frAddrto leftOp OF trightAddrto_rightop), the maximum propagation time through ALU (dominated by the
time for an 32-bit arithmetic operation), the propagation time through a 4-way 32-bit multiplexer, and
the set-up time on the file register’s data inputs. The way from the output of the file register through Next
PC circuit is “shorter” because it contains a 16-bit adder, comparing with the 32-bit one of the ALU.

The increase in speed performance will be illustrated in the next lesson by using pipeline registers.

87

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

4.6 How is Designed an Instruction Set Architecture

As we already said, we use the term ISA to refer to the actual programmer-visible instruction set. The
ISA serves as the boundary between the software engineer and hardware engineer. We will list and
comment further on the main characteristics of an ISA [?]:

e Class of ISA

— register-memory ISAs such as x86, with complex memory access instructions

— load-store ISAs such as ARM, RISC V, with only simple load and store insructions for mem-
ory access

* Memory addressing is byte addressing with two versions:

— byte aligned (ex.: ARM) if the object accessed at address A has s bytes, then the Amods = 0

— with no alignment (ex.: x86 and RISC V) which produces slower access
* Addressing modes

— few simple: register, immediate, displacement, ... (RISC V, ARM)

— many complex: the previous and more (x86)
* Types and sizes of operands

— integer: 8 bit (ASCII), 16 bit (Unicode character), 32-bit (word), 64-bit (double word)
— floats: standard IEEE 754 32-bit floating point and 64-bit floating point

* Operations:

data transfer

arithmetic
% integer: add, sub, mult, div, rem, rightShift, ...
% floats: add, sub, mult, div, rem

logic: minimally AND and XOR

control: jumps, conditional branches, calls, ret, ...

¢ Control flow instructions:

— RISC V tests the value of a register for conditional branches
— x86 and ARM test flags in a state register

— x86 save the return address from subroutine on a stack memory organized in the main
mamory

* Encoding an ISA:

— variable length for x86
— fix length for RISC V and ARM

88

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

4.7 Problems

4.7.1
4.7.2

89

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

90

Section 5

Instruction-Level Parallelism

Contents
501 Pipelining o v it i e e e e e e e e e e e e
5.1.1 Pipeline Acceleration
5.1.2 Pipelined Version of toyRISC
5.1.3 Latencyo
5.2 Hazards Generated by Dependencies
5.2.1 Datadependency
5.2.2 Control Dependency
5.3 Superscalar Processor i i ittt e e e e e e e e e
5.3.1 Registerrenaming Lo
5.3.2 Out-of-Order Execution
S4 Problems e e e e e e e e e e
SATL
SA2

There are various form of instruction-level parallelism. We will consider is this short course only the
parallelism introduced by the pipeline mechanism and the multiple execution units. Thus, the 5th lesson
deals with the pipeline mechanism, used to accelerate the processor’s operation, and the implications of
its use. But as we will see any gain obtained from the application of an improvement technique comes

with a price.

5.1 Pipelining

Combinational logic circuits (CLCs) that have a very high depth cause the system clock frequency to be
reduced. The solution that allows increasing the clock frequency is the introduction of pipeline registers.

5.1.1 Pipeline Acceleration

In Figure 5.1 the pipeline technique is illustrated. In Figure 5.1a, the frequency at which the system clock
can work is given by the propagation time through the CLC.¢ to which is added the time associated with

the propagation through the registers.

91

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

X(1)
clock

X

CLCy: g(X(t-1))

€16y g |

CLCy: f(g(X(t-2)))

out = f(g(X(t-2)))

out = f(g(X(t-3)))

a. b.

Figure 5.1: Pipelining. a. The initial circuit, without pipeline register. b. The pipelined version of the
circuit.

Terock = tregProp + tCLCng + tsetfup = tCLCng

In Figure 5.1b, the frequency at which the system clock can work will be increased because the
period of the clock is given by

Terock = tregProp + max(tCLCf) tCLCg) + Lset—up

The resulting acceleration is:
tCleog

-~
max(tcre,tere,)
The maximum efficiency, & ~ 2, is obtained when
lerey = Iere,
If the resulting frequency is not high enough, the technique is applied to the deepest circuit or both.
The process can continue until the requested speed is reached.
5.1.2 Pipelined Version of toyRISC
Structure

The operating frequency of the toyRISC processor presented in the previous lesson can be increased
by inserting some pipeline registers on the critical path of the combinatorial propagation. A version,
adapted to be accelerated, is shown in Figure 5.2 where the two memories are not represented. Instead,
only the connections to those memories are represented. The program memory is a synchronous memory
(see 2.4.2) connected in our system in combinational mode through the output multiplexers. The data

92

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

memory is a synchronous pipelined memory (see 2.4.3) which responds with one cycle latency to the
read command.

i

I
I
I
I
I
nextPCsel[0] I
I
I
I
I
I

T I PipeReg0:PC | inc

\

\

\

|

\

\

\

\

\

\

\

I instr(i) - # progAddr
I INSTR FETCH ¢ + instruction
\ s \

\ \
e | PipeRegl:{instructionl, PC1} | i | PROGRAM
I I MEMORY
\ * \

\ —_— \

\ |—> rightAddr leftAddr [« <—T + inta
\ we \

\ destAddri l}g}:r < v [

I result < < I

} REGISTER 1 > 4 I }

| FILE Y |

| instr(i-1) leftOp rightOp add |

\ \

\ 9 opSel \

\ DECODE w ,

| f—— Int
I 1 0 nextPCsel[1] I

! ! dataRead
\ !

I OPS FETCH I dataWrite
: y 4 4 4 f

\ we \

I SaEn | PipeReg2:{leftOp2, rightOp2, instruction2, opSel2} | *74 |

\ \

\ \

! 1 dataOut

I 1 dataAddr
I +— dataln

\ \

‘ Y v v || MEMORY
\ \

I 2 0 1 I

| instr(i-2) L—)_ \

\ \

| Y Y :

| awo L |

I EXECUTE I

| Y 1 1 l

= | PipeReg3:{result3, instruction3, dataln3, we3} | [

} I — }

\ I \

\ \

I instr(i-3) WRITE BACK PIPELINED toyRISC PROCESSOR |

b o e e e e e e e = a

Figure 5.2: The pipelined version of toyRISC.

Micro-architecture

The micro-architecture is:

[k wk Rk kk ok Rk Rk Rk Rk ko k kR kR kR Rk ko kk Rk Rk Rk Rk Rk ok kkkk Rk Rk Rk ok ok ok Rk Rk Rk Rk ok k ok Kk k ok k%

93

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

DEFINES . vh
PIPELINED TOY-RISC MICROARCHITECTURE
o sk sk ok o sk kR o sk kR ok ok sk ok R o sk kR ok ok ksl ok ok sk kR ok ok kR s sk kR ok sk sk Sk R o sk sk R ok sk kR ok sk ok o ok ok sk R ok ok ko ok ok sk ok ok R/

// CONTROL OPERATIONS

File name:

‘define nop 6°b00-0000 // no operation: pc<=pc+lI;
‘define rjmp 6°b00.0001 // relative jump: pc<=pc+v;
‘define zbr 6°b00.0010 // pc<=(rf[l]=0) ? pc+v:pc+lI
‘define nzbr 6°b00_0011 // pec<=!(rf[l]=0) ? pc+v:pc+l
‘define ret 6°b00.0101 // return: pc<=rf[l][15:0];
‘define halt 6°b00-0110 // halt unitil interrupt
‘define eint 6°b00_1000 // set enable interrupt
‘define dint 6°b00_1001 // set disable interrupt

// ARITHMETIC & LOGIC OPERATIONS, for these instructions: pc<=pc+I;

‘define add 6’b11.0000 // rfld]j<=rf[l]+rf[r];
‘define sub 6’b11.0001 // rfld]j<=rf[l]-rf[r];
‘define addv 6’b11.0010 // rfldj<=rf[l]+v;
‘define mult 6’bl11.0011 // rfld]j<=rf[l]=xrf[r];
‘define multyv 6’b11.0100 // rf[d]j<=rf[l]%v;
‘define addc 6’bl11.0101 // rf[d]<=(rf[l]+rf[r]}[32];
‘define subc 6°bl11.0110 // rfld]<=(rf[l]-rf[r])[32];
‘define addvc 6°’bl1_0111 // rfl[d]<=(rf[l]+v)[32];
‘define Ish 6’bl11_1000 // rfldj<=rf[l] >> I;
‘define ash 6’bl1_1001 // rf[d]<=

// <s{rf[l][31],rf[L][31:1]};
‘define move 6’bl1_1010 // rf[d]<=rf[l];
‘define swap 6’bl1_1011 // rf[d]<=

/0 <={rf[l][15:0],rf[1][31:16]};
‘define bwnot 6’bl1_1100 // rfl[d]<="rf[l];
‘define bwand 6°’bl11_1101 // rfld]j<=rf[l]&rf[r];
‘define bwor 6’bl1_1110 // rfld]j<=rf[L]|rf[r];
‘define bwxor 6’bll1_1111 // rfld]j<=rf[Ll] rf[r];
// DATA LOAD-STORE OPERATIONS, for these instructions: pc=pc+I;
‘define read 6’b10_0000 // read from dataMemory[rf[l]];
‘define load 6’b10.0111 // rf[d]<=dataOut;
‘define store 6°b10.1000 // dataMemory[rf[l]]<=rf[r];
‘define val 6’b01.0111 // rf[d]<={{16+{v[I5]}},v};

The three pipeline registers introduced in design divide the execution of an instruction in four stages:

INSTRUCTION FETCH (IF) : the content of the register pc (program counter) addresses in the pro-
gram memory the binary code of an instruction; in the same time the module next computes the
value for the next pc. The execution time for this stage is:

I =tpe+ max(tnext) tACCtoProgmmMemory) - tsuPipeReg1

In the pipeline register PipeReg_1 is loaded the information requested to finish the execution of
the fetched instruction

OPERANDS FETCH (OF) : from the register are fetched the two operands of the instruction using
the fields leftAddr and rightAddr fetched in the previous cycle from the program memory. In

94

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

pipeReg_2 are loaded the two fetched operands and the information needed in the next cycles to
end the execution of the instruction. The execution time for this stage is:

LOF = IPipeRegl + regFile + tsuPipeRegZ

EXECUTION (EX) : ALU performs the operation according to the code opCode, propagated to this
stage through the two previous pipeline registers, generate result and the predicate zero =
(rezult == 0); the add module adds to the program counter the signed value of value to per-
form the branch operation. The execution time for this stage is:

lex = tPipeRegZ + max((tmux + talu)y (tadd + tmux) ’ tdataMemPipeReg) + tsuPipeReg?&

WRITE BACK (WB) : acts on the first two levels in the pipeline: it allows the modification of the pc
to perform jumps and writes the result of the current operation in the register file. The execution
time for this stage is:

wB = IPipeReg3 + max(tsuRegFilm (tnext + tsuPC))

The maximum clock frequency is limited by:
Tetock = max(tir ,tor stex ,twB)

Architecture

The Instruction Set Architecture is:

/st sk sk ke ook sk sk sk sk ok ok sk sk sk sk ok stk sk o sk o ok skeske s sk ok ok sk sk s sk e ok sk sk sk s sk ok ok sk sk sk sk ke ok sk sk sk sk sk ok sk sk sk sk sk ok stk sk sk sk ok sk sksk ok sk ok
toyRISC’S ARCHITECTURE
s sk o sk ook sk ok sk ke ok sk sk ok o sk o sk sk s o sk ok ok sk sk s sk ke ok sk sk sk sk s ok sk sk sk sk sk ok stk sk sk ok ok sk sk sk sk ok ok stk ok sk ok stk sk ok sk ok sk sksk ok sk ok ok ok /
NOP // no operation
RJMP (1b) // relative jumpto label ’1b’
BRZ(1,1b) // branch if rf[l]l=zero at label ’1b’
BRNZ(1,1b) // branch if rf[l]!=zero at label ’1b’

RET(1) // return from subroutine: pc<=rf[1]

HALT // halt until interrupt is received, pc = pc
// for the following instructions: pc<=pc+l;

EINT // set enable interrupt

DINT // set disable interrupt

ADD(d,1,r) // rfldl<=rfl[l]l+rflr];

SUB(d,1,r) // rfldl<=rfl[l]l-rflr]l;

ADDV(4d,1,v) // rfldl<=rf[1]+v;

MULT(d,1,r) // rfldl<=rf[1]x*rflr];
MULTV(d,1,v)// rfl[d]l<=rf[1]*v;

ADDC(d,1,r) // rfldl<=(rf[1]+rf(r]}[32];
SUBC(d,1,r) // rfldl<=(rf[1]-rf[r])[32];
ADDVC(d,1,v)// rfldl<=(rf[1]+v) [32];

LSH(d,1) // rfldl<=rf[1l] >> 1;

ASH(d,1) // rfldl<={rf[1][31],rf[1][31:1]};

95

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

MOVE(d,1) // rfldl<=rf[l];

SWAP(4,1) // rfldl<={rf[1][15:0],rf[1]1[31:16]};
NOT(4,1) // rfldl<="rf[1];

AND(d,1,r) // rfldl<=rfl[1l]&rflr];

OR(d,1,r) // rfldl<=rf[1]|rflr];

X0R(d,1,r) // rfldl<=rf[1] rflr];

READ (1) // read from dataMemory[rf[1]];
LOAD(d) // rfld]l<=datalut;

STORE(1l,r) // dataMemory[rf[1]]<=rf[r];

VAL(d,v) // rfldl<={{16*%{v[15]}},v};

5.1.3 Latency

In each clock cycle the execution of one instruction ends with a latency of three clock cycles. The entire
structure performs in parallel 4 successive instructions, each stage being involved in the execution of one
instruction.

Example 5.1 Let us see how is executed the following sequence of instructions:

XOR(5,0,0)
VAL(1,12)

SUB(2,3,4)
ADD(0,0,3)
AND(1,3,2)

In Table 5.1 the distribution along the pipe of the execution is represented. Each line in the table repre-
sents a pipeline level. The execution of the first instruction, XOR, starts in the i-th clock cycle, with XORO,
and ends in the (i+ 3)-th cycle with XOR3. Then in each clock cycle one of the following instruction ends.

Table 5.1: Pipelined execution.
Pipe Stage \ Time || t=i | t=i+l [t=i+2 [t=i+3 [t=i+4 [t=i+5 [t=i+6 [t=i+7

PipeO:IF XORO | VALO SUBO ADDO ANDO

Pipel:0F XOR1 | VAL 1 | SUB1 ADD1 AND1

Pipe2:EX X0R2 VAL2 SUB2 ADD2 AND2
Pipe3:WB X0R3 VAL3 SUB3 ADD3 AND3

o
In each clock cycle, an instruction completes with a latency of 3 clock cycles. The good news:

the clock frequency increases significantly due to pipeline organization. The bad news: the latency
introduced by the pipeline organization creates unwanted dependencies.

5.2 Hazards Generated by Dependencies

There are three types of dependencies:

96

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

1. Structural Dependency
2. Data Dependency
3. Control Dependency

These dependencies generate hazardous behaviors of the pipelined processor due to the parallel exe-
cution of instructions which partially overlap. In the following some of them will be illustrated. Due to
the fact that we used the Harvard abstract model for our toyRISC processor, main structural dependency
are avoided. Therefore we concentrate only to the next two type of dependencies.

Structural dependencies are typically represented by those related to processor memory. In the case
of our processor, toyRISC, they do not appear because we have an abstract model of the Harvard type
with two memories, one for programs and another for data. Thus, in what follows, we will focus on the
other two types of dependencies.

5.2.1 Data dependency

When the current instruction uses values generated by a previous instruction that has not been completed,
the effect of data dependency appears. There are 3 types of data dependencies that we’ve been talking
about:

* RAW: Read after Write
* WAR: Write after Read
e WAW: Write after Write

We will focus on the first, RAW, which is typical for our processor version. For the other two, they are
illustrated in Example 5.11.

Example 5.2 Let us see how is executed the following sequence of instructions:

XOR(5,0,0)
VAL(1,12)

SUB(2,3,4)
ADD(0,2,1)
AND(1,1,2)

In Table 5.2 the distribution along the pipe of the execution is represented.

Table 5.2: Data dependency in the pipelined execution .
| Pipe Stage \ Time || t=i [t=i+l [t=i+2 | t=i+3 | t=i+4 | t=i+5 | t=i+6 [t=i+7

PipeO:IF XORO | VALO SUBO ADDO ANDO

Pipel:0F XO0R1 VAL1 SUB1 ADD1 AND1

Pipe2:EX X0R2 VAL2 SUB2 | ADD2 | AND2
Pipe3:WB X0R3 VAL3 SUB3 ADD3 AND3

The WB cycle for SUB, SUB3, is executed at i+5, too late to have the content of r£2 actualized with
the result of SUB(2,3,4) for the instruction ADD(0,2,1) which is supposed to have r£2 actualized

97

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

by the previous instruction in i+4. ADD2 must be preceded by SUB3. SUB3 is delayed with one clock
cycle for a proper execution of the code. The instruction ADD(0,2,1) uses the value in r£2 before the
execution of SUB2,3,4.

o

Example 5.3 Data dependency is illustrated also by running on our simulator the program run in Ex-
ample 4.1:

NOP ;
VAL(0,1) ;
VAL(1,2) ;
VAL(2,3) ;
VAL(3,4) s
VAL(4,5) ;
NOP ;
NOP ;
ADD(5,4,3) ;
HALT ;
HALT ;

The result is correct because of the two NOPs inserted in the program from Example 4.1 before the ADD
instruction:

t=0 pc= x RF=[x, x, x, X, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=1 pc=1023 RF=[x, x, x, X, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=b pc= 0 RF=[x, x, x, x, x, X, x, x] leftOp2=x rightOp2=x result3=x
t=7 pc= 1 RF=[x, x, x, X, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=9 pc= 2 RF=[x, x, x, X, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=11 pc= 3 PRF=[x, x, x, x, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=13 pc= 4 RF=[x, x, x, x, x, X, X, x] leftOp2=x rightOp2=x result3=1
t=15 pc= 5 RF=[1, x, x, X, X, X, X, x] leftOp2=x rightOp2=x result3=2
t=17 pc= 6 RF=[1, 2, x, x, X, X, X, x] leftOp2=1 rightOp2=1 result3=3
t=19 pc= 7 RF=[1, 2, 3, x, x, X, x, x] leftOp2=1 rightOp2=1 result3=4
t=21 pc= 8 RF=[1, 2, 3, 4, x, x, x, x] leftOp2=1 rightOp2=1 result3=5
t=23 pc= 9 RF=[1, 2, 3, 4, 5, x, x, x] leftOp2=1 rightOp2=1 result3=1
t=25 pc= 10 RF=[1, 2, 3, 4, 5, x, x, x] left0p2=5 rightOp2=4 result3=1
t=27 pc= 10 RF=[1, 2, 3, 4, 5, x, x, x] leftOp2=1 rightOp2=1 result3=9
t=29 pc= 10 RF=[1, 2, 3, 4, 5, 9, x, x] leftOp2=1 rightOp2=1 result3=1

If the two NQOPs are omitted,

NOP ;
VAL(0,1) ;
VAL(1,2) ;
VAL(2,3) ;
VAL(3,4) ;
VAL (4,5) ;
ADD(5,4,3) ;
HALT :
HALT ;

98

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

then the processor behaves incorrectly, as follows:

t=0 pc= x RF=[x, x, %, x, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=1 pc=1023 RF=[x, x, x, X, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=56 pc= O RF=[x, x, x, x, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=7 pc= 1 RF=[x, x, %, X, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=9 pc= 2 RF=[x, x, x, x, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=11 pc= 3 RF=[x, x, x, X, X, X, X, x] leftOp2=x rightOp2=x result3=x
t=13 pc= 4 RF=[x, x, x, X, X, X, X, x] leftOp2=x rightOp2=x result3=1
t=15 pc= 5 RF=[1, x, x, x, X, X, X, x] leftOp2=x rightOp2=x result3=2
t=17 pc= 6 RF=[1, 2, x, x, %, X, X, x] leftOp2=1 rightOp2=1 result3=3
t=19 pc= 7 RF=[1, 2, 3, x, %, X, x, x] leftOp2=1 rightOp2=1 result3=4
t=21 pc= 8 RF=[1, 2, 3, 4, x, x, x, x] leftOp2=x rightOp2=x result3=5
t=23 pc= 8 RF=[1, 2, 3, 4, 5, x, x, x] leftOp2=1 rightOp2=1 result3=x
t=25 pc= 8 RF=[1, 2, 3, 4, 5, x, x, x] leftOp2=1 rightOp2=1 result3=1

because the operands for the arithmetic operations are not yet in place being delayed on the execution

pipe.
o

To solve the problem of data dependency just emphasized there are used two solutions: stalling and
forwarding.

Stalling

An inefficient solution, for the execution time, is to stall by introducing a NOP instruction between
SUB(2,3,4) and ADD(0,2,1), thus delaying the use of the content of r£2 with one clock cycle. Result
the following sequence of instructions:

X0R(5,0,0)
VAL(1,12)
SUB(2,3,4)
NOP
ADD(0,2,1)
AND(1,1,2)

whose execution is illustrated in Table 5.3.

Table 5.3: Stalling
[Instr \ Time || t=i [t=i+1 [t=i+2 | t=i+3 | t=i+4 [t=i+5 | t=i+6 | t=i+7 | t=t+8

IF XORO | VALO SUBO NOPO ADDO ANDO

OF XO0R1 VAL1 SUB1 NOP1 ADD1 AND1

EX X0R2 VAL2 SUB2 NOP2 | ADD2 AND2

WB XOR3 VAL3 SUB3 NOP3 ADD3 AND3

Now, ADD2 is preceded by SUB3 and addition is performed takeing into account the result of the
subtract operation.

99

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Reordering

Sometimes, but only sometimes, there is a very simple and efficient solution for data dependency: re-
ordering the instructions in the sequence of instructions. In Example 5.2, the instruction XOR(5,0,0) can
be moved, without affecting the result of running the sequence of instructions, between the instructions
SUB and ADD. as follows:

VAL(1,12)

SUB(2,3,4)
X0R(5,0,0)
ADD(0,2,1)
AND(1,1,2)

Thus, the XOR instruction is used for stalling instead of the NOP instruction, but now the execution time
is not affected.

Forwarding

By adding hardware, the data dependency can be resolved, in all cases, with no time penalty. The
solution is to connect result not only to the register file input, but also directly to the ALU input when
the value just computed is needed for the next instruction. The mechanism is called forwarding and
requires the addition of one input to the ALU input as left operand or as right operand. But, because
there are binary operations (operations with two operands) sometimes both operands arrive to late in the
register file to be fetched for the current instruction.

Thus, forwarding control is done by a circuit which analyse the binary code of three successive
instructions. Three situations can occur:

xxxxxx_00001_xxx...X // identified in PipeReg_3

XXXXXX_yyyyy_00001_xxx...x // identified in PipeReg_2
or

xxxxxx_00001_xxX...X // identified in PipeReg_3

XXXXXX_Yyyyy_zzzzz_00001_xxx...X // identified in PipeReg_2
or

xxxxxx_00001_xxx...x // identified in PipeReg_3
XXXXXX_yyyyy_00001_00001_xxx...x // identified in PipeReg_2

xxxxxx_00001_xxx...X // identified in PipeReg_4
xxxxxx_00011_xxx...X // identified in PipeReg_3
XXXXXX_yyyyy_00011_00001_xxx...x // identified in PipeReg_2

xxxxxx_00001_xxx...X // identified in PipeReg_4
xxxxxx_00011_xxx...X // identified in PipeReg_3
XXXXXX_yyyyy_00001_00011_xxx...xX // identified in PipeReg_2

100

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

\ \
\ \
| IR |
I 1 0 I
I Cl_/ nextPCsel[0] I
\ \
\ \
| T ~~~~~~~~~~~~~~~ I PipeReg0:pcO | inc |
\ \
\ \
I instr(i) - #{ progAddr
I INSTR FETCH ¢ + instruction
\ s \
\ \
R SEE | PipeRegl:{instructionl, pc1} | i | PROGRAM
I I MEMORY
\ * \
\ —_— \
\ |—> rightAddr leftAddr [« A—T + inta
\ we INT \
\ deStAd(%r < swrten ¢ v [
[result < [
} REGISTER 1 > 4 I }
| FILE _ Y ‘
| instr(i-1) leftOp rightOp add |
\ \
I L opSel I
\ DECODE w ,
| f— Int
I 1 0 nextPCsel[1] I
! ! dataRead
\ !
I OPS FETCH I dataWrite
: A y y 4 '
\ we /1
e | PipeReg2:{leftOp2, rightOp2, opSel2, instruction2 } | k“ T / [
\ \
\ \
\ \
\ \
\ \
| * |
| Y * Y Y I Y VY |
I 0o 1 2 0O 1 2 3 I
I instr(i-2) ()_ ()_ I
\ \
: Y Y |
I EXECUTE I
‘ ALU Z |
\ \
: 4 ¢ 4 A :
N SaiRREn | PipeReg3:{leftOp3, result3, rightOp3, instruction3} | [
\ \

]
\ \
I I # dataOut
ro) #» dataAddr
I instr(i-3) + dataln
\ \
w DATA MEM "—A w DATA
I 0 1 I MEMORY
\ \
| ! B! |
I SAEE | PipeReg4 = {result4, instruction4, we4 } | \
| |

[

} WRITE BACK | }
I instr(i-4) I
\ \

PIPELINED toyRISC PROCESSOR

L e e e e e e e e - a

Figure 5.3: The change used to reduce hazards imposed by data dependencies.

The structure of the processor is modified as it is shown in Figure 5.3, where a new level in pipe
is added and the operands at ALU inputs are selected using multiplexors with additional inputs. The

101

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

selection for the augmented multiplexors are computed combinational as opSel[3:0] in DECODE and
synchronized in PipeReg2 as opSel2[3:0] to avoid an additional delay in selecting ALU operands.
Thus, result is used as operand in the EXECUTE state of the pipeline, if the forwarding mechanism
decides, as result3 connected the inputs 1 or as result4 to the inputs 2 to the selection multiplexors at
ALU operand inputs. The value of result3 is used to be forwarded when the dependency is identified
with the result of the instructions issued in one clock cycle before the current one. The value of result4
is used to be forwarded when the dependency is identified with the result of the instructions issued in
two clock cycles before the current one.

Example 5.4 Data dependency solved by using forwarding is exemplified starting from Example 5.4:

NOP ;
VAL(0,1) s
VAL(1,2) ;
VAL(2,3) ;
VAL(3,4) ;
VAL (4,5) s
ADD(5,4,3) ;
HALT ;
HALT ;

Now the processor behaves incorrectly without the aditional NOPs, as follows:

t=0 pc= x RF=[x, x, x, X, X, X, X, X]
t=1 pc=1023 RF=[x, x, X, X, X, X, X, X]
t=5 pc= 0 RF=[x, x, X, X, X, X, X, X]
t=7 pc= 1 RF=[x, x, x, X, X, X, X, X]
t=9 pc= 2 RF=[x, x, x, X, X, X, X, X]
t=11 pc= 3 RF=[x, x, x, x, X, X, X, X]
t=13 pc= 4 RF=[x, x, x, X, X, X, X, X]
t=15 pc= 5 RF=[x, x, x, x, X, X, X, X]
t=17 pc= 6 RF=[1, x, x, X, X, X, X, X]
t=19 pc= 7 RF=[1, 2, x, x, X, X, X, X]
t=21 pc= 8 RF=[1, 2, 3, x, %, X, X, %]
t=23 pc= 8 RF=[1, 2, 3, 4, x, x, x, X]
t=25 pc= 8 RF=[1, 2, 3, 4, 5, x, x, %]
t=27 pc= 8 RF=[1, 2, 3, 4, 5, 9, x, x]
because the operands for the arithmetic operations are now forwarded using the two multiplexors to the
ALU’s inputs.
o

5.2.2 Control Dependency

The pipelined processor always fetches the instruction immediately after any taken branch.

Example 5.5 Let be the following sequence of instructions which contains a unconditioned (relative)
jump:

102

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

i: XXX
i+1: RJIMP (12)
i+2: LB(2) YYY
i+3: uuu
i+4: VvV

i+j: LB(12) ZZZ
Its execution is supposed to be:

XXX
RJIMP (12)
777

but in our processor it will be:

XXX
RJIMP (12)
YYY
777

because the instruction YYY are inserted into the pipe before the execution of the jump instruction com-
pleted in t=1+2 when the jump address is available (see Table 5.4).

Table 5.4: Hazard generated by the control dependency
[Instr \ Time || t=i | t=i+1 [t=i+2 [t=i+3 [t=i+4 | t=i+5 | t=i+6 | t=i+7

IF XXX0 | RJMPO | YYYO 727270

OF XXX1 | RJMP1 | YYY1 27271

EX XXX2 -———- YYY2 27272

DM XXX3 - YYY3 27273

WB XXX4 == YYY4 2774

O

Example 5.6 In the following example the effect of interrupt is illustrated together with the effect of the
control dependency due to the unwanted execution of VAL (4, 33) positioned after the RET30 instruction.

VAL(31,13) ;
VAL(2,23) ;
VAL(0,13) ;
VAL(1,13) ;
EI ;
ADDV(0,0,1) ;
VAL(1,1) ;
VAL (2,222) ;
NOP 5
ADDV (0,0,4) ;

103

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

HALT ;
HALT ;
NOP ;
// subroutine triggered by interrupt
ADDV(30,30,-1) ;
NOP 5
NOP ;
NOP :
RET (30) ;
VAL (4,33) 5

The result of simulation is:

t=0 pc= x RF=[x, x, x, X, X, X, X, XJ] intState=xxx inta=x
t=1 pc=1023 RF=[x, x, x, X, X, X, X, X] intState=000 inta=0
t=5 pc= 0 RF=[x, x, x, %, X, X, X, X] intState=000 inta=0
t=7 pc= 1 RF=[x, x, x, X, X, X, X, XJ intState=000 inta=0
t=9 pc= 2 RF=[x, x, x, X, X, X, X, X] intState=000 inta=0
t=11 pc= 3 RF=[x, x, x, X, X, X, X, XJ] intState=000 inta=0
t=13 pc= 4 RF=[x, x, x, %, X, X, x, 13] intState=000 inta=0
t=15 pc= 5 RF=[x, x, 23, x, x, %, x, 13] intState=000 inta=0
t=17 pc= 6 RF=[13, x, 23, x, X, X, x, 13] intState=001 inta=0
t=19 pc= 7 RF=[13, 13, 23, x, x, x, x, 13] intState=010 inta=1
t=21 pc= 13 RF=[13, 13, 23, x, x, x, 6, 13] intState=011 inta=0
t=23 pc= 13 RF=[13, 13, 23, x, x, x, 6, 13] intState=100 inta=0
t=25 pc= 13 RF=[13, 13, 23, x, x, x, 6, 13] intState=000 inta=0
t=27 pc= 14 RF=[13, 13, 23, x, x, x, 6, 13] intState=000 inta=0
t=29 pc= 15 RF=[13, 13, 23, x, x, x, 5, 13] intState=000 inta=0
t=31 pc= 16 RF=[13, 13, 23, x, x, x, 5, 13] intState=000 inta=0
t=33 pc= 17 RF=[13, 13, 23, x, x, x, 5, 13] intState=000 inta=0
t=35 pc= 18 RF=[13, 13, 23, x, x, x, 5, 13] intState=000 inta=0
t=37 pc= 5 RF=[13, 13, 23, x, x, x, 5, 13] intState=000 inta=0
t=39 pc= 6 RF=[13, 13, 23, x, x, x, 5, 13] intState=000 inta=0
t=41 pc= 7 RF=[13, 13, 23, x, x, x, 5, 13] intState=000 inta=0
t=43 pc= 8 RF=[13, 13, 23, x, 33, x, 5, 13] intState=000 inta=0
t=45 pc= 9 RF=[14, 13, 23, x, 33, x, 5, 13] intState=000 inta=0

t=47 pc= 10 RF=[14,
t=49 pc= 11 RF=[14,
t=51 pc= 11 RF=[14,
t=53 pc= 11 RF=[18,
t=55 pc= 11 RF=[18,
t=57 pc= 11 RF=[18,

, 23, x, 33, x, 5, 13] intState=000 inta=0
, 222, x, 33, x, 5, 13] intState=000 inta=0
222, x, 33, x, 5, 13] intState=000 inta=0
, 222, x, 33, x, 5, 13] intState=000 inta=0
, 222, x, 33, x, 5, 13] intState=000 inta=0
, 222, x, 33, x, 5, 13] intState=000 inta=0

N
M

The execution of VAL (4,33) is obvious at t=43. The program syntax does not assume this.
o

There are few solutions for solving the previously emphasized hazard.

Stalling

By introducing a stall using a NOP instruction the sequence of instruction becomes:

104

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

i:
i+1:
i+2:

i+3: LB(2)

XXX
RJIMP (12)
NOP
YYY

i+j: LB(12) 2ZZ

the execution will be:

XXX

RJIMP (12)

NOP
7277

This solution results in a branch penalty (the number of stalls introduced during the branch operations in
the pipelined processor) of 1 cycle (the NOP introduced after RJMP (12)).

Reordering

Sometimes the branch penalty can be reduced by reordering.

Because, in the previous example, the jump is unconditional, which means the execution of the
instruction XXX does not have implications on the jump instruction, the sequence of instruction can be
reordered, as follows:

i:
i+1:

i+2: LB(2)

RIMP(12)
XXX
YYY

i+j: LB(12) ZZZ

thus, executing the instruction XXX after jump no penalty is introduced.

Example 5.7 Reordering is exemplified by the following code:

LB(1);

NOP
VAL (
NOP
NOP
NOP
NOP
BRNZ
ADDV
HALT
HALT

0,-3)

0,1
(0,0,1)

b

where the increment of the register 0 is specified out of loop, but is executed associated with each branch.
The result of simulation is:

105

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

t=0 pc x PRF=[x, x, x, X, X, X, X, X]
t=1 pc=1023 RF=[x, x, x, X, X, X, X, X]
t=5 pc= 0 RF=[x, x, x, X, X, X, X, X]
t=7 pc= 1 RF=[x, x, x, X, X, X, X, XJ]
t=9 pc= 2 RF=[x, x, x, X, X, X, X, X]
t=11 pc= 3 RF=[x, x, x, X, X, X, X, X]
t=13 pc= 4 RF=[x, x, x, X, X, X, X, X]
t=15 pc= 5 RF=[4294967293, x, x, X, X, X, X, X]
t=17 pc= 6 RF=[4294967293, x, x, X, X, X, X, X]
t=19 pc= 7 RF=[4294967293, x, x, X, X, X, X, X]
t=21 pc= 4 RF=[4294967293, x, X, X, X, X, X, X]
t=23 pc= 5 RF=[4294967293, x, X, X, X, X, X, X]
t=25 pc= 6 RF=[4294967293, x, x, X, X, X, X, X]
t=27 pc= 7 RF=[4294967294, x, x, X, X, X, X, X]
t=29 pc= 4 RF=[4294967294, x, x, X, X, X, X, XJ]
t=31 pc= 5 RF=[4294967294, x, x, X, X, X, X, X]
t=33 pc= 6 RF=[4294967294, x, x, X, X, X, X, X]
t=35 pc= 7 RF=[4294967295, x, x, X, X, X, X, X]
t=37 pc= 4 RF=[4294967295, x, X, X, X, X, X, XJ
t=39 pc= 5 RF=[4294967295, x, x, X, X, X, X, X]
t=41 pc= 6 RF=[4294967295, x, X, X, X, X, X, X]
t=43 pc= 7 RF=[0, x, x, x, X, X, X, X]
t=45 pc= 8 RF=[0, x, x, x, X, X, X, X]
t=47 pc= 9 RF=[0, x, x, x, X, X, X, X]
t=49 pc= 9 RF=[0, x, x, X, X, X, X, X]
t=51 pc= 9 RF=[1, x, %, X, X, X, X, X]
t=563 pc= 9 RF=[1, x, x, X, X, X, X, X]
t=55 pc= 9 RF=[1, x, x, x, X, X, X, X]

Static Branch Prediction

Let us see now how the conditioned jumps, the branches, are managed to be performed efficiently.
There are two cases: backward branches or forward branches. Static prediction presumes that back-
ward branches will be taken and that forward branches will not.

In this case, most of the predictions will be correct. Indeed, if we have a jump back to execute a loop
that repeats n times, then once in n + 1 situations the prediction will have to be corrected.

Example 5.8 A backward branch is one that has a target address that is lower than its own address. For
example, it refers to the following type of loop:

i: VAL(1,23)
i+1: VAL(2,1)
i+2: LB(3) SUB(1,1,2)
i+3: NZJMP(1,3)
i+4: NOP

i+b: NOP

i+6:

106

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

This technique can help with prediction accuracy of loops, which are usually backward-pointing
branches, and are taken more often than not taken.
o

Example 5.9 A forward branch is one that has a target address that is higher than its own address. For
example, it refers to the following type of loop:

i: VAL(1,23)
i+1: VAL(2,1)
i+2: SUB(1,1,2)
i+3: ZJMP(1,2)
i+4: XXX

i+j: LB(2) YYY
&

In static prediction, all decisions are made at compile time, before the execution of the program

Note: In order to reduce the branch penalty, in the case of unconditional jumps, certain changes can
be made in the hardware. For example, the calculation of unconditional jump addresses can be moved to
the OP FETCH (OF) level. The execution latency of unconditional jumps is thus reduced by one unit.

Dynamic Branch Prediction

Dynamic branch prediction predicts branches based on dynamic information collected at run-time. It
requires additional hardware. As examples, I have chosen two of the simplest prediction mechanisms.

Last-time, one-bit predictor is the simplest solution which uses a two state automaton whose behav-
ior is described in Figure 5.4. We will code the state prediction not taken with 0, and the state
prediction taken with 1. The automaton is a saturated 1-bit counter. If is incremented from 0 goes
to 1, if is decremented from 1 goes to 0. But if it is incremented from 1, stays in 1, while decremented
from O stays in 0. This 2-state automaton says whether the branch was recently taken or not. Based
on this, the processor fetches the next instruction from the target address or sequential address. If the
prediction is wrong, flushes the pipeline and also flips prediction. So, every time a wrong prediction is
made, the prediction bit is flipped.

actally taken

actually not taken

actally taken

actually not taken

Figure 5.4: The saturated one-bit up/down counter as last-time branch predictor.

107

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

This mechanism always mispredicts the last iteration and the first iteration of a loop branch, thus the
accuracy for a loop with N iterations is (100 x (N —2)/N)%. For large values of N the accuracy of the
prediction increases, while for small values this mechanism is not very efficient.

Two-Bit Counter Based Predictor is a two-state finite automaton. Its behavior is described in Figure
5.5. The advantage of the two-bit predictor over a one-bit predictor is that a conditional jump has to
deviate twice from what it has done most in the past before the prediction changes. For example, a
loop-closing conditional jump is mispredicted once rather than twice.

Each state of the automaton is interpreted as follows:

* 00: strongly not taken
* 01: weakly not taken
* 10: weakly taken

* 11: strongly taken

actually actually actually
taken taken taken

actuall strong strong

¢ ak ak ¢
not taken | prediction prediction
not taken ak k taken

actuall(ly actually actually
not takén not takén not takén

Figure 5.5: Two-bit saturated counter based predictor.

The automaton is a saturated 2-bit counter. It increments for actually taken and decrements for
actually not taken. This predictor changes prediction only on two successive mispredictions.

5.3 Superscalar Processor

If the processor is designed with several execution units (for example: one integer ALU, two floating-
point units, two load/store units), the potential parallelism thus obtained should be activated at the highest
possible level. This means that in each clock cycle a maximum number of resources should be active, if
possible all of them.

In this case, the processor, called superscalar, can execute instructions in an order imposed by the
availability of data and execution units, rather than by their initial sequence in the program. For example,
the PowerPC 970 processor fetches and decodes up to eight instructions, dispatch up to five to reserve
stations (register files), issue up to eight to the execution units and retire up to five per cycle.

5.3.1 Register renaming

The sequence in which the instructions are executed must be strictly respected when there are data
dependencies. But when certain independent sequences can be identified, strictly sequential execution is

108

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

no longer mandatory, especially in the case of a superscalar processor that allows parallelism at the level
of instructions. We can apply in such cases the register renaming technique.

Example 5.10 Consider this sequence of code running on an out-of-order processor:

READ(0,4) // read in rf[0] from the address in rf[4]
ADD(0,0,12) // rfl[0] <= rf[0] + rf[12]

STORE(0,7) // dataMemoryl[rf[7]] <= rf[0]

READ(0,5)

ADD(0,0,6)

STORE(0,21)

The instructions in the last three lines are independent of the first three lines. The processor cannot
execute STORE(0,21) until STORE(0,7) is done. We can eliminate this restriction involving in our code
a supplementary register, as follows:

READ(0,4) // read in rf[0] from the address in rf[4]
ADD(0,0,12) // rf[0] <= rf[0] + rf[12]

STORE(0,7) // dataMemoryl[rf[7]] <= rf[0]

READ(2,5)

ADD(2,2,6)

STORE(2,21)

The first three instructions involves r£ [0], while the last three instructions work on the register rf [2],
allowing the last three instructions to be executed in parallel with the first three.
o

5.3.2 Out-of-Order Execution

Out-of-order execution is a mechanism used in high-performance processing units to make use efficiently
of instruction cycles. Using this mechanism, a processor executes instructions in an order governed
by the availability of input data and execution units, rather than by their original order in a program.
Thus the processor avoids being idle while waiting for the preceding instruction to complete and can,
in the meantime, proceed to execution of the next instructions that are able to run immediately and
independently. The mechanism is efficient for a processor with multiple execution units with speed
difference between instructions. It is the case of superscalar processor with ISA performing integer
and floating-point arithmetic operations. There are also speed difference between arithmetic and logic
instructions and memory access instructions.
While in a pipelined scalar processor an instruction is executed in the following steps:

1. Instruction fetch.

2. Operands fetch, if input operands are available in processor’s register file, else the processor stalls
until they are available.

3. The instruction is executed.
4. The results is write back to the register file.

in a superscalar processor the out-of-order execution is requested. It consists of the following steps:

109

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

1. Instruction fetch.
2. Instruction dispatch to an instruction queue (also called instruction buffer or reservation stations).

3. The instruction waits in the queue until its input operands are available. The instruction can leave
the queue before older instructions.

4. The instruction is issued to the appropriate idle functional unit.
5. The results are queued.

6. Only after all older instructions have their results written back to the register file, then this result
is written back to the register file.

The benefit of out-of-order execution processing grows as the instruction pipeline deepens and the
speed difference between main memory or cache memory and the processor widens. On modern ma-
chines, the processor runs few times faster than the cache memory and many times faster then system
memory, so during the time an in-order processor waits for data, a large number of instructions could be
executed.

Example 5.11 In the following sequence of instructions (see [Patterson *05], p. 185):
DIV(0,2,4)
ADD(6,0,8)
STR(6,1) // store
SUB(8,9,7)
MUL(6,9,8)
here are the following dependencies:

1. between ADD and SUB if SUB finishes before ADD starts (a WAR hazard) is an antidependence
2. between ADD and MUL if ADD finishes later than MUL (WAW hazard) is an output dependence
3. between DIV and ADD a true data dependency (a RAW hazard)

4. between SUB and MUL a true data dependency (a RAW hazard)

5. between ADD and STORE a true data dependency (a RAW hazard)

First, let us apply register renaming technique involving two additional registers, rf (10) and rf (11):

DIV(0, 2, 4)
ADD(10,0, 8)
STR(10,1)

SUB(11,9, 7)
MUL(6, 9, 11)

Any WAR and WAW dependencies are now removed statically by the compiler. For RAW dependency
the forwarding mechanism works but only in a processor with one integer ALU. What can be done for a
superscalar processor with floating point arithmetic?

o

The hardware added for out-of-order execution is big sized and complex. With the increase in the
number of pipeline levels, the costs (area plus complexity in use) increase. Multiprocessing and multi-
threading will allow more efficient alternative solutions.

110

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Floating-point representation of real numbers
To expand the range in which the numbers are represented, the following form is used:
N = sgn(1+ frac) x 267127
where:
sgne{—,+}={0,1}

frac€[0,1)

exp € [0,255]
The binary representation is:

(sgnlexp|frac)

For example the 32-bit version:
0-10000001-10000000000000000000000

represents the number: +(1+0.5) x 2127127 = ¢

More at: https://wuw.geeksforgeeks.org/ieee-standard-754-floating-point-
numbers/

For the purpose we are pursuing, it is enough to understand that the operation with represented
floating-point numbers involves a pipeline or a sequence of elementary operations of one clock cycle.
The number of cycles will be different depending on the operation, minimum for addition and maximum
for division.

Tomasulo’s Algorithm

The execution unit of a scalar processor has, in addition to the ALU for integers that we discussed,
several units that perform operations with floating-point numbers. For out-of-order execution, it is not
enough to have a register file. Next to each execution unit, for whole or real, complex storage units called
Resevation Stations (RS) will be added. Each recording in a RS has the following fields [Patterson 19]:

* Op—The operation to perform on source operands S1 and S2.

* Qj, Qk—The reservation stations that will produce the corresponding source operand; a value of
zero indicates that the source operand is already available in Vj or VK, or is unnecessary.

* Vj, Vk—The value of the source operands. Note that only one of the V fields or the Q field is valid
for each operand. For loads, the Vk field is used to hold the offset field.

* A—Used to hold information for the memory address calculation for a load or store. Initially, the
immediate field of the instruction is stored here; after the address calculation, the effective address
is stored here.

* Busy—Indicates that this reservation station and its accompanying functional unit are occupied.
while the register file has a field, Qi:

* Qi—The number of the reservation station that contains the operation whose result should be stored
into this register. If the value of Qi is blank (or 0), no currently active instruction is computing a
result destined for this register, meaning that the value is simply the register contents.

111

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

5.4 Problems

54.1
5.4.2

112

Section 6

Computers: Four-Loop, Fourth-Order
Systems (4-OS)

Contents
I8 L ¥ - 1114 114
6.1.1 MemoryGap 114
6.1.2 Memory Hierarchy 115
6.1.3 Virtual Memory Mechanism L oL 116
6.1.4 Associative Memory-Based Page Translator 116
6.2 SystemOrganizationttt ittt 121
6.3 T/O. . . i e e e e e e e e e e e 122
6.3.1 Bus 122
632 DMA . . . 124
6.33 FIFO 124
634 T/ODevices 125

The processor is the core of a computing system that contains also a memory subsystem and an
input-output subsystem. The physical resources involved are tightly interleaved in various form of actual
organization. The memory associated with the processor contains programs and data, while the input-
output system has two main functions: expanding the memory capacity and ensuring the interaction of

the system with the outside world.

113

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Processor

Figure 6.1: The three-partite functionality of a computing system.

The way in which the tripartite functionality is distributed in a given system shows significant varia-
tions from o ne implementation to another. In the following, we will limit ourselves to a simple version,
but not simpler than one that allows us to introduce the main concepts and problems.

6.1 Memory

6.1.1 Memory Gap

The evolution of the performance of the three components of a computer system occurred at a very
different rate due to strictly technological aspects. The most disturbing difference, with major structural
consequences, occurred in the case of processor and memory speed performances. The frequency of the
processor clock increased much faster than the memory access time (see Figure 6.2. Processor clock
frequency increased with 60% per year, while the access time for memories with only 10% per year.

1000

L6 - T """"

Processor-Memory
Performance Gap

CPU

10

m = = ®
! O NMOITOWONDNO - NNDFTOLONDD O
0 O W WMONOOWMODDDDDNDDDDODDDD O O
N NN NN NN NoNoNo N NN NoloNoNoN o Ne!
Lol el i mn el el el el e el el e o Sl el el o e el ol QN
Figure 6.2: Processor-Memory Performance Gap [Patterson *97].

Due to this difference, what we now call a memory gap occurred. The fast processor cannot wait for
the slow memory to deliver or receive its data. And the memory gap imposed the memory hierarchy of
the computing system based on the locality principle.

114

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Locality principle says that if a certain location is accessed in the data or program memory, then the
next accesses will be made with a high probability in a reasonably small vicinity.

Applying the locality principle allowed the definition of the strategies that govern the conception of
a hierarchy of effective memories.

6.1.2 Memory Hierarchy

The hierarchy of memory is based on the fact that when we access a location that is in a memory that is
too slow in relation to the speed of processing in the processor, a block or a page of bytes that contains
the requested bytes will be transferred to a faster intermediate memory. This transfer is done with the
hope that the following accesses will be made in the intermediate memory if the updated page or block
in it was large enough.

Figure 6.3 shows the current way in which the memory hierarchy is implemented. At the top of the
hierarchy there are registers from register files whose content is accessible at the level of the clock signal
cycle. Next comes system memory in the form of the closest level as cache memory. The name comes
from the French caché which means hidden. Indeed, this level of memory/memories is transparent to the
architecture of the computing system in most cases.

Regisers
Cache Memories

1st Level Cache
2nd Level Cache
3rd Level Cache

Primary Memory
Main Memory

Auxiliarly Memories
HDD, SSD, Optic Disk, Tape

Figure 6.3: Memory hierarchy from fast and small register files to slow and large auxiliary storage
memories such as HDD (Hard Disk Drive), SSD (Solid-State Drive), optical disk, tape.

Registers are managed by compilers, their size is < 4KB (in most of cases ~ 128B, i.e., 32 32-bit
words), the access time is < 0.5ns.

Cache memories are managed by hardware, their size is < 16MB, the maximum access time is
~ 0.5ns.

The main memory is managed by the operating system, its size is in the range of 1+ 16GB, the access
time is ~ 100ns.

The disk memory is managed by the operating system or human operator, its size is > 128GB, the
access time is ~ Sms.

115

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

6.1.3 Virtual Memory Mechanism

How relate two successive levels in the hierarchy? Let us consider two levels in the memory hierarchy,
Level; containing m pages and Level;; containing n pages, with n >> m. Each page in Level;, called
physical level is a copy of a page from Level; | called virtual level. In Figure 6.4a, pages 0, 2, and
m — 2 from the level i were brought from pages 3, 4, and O of level i+ 1. Any change in the physical
level must actualized in the associated virtual level. The “user” accesses the virtual level while the
virtual mechanism accesses the physical level. It is the job of the virtual memory mechanism to perform
transparently the access and to keep coherent the content of the virtual level with the physical level.

virtual address

Level; Level;. 1
virtual page | offest in page
pageo pageo
pagei pagei) physical
o821 address
o Level;
pages pages | Page —y—> eveli
pages translate | 1fgym Memory
pages
pagem—2
pagem—1
pagen—2
physical
page,_1
virtual
a b.

Figure 6.4: Virtual memory mechanism. a. Page correspondence. b. Translation mechanism.

The addressing mechanism is represented in Figure 6.4b, where the access to the physical memory
is done mediated by a translation mechanism performed by the Page translate block. The “user” issues
a virtual address having two parts:

* virtual page address
* offset in the page

When a new page is loaded into physical memory, the content of this translator is updated according to
the correspondence shown in the figure 6.4a.

Page translation mechanism is implemented in various form.

The simplest one is a RAM memory containing #n [ogrm-bit words. The RAM memory is in this case
almost empty, because only m locations from n are used, because usually n >> m.

A more efficient solution is to use an associative memory to make the translation.

6.1.4 Associative Memory-Based Page Translator
Content-Addressable Memory

A normal way to “question” a memory circuit is to ask for:

116

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Q1: what is the value of the property A of the object B
For example: How old is George? The age is the property and the object is George. The first step to
design an appropriate device to be questioned as previously is exemplified is to define a circuit able to
answer the question:
Q2: where is the object B?
with two possible answers:
1. the object B is not in the searched space

2. the object B is stored in the cell indexed by X.

The circuit for answering Q2-type questions is called Content Addressable Memory, shortly: CAM.
(About the question Q1 in the next subsection.)
The basic cell of a CAM is consists of:

* the storage elements for binary objects

* the “questioning” circuits for searching the value applied to the input of the cell.

clock Ds Dy Dy Do
CK D CK D CK D CK D
o o o o
a.
Ds,...,.Do
_>‘
cam_cell e

clock —— CK

Figure 6.5: Content Addressable Cell. a. The structure: data latches whose content is compared against the

input data using 4 XORs and one NAND. Write is performed applying the clock with stable data input. b. The
logic symbol.

In Figure 6.5 there are 4 D latches as storage elements and four XORs connected to a 4-input NAND
used as comparator. The cell has two functions:

117

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

* to store: the active level of the clock modify the content of the cell storing the 4-bit input data into
the four D latches

* to search: the input data is continuously compared with the content of the cell generating the
signal AO" = 0 if the input matches the content.

The cell is written as an m-bit latch and is continuously interrogated using a combinational circuit
as comparator. The resulting circuit is an 1-OS because results serially connecting a memory, one-loop
circuit with a combinational, no-loop circuit. No additional loop is involved.

An n-word CAM contains n CAM cells and some additional combinational circuits for distributing
the clock to the selected cell and for generating the global signal M, activated for signaling a successful
match between the input value and one or more cell contents. In Figure 6.6a a 4-word of 4 bits each is
represented. The write enable, WE, signal is demultiplexed as clock to the appropriate cell, according to
the address codded by AjAg. The 4-input NAND generate the signal M. If, at least one address output,
A0 is zero, indicating match in the corresponding cell, then M = 1 indicating a successful search.

A A
WE 1o
1
Ds,...,Dy
DMUX
3210 —>
| CK cam_cell_0 > A0, Dy_1,...,Dg
—> WE_ ¢
> AO
CK cam_cell_1 0, Ayt Ao
- — CAM,xn +—
cg cam-cell 2 > A0} AO,_,,...,A0|
L] lM
: > A0
CK cam_cell_3 3
a. }/I?/ b.

Figure 6.6: The Content Addressable Memory (CAM). a. A 4-word CAM is built using 4 content address-
able cells, a demultiplexor to distribute the write enable (WE) signal, and a NAND, to generate the match signal
(M). b. The logic symbol.

The input address A,_1,...,Aog is binary codded on p = logyn bits. The output address
AO,_1,...,AOQq is an unary code indicating the place or the places where the data input D,,_1,...,Dq
matches the content of the cell. The output address must be unary codded because there is the possibility
of match in more than one cell.

Figure 6.6b represents the logic symbol for a CAM with n m-bit words. The input WE indicate the
function performed by CAM. Be very careful with the set-up time and hold time of data related to the
WE signal!

The CAM device is used to locate an object (to answer the question Q2). Dealing with the properties
of an object (answering Q1-type questions) means to use o more complex devices which associate one

118

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

or more properties to an object. Thus, the associative memory will be introduced adding some circuits to
CAM.

Associative Memory

A partially used RAM can be an associative memory, but a very inefficient one. Indeed, let be a RAM
addressed by A,_;...Ao containing 2-field words {V, D,,_;...Do}. The objects are codded using the
address, the values of the unique property P are codded by the data field D,,— ...Dg. The one-bit field
V is used as a validation flag. If V = 1 in a certain location, then there is a match between the object
designated by the corresponding address and the value of property P designated by the associated data
field.

Example 6.1 Let be the IMword RAM addressed by Aiy...Ag containing 2-field 17-bit words
{V, Dis...Do}. The set of objects, OBJ, are codded using 20-bit words, the property P associated
to OBJ is codded using 16-bit words. If

RAM[11110000111100001111] = 1.0011001111110000

RAM[11110000111100001010] = 0-0011001111110000

then:

* for the object 11110000111100001111 the property P is defined (V = 1) and has the value
0011001111110000

* for the object 11110000111100001010 the property P is not defined (V = 0) and the data field is
meaningless.

Now, let us consider the 20-bit address codes four-letter names using for each letter a 5-bit code. How
many locations in this memory will contain the field V instantiated to 1? Unfortunately, only extremely
few of them, because:

* only 24 from 32 binary configurations of 5 bits will be used to code the 24 letters of Latin alphabet
(24* < 2%0)

* but more important: how many different name expressed by 4 letters can be involved in a real
application? Usually no more than few hundred, meaning almost nothing related to 2%°.

The previous example teaches us that a RAM used as associative memory is a very inefficient solu-
tion. In real applications are used names codded very inefficiently:

number_of_possible_names >>> number_o f _actual _names.

In fact, the natural memory function means almost the same: to remember about something immersed in
a huge set of possibilities.

One way to implement an efficient associative memory is to take a CAM and to use it as a pro-
grammable decoder for a RAM. The (extremely) limited subset of the actual objects are stored into a
CAM, and the address outputs of the CAM are used instead of the output of a combinational decoder to

119

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

address din
{r 1
wa’_, we’ D A0, we’ “
sel pﬁ A |
CAMan : : Array of Lq
(prog-dcd)
M AOg

Jﬁ

valide_dout dout

Figure 6.7: An associative memory (AM). The structure of an AM can be seen as a RAM with a programmable
decoder implemented with a CAM. The decoder is programmed loading CAM with the considered addresses.

select the accessed location of a RAM containing the value of the property P. In Figure 6.7 this version
of an associative memory is presented. CAM,,,, is usually dimensioned with 2™ >>> n working as a
decoder programmed to decode any very small subset of n addresses expressed by m bits.

Here are the three working mode of the previously described associative memory:

define_object : write the name of an object to the selected location in CAM
wa’ = 0, address = name_of_object, sel = cam_address
wd’ = 1, din = don’t_care

associate_value : write the associated value in the randomly accessed array to the location selected by
the active address output of CAM
wa’ 1, address = name_of object, sel = don’t_care
wd’ 0, din = value

search : search for the value associated with the name of the object applied to the address input
wa’ = 1, address = name_of object, sel = don’t_care
wd’ = 1, din = don’t_care
dout is valid only if valide dout = 1.

This associative memory will be dimensioned according to the dimension of the actual subset of
names, which is significantly smaller than the virtual set of the possible names (27 <<< 2™). Thus, for
a searching space with the size in O(2™) a device having the size in O(27) is used.

Translation Lookaside Buffer (TLB)

The associative memory will allow us to design a translation lookaside buffer (TLB) with a size given by
the number of pages in the physical memory, unlike the one based on a RAM type memory which has a
size given by the much larger number of pages in the virtual memory.

With a minimal number of differences, the described virtualization mechanism is applied in manag-
ing the relationship between all the hierarchical levels in the memory of the computer system.

In what follows, we will consider the simple example in which the hierarchy contains a single cache
level, the main memory and the hard disk. We will compare the main parameters that characterize the
cache-main memory relationship and the main memory-hard disk relationship.

120

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

* the typical amount of data moved when physical memory is actualized from the virtual memory

— block size for cache: 128B

— page size main memory: 4KB
* the typical access time when the addressing is hit

— 1 clock cycle (very rarely 2 or 3) for cache

— ~ 100 clock cycles because of board technology and silicon technology for memories (the
first is reduced by multi-chip packaging) for main memory

* the typical miss penalty:

— 100 clock cycles for cache memory

— 10° clock cycles for main memory
* the typical miss rate:

— 1% for cache memory

- 107*% for main memory
6.2 System Organization
How looks the actual structure of a computing system? In Figure 6.8 is exemplified a system where are

emphasized two buses: the internal bus and the input-output bus. They are interconnected by two units:
Bus Bridge and DMA (Direct Memory Access).

| Internal Bus

2nd Level Cache

Data Cache Program Cache Main Memory Bus Bridge DMA

Processor

| Input-Output Bus

1/0 1/0 1/0 1/0
Controller Controller Controller Controller

Hard .

Dzil;k CD Graphics Network

Figure 6.8: The organization of a computing system.

121

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

On Internal Bus are connected fast devices while on the Input-Output Bus are connected devices
involving a lot of data transfer.
The memory hierarchy is distributed in the version represented in Figure 6.8 as follows:

1. Register File in the processor, having a capacity of 32W + 1024 W, accessed for reading or writing
in a single clock cycle

2. the two 1st level cache memories, each having a capacity of 128KB <+ 1MB, accessed for reading
or writing in 1 <+ 3 clock cycles:

* Program Cache
e Data Cache

so that at this level the system is structured according to the Harvard abstract model

3. 2nd Level Cache memory, having a capacity of 1MB <+ 8MB, so that at this level the system is
structured according to the von Neumann abstract model

4. Hard Disk connected through:

* Bus Bridge
* DMA

6.3 1/0

The input-output system includes certain specific mechanisms that we will briefly describe first. Then
we will briefly describe the most important input-output devices.

6.3.1 Bus

A Bus is a communication system that transfers data between components inside a computer, or between
computers. There are two types of buses: serial (those that transfer data bib by bit) and parallel (those
that transfer data word by word of n bits). The main problem that arises is that of the synchronization of
the transfer. We will discuss it under its essential aspects for the synchronous transfer of n-bit words.

In Figure 6.9, the waveforms for data transfer on the Internal Bus (see Figure 6.8) between Main
Memory and 2nd Level Cache are presented. Three important moments are marked in the mentioned
waveforms:

t; : the active edge of clock takes a read command (Read = 0) from the address Read Address. Both
Read and Read Address must be stable at least minimum set-up time before the active edge of
clock (the positive one) and hold time after the positive edge of clock

1, : the active edge of clock can take the data from the output of Main Memory only if the signal Wait is
not active (Wait = 0) thus completing the read cycle. The signal Wait is necessary when the Main
Memory is not a fast enough memory, or the clock frequency is too high.

t3 : the active edge of clock takes Valid Input Data to write it at Write Address because Write signal is
active (Write’ = 0).

122

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

clock

/—\/‘—\/—\/‘—\/‘—\

address

////////A(ReadAddm)W////////////////////////// erteAddrebb)W///////

Data Output

////////////////////////////////////A()W/////%////////////// 7

Data Input

//A(R (i

Read’

Write’

Figure 6.9: The waveforms for a read cycle followed by a write cycle.

Q.6.1: In the waveforms in Figure 6.9 the distance between #; and #, is only one clock cycle. In
reality, this distance can be tens or even hundreds of clock cycles. What is the explanation of this fact?

Q.6.2: Why do you think that a single clock cycle was enough for writing?

The Wait signal is deactivated (Wait = 0) at ¢, introducing a latency of 2 clock cycles in the example
illustrated by Figure 6.9. Usually, this latency is very high, reaching hundreds of cycles.

123

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

6.3.2 DMA

Direct memory access (DMA) (see Figure 6.8) is an important feature of computer systems. It allows to
access the main memory system independently of the central processor.

When the processor is running an input/output program, it is occupied for the entire duration of
the read or write operation. Thus the processor is unavailable to perform other work. With DMA, the
processor initiates the transfer only, then it does other operations while the transfer is performed. When
the transfer is completed the processor receives an interrupt from the DMA (about interrupt see 4.5.1 in
this lecture notes).

An example of using the DMA unit is for transferring a page of 4KB from Hard Dist to Main Memory.

6.3.3 FIFO

First-In-First-Out (FIFO) memory is a special memory device represented in Figure 6.10. It has the
following connections (see Figure 6.10a):

full <—‘ ’—> empty

dataln ——— —» dataOut a.
write J L read

A b

DA [

F|D|A d.

F|D [

Figure 6.10: a. Block schematic of FIFO. b. write A operation. c. write D. d. write F.e. read.

dataln : the data entry of # bits to which the word that will be recorded in the rightmost unoccupied
location is applied.

dataQut : the 7 bit data output from which the oldest unextracted record is extracted

full : it signals the fact that the memory is full and will not accept a new write before executing at least
one read

124

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

write : if activated when full = 0, then dataln is queued

empty : it signals the fact that the memory is empty and will not accept a new read before executing at
least one write

read : if activated when empty = O, then dataOut is extracted from the queue

In Figures from 6.10b to 6.10e is exemplified the way FIFO works, as follows:
write(A) : in the empty FIFO A is stored in the rightmost position (see Figure 6.10b)
write(D) : B is stored in the rightmost free position, immediately after A (see Figure 6.10c)
write(F) : Fis stored in the rightmost free position, immediately after B (see Figure 6.10cd)
read : A is extracted from FIFO and the queue “advances” one step (see Figure 6.10e)

There are two main types of FIFO:

* synchronous FIFO: the sending system and the receiving system run with the same clock signal
(for those who are interested can consult Appendix ??)

» asinchronous FIFO: the sending system and the receiving system run with different clock signals

Asynchronous FIFO are used to solve the problem of crossing data between systems running in different
clock domain. The module BUS Bridge (see Figure 6.8) contains almost sure an asynchronous FIFO.

6.3.4 1/0 Devices

There are two types of I/O devices:
* Storage devices, mainly represented by hard disk, flash memory, optical disk, tape.
» Functional devices, mainly represented by display system, network interface, ...

We will briefly present the storage devices that extend the memory hierarchy outside the central comput-
ing unit.

Hard Disk

The most common auxiliary memory is the hard disk drive. Its internal structure is represented in Figure
6.11.

125

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Boom Head Sector Spindle Track Platter

Cylinder

Figure 6.11: Hard Disk Drive Structure [Source: Google-Images]
Main parameters:
* storage capacity: 10 = 30 TB

* average access time: 2.5 + 10 ms

MTBF: ~285 years (MTBF stands for mean time between failures; it is the predicted elapsed time
between inherent failures of a mechanical or electronic system, during normal system operation.)

* bytes per sector: 512 + 4096

shock tolerance
— operating: 10 = 100 g (g stands for gravitational acceleration: 9.8m/s?.)
— nonoperating: 100 + 100 g
Optical Disks
Optical disks are read-only mediums. There are two versions:
* CD: optical compact disk (0.65 GB)

* DVD: digital video disk (4.7 GB); sometimes written on both sides to double capacity

Flash Memory

Flash memory is a type of EEPROM (electronically erasable programmable readonly memory), which is
normally read-only but can be erased. Solid-state devices (SSDs) based on flash memory technology do
not have moving parts.

126

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

The capacity per flash memory chip increased by about 50%—-60% per year.

Typical SSDs will have a the time taken for a disk drive to locate the area on the disk where the data
to be read is stored between 0.08 and 0.16 ms.

Time to read 2 KB from a flash memory takes about 75 uS, while DDR SDRAM takes less than
500 ns. Then flash memory is about 150 times slower. But compared to HDD is ~ 400 times faster. We
conclude: the flash memory can not replace DRAM for main memory, but is a good candidate to replace
HDD.

Time to write for flash memory is about 1500 times slower then SDRAM, and about 8-15 times
faster than HDD.

Tapes

Magnetic-tape data storage is a system for storing information on magnetic tape using digital recording.
Typically 9-track tape are used to store bytes with CRC. Magnetic tape packaged in cartridges and
cassettes. The device that performs the writing or reading of data is called a tape drive.
Tape data storages are now used mainly for system backup, data archive or data exchange.
Uncompressed/Native capacity: ~20TB.
Compressed capacity: ~50TB.

127

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

128

Section 7

Open Problems

Contents
71 Parallelism 0 it e e e e e e e e e e e e e e e e e 129
7.1.1 AdHocParallelism 131
7.1.2 Mathematical Model-Based Parallelism 132
7.2 Main Limitsin Computationttt 133
7.2.1 Technological Limitations 134
7.2.2 Theoretical Limitations 135

We are still faced, after three quarters of a century, with problems for which solutions are still waiting.
Among the most important are parallelism, technological limits, and theoretical limits.

7.1 Parallelism

Instruction Level parallelism is not the genuine parallelism we expect from multi-cell structures.

While the hardware’s size accommodated on a single die of silicon increases exponentially, accord-
ing to Moore’s Law [Moore ’65, Moore *75], its use for increasing the complexity and the intensity of
computation grows much slowly. We are able to build big machines but we fail in using all their compu-
tational power efficiently. For example:

* Tensor Processing Unit, is reported for > 90% of the applications with the use of 3% to 13.4% from
its peak performance [Jouppi *17] [Hennessy *19]. Only for one application (involving exclusively
convolutional layers in a deep neural network) used in less than 5% of cases, 93% from its peak
performance is used

* the real time image recognition, where Nvidia’s Titan X GPU, uses maximum 63 GFLOPs/sec
from its peak performance of 6 TFLOPs/sec [Redmon *16]

* Intel’s Xeon Phi accelerator with 57 cores, having peak performance at 2 TFLOPs/sec, involves
only 35.2 GFLOPs/sec for a similar task [Raina *16].

If we can’t effectively use many-core structures, why are we still struggling with parallelism? Be-
cause we have no other solution to make use of the potential offered by increasing the number of transis-
tors on a chip. In Figure 7.1, the only parameter that increases is the number of transistors.

129

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

7
10 Transistors
(thousands)
6
10
5
10
Single-thread
4 Performance
10 (SpecINT)
3 Frequency
10 (MHz)
2 Typical Power
10 (Watts)
1 Number of
10 Cores
0
10

1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 7.1: Why Parallelism? Because only the transistors number goes up [Moore *11].

Is it hard to explain why we use such a small percentage of the peak computing power of these
many-core programmable accelerators. We assume that it highlights an architectural and organizational
inadequacy such as:

1. a bad correlation between exercising the control and implementing functions is responsible for our
inability to put at work the exponentially increasing hardware power. Indeed, the complexity of
control and the intensity of the functional aspects of computation challenge the current solutions
we have for one-chip many-core computation. Tens of billions of transistors on silicon dies, which
is approaching an area of 10 ¢m?, provide huge peak functional performance, performance which
is not accompanied by an adequate capacity to put this huge computational capacity to work by an
appropriate control mechanism. Too much emphasis on deploying huge arithmetic resources, and
too little concern for the way the computational resources are put on work.

2. the same attention we must pay to the way these resources are interconnected and connected to
the memory resources in order to maximize their use. The time and energy used to fetch data and
to interconnect the computational resources are too many times much higher compared to those
involved in the actual computation.

3. on the currently available many-core accelerators the organization of the computational resources
is related rather with geometrical criteria (circle, mesh, hypercube, ...) than with theoretically
imposed computational reasons related to the way the sequence of data is structured.

Many people agree on an imminent change. Some see this change as a gradual one, others as a radical
one. Almost all of them are in the middle.

130

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

7.1.1 Ad Hoc Parallelism

After the year 2000, the clock speed race started to slowdown [Asanovic 06, Asanovic *09]. Instead
of a clock with increasing frequency, the number of cores per chip started to grow with the hope that
the programmer will find a way to take out more performance form the silicon maintaining the clock
frequency around of few GHz. The situation is very clearly expressed by David Patterson:

... the semiconductor industry threw the equivalent of a Hail Mary pass when it switched
from making microprocessors run faster to putting more of them on a chip — doing so without
any clear notion of how such devices would in general be programmed. The hope is that
someone will be able to figure out how to do that, but at the moment, the ball is still in the
air. [Patterson *10]

Computing emerged from deciding

The conceptual stages leading to computation:

e 7th or 6th century BC: a Cretan philosopher-poet, Epimenides of Knossos, stated that
“Cretans, always liars” thus challenging, for two and half millennia, the logically driven
minds of the Occident

* 1900-1928: David Hilbert [Hilbert 1900, Hilbert & Ackermann *28] reformulated rigor-
ously the problem as the decision problem

* 1931: Kurt Godel [Godels *31] proved that the decision problem, and consequently the
liar paradox, has no a logic solution

¢ 1936: Alonzo Church [Church *36], Stephene Kleene [Kleene *36], Emil Post [Post *36],
Alan Turing [Turing *36] published independently their mathematical version of Godel’s
approach thus providing four equivalent mathematical models for computing as a mecha-
nism based on logic decision

¢ 1937: Claude E. Shannon [Shannon ’48] defended at MIT its master thesis which became
the foundation of practical digital circuit design during and after World War II

* 1946: John von Neumann [von Neumann ’45], based on the Turing’s approach and on the
design and implementation made by John Mauchly and J. Presper Eckert for ENIAC, pro-
vided the abstract model for a mono-core computing machine (his approach is paralleled
by the Harvard version)

* 1952: IBM announced the first mass-produced computer: IBM 701

* 1954: John Backus made the draft specification for the first high level programming lan-
guage: FORTRAN

* 1964: the concept of computer architecture, as the term used “to describe the attributes of
a system as seen by the programmer, i.e., the conceptual structure and functional behavior,
as distinct from the organization of the data flow and controls, the logical design, and
the physical implementation” [Amdahl ’64], is introduced when specifying the IBM 360
computer.

Thus, the most important negative result in the history of mathematics, the Godel’s incomplete-
ness theorem, founded theoretically the computing science.

Around 2010, market started to provide the (oxymoronic) General Purpose Graphic Processing Units
(GPGPUs) chips with many lightweight cores. In the same decade, many consecrated cores were de-

131

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

ployed on the same silicon die with the hope that, having a well known instruction set architecture, the
programming work will be simpler. But, unfortunately, the jump from a few number of cores to many
cores per one silicon die has made the programming problem a very hard one. Putting more than one
core per chip was done without any criteria coming from a theoretic computational model. The cri-
teria involved in defining the organization and the architecture of the on the market one chip parallel
engines were dominated by hardware restrictions or by the application domain requirements. The multi-
or many-core product are ad hoc gathering of cores or application oriented organizations of huge compu-
tational resources. Under these circumstances, we must not be surprised by the inefficiency with which
the computational resources are used.

The hardware-driven emergence of the parallel computing domain
The first steps leading to parallel computation:

* 1962 — manufacturing in quantity: the first symmetrical MIMD engine is introduced on
the computer market by Burroughs Corporation

* 1965-75 — architectural issues: Edsger W. Dijkstra formulates, starting with
[Dijkstra *65], the first concerns about specific parallel programming issues (such as criti-
cal regions problem, semaphores, the dining philosophers problem, guarded commands)

* 1974-82 — abstract machine models: proposals of the first abstract models (bit vector
models in [Pratt *74] and PRAM models in [Fortune *78], [Goldschlage ’82]) start to come
in after almost two decades of non-systematic experiments (started in the late 1950s) and
the too early market production

e ? —mathematical parallel computation model: no one yet really considered it as manda-
tory, regrettably confusing it with abstract machine models, although it is there and wait
to be considered (see Kleene’s mathematical model for computation [Kleene ’36]).

Now, in the 3rd decade of the 3rd millennium, after more than half century of chaotic devel-
opment, it is obvious that the history of parallel computing is distorted by missing stages and
uncorrelated evolutions.

Many people seem to accept the fact that the evolution of the parallel computing domain is driven
mainly by corporations, and the gap between hardware and software is due to the too many different
parallel computing machines and their fast evolution, when, in fact, things happens exactly the other
way around: the gap exists because of the lack of an appropriate approach which must start from a well
founded mathematical model for parallel computation.

7.1.2 Mathematical Model-Based Parallelism

The systems with global loops can be related with the model of partial recursive functions proposed by
Stephen Cole Kleene [Kleene *36].

Kleene’s Definition of Partial Recursion

Let be the positive integers x,y,i € N and the sequence X = (xq,x1,...,X,—1) € N". Any partial
recursive function f : N” — N can be computed, according to [Kleene ’36], using three initial
Sfunctions:

132

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

* ZERO(x) = 0 : the variable x takes the value zero

e INC(x) = x+ 1 : increments the variable x € N

* SEL(i,X) = x; : i selects the value of x; from the sequence of positive integers X

and the application of the following three rules:

+ Composition: f(X) = g(hi(X),...,h,(X)), where: f: N" — N is a total function if g :
N? — Nand h; : N* — N, fori = 1,... p, are total functions

* Primitive recursion: f(X,y) = g(X, f(X,(y—1))), with f(X,0) = h(X) where:
f Nt - N is a total function if g : N**! — N and & : N* — N are total functions.

* Minimization: f(x) = py[g(x,y) = 0], which means: the value of the function f : N — N
is the smallest y, if any, for which the function g : N?> — N takes the value g(x,y) = 0.

While for initial functions the circuit aspects are obvious, for the three rules we must do some work.
We will see that the composition rule has a direct circuit correspondent, but for the other two rules,
primitive recursiveness and minimization, we where obliged to prove two theorems (see [Stefan *20])
which reduce them to multiple applications of specific forms of the first rule.

X= <x07"'7xn—1>

Y
map

hi (X h (X

*) *) composition

Y1
Y
g0, reduction
composition

Figure 7.2: The circuit version of composition: f(X) = g(hi(X),...,h,(X)). Itis a two-layer construct:
the parallel expanded map layer serially connected with the log-dept reduction layer.

Starting from the suggestion offered by the representation in Figure 7.2 one can conceive, based on
the mathematical model of partially recursive functions, an abstract model for what a parallel computing
system must be. A first approach is outlined in [Stefan *14].

7.2 Main Limits in Computation
The main technological challenges we face in computer science are on the one hand technological and
on the other hand theoretical, without the distinction being very clear. Some technological limitations

come from theoretical limitations.

133

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

7.2.1 Technological Limitations
John von Neumann Bottleneck

We have focused on the development of powerful processors and large memories, but we have not yet
found a way to connect them efficiently. The problem became more serious with the development
of multi- and many-core systems, which prove more hungry for data because their processing capac-
ity has increased significantly. The term “von Neumann Bottleneck” was introduced by John Backus
[Backus *78] and refers to the limitation introduced by the connection, too narrow, between a processor
and its data and program memory.

Recently, we have been proposing cellular solutions that assume the advanced interleaving of pro-
cessing elements with memory structures in the so-called in-memory-processing systems, but we still do

not manage to control them effectively.

Figure 7.3: Apple’s M1 chip which accommodates in the same package the processing structure (CPU
& accelerators) with two memory chips to mitigate the von Neumann Bottleneck effect.

Possible solutions:
» very wide transfer buses (384 bits or higher) but which consume a lot of energy
» multi-chip solutions in a single package (example: Apple’s MI, see Figure 7.3).

* ... we are waiting for other solutions.

Speed

Around 2002, processor manufacturers stopped the race to increase the clock frequency. The main
reason: the energy consumed and the growth of the memory wall.

134

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Energy

Energy is proportional with the chip area and the clock frequency. The designers decided to keep the
frequency low and to increase area moderately by reducing the size of transistors. Increasing area helps
in heat dissipation.

7.2.2 Theoretical Limitations
N=NP
One of the most studied problem in computer science is: is it true that P=NP?. Until now, the answer to

that problem, accepted by the majority of the academic world, is mainly “no”.

Big O notation : f(x) € O(g(x)) if there is a constant C and a value x(such that

[F(x)] < C xg(x)

for all x > xy.

The execution time for function f(n), where n is the input size expressed in the number of bits, is
t7(n). Then, using the Big O notation the function can be classified as follows:

s tr(n (1): the function f(n) is executed in constant-time (independent of n)
s tr(n (n) the function f(n) is executed in linear-time
o tr(n (n?) the function f(n) is executed in quadratic-time

)EO
)EO
)€ O
« tr(n) €0
)
)

)
(nk) the function f(n) is executed in polynomial-time
* t7(n) € O(2") the function f(n) is executed in exponential-time
* t7(n) € O(n!) the function f(n) is executed in factorial-time
The easy-to-hard scale of computational problems (see also Figure 7.4):
P easy problems are quick to solve because the execution time for them is in O(n).

NP medium problems are quick to verify (in polynomial-time) but slow to solve (in exponential-time)

NP-Complete hard problems are also quick to verify, slow to solve and can be reduced to any other
NP-Complete problem in polynomial-time

NP-Hard hardest problems are slow to verify, slow to solve and can be reduced to any other NP prob-
lem, but some of these problems aren’t even decidable (ex.: traveling salesman traveling, graph
coloring, k-means clustering)

Q.7: What is the complexity class to which the calculation of the scalar product of two vectors
belongs?

135

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

NP-Complete

Figure 7.4: The relationship between computational problems on the easy-to-hard scale.

A question that’s fascinated computer scientists is whether or not all algorithms in NP belong to P,
because if only one is solved P-time, then (almost) all of them are solved. The main consequence: we
must reconsider all the aspects of security in our systems because prime factorization is in NP.

Halting Problem

Halting problem was formulated in computational terms in 1936 by Alonzo Church, Stephen Kleene,
Emil Post and Alan Turing as a reaction to the incompleteness theorem published by Kurt Godel in
1931. And thus, the most important negative result in the history of mathematics underpins the science
of computation.

Halting problem: Can we have a procedure that, receiving a program and the data it
processes, decides if the program will stop executing in a finite time?

Not!

Computing science started from this negative answer.

136

Appendices

137

Appendix A

Simulations

A.1 Waveforms Generator

ny simulation is based on the generation of waveforms with which the simulated circuit is stimulated on
its inputs. These waveforms can be configured according to the simulated process or have the periodic
shape of a clock used to synchronize the operation of the circuit.

/3 sk s o ko ok ok ok ok R R R kR R R SR sk R s R s o o ok ok R R KR R R R sk R sk R R s R ok ok ok R
File name: waveFormGenerator. sv
Circuit name: no circuit, only wave formes
Description: two waveforms are generated, a "random” one and a periodical
one: a clock signal

oo oo o o o o o R o R KR R R R SR SRR o R s R ok ok s o s ok ok o R R R R kR kR SR R ook sk R sk o ko ok ok R kR ok %/
module waveFormGenerator ();

logic randomWave;

logic clock ;

initial begin randomWave = 0 ;
#2 randomWave = 1
#6 randomWave = 0 ;
#4 randomWave = 1 ;
#8 randomWave = 0
#5 $stop 5
end
initial begin clock = 0 ;
forever #2 clock = “clock ;
end

endmodule

By simulating the waveFormGenerator . sv module, the behavior represented in Figure A.1 results.

139

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

Name VCIUCEEE0.000 ns 5.000 ns 10.000 ns 15.000 ns 20.000 ns

randomWave _

A.2 Combo Simulations

A.2.1 ALU Simulation

The simplest behavioral design of an 8-function ALU is listed in the following module:

SR

Figure A.1: Waveforms generated for a Vivado System Verilog simulation

File name: alu . sv
Circuit name: arithmetic and logic unit
Description : the circuit selects, using the selection code ’func’, one

of the 8 functions

ok kkokkkokokkokokokkokokkkkokkokokskkkokkk sk ok kokok sk kkokkkskokkokokkkkokkk sk sk kok sk sk k sk ok Rk sk sk ok ok sk k k ok % %/

module ALU(input logic crln ,
input logic [2:0] func ,
input logic [31:0] left, right ,
output logic crOut ,
output logic [31:0] out);

always_comb case(func)
3’b000: {crOut, out} = left + right + crln;
3°b001: {crOut, out} left — right — crln;
3°b010: {crOut, out} = {1°b0, left & right};
3’b011: {crOut, out} {1°b0, left | right};
3’b100: {crOut, out} {1°b0, left ~ right};
3’b101: {crOut, out} {1’b0, ~left};
3’b110: {crOut, out} {1°b0, left};
3’bl11: {crOut, out} {1’60, left >> 1};
default {crOut, out} = 33°b0 - 1°bl;

endcase

endmodule

//or

// xor
// not
//left
//shr

The elaborated design provided by the Vivado tool based on the previous System Verilog is repre-

sented in Figure A.2.

140

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

o3 carryOut1_i ’ carryOut0_i carryOut_i
10(31:0; |
19 0[32:0] 0[32:0] 32 s=3b000 10
11(31:0] 10332:0 + p
32 S$=3'b001
RTL_ADD RTL_ADD s=3b010 12
carryln =3'b(13
i carryOut1_i_0 " carryOut0.i_0 zfz‘b?;; 14 carryOut
left(31:0] [— 10[31:0] /—\ - —(-\ 0[32:0] -
B0 (u 0[32:0] 10[32:0] \/ Ss=3b101 15
right(31:0] [: S=3p110 16
RTL_SUB
RTL_suB ~ S=3b111 17
func20] [| RTL_MUX
o] _out0i S[2: -
y 10(31:0] 2 o1l
11[31:0) - -
RTL_AND outi
ut_i
10[31:0] outO,i,ng] 310 s=3p000 10[31:0]
1310]) - 310 s=3b001_I1[31:0]
RTL_OR s=3b010_ 12[31:0]
i s=3b011__ 13[31:0
0[31:0) QU101 Lol .
| 0[31:0] $=3b100__ 14[31:0] out[31:0]
1131:0]
T YOR s=3b101__5[31:0]
- s=3b110__16[31:0]
s=3b111__17(31:0]
out0_i_2
1031:0] {>c 0[31:0] si20 | RTLMUX
RTL_INV
-
1 out0_i_3
2] RCIELEY
ool S/
RTL_RSHIFT
Figure A.2:

A.3 Memory Simulations

A.3.1 Pipelined Three Number Adder

/3 sk sk sk sk sk ok ok ok ok ok sk sk sk sk ok ok oK oK ok sk sk sk sk sk ok ok o ok Sk sk sk sk sk sk ok ok oK ok ok sk sk sk sk sk ok ok oK oK sk sk sk sk sk ok ok R oK ok ok sk sk sk sk sk ok R o Kk Rk

File name: pipelinedThreeAdder . sv
Circuit name: pipelined Three Input Adder
Description : The module ’threeAdder’ has 3 4—-bit inputs and one 4-Dbit

output. The circuit adds modulo 16 three numbers;
do not provide carry output
******************>X<**/

module pipelinedThreeAdder(output logic [3:0] out ,
input logic [3:0] in0 s
input logic [3:0] inl s
input logic [3:0] in2 ,
input logic clock)

logic [3:0] syncReg ;
logic [3:0] pipeReg ;

logic [3:0] sum ;
adder inAdder (.out (sum),
.in0 (in0),
.inl (inl),
outAdder (.out(out),

141

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

.in0 (syncReg),

.inl1 (pipeReg));
always_ff @(posedge clock) begin syncReg <= in2 ;
pipeReg <= sum ;

end
endmodule
syncReg_reg[3:0] outAdder
dock [>
c inOI3: '
Q in0[3:0] out[3:0] D out(3:0]
in2[3:0]| > D in1[3:0]
adder
RTL_REG
inAdder pipeReg_reg[3:0]
C
in0[3:0] D_| in0[3:0] out[3:0] 5 Q
) in1[3:0]
o [——————
adder RTL_REG
Figure A.3:

A.3.2 Read-During-Write Register File

In the design of the pipeline processor with forwarding mechanism, a register file that provides the
currently written value at the output proved useful. The register file version that provides read-during-
write facility requires an additional structure that performs comparison and multiplexing operations (see
Figure A.4 obtained following the project described in the following module).

J% kkkkxckxckkk Rk Rk ok Rk kk Rk Rk Rk ok ok k ok k Rk Rk ok ok ok kk ok kwkk ok Rk ok ok ok kokw ok ok okokok Rk kK ko k kK Kk KKk

File name: fastRegFile. sv
Circuit name: Register File
Description : Three—pport, 32 32—bit words implemented with a

synchronous RAM

kkckkk Rk ok ok ok Rk Rk Rk Rk Rk kR kR kR kR ok ok kkkkwk Rk Rk ok ok ok Rk wk Rk kkkkkkkwkkkkkkkkkkwkwkx %/

module fastRegFile(output logic [31:0] leftOut R
output logic [31:0] rightOut ,
input logic [31:0] in R
input logic [4:0] leftAddr X
input logic [4:0] rightAddr ,
input logic [4:0] destAddr ,
input logic we ,
input logic clock)
logic [31:0] rf[0:31] ;

142

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

always_ff @(posedge clock)

assign leftOut =
((destAddr
assign rightOut =
((destAddr

leftAddr) && we) ? in

rightAddr) && we) ? in

if (we) rf[destAddr] <= in

£}

rf[leftAddr] ;

rf[rightAddr|;

endmodule
rf_reg
lock D WCLK rightOut_i
cloc
WE1 s=1b1 10[31:0]
in[31:0] - ightOut[31:0
rero RA2[4:0] RO2[31:0] Sedefoutt 11(31:0) rightOut(31:0]
RA3[4:0] RO3[31:0] RTL_MUX
destAddr[4:0] [WA1[40]
leftOut2_i WD1(31:0)
leftAddr(4:0] [>— 0] — ;-‘ (31:0) i
LCAU] RTLRAM s=1p1 10[310]
RTL_EQ 1o _rightOut1 i s=default1131:0] leftOut[31:0]
rightaddr4:0] [1 ° RTL_MUX
rightOut2_i
104:0] g o RTL_AND‘
1(4:0] 1o _leftOutl i
n o
RTL_EQ
we [RTL_AND
Figure A .4:
A33
A.34
A.3.5

143

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

144

Appendix B

toyRISC Structural Implementation

B.1 Structure

/* sk sk sk sk sk sk sk sk skosk sk
File name: toyRISC.sv
Circuit name:
Description :
sk sk sk sk sk sk sk sk sk sk sk ok ok skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk */
‘include ”DEFINES.vh”
module toyRISC(input logic [31:0] instr ,
output logic [9:0] nextPC ,
input logic intln ,
output logic inta ,
input logic [31:0] dataln ,
output logic [31:0] dataOut ,
output logic [9:0] addr ,

output logic dataRead ,
output logic dataWrite ,
input logic reset ,
input logic clk)

logic [5:0] opCode ;

logic [4:0] d, 1, r ; // dest, left, right addresses for rf
logic [31:0] v i // immediate value

logic [31:0] leftOp ;

logic [9:0] pc ;

assign opCode = instr[31:26] ;
assign d = instr[25:21] ;
assign 1 = instr[20:16] ;
assign r = instr[15:11] ;
assign v = {{16{instr[15]}}, instr[15:0]};

DCDtoyRISC DCD(opCode ,
intln s
inta s
dataRead s

145

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

dataWrite s
reset s
clk)

PCtoyRISC PC(nextPC s

pc¢)
leftOp s
v[9:0] s
opCode
inta s
reset ,
clk)

RALUtoyRISC RALU(dataOut ,

leftOp ,

pc¢)

opCode

dataln

v s

1 :

r s

d :

inta ,

clk)

assign addr = leftOp[15:0] ;
endmodule // Synthesis results: #LUT=455, #FF=11, #DSP=6

/**
File name: DCDtoyRISC. sv

Circuit name:

Description :
**/
‘include ”DEFINES.vh”

module DCDtoyRISC(input logic [5:0] opCode ,

input logic intln ,

output logic inta ,

dataRead s

dataWrite s

input logic reset ,

clk)

logic ei
always _ff @(posedge clk) if (reset) ei <= 0;
else begin if (opCode == ‘eint) ei <= 1;
if (opCode == ‘dint) ei <= 0;
if (intln & ei) ei <= 0;
end

146

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

assign inta = intln & ei;

always_comb begin

dataRead = (opCode == ‘read) ? 1’bl : 1°b0
dataWrite = (opCode == ‘store) ? 1’bl : 1°b0
end
endmodule

/**

File name: PCtoyRISC. sv

Circuit name:

Description :

**/

‘include ”DEFINES.vh”

module PCtoyRISC (output logic [9:0] nextPC
output logic [9:0] pc ,
input logic [31:0] leftOp ,
input logic [9:0] v
input logic [5:0] opCode

input logic inta ,
reset ,
clk);
always_ff @(posedge clk) if (reset) pc <= -1 ;
else if (inta) pc <= leftOp[9:0] ;
else pc <= nextPC ;
always_comb case (opCode)
‘rjmp : nextPC = pc + v ;
‘zbr : nextPC = (leftOp == 0) ? pc + v : pc + 1;
‘nzbr : nextPC = (leftOp != 0) ? pc + v : pc + 1;
‘ret : nextPC = leftOp ;
‘halt : nextPC = pc ;
default : nextPC = pc + 1 ;
endcase

endmodule

/***
File name: RALUtoyRISC. sv
toyRISC ’s RALU

***/
‘include ”DEFINES.vh”
module RALUtoyRISC(output logic [31:0] dataOut ,

output logic [31:0] leftOp ,

input logic [9:0] pc ,

input logic [5:0] opCode

147

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

input logic [31:0] dataln
v
input logic [4:0] 1
r
d
input logic inta
clk
logic [31:0] leftIn
logic [31:0] rightln ;
logic [31:0] muxOut ;
logic [31:0] aluOut ;
registerFile regFile (. 1eftOp (leftln),
.rightOp (rightIn),
.in (muxOut),
.leftAddr (1),
.rightAddr (r),
.destAddr (d),
.inta (inta),
.opCode (opCode),
.clk (clk));
assign dataOut = rightln ;
assign leftOp = leftln ;
ALU alu (. out (aluOut),
.leftIn (leftln),
.rightIn(rightln),
.value (v),
.opCode (opCode));
bigMux bigMux(.aluOut (aluOut),
.dataln (dataln),
.value (v),
.pc (pe)
.opCode (opCode),
.inta (inta),
.muxOut (muxOut));

endmodule

J% kkkok gk kck Rk Rk ok kkkk Rk Rk kokokkokkkkk Rk kkokkokkokkok Rk kokkkkkk ko kokkokokkokkokkok kg ok kkkok %

File name: registerFile.sv
Circuit name:
Description :

kokk Rk Rk kR ok Rk Rk Rk ok ok kR ok ok kR ok Rk k ok kR kkk Rk kokkkkkkwk Rk ok ok kkkwkwk ko kkkkkwkwkkk k% %/

‘include ”DEFINES.vh”
module registerFile (output

logic

148

[31:0]

leftOp

rightOp

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

input logic [31:0] in ,
input logic [4:0] leftAddr ,

rightAddr ,
destAddr s
input inta s
input logic [5:0] opCode ,
input logic clk)
logic [31:0] «rf[0:31];
logic we :
assign we = inta | (opCode[5:4] == 2°bll) |

(opCode[5:4] == 2°b01) |
(opCode == 6°b10_0111) ;

always _ff @(posedge clk) if (we) rf[inta ? 5°b11110 : destAddr] <= in;
assign leftOp = rf[inta ? 5°bl11111 : leftAddr];

assign rightOp rf[rightAddr] ;
endmodule

/**
File name: ALU. sv
Circuit name:
Description :
**/
‘include ”DEFINES.vh”
module ALU(output logic [31:0] out ,
input logic [31:0] leftIn ,
rightIn ,
value s
input logic [5:0] opCode);

always_comb

case (opCode)
‘add : out = leftln + rightln ;
‘sub : out = leftln — rightln :
‘addv : out = leftIn + value ;
‘mult : out = leftIn % rightln ;
‘multv : out = leftln = value ;
‘addc : out = (leftIn + rightln) > 2x%32 - 1;
‘subc : out = (leftIn — rightln) > 2%%32 - 1;
‘addve : out = (leftIn + value) > 2%%32 — 1
‘Ish : out = leftln >> 1 ;
‘ash : out = {leftIn[31], leftIn[31:1]} 2
‘move : out = leftln ;
‘swap : out = {leftIn[15:0], leftIn[31:16]} ;
‘bwnot : out = “leftln ;

149

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

‘bwand : out = leftln & rightln ;
‘bwor : out leftIn | rightln ;

‘bwxor : out = leftIn ° rightln ;
default : out = leftln :
endcase

endmodule

/***********>l<******>l<************>l<**
File name: bigMux. sv
Circuit name:
Description :
***************>X<**/
‘include ”DEFINES.vh”
module bigMux(input logic [31:0] aluOut ,
dataln ,
value ,
input logic [9:0] pc ,
input logic [5:0] opCode
input logic inta ,
output logic [31:0] muxOut);
logic [1:0] sel ;

assign sel = inta ? 2°b00 : opCode[5:4] ;

always_comb case(sel)

2°b00: muxOut = pc ;
2°b01: muxOut = value ;
2°b10: muxOut = dataln ;
2°bll: muxOut = aluOut ;

endcase
endmodule

150

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

RALU
clk
datain31:0) [2521 di40)
pC dataln[31:0]
T i — ; _
inta dataOut[31:0] D dataOut[31:0]
clk 20:16 114:0] leftOp[31:0] 31:10
inta 3126 opCode[5:0] 90 > addr[90]
9:Q 3110 leftOp[31:0] nextPC[9:0] pc[9:0]
instr[31:0] D 3126 opCode[5:0] pcl9:0] 15:11 1[4:0]
reset v[31:0]
reset [9 v99] RALUtoyRISC
PCtoyRISC [nextrcio0]
DCD
clk dataRead ,—|) dataRead
intin D intln dataWrite D dataWrite
31:26 opCode[5:0] inta
reset D inta
DCDtoyRISC
Figure B.1:

B.2 Code generator

/% sk sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok ok ok ok sk ok ok osk sk ok kosk sk ok sk sk ok osk sk ok sk ok kR ok sk ok ok sk Rk ok kR ok kR ok ok ok

File name:

Circuit name:
Description :
sk skosk sk sk sk sk sk skoske sk sk sk sk skosk sk ok sk sk sk sk sk sk sk skoske sk sk sk sk sk skoske sk sk sk sk sk skoske sk sk sk sk sk skoske sk sk sk sk sk skoske sk sk sk sk sk skoske ok sk skosk sk skosk */

opCode

reg [5:0]
reg [4:0]
reg [4:0]
reg [4:0]
reg [15:0]
reg [9:0]
reg [9:0]
‘include

d
1
I
v

RISCcodeGenerator. sv

)

addrCounter 5
labelTab [0:1023];

task endLine;

begin

progMemory [addrCounter [[31:0]

end

{ opCode
d
1
\%
addrCounter

”DEFINES . vh™”

[l

| - -

addrCounter + 1

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

endtask

// sets labelTab in the first pass
// associating ’counter’ with ’labellndex’
task LB ;

input [5:0] labellndex;

labelTab[labellndex] = addrCounter;
endtask
// uses the content of labelTab in the second pass
task ULB;

input [5:0] labellndex;

v = labelTab[labellndex] — addrCounter;
endtask

// CONTROL INSTRUCTIONS
task NOP; // no operation

begin opCode = ‘addv ;

d = 5°b0 ;

1 = 5’b0

v = 16°b0 ;

endLine ;
end
endtask

task RIMP; // relative jump
input [15:0] label ;

begin opCode = ‘rjmp ;

d = 5°b0

1 = 5°b0 ;

ULB(label) ;

endLine ;
end
endtask

task BRZ; // branch if zero
input [4:0] left ;
input [9:0] label ;

begin opCode = ‘zbr ;

d = 5’b0 ;

1 = left ;

ULB(label) ;

endLine ;
end
endtask

task BRNZ; // branch if not zero

152

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

input [4:0] left ;
input [9:0] label ;

begin opCode = ‘nzbr ;

d = 5°b0

1 = left ;

ULB(label) ;

endLine ;
end
endtask

task RET; // return from subroutine
input [4:0] left ;

begin opCode = ‘ret ;

d = 5°b0 ;

1 = left ;

\% = 16°b0 ;

endLine ;
end
endtask

task HALT; // halt running

begin opCode = ‘halt ;

d = 5’b0

1 = 5’b0

v = 16°b0 ;

endLine ;
end
endtask

task EI; // enable interrupt

begin opCode = ‘eint ;

d = 5’b0

1 = 5’b0 ;

v = 16°b0 ;

endLine ;
end
endtask

task DI; // disable interrupt

begin opCode = ‘dint ;

d = 5’b0 ;

1 = 5’b0 ;

v = 16’b0 ;

endLine ;
end
endtask

// ARITHMETIC & LOGIC INSTRUCTIONS

153

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

task ADD; // addition
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘add ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

task SUB; // subtract
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘sub ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

task ADDV; // addition with value
input [4:0] dest ;
input [4:0] left ;
input [15:0] wvalue ;

begin opCode = ‘addv ;

d = dest ;

1 = left ;

v = value ;

endLine ;
end
endtask

task MULT; // multiplication
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘mult ;
d = dest ;
1 = left 2
v = {right, 11°b0};
endLine ;

end

154

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

endtask

task MULTV; // multiplication with value
input [4:0] dest ;
input [4:0] left ;
input [15:0] wvalue ;

begin opCode = ‘multv;

d = dest ;

1 = left ;

v = value ;

endLine ;
end
endtask

task ADDC; // carry from addition
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘addc ;

d = dest ;

1 = left ;

\% = {right, 11°b0};

endLine ;
end
endtask

task SUBC; // carry from subtract
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘subc ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

task ADDVC; // carry from addition with value
input [4:0] dest ;
input [4:0] left ;
input [15:0] value ;

begin opCode = ‘addvc;
d = dest ;
1 = left ;
v = value ;

155

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

endLine ;
end
endtask

task LSH; // logic shift with one position
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘lsh ;

d = dest ;

1 = left ;

\% = 16°b0 ;

endLine ;
end
endtask

task ASH; // arithmetic shift with one porition
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘ash ;

d = dest ;

1 = left ;

% = 16°b0 ;

endLine ;
end
endtask

task MOVE; // data move inside register file
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘move ;

d = dest ;

1 = left ;

\ = 16°b0 ;

endLine ;
end
endtask

task SWAP; // swap in register
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘swap ;
d = dest ;
1 = left ;
v = 16’b0 ;

endLine ;
end

156

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

endtask

task NOT; // bitwise NOT
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘bwnot;

d = dest ;

1 = left ;

v = 16’b0 ;

endLine ;
end
endtask

task AND; // bitwise AND
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwand ;

d = dest ;

1 = left ;

% = {right, 11°b0};

endLine ;
end
endtask

task OR; // bitwise OR
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwor ;
d = dest ;
1 = left ;
v = {right, 11’b0};
endLine ;
end
endtask

task XOR; // bitwise XOR
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwxor ;
d = dest ;
1 = left ;
v = {right, 11°b0};
endLine ;

157

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

end
endtask

// DATA TRANSFER INSTRUCTIONS
task READ; // data read
input [4:0] left ;

begin opCode = ‘read ;

d = 5’b0

1 = left ;

v = 16°b0 ;

endLine ;
end
endtask

task LOAD; // data load
input [4:0] dest ;

begin opCode = ‘load ;

d = dest ;

1 = 5’b0

v = 16°b0 ;

endLine ;
end
endtask

task STORE; // data store
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘store 2

d = 5°b0 ;

1 = left ;

% = {right, 11°b0};

endLine ;
end
endtask

task VAL; // value load
input [4:0] dest ;
input [15:0] wvalue ;

begin opCode = ‘val ;

d = dest ;

1 = 5’b0 ;

v = value ;;

endLine ;
end
endtask

158

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

// RUNNING
initial begin addrCounter = 0;
‘include ”program.sv” // first pass
addrCounter = 0;
‘include “program.sv” // second pass
end
B.3 Simulator

/% % ok ok sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk ok ok ok o sk ok sk ok sk oK sk ok ok o sk ok sk ok sk ok sk ok ok sk o sk ok sk ok sk ok sk ok ok ok o ok o sk ok sk ok sk ok ok ok ok ko k

File name: testRISC . sv
Circuit name:

kk Rk Rk kR kR kR kR E Rk ok Rk Rk Rk Rk Rk ok Rk Rk Rk Rk ok kk Rk k kR kkk ok kkwkwk Rk Rk ok kkwkwkkk k% %/

2

SV

clk
clk

“clk

// DISPLAY THE CONTENT OF PROGRAM MEMORY

$display ("progMemory[%0d] _\t_=_%b", i,

Description :
‘include ”DEFINES.vh”
module testRISC;
logic inta ;
logic intln 2
logic reset :
logic clk ;
integer i ;
‘include ”RISCcodeGenerator.
initial begin
forever #l1
end
initial begin
intln =1 ;
reset =1
for (i=0; i<8; i=i+l)
#4 reset =0 ;
#40 $finish 0
end
logic [31:0] instr
logic [9:0] nextPC
logic [31:0] dataln
logic [31:0] dataOut
logic [9:0] addr
logic dataRead

progMemory[i])

159

)

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

logic dataWrite ;

logic [31:0] dataMemory[0:1023] ;
logic [31:0] progMemory[0:1023] ;
logic [31:0] dataMemOut ;

always _ff @(posedge clk) begin
if (dataRead) dataln <= dataMemory[addr] ;
if (dataWrite) dataMemory[addr] <= dataOut ;
instr <= progMemory[nextPC] ;
end

toyRISC dut(instr ,
nextPC s
intln s
inta s
dataln s
dataOut s
addr s
dataRead s
dataWrite s
reset ,
clk)

// MONITOR FOR PROGRAM IAOD & CONTROLLER
initial begin
$monitor (7 t=%0d _pc=%d ._RF=[%0d , .%0d , .%0d , .%0d] . out=%0d
uuuuuuuu gleftIn=%0d_rightIn=%0d.value=%0d_opCode=%0d._ei=%b._inta=%b”
$time ,
dut .PC.pc,
dut .RALU. regFile . rf[0],
dut .RALU. regFile . rf[1],
dut .RALU. regFile . rf[2],
dut .RALU. regFile . rf [3],
dut .RALU. alu . out ,
dut .RALU. alu . leftln |,
dut .RALU. alu . rightIn ,
dut .RALU. alu . value ,
dut .RALU. alu .opCode ,
dut .DCD. ei ,
dut.inta);
end
endmodule

160

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

B.4 Testing

/>l<***
File name: program. sv
Description: programs to validate the main types of instructions
>l<*************************/
// Testing instantiating registers & arithmetic operation
/%
VAL(0,2) ;
VAL(1,4) 5
VAL(2,8) ;
MULT(3,1,2) ;
HALT ;
// %/
// Testing interrupt mechanism
// %
VAL(31,10) ;
VAL(2,23) ;
VAL(0,13) ;
EI ;
ADDV(0,0,2) ;
NOP ;
ADDV(0,0,4) ;
HALT ;
NOP ;
NOP ;
// subroutine triggered by interrupt
DI ;
VAL(3 ,44) ;
RET (30) ;
/7 %/
// Testing jump & branch
/%
VAL(O,3) g
LB(1); ADDV(0,0,-1);
NOP ;
RIMP (1) ; // BRNZ(0,1)
HALT ;
/] %/
// Testing data memory
/%
VAL(O0,1) ;
VAL(1,55) ;
STORE(0,1)
READ(0) ;
LOAD(2) ;
HALT ;
/7 %/

161

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

progMemory [0]
progMemory[1]
progMemory [2]
progMemory [3]
progMemory [4]
progMemory [5]
progMemory [6]
progMemory[7]
progMemory [8]
progMemory [9]
progMemory [10]
progMemory [11]
progMemory [12]
progMemory [13]
progMemory [14]
progMemory [15]

pc= X
pc=1023
pc=1023
pc= O
pc= 1
pc= 2

3

4

Il
© N 00w~ O

]
[y
[N

pc=
pc=
pc=
pc=
pc=
pc= 4
pc= 5

6

7

TITTITTITILLG
NN B R
W= O N O Ww

t=25
t=27

pc=
pc=

01011111111000000000000000001010
01011100010000000000000000010111
01011100000000000000000000001101
00100000000000000000000000000000
11001000000000000000000000000010
11001000000000000000000000000000
11001000000000000000000000000100
00011000000000000000000000000000
11001000000000000000000000000000
11001000000000000000000000000000
00100100000000000000000000000000
01011100011000000000000000101100
00010100000111100000000000000000

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

RF=[x,
RF=[x,
RF=[x,
RF=[x,
RF=[x,
RF=[x,
RF=[13,
RF=[13,
RF=[13,
RF=[13,
RF=[13,
RF=[13,
RF=[15,
RF=[15,
RF=[19,

X,
X,

x]
x]
x]
x]
x]

X,
X,
X,
X,
X,

23, x]

23,
23,
23,
23,
23,
23,
23,
23,
23,

x]
x]
x]
x]
44]
44]
44]
44]
44]

out=x
out=x
out=x
out=x
out=x
out=x
out=13
out=12
out=13
out=13
out=4
out=15
out=15
out=19
out=19

leftIn=x
leftIn=x
leftIn=x
leftIn=x
leftIn=x
leftIn=x
leftIn=13
leftIn=10
leftIn=13
leftIn=13
leftIn=4
leftIn=13
leftIn=15
leftIn=15
leftIn=19

162

rightIn=x
rightIn=x
rightIn=x
rightIn=x
rightIn=x
rightIn=x
rightIn=13
rightIn=13
rightIn=13
rightIn=13
rightIn=13
rightIn=13
rightIn=15
rightIn=15
rightIn=19

value=x
value=x
value=10
value=10
value=23
value=13
value=0
value=2
value=0
value=44
value=0
value=2
value=0
value=4
value=0

opCode=x
opCode=x
opCode=23
opCode=23
opCode=23
opCode=23
opCode=8
opCode=50
opCode=50
opCode=23
opCode=5
opCode=50
opCode=50
opCode=50
opCode=6

ei=x
ei=0
ei=0
ei=0
ei=0
ei=0
ei=0
ei=1
ei=0
ei=0
ei=0
ei=0
ei=0
ei=0
ei=0

inta=x
inta=0
inta=0
inta=0
inta=0
inta=0
inta=0
inta=1
inta=0
inta=0
inta=0
inta=0
inta=0
inta=0
inta=0

Appendix C

Pipelined toyRISC

C.1 Structure

[k wkkckkckkkk Rk Rk Rk Rk ok k ok Rk Rk Rk Rk ok Rk kk Rk Rk Rk kK kR kR ok Rk kkkkkw ok Rk w kR Kk k ok w kR kR ok

File name:

Circuit name:

Description :

toyRISCsystem . sv

kkkkk Rk Rk kR kR Rk ok ok ok kk Rk Rk Rk kkk Rk kk Rk ko kkkkkkk Rk kkkkkwkxkkkkkkkkwkkkkk k% %/

‘include

”0_DEFINES . vh”

module toyRISCsystem (

logic
logic
logic
logic
logic
logic
logic

[31:0]
[9:0]
[31:0]
[31:0]
[9:0]

output
input

instruction ;

PC

dataln ;
dataOut ;
dataAddr ;
dataRead ;
dataWrite ;

toyRISC processor (

instruction
PC

intln
inta
dataln
dataOut
dataAddr
dataRead
dataWrite
reset

clk

memorySystem memSys(instruction

PC
dataln
dataOut

logic
logic

163

inta ,
intln ,
reset ,
clk);

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

dataAddr ,

dataRead s

dataWrite s

clk);
endmodule

/**
File name: memorySystem.sv
Circuit name:
Description :
**/
module memorySystem (output logic [31:0] instruction ,

input logic [9:0] PC ,

output logic [31:0] dataln ,

input logic [31:0] dataOut ,

input logic [9:0] dataAddr ,

input logic dataRead ,
input logic dataWrite ,
input logic clk)

logic [31:0] dataMemory[0:1023] ;
logic [31:0] progMemory[0:1023] ;

assign instruction = progMemory[PC] ;

always _ff @(posedge clk) begin
if (dataWrite) dataMemory[dataAddr] <= dataOut ;
end

assign dataln = dataMemory[dataAddr];

endmodule

/**
File name: toyRISC.sv
Circuit name:
Description :
**/
‘include “O0_DEFINES.vh”
module toyRISC(input logic [31:0] instruction ,

output logic [9:0] PC ,

input logic intln ,

output logic inta ,

input logic [31:0] dataln ,

output logic [31:0] dataOut ,

164

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

output logic [9:0] dataAddr s

output logic dataRead ,
output logic dataWrite ,
input logic reset ,
input logic clk)
logic [31:0] instructionl ;
logic [9:0] PCl1 ;
logic [31:0] leftOp ;
logic [1:0] nextPCsel ;
logic [31:0] results ;
logic [5:0] opCodel ;
logic [31:0] leftOp2 ;
logic [31:0] rightOp2 ;
logic [31:0] value?2 ;
logic [5:0] opCode?2 ;
logic [4:0] destAddr2 ;
logic we3 ;
logic [4:0] destAddr3 ;
logic [31:0] result3 ;
logic [5:0] decode ;
logic we ;
logic [1:0] opSel ;
logic [1:0] opSel2 ;
logic ZEero ;
logic [5:0] opCode3 ;
DECODE dcd(.opCodel (instructionl [31:26]),
.Zero (zero),
.opCode?2 (opCode2),
.intln (intln),
.inta (inta),
.nextPCsel (nextPCsel),
.opSel (opSel),
.we (we),
.dataRead (dataRead),
.dataWrite (dataWrite),
.reset (reset),
.clk (clk));
INSTRFETCH progCount(instruction |,
PC ,
instructionl ,
PC1 ,
leftOp s
nextPCsel ,
reset s
clk)

OPSFETCH regFile (instructionl ,
PC1 s

165

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

inta R
we3 s
destAddr3 s
result3 R
opSel s
opSel2 ,
ZETo ,
leftOp s
leftOp2 R
rightOp2 ,
value2 ,
opCode?2 s
destAddr2 ,
clk);

EXECUTE execute (leftOp2 s
rightOp2 ,
value?2 ,
opCode?2 s
destAddr2 s
dataln s
we ,
opSel2 s
dataAddr ,
dataOut .
we3 s
destAddr3 s
result3 R
opCode3 s
clk)
endmodule // Synthesis results: #LUT=335, #FF=204, #DSP=3

/**
File name: DECODE. sv

Circuit name:

Description :
**/
‘include “O0_DEFINES.vh”

module DECODE(input logic [5:0] opCodel ,

input logic Zero ,
input logic [5:0] opCode2 ,
input logic intln ,
output logic inta ,

output logic [1:0] nextPCsel ,
output logic [1:0] opSel ,

output logic we ,
output logic dataRead ,
output logic dataWrite ,

166

Gheorghe M. Stefan:

Lecture notes on COMPUTER ARCHITECTURE

logic [2:0]

intState

intState

intState

intState

intState
*/

input logic reset ,
input logic clk)
intState 2

000: intDisable
001: intEnable
010: intExecl
0l11: intExec?2
100: intExec3

// Interrupt automaton

always _ff @(posedge clk)
if (reset) intState <=
else begin
if (opCodel == ‘eint) intState <=
if (opCodel == ‘dint) intState <=
if (intln &% (intState == 3°b001)) intState <=
if (intState == 3°b010) intState <=
if (intState == 3°b011) intState <=
if (intState == 3’°b100) intState <=
end
//assign intr = intState == 2’bl0 ;
assign inta = intState == 3°b010 ;

logic [5:0] jmpSel ;

assign jmpSel = (intState > 3°b001) ? ‘halt : opCodel

always_comb

3°b000

3°b001
3°b000
3°b010
3°b011
3°b100
3°b000

£}

if (inta) nextPCsel = 2’°bll
else case (jmpSel)
‘halt nextPCsel = 2’b00
‘rjmp nextPCsel = 2°b10
‘zbr nextPCsel = zero ? 2’bl10 : 2°b01 ;
‘nzbr nextPCsel = zero ? 2°b01 : 2°bl0 ;
‘ret nextPCsel = 2’°bll
default nextPCsel = 2’b01
endcase

always_comb case (opCodel)

‘load
‘addv
‘multv
‘addvce
‘val
default
endcase

opSel = 2°b10 ;

opSel = 2°b01 ;
opSel = 2°b01 ;
opSel = 2°b01 ;
opSel = 2°b01 ;

opSel = 2°b00 ;

167

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

assign dataWrite = opCode2 == ‘store ;
assign dataRead = opCode2 == ‘read ;
assign we = ((opCode2[5:4] == 2’bll) |
(opCode2 == ‘load) |
(opCode2 == ‘val)) & !(intState > 3°b001) ;
endmodule

/**
File name: INSTRFETCH. sv

Circuit name:

Description :
**/

module INSTRFETCH(input logic [31:0] instruction ,
output logic [9:0] PC ,
output logic [31:0] instructionl ,
output logic [9:0] PCl1 ,
input logic [31:0] leftOut ,
input logic [1:0] nextPCsel R
input logic reset ,
input logic clk)

// PipeReg0
always @(posedge clk)

if (reset) begin PC <= -1 ;
instructionl <= 0 ;
//PClI <=0 ;
end
else begin case (nextPCsel)

2’b00: PC <= PC
2’b01: PC <= PC + 1
2’bl10: PC <= instructionl [9:0] + PCl1 ;
2’bll: PC <= leftOut

endcase

// PipeRegl
instructionl <= instruction
PC1 <= PC

end
endmodule

/**
File name: OPSFETCH. sv

Circuit name:

Description :
**/

module OPSFETCH(input logic [31:0] instructionl ,

168

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

input logic [9:0] PCl1 ,
input logic inta ,
input logic we3 ,
input logic [4:0] destAddr3 s
input logic [31:0] result3 ,
input logic [1:0] opSel ,
output logic [1:0] opSel2 ,
output logic Zero ,
output logic [31:0] leftOp ,
output logic [31:0] leftOp2 ,
output logic [31:0] rightOp2 ,
output logic [31:0] value?2 ,
output logic [5:0] opCode2 ,
output logic [4:0] destAddr2 ,
input logic clk)

logic [31:0] «rf[0:31] ;
logic [31:0] rightOp ;
logic we ;
logic [4:0] destAddr ;
logic [31:0] result ;
logic [4:0] leftAddr ;
logic [4:0] rightAddr ;

always _ff @(posedge clk) if (we) rf[destAddr] <= result ;

assign leftOp = rf[leftAddr] ;

assign rightOp rf[rightAddr] ;

assign zero leftOp == ;

assign rightAddr instructionl [15:11] ;
// PipeReg?2:

always _ff @(posedge clk) begin

leftOp2 <= leftOp
rightOp2 <= rightOp
value2 <= {{16{instructionl [15]}}, instructionl [15:
opSel2 <= opSel
opCode2 <= instructionl [31:26]
destAddr2 <= instructionl [25:21]
end
intUnit intunit (.we (we),
.destAddr (destAddr),
.result (result),
.leftAddr (leftAddr),
.we3 (we3),
.destAddr3 (destAddr3),
.result3 (result3),
.leftAddrl (instructionl [20:16]),
.PCl1 (PC1),
.inta (inta));

169

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

endmodule

/% sk sk sk sk sk sk sk s sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk sk sk sk s sk sk ok ok ok ok sk ok sk sk sk sk sk sk sk s sk sk ok ok ok ok ok ok sk sk sk sk sk sk sk ok ok
File name: EXECUTE. sv

Circuit name:

Description :
**/

‘include “O0_DEFINES.vh”

module EXECUTE(input logic [31:0] leftOp2 ,

input logic [31:0] rightOp2 ,

input logic [31:0] value?2 ,

input logic [5:0] opCode2 ,

input logic [4:0] destAddr2 ,

input logic [31:0] dataln ,

input logic we ,

input logic [1:0] opSel2 ,

output logic [9:0] dataAddr ,

output logic [31:0] dataOut ,

output logic we3 ,

output logic [4:0] destAddr3 s

output logic [31:0] result3 ,

output logic [5:0] opCode3 ,

input logic clk)
logic [31:0] rightln ;
logic [31:0] out ;
logic [31:0] dataln3 ;

assign dataAddr
assign dataOut

leftOp2[9:0] ;
rightOp2 ;

always_comb case(opSel2)
2°b00: rightln = rightOp2 ;
2°b01: rightln value?2 ;
2°b10: rightln dataln3 ;
2°bll: rightln = 31°b0 ;
endcase

ALU alu (. out (out),
.leftIn (leftOp2),
.rightIn(rightIn),
.opCode (opCode2));

// PipeReg3

always _ff @(posedge clk) begin we3 <= we ;
destAddr3 <= destAddr2;
result3 <= out ;
opCode3 <= opCode2 ;

170

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

dataln3 <= dataln ;
end
endmodule

/**
File name: ALU. sv
Circuit name:
Description :
**/
‘include ”0_DEFINES.vh”
module ALU(output logic [31:0] out s

input logic [31:0] leftln

rightIn
input logic [5:0] opCode);

logic [32:0] sum
logic [32:0] dif ;

assign sum
assign dif

leftIn + rightln ;
leftIn — rightln ;

always_comb case (opCode)

‘add : out = sum[31:0] ;
‘sub : out = dif[31:0] ;
‘addv : out = sum[31:0] ;
‘mult : out = leftIn % rightln ;
‘multv : out = leftln % rightln ;
‘addc : out = sum[32] ;
‘subc : out = dif[32] ;
‘addvc : out = sum|[32] ;
‘Ish . out = leftln >> 1 ;
‘ash : out = {leftIn[31], leftIn[31:1]} 2
‘move : out = leftln ;
‘swap : out = {leftIn[15:0], leftIn[31:16]} ;
‘bwnot : out = “leftln ;
‘bwand : out = leftln & rightln ;
‘bwor : out = leftIn | rightln ;
‘bwxor : out = leftIn " rightln ;
‘load : out = rightln ;
‘val : out = rightln g
default : out = leftln ;
endcase

endmodule

[k kkkckkckkkk Rk Rk Rk Rk ok k ok Rk Rk Rk Rk ok Rk kk Rk Rk Rk kK kR ok Rk Rk kkkkkw ok Rk k kR k ok kkwk Rk k%

171

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

File name: intUnit.sv

Circuit name:

Description :

**/

module intUnit(output logic we
output logic [4:0] destAddr ,
output logic [31:0] result ,
output logic [4:0] leftAddr ,

input logic we3 ,
input logic [4:0] destAddr3 ,
input logic [31:0] result3 ,

input logic [4:0] leftAddrl ,
input logic [9:0] PCl1 ,

input logic inta)5
assign we = inta ? 1’bl ;. we3 ;
assign destAddr = inta ? 5°bl11110 : destAddr3 ;
assign result = inta ? {21°b0, PCIl} : result3 :
assign leftAddr = inta ? 5°bll1111 . leftAddrl

endmodule

C.2 Code generator

/**
File name: RISCcodeGenerator. sv
Circuit name:
Description :
**/
reg [5:0] opCode ;
reg [4:0] d ;
reg [4:0] 1 ;
reg [4:0] r ;
reg [15:0] v ;
reg [9:0] addrCounter ;
reg [9:0] labelTab [0:1023];

‘include ”“0_DEFINES.vh”

task endLine;

begin
dut . memSys. progMemory [addrCounter J[31:0] =
{ opCode ,
d ;
1)
v } 0
addrCounter = addrCounter + 1 ;

172

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

end
endtask

// sets labelTab in the first pass
// associating ’counter’ with ’labellndex’
task LB ;

input [5:0] labellndex;

labelTab[labellndex] = addrCounter;
endtask
// uses the content of labelTab in the second pass
task ULB;

input [5:0] labellndex;

v = labelTab[labellndex] - addrCounter ;
endtask

// CONTROL INSTRUCTIONS
task NOP; // no operation

begin opCode = ‘nop ;
{d,1,v} = 26°b0 ;
endLine ;
end
endtask

task RIMP; // relative jump
input [15:0] label ;

begin opCode = ‘rjmp ;

d = 5’b0

1 = 5’b0

ULB(label) ;

endLine ;
end
endtask

task BRZ; // branch if zero
input [4:0] left ;
input [15:0] label ;

begin opCode = ‘zbr ;

d = 5°b0

1 = left ;

ULB(label) ;

endLine ;
end
endtask

task BRNZ; // branch if not zero
input [4:0] left ;

173

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

input [15:0] label ;

begin opCode = ‘nzbr ;

d = 5’b0

1 = left ;

ULB(label) ;

endLine ;
end
endtask

task RET; // return from subroutine
input [4:0] left

begin opCode = ‘ret ;

d = 5’b0

1 = left

\% = 16°b0 ;

endLine ;
end
endtask

task HALT; // halt running

begin opCode = ‘halt ;
{d,1,v} = 26°b0 ;
endLine ;
end
endtask

task El; // enable interrupt

begin opCode = ‘eint ;
{d,1,v} = 26°b0 ;
endLine ;
end
endtask

task DI; // disable interrupt

begin opCode = ‘dint ;
{d,1,v} = 26°b0 ;
endLine ;
end
endtask

// ARITHMETIC & LOGIC INSTRUCTIONS
task ADD; // addition
input [4:0] dest ;
input [4:0] left :
input [4:0] right ;

‘add ;
dest ;

begin opCode
d

174

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

1 left ;
\% {right, 11°b0};
endLine ;

end
endtask

task SUB; // subtract
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘sub ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine :
end
endtask

task ADDV; // addition with value
input [4:0] dest ;
input [4:0] left ;
input [15:0] value ;

begin opCode = ‘addv ;

d = dest ;

1 = left ;

v = value ;

endLine ;
end
endtask

task MULT; // multiplication
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘mult ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine :
end
endtask

task MULTV; // multiplication with value
input [4:0] dest ;
input [4:0] left ;
input [15:0] value ;

175

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

begin opCode = ‘multyv;

d = dest ;

1 = left ;

% = value ;

endLine ;
end
endtask

task ADDC; // carry from addition
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘addc ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

task SUBC; // carry from subtract
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘subc ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine 2
end
endtask

task ADDVC; // carry from addition with value
input [4:0] dest ;
input [4:0] left ;
input [15:0] wvalue ;

begin opCode = ‘addvc;

d = dest ;

1 = left ;

v = value ;

endLine ;
end
endtask

task LSH; // logic shift with one position
input [4:0] dest ;
input [4:0] left ;

176

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

begin opCode = ‘lsh ;

d = dest ;

1 = left ;

v = 16’b0 ;

endLine ;
end
endtask

task ASH; // arithmetic shift with one porition
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘ash ;

d = dest ;

1 = left ;

\% = 16°b0 ;

endLine ;
end
endtask

task MOVE; // data move inside register file
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘move ;

d = dest ;

1 = left ;

v = 16’b0 ;

endLine ;
end
endtask

task SWAP; // swap in register
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘swap ;

d = dest ;

1 = left ;

v = 16°b0 ;

endLine ;
end
endtask

task NOT; // bitwise NOT
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘bwnot;

177

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

d = dest ;

1 = left ;

% = 16°b0 ;

endLine ;
end
endtask

task AND; // bitwise AND
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwand ;

d = dest ;

1 = left 2

v = {right, 11°b0};

endLine ;
end
endtask

task OR; // bitwise OR
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwor ;
d = dest ;
1 = left ;
v = {right, 11°b0};
endLine ;
end
endtask

task XOR; // bitwise XOR
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwxor ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

// DATA TRANSFER INSTRUCTIONS
task READ; // data read
input [4:0] left ;

178

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

begin opCode = ‘read ;

d = 5’b0 ;

1 = left ;

% = 16’b0 ;

endLine ;
end
endtask

task LOAD; // data load
input [4:0] dest ;

begin opCode = ‘load ;

d = dest ;

1 = 5’b0

v = 16’b0 ;

endLine ;
end
endtask

task STORE; // data store
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘store ;

d = 5°b0 ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

task VAL; // value load
input [4:0] dest ;
input [15:0] value ;

begin opCode = ‘val ;
d = dest ;
1 = 5°b0
% = value ;
endLine ;
end
endtask
// RUNNING

initial begin addrCounter = 0;
‘include ”0_program.sv” // first pass
addrCounter = 0O;
‘include ”0O_program.sv” // second pass
end

179

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

C.3 Simulator

/* sk sk sk ok sk sk sk ok sk ok sk sk sk skosk sk sk sk sk sk okosk sk ok skoskosk ok skosk
File name: testRISC . sv

Circuit name:

Description :

ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok o ok ok sk ok ok ok sk ok ok ok sk ok ok sk sk ok ok sk ok ok ok ok ok sk o ok sk ok o ok ok ok ok ok sk ok kR Kok sk Rk sk ok Rk kok %/
‘include ”0_DEFINES.vh”

module testRISC;

logic inta ;
logic intln ;
logic reset ;
logic clk ;
integer i ;

‘include "0_RISCcodeGenerator.sv”

initial begin clk =0 ;
forever #1 «clk = “clk ;
end
initial
begin intln =1 ;
reset =1 ;
// DISPLAY THE CONTENT OF PROGRAM MEMORY
for (i=0; i<l6; i=i+1)
$display (”progMemory[%0d] _\t_.=_%b", i,
dut . memSys. progMemory [i]) ;
#4 reset =0 ;
#100 $finish 2
end

toyRISCsystem dut(inta ,
intln s
reset s
clk)

// MONITOR FOR PROGRAM IAOD & CONTROLLER

initial begin

$monitor (7 t=%0d._pc=%d - _RF=[%0d , -%0d , -%0d , -%0d , _%0d , -%0d , -%0d , -%0d]

uuuuuuuuuuuu leftOp2=%0d._rightOp2=%0d_result3=%0d.___intState=%b._inta=%b" ,

$time ,
dut . processor .PC,
dut. processor.regFile.rf[0],
dut. processor.regFile.rf[1],
dut. processor.regFile.rf[2],
dut. processor.regFile.rf[3],
dut.processor.regFile.rf[4],
dut.processor.regFile.rf[5],

180

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

dut. processor.regFile.rf[30],
dut.processor.regFile.rf[31],
dut. processor.leftOp2 ,
dut. processor.rightOp2 ,
dut. processor.result3 ,
dut. processor.dcd.intState ,
dut.processor.dcd.inta);
end
endmodule

C.4 Testing

/* sk skoske sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk
File name: program.sv
Circuit name:
Description :
sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ke sk sl sk sk sk sk sk sk sk sk sk s s sk ok ok ok sk sk sk sk sk */
VE
NOP ;
VAL(O0,1) ;
VAL(1,2) ;
VAL(2,3) ;
VAL(3,4) ;
VAL(4,5) ;
NOP ;
NOP ;
ADD(5,4,3)
HALT ;
HALT ;
/! %/

VAL(0,2) ;
VAL(1,4) ;
VAL(2,8) ;
NOP ;
MULT(3,1,2) ;
NOP 5
HALT ;

/! %/

// %
VAL(31,13) ;
VAL(2,23) ;
VAL(0,13) ;
VAL(1,13) ;

181

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

EI ;
ADDV(0,0,1) ;
VAL(1,1) ;
VAL(2,222) ;
NOP ;
ADDV(0,0,4) ;
HALT ;
HALT ;
NOP ;
// subroutine triggered by interrupt

ADDV(30,30,-1)
NOP ;
NOP ;
NOP ;
RET(30) ;

// %/

/%
NOP ;
VAL(0, -3) ;
NOP 5
NOP ;

LB(1); ADDV(0,0,1);

NOP ;
BRNZ(0,1) ;
NOP 5
HALT ;
HALT ;

// =/

/%
VAL(O0,1) ;
VAL(1,55) ;
STORE(0,1)
READ(0) ;
LOAD(2) ;
HALT ;

// %/

182

Appendix D

Forwarding toyRISC

D.1 Structure

[k wkkckkckkkk Rk Rk Rk Rk ok k ok Rk Rk Rk Rk ok Rk kk Rk Rk Rk kK kR kR ok Rk kkkkkw ok Rk w kR Kk k ok w kR kR ok

File name:

Circuit name:

Description :

toyRISCsystem . sv

kkkkk Rk Rk kR kR Rk ok ok ok kk Rk Rk Rk kkk Rk kk Rk ko kkkkkkk Rk kkkkkwkxkkkkkkkkwkkkkk k% %/

‘include

”0_DEFINES . vh”

module toyRISCsystem (

logic
logic
logic
logic
logic
logic
logic

[31:0]
[9:0]
[31:0]
[31:0]
[9:0]

output
input

instruction ;

PC

dataln ;
dataOut ;
dataAddr ;
dataRead ;
dataWrite ;

toyRISC processor (

instruction
PC

intln
inta
dataln
dataOut
dataAddr
dataRead
dataWrite
reset

clk

memorySystem memSys(instruction

PC
dataln
dataOut

logic
logic

183

inta ,
intln ,
reset ,
clk);

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

dataAddr ,

dataRead s

dataWrite s

clk);
endmodule

/**
File name: memorySystem.sv
Circuit name:
Description :
**/
module memorySystem (output logic [31:0] instruction ,

input logic [9:0] PC ,

output logic [31:0] dataln ,

input logic [31:0] dataOut ,

input logic [9:0] dataAddr ,

input logic dataRead ,
input logic dataWrite ,
input logic clk)

logic [31:0] dataMemory[0:1023] ;
logic [31:0] progMemory[0:1023] ;

assign instruction = progMemory[PC] ;

always _ff @(posedge clk) begin
if (dataWrite) dataMemory[dataAddr] <= dataOut ;
end

assign dataln = dataMemory[dataAddr];

endmodule

/**
File name: .sv
Circuit name:
Description :
**/
/***
File name: toyRISC.sv
toyRISC

sk o oo ok ok ok ok R kR R R R SR s R s R s R s o s o s ok ok R R R R R R kR R s R sk ok s ok ok ok ok kR ok 8/
‘include ”0_DEFINES.vh”
module toyRISC(input logic [31:0] instruction ,

output logic [9:0] pc ,

184

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

input logic intln ,
output logic inta ,
input logic [31:0] dataln ,
output logic [31:0] dataOut s
output logic [9:0] dataAddr ,
output logic dataRead ,
output logic dataWrite ,
input logic reset ,
input logic clk)
logic [31:0] instructionl ;

logic [31:0] instruction?2 ;

logic [31:0] instruction3 ;

logic [31:0] instruction4 ;

logic [9:0] pcl ;

logic [31:0] leftOp ;

logic [1:0] nextPCsel ;

logic wed ;

logic [31:0] result4 ;

logic [3:0] opSel ;

logic [3:0] opSel2 ;

logic ZEro ;

logic [31:0] leftOp2 ;

logic [31:0] rightOp2 ;

logic [31:0] leftOp3 ;

logic [31:0] rightOp3 ;

logic [31:0] result3 ;

logic we ;

logic memSel ;

DECODE dcd(.instructionl (instructionl),
.instruction?2 (instruction2),
.instruction?3 (instruction3),

. Z€1ro (zero),
.intln (intln),
.inta (inta),
.nextPCsel (nextPCsel),
.opSel (opSel),
. memSel (memSel),
.we (we),
.dataRead (dataRead),
.dataWrite (dataWrite),
.reset (reset),
.clk (clk));

INSTRFETCH progCount (instruction |,
leftOp s

nextPCsel s

185

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

pC b
instructionl ,

pcl s

reset s
clk)

OPSFETCH regFile (instructionl ,
instruction4 ,
pcl s
inta ,
wed s
result4 s
opSel ,

ZEro ,
leftOp s
leftOp2 ,
rightOp2 ,
opSel2 s
instruction?2 ,

clk)

EXECUTE execute (leftOp2 ,
rightOp2 ,
opSel2 s
instruction?2 ,
result4 s

leftOp3 ,
result3 s
rightOp3 ,
instruction3 ,

clk)

DATAMEM datamem (result3 s
instruction3 ,
we ,
memSel .
dataln s

result4 s
instruction4 ,
wed s

clk)

assign dataAddr = leftOp3 ;

186

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

assign dataOut = rightOp3 ;
endmodule // Synthesis results: #LUT=335, #FF=204, #DSP=3

/*>l<***>l<************>l<************>l<******>l<*********************************
File name: DECODE. sv

Circuit name:

Description :
***************>X<*******************>X<************************************/

‘include ”0_DEFINES.vh”

module DECODE(input logic [31:0] instructionl ,
input logic [31:0] instruction2 ,
input logic [31:0] instruction3 ,
input logic ZEero ,
input logic intln ,
output logic inta ,
output logic [1:0] nextPCsel ,
output logic [3:0] opSel ,
output logic memSel ,
output logic we ,
output logic dataRead ,
output logic dataWrite ,
input logic reset ,
input logic clk);

logic [5:0] opCodel ;
logic [4:0] destAddrl ;
logic [4:0] leftAddrl ;
logic [4:0] rightAddrl ;
logic [4:0] destAddr2 ;
logic [5:0] opCode3 ;
logic [4:0] destAddr3 ;

logic leftFwd ;
logic rightFwd ;
assign opCodel = instructionl [31:26] ;

assign leftAddrl instructionl [20:16] ;

assign rightAddrl instructionl [15:11] ;

assign destAddr2 instruction2 [25:21] ;

assign destAddr3 instruction3 [25:21] ;
[31

assign opCode3 = instruction3 :26] :

// Interrupt automaton

logic [2:0] intState ;
VE

intState = 000: intDisable

187

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

intState

intState

intState

intState

intState
*/

001:
010:
011:
100:
101:

intEnable
intExecl
intExec?2
intExec3
intExec4

always _ff @(posedge clk)
if (reset)
else
begin

assign inta

if
if
if
if
if
if
if

(op
(op
(in
(in
(in
(in
(in

end

Codel == ‘eint)

Codel == ‘dint)

tIn && (intState == 3°b001))
tState == 3°b010)

tState == 3°b011)

tState == 3°b100)
tState == 3°bl101)

intState == 3°b011 ;

// end Interrupt automaton

// Program control
logic [5:0] jmpSel ;

assign jmpSel

always_comb if

e

intState <=

intState <=
intState <=
intState <=
intState <=
intState <=
intState <=
intState <=

= (intState > 3°b011) ? ‘nop opCodel
(inta) nextPCsel = 2°bll
Ise
case (jmpSel)
‘halt : nextPCsel = 2°b00
‘rjmp : nextPCsel = 2°b10
‘zbr : nextPCsel = zero ? 2°bl0
‘nzbr : nextPCsel = zero ? 2’b0l1
‘ret : nextPCsel = 2’bll1

default : nextPCsel = 2’b01

endcase

// end prorgram control

// Forwarding section

assign leftFwdY

(leftAddrl

assign rightFwdY
(rightAddrl =
assign leftFwdO

(leftAddrl

assign rightFwdO

== destAddr2) && (opCodel [5]

destAddr2) && (opCodel [5]

destAddr3) && (opCodel [5]

(rightAddrl == destAddr3) && (opCodel [5]
always_comb
case (opCodel)
‘addv

opSel[1:0] 2°bl11

188

== 1°bl);
== 1°bl);
== 1’bl);

== 1°bl);

3°b000

3°b001
3°b000
3°b010
3°b011
3°b100
3°b101
3°b000

2°b01
2°b10

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

‘multv opSel[1:0] = 2°bll ;
‘addve opSel[1:0] = 2°bll ;
‘val : opSel[1:0] = 2°bll ;
default : if (rightFwdY) opSel[1:0] = 2°b01 ;
else if (rightFwdO) opSel[1:0] = 2°bl10 ;
else opSel[1:0] = 2°b00 ;
endcase
always_comb
if (leftFwdY) opSel[3:2] = 2°b01 ;
else if (leftFwdO) opSel[3:2] = 2’bl0 ;
else opSel[3:2] = 2°b00 ;
// end forwarding section
assign dataWrite = opCode3 == ‘store ;
assign dataRead = opCode3 == °‘read g
assign memSel = opCode3 == ‘read ;
assign we = ((opCode3[5:4] == 2°bll) |
(opCode3 == ‘val) |
(opCode3 == ‘read)) & !(intState > 3°b001);

endmodule

/**
File name: INSTRFETCH. sv

Circuit name:

Description :
****************************>l<***/

module INSTRFETCH (input logic [31:0] instruction ,
input logic [31:0] leftOp ,
input logic [1:0] nextPCsel ,
output logic [9:0] pc ,
output logic [31:0] instructionl ,
output logic [9:0] pcl ,
input logic reset ,
input logic clk);

// PipeReg0
always _ff @(posedge clk)
if (reset) begin pc <= -1 :
instructionl <= 0 ;

end
else begin case(nextPCsel)
2°b00: pc <= pc ;
2°b01: pc <= pc + 1 ;
2°bl10: pc <= instructionl [9:0] + pcl ;
2°bll: pc <= leftOp ;
endcase

189

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

// PipeRegl
instructionl <= instruction ;
pcl <= pc ;
end
endmodule

/**
File name: OPSFETCH. sv

Circuit name:

Description :
*****>I<**/

module OPSFETCH (input logic [31:0] instructionl ,
input logic [31:0] instruction4 ,
input logic [9:0] pcl ,
input logic inta ,
input logic wed ,
input logic [31:0] result4 ,
input logic [3:0] opSel ,
output logic Zero ,
output logic [31:0] leftOp ,
output logic [31:0] leftOp2 ,
output logic [31:0] rightOp2 ,
output logic [3:0] opSel2 ,
output logic [31:0] instruction?2 ,
input logic clk)

logic [31:0] rf[0:31] ;
logic [31:0] rightOp ;
logic we ;
logic [4:0] destAddr ;
logic [31:0] result ;
logic [4:0] leftAddr ;
logic [4:0] rightAddr ;

always _ff @(posedge clk) if (we) rf[destAddr] <= result ;

assign leftOp =

((destAddr == leftAddr) &% we) ? result : rf[leftAddr] ;
assign rightOp =

((destAddr == rightAddr) && we) ? result : rf[rightAddr] ;
assign zero = leftOp == 0 ;
assign rightAddr = instructionl [15:11] ;

// PipeReg?2:
always_ff @(posedge clk)

190

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

begin
leftOp2 <= leftOp ;
rightOp2 <= rightOp :
opSel2 <= opSel ;
instruction?2 <= instructionl ;
end
intUnit intunit (.we (we),
.destAddr (destAddr),
.result (result),
.leftAddr (leftAddr),
.wed (wed),
.destAddr4 (instruction4 [25:21]),
.result4 (result4),
.leftAddrl (instructionl [20:16]),
-pel (pel)
.inta (inta));
endmodule

/********>k***
File name: EXECUTE. sv

Circuit name:

Description :
*****>l<************>l<******>l<>l<>‘.<>l<*********>l<********************************>l</

‘include ”0_DEFINES.vh”

module EXECUTE(input logic [31:0] leftOp2 ,

input logic [31:0] rightOp2 ,

input logic [3:0] opSel2 ,

input logic [31:0] instruction?2 ,

input logic [31:0] result4 s

output logic [31:0] leftOp3 ,

output logic [31:0] result3 ,

output logic [31:0] rightOp3 ,

output logic [31:0] instruction3 ,

input clk)
logic [31:0] rightln ;
logic [31:0] leftIn ;
logic [31:0] out ;
logic [31:0] value ;

assign value = {{16{instruction2[15]}}, instruction2[15:0]} ;

always_comb case(opSel2[1:0])
2°b00: rightln = rightOp2 ;

191

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

2°b0l: rightln = result3 ;
2°b10: rightln result4 ;
2°bll: rightln value ;
endcase
always_comb case(opSel2[3:2])
2°b00: leftln = leftOp2;
2°b01: leftln result3;
2°bl10: leftln result4 ;
2’bll: leftIn = 31°b0 ;

endcase
ALU alu (. out (out),
.leftIn (leftln),
.rightIn(rightln),
.opCode (instruction2 [31:26]));
// PipeReg3
always _ff @(posedge clk)
begin leftOp3 <= leftln ;
result3 <= out ;
rightOp3 <= rightln ;
instruction3 <= instruction2 ;
end
endmodule

/*>l<*>l<****>l<*>l<*****>l<*************>l<**********>l<******************************
File name: DATAMEM. sv

Circuit name:

Description :
************>l<>l<>l<>!<*********>l<************>X<********************************>l</

module DATAMEM(input logic [31:0] result3 s
input logic [31:0] instruction3 ,
input logic we ,
input logic memSel ,
input logic [31:0] dataln ,
output logic [31:0] result4 ,
output logic [31:0] instruction4 ,
output logic wed ,
input logic clk);
always_ff @(posedge clk)
begin result4 <= memSel ? dataln : result3;
instruction4 <= instruction3 ;
wed <= we ;
end
endmodule

192

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

/**
File name: ALU. sv
Circuit name:
Description :
**/
‘include “O0_DEFINES.vh”
module ALU(output logic [31:0] out ,

input logic [31:0] leftIn ,

rightIn ,
input logic [5:0] opCode);

logic [32:0] sum ;
logic [32:0] dif ;

assign sum
assign dif

leftIn + rightln ;
leftln — rightln ;

always_comb case (opCode)

‘add : out = sum[31:0] ;
‘sub : out = dif[31:0] ;
‘addv : out = sum[31:0] ;
‘mult : out = leftln % rightln ;
‘multv : out = leftln % rightln ;
‘addc : out = sum[32] ;
‘subc : out = dif[32] ;
‘addve : out = sum[32] ;
‘Ish : out = leftln >> 1 2
‘ash : out = {leftIn[31], leftIn[31:1]} ;
‘move : out = leftln ;
‘swap : out = {leftIn[15:0], leftIn[31:16]} 2
‘bwnot : out = “leftln ;
‘bwand : out = leftln & rightln ;
‘bwor : out = leftIn | rightln 0
‘bwxor : out = leftIn " rightln ;
// ‘load : out = rightln ;
‘val : out = rightln ;
default : out = leftln 2
endcase

endmodule

/**
File name: intUnit. sv

Circuit name:

Description :
**/

193

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

module intUnit(output logic we
output logic [4:0] destAddr ,
output logic [31:0] result ,
output logic [4:0] leftAddr

input logic wed ,
input logic [4:0] destAddr4 ,
input logic [31:0] result4 ,
input logic [4:0] leftAddrl s
input logic [9:0] pcl ,

input logic inta)
assign we = inta ? 1’bl : wed ;
assign destAddr = inta ? 5°b11110 : destAddr4 ;
assign result = inta ? {21’b0, pcl} : result4 0
assign leftAddr = inta ? 5°bll111 : leftAddrl ;

endmodule

D.2 Code generator

/>l< skosk sk sk sk sk skoskeosk sk sk sk sk sk sk sk sk sk sk skoskeosk sk sk sk sk skose sk sk sk sk sk skoske sk sk sk sk sk sk sk ok sk sk sk sk skoskeosk sk skoske sk sk sk sk sk skoske sk skoske sk sk skosk ok skosk
File name: RISCcodeGenerator. sv
Circuit name:
Description :
ks sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk skosk sk sk sk sk sk skoske sk sk sk sk sk skoske sk sk sk sk skoskoske sk skosk sk sk oskosk ok sk sk sk sk skosk ok sk skosk sk skosk */
reg [5:0] opCode ;
reg [4:0] d ;
reg [4:0] 1 ;
reg [4:0] r ;
reg [15:0] v ;
reg [9:0] addrCounter ;
reg [9:0] labelTab[0:1023];

‘include ”0_DEFINES.vh”

task endLine;
begin
dut . memSys. progMemory [addrCounter][31:0] =
{ opCode ,

d :
1 :
v } ;
addrCounter = addrCounter + 1 ;
end
endtask

194

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

// sets labelTab in the first pass
// associating ’counter’ with ’labellndex’
task LB ;

input [5:0] labellndex;

labelTab[labellndex] = addrCounter;
endtask
// uses the content of labelTab in the second pass
task ULB;

input [5:0] labellndex;

v = labelTab[labellndex] — addrCounter ;
endtask

// CONTROL INSTRUCTIONS
task NOP; // no operation

begin opCode = ‘nop ;
{d,1,v} = 26°b0 ;
endLine ;
end
endtask

task RIMP; // relative jump
input [15:0] label ;

begin opCode = ‘rjmp ;

d = 5°b0 ;

1 = 5’b0 ;

ULB(label) ;

endLine ;
end
endtask

task BRZ; // branch if zero
input [4:0] left ;
input [15:0] label ;

begin opCode = ‘zbr ;

d = 5’b0

1 = left ;

ULB(label) ;

endLine ;
end
endtask

task BRNZ; // branch if not zero
input [4:0] left ;
input [15:0] label ;

begin opCode = ‘nzbr ;

195

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

d = 5’b0 ;

1 = left ;

ULB(label) ;

endLine ;
end
endtask

task RET; // return from subroutine
input [4:0] left

begin opCode = ‘ret ;

d = 5’b0 ;

1 = left ;

\% = 16°b0 ;

endLine 2
end
endtask

task HALT; // halt running

begin opCode = ‘halt ;
{d,1,v} = 26°b0 ;
endLine ;
end
endtask

task El; // enable interrupt

begin opCode = ‘eint ;
{d,1,v} = 26°b0 ;
endLine ;
end
endtask

task DI; // disable interrupt

begin opCode = ‘dint ;
{d,1,v} = 26°b0 ;
endLine ;
end
endtask

// ARITHMETIC & LOGIC INSTRUCTIONS
task ADD; // addition
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘add ;
d = dest ;
1 = left ;
v = {right, 11°b0};
endLine ;

196

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

end
endtask

task SUB;
input
input
input

begin

end
endtask

input
input
input

begin

// subtract

[4:0] dest ;
[4:0] left ;
[4:0] right ;
opCode = ‘sub

d = dest

1 = left

Vv =
endLine

]

)

{right, 11°b0};

£}

task ADDV; // addition with value
[4:0] dest ;
[4:0] left ;
[15:0] value ;
opCode = ‘addv ;
d = dest ;
1 = left ;
v = value ;
endLine ;

end
endtask

task MULT; // multiplication

input [4:0]
input [4:0]
input [4:0]
begin opCode
d
1
v
endLine
end
endtask
task MULTV;
input [4:0]
input [4:0]
input [15:0]
begin opCode
d

1

dest ;
left ;
right ;

‘mult
dest
left
{right ,

// multiplication

dest ;
left ;
value ;

‘multv ;
dest
left ;

11°b0};

£}

with value

197

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

% = value ;

endLine ;
end
endtask

task ADDC; // carry from addition
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘addc ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine 2
end
endtask

task SUBC; // carry from subtract
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘subc ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

task ADDVC; // carry from addition with value
input [4:0] dest ;
input [4:0] left ;
input [15:0] wvalue ;

begin opCode = ‘addvc;

d = dest ;

1 = left ;

v = value ;

endLine ;
end
endtask

task LSH; // logic shift with one position
input [4:0] dest ;
input [4:0] left ;

‘Ish
dest

begin opCode
d

198

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

1 left
% 16°b0 ;
endLine ;

end
endtask

task ASH; // arithmetic shift with one porition
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘ash ;

d = dest ;

1 = left ;

v = 16°b0 ;

endLine 2
end
endtask

task MOVE; // data move inside register file
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘move ;

d = dest ;

1 = left ;

v = 16’b0 ;

endLine ;
end
endtask

task SWAP; // swap in register
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘swap ;

d = dest ;

1 = left ;

v = 16°b0 ;

endLine ;
end
endtask

task NOT; // bitwise NOT
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘bwnot;
d = dest ;
1 = left ;
v = 16°b0 ;

199

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

endLine ;
end
endtask

task AND; // bitwise AND
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwand ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

task OR; // bitwise OR
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwor ;
d = dest ;
1 = left ;
v = {right, 11°b0};
endLine ;
end
endtask

task XOR; // bitwise XOR
input [4:0] dest ;
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘bwxor ;

d = dest ;

1 = left ;

v = {right, 11°b0};

endLine ;
end
endtask

// DATA TRANSFER INSTRUCTIONS
task READ; // data read
input [4:0] dest ;
input [4:0] left ;

begin opCode = ‘read ;
d dest

200

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

1 left
% 16°b0 ;
endLine ;

end
endtask

task STORE; // data store
input [4:0] left ;
input [4:0] right ;

begin opCode = ‘store ;

d = 5°b0 ;

1 = left ;

v = {right, 11°b0};

endLine 2
end
endtask

task VAL; // value load
input [4:0] dest ;
input [15:0] wvalue ;

begin opCode = ‘val ;
d = dest ;
1 = 5’b0
\% = value ;
endLine ;
end
endtask
// RUNNING
initial begin addrCounter = 0;

‘include ”0O_program.sv” // first pass

addrCounter = 0;

‘include ”0_program.sv” // second pass
end

D.3 Simulator

/**
File name: testRISC . sv
Circuit name:

Description :
sk sk sk sk sk sk sk sk sk skoskok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sl sk sk sk sk sk sk sk sk sk s sk ok ok ok sk sk sk sk sk */

‘include ”0_DEFINES.vh”
module testRISC;

201

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

logic inta ;
logic intln ;
logic reset ;
logic clk ;
integer i ;

‘include ”0_RISCcodeGenerator.sv”

initial begin clk =0 ;
forever #1 clk = “clk ;
end
initial
begin intln =1 ;
reset =1 ;
// DISPLAY THE CONTENT OF PROGRAM MEMORY
for (i=0; i<l6; i=i+1)
$display (”progMemory[%0d] . \t.=%b”, i,
dut . memSys. progMemory[1i]) ;
#4 reset =0 ;
#100 $finish 0
end

toyRISCsystem dut(inta ,
intln s
reset ,
clk)

// MONITOR FOR PROGRAM IAOD & CONTROLLER
initial begin
$monitor (7 t=%0d._.pc=%d . _RF=[%0d , .%0d , _%0d , -%0d , _%0d , .%0d , .%0d , .%0d]
uuuuuuuuuuuuuu dataWrite=%0b _DM=[%0d , .%0d , .%0d , .%0d] .intState=%b._inta=%b”

$time ,
dut . processor.pc,
dut. processor.regFile.rf[0],
dut. processor.regFile.rf[1],
dut. processor.regFile.rf[2],
dut.processor.regFile.rf[3],
dut.processor.regFile.rf[4],
dut.processor.regFile.rf[5],
dut. processor.regFile.rf[30],
dut. processor.regFile.rf[31],
dut.processor.dataWrite ,
dut . memSys.dataMemory [0],
dut . memSys.dataMemory [1],
dut . memSys.dataMemory [2],
dut.memSys.dataMemory [3],
dut. processor.dcd.intState ,
dut.processor.dcd.inta);

202

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

end
endmodule

D.4 Testing

/* sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok s sl sk sk sk sk sk sk sk sk s sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk
File name: program. sv
Circuit name:
Description :
Sk sk ok sk sk sk sk sk >l</
/%
NOP ;
VAL(O0,1) 5
VAL(1,2) ;
VAL(2,3) ;
VAL(3,4) ;
VAL(4,5) ;
//NOP ;
//NOP ;
//NOP ;
ADD(5,4,3)
HALT ;
HALT ;
/! x/

VAL(O0,2) 5
VAL(1,4) ;
VAL(2,8) ;
MULT(3,1,2) ;
ADDV(0,0,5) ;
NOP 5
HALT ;
HALT ;
/7 %/
/%
VAL(31,13) ;
VAL(2,23) ;
VAL(0,24) ;
VAL(1,13) ;
EI g
ADDV(2,31,1);
VAL(1,1) ;
VAL(2,222)
NOP ;

203

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

/7 %/
// %

// %/
/%

// %/

//

LB(1);

ADD(0,1,2) ;
HALT
HALT
NOP ;
subroutine triggered by interrupt
ADDV(30,30,-2)
VAL(3,44) §
NOP ;
NOP ;
NOP 5
RET(30) ;
NOP ;

>

>

NOP ;
VAL(0,5) ;
ADDV(0,0,-1);
NOP ;
NOP ;
BRNZ(0,1) ;
NOP ;
HALT ;
HALT ;

VAL(1,55)
VAL(0,1) ;
STORE(0,1) ;
NOP ;
NOP :
READ(2,0)
HALT ;
HALT ;

204

Bibliography

[Amdahl ’64] G. M. Amdahl, G. A. Blaauw, F. P. Brooks, Jr. (1964) Architecture of the IBM System/360, IBM
Journal of Research and Development, 8(2):87-101.

[Ajtai ’83] M. Ajtai, et al.: “An O(n log n) sorting network”, Proc. 15th Ann. ACM Symp. on Theory of Comput-
ing, Boston, Mass., 1983

[Asanovic *06] K. Asanovic, et al. (2006) The landscape of parallel computing research: A view from Berkeley,
Technical Report EECS-2006-183, Berkeley University, Berkeley, CA. At: https://www.eecs.berkeley.
edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

[Asanovic 09] K. Asanovic, et al. (2009) A View of the Parallel Computing Landscape, Communications of the
ACM, 52(10):56-67.

[Backus *78] J. Backus (1978) Can programming be liberated from the von neumann style? a functional style and
its algebra of programs, Communications of the ACM, 21(8):613-641.

[Batcher *68] K. E. Batcher: “Sorting networks and their applications”, in Proc. AFIPS Spring Joint Computer
Conference, vol. 32, 1968.

[Benes '68] Vaclav E. BeneS: Mathematical Theory of Connecting Networks and Telephone Traffic. New York:
Academic, 1968.

[Casti *92] John L. Casti: Reality Rules: Il. Picturing the World in Mathematics - The Frontier, John Wiley &
Sons, Inc., 1992.

[Chaitin *66] Gregory Chaitin: “On the Length of Programs for Computing Binary Sequences”, J. of the ACM,
Oct., 1966.

[Chaitin *70] Gregory Chaitin: “On the Difficulty of Computation”, in IEEE Transactions of Information Theory,
ian. 1970.

[Chaitin *77] Gregory Chaitin: “Algorithmic Information Theory”, in IBM J. Res. Develop., lulie, 1977.

[Chomsky *56] Noam Chomsky, “Three Models for the Description of Languages”, IEEE Trans. on Information
Theory, 2:3 , 1956.

[Chomsky *59] Noam Chomsky, “On Certain Formal Properties of Grammars”, Information and Control, 2:2,
1959.

[Chomsky *63] Noam Chomsky, “Formal Properties of Grammars”, Handbook of Mathematical Psychology, Wi-
ley, New-York, 1963.

[Church ’36] Alonzo Church: “An Unsolvable Problem of Elementary Number Theory”, in American Journal of
Mathematics, vol. 58, pag. 345-363, 1936.

[Cormen 90] Thomas H. Cormen, Charles E. Leiserson, Donsld R. Rivest: Introduction to Algorithms, MIT
Press, 1990.

205

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

[Dijkstra 65] E. W. Dijkstra (1965) Cooperating sequential processes. Technical Report EWD-123, Eindhoven
University of Technology, Netherlands. Reprinted in Programming Languages Academic Press, New York,
43-112. At: https://www.cs.utexas.edu/users/EWD/transcriptions/EWDO1xx/EWD123.html

[Draganescu *84] Mihai Drégdnescu: “Information, Heuristics, Creation”, in Plauder, 1. (ed): Artificial Inteligence
and Information Control System of Robots, Elsevier Publishers B. V. (North-Holland), 1984.

[Fortune *78] S. Fortune, J. C. Wyllie (1978) Parallelism in random access machines. Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing, 114—118.

[Goldschlage *82] L. M. Goldschlage (1982) A universal interconnection pattern for parallel computers. Journal
of the ACM 29(4):1073-1086.

[Gheolbanoiu *14] Alexandru Gheolbanoiu, Dan Mocanu, Radu Hobincu, Lucian Petrica: “Cellular Automa-
ton pRNG with a Global Loop for Non-Uniform Rule Control”, 18th International Conference on Ciruits,
Systems, Communications and Computers (CSCC 2014), Santorini Island, Greece, July 17-21, 2014, vol. II,
415-420. Available at: http://www.europment.org/library/2014/santorini/bypaper/COMPUTERS/
COMPUTERS2-15.pdf

[Godels *31] Kurt Godel: “On Formally Decidable Propositions of Principia Mathematica and Related Systems
I”, reprinted in S. Fefermann et all.: Collected Works I: Publications 1929 - 1936, Oxford Univ. Press, New
York, 1986.

[Hennessy *07] John L. Hennessy, David A. Patterson: Computer Architecture: A Quantitative Approach, Fourth
Edition, Morgan Kaufmann, 2007.

[Hennessy *19] J. L. Hennessy, D. A. Patterson (2019) Computer Adchitecture. A Quantitative Approach. Sixth
Edition, Morgan Kaufmann.

[Hill & Reddi *21] Mark D. Hill, Vijay Janapa Reddi: “Accelerator-Level Parallelism”, Communications of the
ACM, 64(12):36-38, 2021.

[Hillis *85] W. D. Hillis: The Connection Machine, The MIT Press, Cambridge, Mass., 1985.

[Hilbert 1900] D. Hilbert, Mathematical Problems. Lecture Delivered Before the International Congress of Math-
ematicians at Paris in 1900. Available at: https://www.ams.org/journals/bull/1902-08-10/50002-
9904-1902-00923-3/50002-9904-1902-00923-3 . pdf

[Hilbert & Ackermann ’28] David Hilbert, Wilhelm Ackermann (1928). Grundziige der theoretischen Logik
(Principles of Mathematical Logic). Springer-Verlag.

[Jouppi *17] Jouppi, N. P, Young, C., Patil, N., Patterson, D. et al. (2017) In-Datacenter Performance Analysis of
a Tensor Processing Unit™ | 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada,
June 26. At: https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view

[Kleene *36] Stephen C. Kleene: “General Recursive Functions of Natural Numbers”, in Math. Ann., 112, 1936.
[Knuth *73] D. E. Knuth: The Art of Programming. Sorting and Searching, Addison-Wesley, 1973.

[Kolmogorov *65] A.A. Kolmogorov: “Three Approaches to the Definition of the Concept “Quantity of Informa-
tion” , in Probl. Peredachi Inform., vol. 1, pag. 3-11, 1965.

[Kung *79] H.T. Kung, C. E. Leiserson: “Algorithms for VLSI processor arrays”, in [Mead *79].
[Ladner *80] R. E. Ladner, M. J. Fischer: “Parallel prefix computation”, J. ACM, Oct. 1980.

[Malita *13] Mihaela Malita, Gheorghe M. Stefan: “Control Global Loops in Self-Organizing Systems”,
ROMJIST, Volume 16, Numbers 2-3, 2013, 177-191.
http://www.imt.ro/romjist/Volum16/Number16_2/pdf/05-Malita-Stefan2.pdf

[Mead °79] Carver Mead, Lynn Convay: Introduction to VLSI Systems, Addison-Wesley Pub, 1979.

206

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

[Milutinovic 89°] Veljko M. Milutinovic (ed.): High-Level Language Computer Architecture, Computer Science
Press, 1989.

[Moore *11] Chuck Moore (2011) Data Processing in Exascale-class Computing Systems, The Salishan Con-
ference on High Speed Computing https://www.lanl.gov/conferences/salishan/salishan2011/
3moore.pdf

[Moore *65] G. E. Moore (1965) Cramming more components onto integrated circuits, Electronics, 38(8):114-
117.

[Moore *75] G. E. Moore (1975) Progress In Digital Integrated Electronics, IEEE, International Electron Devices
Meeting. Technical Digest pp.11-13.

[Moto-Oka *82] T. Moto-Oka (ed.): Fifth Generation Computer Systems, North-HollandPub. Comp., 1982.

[Omondi ’94] Amos R. Omondi: Computer Arithmetic. Algorithm, Architecture and Implementation, Prentice
Hall, 1994.

[Parberry 87] Ian Parberry: Parallel Complexity Theory. Research Notes in Theoretical Computer science. Pitman
Publishing, London, 1987.

[Patterson *10] David A. Patterson (2010) The trouble with multicore. IEEE Spectrum, 47(7):28-32.
[Patterson *97] David Patterson, et all, A case for intelligent RAM (1997) IEEE Micro 17(2)34:44.

[Patterson *05] David A. Patterson, John L.Hennessy: Computer Organization & Design. The Hardware / Soft-
ware Interface, Third Edition, Morgan Kaufmann, 2005.

[Patterson *19] David A. Patterson, John L.Hennessy: Computer Organization & Design. The Hardware / Soft-
ware Interface, Sixth Edition, Morgan Kaufmann, 2019.

[Post 36] Emil Post: “Finite Combinatory Processes. Formulation I, inThe Journal of Symbolic Logic, vol. 1, p.
103 -105, 1936.

[Pratt *74] V. R. Pratt, M. O. Rabin, L. J. Stockmeyer (1974) A characterization of the power of vector machines.
Proceedings of STOC 1974, pp. 122-134.

[Raina *16] G. Raina (2016) Deep Convolutional Netvork evaluation on the Xeon Phi: Where Subword Paral-
lelism meets Many-Core, Eindhoven University of Technology, Master Thesis. At: https://repository.
tue.nl/844256

[Redmon *16] J. Redmon, S. Divvala, R. Girshick, A. Farhadi (2016) You only look once: Unified, real-time
object detection, Cornell Univ. Library.

[Savage *87] John Savage: The Complexity of Computing, Robert E. Krieger Pub. Comp., 1987.

[Shannon *38] C. E. Shannon: “A Symbolic Analysis of Relay and Switching Circuits”, Trans. American Institute
of Electrical Engineers, 57(12):713-723, 1938. (The paper is an abstract of the thesis presented in 1937 at MIT
for the degree of master in science.)

[Shannon *48] C. E. Shannon: “A Mathematical Theory of Communication”, Bell System Tech. J., Vol. 27, 1948.

[Shannon *56] C. E. Shannon: “A Universal Turing Machine with Two Internal States”, in Annals of Mathematics
Studies, No. 34: Automata Studies, Princeton Univ. Press, pp 157-165, 1956.

[Solomonoff 64] R. J. Solomonoff: “A Formal Theory of Inductive Inference”, in Information and Control, vol.
7,no0. 2, pag. 224-254, 1964.

[Spira’71] P. M. Spira: “On time-Hardware Complexity Tradeoff for Boolean Functions”, in Preceedings of
Fourth Hawaii International Symposium on System Sciences, pp. 525-527, 1971.

[Streinu °85] Ileana Streinu: “Explicit Computation of an Independent Godel Sentence”, in Recursive Functions
Theory Newsletter, June 1985.

207

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

[Stefan *20] G. M. Stefan (2020) Composition is the only independent rule in Kleene’s model of partial recursive
functions, At: http://users.dcae.pub.ro/~gstefan/2ndLevel/composition.html

[Stefan 91] Gheorghe Stefan: Functie si structurd in sistemele digitale (Function and Structure in Digital Sys-
tems), Ed. Academiei Romane, 1991.

[Stefan *98a] Gheorghe Stefan, “ “Looking for the Lost Noise” ”, in CAS ’98 Proceedings, Oct. 6 - 10, 1998,
Sinaia, Romania. p.579 - 582.
http://arh.pub.ro/gstefan/CAS98. pdf

[Stefan "04] Gheorghe Stefan, Mihaela Malita: “Granularity and Complexity in Parallel Systems”, in Proceedings
of the 15 IASTED International Conf, 2004, Marina Del Rey, CA, ISBN 0-88986-391-1, pp.442-447.

[Stefan 06a] Gheorghe Stefan: “A Universal Turing Machine with Zero Internal States”, in Romanian Journal of
Information Science and Technology, 9(3):227-243, 2006.

[Stefan *14] Gheorghe M. Stefan, Mihaela Malita: “Can One-Chip Parallel Computing Be Liberated From Ad Hoc
Solutions? A Computation Model Based Approach and Its Implementation”, 18th International Conference on
Circuits, Systems, Communications and Computers (CSCC 2014), Santorini Island, Greece, July 17-21, 2014,
582-597.
http://www.inase.org/library/2014/santorini/bypaper/COMPUTERS/COMPUTERS2-42. pdf

[Stefan "21a] Gheorghe M. Stefan: “Let’s consider Moore’s law in its entirety”, CAS 2021 PROCEEDINGS :
2021 International Semiconductor Conference : 44nd edition, , pp. 3-10, October 6-8, Sinaia, Romania.

[Stefan *21] Gheorghe M. Stefan: “Pseudo-Reconfigurable Systems”, ROMJIST, 24(12):366-383, 2021.

[Turing 36] Alan M. Turing: “On computable Numbers with an Application to the Eintscheidungsproblem”, in
Proc. London Mathematical Society, 42 (1936), 43 (1937).

[von Neumann ’45] John von Neumann: “First Draft of a Report on the EDVAC”, reprinted in IEEE Annals of the
History of Computing, Vol. 5, No. 4, 1993.

[Waksman *68] Abraham Waksman, ”A permutation network,” in J. Ass. Comput. Mach., vol. 15, pp. 159-163,
Jan. 1968.

[webRef 3] http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx
[Zurada ’95] Jacek M. Zurada: Introductin to Artificial Neural network, PWS Pub. Company, 1995.

208

Gheorghe M. Stefan: Lecture notes on COMPUTER ARCHITECTURE

209

