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Introduction

... theories become clear and ‘reasonable’ only after incoherent
parts of them have been used for a long time.

Paul Feyerabend1

The price for the clarity and simplicity of a ’reasonable’ ap-
proach is its incompleteness.

Few legitimate questions about how to teach digital systems in Giga-Gate Per Chip Era (G2CE) are
waiting for an answer.

1. What means a complex digital system? How complex systems are designed using small and simple
circuits?

2. How a digital system expands its size, increasing in the same time its speed? Are there simple
mechanisms to be emphasized?

3. Is there a special mechanism allowing a “hierarchical growing” in a digital system? Or, how new
features can be added in a digital system?

The first question occurs because already exist many different big systems which seem to have differ-
ent degree of complexity. For example: big memory circuits and big processors. Both are implemented
using a huge number of circuits, but the processors seem to be more “complicated” than the memories.
In almost all text books complexity is related only with the dimension of the system. Complexity means
currently only size, the concept being unable to make necessary distinctions in G2CE. The last improve-
ments of the microelectronic technologies allow us to put on a Silicon die around a billion of gates, but
the design tools are faced with more than the size of the system to be realized in this way. The size and
the complexity of a digital system must be distinctly and carefully defined in order to have a more flexible
conceptual environment for designing, implementing and testing systems in G2CE.

The second question rises in the same context of the big and the complex systems. Growing a
digital system means both increasing its size and its complexity. How are correlated these two growing
processes? The dynamic of adding circuits and of adding adding features seems to be very different and
governed by distinct mechanisms.

1Paul Feyerabend (b.1924, d.1994), having studied science at the University of Vienna, moved into philosophy for his
doctoral thesis. He became a critic of philosophy of science itself, particularly of “rationalist” attempts to lay down or discover
rules of scientific method. His first book, Against Method (1975), sets out “epistemological anarchism”, whose main thesis was
that there is no such thing as the scientific method.
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The third question occurs in the hierarchical contexts in which the computation is defined. For
example, Kleene’s functional hierarchy or Chomsky’s grammatical hierarchy are defined to explain how
computation or formal languages used in computation evolve from simple to complex. Is this hierarchy
reflected in a corresponding hierarchical organization of digital circuits? It is obvious that a sort of
similar hierarchy must be hidden in the multitude of features already emphasized in the world of digital
circuits. Let be the following list of usual terms: boolean functions, storing elements, automata circuits,
finite automata, memory functions, processing functions, . . ., self-organizing processes, . . .. Is it possible
to disclose in this list a hierarchy, and more, is it possible to find similarities with previously exemplified
hierarchies?

The first answer will be derived from the Kolmogorov-Chaitin algorithmic complexity: the com-
plexity of a circuit is related with the dimension of its shortest formal description. A big circuit (a
circuit built using a big number o gates) can be simple or complex depending on the possibility to em-
phasize repetitive patterns in its structure. A no pattern circuit is a complex one because its description
has the dimension proportional with its size. Indeed, for a complex, no pattern circuit each gate must be
explicitly specified.

The second answer associate the composition with sizing and the loop with featuring. Composing
circuits results biggest structures with the same kind of functionality, while closing loops in a circuit new
kind of behaviors are induced. Each new loop adds more autonomy to the system, because increases the
dependency of the output signals in the detriment of the input signals. Shortly, appropriate loops means
more autonomy that is equivalent sometimes with a new level of functionality.

The third answer is given by proposing a taxonomy for digital systems based on the maximum number
of included loops closed in a certain digital system. The old distinction between combinational and
sequential, applied only to circuits, is complemented with a classification taking into the account the
functional and structural diversity of the digital systems used in the contemporary designs. More, the
resulting classification provides classes of circuits having direct correspondence with the levels belonging
to Kleene’s and Chomsky’s hierarchies.

The first part of the book – Digital Systems: a Bird’s-Eye View – is a general introduction in digital
systems framing the digital domain in the larger context of the computational sciences, introducing the
main formal tool for describing, simulating and synthesizing digital systems, and presenting the main
mechanisms used to structure digital systems. The second part of the book – Looping in Digital Systems
– deals with the main effects of the loop: more autonomy and segregation between the simple parts and
the complex parts in digital systems. Both, autonomy and segregation, are used to minimize size and
complexity. The third part of the book – Loop Based Morphisms – contains three attempts to make
meaningful connections between the domain of the digital systems, and the fields of recursive functions,
of formal languages and of information theories. The last chapter sums up the main ideas of the book
making also some new correlations permitted by its own final position. The book ends with a lot of
annexes containing short reviews of the prerequisite knowledge (binary arithmetic, Boolean functions,
elementary digital circuits, automata theory), compact presentations of the formal tools used (pseudo-
code language, Verilog HDL), examples, useful data about real products (standard cell libraries).

PART I: Digital Systems: a Bird’s-Eye View

The first chapter: What’s a Digital System? Few general questions are answered in this chapter. One
refers to the position of digital system domain in the larger class of the sciences of computation. Another
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asks for presenting the ways we have to implement actual digital systems. The importance is also to
present the correlated techniques allowing to finalize a digital product.

The second chapter: Let’s Talk Digital Circuits in Verilog The first step in approaching the digital
domain is to become familiar with a Hardware Description Language (HDL) as the main tool for mas-
tering digital circuits and systems. The Verilog HDL is introduced and in the same time used to present
simple digital circuits. The distinction between behavioral descriptions and structural descriptions is
made when Verilog is used to describe and simulate combinational and sequential circuits. The temporal
behaviors are described, along with solutions to control them.

The third chapter: Scaling & Speeding & Featuring The architecture and the organization of a digital
system are complex objectives. We can not be successful in designing big performance machine without
strong tools helping us to design the architecture and the high level organization of a desired complex
system. These mechanisms are three. One helps us to increase the brute force performance of the system.
It is composition. The second is used to compensate the slow-down of the system due to excessive serial
composition. It is pipelining. The last is used to add new features when they are asked by the application.
It is about closing loops inside the system in order to improve the autonomous behaviors.

The fourth chapter: The Taxonomy of Digital Systems A loop based taxonomy for digital systems
is proposed. It classifies digital systems in orders, as follows:

• 0-OS: zero-order systems - no-loop circuits - containing the combinational circuits;

• 1-OS: 1-order systems - one-loop circuits - the memory circuits, with the autonomy of the internal
state; they are used mainly for storing

• 2-OS: 2-order systems - two-loop circuits - the automata, with the behavioral autonomy in their
own state space, performing mainly the function of sequencing

• 3-OS: 3-order systems - three-loop circuits - the processors, with the autonomy in interpreting
their own internal states; they perform the function of controlling

• 4-OS: 4-order systems - four-loop circuits - the computers, which interpret autonomously the
programs according to the internal data

• . . .

• n-OS: n-order systems - n-loop circuits - systems in which the information is interpenetrated with
the physical structures involved in processing it; the distinction between data and programs is
surpassed and the main novelty is the self-organizing behavior.

The fifth chapter: Our Final Target A small and simple programmable machine, called toyMachine
is defined using a behavioral description. In the last chapter of the second part a structural design of this
machine will be provided using the main digital structure introduced meantime.

PART II: Looping in Digital Domain
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The sixth chapter: Gates The combinational circuits (0-OS) are introduced using a functional ap-
proach. We start with the simplest functions and, using different compositions, the basic simple func-
tional modules are introduced. The distinction between simple and complex combinational circuits is
emphasized, presenting specific technics to deal with complexity.

The seventh chapter: Memories There are two ways to close a loop over the simplest functional
combinational circuit: the one-input decoder. One of them offers the stable structure on which we ground
the class of memory circuits (1-OS) containing: the elementary latches, the master-slave structures (the
serial composition), the random access memory (the parallel composition) and the register (the serial-
parallel composition). Few applications of storing circuits (pipeline connection, register file, content
addressable memory, associative memory) are described.

The eight chapter: Automata Automata (2-OS) are presented in the fourth chapter. Due to the sec-
ond loop the circuit is able to evolve, more or less, autonomously in its own state space. This chapter
begins presenting the simplest automata: the T flip-flop and the JK flip-flop. Continues with composed
configurations of these simple structures: counters and related structures. Further, our approach makes
distinction between the big sized, but simple functional automata (with the loop closed through a simple,
recursive defined combinational circuit that can have any size) and the random, complex finite automata
(with the loop closed through a random combinational circuit having the size in the same order with
the size of its definition). The autonomy offered by the second loop is mainly used to generate or to
recognize specific sequences of binary configurations.

The ninth chapter: Processors The circuits having three loops (3-OS) are introduced. The third
loop may be closed in three ways: through a 0-OS, through an 1-OS or through a 2-OS, each of them
being meaningful in digital design. The first, because of the segregation process involved in designing
automata using JK flip-flops or counters as state register. The size of the random combinational circuits
that compute the state transition function is reduced, in the most of case, due to the increased autonomy
of the device playing the role of the register. The second type of loop, through a memory circuit, is also
useful because it increases the autonomy of the circuit so that the control exerted on it may be reduced
(the circuit “knows more about itself”). The third type of loop, that interconnects two automata (an
functional automaton and a control finite automaton), generates the most important digital circuits: the
processor.

The tenth chapter: Computers The effects of the fourth loop are shortly enumerated in the sixth
chapter. The computer is the typical structure in 4-OS. It is also the support of the strongest segrega-
tion between the simple physical structure of the machine and the complex structure of the program (a
symbolic structure). Starting from the fourth order the main functional up-dates are made structuring
the symbolic structures instead of restructuring circuits. Few new loops are added in actual designs only
for improving time or size performances, but not for adding new basic functional capabilities. For this
reason our systematic investigation concerning the loop induced hierarchy stops with the fourth loop.
The toyMachine behavioral description is revisited and substituted with a pure structural description.

The eleventh chapter: Self-Organizing Structures ends the first part of the book with some special
circuits which belongs to n-OSs. The cellular automata, the connex memory and the eco-chip are n-
loop structures that destroy the usual architectural thinking based on the distinction between the physical
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support for symbolic structures and the circuits used for processing them. Each bit/byte has its own
processing element in a system which performs the finest grained parallelism.

The twelfth chapter: Global-Loop Systems Why not a hierarchy of hierarchies of loops? Having an
n-order system how new features can be added? A possible answer: adding a global loop. Thus, a new
hierarchy of super-loops starts. It is not about science fiction. ConnexArrayT M is an example. It is
described, evaluated and some possible applications are presented.

The main stream of this book deals with the simple and the complex in digital systems, emphasizing
them in the segregation process that opposes simple structures of circuits to the complex structures of
symbols. The functional information offers the environment for segregating the simple circuits from the
complex binary configurations.

When the simple is mixed up with the complex, the apparent complexity of the system increases over
its actual complexity. We promote design methods which reduce the apparent complexity by segregating
the simple from the complex. The best way to substitute the apparent complexity with the actual com-
plexity is to drain out the chaos from order. One of the most important conclusions of this book is that
the main role of the loop in digital systems is to segregate the simple from the complex, thus emphasizing
and using the hidden resources of autonomy.

In the digital systems domain prevails the art of disclosing the simplicity because there exists the
symbolic domain of functional information in which we may ostracize the complexity. But, the complex-
ity of the process of disclosing the simplicity exhausts huge resources of imagination. This book offers
only the starting point for the architectural thinking: the art of finding the right place of the interface
between simple and complex in computing systems.

Acknowledgments
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Part I

A BIRD’S-EYE VIEW ON DIGITAL
SYSTEMS

1





Chapter 1

WHAT’S A DIGITAL SYSTEM?

In the previous chapter
we can not find anything because it does not exist, but we suppose the reader is familiar with:

• fundamentals about what means computation

• basics about Boolean algebra and basic digital circuits (see Annexes Boolean Functions and
Basic circuits for a short refresh)

• the usual functions supposed to be implemented by digital sub-systems in the current audio,
video, communication, gaming, ... market products

In this chapter
general definitions related with the digital domain are used to reach the following targets:

• to frame the digital system domain in the larger area of the information technologies

• to present different ways the digital approach is involved in the design of the real market
products

• to enlist and shortly present the related domains, in order to integrate better the knowledge
and skills acquired by studying the digital system design domain

In the next chapter
is a friendly introduction in both, digital systems and a HDLs (Hardware Description Languages)
used to describe, simulate, and synthesized them. The HDL selected for this book is called Verilog.
The main topics are:

• the distinction between combinational and sequential circuits

• the two ways to describe a circuit: behavioral or structural

• how digital circuits behave in time.

3
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Talking about Apple, Steve said, “The system is
there is no system.” Then he added, “that does’t
mean we don’t have a process.” Making the dis-
tinction between process and system allows for a
certain amount of fluidity, spontaneity, and risk,
while in the same time it acknowledges the impor-
tance of defined roles and discipline.

J. Young & W. Simon1

A process is a strange mixture of rationally estab-
lished rules, of imaginatively driven chaos, and of
integrative mystery.

A possible good start in teaching about a complex domain is an informal one. The main problems
are introduced friendly, using an easy approach. Then, little by little, a more rigorous style will be able
to consolidate the knowledge and to offer formally grounded techniques. The digital domain will be
disclosed here alternating informal “bird’s-eye views” with simple, formalized real stuff. Rather than
imperatively presenting the digital domain we intend to disclose it in small steps using a project oriented
approach.

1.1 Framing the digital design domain

Digital domain can be defined starting from two different, but complementary view points: the structural
view point or the functional view point. The first version presents the digital domain as part of electronics,
while the second version sees the digital domain as part of computer science.

1.1.1 Digital domain as part of electronics

Electronics started as a technical domain involved in processing continuously variable signals. Now the
domain of electronics is divided in two sub-domains: analogue electronics, dealing with continuously
variable signals and digital electronics based on elementary signals, called bits, which take only two
different levels 0 and 1, but can be used to compose any complex signals. Indeed, a sequence of n bits
is used to represent any number between 0 and 2n− 1, while a sequence of numbers can be used to
approximate a continuously variable signal. Let us take first examples with 1-bit signals.

Example 1.1 A disciplined driver starts the car’s engine only if all four doors are closed and, in all
occupied seats, the seat belts are connected. The key contact and the previous condition are the ones that
start the engine. (This example is from [1].)

The car is equipped with sensors for each door (d1, d2, d3, d4), for each seat (s1, s2, s3,

s4), for each belt (b1, b2, b3, b4) and for the ignition key (k). The logic function that generates the
start bit (s) is as follows:

1They co-authored iCon. Steve Jobs. The Greatest Second Act in the History of Business, an unauthorized portrait of the
co-founder of Apple.
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s = (doors_are_closed) AND (each_occupied_with_belt_on) AND (key_is_on)

s = (d1 AND d2 AND d3 AND d4) AND

((b1 OR (NOT b1) AND (NOT s1)) AND

(b2 OR (NOT b2) AND (NOT s2)) AND

(b3 OR (NOT b3) AND (NOT s3)) AND

(b4 OR (NOT b4) AND (NOT s4))) AND

k)

In algebraic notation:

s = (d1 ·d2 ·d3 ·d4) · ((b1+b1′ · s1′) · (b2+b2′ · s2′) · (b3+b3′ · s3′) · (b4+b4′ · s4′)) · k

Because the operator AND, “·”, is usually omitted:

s = d1 d2 d3 d4 (b1+b1′ s1′)(b2+b2′ s2′)(b3+b3′ s3′)(b4+b4′ s4′)k

The expression ca be simplified because: a+a′b = a+b (half-absorbtion rule).
Indeed, the car can start if each place has the belt on or is not occupied. Results the simplified form:

s = d1 d2 d3 d4 (b1+ s1′)(b2+ s2′)(b3+ s3′)(b4+ s4′)k

The Verilog description is:

module i g n i t i o n K e y ( output s ,
input d1 , d2 , d3 , d4 , s1 , s2 , s3 , s4 ,

b1 , b2 , b3 , b4 , k ) ;
a s s i g n s = d1 & d2 & d3 & d4 & ( b1 | ˜ s1 ) &

( b2 | ˜ s2 ) &
( b3 | ˜ s3 ) &
( b4 | ˜ s4 ) & k ;

endmodule

The result provided by the Vivado tool is represented in Figure 1.1.

Figure 1.1: Ignition Key circuit.

⋄
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Example 1.2 Be a store where customer access is restricted to a maximum of N people. The access is
directed by a traffic light with two colors: green, allows access, and red, prohibits access. The access
door is equipped with two sensors: one signals, by a pulse, the entry of a client and another the exit of a
client by another pulse. When the number of customers in the store is greater than N, the traffic light is
red, otherwise it is green. The store has only one door, so the two pulses that indicate the change in the
number of customers cannot appear simultaneously. The Verilog description is:

/ * ********************************************************************
C i r c u i t name : L i m i t c u s t o m e r s
F i l e name : l i m i t C u s t o m e r s . v
D e s c r i p t i o n : c i r c u i t t h a t l i m i t s t h e number o f c u s t o m e r s i n a s t o r e
******************************************************************** * /
module l i m i t C u s t o m e r s (

output l i g h t , / / 0 means green ; 1 means red
input r e s e t , / / s y s t e m r e s e t
input i n P u l s e , / / c u s t o m e r e n t e r t h e s t o r e
input o u t P u l s e , / / c u s t o m e r l e a v e t h e s t o r e
input [ 3 : 0 ] l i m i t ) ; / / c u s t o m e r s a c c e p t e d

reg [ 1 0 : 0 ] i n C u s t R e g i s t e r ; / / c o u n t t h o s e who e n t e r e d
reg [ 1 0 : 0 ] o u t C u s t R e g i s t e r ; / / c o u n t t h e o u t g o i n g ones

a s s i g n l i g h t = ( i n C u s t R e g i s t e r − o u t C u s t R e g i s t e r ) > l i m i t ;

always @( negedge i n P u l s e or posedge r e s e t )
i f ( r e s e t ) i n C u s t R e g i s t e r <= 0 ;

e l s e i n C u s t R e g i s t e r <= i n C u s t R e g i s t e r + 1 ’ b1 ;

always @( negedge o u t P u l s e or posedge r e s e t )
i f ( r e s e t ) o u t C u s t R e g i s t e r <= 0 ;

e l s e o u t C u s t R e g i s t e r <= o u t C u s t R e g i s t e r + 1 ’ b1 ;
endmodule

Figure 1.2: Customer Limit circuit.

⋄
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Let us take now an example with mode than 1 bit input signals.

Example 1.3 Let be the analogue, continuously variable, signal in Figure 1.3. It can be approximated
by values sampled in discrete moments of time determined by the positive transitions of a square wave
periodic signal called clock. It switches with a frequency of 1/T . The value of the signal is measured in
units u (for example, u = 100mV or u = 10µA). The operation is called analog to digital conversion, and
it is performed by an analog to digital converter – ADC. Results the following sequence of numbers:

6

-

s(t), S[2:0]

t

t

1

0

0 1 1

1

1

1

6

0

clock

1

1×u

2×u

3×u

4×u

5×u

6×u

-
t

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
T�-

-

6

t

-

6

t

-

6

t

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1 1

1

1 1 1 1

0 1 1 1

0

0

0

0 0 0 0 0

0 0

0 0

0

0

0 0

0 0

0

0

0

0

0 0

0 0 0 0

C=S[2]

B=S[1]

A=S[0]

6

-

W="(1<s<5)"

4 4 42 2 31 5 6 6 6 6 6 5 1 1 1 1 5 5 5

Figure 1.3: Analogue to digital conversion. The analog signal, s(t), is sampled at each T using the unit mea-
sure u, and results the three-bit digital signal S[2:0]. A first application: the one-bit digital signal W="(1<s<5)"
indicates, by its active value 1, the time interval when the digital signal is strictly included between 1u and 5u. The
three-bit result of conversion is S[2:0].

s(0×T ) = 1units⇒ 001,
s(1×T ) = 4units⇒ 100,
s(2×T ) = 5units⇒ 101,
s(3×T ) = 6units⇒ 110,
s(4×T ) = 6units⇒ 110,



8 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

s(5×T ) = 6units⇒ 110,
s(6×T ) = 6units⇒ 110,
s(7×T ) = 6units⇒ 110,
s(8×T ) = 5units⇒ 101,
s(9×T ) = 4units⇒ 100,
s(10×T ) = 2units⇒ 010,
s(11×T ) = 1units⇒ 001,
s(12×T ) = 1units⇒ 001,
s(13×T ) = 1units⇒ 001,
s(14×T ) = 1units⇒ 001,
s(15×T ) = 2units⇒ 010,
s(16×T ) = 3units⇒ 011,
s(17×T ) = 4units⇒ 100,
s(18×T ) = 5units⇒ 101,
s(19×T ) = 5units⇒ 101,
s(20×T ) = 5units⇒ 101,
. . .

6
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s(t)

t

-
t

6
clock

6666666666666666666666666666666666666666

1×u/2
2×u/2
3×u/2
4×u/2
5×u/2
6×u/2
7×u/2
8×u/2
9×u/2

10×u/2
11×u/2
12×u/2
13×u/2

0

1

Figure 1.4: More accurate analogue to digital. The analogous signal is sampled at each T/2 using the unit
measure u/2.

If a more accurate representation is requested, then both, the sampling period, T and the measure
units u must be reduced. For example, in Figure 1.4 both, T and u are halved. A better approximation
is obtained with the price of increasing the number of bits used for representation. Each sample is
represented on 4 bits instead of 3, and the number of samples is doubled. This second, more accurate,
conversion provides the following stream of binary data:
<0011, 0110, 1000, 1001, 1010, 1011, 1011, 1100, 1100, 1100, 1100, 1100, 1100,

1100, 1011, 1010, 1010, 1001, 1000, 0101, 0100, 0011, 0010, 0001, 0001, 0001,

0001, 0001, 0010, 0011, 0011, 0101, 0110, 0111, 1000, 1001, 1001, 1001, 1010,

1010, 1010, ...>

⋄
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An ADC is characterized by two main parameters:

• the sampling rate: expressed in samples per second – SPS – or by the sampling frequency – 1/T

• the resolution: the number of bits used to represent the value of a sample

Commercial ADC are provided with resolution in the range of 6 to 24 bits, and the sample rate exceeding
3 GSPS (giga SPS). At the highest sample rate the resolution is limited to 12 bits.

DAC1-ADC1

6 6

6 6

-

ADCM -

analogInput 1 analogOut put 1

DACN-
analogInput M

analogOut put N

DIGITAL

SYSTEM

6
clock

Figure 1.5: Generic digital electronic system.

The generic digital electronic system is represented in Figure 1.5, where:

• analogInput i, for i = 1, . . .M, provided by various sensors (microphones, ...), are sent to the input
of M ADCs

• ADCi converts analogInput i in a stream of binary coded numbers, using an appropriate sampling
interval and an appropriate number of bits for approximating the level of the input signal

• DIGITAL SYSTEM processes the M input streams of data providing on its outputs N streams of
data applied on the input of N Digital-to-Analog Converters (DAC)

• DAC j converts its input binary stream to analogOut put j

• analogOut put j, for j = 1, . . .N, are the outputs of the electronic system used to drive various
actuators (loudspeakers, ...)

• clock is the synchronizing signal applied to all the components of the system; it is used to trigger
the moments when the signals are ready to be used and the subsystems are ready to use the signals.

While loosing something at conversion, we are able to gain at the level of processing. The good
news is that the loosing process is under control, because both, the accuracy of conversion and of digital
processing are highly controllable.

In this stage we are able to understand that the internal structure of DIGITAL SYSTEM from Figure
1.5 must have the possibility to do deal with binary signals which must be stored & processed. The
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signals are stored synchronized with the active edge of the clock signal, while for processing are used
circuits dealing with two distinct values: 0 and 1. Usually, the value 0 is represented by the low voltage,
currently 0, while the value 1 by high voltage, currently ∼ 1V . Consequently, two distinct kinds of
circuits can be emphasized in this stage:

• registers: used to register, synchronously with the active edge of the clock signal, the n-bit binary
configuration applied on its inputs

• logic circuits: used to implement a correspondence between all the possible combinations of 0s
and 1s applied on its m-bit input and the binary configurations generated on its n-bit output.

Example 1.4 Let us consider a system with one analog input digitized with a low accuracy converter
which provides only three bits (like in the example presented in Figure 1.3). The one-bit output, w, of
the Boolean (logic) circuit2 to be designed, let’s call it window, must be active (on 1) each time when
the result of conversion is less than 5 and greater than 1. In Figure 1.3 the wave form represents the
signal w for the particular signal represented in the first wave form. The transfer function of the circuit
is represented in the table from Figure 1.6a, where: for three binary input configurations, S[2:0] =

{C,B,A} = 010 | 011 | 100, the output must take the value 1, while for the rest the output must be
0. Pseudo-formally, we write:

W = 1 when ((not C = 1) and (B = 1) and (not A = 1)) or

((not C = 1) and (B = 1) and (A = 1)) or

((C = 1) and (not B = 1) and (not A = 1))

Using the Boolean logic notation:

W =C′ ·B ·A′+C′ ·B ·A+C ·B′ ·A′ =C′B(A′+A)+CB′A′ =C′B+CB′A′

The resulting logic circuit is represented in Figure 1.6b, where:

• three NOT circuits are used for generating the negated values of the three input variables: C, B,

A

• one 2-input AND circuit computes C’B

• one 3-input AND circuit computes CB’A’

• one 2-input OP circuit computes the final OR between the previous two functions.

The circuit is simulated and synthesized using its description in the hardware description language
(HDL) Verilog, as follows:

2See details about Boolean logic in the appendix Boolan Functions.



1.1. FRAMING THE DIGITAL DESIGN DOMAIN 11

C

0

B

0

A

0
0 0
0 0
0

0 0
0

0

1
1

1
1

1

1 1
1 1
1 1 1

0

W

0

C

B

A

W

0
0
0

1
1
1

a. b.

w1

w2

w3

w4 w5

window

notc

outOr

and1

notb

nota

and2

Figure 1.6: The circuit window. a. The truth table represents the behavior of the output for all binary configu-
rations on the input. b. The circuit implementation.

/ * ************************************************************************
F i l e name : window . v
C i r c u i t name : Window
D e s c r i p t i o n : t h e c i r c u i t d e t e c t t h e i n p u t i n t h e range o f ( 1 , 5 )
************************************************************************ * /
module window ( output W,

input C , B , A ) ;

wire w1 , w2 , w3 , w4 , w5 ; / / w i r e s f o r i n t e r n a l c o n n e c t i o n s

not n o t c ( w1 , C) , / / t h e i n s t a n c e ’ no tc ’ o f t h e g e n e r i c ’ not ’
no tb ( w2 , B) , / / t h e i n s t a n c e ’ notb ’ o f t h e g e n e r i c ’ not ’
n o t a ( w3 , A ) ; / / t h e i n s t a n c e ’ nota ’ o f t h e g e n e r i c ’ not ’

and and1 ( w4 , w1 , B) , / / t h e i n s t a n c e ’ and1 ’ o f t h e g e n e r i c ’ and ’
and2 ( w5 , C , w2 , w3 ) ; / / t h e i n s t a n c e ’ and2 ’ o f t h e g e n e r i c ’ and ’

or outOr (W, w4 , w5 ) ; / / t h e i n s t a n c e ’ outOr ’ o f t h e g e n e r i c ’ or ’

endmodule

In Verilog, the entire circuit is considered a module, whose description starts with the keyword
module and ends with the keyword endmodule, which contains:

• the declarations of two kinds of connections:

– external connections associated to the name of the module as a list containing:

* the output connections (only one, W, in our example)

* the input connections (C, B and A)
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– internal connections declared as wire, w1, w2, ... w5, used to interconnect the output
of the internal circuits to the input of the internal circuits

• the instantiation of previously defined modules; in our example these are generic logic circuits
expressed by keywords of the language, as follows:

– circuits not, instantiated as nota, notb, notc; the first connection in the list of connec-
tions is the output, while the second is the input

– circuits and, instantiated as and1, and2; the first connection in the list of connections is
the output, while the next are the inputs

– circuit or, instantiated as outOr; the first connection in the list of connections is the output,
while the next are the inputs

The Verilog description is used for simulating and for synthesizing the circuit.
The simulation is done by instantiating the circuit window inside the simulation module simWindow:

/ * ************************************************************************
F i l e name : simWindow . v
C i r c u i t name : S i m u l a t i o n module f o r simWindow . v
D e s c r i p t i o n : g e n e r a t e s t i m u l u s f o r t h e module simWindow . v
************************************************************************ * /

module simWindow ;

reg A, B , C ;
wire W ;

i n i t i a l begin {C , B , A} = 3 ’ b000 ;
#1 {C , B , A} = 3 ’ b001 ;
#1 {C , B , A} = 3 ’ b010 ;
#1 {C , B , A} = 3 ’ b011 ;
#1 {C , B , A} = 3 ’ b100 ;
#1 {C , B , A} = 3 ’ b101 ;
#1 {C , B , A} = 3 ’ b110 ;
#1 {C , B , A} = 3 ’ b111 ;
#1 $ s t o p ;

end

window d u t ( W, C , B , A ) ;

i n i t i a l $monitor ( ”S=%b W=%b ” ,
{C , B , A} , W) ;

endmodule

⋄

Example 1.5 The problem to be solved is to measure the length of objects on a transportation band
which moves with a constant speed. A photo-sensor is used to detect the object. It generates 1 during the
displacement of the object in front of the sensor. The occurrence of the signal must start the process of
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measurement, while the end of the signal must stop the process. Therefore, at every ends of the signal a
short impulse, of one clock cycle long, must be generated.
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clock
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syncPulse

delPulse

start

66666666666666666666666
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Figure 1.7: The wave forms defining the start/stop circuit. The pulse signal is asynchronously pro-
vided by a sensor. The signal syncPulse captures synchronously the signal to be processed. The signal delPulse
is syncPulse delayed one clock cycle using a second one-bit register.

The problem is solved in the following steps:

1. the asynchronous signal pulse, generated by the sensor, is synchronized with the system clock;
now the actual signal is aproximated with a reasonable error by the signal syncPulse

2. the synchronized pulse is delayed one clock cycle and results delPulse

3. the relation between syncPulse and syncPulse is used to identify the beginning and the end of
the pulse with an accuracy given by the frequency of the clock signal (the higher the frequency the
higher the accuracy):

• only in the first clock cycle after the beginning of syncPulse the signal delPulse is 0; then

start = syncPulse · depPulse’

• only in the first clock cycle after the end of syncPulse the signal delPulse is 1; then



14 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

stop = syncPulse’ · depPulse

R1 R2

- -

clock

syncPulse

delPulse

stop

w1

Combinatorial circuit

start

w2

pulse

ends

Figure 1.8: The ends circuit. The one-bit register R1 synchronises the raw signal pulse. The one-bit register
R2 delays the synchronized signal to provide the possibility to emphasize the two ends of the synchronized pulse.
The combinatorial circuit detects the two ends of the pulse signal approximated by the syncPulse signal.

The circuit (see Figure 1.8) used to perform the previous steps contains:

• the one-bit register R1 which synchronizes the one-bit digital signal pulse

• the one bit register R2 which delays with one clock cycle the synchronized signal

• the combinational circuit which computes the two-output logic function

The Verilog description of the circuit is:

/ * ************************************************************************
F i l e name : ends . v
C i r c u i t name : D e t e c t o r o f ends
D e s c r i p t i o n : used t o measure t h e l e n g t h o f a p u l s e
************************************************************************ * /

module ends ( output s t a r t ,
output s t o p ,
input p u l s e ,
input c l o c k ) ;

reg s y n c P u l s e ;
reg d e l P u l s e ;
wire w1 , w2 ;

always @( posedge c l o c k ) begin s y n c P u l s e <= p u l s e ;
d e l P u l s e <= s y n c P u l s e ;

end

not no t1 ( w1 , s y n c P u l s e ) ;
not no t2 ( w2 , d e l P u l s e ) ;
and s t a r t A n d ( s t a r t , s y n c P u l s e , w2) ;
and s topAnd ( s top , w1 , d e l P u l s e ) ;

endmodule
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Besides wire and gates, we have to declare now registers and we must show how their content change
with the active edge of clock.

⋄

1.1.2 Modules in Verilog vs. Classes in Object Oriented Languages

What kind of language is the Verilog HDL? We will show it is a sort of Object Oriented Language. Let
us design in Verilog a four-input adder modulo 28.

/ * ************************************************************************
F i l e : adder2 . v
D e s c r i b e s : two−i n p u t mod256 adder
************************************************************************ * /
module ad de r2 ( output [ 7 : 0 ] out ,

input [ 7 : 0 ] in0 , i n 1 ) ;

a s s i g n o u t = i n 0 + i n 1 ;

endmodule

/ * ************************************************************************
F i l e : adder4 . v
D e s c r i b e s : four −i n p u t mod256 adder
************************************************************************ * /
module ad de r4 ( output [ 7 : 0 ] out ,

input [ 7 : 0 ] in0 , in1 , in2 , i n 3 ) ;

wire [ 7 : 0 ] sum1 , sum2 ;

ad de r2 add1 ( sum1 , in0 , i n 1 ) ,
add1 ( sum2 , in2 , i n 3 ) ,
add1 ( out , sum1 , sum2 ) ;

endmodule

In C++ programming language the programm for adding four numbers can be write using, instead of
two modules, two classes, as follow:
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/ * ************************************************************************
F i l e : adder2 . cpp
D e s c r i b e s :

− C o n s t r u c t o r : d e s c r i b e s a two−i n p u t i n t e g e r adder
− Methods : d i s p l a y s t h e b e h a v i o r o f adder2 f o r t e s t

************************************************************************ * /
c l a s s ad de r2 { p u b l i c :

i n t in1 , in2 , o u t ;
/ / C o n s t r u c t o r
ad de r2 ( i n t a , i n t b ){

i n 1 = a ;
i n 2 = b ;
o u t = i n 1 + i n 2 ;

}
/ / Method
void d i sp l ayAdd2 ( ) {

c o u t << i n 1 << i n 2 << o u t << e n d l ;
}

} ;

/ * ************************************************************************
F i l e : adder4 . cpp
D e s c r i b e s :

− C o n s t r u c t o r : d e s c r i b e s a four −i n p u t i n t e g e r adder
+ u s e s t h r e e i n s t a n c e s o f adder2 : S1 , S2 , S3

− Methods : d i s p l a y s t h e b e h a v i o r o f adder4 f o r t e s t
************************************************************************ * /
c l a s s ad de r4 { p u b l i c :

i n t in1 , in2 , in3 , in4 , o u t ;
/ / C o n s t r u c t o r
ad de r4 ( i n t a , i n t b , i n t c , i n t d ){

i n 1 = a ;
i n 2 = b ;
i n 3 = c ;
i n 4 = d ;
ad de r2 S1 ( a , b ) ;
ad de r2 S2 ( c , d ) ;
ad de r2 S3 ( S1 . out , S2 . o u t ) ;
o u t = S3 . o u t ;

}
/ / Method
void d i sp l ayAdd4 ( ) {

c o u t << i n 1 << i n 2 << i n 3 << i n 4 << o u t << e n d l ;
}

} ;

The class adder2 describe the two-input adder used to build, three times instantiated in class adder4,
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a four input adder.
A class is more complex than a module because it can contain, as a method, the way the calss is

tested. In Verilog we have to define a distinct module, testAdde2 or testAdder4, for simulation.

1.1.3 Digital domain as part of computer science

The domain of digital systems is considered, form the functional view point, as part of computing sci-
ence. This, possible view point presents the digital systems as systems which compute their associated
transfer functions. A digital system is seen as a sort of electronic system because of the technology
used now to implement it. But, from a functional view point it is simply a computational system, be-
cause future technologies will impose maybe different physical ways to implement it (using, for example,
different kinds of nano-technologies, bio-technologies, photon-based devices, . . ..). Therefore, we de-
cided to start our approach using a functionally oriented introduction in digital systems, considered as
a sub-domain of computing science. Technology dependent knowledge is always presented only as a
supporting background for various design options.

Where can be framed the domain of digital systems in the larger context of computing science? A
simple, informal definition of computing science offers the appropriate context for introducing digital
systems.

ALGORITHMS

HARDWARE LANGUAGES

TECHNOLOGY APPLICATIONS

	

	

R

R

abstract

actual
?

digital systems

R

Figure 1.9: What is computer science? The domain of digital systems provides techniques for designing the
hardware involved in computation.

Definition 1.1 Computer science (see also Figure 1.9) means to study:

• algorithms,

• their hardware embodiment

• and their linguistic expression

with extensions toward

• hardware technologies

• and real applications. ⋄
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The initial and the most abstract level of computation is represented by the algorithmic level. Algo-
rithms specify what are the steps to be executed in order to perform a computation. The most actual level
consists in two realms: (1) the huge and complex domain of the application software and (2) the very
tangible domain of the real machines implemented in a certain technology. Both contribute to implement
real functions (asked, or aggressively imposed, my the so called free market). An intermediate level pro-
vides the means to be used for allowing an algorithm to be embodied in a physical structure of a machine
or in an informational structure of a program. It is about (1) the domain of the formal programming
languages, and (2) the domain of hardware architecture. Both of them are described using specific and
rigorous formal tools.

The hardware embodiment of computations is done in digital systems. What kind of formal tools are
used to describe, in the most flexible and efficient way, a complex digital system? Figure 1.10 presents
the formal context in which the description tools are considered. Pseudo-code language is an easy to
understand and easy to use way to express algorithms. Anything about computation can be expressed
using this kind of languages. By the rule, in a pseudo-code language we express, for our (human) mind,
preliminary, not very well formally expressed, ideas about an algorithm. The “main user” of this kind
of language is only the human mind. But, for building complex applications or for accessing advanced
technologies involved in building big digital systems, we need refined, rigorous formal languages and
specific styles to express computation. More, for a rigorous formal language we must take into account
that the “main user” is a merciless machine, instead of a tolerant human mind. Elaborated programming
languages (such as C++, Java, Prolog, Lisp) are needed for developing complex contexts for computation
and to write using them real applications. Also, for complex hardware embodiments specific hardware
description languages, HDL, (such as Verilog, VHDL, SystemC) are proposed.

	 R

PSEUDO-CODE
LANGUAGE

PROGRAMMING
LANGUAGES

HARDWARE DESCRIPTION
LANGUAGES

Figure 1.10: The linguistic context in computer science. Human mind uses pseudo-code languages to ex-
press informally a computation. To describe the circuit associated with the computation a rigorous HDL (hardware
description language) is needed, and to describe the program executing the computation rigorous programming
languages are used.

Both, general purpose programming languages and HDLs are designed to describe something for
another program, mainly for a compiler. Therefore, they are more complex and rigorous than a simple
pseudo-code language.

The starting point in designing a digital system is to describe it using what we call a specification,
shortly, a spec. There are many ways to specify a digital system. In real life a hierarchy of specs are used,
starting from high-level informal specs, and going down until the most detailed structural description is
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provided. In fact, de design process can be seen as a stream of descriptions which starts from an idea
about how the new object to be designed behaves, and continues with more detailed descriptions, in each
stage more behavioral descriptions being converted in structural descriptions. At the end of the process
a full structural description is provided. The design process is the long way from a spec about what we
intend to do to another spec describing how our intention can be fulfilled.

At one end of this process there are innovative minds driven by the will to change the world. In these
imaginative minds there is no knowledge about “how”, there is only willingness about “what”. At the
other end of this process there are very skilled entities “knowing” how to do very efficiently what the last
description provides. They do not care to much about the functionality they implement. Usually, they
are machines driven by complex programs.

In between we need a mixture of skills provided by very well instructed and trained people. The role
of the imagination and of the very specific knowledge are equally important.

How can be organized optimally a designing system to manage the huge complexity of this big chain,
leading from an idea to a product? There is no system able to manage such a complex process. No one can
teach us about how to organize a company to be successful in introducing, for example, a new processor
on the real market. The real process of designing and imposing a new product is trans-systemic. It is a
rationally adjusted chaotic process for which no formal rules can ever provided.

Designing a digital system means to be involved in the middle of this complex process, usually far
away from its ends. A digital system designer starts his involvement when the specs start to be almost
rigorously defined, and ends its contribution before the technological borders are reached.

However, a digital designer is faced in his work with few level of descriptions during the execution
of a project. More, the number of descriptions increases with the complexity of the project. For a
very simple project, it is enough to start from a spec and the structural description of the circuit can be
immediately provided. But for a very complex project, the spec must be split in specs for sub-systems,
each sub-system must be described first by its behavior. The process continue until enough simple sub-
systems are defined. For them structural descriptions can be provided. The entire system is simulated
and tested. If it works synthesisable descriptions are provided for each sub-system.

A good digital designer must be well trained in providing various description using an HDL. She/he
must have the ability to make, both behavioral and structural descriptions for circuits having any level of
complexity. Playing with inspired partitioning of the system, a skilled designer is one who is able to use
appropriate descriptions to manage the complexity of the design.

1.2 Defining a digital system

Digital systems belong to the wider class of the discrete systems (systems having a countable number of
states). Therefore, a general definition for digital system can be done as a special case of discrete system.

Definition 1.2 A digital system, DS, in its most general form is defined by specifying the five components
of the following quintuple:

DS = (X ,Y,S, f ,g)

where: X ⊆ {0,1}n is the input set of n-bit binary configurations, Y ⊆ {0,1}m is the output set of m-bit
binary configurations, S⊆ {0,1}q is the set of internal states of q-bit binary configurations,

f : (X×S)→ S

is the state transition function, and
g : (X×S)→ Y
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is the output transition function.
⋄
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Figure 1.11: Digital system.

A digital system (see Figure 1.11) has two simultaneous evolutions:

• the evolution of its internal state which takes into account the current internal state and the current
input, generating the next state of the system

• the evolution of its output, which takes into account the current internal state and the current input
generating the current output.

The internal state of the system determines the partial autonomy of the system. The system behaves on
its outputs taking into account both, the current input and the current internal state.

Because all the sets involved in the previous definition have the form {0,1}b, each of the b one-bit
input, output, or state evolves in time switching between two values: 0 and 1. The previous definition
specifies a system having a n-bit input, an m-bit output and a q-bit internal state. If xt ∈ X = {0,1}n,
yt ∈Y = {0,1}m, st ∈ S = {0,1}q are values on input, output, and of state at the discrete moment of time
t, then the behavior of the system is described by:

st = f (xt−1,st−1)

yt = g(xt ,st)
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While the current output is computed from the current input and the current state, the current state was
computed using the previous input and the previous state. The two functions describing a discrete system
belong to two distinct class of functions:

sequential functions : used to generate a sequence of values each of them iterated from its predecessor
(an initial value is always provided, and the i-th value cannot be computed without computing all
the previous i−1 values); it is about functions such as st = f (xt−1,st−1)

non-sequential functions : used to compute an output value starting only from the current values ap-
plied on its inputs; it is about functions such as yt = g(xt ,st).

Depending on how the functions f and g are defined results a hierarchy of digital systems. More on
this in the next chapters.

The variable time is essential for the formal definition of the sequential functions, but for the formal
definition of the non-sequential ones it is meaningless. But, for the actual design of both, sequential and
non-sequential function the time is a very important parameter.

Results the following requests for the simplest embodiment of an actual digital systems:

• the elements of the sets X , Y and S are binary cods of n, m and q bits – 0s and 1s – which are be
codded by two electric levels; the current technologies work with 0 Volts for the value 0, and with
a tension level in the range of 1-2 Volts for the value 1; thus, the system receives on its inputs:

Xn−1,Xn−2, . . .X0

stores the internal state of form:
Sq−1,Sq−2, . . .S0

and generate on its outputs:
Ym−1,Ym−2, . . .Y0

where: Xi,S j,Yk ∈ {0,1}.

• physical modules (see Figure 1.12), called combinational logic circuits – CLC –, to compute
functions like f (xt ,st) or g(xt ,st), which continuously follow, by the evolution of their output
values delayed with the propagation time tp, any change on the inputs xt and st (the shaded time
interval on the wave out represent the transient value of the output)

• a “master of the discrete time” must be provided, in order to make consistent suggestions for the
simple ideas as “previous”, “now”, “next”; it is about the special signal, already introduced, having
form of a square wave periodic signal, with the period T which swings between the logic level 0
and the logic level 1; it is called clock, and is used to “tick” the discrete time with its active edge
(see Figure 1.13 where a clock signal, active on its positive edge, is shown)

• a storing support to memorize the state between two successive discrete moments of time is re-
quired; it is the register used to register, synchronized with the active edge of the clock signal, the
state computed at the moment t− 1 in order to be used at the next moment, t, to compute a new
state and a new output; the input must be stable a time interval tsu (set-up time) before the active
edge of clock, and must stay unchanged th (hold time) after; the propagation time after the clock
is tp.
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Figure 1.12: The module for non-sequential functions. a. The table used to define the function as a
correspondence between all input binary configurations in and binary configurations out. b. The logic symbol for
the combinatorial logic circuit – CLC – which computes out = F(in). c. The wave forms describing the time
behaviour of the circuit.
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Figure 1.13: The clock. This clock signal is active on its positive edge (negative edge as active edge is also
possible). The time interval between two positive transitions is the period Tclock of the clock signal. Each positive
transition marks a discrete moment of time.

(More complex embodiment are introduced later in this text book. Then, the state will have a structure
and the functional modules will result as multiple applications of this simple definition.)

The most complex part of defining a digital system is the description of the two functions f and g.
The complexity of defining how the system behaves is managed by using various Hardware Description
Languages – HDLs. The formal tool used in this text book is the Verilog HDL. The algebraic description
of a digital system provided in Definition 1.2 will be expressed as the Verilog definition.

Definition 1.3 A digital system is defined by the Verilog module digitalSystem, an object which con-
sists of:

external connections : lists the type, the size and the name of each connection

internal resources : of two types, as follows

storage resources : one or more registers used to store (to register) the internal state of the system

functional resources : of two types, computing the transition functions for

state : generating the nextState value from the current state and the current input
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Figure 1.14: The register. a. The wave forms describing timing details about how the register swithces around
the active edge of clock. b. The logic symbol used to define the static behaviour of the register when both, inputs
and outputs are stable between two active edges of the clock signal.

output : generating the current output value from the current state and the current input

The simplest Verilog definition of a digital system follows (see Figure 1.15). It is simple because the
state is defined only by the content of a single q-bit register (the state has no structure) and the functions
are computed by combinational circuits..

There are few keywords which any text editor emphasize using bolded and colored letters:

• module and endmodule are used to delimit the definition of an entity called module which is an
object with inputs and outputs

• input denotes an input connection whose dimension, in number of bits, is specified in the associ-
ated square brackets as follows: [n-1:0] which means the bits are indexed from n-1 to 0 from
left to right

• output denotes an output connection whose dimension, in number of bits, is specified in the asso-
ciated square brackets as follows: [n-1:0] which means the bits are indexed from n-1 to 0 from
left to right

• reg [n-1:0] defines a storage element able to store n bits synchronized with the active edge of the
clock signal

• wire [n-1:0] defines a n-bit internal connection used to interconnect two subsystems in the module

• always @(event) action specifies the action action triggered by the event event; in our first example
the event is the positive edge of clock (posedge clock) and the action is: the state register is loaded
with the new state stateRegister <= nextState
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• ‘include is the command used to include the content of another file

• "fileName.v" specifies the name of a Verilog file

Figure 1.15: The top module for the general form of a digital system.

The following two dummy modules are used to synthesize the top level of the system; their content
is not specified, because we do not define a specific system; only the frame of a possible definition is
provided.

/ * ************************************************************************
F i l e name : s t a t e T r a n s i t i o n . v
C i r c u i t name : S t a t e T r a n s i t i o n dummy module
D e s c r i p t i o n : t h e c o n n e c t i o n s o f t h e s t a t e t r a n s i t i o n module
************************************************************************ * /
module s t a t e T r a n s i t i o n # ( ‘ i n c l u d e ” 0 p a r a m e t e r . v ” )

( output [ q − 1 : 0 ] n e x t ,
input [ q − 1 : 0 ] s t a t e ,
input [ n − 1 : 0 ] i n ) ;

/ / d e s c r i b e here t h e s t a t e t r a n s i t i o n f u n c t i o n
endmodule
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/ * ************************************************************************
F i l e name : o u t p u t T r a n s i t i o n . v
C i r c u i t name : Outpu t T r a n s i o u t p u t t i o n
D e s c r i p t i o n : t h e c o n n e c t i o n s o f t h e o u t p u t t r a n s i t i o n module
************************************************************************ * /
module o u t p u t T r a n s i t i o n # ( ‘ i n c l u d e ” 0 p a r a m e t e r . v ” )

( output [m− 1 : 0 ] o u t ,
input [ q − 1 : 0 ] s t a t e ,
input [ n − 1 : 0 ] i n ) ;

/ / d e s c r i b e here t h e o u t p u t t r a n s i t i o n f u n c t i o n
endmodule

where the content of the file 0 parameter.v is:

/ * ************************************************************************
F i l e name : parame te r . v
C i r c u i t name : i t i s n o t a c i r c u i t
D e s c r i p t i o n : t h e p a r a m e t e r s i n v o l v e d i n a l l module o f t h e d e s i g n are

d e f i n e d here
************************************************************************ * /
parameter n = 8 , / / t h e i n p u t i s coded on 8 b i t s

m = 8 / / t h e o u t p u t i s coded on 8 b

It must be actually defined for synthesis reasons. The synthesis tool must “know” the size of the
internal and external connections, even if the actual content of the internal modules is not yet specified.
⋄

Figure 1.16: The result of the synthesis for the module digitalSystem.

The synthesis of the generic structure, just defined, is represented in Figure 1.16, where there are
represented three (sub-)modules:
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• the module fd which is a 4-bit state register whose output is called state[3:0]; it stores the
internal state of the system

• the module stateTransition instantiated as stateTrans; it computes the value of the state to
be loaded in the state register in triggered by the next active (positive, in our example) edge of
clock; this module closes a loop over the state register

• the module outputTransition instantiated as outTrans; it computes the output value from the
current states and the current input (for some applications the current input is not used directly to
generate the output, its contribution to the output being delayed through the state register).

The internal modules are interconnected using also the wire called next. The clock signal is applied
only to the register. The register module and the module stateTransition compute a sequential
function, while the outputTransition module computes a non-sequential, combinational function.

1.3 Our first target

We will pass twice through the matter of digital systems. Every time we have a specific target. In this
section the first target is presented. It consists of a simple system used to introduce the basic knowledge
about simple and small digital circuits. Our target has the form of a simple specific circuit. It is about a
digital pixel corrector.

A video sensor is a circuit built as a big array of cells which provides the stream of binary numbers
used to represent a picture or a frame in a movie. To manufacture such a big circuit without any bro-
ken cell is very costly. Therefore, circuits with a small number of isolated wrong cells, providing the
erroneous signal zero, are accepted, because it is easy to make few corrections on an image containing
millions of pixels. The error manifests by providing a zero value for the light intensity. The stream of
numbers generated by Video Sensor is applied to the input of Digital Pixel Corrector (see Figure 1.17)
which performs the correction. It consists of detecting the zeroes in the digital video stream (s(t) = 0)
and of replacing them with the corrected value s’(t) obtained by interpolation. The simplest interpola-
tion uses s(t-1) and s(t+1) as follows:

s’(t) = if (s(t) = 0)

then (s(t-1) + s(t+1))/2

else s(t)

The circuits checks if the input is zero (if (s(t) = 0)). If not, s(t) goes through. If the input is wrong
the circuit provides the arithmetic mean computed in the smallest neighborhood, s(t-1) and s(t+1).

The previous simple computation is made by the circuit Digital Pixel Corrector. In Figure 1.18 the
wave form s(t) represents the light intensity, while s(t) represents the discrete stream of samples to be
converted in numbers. The stream s(t) follows the wave s(t), excepting in one point where the value
provided by the conversion circuit is, by error, zero.

In our simple example, the circuit Digital Pixel Corrector receives from the convertor a stream of
4-bit numbers. The data input of the circuit is in[3:0]. It receives also the clock signal. The active
edge of clock is, in this example, the positive transition.

The stream of numbers received by the circuit is: 7, 9, 10, 11, 12, 11, 10, 8, 5, 3, 2,

2, 0, 5, 7, 9, 11, 12, 12, 13, .... On the 13-th position the wrong value, 0, is received. It will
be substituted, in the output sequence, with the integer part of (2+5)/2.
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Video Sensor - -in[3:0] out[3:0]
Digital
Pixel

Corrector
Digital SystemSensor & ADC

clock

Figure 1.17: Pixel correction system. The digital stream of pixels is corrected by substituting the wrong
values by interpolation.

In the first clock cycle, in[3:0] takes the value 0111, i.e., in[3] = 0, in[2] = 1, in[1] = 1,
in[0] = 1. In the second clock cycle in[3:0] = 1010, and so on. Thus, on each binary input, in[3],
... in[0], a specific square wave form is applied. They consists of transitions between 0 and 1. In real
circuits, 0 is represented by the voltage 0, while 1 by a positive voltage DDD = 1 . . .2V .

A compact representation of the four wave form, in[3], in[2], in[1], in[0], is shown in the
synthetic wave form in[3:0]. It is a conventional representation. The two overlapped wave suggest the
transition of the input value in[3:0], while ”inside” each delimited time interval the decimal value of
the input is inserted. The simultaneous transitions, used to delimit a time interval, signify the fact that
some bits could switch form 0 to 1, while others from 1 to 0.

The output behaviour is represented in the same compact way. Our circuit transmits the input stream
to the output of the circuit with a delay of two clock cycles! Why? Because, to compute the current
output value out(t) the circuit needs the previous input value and the next input value. Any value must
“wait” the next one to be “loaded” in the correction circuit, while the previous is already memorized.
“Waiting” and “already memorized” means to be stored in the internal state of the system. Thus, the in-
ternal state consists of three sub-states: ss1[3:0] = in(t-1), ss2[3:0] = in(t-2) and ss3[3:0]

= in(t-3), i.e., state is the concatenation of the three sub-states :

state = {ss3[3:0], ss2[3:0], ss1[3:0]}

In each clock cycle the state is updated with the current input, as follows:

if state(t) = {ss3, ss2, ss1} then state(t+1) = {ss2, ss1, in}

Thus, the circuit takes into account simultaneously three successive values from the input stream, all
stored, concatenated, in the internal state register. The previously stated interpolation relation is now
reconsidered, for an actual implementation using a digital system, as follows:

out(t) = if (ss2 = 0)

then (ss1 + ss3)/2

else ss2

If no wrong value on the stream, then the current output takes the value of the input received two cycles
before: one to load it as ss1 and another to move it in ss2(two clock cycles delay, or two-clock latency).
Else, the current output value is (partially) “restored” from the other two sub-states of the system ss1

and ss3, first just received triggered by the last active edge of the clock, and the second loaded two
cycles before.
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Figure 1.18: The interpolation process.

Now, let us take the general definition of a digital system and adapt it for designing the Digital
Pixel Corrector circuit. First, the file used to define the parameters – 0 parameter.v – is modified
according to the size of the external connections and of state. For our application, the file takes the name
0 paramPixelCor.v, having the following content:
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/ * ************************************************************************
F i l e name : paramPixe lCor . v
C i r c u i t name : i t i s n o t a c i r c u i t
D e s c r i p t i o n : t h e p a r a m e t e r s i n v o l v e d i n a l l module o f t h e d e s i g n are

d e f i n e d here
************************************************************************ * /
parameter n = 4 , / / t h e i n p u t i s coded on 4 b i t s

m = 4 , / / t h e o u t p u t i s coded on 4 b i t s
q = 12 / / t h e s t a t e i s coded on 12 b i t s ( t o s t o r e t h r e e 4− b i t

/ / v a l u e s )

In the top module digitalSystem little changes are needed. The module’s name is changed to
pixelCorrector, the included parameter file is substituted, and the module outputTransition is
simplified, because the output value does not depend directly by the input value. The resulting top
module is:

/ * ************************************************************************
F i l e name : p i x e l C o r r e c t o r . v
C i r c u i t name : P i x e l c o r r e c t o r c i r c u i t
D e s c r i p t i o n : t h e c i r c u i t i n t e r p o l a t e s t h e m i s s i n g v a l u e s i n a s t r e am

o f da ta coming from a v i d e o s e n s o r
************************************************************************ * /
module p i x e l C o r r e c t o r # ( ‘ i n c l u d e ” 0 p a r a m P i x e l C o r . v ” )

( output [m− 1 : 0 ] o u t ,
input [ n − 1 : 0 ] i n ,
input c l o c k ) ;

reg [ q − 1 : 0 ] s t a t e ;
wire [ q − 1 : 0 ] n e x t ;
s t a t e T r a n s i t i o n s t a t e T r a n s ( n e x t ,

s t a t e ,
i n ) ;

always @( posedge c l o c k ) s t a t e <= n e x t ;
o u t p u t T r a n s i t i o n o u t T r a n s ( o u t ,

s t a t e ) ;
endmodule

Now, the two modules defining the transition functions must be defined according to the functionality
desired for the system. State transition means to shift left the content of the state register n positions
and on the freed position to put the input value. The output transition is a conditioned computation.
Therefore, for our pixelCorrector module the combinational modules have the following form:



30 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?

/ * ************************************************************************
F i l e name : s t a t e T r a n s i t i o n . v
C i r c u i t name : S t a t e t r a n s i t i o n c i r c u i t
D e s c r i p t i o n : d e s c r i b e s t h e s t a t e t r a n s i t i o n f o r t h e p i x e l c o r r e c t i o n

c i r c u i t
************************************************************************ * /
module s t a t e T r a n s i t i o n # ( ‘ i n c l u d e ” 0 p a r a m P i x e l C o r . v ” )

( output [ q − 1 : 0 ] n e x t ,
input [ q − 1 : 0 ] s t a t e ,
input [ n − 1 : 0 ] i n ) ;

/ / s t a t e [2* n −1:0] i s { i n ( t −2) , i n ( t −1)}
a s s i g n n e x t = { s t a t e [2* n − 1 : 0 ] , i n } ;

endmodule

/ * ************************************************************************
F i l e name : o u t p u t T r a n s i t i o n . v
C i r c u i t name : Outpu t T r a n s i t i o n c i r c u i t
D e s c r i p t i o n : d e s c r i b e s t h e o u t p u t t r a n s i t i o n f o r t h e p i x e l c o r r e c t i o n

c i r c u i t
************************************************************************ * /
module o u t p u t T r a n s i t i o n # ( ‘ i n c l u d e ” 0 p a r a m P i x e l C o r . v ” )

( output reg [m− 1 : 0 ] o u t ,
input [ q − 1 : 0 ] s t a t e ) ;

/ / s t a t e [ n −1:0] i s i n ( t −1)
/ / s t a t e [2* n −1:n ] i s i n ( t −2)
/ / s t a t e [ q −1:2* n ] i s i n ( t −3)
always @( s t a t e ) / / s i m p l e r : ” a lways @( * ) ”

i f ( s t a t e [2* n −1: n ] == 0) o u t = ( s t a t e [ n − 1 : 0 ] + s t a t e [ q −1:2* n ] ) / 2 ;
e l s e o u t = s t a t e [2* n −1: n ] ;

endmodule

In order to verify the correctness of our design, a simulation module is designed. The clock signal
and the input stream are generated and applied to the input of the top module, instantiated under the
name dut (devices under test). A monitor is used to access the behavior of the circuit.
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/ * ************************************************************************
F i l e name : t e s t P i x e l C o r r e c t o r . v
C i r c u i t name : T e s t e r f o r p i x e l c o r r e c t i o n c i r c u i t
D e s c r i p t i o n : d e f i n e t h e c l o c k g e n e r a t o r and t h e t e s t s e q u e n c e
************************************************************************ * /
module t e s t P i x e l C o r r e c t o r # ( ‘ i n c l u d e ” 0 p a r a m P i x e l C o r . v ” ) ;

reg c l o c k ;
reg [ 3 : 0 ] i n ;
wire [ 3 : 0 ] o u t ;
i n i t i a l begin c l o c k = 0 ;

f o r e v e r #1 c l o c k = ˜ c l o c k ;
end

i n i t i a l begin i n = 4 ’ b0111 ;
#2 i n = 4 ’ b1001 ;
#2 i n = 4 ’ b1010 ;
#2 i n = 4 ’ b1011 ;
#2 i n = 4 ’ b1100 ;
#2 i n = 4 ’ b1011 ;
#2 i n = 4 ’ b1010 ;
#2 i n = 4 ’ b1000 ;
#2 i n = 4 ’ b0101 ;
#2 i n = 4 ’ b0011 ;
#2 i n = 4 ’ b0010 ;
#2 i n = 4 ’ b0010 ;
#2 i n = 4 ’ b0000 ; / / t h e e r r o r
#2 i n = 4 ’ b0101 ;
#2 i n = 4 ’ b0111 ;
#2 i n = 4 ’ b1001 ;
#2 i n = 4 ’ b1011 ;
#2 i n = 4 ’ b1100 ;
#2 i n = 4 ’ b1100 ;
#2 i n = 4 ’ b1101 ;
#2 $ s t o p ;

end
p i x e l C o r r e c t o r d u t ( o u t ,

i n ,
c l o c k ) ;

i n i t i a l $monitor ( ” t ime = %d s t a t e = %b %b %b o u t = %b ” ,
$t ime , d u t . s t a t e [ q −1:2* n ] , d u t . s t a t e [2* n −1: n ] ,

d u t . s t a t e [ n − 1 : 0 ] , o u t ) ;
endmodule

The monitor provides the following stream of data:
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/ * ************************************************************************
The m o n i t o r f o r p i x e l c o r r e c t i o n c i r c u i t
************************************************************************ * /
posedge c l o c k s s 3 s s 2 s s 1 o u t = ( s s 2 =0) ? ( s s 3 + s s 1 ) / 2 : s s 2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# t ime = 0 s t a t e = xxxx xxxx xxxx o u t = xxxx
# t ime = 1 s t a t e = xxxx xxxx 0111 o u t = xxxx
# t ime = 3 s t a t e = xxxx 0111 1001 o u t = 0111
# t ime = 5 s t a t e = 0111 1001 1010 o u t = 1001
# t ime = 7 s t a t e = 1001 1010 1011 o u t = 1010
# t ime = 9 s t a t e = 1010 1011 1100 o u t = 1011
# t ime = 11 s t a t e = 1011 1100 1011 o u t = 1100
# t ime = 13 s t a t e = 1100 1011 1010 o u t = 1011
# t ime = 15 s t a t e = 1011 1010 1000 o u t = 1010
# t ime = 17 s t a t e = 1010 1000 0101 o u t = 1000
# t ime = 19 s t a t e = 1000 0101 0011 o u t = 0101
# t ime = 21 s t a t e = 0101 0011 0010 o u t = 0011
# t ime = 23 s t a t e = 0011 0010 0010 o u t = 0010
# t ime = 25 s t a t e = 0010 0010 0000 o u t = 0010
# t ime = 27 s t a t e = 0010 0000 0101 o u t = 0011 / / ( 2 + 5 ) / 2 = 3; ERROR!
# t ime = 29 s t a t e = 0000 0101 0111 o u t = 0101
# t ime = 31 s t a t e = 0101 0111 1001 o u t = 0111
# t ime = 33 s t a t e = 0111 1001 1011 o u t = 1001
# t ime = 35 s t a t e = 1001 1011 1100 o u t = 1011
# t ime = 37 s t a t e = 1011 1100 1100 o u t = 1100
# t ime = 39 s t a t e = 1100 1100 1101 o u t = 1100

while the wave form of the same simulation are presented in Figure 1.19. The output values corre-

Figure 1.19: The wave forms provided by simulation.

spond to the input values with a two clock cycle latency. Each nonzero input goes through the output in
two cycles, while the wrong, zero inputs generate the intepolated values in the same two cycles (in our
example 0 generates 3, as the integer mean value of 2 and 5). The functions involved in solving the pixel
correction are:

• the predicate function, state[2*n-1:n] == 0, used to detect the wrong value zero

• the addition, used to compute the mean value of two numbers

• the division, used to compute the mean value of two numbers

• the selection function, which accorting to the a predicate sends to the output one value or another
value

• storage function, triggered by the active edge of the clock signal
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Our first target is to provide the knowledge about the actual circuits used in the previous simple
application. The previous description is a behavioral description. We must acquire the ability to provide
the corresponding structural description. How to add, how to compare, how to select, how to store, and
few other similar function will be investigated before going to approach the final, more complex target.

1.4 Problems

Problem 1.1 How behaves the pixelCorrector circuit if the very first value received is zero? How
can be improved the circuit to provide a better response?

Problem 1.2 How behaves the pixelCorrector circuit if if two successive wrong zeroes are received
to the input? Provide an improvement for this situation.

Problem 1.3 What is the effect of the correction circuit when the zero input comes form an actual zero
light intensity?

Problem 1.4 Synthesize the module pixelCorrector and identify in the RTL Schematic provided by
the synthesis tool the functional components of the design. Explain the absences, if any.

Problem 1.5 Design a more accurate version of the pixel correction circuit using a more complex inter-
polation rule, which takes into account an extended neighborhood. For example, apply the the following
interpolation:

s′(t) = 0.2s(t−2)+0.3s(t−1)+0.3s(t +1)+0.2s(t +2)



34 CHAPTER 1. WHAT’S A DIGITAL SYSTEM?



Chapter 2

DIGITAL CIRCUITS

In the previous chapter
the concept of digital system was introduced by:

• differentiating it from analog system

• but integrating it, in the same time, in a hybrid electronic system

• defining formally what means a digital system

• and by stating the first target of this text book: the introducing the basic small and simple
digital circuits

In this chapter
general definitions related with the digital domain are used to reach the following targets:

• to frame the digital system domain in the larger area of the information technologies

• to present different ways the digital approach is involved in the design of the real market
products

• to enlist and shortly present the related domains, in order to integrate better the knowledge
and skills acquired by studying the digital system design domain

In the next chapter
is a friendly introduction in both, digital systems and a HDLs (Hardware Description Languages)
used to describe, simulate, and synthesized them. The HDL selected for this book is called Verilog.
The main topics are:

• the distinction between combinational and sequential circuits

• the two ways to describe a circuit: behavioral or structural

• how digital circuits behave in time.

35
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In the previous chapter we learned, from an example, that a simple digital system, assimilated with a
digital circuit, is built using two kinds of circuits:

• non-sequential circuits, whose outputs follow continuously, with a specific delay, the evolution of
input variable, providing a “combination” of input bits as the output value

• sequential circuits, whose output evolve triggered by the active edge of the special signal called
clock which is used to determine the “moment” when the a storage element changes its content.

Consequently, in this chapter are introduced, by simple examples and simple constructs, the two basic
types of digital circuits:

• combinational circuits, used to compute fcomb : X → Y , defined in X = {0,1}n with values in
Y = {0,1}m, where fcomb(x(t)) = y(t), with x(t) ∈ X , y(t) ∈ Y representing two values generated
in the same discrete unit of time t (discrete time is “ticked” by the active edge of clock)

• storage circuits, used to design sequential circuits, whose outputs follow the input values with
the delay of one clock cycle; fstore : X → X , defined in X = {0,1}n with values in X = {0,1}n,
where fstore(x(t)) = x(t−1), with x(t),x(t−1)∈ X , representing the same value considered in two
successive units of time, t−1 and t.

While a combinational circuit computes continuously its outputs according to each input change, the
output of the storage circuit changes only triggered by the active edge of clock.

In this chapter, the first section is for combinational circuits which are introduced by examples,
while, in the second section, the storage circuit called register is generated step by step starting from the
simplest combinational circuits.

2.1 Combinational circuits

Revisiting the Digital Pixel Corrector circuit, lets take the functional description of the output function:

i f ( s t a t e [2* n −1: n ] == 0) o u t = ( s t a t e [ n − 1 : 0 ] + s t a t e [ q −1:2* n ] ) / 2 ;
e l s e o u t = s t a t e [2* n −1: n ] ;

The previous form contains the following elementary functions:

• test function: state[2*n-1:n] == 0, defined in {0,1}n with value in {0,1}

• selection function:
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i f ( t e s t ) o u t = a c t i o n 1 ;
e l s e o u t = a c t i o n 2 ;

defined in the Cartesian product ({0,1}×{0,1}n×{0,1}n) with values in {0,1}n

• Add function: state[n-1:0] + state[q-1:2*n], defined in ({0,1}n×{0,1}n) with value in
{0,1}n

• Divide by 2 function: defined in {0,1}n with value in {0,1}n.

In Appendix D, section Elementary circuits: gates basic knowledge about Boolean logic and the
associated logic circuits are introduced. We use simple functions and circuits, like AND, OR, NOT,
XOR, ..., to design the previously emphasized combinational functions.

2.1.1 Zero circuit

The simplest test function tests if a n-bit binary configuration represents the number 0. The function OR
provides 1 if at least one of its inputs is 1, which means it provides 0 if all its inputs are 0. Then, inverting
– negating – the output of a n-input OR we obtain a circuit NOR – not OR – whose output is 1 only when
all its inputs are 0.

Definition 2.1 The n-input Zero circuit is a n-input NOR.
⋄

The Figure 2.1 represents few embodiment of the Zero circuit. The elementary, 2-input, Zero circuit is
represented in Figure 2.1a as a two-input NOR. For the n-input Zero circuit a n-input NOR is requested
(see Figure 2.1b) which can be implemented in two different ways (see Figure 2.1c and Figure 2.1d).
One level NOR (see Figure 2.1b) with more than 4 inputs are impractical (for reasons disclosed when we
will enter in the physical details of the actual implementations).

The two solution for the n-input NOR come from the two ways to expand an associative logic func-
tion. It is about how the parenthesis are used. The first form (see Figure 2.1c) comes from:

(a+b+ c+d + e+ f +g+h)′ = (((((((a+b)+ c)+d)+ e)+ f )+g)+h)′

generating a 7 level circuit (7 included parenthesis), while, the second form (see Figure 2.1d) comes
from:

(a+b+c+d+e+ f +g+h)′=((a+b)+(c+d)+(e+ f )+(g+h))′=(((a+b)+(c+d))+((e+ f )+(g+h)))′

providing a 3 level circuit (3 included parenthesis). The number of gates used is the same for the two
solution. We expect that the second solution provide a faster circuit.
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in[1]in[0] in[n-1:0]

Zero

?

?

n

in[n-1:0]

in[7:0] in[7:0]

out=Zero(in[1:0])

out=Zero(in[n-1:0])

out = Zero(in[n-1:0])

out = Zero(in[7:0])

out = Zero(in[7:0])
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Figure 2.1: The Zero circuit. a. The 2-input Zero circuit is a 2-input NOR. b. The n-input Zero circuit is a
n-input NOR. c. The 8-input Zero circuit as a degenerated tree of 2-input ORs. d. The 8-input Zero circuit as a
balanced tree of 2-input ORs. e. The logic symbol for the Zero circuit.

2.1.2 Selection

The selection circuit, called also multiplexer, is a three input circuit: a one-bit selection input – sel –,
and two selected inputs, one – in0 – selected to the output when sel=0 and another – in1 – selected for
sel=1. Let us take first the simplest case when both selected inputs are of 1 bit. This is the case for the
elementary multiplexer, EMUX. If the input are: sel, in0, in1, then the logic equation describing the
logic circuit is:

out = sel’ · in0 + sel · in1

Then the circuit consists of one NOT, two ANDs and one OR as it is shown in Figure 2.2. The AND
gates are opened by selection signal, sel, allowing to send out the value applied on the input in1, and
by the negation of the selection signal signal, sel’, allowing to send out the value applied on the input
in0. The OR circuit “sum up” the outputs of the two ANDs, because only one is “open” at a time.

The selection circuit for two n-bit inputs is functionally (behaviorally) described by the following
Verilog module:

/ * ************************************************************************
F i l e name : i f T h e n E l s e . v
C i r c u i t name : 2− i n p u t m u l t i p l e x e r
D e s c r i p t i o n : one o f i n p u t s in1 , i n 0 i s s e l e c t e d by s e l
************************************************************************ * /

module i f T h e n E l s e # ( parameter n = 4)
( output [ n − 1 : 0 ] out ,

input s e l ,
input [ n − 1 : 0 ] in1 , i n 0 ) ;

a s s i g n o u t = s e l ? i n 1 : i n 0 ;
endmodule
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in1[n-1] in1[n-2] in1[0]in0[n-1] in0[n-2] in0[0]

Figure 2.2: The selection circuit. a. The logic schematic for the elementary selector, EMUX (elementary
multiplexer). b. The logic symbol for EMUX. c. The selector (multiplexor) for n-bit words, MUXn. d. The logic
symbol for MUXn.

In the previous code we decided to design a circuit for 4-bit data. Therefore, the parameter n is set to
4 only in the header of the module.

The structural description is much more complex because it specifies all the details until the level of
elementary gates. The description has two modules: the top module – ifThenElse – and the module
describing the simplest select circuit – eMux.

/ * ************************************************************************
F i l e name : eMux . v
C i r c u i t name : E l e m e n t a r y m u l t i p l e x e r
D e s c r i p t i o n : s e l ? i n 1 : i n 0
************************************************************************ * /

module eMux ( output out ,
input s e l , in1 , i n 0 ) ;

wire i n v S e l ;

not i n v e r t e r ( i n v S e l , s e l ) ;
and and1 ( out1 , s e l , i n 1 ) ,

and0 ( out0 , i n v S e l , i n 0 ) ;
or o u t G a t e ( out , out1 , ou t0 ) ;

endmodule
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/ * ************************************************************************
F i l e name : i f T h e n E l s e . v
C i r c u i t name : Two n−i n p u t m u l t i p l e x o r
D e s c r i p t i o n : t h e use o f g e n e r a t e s t a t e m e n t f o r a 2− i n p u t m u l t i p l e x o r
************************************************************************ * /
module i f T h e n E l s e # ( parameter n = 4)

( output [ n − 1 : 0 ] out ,
input s e l ,
input [ n − 1 : 0 ] in1 , i n 0 ) ;

genvar i ;
g e n e r a t e f o r ( i =0 ; i<n ; i = i +1)

begin : eMUX
eMux s e l e c t o r ( . o u t ( o u t [ i ] ) ,

. s e l ( s e l ) ,

. i n 1 ( i n 1 [ i ] ) ,

. i n 0 ( i n 0 [ i ] ) ) ;
end

endgenerate
endmodule

The repetitive structure of the circuit is described using the generate form.
To verify the design a test module is designed. This module generate stimuli for the input of the

device under test (dut), and monitors the inputs and the outputs of the circuit.

/ * ************************************************************************
F i l e name : t e s t I f T h e n E l s e . v
C i r c u i t name : S i m u l a t i o n module f o r i f T h e n E l s e . v
D e s c r i p t i o n : g e n e r a t e s t i m u l u s f o r a two−i n p u t m u l t i p l e x o r
************************************************************************ * /

module t e s t I f T h e n E l s e # ( parameter n = 4 ) ;
reg [ n − 1 : 0 ] in1 , i n 0 ;
reg s e l ;
wire [ n − 1 : 0 ] o u t ;
i n i t i a l begin i n 1 = 4 ’ b0101 ;

i n 0 = 4 ’ b1011 ;
s e l = 1 ’ b0 ;

#1 s e l = 1 ’ b1 ;
#1 i n 1 = 4 ’ b1100 ;
#1 $ s t o p ;

end
i f T h e n E l s e d u t ( out ,

s e l ,
in1 , i n 0 ) ;

i n i t i a l $monitor
( ” t ime = %d s e l = %b i n 1 = %b i n 0 = %b o u t = %b ” ,

$t ime , s e l , in1 , in0 , o u t ) ;
endmodule
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The result of simulation is:

# t ime = 0 s e l = 0 i n 1 = 0101 i n 0 = 1011 o u t = 1011
# t ime = 1 s e l = 1 i n 1 = 0101 i n 0 = 1011 o u t = 0101
# t ime = 2 s e l = 1 i n 1 = 1100 i n 0 = 1011 o u t = 1100

The result of synthesis is represented in Figure 2.3.

Figure 2.3: The result of the synthesis for the module ifThenElse.

2.1.3 Adder

A n-bit adder is defined as follows, using a Verilog behavioral description:

/ * ************************************************************************
F i l e name : adder . v
C i r c u i t name : 4− b i t words adder
D e s c r i p t i o n : t h e c i r c u i t adds numbers r e p r e s e n t e d on n b i t s , f o r n = 4
************************************************************************ * /

module a d d e r # ( parameter n = 4) / / d e f i n e s a n− b i t adder
( output [ n − 1 : 0 ] sum , / / t h e n− b i t r e s u l t

output c a r r y , / / c a r r y o u t p u t
input c , / / c a r r y i n p u t
input [ n − 1 : 0 ] a , b ) ; / / t h e two n− b i t numbers

a s s i g n { c a r r y , sum} = a + b + c ;
endmodule
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Fortunately, the previous module is synthesisable by the currently used synthesis tools. But, in this
stage, it is important for us to define the actuala internal structure of an adder. We start from a 1-bit
adder, whose output are described by the following Boolean equations:

sum = a⊕b⊕ c

carry = a ·b+a · c+b · c

where, a, b and c are one bit Boolean variables. Indeed, the sum output results as the sum of three bits:
the two numbers, a and b, and the carry bit, c, coming from the previous binary range. As we know, the
modulo 2 sum is performed by a XOR circuit. Then, a⊕ b is the sum of the two one-bit numbers. The
result must be added with c – (a⊕ b)⊕ c – using another XOR circuit. The carry signal is used by the
next binary stage. The expression for carry is written taking into account that the carry signal is one if
at least two of the input bits are one: carry is 1 if a and b or a and c or b and c (the function is the
majority function). Its expression is embodied also in logic circuits, but not before optimizing its form
as follows:

carry = a ·b+a · c+b · c = a ·b+ c · (a+b) = a ·b+ c · (a⊕b)

Because (a⊕b) is already computed for sum, the circuit for carry requests only two ANDs and an OR.
In Figure 2.4a the external connections of the 1-bit adder are represented. The input c receives the carry
signal from the previous binary range. The output carry generate the carry signal for the next binary or
range.

a b

sum

OneBitAdd

c

? ?

?

�

a[n-1] a[1] a[0]

� OneBitAdd
OneBitAdd

? ?

?

��

a b

ccarry

sum

? ?

?

��
?

OneBitAdd

b[n-1]

? ?

?

b[1] b[0]
carryIn

carryOut
sum[n-1] sum[1] sum[0]

a. b. c.

carry

Figure 2.4: The adder circuit. a. The logic symbol for one-bit adder. b. The logic schematic for the one-bit
adder. c. The block schematic for the n-bit adder.

The functions for the one bit adder are obtained formally, without any trick, starting from the truth
table defining the operation (see Figure 2.5).

The two expressions are extracted from the truth table as “sum” of “products”. Only the “products”
generating 1 to output are “summed”. Results:

sum = a′b′c+a′bc′+ab′c′+abc

carry = a′bc+ab′c+abc′+abc
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a b c sum carry
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 2.5: The truth table for the adder circuit. The first three columns contains all the three-bit binary
configuration the circuit could receive. The two last columns describe the behavior of the sum and carry output.

and, using the Boolean algebra rules the form are reduced to the previously written expressions.
For a circuit with more than one output, minimizing it means to minimize the overall design, not

only each expressions associated to its outputs. For our design – the one bit adder – the expression used
to implement the sum output is not minimal. It is more complex that the minimal form (instead of an
OR gate we used the more complicated gate XOR), but it contains a sub-circuit shared with the circuit
associated to carry output. It is about the first XOR circuit (see Figure 2.4b).

2.1.4 Divider

The divide operation – a/b – is, in the general case, a complex operation. But, in our application – Digital
Pixel Correction – it is about dividing by 2 a binary represented number. It is performed, without any cir-
cuit, simply by shifting the bits of the binary number one position to right. The number number[n-1:0]
divided by two become {1’b0, number[n-1:1]}.

2.2 Sequential circuits

In this section we intend to introduce the basic circuits used to build the sequential parts of a digital
system. It is about the sequential digital circuits. These circuits are mainly used to build the storing sub-
systems in a digital system. To store in a digital circuit means to maintain the value of a signal applied
on the input of the circuit. Simply speaking, the effect of the signal to be stored must be “re-applied” on
another input of the circuit, so as the effect of the input signal to be memorized is substituted. Namely,
the circuit must have a loop closed form one of its output to one of its input. The resulting circuit, instead
of providing the computation it performs without loop, it will provide a new kind of functionality: the
function of memorizing. Besides the function of memorizing, sequential circuits are used to design sim-
ple or complex automata (in this section we provide only examples of simple automata). The register, the
typical sequential circuit, is used also in designing complex systems allowing efficient interconnections
between various sub-systems.

2.2.1 Elementary Latches

This subsection is devoted to introduce the elementary structures whose internal loop allow the simplest
storing function: latching an event.
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The reset-only latch is the AND loop circuit represented in Figure 2.6a. The passive input value for
AND loop is 1 ((Reset)’ = 1), while the active input value is 0 ((Reset)’ = 0). If the passive input
value is applied, then the output of the circuits is not affected (the output depends only by the other input
of the AND circuit). It can be 0 or 1, depending by the previous values applied on the input. When the
active value is temporary applied, then the state of the circuit (the value of its output) switches in 0, with
a delay of tpHL (propagation time from high to low) and remains forever in this state, independent on the
following the input value. We conclude that the circuit is sensitive to the signal 0 temporarily applied on
its input, i.e., it is able to memorize forever the event 0. The circuit “catches” and “latches” the input
value only if the input in maintained on 0 until the second input of the AND circuit receives the value 0,
with a delay time tpHL. If the temporary input transition in 0 is too short the loop is unable to latch the
event.

The set-only latch is the OR loop circuit represented in Figure 2.6b. The passive value for OR loop is
0 (Set = 0) while the active input value is 1 (Set = 1). If the passive input value is applied, then the
output of the circuits is not affected (the output depends only by the other input of the OR circuit). It can
be 0 or 1, depending by the previous values applied on the input. When the active value is temporary
applied, then the state of the circuit (the value of its output) switches in 1 and remains forever in this
state, independent on the input value. We conclude that the circuit is sensitive to the signal 1 temporarily
applied on its input, i.e., it is able to memorize forever the event 1. The only condition, similar to that
applied for AND loop, is to have an enough long duration of temporary input transition in 1.

The heterogenous set-reset latch results by combining the previous two latches (see Figure 2.6c). The
circuit has two inputs: one active-low (active on 0) input, R’, to reset the circuit (out = 0), and another
active-high (active on 1) input, S, to set the circuit (out = 0). The value 0 must remain to the input R’
at least 2tpHL for a stable switching of the circuit into the state 0, because the loop depth in the state 1 is
given by the propagation time through both gates that switch from high to low. For a similar reason, the
value 1 must remain to the input S at least 2tpLH when the circuit must switch in 1. However, the output
of the circuit reacts faster to the set signal, because from the input set to the output of the circuit there
is only one gate, while from the other input to output the depth of the circuit is doubled.

The symmetric set-reset latches are obtained by applying De Morgan’s law to the heterogenous el-
ementary latch. In the first version, the OR circuit is transformed by De Morgan’s law (the form a +

b = (a’ b’)’ is used) resulting the circuit from Figure 2.7a. The second version (see Figure 2.7b) is
obtained applying the other form of the same law to the AND circuit (ab = (a’ + b’)’). The pas-
sive input value for the NAND elementary latch is 1, while for the NOR elementary latch it is 0. The
active input value for the NAND elementary latch is 0, while for the NOR elementary latch it is 1. The
symmetric structure of these latches have two outputs, Q and Q’.

Although, the structural description in an actual design does not go until such detail, it is useful to
use a simulation for understand how this small, simple, but fundamental circuit works. For the sake of
simulation only, the description of the circuit contains time assignment. If the module is supposed to by
eventually synthesised, then the time assignment must be removed.

VeriSim 2.1 The Verilog structural description of NAND latch is:
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Figure 2.6: The elementary latches. Using the loop, closed from the output to one input, elementary storage
elements are built. a. AND loop provides a reset-only latch. b. OR loop provides the set-only version of a storage
element. c. The heterogeneous elementary set-reset latch results combining the reset-only latch with the set-only
latch. d. The wave forms describing the behavior of the previous three latch circuits.

/ * ************************************************************************
F i l e name : l e m e n t a r y l a t c h . v
C i r c u i t name : E l e m e n t a r y l a t c h
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f an e l e m e n t a r y l a t c h
************************************************************************ * /
module e l e m e n t a r y l a t c h ( output out , n o t o u t ,

input n o t s e t , n o t r e s e t ) ;
nand #2 nand0 ( out , n o t o u t , n o t s e t ) ;
nand #2 nand1 ( n o t o u t , out , n o t r e s e t ) ;

endmodule

The two NAND gates considered in this simulation have the propagation time equal with 2 unit times
– #2.

For testing the behavior of the NAND latch just described, the following module is used:



46 CHAPTER 2. DIGITAL CIRCUITS

b.a.

Q Q’
Q’ Q

S RS’ R’

Figure 2.7: Symmetric elementary latches. a. Symmetric elementary NAND latch with low-active commands
S’ and R’. b. Symmetric elementary NOR latch with high-active commands S and R.

/ * ************************************************************************
F i l e name : t e s t s h o r t e s t i n p u t . v
C i r c u i t name : T e s t e r f o r t h e e l e m e n t a r y l a t c h
D e s c r i p t i o n : t h e c i r c u i t g e n e r a t e s t i m u l u s f o r t h e e l e m e n t a r y l a t c h
************************************************************************ * /

module t e s t s h o r t e s t i n p u t ;
reg n o t s e t , n o t r e s e t ;

i n i t i a l begin n o t s e t = 1 ;
n o t r e s e t = 1 ;

#10 n o t r e s e t = 0 ; / / r e s e t
#10 n o t r e s e t = 1 ;
#10 n o t s e t = 0 ; / / s e t
#10 n o t s e t = 1 ; / / 1− s t e x p e r i m e n t
/ / #1 n o t s e t = 1; / / 2−nd e x p e r i m e n t
/ / #2 n o t s e t = 1; / / 3−rd e x p e r i m e n t
/ / #3 n o t s e t = 1; / / 4− t h e x p e r i m e n t
#10 n o t s e t = 0 ; / / a n o t h e r s e t
#10 n o t s e t = 1 ;
#10 n o t r e s e t = 0 ; / / r e s e t
#10 n o t r e s e t = 1 ;
#10 $ s t o p ;

end

e l e m e n t a r y l a t c h d u t ( out , n o t o u t , n o t s e t , n o t r e s e t ) ;
endmodule

In the first experiment the set signal is activated on 0 during 10ut (ut stands for unit time). In the
second experiment (comment the line 9 and de-comment the line 10 of the test module), a set signal of 1ut
is unable to switch the circuit. The third experiment, with 2ut set signal, generate an unstable simulated,
but non-actual, behavior (to be explained by the reader). The fourth experiment, with 3ut set signal,
determines the shortest set signal able to switch the latch (to be explained by the reader).
⋄

In order to use these latches in more complex applications we must solve two problems.
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The first latch problem : the inputs for indicating how the latch switches are the same as the inputs
for indicating when the latch switches; we must find a solution for declutching the two actions building
a version with distinct inputs for specifying “how” and “when”.

The second latch problem : if we apply synchronously S’=0 and R’=0 on the inputs of NAND latch
(or S=1 and R=1 on the inputs of OR latch), i.e., the latch is commanded “to switch in both states
simultaneously”, then we can not predict what is the state of the latch after the ending of these two active
signals.

The first latch problem will be partially solved in the next subsection, introducing the clocked latch,
but the problem will be completely solved only by introducing the master-slave structure. The second
latch problem will be solved, only in one of the chapter that follow, with the JK flip-flop, because the
circuit needs more autonomy to “solve” the contradictory command that “says him” to switch in both
states simultaneously.

Application: de-bouncing circuit Interfacing digital systems with the real world involves sometimes
the use of mechanical switching contacts. The bad news is that this kind of contact does not provide an
accurate transition. Usually when it closes, a lot of parasitic bounces come with the main transition (see
wave forms S’ and R’ in Figure 2.8).
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Figure 2.8: The de-bouncing circuit.

The debouncing circuit provide clean transitions when digital signals must generated by electro-
mechanical switches. In Figure 2.8 an RS latch is used to clear up the bounces generated by a two-
position electro-mechanical switch. The elementary latch latches the first transition from VDD to 0. The
bounces that follow have no effect on the output Q because the latch is already switched, by the first
transition, in the state they intend to lead the circuit.
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2.2.2 Elementary Clocked Latches

In order to start solving the first latch problem the elementary latch is supplemented with two gates used
to validate the data inputs only during the active level of clock. Thus the clocked elementary latch is
provided.

Q Q’

S R
CK

a.

RSL

? ??

? ?

S RCK

Q Q’

active level
z

b.

S’ R’

Figure 2.9: Elementary clocked latch. The transparent RS clocked latch is sensitive (transparent) to the input
signals during the active level of the clock (the high level in this example). a. The internal structure. b. The logic
symbol.

The NAND latch is used to exemplify (see Figure 2.9a) the partial separation between how and when.
The signals R’ and S’ for the NAND latch are generated using two 2-input NAND gates. If the latch must
be set, then on the input S we apply 1, R is maintained in 0 and, only after that, the clock is applied, i.e.,
the clock input CK switches temporary in 1. In this case the active level of the clock is the high level.
For reset, the procedure is similar: the input R is activated, the input S is inactivated, and then the clock
is applied.

We said that this approach allows only a partial declutching of how by when because on the active
level of CK the latch is transparent, i.e., any change on the inputs S and R can modify the state of the
circuit. Indeed, if CK = 1 and S or R is activated the latch is set or reset, and in this case how and when
are given only by the transition of these two signals, S for set or R for reset. The transparency will be
avoided only when, in the next subsection, the transition of the output will be triggered by the active edge
of clock.

The clocked latch does not solve the second latch problem, because for R = S = 1 the end of the
active level of CK switches the latch in an unpredictable state.

VeriSim 2.2 The following Verilog code can be used to understand how the elementary clocked latch
works.
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/ * ************************************************************************
F i l e name : c l o c k e d n a n d l a t c h . v
C i r c u i t name : Clocked l a t c h
D e s c r i p t i o n : t h e c i r c u i t i s a c l o c k e d l a t c h imp lemen ted w i t h NAND g a t e s
************************************************************************ * /

module c l o c k e d n a n d l a t c h ( output out , n o t o u t ,
input s e t , r e s e t , c l o c k ) ;

e l e m e n t a r y l a t c h t h e l a t c h ( out , n o t o u t , n o t s e t , n o t r e s e t ) ;
nand #2 nand2 ( n o t s e t , s e t , c l o c k ) ;
nand #2 nand3 ( n o t r e s e t , r e s e t , c l o c k ) ;

endmodule

⋄

2.2.3 Data Latch

The second latch problem can be only avoided, not removed in this stage of our approach, by introducin
a restriction on the inputs of the clocked latch. Indeed, introducing an inverter circuit between the inputs
of the RS clocked latch, as is shown in Figure 2.10a, the ambiguous command (simultaneous set and
reset) can not be applied. Now, the situation R = S = 1 becomes impossible. The output is synchronized
with the clock only if on the active level of CK the input D is stable.

We call the resulting one input with D (from Data). The circuit is called Data Latch, or simple
D-latch.

RSL DL

?

? ? ? ?

? ?

a. b.

D

S R

Q Q’ Q Q’

D CK

c. QQ’

D

CK

Figure 2.10: The data latch. Imposing the restriction R = S′ to an RS latch results the D latch without non-
predictable transitions (R = S = 1 is not anymore possible). a. The structure. b. The logic symbol. c. An improved
version for the data latch internal structure.

The output of this new circuit follows continuously the input D during the active level of clock.
Therefore, the autonomy of this circuit is questionable because act only in the time when the clock is
inactive (on the inactive level of the clock). We say D latch is transparent on the active level of the clock
signal, i.e, the output is sensitive, to any input change, during the active level of clock.

VeriSim 2.3 The following Verilog code can be used to describe the behavior of a D latch.
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/ * ************************************************************************
F i l e name : d a t a l a t c h . v
C i r c u i t name : Data La tch
D e s c r i p t i o n : da ta l a t c h t r a n s p a r e n t on t h e h igh l e v e l o f c l o c k
************************************************************************ * /

module d a t a l a t c h ( output reg out ,
output n o t o u t ,
input da t a , c l o c k ) ;

always @( * ) i f ( c l o c k ) o u t = d a t a ;
a s s i g n n o t o u t = ˜ o u t ;

endmodule

⋄

The main problem when data input D is separated by the timing input CK is the correlation between
them. When this two inputs change in the same time, or, more precisely, during the same small time
interval, some behavioral problems occur. In order to obtain a predictable behavior we must obey two
important time restrictions: the set-up time and the hold time.

In Figure 2.10c an improved version of the circuit is presented. The number of components are
minimized, the maximum depth of the circuit is maintained and the input load due to the input D is
reduced from 2 to 1, i.e., the circuit generating the signal D is loaded with one input instead of 2, in the
original circuit.

VeriSim 2.4 The following Verilog code can be used to understand how a D latch works.

module t e s t d a t a l a t c h ;
reg da t a , c l o c k ;

i n i t i a l begin c l o c k = 0 ;
f o r e v e r #10 c l o c k = ˜ c l o c k ;

end
i n i t i a l begin d a t a = 0 ;

#25 d a t a = 1 ;
#10 d a t a = 0 ;
#20 $ s t o p ;

end
d a t a l a t c h d u t ( out , n o t o u t , da t a , c l o c k ) ;

endmodule

module d a t a l a t c h ( output out , n o t o u t ,
input da t a , c l o c k ) ;

not #2 d a t a i n v e r t e r ( n o t d a t a , d a t a ) ;

c l o c k e d n a n d l a t c h r s l a t c h ( out , n o t o u t , da t a , n o t d a t a , c l o c k ) ;
endmodule
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The second initial construct from test data latch module can be used to apply data in different
relation with the clock.
⋄
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Figure 2.11: The optimized data latch. An optimized version is implemented closing the loop over an
elementary multiplexer, EMUX. a. The resulting minimized structure for the circuit represented in Figure 2.10a.
b. Implementing the minimized form using only inverting circuits.

The internal structure of the data latch (4 2-input NANDs and an inverter in Figure 2.10a) can be
minimized opening the loop by disconnecting the output Q from the input of the gate generating Q′, and
renaming it C. The resulting circuit is described by the following equation:

Q = ((D ·CK)′ · (C(D′ ·CK)′)′)′

which can be successively transformed as follows:

Q = ((D ·CK)+(C(D′ ·CK)′)

Q = ((D ·CK)+(C(D+CK′))

Q = D ·CK +C ·D+C ·CK′(anti−hasard redundancy1)

Q = D ·CK +C ·CK′

1Anti-hasard redundancy equivalence: f(a,b,c) = ab + ac + bc’ = ac + bc’

Proof:
f(a,b,c) = ab + ac + bc’ + cc’, cc’ is ORed because xx’ = 0 and x = x + 0

f(a,b,c) = a(b + c) + c’(b + c) = (b + c)(a + c’)

f(a,b,c) = ((b + c)’ + (a + c’)’)’, applying De Morgan law
f(a,b,c) = (b’c’ + a’c)’, applying again De Morgan law
f(a,b,c) = (ab’c’ + a’b’c’ + a’bc + a’b’c)’ = (m4 + m0 + m3 + m1)’, expanding to the disjunctive normal
form
f(a,b,c) = m2 + m5 + m6 + m7 = a’bc’ + ab’c + abc’ + abc, using the “complementary” minterms
f(a,b,c) = bc’(a + a’) + ac(b + b’) = ac + bc’, q.e.d.
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The resulting circuit is an elementary multiplexor (the selection input is CK and the selected inputs are
D, by CK = 1, and C, by CK = 0. Closing back the loop, by connecting Q to C, results the circuit
represented in Figure 2.11a. The actual circuit has also the inverted output Q′ and is implemented using
only inverted gates as in Figure 2.11b. The circuit from Figure 2.10a (using the RSL circuit from Figure
2.9a) is implemented with 18 transistors, instead of 12 transistors supposed by the minimized form Figure
2.11b.

VeriSim 2.5 The following Verilog code can be used as one of the shortest description for a D latch
represented in Figure 2.11a.

In the previous module the assign statement, describing an elementary multiplexer, contains the loop.
The variable q depends by itself. The code is synthesisable.

/ * ************************************************************************
F i l e name : m u x l a t c h . v
C i r c u i t name : E l e m e n t a r y m u u l t i p l e x o r
D e s c r i p t i o n : t h e m u l t i p l e x o r i s used t o imp lemen t a c l o c k e d da ta l a t c h
************************************************************************ * /

module m u x l a t c h ( output q ,
input d , ck ) ;

a s s i g n q = ck ? d : q ;
endmodule

⋄

We ended using the elementary multiplexer to describe the most complex latch. This latch is used
in structuring almost any storage sub-system in a digital system. Thus, one of the basic combinational
function, associated to the main control function if-then-else, is proved to be the basic circuit in designing
storage elements.

2.2.4 Master-Slave Principle

In order to remove the transparency of the clocked latches, disconnecting completely the how from the
when, the master-slave principle was introduced. This principle allows us to build a two state circuit
named flip-flop that switches synchronized with the rising or falling edge of the clock signal.

The principle consists in serially connecting two clocked latches and in applying the clock signal in
opposite on the two latches (see Figure 2.12a). In the exemplified embodiment the first latch is trans-
parent on the high level of clock and the second latch is transparent on the low level of clock. (The
symmetric situation is also possible: the first latch is transparent of the low level value of clock and the
second no the high value of clock.) Therefore, there is no time interval in which the entire structure is
transparent. In the first phase, CK = 1, the first latch is transparent - we call it the master latch - and it
switches according to the inputs S and R. In the second phase CK = 0 the second latch - the slave latch -
is transparent and it switches copying the state of the master latch. Thus the output of the entire structure
is modified only synchronized with the negative transition of CK, i.e., only at the transition from 1 to 0
of the clock, because the state of the master latch freezes until the clock switches back to 1. We say the
RS master-slave flip-flop switches always at (always @ expressed in Verilog) the falling (negative) edge
of the clock. (The version triggered by the positive edge of clock is also possible.)
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Figure 2.12: The master-slave principle. Serially connecting two RS latches, activated with different levels
of the clock signal, results a non-transparent storage element. a. The structure of a RS master-slave flip-flop, active
on the falling edge of the clock signal. b. The logic symbol of the RS flip-flop triggered by the negative edge of
clock. c. The logic symbol of the RS flip-flop triggered by the positive edge of clock.

The switching moment of a master-slave structure is determined exclusively by the active edge
of clock signal. Unlike the RS latch or data latch, which can sometimes be triggered (in the trans-
parency time interval) by the transitions of the input data (R, S or D), the master-slave flip-flop flips
only at the positive edge of clock (always @(posedge clock)) or at the negative edge of clock (always
@(negedge clock)) edge of clock, according with the values applied on the inputs R and S. The how is
now completely separated from the when. The first latch problem is finally solved.

VeriSim 2.6 The following Verilog code can be used to understand how a master-slave flip-flop works.

/ * ************************************************************************
F i l e name : m a s t e r s l a v e . v
C i r c u i t name : Master −S l a v e s e t − r e s e t f l i p − f l o p
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f a master −s l a v e f l i p − f l o p
************************************************************************ * /

module m a s t e r s l a v e ( output out , n o t o u t , input s e t , r e s e t , c l o c k ) ;

wire m a s t e r o u t , n o t m a s t e r o u t ;

c l o c k e d n a n d l a t c h m a s t e r l a t c h ( . o u t ( m a s t e r o u t ) ,
. n o t o u t ( n o t m a s t e r o u t ) ,
. s e t ( s e t ) ,
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ,

s l a v e l a t c h ( . o u t ( o u t ) ,
. n o t o u t ( n o t o u t ) ,
. s e t ( m a s t e r o u t ) ,
. r e s e t ( n o t m a s t e r o u t ) ,
. c l o c k ( ˜ c l o c k ) ) ;

endmodule

⋄
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There are some other embodiments of the master-slave principle, but all suppose to connect latches
serially.

Three very important time intervals (see Figure 2.13) must catch our attention in designing digital
systems with edge triggered flip-flops:

set-up time – (tSU ) – the time interval before the active edge of clock in which the inputs R and S must
stay unmodified allowing the correct switch of the flip-flop

edge transition time – (t+ or t−) – the positive or negative time transition of the clock signal

hold time – (tH) – the time interval after the active edge of CK in which the inputs R and S must be
stable (even if this time is zero or negative).

-
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-� �-�-
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clock
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Figure 2.13: Magnifying the transition of the active edge of the clock signal. The input data must be
stable around the active transition of the clock tsu (set-up time) before the beginning of the clock transition, during
the transition of the clock, t+ (active transition time), and th (hold time) after the end of the active edge.

In the switching “moment”, that is approximated by the time interval tSU + t++ tH or tSU + t−+ tH
“centered” on the active edge (+ or −), the data inputs must evidently be stable, because otherwise the
flip-flop “does not know” what is the state in which it must switch.

Now, the problem of decoupling the how by the when is better solved. Although, this solution is not
perfect, because the ”moment” of the switch is approximated by the short time interval tSU + t+/−+ tH .
But the ”moment” does not exist for a digital designer. Always it must be a time interval, enough over-
estimated for an accurate work of the designed machine.

2.2.5 Metastability

Any asynchronous signal applied the the input of a clocked circuit is a source of meta-stability
[webRef 1] [Alfke ’05] [webRef 4]. There is a dangerous timing window “centered” on the clock
transition edge specified by the sum of set-up time, edge transition time and hold time. If the data input
of a D-FF switches in this window, then there are three possible behaviors for its output:

• the output does not change according to the change on the flip-flop’s input (the flip-flop does not
catch the input variation)
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• the output change according to the change on the flip-flop’s input (the flip-flop catches the input
variation)

• the output goes meta-stable for tMS, then goes unpredictable in 1 or 0 (see the wave forms
[webRef 2]).

Figure 2.14: Metastability [webRef 4].

2.2.6 D Flip-Flop

Another tentative to remove the second latch problem leads to a solution that again avoids only the
problem. Now the RS master-slave flip-flop is restricted to R = S′ (see Figure 2.15a). The new input is
named also D, but now D means delay. Indeed, the flip-flop resulting by this restriction, besides avoiding
the unforeseeable transition of the flip-flop, gains a very useful function: the output of the D flip-flop
follows the D input with a delay of one clock cycle. Figure 2.15c illustrates the delay effect of this kind
of flip-flop.

Warrning! D latch is a transparent circuit during the active level of the clock, unlike the D flip-flop
which is no time transparent and switches only on the active edge of the clock.
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Figure 2.15: The delay (D) flip-flop. Restricting the two inputs of an RS flip-flop to D = S = R′, results an FF
with predictable transitions. a. The structure. b. The logic symbol. c. The wave forms proving the delay effect of
the D flip-flop.

VeriSim 2.7 The structural Verilog description of a D flip-flop, provided only for simulation purpose,
follows.

/ * ************************************************************************
F i l e name : d f f . v
C i r c u i t name : Delay F l ip −Flop (DFF)
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f a DFF
************************************************************************ * /

module d f f ( output out , n o t o u t ,
input d , c l o c k ) ;

wire n o t d ;
not #2 d a t a i n v e r t e r ( no t d , d ) ;
m a s t e r s l a v e r s f f ( out , n o t o u t , d , no t d , c l o c k ) ;

endmodule

The functional description currently used for a D flip-flop active on the negative edge of clock is:

/ * ************************************************************************
F i l e name : d f f . v
C i r c u i t name : Delay F l ip −Flop (DFF)
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a DFF
************************************************************************ * /
module d f f ( output reg o u t ,

input d , c l o c k ) ;
always @( negedge c l o c k ) o u t <= d ;

endmodule

⋄

The main difference between latches and flip-flops is that over the D flip-flop we can close a new
loop in a very controllable fashion, unlike the D latch which allows a new loop, but the resulting behavior
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is not so controllable because of its transparency. Closing loops over D flip-flops result in synchronous
systems. Closing loops over D latches result in asynchronous systems. Both are useful, but in the first
kind of systems the complexity is easiest manageable.

2.2.7 Register

One of the most representative and useful storage circuit is the register. The main application of register
is to support the synchronous sequential processes in a digital system. There are two typical use of the
register:

• provides a delayed connection between sub-systems

• stores the internal state of a system (see section 1.2); the register is used to close of the internal
loop in a digital system.

The register circuit store synchronously the value applied on its inputs. Register is used mainly to
support the design of control structures in a digital system.

The skeleton of any contemporary digital design is based on registers, used to store, synchronously
with the system clock, the overall state of the system. The Verilog (or VHDL) description of a structured
digital design starts by defining the registers, and provides, usually, an Register Transfer Logic (RTL)
description. An RTL code describe a set of registers interconnected through more or less complex com-
binational blocks. For a register is a non-transparent structure any loop configurations are supported.
Therefore, the design is freed by the care of the uncontrollable loops.
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Figure 2.16: The n-bit register. a. The structure: a bunch of DF-F connected in parallel. b. The logic symbol.

Definition 2.2 An n-bit register, Rn, is made by parallel connecting a Rn−1 with a D (master-slave)
flip-flop (see Figure 2.16). R1 is a D flip-flop.
⋄

VeriSim 2.8 An 8-bit enabled and resetable register with 2 unit time delay is described by the following
Verilog module:
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/ * ************************************************************************
F i l e name : r e g i s t e r . v
C i r c u i t name : R e g i s t e r o f n b i t s
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a n− b i t r e g i s t e r
************************************************************************ * /

module r e g i s t e r # ( parameter n = 8)
( output reg [ n − 1 : 0 ] o u t ,

input [ n − 1 : 0 ] i n ,
input r e s e t , enab l e , c l o c k ) ;

always @( posedge c l o c k ) #2 i f ( r e s e t ) o u t <= 0 ;
e l s e i f ( e n a b l e ) o u t <= i n ;

e l s e o u t <= o u t ;
endmodule

The time behavior specified by #2 is added only for simulation purpose. The synthesizable version
must avoid this non-sinthesizable representation.

⋄

Something very important is introduced by the last two Verilog modules: the distinction between
blocking and non-blocking assignment:

• the blocking assignment, = : the whole statement is done before control passes to the next

• the non-blocking assignment, <= : evaluate all the right-hand sides in the project for the current
time unit and assign the left-hand sides only at the end of the time unit.

Let us use the following simulation to explain the very important difference between the two kinds of
assignment.

VeriSim 2.9 The following simulation used 6 clocked registers. All of them switch on the positive edge.
But, the code is written for three of them using the blocking assignment, while for the other three
using the non-blocking assignment. The resulting behavior show us the difference between the two
clock triggered assignment. The blocking assignment seems to be useless, because propagates the input
through all the three registers in one clock cycle. The non-blocking assignment shifts the input along the
three serially connected registers clock by clock. This second behavior can be used in real application
to obtain clock controlled delays.
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/ * ************************************************************************
F i l e name : b l o c k i n g N o n B l o c k i n g . v
C i r c u i t name : I l l u s t r a t i n g module f o r b l o c k i n g / n o n b l o c k i n g a s s i g n m e n t
D e s c r i p t i o n : shows t h e e f f e c t o f b l o c k i n g and n o o n b l o c k i n g a s s i g n m e n t s
************************************************************************ * /

module b l oc k i ng No n Bl oc k i n g ( output reg [ 1 : 0 ] b l o c k i n g O u t ,
output reg [ 1 : 0 ] nonBlock ingOut ,
input [ 1 : 0 ] i n ,
input c l o c k ) ;

reg [ 1 : 0 ] reg1 , reg2 , reg3 , r eg4 ;
always @( posedge c l o c k ) begin r eg1 = i n ;

r e g2 = reg1 ;
b l o c k i n g O u t = reg2 ; end

always @( posedge c l o c k ) begin r eg3 <= i n ;
r eg4 <= reg3 ;
nonBlock ingOut <= reg4 ; end

endmodule

/ * ************************************************************************
F i l e name : b l o c k i n g N o n B l o c k i n g S i m u l a t i o n . v
C i r c u i t name : T e s t b e n c h f o r b l o c k i n g N o n B l o c k i n g S i m u l a t i o n module
D e s c r i p t i o n : g e n e r a t e s t i m u l u s f o r b l o c k i n g N o n B l o c k i n g module
************************************************************************ * /

module b l o c k i n g N o n B l o c k i n g S i m u l a t i o n ;
reg c l o c k ;
reg [ 1 : 0 ] i n ;
wire [ 1 : 0 ] b lock ingOut , nonBlock ingOut ;
i n i t i a l begin c l o c k = 0 ; f o r e v e r #1 c l o c k = ˜ c l o c k ; end
i n i t i a l begin i n = 2 ’ b01 ;

#2 i n = 2 ’ b10 ;
#2 i n = 2 ’ b11 ;
#2 i n = 2 ’ b00 ;
#7 $ s t o p ; end

b l oc k i ng N on Bl oc k i n g d u t ( b lock ingOut , nonBlockingOut , in , c l o c k ) ;
i n i t i a l $monitor
( ” c l o c k=%b i n=%b reg1=%b reg2=%b bOut=%b reg3=%b reg4=%b nbOut=%b ” ,
c lock , in , d u t . reg1 , d u t . reg2 , b lock ingOu t , d u t . reg3 , d u t . reg4 ,
nonBlock ingOut ) ;

endmodule
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/ * ************************************************************************
The m o n i t o r o u t p u t
************************************************************************ * /

c l o c k =0 i n =01 reg1 =xx reg2 =xx bOut=xx reg3 =xx reg4 =xx nbOut=xx
c l o c k =1 i n =01 reg1 =01 reg2 =01 bOut =01 reg3 =01 reg4 =xx nbOut=xx
c l o c k =0 i n =10 reg1 =01 reg2 =01 bOut =01 reg3 =01 reg4 =xx nbOut=xx
c l o c k =1 i n =10 reg1 =10 reg2 =10 bOut =10 reg3 =10 reg4 =01 nbOut=xx
c l o c k =0 i n =11 reg1 =10 reg2 =10 bOut =10 reg3 =10 reg4 =01 nbOut=xx
c l o c k =1 i n =11 reg1 =11 reg2 =11 bOut =11 reg3 =11 reg4 =10 nbOut =01
c l o c k =0 i n =00 reg1 =11 reg2 =11 bOut =11 reg3 =11 reg4 =10 nbOut =01
c l o c k =1 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =11 nbOut =10
c l o c k =0 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =11 nbOut =10
c l o c k =1 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =00 nbOut =11
c l o c k =0 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =00 nbOut =11
c l o c k =1 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =00 nbOut =00
c l o c k =0 i n =00 reg1 =00 reg2 =00 bOut =00 reg3 =00 reg4 =00 nbOut =00

It is obvious that the registers reg1 and reg2 are useless because they are somehow “transparent”.
⋄

The non-blocking version of assigning the content of a register will provide a clock controlled delay.
Anytime in a design there are more than one registers the non-blocking assignment must be used.

VerilogSummary 1 :

= : blocking assignment the whole statement is done before control passes to the next

<= : non-blocking assignment evaluate all the right-hand sides in the project for the current time unit
and assign the left-hand sides only at the end of the time unit.

The main feature of the register assures its non-transparency, excepting an ”undecided transparency”
during a short time interval, tSU + tedge + tH , centered on the active edge of the clock signal. Thus, a
new loop can be closed carelessly over a structure containing a register. Due to its non-transparency
the register will be properly loaded with any value, even with a value depending on its own current
content. This last feature is the main condition to close the loop of a synchronous automata - the structure
presented in the next chapter.

The register is used at least for the following purposes: to store, to buffer, to synchronize, to delay,
to loop, . . ..

Storing The enable input allows us to determine when (i.e., in what clock cycle) the input is loaded
into a register. If enable = 0, the registers stores the data loaded in the last clock cycle when the
condition enable = 1 was fulfilled. This means we can keep the content once stored into the register
as much time as it is needed.
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register my reg(.out (my out),

.in (my in ),

.enable (1’b1 ),

.reset (rst ),

.clock (clk ));
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Figure 2.17: Register at work. At each active edge of clock (in this example it is the positive edge) the register’s
output takes the value applied on its inputs if reset = 0 and enable = 1.

Buffering The registers can be used to buffer (to isolate, to separate) two distinct blocks so as some
behaviors are not transmitted through the register. For example, in Figure 2.17 the transitions from c to
d and from d to e at the input of the register are not transmitted to the output.

Synchronizing For various reasons the digital signals are generated “unaligned in time” to the inputs
of a system, but they are needed to be received very well controlled in time. We say usually, the signals
are applied asynchronously but they must be received synchronously. For example, in Figure 2.17 the
input of the register changes somehow chaotically related to the active edge of the clock, but the output
of the register switches with a constant delay after the positive edge of clock. We say the inputs are
synchronized to the output of the register. Their behavior is “time tempered”.

Delaying The input value applied in the clock cycle n to the input of a register is generated to the
output of the register in the clock cycle n+1. In other words, the input of a register is delayed one clock
cycle to its output. See in Figure 2.17 how the occurrence of a value in one clock cycle to the register’s
input is followed in the next clock cycle by the occurrence of the same value to the register’s output.

Looping Structuring a digital system means to make different kind of connections. One of the most
special, as we see in what follows, is a connection from some outputs to certain inputs in a digital
subsystem. This kind of connections are called loops. The register is an important structural element in
closing controllable loops inside a complex system.

2.2.8 Shift register

One of the simplest application of register is to perform shift operations. The numerical interpretation of
a shift is the multiplication by the power of 2, for left shift, or division with the of 2, for right shift. A
register used as shifter must be featured with four operation modes:
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00: nop – no operation mode; it is mandatory for any set of function associated with a circuit (the circuit
must be “able to stay doing nothing”)

01: load – the register’s state is initialized to the value applied on its inputs

10: leftShift – shift left with one binary position; if the register’s state is interpreted as a binary number,
then the operation performed is a multiplication by 2

11: rightShift – shift right with one binary position; if the register’s state is interpreted as a binary
number, then the operation performed is a division by 2

A synthesisable Verilog description of the circuit is:

/ * ************************************************************************
F i l e name : s h i f t R e g i s t e r . v
C i r c u i t name : S h i f t R e g i s t e r
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a l e f t / r i g h t s h i f t r e g i s t e r
************************************************************************ * /
module s h i f t R e g i s t e r ( output reg [ 1 5 : 0 ] o u t ,

input [ 1 5 : 0 ] i n ,
input [ 1 : 0 ] mode ,
input c l o c k ) ;

always @( posedge c l o c k )
case ( mode )

2 ’ b00 : o u t <= o u t ;
2 ’ b01 : o u t <= i n ;
2 ’ b10 : o u t <= o u t << 1 ;
2 ’ b11 : o u t <= o u t >> 1 ; / / f o r p o s i t i v e i n t e g e r s
/ / 2 ’ b11 : o u t <= { o u t [ 1 5 ] , o u t [ 1 5 : 1 ] } ; / / f o r s i g n e d i n t e g e r s

endcase
endmodule

The case construct describes a 4-input multiplexor, MUX4. Two versions are provided in the previ-
ous code, one for positive integer numbers and another for signed integers. The second is “commented”.

2.2.9 Counter

Let be the following circuit: its output is identical with its internal state, its state can take the value
received on its data input, its internal state can be modified incrementing the number which represents
its state or can stay unchanged. Let us call this circuit: presetable counter. Its Verilog behavioral
description, for an 8-bit state, is:
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/ * ************************************************************************
F i l e name : c o u n t e r . v
C i r c u i t name : P r e s e t a b l e Counter
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a p r e s e t a b l e c o u n t e r
************************************************************************ * /

module c o u n t e r ( output reg [ 7 : 0 ] o u t ,
input [ 7 : 0 ] i n ,
input i n i t , / / i n i t i a l i z e w i t h i n
input c o u n t , / / i n c r e m e n t s t a t e
input c l o c k ) ;

always @( posedge c l o c k ) / / a lways a t t h e p o s i t i v e edge o f c l o c k
i f ( i n i t ) o u t <= i n ;

e l s e i f ( c o u n t ) o u t <= o u t + 1 ;
endmodule

The init input has priority to the input count, if it is active (init = 1) the value of count is
ignored and the value of state is initialized to in. If init in not activated, then if count = 1 then the
value of counter is incremented modulo 256.

The actual structure of the circuit results (easy) from the previous Verilog description. Indeed, the
structure

if (init) ...

else ...

suggests a selector (a multiplexor), while

out <= out + 1;

imposes an increment circuit. Thus, the schematic represented in Figure 2.18 pops up in our mind.

The circuit INC8 in Figure 2.18 represents an increment circuit which outputs the input in incre-
mented when the input inc en (increment enable) is activated.

2.3 Putting all together

Now, going back to our first target enounced in section 1.3, let us put together what we learned about
digital circuits in this section. The RTL code for the Digital Pixel Corrector circuit can be written now
“more directly” as follows:
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Figure 2.18: The internal structure of a counter. If init = 1, then the value of the register is initialized to
in, else if count = 1 each active edge of clock loads in register its incremented value.

/ * ************************************************************************
F i l e name : p i x e l C o r r e c t o r . v
C i r c u i t name : P i x e l C o r r e c t o r Sys tem
D e s c r i p t i o n : t h e c i r c u i t i n t e r p o l a t e s t h e m i s s i n g v a l u e s i n a v i d e o

s t r ea m
************************************************************************ * /
module p i x e l C o r r e c t o r # ( ‘ i n c l u d e ” 0 p a r a m P i x e l C o r . v ” )

( output [m− 1 : 0 ] o u t ,
input [ n − 1 : 0 ] i n ,

input c l o c k ) ;

reg [ q − 1 : 0 ] s t a t e ; / / t h e s t a t e r e g i s t e r

always @( posedge c l o c k ) s t a t e <= { s t a t e [ 7 : 0 ] , i n } ; / / s t a t e t r a n s i t i o n

a s s i g n o u t = ( s t a t e [ 7 : 4 ] == 0) ?
({1 ’ b0 , s t a t e [ 3 : 0 ] } + s t a t e [ 1 1 : 8 ] ) >> 1 : s t a t e [ 7 : 4 ] ;

endmodule

The schematic we have in mind while writing the previous code is represented in Figure 2.19, where:

• the state register, state, has three sections of 4 bits each; in each cycle the positive edge of clock
shifts left the content of state 4 binary positions, and in the freed locations loads the input value in

• the middle section is continuously tested, by the module Zero, if its value is zero
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• the first and the last sections of the state are continuously added and the result is divided by 2
(shifted one position right) and applied to the input 1 of the selector circuit

• the selector circuit, ifThenElse (the multiplexer), selects to the output, according to the test
performed by the module Zero, the middle section of state or the shifted output of the adder.
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carry

Figure 2.19: The structure of the pixelCorrector circuit.

Each received value is loaded first as state[3:0], then it moves in the next section. Thus, an input
value cames in the position to be sent out only with a delay of two clock cycles. This two-cycle latency is
imposed by the interpolation algorithm which must wait for the next input value to be loaded as a stable
value.

2.4 Concluding about this short introduction in digital circuits

A digital circuit is build of combinational circuits and storage registers

Combinational logic can do both, control and arithmetic

Logic circuits, with appropriate loops, can memorize

HDL, as Verilog or VHDL, must be used to describe digital circuits

Growing, speeding and featuring digital circuits digital systems are obtained

2.5 Problems

Combinational circuits

Problem 2.1 Design the n-input Equal circuit which provides 1 on its output only when its two inputs,
of n-bits each, are equal.
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Problem 2.2 Design a 4-input selector. The selection code is sel[1:0] and the inputs are of 1 bit each:
in3, in2, in1, in0.

Problem 2.3 Provide the proof for the following Boolean equivalence:

a ·b+ c · (a+b) = a ·b+ c · (a⊕b)

Problem 2.4 Provide the Verilog structural description of the adder module for n = 8. Synthesise the
design and simulate it.

Problem 2.5 Draw the logic schematic for the XOR circuit.

Problem 2.6 Provide the proof that: a⊕b = (a′⊕b)′ = (a⊕b′)′.

Problem 2.7 Define the truth table for the one-bit subtractor and extract the two expressions describing
the associated circuit.

Problem 2.8 Design the structural description of a n-bit subtractor. Synthesise and simulate it.

Problem 2.9 Provide the structural Verilog description of the adder/subtractor circuit behaviorally de-
fined as follows:

/ * ************************************************************************
F i l e name : addSub . v
C i r c u i t name : Adder−S u b t r a c t e r
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f an adder s u b s t r a c t e r
************************************************************************ * /
module addSub #( parameter n = 4) / / d e f i n e s a n− b i t adder

( output [ n − 1 : 0 ] sum , / / t h e n− b i t r e s u l t
output c a r r y , / / c a r r y o u t p u t ( i t i s borrow f o r s u b t r a c t )
input sub , / / sub=1 ? sub : add
input c , / / c a r r y i n p u t ( borrow i n p u t f o r s u b t r a c t )
input [ n − 1 : 0 ] a , b ) ; / / t h e two n− b i t numbers

a s s i g n { c a r r y , sum} = sub ? a − b − c : a + b + c ;
endmodule

Simulate and synthesise the resulting design.

Flip-flops

Problem 2.10 Why, in Figure 2.6, we did not use a XOR gate to close a latching loop?

Problem 2.11 Design the structural description, in Verilog, for a NOR elementary latch. Simulate the
circuit in order to determine the shortest signal which is able to provide a stable transition of the circuit.

Try to use NOR gates with different propagation time.

Problem 2.12 When it is necessary to use a NOR elementary latch for a de-bouncing circuit?
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Problem 2.13 Try to use the structural simulation of an elementary latch to see how behaves the circuit
when the two inputs of the circuit are activated simultaneously (the second latch problem). If you are
sure the simulation is correct, but it goes spooky, then go to office ours to discuss with your teacher.

Problem 2.14 What if the NAND gates from the circuit represented in Figure 2.9 are substituted with
NOR gates?

Problem 2.15 Design and simulate structurally an elementary clocked latch, using only 4 gates, which
is transparent on the level 0 of the clock signal.

Problem 2.16 Provide the test module for the module data latch (see subsection 2.2.3) in order to
verify the design.

Problem 2.17 Draw, at the gate level, the internal structure of a master-slave RS flip-flop using

• NAND gates and an inverter

• NOR gates and an inverter

• NAND and NOR gates, for two versions:

– triggered by the positive edge of clock

– triggered by the negative edge of clock.

Applications

Problem 2.18 Draw the block schematic for the circuit performing pixel correction according to the
following interpolation rule:

s′(t) = (2× s(t−2)+6× s(t−1)+6× s(t +1)+6× s(t +2))/16

Using the schematic, write the Verilog code describing the circuit. Simulate and synthesise it.

Problem 2.19 Design a circuit which receives a stream of 8-bit numbers and sends, with a minimal
latency, instead of each received number the mean value of the last three received numbers.

Problem 2.20 Design a circuit which receives a stream of 8-bit signed numbers and sends, with one
clock cycle latency, instead of each received number its absolute value.

Problem 2.21 Draw the block schematic for the module shiftRegister, described in subsection 2.2.8,
using a register an two input multiplexers, MUX2. Provide a Verilog structural description for the
resulting circuit. Simulate and synthesise it.

Problem 2.22 Define a two-input DF-F using a DF-F and an EMUX. Use the new structure to describe
structurally a presetable shift right register. Add the possibility to perform logic or arithmetic shift.

Problem 2.23 Write the structural description for the increment circuit INC8 introduces in subsection
2.2.9.
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Problem 2.24 Write the structural description for the module counter defined in subsection 2.2.9. Sim-
ulate and synthesize it.

Problem 2.25 Define and design a reversible counter able to count-up and count-down. Simulate and
synthesize it.

Problem 2.26 Design the accumulator circuit able to add sequentially a clock synchronized sequence
of up to 256 16-bit signed integers. The connections of the circuit are

/ * ************************************************************************
F i l e name : a c c u m u l a t o r . v
C i r c u i t name : S e q u e n t i a l Accumula tor
D e s c r i p t i o n : i s a dummy module d e f i n i n g t h e c o n n e c t i o n s o n l y
************************************************************************ * /
module a c c u m u l a t o r

( output reg [ ? : 0 ] acc , / / r e g i s t e r used t o a c c u m u l a t e
input [ 1 5 : 0 ] number , / / i n p u t r e c e i v i n g t h e s t r ea m o f numbers
input [ 1 : 0 ] com , / / 00=nop , 01= i n i t , 10= a c c u m u l a t e
input c l o c k ) ;

. . .
endmodule

The init command initializes the state, by clearing the register, in order to start a new accumulation
process.

Problem 2.27 Design the two n-bit inputs combinational circuit which computes the absolute difference
of two numbers.

Problem 2.28 Define and design a circuit which receives a one-bit wave form and shows on its three
one-bit outputs, by one clock cycle long positive impulses, the following events:

• any positive transition of the input signal

• any negative transition of the input signal

• any transition of the input signal.

Problem 2.29 Design the combinational circuit which compute the absolute value of a signed number.



Chapter 3

GROWING & SPEEDING &
FEATURING

In the previous chapter
starting from simple algorithms small combinational and sequential circuits were designed, using
the Verilog HDL as tool to describe and simulate. From the first chapter is ggod to remember:

• Verilog can be used for both behavioral (what does the circuit?) and structural (how looks
the circuit?) descriptions

• the outputs of a combinational circuits follow continuously with delay any input change,
while a sequential one takes into account a shorter or a longer history of the input behavior

• the external time dependencies must be minimized if not avoided; each circuit must have its
own and independent time behavior in order to allow global optimizations

In this chapter
the three main mechanisms used to generate a digital system are introduced:

• composition: the mechanism allowing a digital circuit to increase its size and its computa-
tional power

• pipeline: is the way of interconnecting circuits to avoid the increase of the delays generated
by too many serial compositions

• loop: is a kind of connection responsible for adding new type of behaviors, mainly by in-
creasing the autonomy of the system

In the next chapter
a taxonomy based on the number of loops closed inside a digital system is proposed. Each digital
order, starting from 0, is characterized by the degree of the autonomy its behavior develops. While
digital circuits are combinational or sequential, digital systems will be:

• 0 order, no-loop circuits (the combinational circuits)
• first order, 1-loop circuits (simple flip-flops, ...)
• second order, 2-loop circuits (finite automata, ...)
• third order, 3-loop circuits (processors, ...)
• ...

69
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... there is no scientific theory about what can and
can’t be built.

David Deutsch1

Engineering only uses theories, but it is art.

In this section we talk about simple things which have multiple, sometime spectacular, followings.
What can be more obvious than that a system is composed by many subsystems and some special behav-
iors are reached only using appropriate connections.

Starting from the ways of composing big and complex digital systems by appropriately interconnect-
ing simple and small digital circuits, this book introduces a more detailed classification of digital systems.
The new taxonomy classifies digital systems in orders, based on the maximum number of included loops
closed inside each digital system. We start from the basic idea that a new loop closed in a digital system
adds new functional features in it. By composition, the system grows only by forwarded connections, but
by appropriately closed backward connections it gains new functional capabilities. Therefore, we will
be able to define many functional levels, starting with time independent combinational functions and
continuing with memory functions, sequencing functions, control functions and interpreting functions.
Basically, each new loop manifests itself by increasing the degree of autonomy of the system.

Therefore, the main goal of this section is to emphasize the fundamental developing mechanisms
in digital systems which consist in compositions & loops by which digital systems gain in size and in
functional complexity.

In order to better understand the correlation between functional aspects and structural aspect in
digital systems we need a suggestive image about how these systems grow in size and how they gain new
functional capabilities. The oldest distinction between combinational circuits and sequential circuits is
now obsolete because of the diversity of circuits and the diversity of their applications. In this section we
present a new idea about a mechanism which emphasizes a hierarchy in the world of digital system. This
world will be hierarchically organized in orders counted from 0 to n. At each new level a functional gain
is obtained as a consequence of the increased autonomy of the system.

Two are the mechanisms involved in the process of building digital systems. The first allows of sys-
tem to grow in size. It is the composition, which help us to put together, using only forward connections,
many subsystems in order to have a bigger system. The second mechanism is a special connection that
provides new functional features. It is the loop connection, simply the loop. Where a new loop is closed,
a new kind of behavior is expected. To behave means, mainly, to have autonomy. If a system use a part
of own outputs to drive some of its inputs, then “he drives himself” and an outsider receives this fact as
an autonomous process.

Let us present in a systematic way, in the following subsections, the two mechanisms. Both are very
simple, but our goal is to emphasize, in the same time, some specific side effects as consequences of
composing & looping, like the pipeline connection – used to accelerate the speed of the too deep circuits
– or the speculative mechanisms – used to allow loops to be closed in pipelined structures.

Building a real circuit means mainly to interconnect simple and small components in order to grow
an enough fast system appropriately featured. But, growing is a concept with no precise meaning. Many
people do not make distinction between “growing the size” and “growing the complexity” of a system,

1David Deutch’s work on quantum computation laid the foundation for that field, grounding new approaches in both physics
and the theory of computation. He is the author of The Fabric of Reality.
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for example. We will start making the necessary distinctions between “size” and “complexity” in the
process of growing a digital system.

3.1 Size vs. Complexity

The huge size of the actual circuits implemented on a single chip imposes a more precise distinction
between simple circuits and complex circuits. When we can integrated on a single chip more than 109

components, the size of the circuits becomes less important than their complexity. Unfortunately we
don’t make a clear distinction between size and complexity. We say usually: “the complexity of a com-
putation is given by the size of memory and by the CPU time”. But, if we have to design a circuit of
100 million transistors it is very important to distinguish between a circuit having an uniform structure
and a randomly structured ones. In the first case the circuit can be easy specified, easy described in an
HDL, easy tested and so on. Otherwise, if the structure is completely random, without any repetitive
substructure inside, it can be described using only a description having a similar dimension with the
circuit size. When the circuit is small, it is not a problem, but for million of components the problem
has no solution. Therefore, if the circuit is very big, it is not enough to deal only with its size, the most
important becomes also the degree of uniformity of the circuit. This degree of uniformity, the degree of
order inside the circuit can be specified by its complexity.

As a consequence we must distinguish more carefully the concept of size by the concept of complex-
ity. Follow the definitions of these terms with the meanings we will use in this book.

Definition 3.1 The size of a digital circuit, Sdigital circuit , is given by the dimension of the physical re-
sources used to implement it. ⋄

In order to provide a numerical expression for size we need a more detailed definition which takes
into account technological aspects. In the ’40s we counted electronic bulbs, in the ’50s we counted
transistors, in the ’60s we counted SSI2 and MSI3 packages. In the ’70s we started to use two measures:
sometimes the number of transistors or the number of 2-input gates on the Silicon die and other times
the Silicon die area. Thus, we propose two numerical measures for the size.

Definition 3.2 The gate size of a digital circuit, GSdigital circuit , is given by the total number of CMOS
pairs of transistors used for building the gates (see the appendix Basic circuits) used to implement it4. ⋄

This definition of size offers an almost accurate image about the Silicon area used to implement the
circuit, but the effects of lay-out, of fan-out and of speed are not catched by this definition.

Definition 3.3 The area size of a digital circuit, ASdigital circuit , is given by the dimension of the area on
Silicon used to implement it. ⋄

The area size is useful to compute the price of the implementation because when a circuit is produced
we pay for the number of wafers. If the circuit has a big area, the number of the circuits per wafer is
small and the yield is low5.

2Small Size Integrated circuits
3Medium Size Integrated circuits
4Sometimes gate size is expressed in the total number of 2-input gates necessary to implement the circuit. We prefer to

count CMOS pairs of transistors (almost identical with the number of inputs) instead of equivalent 2-input gates because is
simplest. Anyway, both ways are partially inaccurate because, for various reasons, the transistors used in implementing a gate
have different areas.

5The same number of errors make useless a bigger area of the wafer containing large circuits.
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Definition 3.4 The algorithmic complexity of a digital circuit, simply the complexity, Cdigital circuit , has
the magnitude order given by the minimal number of symbols needed to express its definition. ⋄

Definition 2.2 is inspired by Gregory Chaitin’s definition for the algorithmic complexity of a string
of symbols [Chaitin ’77]. The algorithmic complexity of a string is related to the dimension of the
smallest program that generates it. The program is interpreted by a machine (more in Chapter 12). Our
Cdigital circuit can be associated to the shortest unambiguous circuit description in a certain HDL (in the
most of cases it is about a behavioral description).

Definition 3.5 A simple circuit is a circuit having the complexity much smaller than its size:

Csimple circuit << Ssimple circuit .

Usually the complexity of a simple circuit is constant: Csimple circuit ∈ O(1). ⋄

Definition 3.6 A complex circuit is a circuit having the complexity in the same magnitude order with
its size:

Ccomplex circuit ∼ Scomplex circuit .⋄

Example 3.1 The following Verilog program describes a complex circuit, because the size of its defini-
tion (the program) is

Sde f . o f random circ = k1 + k2×Srandom circ ∈ O(Srandom circ).

/ * ************************************************************************
F i l e name : r a n d o m c i r c . v
C i r c u i t name : Example o f a complex c i r c u i t
D e s c r i p t i o n : a s m a l l complex ne twork o f g a t e s
************************************************************************ * /

module r a n d o m c i r c ( output f , g ,
input a , b , c , d , e ) ;

wire w1 , w2 ;

and and1 ( w1 , a , b ) ,
and2 ( w2 , c , d ) ;

or or1 ( f , w1 , c ) ,
o r2 ( g , e , w2 ) ;

endmodule

⋄

Example 3.2 The following Verilog program describes a simple circuit, because the program that define
completely the circuit is the same for any value of n.
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/ * ************************************************************************
F i l e name : o r p r e f i x e s . v
C i r c u i t name : Example o f s i m p l e c i r c u i t
D e s c r i p t i o n : a b i g s i m p l e c i r c u i t
************************************************************************ * /

module o r p r e f i x e s # ( parameter n = 256)
( output reg [ 0 : n −1] out ,

input [ 0 : n −1] i n ) ;

i n t e g e r k ;
always @( i n ) begin o u t [ 0 ] = i n [ 0 ] ;

f o r ( k =1; k<n ; k=k +1) o u t [ k ] = i n [ k ] | o u t [ k − 1 ] ;
end

endmodule

The prefixes of OR circuit consists in n OR2 gates connected in a very regular form. The definition
is the same for any value of n6. ⋄

Composing circuits generate not only biggest structures, but also deepest ones. The depth of the
circuit is related with the associated propagation time.

Definition 3.7 The depth of a combinational circuit is equal with the total number of serially connected
constant input gates (usually 2-input gates) on the longest path from inputs to the outputs of the circuit.
⋄

The previous definition offers also only an approximate image about the propagation time through a
combinational circuit. Inspecting the parameters of the gates listed in Appendix Standard cell libraries
you will see more complex dependence contributing to the delay introduced by a certain circuit. Also,
the contribution of the interconnecting wires must be considered when the actual propagation time in a
combinational circuit is evaluated.

Some digital functions can be described starting from the elementary circuit which performs them,
adding a recursive rule for building a circuit that executes the same function for any size of the input.
For the rest of the circuits, which don’t have such type of definitions, we must use a definition that
describes in detail the entire circuit. This description will be non-recursive and thus complex, because its
dimension is proportional with the size of circuit (each part of the circuit must be explicitly specified in
this kind of definition). We shall call random circuit a complex circuit, because there is no (simple) rule
for describing it.

The first type of circuits, having recursive definitions, are simple circuits. Indeed, the elementary
circuit has a constant (usually small) size and the recursive rule can be expressed using a constant number
of signs (symbolic expressions or drawings). Therefore, the dimension of the definition remains constant,
independent by n, for this kind of circuits. In this book, this distinction, between simple and complex,
will be exemplified and will be used to promote useful distinctions between different solutions.

At the current technological level the size becomes less important than the complexity, because we
can produce circuits having an increasing number of components, but we can describe only circuits

6A short discussion occurs when the dimension of the input is specified. To be extremely rigorous, the parameter n is
expressed using a string o symbols in O(log n). But usually this aspect can be ignored.
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having the range of complexity limited by our mental capacity to deal efficiently with complex represen-
tations. The first step to have a circuit is to express what it must do in a behavioral description written
in a certain HDL. If this ”definition” is too large, having the magnitude order of a huge multi-billion-
transistor circuit, we don’t have the possibility to write the program expressing our desire.

In the domain of circuit design we passed long ago beyond the stage of minimizing the number of
gates in a few gates circuit. Now, the most important thing, in the multi-billion-transistor circuit era,
is the ability to describe, by recursive definitions, simple (because we can’t write huge programs), big
(because we can produce more circuits on the same area) sized circuits. We must take into consideration
that the Moore’s Law applies to size not to complexity.

3.2 Time restrictions in digital systems

The most general form of a digital circuit (see Figure 3.1) includes both combinational and sequential
behaviors. It includes two combinational circuits – (comb circ 1 and comb circ 2) – and register.
There are four critical propagation paths in this digital circuit:

1. form input to register through comb circ 1, which determines minimum input arrival time
before clock: tin reg

2. from register to register through comb circ 1, which determines minimum period of clock:
treg reg = Tmin, or maximum frequency of clock: fmax = 1/T

3. from input to output through comb circ 2, which determines maximum combinational path
delay: tin out

4. from register to output through comb circ 2, which determines maximum output required time
after clock: treg out .

If the active transition of clock takes place at t0 and the input signal changes after t0− tin reg, then the
effect of the input change will be not registered correctly at t0 in register. The input must be stable in
the time interval from t0− tin reg to t0 in order to have a predictable behavior of the circuit.

The loop is properly closed only if Tmin > treg+tcc2 +tsu and th < treg+tcc2 , where: treg is the propaga-
tion time through register from active edge of clock to output, and tcc2 is the propagation time through
comb circ 1 on the path 2.

If the system works with the same clock, then tin out < Tmin, preferably tin out << Tmin. Similar
conditions are imposed for tin reg and treg out , because we suppose there are additional combinational
delays in the circuits connected to the inputs and to the outputs of this circuit, or at least a propagation
time through a register or set-up time to the input of a register.

Example 3.3 Let us compute the propagation times for the four critical propagation paths of the counter
circuit represented in Figure 2.18. If we consider #1 = 100ps results:

• tin reg = tp(mux2 8) = 0.1ns
(the set-up time for the register is considered too small to be considered)

• fmax = 1/T = 1/(tp(reg)+ tp(inc)+ tp(mux2 8)) = 1/(0.2+0.1+0.1)ns = 2.5 GHz

• tin out is not defined
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clock

Figure 3.1: The four critical propagation paths in digital circuits. Input-to-register time (tin reg) is
recommended to be as small as possible in order to reduce the time dependency from the previous sub-system.
Register-to-register time (Tmin) must be minimal to allow a high frequency for the clock signal. Input-to-output
time (tin out) is good to be undefined to avoid hard to manage sub-systems interdependencies. Register-to-output
time (treg out ) must be minimal to reduce the time dependency for the next sub-system

• treg out = tp(reg) = 0.2ns ⋄

Example 3.4 Let be the circuit from Figure 3.2, where:

• register is characterized by: tp(register) = 150ps, tsu(register) = 35ps, th = 27ps

• adder with tp(adder) = 550ps

• selector with tp(selector) = 85ps

• comparator with tp(comparator) = 300ps

The circuit is used to accumulate a stream of numbers applied on the input data, and to compare it
against a threshold applied on the input thr. The accumulation process is initialized by the signal
reset, and is controlled by the signal acc.

The propagation time for the four critical propagation path of this circuit are:
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Figure 3.2: Accumulate & compare circuit. In the left-down corner of each rectangle is written the
propagation time of each module. If acc = 1 the circuit accumulates, else the content of register
does not change.

• tin reg = tp(adder)+ tp(selector)+ tsu(register) = (550+85+35)ps = 670ps

• fmax = 1/T = 1/(tp(register)+ tp(adder)+ tp(selector)+ tsu(register)) =
1/(150+550+85+35)ps = 1.21GHz

• tin out = tp(comparator) = 300ps

• treg out = tp(register)+ tp(comparator) = 450ps

⋄

While at the level of small and simple circuits no additional restriction are imposed, for complex
digital systems there are mandatory rules to be followed for an accurate design. Two main restrictions
occur:

1. the combinational path through the entire system must be completely avoided,

2. the combinational, usually called asynchronous, input and output path must be avoided as much
as possible if not completely omitted.

Combinational paths belonging to distinct modules are thus avoided. The main advantage is given by
the fact that design restrictions imposed in one module do not affect time restriction imposed in another
module. There are two ways to consider these restrictions, a weak one and a strong one. The first refers
to the pipeline connections, while the second to the fully buffered connections.
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3.2.1 Pipelined connections

For the pipelined connection between two complex modules the timing restrictions are the following:

1. from input to output through: it is not defined

2. from register to output through: treg out = treg – it does not depend by the internal combinational
structure of the module, i.e., the outputs are synchronous, because they are generated directly
from registers.

comb1

pr1

sr1

sys2

-

�

-
comb2

pr2

sr2

-

�

-- - -

sys1

clock

in1

in2

out1

out2 in2 out2

in1 out1

nextState nextState

Figure 3.3: Pipelined connections.

Only two combinational paths are accepted: (1) from register to register, and (2) form input to
register. In Figure 3.3 a generic configuration is presented. It is about two systems, sys1 and sys2,
pipeline connected using the output pipeline registers (pr1 between sys1 and sys2, and pr2 between
sys2 and an external system). For the internal state are used the state registers sr1 and sr2. The timing
restrictions for the two combinational circuits comb1 and comb2 are not correlated. The maximum clock
speed for each system does not depend by the design restrictions imposed for the other system.

The pipeline connection works well only if the two systems are interconnected with short wires,
i.e., the two systems are implemented on adjacent areas on the silicon die. No additional time must be
considered on connections because they a very short.

The system from Figure 3.3 is descried by the following code.
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/ * ************************************************************************
F i l e name : s y s . v
C i r c u i t name : P i p e l i n e c o n n e c t e d sub −s y s t e m s
D e s c r i p t i o n : i s a dummy code i l l u s t r a t i n g t h e p r i n c i p l e o f p i p e l i n e

c o n n e c t i o n i n a s y s t e m
************************************************************************ * /

module p i p e l i n e C o n n e c t i o n ( output [ 1 5 : 0 ] o u t ,
input [ 1 5 : 0 ] i n ,
input c l o c k ) ;

wire [ 1 5 : 0 ] p i p e C o n n e c t ;
s y s sys1 ( . p r ( p i p e C o n n e c t ) ,

. i n ( i n ) ,

. c l o c k ( c l o c k ) ) ,
sy s2 ( . p r ( o u t ) ,

. i n ( p i p e C o n n e c t ) ,

. c l o c k ( c l o c k ) ) ;
endmodule

module s y s ( output reg [ 1 5 : 0 ] p r ,
input [ 1 5 : 0 ] i n ,
input c l o c k ) ;

reg [ 7 : 0 ] s r ;
wire [ 7 : 0 ] n e x t S t a t e ;
wire [ 1 5 : 0 ] o u t ;
comb myComb ( . ou t1 ( n e x t S t a t e ) ,

. ou t2 ( o u t ) ,

. i n 1 ( s r ) ,

. i n 2 ( i n ) ) ;
always @ ( posedge c l o c k ) begin pr <= o u t ;

s r <= n e x t S t a t e ;
end

endmodule

module comb ( output [ 7 : 0 ] out1 ,
output [ 1 5 : 0 ] out2 ,
input [ 7 : 0 ] i n 1 ,
input [ 1 5 : 0 ] i n 2 ) ;

/ / . . .
endmodule

3.2.2 Fully buffered connections

The most safe approach, the synchronous one, supposes fully registered inputs and outputs (see Figure
3.4 where the functionality is implemented using combinatorial circuits and registers and the interface
with the rest of the system is implemented using only input register and output register).

The modular synchronous design of a big and complex system is the best approach for a robust
design, and the maximum modularity is achieved removing all possible time dependency between the
modules. Then, take care about the module partitioning in a complex system design!
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Two fully buffered modules can be placed on the silicon die with less restrictions, because even if
the resulting wires are long the signals have time to propagate because no gates are connected between
the output register of the sender system and the input register of the receiver system..

input register

comb circuits & registers

output register

?

?

?

?

clock input

output

Figure 3.4: The general structure of a module in a complex digital system. If any big module in a
complex design is buffered with input and output registers, then we are in the ideal situation when: tin reg and
treg out are minimized and tin out is not defined.

For the synchronously interfaced module represented in Figure 3.4 the timing restrictions are the
following:

1. form input to register: tin reg = tsu – it does not depend by the internal structure of the module

2. from register to register: Tmin, and fmax = 1/T – it is a system parameter

3. from input to output through: it is not defined

4. from register to output through: treg out = treg – it does not depend by the internal structure of the
module.

Results a very well encapsuled module easy to be integrate in a complex system. The price of this
approach consists in an increasing number of circuits (the interface registers) and some restrictions in
timing imposed by the additional pipeline stages introduced by the interface registers. These costs can
be reduced by a good system level module partitioning.
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3.3 Growing the size by composition

The mechanism of composition is well known to everyone who worked at least a little in mathematics.
We use forms like:

f (x) = g(h1(x), . . . ,hm(x))

to express the fact that computing the function f requests to compute first all the functions hi(x) and after
that the m-variable function g. We say: the function g is composed with the functions hi in order to have
computed the function f . In the domain digital systems a similar formalism is used to “compose” big
circuits from many smaller ones. We will define the composition mechanism in digital domain using a
Verilog-like formalism.

Definition 3.8 The composition (see Figure 3.5) is a two level construct, which performs the function f
using on the second level the m-ary function g and on the first level the functions h 1, h 2, ... h m,
described by the following, incompletely defined, but synthesisable, Verilog modules.

h 1 h 2 h m

g

? ? ?

?

? ? ?

in

out = f(in)

out 1 out 2 out m

Figure 3.5: The circuit performing composition. The function g is composed with the functions h 1, ...

h m using a two level circuit. The first level contains m circuits computing in parallel the functions h i, and on the
second level there is the circuit computing the reduction-like function g.
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/ * ************************************************************************
F i l e name : f . v
C i r c u i t name : F u n c t i o n f
D e s c r i p t i o n : i s a dummy V e r i l o g module d e s c r i b i n g t h e c o m p o s i t i o n r u l e
************************************************************************ * /

module f # ( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

wire [ s i z e 1 − 1 : 0 ] o u t 1 ;
wire [ s i z e 2 − 1 : 0 ] o u t 2 ;
/ / . . .
wire [ s ize m − 1 : 0 ] o u t
g s e c o n d l e v e l ( . o u t ( o u t ) ,

. i n 1 ( o u t 1 ) ,

. i n 2 ( o u t 2 ) ,
/ / . . .
. in m ( out m ) ) ;

h 1 f i r s t l e v e l 1 ( . o u t ( o u t 1 ) , . i n ( i n ) ) ;
h 2 f i r s t l e v e l 2 ( . o u t ( o u t 2 ) , . i n ( i n ) ) ;
/ / . . .
h m f i r s t l e v e l m ( . o u t ( out m ) , . i n ( i n ) ) ;

endmodule

module g #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e 1 − 1 : 0 ] i n 1 ,
input [ s i z e 2 − 1 : 0 ] i n 2 ,
/ / . . .
input [ s ize m − 1 : 0 ] in m ) ;

/ / . . .
endmodule

module h 1 #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e 1 − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

/ / . . .
endmodule

module h 2 #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e 2 − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

/ / . . .
endmodule

/ / . . .

module h m #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s ize m − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

/ / . . .
endmodule

The content of the file parameters.v is:
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/ * ************************************************************************
F i l e name : p a r a m e t e r s . v
C i r c u i t name : Parame ter s f i l e
D e s c r i p t i o n : d e f i n e t h e p a r a m e t e r s used i n a l l modules o f t h e d e s i g n
************************************************************************ * /

parameter s i z e O u t = 32 ,
s i z e I n = 8 ,
s i z e 1 = 12 ,
s i z e 2 = 16 ,
/ / . . .
s i z e m = 8

⋄

The general form of the composition, previously defined, can be called the serial-parallel composi-
tion, because the modules h 1, ... h m compute in parallel m functions, and all are serial connected
with the module g (we can call it reduction type function, because it reduces the vector generated by
the previous level to a value). There are two limit cases. One is the serial composition and another is
the parallel composition. Both are structurally trivial, but represent essential limit aspects regarding the
resources of parallelism in a digital system.

Definition 3.9 The serial composition (see Figure 3.6a) is the composition with m = 1. Results the
Verilog description:

/ * ************************************************************************
F i l e name : f . v
C i r c u i t name : Dummy d e s c r i p t i o n f o r s e r i a l c o m p o s i t i o n
D e s c r i p t i o n : shows t h e s e r i a l c o m p o s i t i o n o f two s y s t e m s
************************************************************************ * /

module f # ( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

wire [ s i z e 1 − 1 : 0 ] o u t 1 ;
g s e c o n d l e v e l ( . o u t ( o u t ) ,

. i n 1 ( o u t 1 ) ) ;
h 1 f i r s t l e v e l 1 ( . o u t ( o u t 1 ) , . i n ( i n ) ) ;

endmodule

module g #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e 1 − 1 : 0 ] i n 1 ) ;

/ / . . .
endmodule

module h 1 #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e 1 − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

/ / . . .
endmodule
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⋄

? ? ?

?

h 1

?

in

g

b.

h 1 h 2 h m

? ? ?

in

out 2 out m

?
out 1

out
a.

Figure 3.6: The two limit forms of composition. a. The serial composition, for m = 1, imposing an inherent
sequential computation. b. The parallel composition, with no reduction-like function, performing data parallel
computation.

Definition 3.10 The parallel composition (see Figure 3.6b) is the composition in the particular case
when g is the identity function. Results the following Verilog description:

/ * ************************************************************************
F i l e name : f . v
C i r c u i t name : Dummy d e s c r i p t i o n f o r p a r a l l e l c o m p o s i t i o n
D e s c r i p t i o n : shows how are p a r a l l e l composed many s y s t e m s
************************************************************************ * /

module f # ( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e O u t − 1 : 0 ] o u t ,
input [ s i z e I n − 1 : 0 ] i n ) ;

wire [ s i z e 1 − 1 : 0 ] o u t 1 ;
wire [ s i z e 2 − 1 : 0 ] o u t 2 ;
/ / . . .
wire [ s ize m − 1 : 0 ] out m ;
a s s i g n o u t = { out m ,

/ / . . .
ou t 2 ,
o u t 1 } ; / / g i s i d e n t i t y f u n c t i o n

h 1 f i r s t l e v e l 1 ( . o u t ( o u t 1 ) , . i n ( i n ) ) ;
/ / . . .
h m f i r s t l e v e l m ( . o u t ( out m ) , . i n ( i n ) ) ;

endmodule
module h 1 #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s i z e 1 − 1 : 0 ] o u t ,

input [ s i z e I n − 1 : 0 ] i n ) ;
/ / . . .

endmodule
/ / . . .
module h m #( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( output [ s ize m − 1 : 0 ] o u t ,

input [ s i z e I n − 1 : 0 ] i n ) ;
endmodule
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The content of the file parameters.v is now:

/ * ************************************************************************
F i l e name : p a r a m e t e r s . v
C i r c u i t name : Parameter f i l e
D e s c r i p t i o n : d e f i n e s t h e parame te r f o r t h e p a r a l l e l composed s y s t e m
************************************************************************ * /

parameter s i z e I n = 8 ,
s i z e 1 = 12 ,
/ / . . .
s i z e m = 8 ,
s i z e O u t = s i z e 1 +

/ / . . .
s i z e m

⋄

Example 3.5 Using the mechanism described in Definition 1.3 the circuit computing the scalar product
between two 4-component vectors will be defined, now in true Verilog. The test module for n = 8 is also
defined allowing to test the design.

/ * ************************************************************************
F i l e name : i n n e r p r o d . v
C i r c u i t name : I n n e r Produc t
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f t h e i n n e r p r o d u c t c i r c u i t
************************************************************************ * /

module i n n e r p r o d #( ‘ i n c l u d e ” p a r a m e t e r . v ” )
( output [ ( ( 2 * n + 2 ) − 1 ) : 0 ] out ,

input [ n − 1 : 0 ] a3 , a2 , a1 , a0 , b3 , b2 , b1 , b0 ) ;
wire [2* n − 1 : 0 ] p3 , p2 , p1 , p0 ;
mul t m3( p3 , a3 , b3 ) , m2( p2 , a2 , b2 ) , m1( p1 , a1 , b1 ) , m0( p0 , a0 , b0 ) ;
add4 add ( out , p3 , p2 , p1 , p0 ) ;

endmodule

/ * ************************************************************************
F i l e name : mu l t . v
C i r c u i t name : M u l t i p l i e r
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f t h e m u l t i p l y c i r c u i t
************************************************************************ * /

module mul t # ( ‘ i n c l u d e ” p a r a m e t e r . v ” )
( output [ ( 2 * n − 1 ) : 0 ] out , input [ n − 1 : 0 ] m1 , m0 ) ;

a s s i g n o u t = m1 * m0 ;
endmodule
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/ * ************************************************************************
F i l e name : add4 . v
C i r c u i t name : Four−number Adder
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a four −number adder
************************************************************************ * /

module add4 #( ‘ i n c l u d e ” p a r a m e t e r . v ” )
( output [ ( ( 2 * n + 2 ) − 1 ) : 0 ] out , input [ ( 2 * n − 1 ) : 0 ] t3 , t2 , t1 , t 0 ) ;

a s s i g n o u t = t 3 + t 2 + t 1 + t 0 ;
endmodule

m3

? ?

a3 b3

m2

? ?

a2 b2

m1

? ?

a1 b1

m0

? ?

a0 b0

add

????

?

p3 p2 p1 p0

out = a3*b3 + a2*b2 + a1*b1 + a0*b0

Figure 3.7: An example of composition. The circuit performs the scalar vector product for 4-element vectors.
The first level compute in parallel 4 multiplications generating the vectorial product, and the second level reduces
the resulting vector of products to a scalar.

The content of the file parameter.v is:

/ * ************************************************************************
F i l e name : parame te r . v
C i r c u i t name : Parameter module
D e s c r i p t i o n : d e f i n e s t h e parame te r used i n d e s i g n i n g t h e i n n e r p r o d u c t

c i r c u i t
************************************************************************ * /

parameter n = 8

The simulation is done by running the module:
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/ * ************************************************************************
F i l e name : t e s t i n n e r p r o d . v
C i r c u i t name : S i m u l a t o r f o r Inner −Produc t
D e s c r i p t i o n : g e n e r a t e t h e s i m u l a t i o n e n v i r o n m e n t o f t h e i n n e r −p r o d u c t

c i r c u i t
************************************************************************ * /

module t e s t i n n e r p r o d ;
reg [ 7 : 0 ] a3 , a2 , a1 , a0 , b3 , b2 , b1 , b0 ;
wire [ 1 7 : 0 ] o u t ;

i n i t i a l begin {a3 , a2 , a1 , a0} = {8 ’ d1 , 8 ’ d2 , 8 ’ d3 , 8 ’ d4 } ;
{b3 , b2 , b1 , b0} = {8 ’ d5 , 8 ’ d6 , 8 ’ d7 , 8 ’ d8 } ;

end
i n n e r p r o d d u t ( out , a3 , a2 , a1 , a0 , b3 , b2 , b1 , b0 ) ;
i n i t i a l $monitor ( ” o u t=%0d ” , o u t ) ;

endmodule

The test outputs: out = 70

The description is structural at the top level and behavioral for the internal sub-modules (corre-
sponding to our level of understanding digital systems). The resulting circuit is represented in Figure
3.7. ⋄

VerilogSummary 2 :

• The directive ‘include is used to add in any place inside a module the content of the file xxx.v
writing: ‘include "xxx.v"

• We just learned how to concatenate many variables to obtain a bigger one (in the definition of
the parallel composition the output of the system results as a concatenation of the outputs of the
sub-systems it contains)

• Is good to know there is also a risky way to specify the connections when a module is instantiated
into another: to put the name of connections in the appropriate positions in the connection list (in
the last example)

By composition we add new modules in the system, but we don’t change the class to which the system
belongs. The system gains the behaviors of the added modules but nothing more. By composition we
sum behaviors only, but we can not introduce in this way a new kind of behavior in the world of digital
machines. What we can’t do using new modules we can do with an appropriate connection: the loop.

3.4 Speeding by pipelining

One of the main limitation in applying the composition is due to the increased propagation time associ-
ated to the serially connected circuits. Indeed, the time for computing the function f is:

t f = max(th 1, . . . , th m)+ tg
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In the last example, the inner product is computed in:

tinner product = tmultiplication + t4 number add

If the 4-number add is also composed using 2-number add (as in usual systems) results:

tinner product = tmultiplication +2× taddition

For the general case of n-components vectors the inner product will be computed, using a similar ap-
proach, in:

tinner product(n) = tmultiplication + taddition× log2 n ∈ O(log n)

For this simple example, of computing the inner product of two vectors, results for n≥ n0 a computational
time bigger than can be accepted in some applications. Having enough multipliers, the multiplication
will not limit the speed of computation, but even if we have infinite 2-input adders the computing time
will remain dependent by n.

The typical case is given by the serial composition (see Figure 3.6a), where the function out =
f (in) = g(h 1(in)) must be computed using 2 serial connected circuits, h 1(in) and g(int out), in time:

t f = th 1 + tg.

A solution must be find to deal with the too deep circuits resulting from composing to many or to
“lazy” circuits.

First of all we must state that fast circuits are needed only when a lot of data is waiting to be com-
puted. If the function f (in) is rarely computed, then we do not care to much about the speed of the
associated circuit. But, if there is an application supposing a huge stream of data to be successively
submitted to the input of the circuit f , then it is very important to design a fast version of it.

Golden rule: only what is frequently computed must be accelerated!

3.4.1 Register transfer level

The good practice in a digital system is: any stream of data is received synchronously and it is sent out
synchronously. Any digital system can be reduced to a synchronous machine receiving a stream of input
data and generating another stream of output results. As we already stated, a “robust” digital design is a
fully buffered one because it provides a system interfaced to the external “world” with registers.

The general structure of a system performing the function f (x) is shown in Figure 3.8a, where it is
presented in the fully buffered version. This kind of approach is called register transfer level (RTL)
because data is transferred, modified by the function f , from a register, input reg, to another register,
output reg. If f = g(h 1(x)), then the clock frequency is limited to:

fclock max =
1

treg + t f + tsu
=

1
treg + th 1 + tg + tsu

The serial connection of the module computing h 1 and g is a fundamental limit. If f computation
is not critical for the system including the module f , then this solution is very good, else you must read
and assimilate the next, very important, paragraph.
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3.4.2 Pipeline structures

To increase the processing speed of a long stream of data the clock frequency must be increased. If the
stream has the length n, then the processing time is:

Tstream(n) =
1

fclock
× (n+2) = (treg + th 1 + tg + tsu)× (n+2)

input reg

f(x) = g(h 1(x))

output reg

?

?

?

?

clock in

sync in

out

sync out

input reg

?

?

clock in

sync in

h 1(x)

pipeline reg

?

int out

sync int out

a. b.

?

g(z)

output reg

?

?

out

sync out

Figure 3.8: Pipelined computation. a. A typical Register Transfer Logic (RTL) configuration. Usually it is
supposed a “deep” combinational circuit computes f (x). b. The pipeline structure splits the combinational circuit
associated with function f (x) in two less “deep” circuits and inserts the pipeline register in between.

The only way to increase the clock rate is to divide the circuit designed for f in two serially connected
circuits, one for h 1 and another for g, and to introduce between them a new register. Results the system
represented in Figure 3.8b. Its clock frequency is:

fclock max =
1

max(th 1, tg)+ treg + tsu

and the processing time for the same string is:

Tstream(n) = (max(th 1, tg)+ treg + tsu)× (n+3)

The two systems represented in Figure 3.8 are equivalent. The only difference between them is that
the second performs the processing in n+3 clock cycles instead of n+2 clock cycles for the first version.
For big n, the current case, this difference is a negligible quantity. We call latency the number of the
additional clock cycle. In this first example latency is: λ = 1.

This procedure can be applied many times, resulting a processing “pipe” with a latency equal with
the number of the inserted register added to the initial system. The resulting system is called a pipelined
system. The additional registers are called pipeline registers.
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The maximum efficiency of a pipeline system is obtained in the ideal case when, for an (m+1)-stage
pipeline, realized inserting m pipeline registers:

max(tstage 0, tstage 1, . . . , tstage m) =
tstage 0 + tstage 1 + . . .+ tstage m

m+1

max(tstage 0, tstage 1, . . . , tstage m)>> treg + tsu

λ = m << n

In this ideal case the speed is increased almost m times. Obviously, no one of these condition can be fully
accomplished, but there are a lot of real applications in which adding an appropriate number of pipeline
stages allows to reach the desired speed performance.

Example 3.6 The pseudo-Verilog code for the 2-stage pipeline system represented in Figure 3.8 is:

/ * ************************************************************************
F i l e name : p i p e l i n e d f . v
C i r c u i t name : Pseudo −V e r i l o g modules f o r d e f i n i n g t h e p i p e l i n e mechanism
D e s c r i p t i o n : dummy modules p i p e l i n e c o n n e c t e d
************************************************************************ * /

module p i p e l i n e d f ( output reg [ s i z e i n − 1 : 0 ] s y n c o u t ,
input [ s i z e o u t − 1 : 0 ] i n ) ;

reg [ s i z e i n − 1 : 0 ] s y n c i n ;
wire [ s i z e i n t − 1 : 0 ] i n t o u t ,
reg [ s i z e i n t − 1 : 0 ] s y n c i n t o u t ;
wire [ s i z e o u t − 1 : 0 ] o u t ;
h 1 t h i s h 1 ( . o u t ( i n t o u t ) ,

. i n ( s y n c i n ) ) ;
g t h i s g ( . o u t ( o u t ) ,

. i n ( s y n c i n t o u t ) ) ;
always @( posedge c l o c k ) begin s y n c i n <= #2 i n ;

s y n c i n t o u t <= #2 i n t o u t ;
s y n c o u t <= #2 o u t ;

end
endmodule

module h 1 ( output [ s i z e i n t − 1 : 0 ] out ,
input [ s i z e i n − 1 : 0 ] i n ) ;

a s s i g n #15 o u t = . . . ;
endmodule

module g ( output [ s i z e o u t − 1 : 0 ] out ,
input [ s i z e i n t − 1 : 0 ] i n ) ;

a s s i g n #18 o u t = . . . ;
endmodule

Suppose, the unit time is 1ns. The maximum clock frequency for the pipeline version is:

fclock =
1

max(15,18)+2
GHz = 50MHz
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This value must be compared with the frequency of the non-pipelined version, which is:

fclock =
1

15+18+2
GHz = 28.57MHz

Adding only a simple register and accepting a minimal latency (λ = 1), the speed of the system increased
with 75%. ⋄

3.4.3 Data parallelism vs. time parallelism

The two limit cases of composition correspond to the two extreme cases of parallelism in digital systems:

• the serial composition will allow the pipeline mechanism which is a sort of parallelism which
could be called diachronic parallelism or time parallelism

• the parallel composition is an obvious form of parallelism, which could be called synchronic par-
allelism or data parallelism.

The data parallelism is more obvious: m functions, h 1, . . . ,h m, are performed in parallel by m
circuits (see Figure 3.6b). But, time parallelism is not so obvious. It acts only in a pipelined serial
composition, where the first stage is involved in computing the most recently received data, the second
stage is involved in computing the previously received data, and so on. In an (m+ 1)-stage pipeline
structure m+ 1 elements of the input stream are in different stages of computation, and at each clock
cycle one result is provided. We can claim that in such a pipeline structure m+1 computations are done
in parallel with the price of a latency λ = m.

The previous example of a 2-stage pipeline accelerated the computation because of the time paral-
lelism which allows to work simultaneously on two input data, on one applying the function h 1 and in
another applying the function g. Both being simpler than the global function f , the increase of clock
frequency is possible allowing the system to deliver results at a higher rate.

Computer scientists stress on both type of parallelism, each having its own fundamental limitations.
More, each form of parallelism bounds the possibility of the other, so as the parallel processes are strictly
limited in now a day computation. But, for us it is very important to emphasize in this stage of the
approach that:

circuits are essentially parallel structures with both the possibilities and the limits given
by the mechanism of composition.

The parallel resources of circuits will be limited also, as we will see, in the process of closing loops
one after another with the hope to deal better with complexity.

Example 3.7 Let us revisit the problem of computing the scalar product. We redesign the circuit in a
pipelined version using only binary functions.
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Figure 3.9: The pipelined inner product circuit for 4-component vectors. Each multiplier and each adder
send its result in a pipeline register. For this application results a three level pipeline structure with different degree
of parallelism. The two kind of parallelism are exemplified. Data parallel has the maximum degree on the first
level. The degree of time parallelism is three: in each clock cycle three pairs of 4-element vectors are processed.
One pair in the first stage of multiplications, another pair is the second stage of performing two additions, and one
in the final stage of making the last addition.

/ * ************************************************************************
F i l e name : p i p e l i n e d i n n e r p r o d . v
C i r c u i t name : P i p e l i n e d I n n e r Produc t c i r c u i t
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f p i p e l i n e d i n n e r p r o d u c t

c i r c u i t f o r 2 v e c t o r s o f 4 8− b i t numbers
************************************************************************ * /

module p i p e l i n e d i n n e r p r o d
( output [ 1 7 : 0 ] out ,

input [ 7 : 0 ] a3 , a2 , a1 , a0 , b3 , b2 , b1 , b0 ,
input c l o c k ) ;

wire [ 1 5 : 0 ] p3 , p2 , p1 , p0 ;
wire [ 1 7 : 0 ] s1 , s0 ;
mul t mul t3 ( p3 , a3 , b3 , c l o c k ) ,

mul t2 ( p2 , a2 , b2 , c l o c k ) ,
mul t1 ( p1 , a1 , b1 , c l o c k ) ,
mul t0 ( p0 , a0 , b0 , c l o c k ) ;

add add11 ( s1 , {1 ’ b0 , p3 } , {1 ’ b0 , p2 } , c l o c k ) ,
add10 ( s0 , {1 ’ b0 , p1 } , {1 ’ b0 , p0 } , c l o c k ) ,
add0 ( out , s1 [ 1 6 : 0 ] , s0 [ 1 6 : 0 ] , c l o c k ) ;

endmodule
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/ * ************************************************************************
F i l e name : mu l t . v
C i r c u i t name : P i p e l i n e d 8− b i t m u l t i p l i e r
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f t h e p i p e l i n e d m u l t i p l i e r
************************************************************************ * /

module mul t ( output reg [ 1 5 : 0 ] out ,
input [ 7 : 0 ] m1 , m0 ,
input c l o c k ) ;

always @( posedge c l o c k ) o u t <= m1 * m0 ;
endmodule

/ * ************************************************************************
F i l e name : add . v
C i r c u i t name : P i p e l i n e d adder
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f t h e p i p e l i n e d adder
************************************************************************ * /

module add ( output reg [ 1 7 : 0 ] out ,
input [ 1 6 : 0 ] t1 , t0 ,
input c l o c k ) ;

always @( posedge c l o c k ) o u t <= t 1 + t 0 ;
endmodule

⋄

The structure of the pipelined inner product (dot product) circuit is represented in Figure 3.9. It
shows us the two dimensions of the parallel computation. The horizontal dimension is associated with
data parallelism, the vertical dimension is associated with time parallelism. The first stage allows 4
parallel computation, the second allows 2 parallel computation, and the last consists only in a single
addition. The mean value of the degree of data parallelism is 2.33. The system has latency 2, allowing
7 computations in parallel. The peak performance of this system is the whole degree of parallelism
which is 7. The peak performance is the performance obtained if the input stream of data is uninterrupted.
If it is interrupted because of the lack of data, or for another reason, the latency will act reducing the peak
performance, because some or all pipeline stages will be inactive.

3.5 Featuring by closing new loops

A loop connection is a very simple thing, but the effects introduced in the system in which it is closed
are sometimes surprising. All the time are beyond the evolutionary facts. The reason for these facts is
the spectacular effect of the autonomy whenever it manifests. The output of the system starts to behave
less conditioned by the evolution of inputs. The external behavior of the system starts to depend more
and more by something like an “internal state” continuing with a dependency by an “internal behavior”.
In the system starts to manifest internal processes seem to be only partially under the external control.
Because the loop allows of system to act on itself, the autonomy is the first and the main effect of the
mechanism of closing loops. But, the autonomy is only a first and most obvious effect. There are others,
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more subtle and hidden consequences of this apparent simple and silent mechanism. This book is devoted
to emphasize deep but not so obvious correlations between loops and complexity. Let’s start with the
definition and a simple example.

??

?

the loop

Y

loop

in

out

in0

out0

in1

out1

Figure 3.10: The loop closed into a digital system. The initial system has two inputs, in1 and in0, and two
outputs, out1 and out0. Connecting out0 to in0 results a new system with in and out only.

Definition 3.11 The loop consists in connecting some outputs of a system to some of its inputs (see
Figure 3.10), as in the pseudo-Verilog description that follows:

/ * ************************************************************************
F i l e name : l o o p s y s t e m . v
C i r c u i t name : Loop Sys tem
D e s c r i p t i o n : pseudo −V e r i l o g d e s c r i p t i o n o f t h e loop c l o s i n g i n a s y s t e m
************************************************************************ * /

module l o o p s y s t e m #( ‘ i n c l u d e ” p a r a m e t e r s . v ” )
( output [ ou t d im − 1 : 0 ] o u t ,

input [ in d im − 1 : 0 ] i n ) ;
wire [ loop dim − 1 : 0 ] t h e l o o p ;
n o l o o p s y s t e m our modu le ( . ou t1 ( o u t ) ,

. ou t0 ( t h e l o o p ) ,

. i n 1 ( i n ) ,

. i n 0 ( t h e l o o p ) ) ;
endmodule

module n o l o o p s y s t e m #( ‘ i n c l u d e ” p a r a m e t e r s . v ” )
( output [ ou t d im − 1 : 0 ] ou t1 ,

output [ loop dim − 1 : 0 ] ou t 0 ,
input [ in d im − 1 : 0 ] i n 1 ,
input [ loop dim − 1 : 0 ] i n 0 ) ;

/ * The d e s c r i p t i o n o f ’ n o l o o p s y s t e m ’ module * /
endmodule

⋄

The most interesting thing in the previous definition is a “hidden variable” occurred in module

loop system(). The wire called the loop carries the non-apparent values of a variable evolving
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inside the system. This is the variable which evolves only internally, generating the autonomous be-
havior of the system. The explicit aspect of this behavior is hidden, justifying the generic name of the
“internal state evolution”.

The previous definition don’t introduce any restriction about how the loop must be closed. In order to
obtain desired effects the loop will be closed keeping into account restrictions depending by each actual
situation. There also are many technological restrictions that impose specific modalities to close loops at
different level in a complex digital system. Most of them will be discussed later in the next chapters.

Example 3.8 Let be a synchronous adder. It has the outputs synchronized with an positive edge clocked
register (see Figure 3.11a). If the output is connected back to one of its input, then results the structure
of an accumulator (see Figure 3.11b). The Verilog description follows.

/ * ************************************************************************
F i l e name : acc . v
C i r c u i t name : Accumula tor
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f t h e a c c u m u l a t o r c i r c u i t
************************************************************************ * /

module acc ( output [ 1 9 : 0 ] o u t ,
input [ 1 5 : 0 ] i n ,
input c lock , r e s e t ) ;

s y n c a d d o u r a d d ( out , in , out , c lock , r e s e t ) ;
endmodule

/ * ************************************************************************
F i l e name : s y n c a d . v
C i r c u i t name : Synchronous Adder
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f a s y n c h r o n o u s adder
************************************************************************ * /

module s y n c a d d ( output reg [ 1 9 : 0 ] o u t ,
input [ 1 5 : 0 ] i n 1 ,
input [ 1 9 : 0 ] i n 2 ,
input c l o c k , r e s e t ) ;

always @( posedge c l o c k ) i f ( r e s e t ) o u t = 0 ;
e l s e o u t = i n 1 + i n 2 ;

endmodule

In order to make a simulation the next test acc module is written:
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Figure 3.11: Example of loop closed over an adder with synchronized output. If the output becomes
one of the inputs, results a circuit that accumulates at each clock cycle. a. The initial circuit: the synchronized
adder. b. The resulting circuit: the accumulator.

/ * ************************************************************************
F i l e name : t e s t a c c . v
C i r c u i t name : T e s t b e n c h f o r t h e a c c u m u l a t o r c i r c u i t
D e s c r i p t i o n : g e n e r a t e s t h e s t i m u l u s f o r a c c u m u l a t o r
************************************************************************ * /

module t e s t a c c ;
reg c lock , r e s e t ;
reg [ 1 5 : 0 ] i n ;
wire [ 1 9 : 0 ] o u t ;
i n i t i a l begin c l o c k = 0 ;

f o r e v e r #1 c l o c k = ˜ c l o c k ;
end / / t h e c l o c k

i n i t i a l begin r e s e t = 1 ;
#2 r e s e t = 0 ;
#10 $ s t o p ;

end
always @( posedge c l o c k ) i f ( r e s e t ) i n = 0 ;

e l s e i n = i n + 1 ;
acc d u t ( out , in , c lock , r e s e t ) ;
i n i t i a l $monitor ( ” t ime=%0d c l o c k=%b i n=%d o u t=%d ” ,

$t ime , c lock , in , d u t . o u t ) ;
endmodule

By simulation results the following behavior:
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/ * ************************************************************************
The o u t p u t o f t h e m o n i t o r
************************************************************************ * /
# t ime =0 c l o c k =0 i n = x o u t = x
# t ime =1 c l o c k =1 i n = 0 o u t = 0
# t ime =2 c l o c k =0 i n = 0 o u t = 0
# t ime =3 c l o c k =1 i n = 1 o u t = 1
# t ime =4 c l o c k =0 i n = 1 o u t = 1
# t ime =5 c l o c k =1 i n = 2 o u t = 3
# t ime =6 c l o c k =0 i n = 2 o u t = 3
# t ime =7 c l o c k =1 i n = 3 o u t = 6
# t ime =8 c l o c k =0 i n = 3 o u t = 6
# t ime =9 c l o c k =1 i n = 4 o u t = 10
# t ime =10 c l o c k =0 i n = 4 o u t = 10
# t ime =11 c l o c k =1 i n = 5 o u t = 15

⋄

The adder becomes an accumulator. What is spectacular in this fact? The step made by closing
the loop is important because an “obedient” circuit, whose outputs followed strictly the evolution of its
inputs, becomes a circuit with the output depending only partially by the evolution of its inputs. Indeed,
the the output of the circuit depends by the current input but, in the same time, depends by the content of
the register, i.e., by the “history accumulated” in it. The output of adder can be predicted starting from
the current inputs, but the output of the accumulator supplementary depends by the state of circuit (the
content of the register). It was only a simple example, but I hope, useful to pay more attention to loop.

3.5.1 ∗ Data dependency

The good news about loop is its “ability” to add new features. But any good news is accompanied by its own bad
news. In this case is about the limiting of the degree of parallelism allowed in a system with a just added loop. It
is mainly about the necessity to stop sometimes the input stream of data in order to decide, inspecting an output,
how to continue the computation. The input data waits for data arriving from an output a number of clock cycles
related with the system latency. To do something special the system must be allowed to accomplish certain internal
processes.

Both, data parallelism and time parallelism are possible because when the data arrive the system “knows” what
to do with them. But sometimes the function to be applied on certain input data is decided by processing previously
received data. If the decision process is to complex, then new data can not be processed even if the circuits to do it
are there.

Example 3.9 Let be the system performing the following function:
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procedure c o n d a c c ( a , b , cond ) ;
o u t = 0 ;
end = 0 ;
loop i f ( cond = 1) o u t = o u t + ( a + b ) ;

e l s e o u t = o u t + ( a − b ) ;
u n t i l ( end = 1) / / t h e loop i s unend ing

endprocedure

For each pair of input data the function is decided according to a condition input.
The Verilog code describing an associated circuit is:

/ * ************************************************************************
F i l e name : cond acc0 . v
C i r c u i t name : C o n d i t i o n e d Accumula tor
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n o f t h e c o n d i t i o n e d a c c u m u l a t o r
************************************************************************ * /
module c o n d a c c 0 ( output reg [ 1 5 : 0 ] out ,

input [ 1 5 : 0 ] a , b ,
input cond , r e s e t , c l o c k ) ;

always @( posedge c l o c k ) i f ( r e s e t ) o u t <= 0 ;
e l s e i f ( cond ) o u t <= o u t + ( a + b ) ;

e l s e o u t <= o u t + ( a − b ) ;
endmodule

In order to increase the speed of the circuit a pipeline register is added with the penalty of λ = 1. Results:

/ * ************************************************************************
F i l e name : cond acc1 . v
C i r c u i t name : P i p e l i n e d C o n d i t i o n e d Accumula tor
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n f o r t h e c i r c u i t
************************************************************************ * /
module c o n d a c c 1 ( output reg [ 1 5 : 0 ] out ,

input [ 1 5 : 0 ] a , b ,
input cond , r e s e t , c l o c k ) ;

reg [ 1 5 : 0 ] p i p e ;
always @( posedge c l o c k )
i f ( r e s e t ) begin o u t <= 0 ;

p i p e <= 0 ;
end

e l s e begin i f ( cond ) p i p e <= a + b ;
e l s e p i p e <= a − b ;

o u t <= o u t + p i p e ;
end

endmodule
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Figure 3.12: Data dependency when a loop is closed in a pipelined structure. a. The non-pipelined
version. b. The pipelined version. c. Adding a loop to the non-pipelined version. d. To the pipelined version the
loop can not be added without supplementary precautions because data dependency change the overall behavior.
The selection between add and sub, performed by the looped signal comes too late.

Now let us close a loop in the first version of the system (without pipeline register). The condition input takes
the value of the sign of the output. The loop is: cond = out[15]. The function performed on each pair of input
data in each clock cycle is determined by the sign of the output resulted from the computation performed with the
previously received pairs of data. The resulting system is called addapt acc.
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/ * ************************************************************************
F i l e name : a d a p t a c c 0 . v
C i r c u i t name : A d a p t i v e Accumula tor
D e s c r i p t i o n : t h e s t r u c t u r a l d e s c r i p t i o n o f t h e a d a p t i v e a c c u m u u l a t o r
************************************************************************ * /

module a d a p t a c c 0 ( output [ 1 5 : 0 ] out ,
input [ 1 5 : 0 ] a , b ,
input r e s e t , c l o c k ) ;

c o n d a c c 0 c o n t a c c 0 ( . o u t ( o u t ) ,
. a ( a ) ,
. b ( b ) ,
. cond ( o u t [ 1 5 ] ) , / / t h e loop
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ;

endmodule

Figure 3.12a represents the first implementation of the cond acc circuit, characterized by a low clock fre-
quency because both the adder and the adder/subtracter contribute to limiting the clock frequency:

fclock =
1

t+/−+ t++ treg

Figure 3.12b represents the pipelined version of the same circuit working faster because only one from adder
and the adder/subtracter contributes to limiting the clock frequency:

fclock =
1

max(t+/−, t+)+ treg

A small price is paid by λ = 1.
The 1-bit loop closed from the output out[15] to cond input (see Figure 3.12c) allows the circuit to decide

itself if the sum or the difference is accumulated. Its speed is identical with the initial, no-loop, circuit.
Figure 3.12d warns us against the expected damages of closing a loop in a pipelined system. Because of the

latency the “decision comes” to late and the functionality is altered. ⋄

In the system from Figure 3.12a the degree of parallelism is 1, and in Figure 3.12b the system has the degree
of parallelism 2, because of the pipeline execution. When we closed the loop we where obliged to renounce to the
bigger degree of parallelism because of the latency associated with the pipe. We have a new functionality – the
circuit decides itself regarding the function executed in each clock cycle – but we must pay the price of reducing
the speed of the system.

According to the algorithm the function performed by the block +/- depends on data received in the previous
clock cycles. Indeed, the sign of the number stored in the output register depends on the data stream applied on the
inputs of the system. We call this effect data dependency. It is responsible for limiting the degree of parallelism
in digital circuits.

The circuit from Figure 3.12d is not a solution for our problem because the condition cond comes to late. It
corresponds to the operation executed on the input stream excepting the most recently received pair of data. The
condition comes too late, with a delay equal with the latency introduced by the pipeline execution.

3.5.2 ∗ Speculating to avoid limitations imposed by data dependency
How can we avoid the speed limitation imposed by a new loop introduced in a pipelined execution? It is possible,
but we must pay a price enlarging the structure of the circuit.
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If the circuit does not know what to do, addition or subtract in our previous example, then in it will be compute
both in the first stage of pipeline and will delay the decision for the next stage so compensating the latency. We
use the same example to be more clear.

Example 3.10 The pipelined version of the circuit addapt acc is provided by the following Verilog code:

+ -

pipe0pipe1

?
+

? ? ? ?

mux2 16
1 0

out

? ?

? ?

?

?

?

-

out
out[15]

clock

a
b

? ?

?

reset

Figure 3.13: The speculating solution to avoid data dependency. In order to delay the moment of decision
both addition and subtract are computed on the first stage of pipeline. Speculating means instead to decide what to
do, addition or subtract, we decide what to consider after doing both.

/ * ************************************************************************
F i l e name : a d a p t a c c 1 . v
C i r c u i t name : P i p e l i n e d A d a p t i v e Accumula tor
D e s c r i p t i o n : t h e b e h a v i o r a l d e s c r i p t i o n c i r c u i t
************************************************************************ * /

module a d a p t a c c 1 ( output reg [ 1 5 : 0 ] out ,
input [ 1 5 : 0 ] a , b ,
input r e s e t , c l o c k ) ;

reg [ 1 5 : 0 ] p ipe1 , p i p e 0 ;
always @( posedge c l o c k )

i f ( r e s e t ) begin o u t <= 0 ;
p i p e 1 <= 0 ;
p i p e 0 <= 0 ; end

e l s e begin p i p e 1 <= a + b ;
p i p e 0 <= a − b ;
i f ( o u t [ 1 5 ] ) o u t <= o u t + p i p e 1 ;

e l s e o u t <= o u t + p i p e 0 ; end
endmodule
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The execution time for this circuit is limited by the following clock frequency:

fclock =
1

max(t+, t−,(t++ tmux))+ treg
≃ 1

t−+ treg

The resulting frequency is very near to the frequency for the pipeline version of the circuit designed in the previous
example.

Roughly speaking, the price for the speed is: an adder & two registers & a multiplexer (see for comparing
Figure 3.12c and Figure 3.13). Sometimes it deserves! ⋄

The procedure applied to design addapr acc1 involves the multiplication of the physical resources. We
speculated, computing on the first level of pipe both the sum and the difference of the input values. On the second
state of pipe the multiplexer is used to select the appropriate value to be added to out.

We call this kind of computation speculative evaluation or simply speculation. It is used to accelerate complex
(i.e., “under the sign” of a loop) computation. The price to be paid is an increased dimension of the circuit.

3.6 Concluding about composing & pipelining & looping

The basic ideas exposed in this section are:

• a digital system develops applying two mechanisms: composing functional modules and closing
new loops

• by composing the system grows in size improving its functionality with the composed functions

• by closing loops the system gains new features which are different from the previous functionality

• the composition generates the conditions for two kinds of parallel computation:

– data parallel computation

– time parallel computation (in pipeline structures)

• the loop limits the possibility to use the time parallel resources of a system because of data de-
pendency

• a speculative approach can be used to accelerate data dependent computation in pipeline sys-
tems; it means the execution of operation whose result may not actually be needed; it is an useful
optimization when early execution accelerates computation justifying for the wasted effort of com-
puting a value which is never used

• circuits are mainly parallel systems because of composition (some restriction may apply because
of loops).

Related with the computing machines Flynn [Flynn ’72] introduced three kind of parallel machines:

• MIMD (multiple-instructions-multiple data), which means mainly having different programs
working on different data

• SIMD (single-instructions-multiple-data), which means having one program working on different
data,
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• MISD (multiple-instructions-single-data), which means having different programs working on the
same data.

Related with the computing a certain function also three kind of almost the same parallelism can be
emphasized:

• time parallelism, which is somehow related with MIMD execution, because in each temporal stage
a different operation (instruction) can be performed

• data parallelism, which is identic with SIMD execution

• speculative parallelism, which is a sort of MISD execution.

Thus, the germs of parallel processes, developed at the computing machine level, occur, at an early stage,
at the circuit level.

3.7 Problems

Problem 3.1 Let be the design below. The modules instantiated in topModule are defined only by their
time behavior only.

1. Synthesise the circuit.

2. Compute the maximum click frequency.
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module topModule ( input [ 3 : 0 ] i n 1 ,
input [ 3 : 0 ] i n 2 ,
input [ 3 : 0 ] i n 3 ,
output reg [ 5 : 0 ] o u t , / / p r o p a g a t i o n t i m e : 50 ps

/ / ho ld t i m e 15: ps
/ / s e t −up t i m e : 20 ps

input c l o c k ) ;
reg [ 4 : 0 ] reg1 , r eg2 ; / / p r o p a g a t i o n t i m e : 50 ps

/ / ho ld t i m e 15: ps
/ / s e t −up t i m e : 20 ps

wire [ 4 : 0 ] w1 , w2 ;
wire [ 5 : 0 ] w3 ;

always @( posedge c l o c k ) begin r eg1 <= w1 ;
r eg2 <= w2 ;
o u t <= w3 ;

end

c l c 1 c1 ( . inA ( i n 1 ) ,
. inB ( i n 2 ) ,
. o u t ( w1 ) ) ;

c l c 2 c2 ( . inA ( w1 [ 3 : 0 ] ) ,
. inB ( i n 3 ) ,
. o u t ( w2 ) ) ;

c l c 3 c3 ( . inA ( reg1 ) ,
. inB ( r eg2 ) ,
. o u t ( w3 ) ) ;

endmodule

module c l c 1 ( input [ 3 : 0 ] inA ,
input [ 3 : 0 ] inB ,
output [ 4 : 0 ] o u t ) ;

/ / t i m p u l de propagare i n A 2 o u t = 200 ps
/ / t i m p u l de propagare i n B 2 o u t = 150 ps
/ / . . .

endmodule

module c l c 2 ( input [ 3 : 0 ] inA ,
input [ 3 : 0 ] inB ,
output [ 4 : 0 ] o u t ) ;

/ / t i m p u l de propagare i n A 2 o u t = 100 ps
/ / t i m p u l de propagare i n B 2 o u t = 250 ps
/ / . . .

endmodule

module c l c 3 ( input [ 4 : 0 ] inA ,
input [ 4 : 0 ] inB ,
output [ 5 : 0 ] o u t ) ;

/ / t i m p u l de propagare i n A 2 o u t = 400 ps
/ / t i m p u l de propagare i n B 2 o u t = 150 ps
/ / . . .

endmodule

Speculative circuits

Problem 3.2 Let be the circuit described by the following Verilog module:
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module xxx ( output reg [ 3 1 : 0 ] a ,
input [ 3 1 : 0 ] x1 , x2 , x3 ,
input c lock , r e s e t ) ;

always @( posedge c l o c k ) i f ( r e s e t ) a <= 0 ;
e l s e i f ( a > x3 ) a <= a + ( x1 + x2 ) ;

e l s e a <= a + ( x1 − x2 ) ;
endmodule

The maximum frequency of clock is limited by the propagation time through the internal loop (tregreg)
or by tin reg. To maximize the frequency a speculative solution is asked.

Problem 3.3 Provide the speculative solution for the next circuit.

module yyy ( output reg [ 3 1 : 0 ] a ,
output reg [ 3 1 : 0 ] b ,
input [ 3 1 : 0 ] x1 ,
input [ 3 1 : 0 ] x2 ,
input c l o c k ,
input r e s e t ) ;

always @( posedge c l o c k )
i f ( r e s e t ) begin a <= 0 ;

b <= 0 ;
end

e l s e case ({ a + b > 8 ’ b101 , a − b < 8 ’ b111 } )
2 ’ b00 : {a , b} <= {a + ( x1−x2 ) , b + ( x1+x2 ) } ;
2 ’ b01 : {a , b} <= {a + ( 8 ’ b10 * x1+x2 ) , b + ( x1 +8 ’ b10 * x2 ) } ;
2 ’ b10 : {a , b} <= {a + ( 8 ’ b100 * x1−x2 ) , b + ( 8 ’ b100 * x2 ) } ;
2 ’ b11 : {a , b} <= {a + ( x2−x1 ) , b + ( 8 ’ b100 * x1+x2 ) } ;

endcase
endmodule

Problem 3.4 The following circuit has two included loops. The speculation will increase the dimension
of the circuit accordingly. Provide the speculative version of the circuit.
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module zzz ( output reg [ 3 1 : 0 ] out ,
input [ 1 5 : 0 ] x1 ,
input [ 1 5 : 0 ] x2 ,
input [ 1 5 : 0 ] x3 ,
input c lock ,
input r e s e t ) ;

reg [ 1 5 : 0 ] acc ;

always @( posedge c l o c k )
i f ( r e s e t ) begin o u t <= 0 ;

acc <= 0 ;
end

e l s e begin o u t <= acc * x3 ;
i f ( o u t [ 1 5 ] ) acc <= acc + x1 + x2 + o u t [ 3 1 : 0 ] ;

e l s e acc <= acc + x1 − x2 + o u t [ 1 5 : 0 ] ;
end

endmodule

3.8 Projects

Use Appendix How to make a project to learn how to proceed in implementing a project.

Project 3.1
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Chapter 4

THE TAXONOMY OF DIGITAL
SYSTEMS

In the previous chapter
the basic mechanisms involved in defining the architecture of a digital system were introduced:

• the parallel composing and the serial composing are the mechanism allowing two kind of
parallelism in digital systems – data parallelism & time parallelism – both involved in in-
creasing the “brute force” of a computing machine

• the pipeline connection supports the time parallelism, accelerating the inherent serial com-
putation

• closing loops new kinds of functionality are allowed (storing, behaving, interpreting, ... self-
organizing)

• speculating is the third type of parallelism introduced to compensate the limitations generated
by loops closed in pipelined systems

In this chapter
loops are used to classify digital systems in orders, takeing into account the increased degree of
autonomy generated by each new added loop. The main topics are:

• the autonomy of a digital system depends on the number of embedded loops closed inside
• the loop based taxonomy of digital systems developed to match the huge diversity of the

systems currently developed
• some preliminary remarks before starting to describe in detail digital circuits and how they

can be used to design digital systems

In the next chapter
the final target of our lessons on digital design is defined as the structure of the simplest machine
able to process a stream of input data providing another stream of output data. The functional
description of the machine is provided emphasizing:

• the external connections and how they are managed
• the internal control functions of the machine
• the internal operations performed on the received and internally stored data.

107
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A theory is a compression of data; comprehension
is compression.

Gregory Chaitin1

Any taxonomy is a compressed theory, i.e., a com-
pression of a compression. It contains, thus, illu-
minating beauties and dangerous insights for our
way to comprehend a technical domain. How can
we escape from this attractive trap? Trying to
comprehend beyond what the compressed data of-
fers.

4.1 Loops & Autonomy

The main and the obvious effect of the loop is the autonomy it can generate in a digital system. Indeed,
the first things we observe in a circuit in which a new loop is introduced are new and independent
behaviors. Starting with a simple example the things will become more clear in an easy way. We use an
example with a system initially defined by a transition table. Each output corresponds to an input with a
certain delay (one time unit, #1, in our example). After closing the loop, starts a sequential process, each
sequence taking time corresponding with the delay introduced by the initial system.

Example 4.1 Let be the digital system initSyst from Figure 4.1a, with two inputs, in, lp, and one
output, out. What hapend when is closed the loop from the output out to the input lp? Let’s make it.
The following Verilog modules describe the behavior of the resulting circuit.

/ * ************************************************************************
F i l e name : l o o p S y s t . v
C i r c u i t name : Loop Sys tem
D e s c r i p t i o n : t h e way a loo p i n c r e a s e autonomy o f t h e s y s t e m
************************************************************************ * /

module l o o p S y s t ( output [ 1 : 0 ] out ,
input i n ) ;

i n i t S y s t noLoopSyst ( . o u t ( o u t ) , . i n ( i n ) , . loop ( o u t ) ) ;
endmodule

1From [Chaitin ’06]
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/ * ************************************************************************
F i l e name : i n i t S y s t . v
C i r c u i t name : No−Loop Sys tem
D e s c r i p t i o n : d e s c r i b e t h e no−loop s y s t e m
************************************************************************ * /

module i n i t S y s t ( output reg [ 1 : 0 ] o u t ,
input i n ,
input [ 1 : 0 ] loop ) ;

i n i t i a l o u t = 2 ’ b11 ; / / o n l y f o r s i m u l a t i o n purpose

always @( i n or loop ) #1 case ({ in , loop } )
3 ’ b000 : o u t = 2 ’ b01 ;
3 ’ b001 : o u t = 2 ’ b00 ;
3 ’ b010 : o u t = 2 ’ b00 ;
3 ’ b011 : o u t = 2 ’ b10 ;
3 ’ b100 : o u t = 2 ’ b01 ;
3 ’ b101 : o u t = 2 ’ b10 ;
3 ’ b110 : o u t = 2 ’ b11 ;
3 ’ b111 : o u t = 2 ’ b01 ;

endcase
endmodule

In order to see how behave loopSyst we will use the following test module which initialize (for
this example in a non-orthodox fashion because we don’t know nothing about the internal structure of
initSyst) the output of initSyst in 11 and put on the input in for 10 unit time the value 0 and for the
next 10 unit time the value 1.

/ * ************************************************************************
F i l e name : t e s t . v
C i r c u i t name : T e s t i n g Loop−Sys tem
D e s c r i p t i o n : g e n e r a t e s t h e s t i m u l u s f o r t e s t i n g t h e loop −s y s t e m
************************************************************************ * /

module t e s t ;
reg i n ;
wire [ 1 : 0 ] o u t ;

i n i t i a l begin i n = 0 ;
#10 i n = 1 ;
#10 $ s t o p ;

end
l o o p S y s t d u t ( out , i n ) ;
i n i t i a l $monitor ( ” t ime=%0d i n=%b o u t=%b ” ,

$t ime , in , d u t . o u t ) ;
endmodule

The simulation offers us the following behavior:
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Figure 4.1: Example illustrating the autonomy. a. A system obtained from an initial system in which a
loop is closed from output to one of its input. b. The transition table of the initial system where each output strict
corresponds to the input value. c. The output evolution for constant input: in = 0. d. The output evolution for a
different constant input: in = 1.

/ * ************************************************************************
The m o n i t o r o u t p u t
************************************************************************ * /

# t ime =0 i n =0 o u t =11
# t ime =1 i n =0 o u t =10
# t ime =2 i n =0 o u t =00
# t ime =3 i n =0 o u t =01
# t ime =4 i n =0 o u t =00
# t ime =5 i n =0 o u t =01
# t ime =6 i n =0 o u t =00
# t ime =7 i n =0 o u t =01
# t ime =8 i n =0 o u t =00
# t ime =9 i n =0 o u t =01
# t ime =10 i n =1 o u t =00
# t ime =11 i n =1 o u t =01
# t ime =12 i n =1 o u t =10
# t ime =13 i n =1 o u t =11
# t ime =14 i n =1 o u t =01
# t ime =15 i n =1 o u t =10
# t ime =16 i n =1 o u t =11
# t ime =17 i n =1 o u t =01
# t ime =18 i n =1 o u t =10
# t ime =19 i n =1 o u t =11

The main effect we want to emphasize is the evolution of the output under no variation of the input
in. The initial system, defined in the previous case, has an output that switches only responding to the
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input changing (see also the table from Figure 4.1b). The system which results closing the loop has its
own behavior. This behavior depends by the input value, but is triggered by the events coming through
the loop. Figure 4.1c shows the output evolution for in = 0 and Figure 4.1d represents the evolution
for in = 1. ⋄

VerilogSummary 3 :

• the register reg[1:0] out defined in the module initSyst is nor a register, it is a Verilog vari-
able, whose value is computed by a case procedure anytime at least one of the two inputs change
(always @(in or lp))

• a register which changes its state “ignoring” a clock edge is not a register, it is a variable evolving
like the output of a combinational circuit

• what is the difference between an assign and an always (a or b or ...)? The body of
assign is continuously evaluated, rather than the body of always which is evaluated only if at
least an element of the list of sensitivity ((a or b or ...)) changes

• in running a simulation an assign is more computationally costly in time than an always which
is more costly in memory resources.

Until now we used in a non-rigorous manner the concept of autonomy. It is necessary for our next
step to define more clearly this concept in the digital system domain.

Definition 4.1 In a digital system a behavior is called autonomous iff for the same input dynamic there
are defined more than one distinct output transitions, which manifest in distinct moments. ⋄

If we take again the previous example we can see in the result of the simulation that in the moment
time = 2 the input switches from 0 to 0 and the output from 10 to 00. In the next moment input
switches the same, but output switches from 00 to 10. The input of the system remains the same, but the
output behaves distinctly. The explanations is for us obvious because we have access to the definition of
the initial system and in the transition table we look for the first transition in the line 010 and we find the
output 00 and for the second in the line 000 finding there 00. The input of the initial system is changed
because of the loop that generates a distinct response.

In our example the input dynamic is null for a certain output dynamic. There are example when
the output dynamic is null for some input transitions (will be found such examples when we talk about
memories).

Theorem 4.1 In the respect of the previous definition for autonomy, closing an internal loop generates
autonomous behaviors. ⋄

Proof Let be The description of ’no loop system’ module from Definition 3.4 described,
in the general form, by the following pseudo-Verilog construct:
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always @( i n 1 or i n 0 ) #1
ca se ( i n 1 )

. . . : case ( i n 0 )
. . . : { out1 , ou t0 } = f 0 0 ( in1 , i n 0 ) ;

. . .
. . . : { out1 , ou t0 } = f 0 p ( in1 , i n 0 ) ;

endcase
. . .

. . . : case ( i n 0 )
. . . : { out1 , ou t0 } = f q 0 ( in1 , i n 0 ) ;

. . .
. . . : { out1 , ou t0 } = f q p ( in1 , i n 0 ) ;

endcase
endcase

The various occurrences of {out1, out2} are given by the functions f ij(in1, in2) defined in
Verilog.

When the loop is closed, in0 = out0 = state, the in1 remains the single input of the resulting
system, but the internal structure of the system continue to receive both variable, in1 and in0. Thus, for
a certain value of in1 there are more Verilog functions describing the next value of {out1, out0}. If
in1 = const, then the previous description is reduced to:

always @( s t a t e ) #1 case ( s t a t e )
. . . : { out1 , s t a t e } = f i 0 ( c o n s t , s t a t e ) ;

. . .
. . . : { out1 , s t a t e } = f i p ( c o n s t , s t a t e } ;

endcase

The output of the system, out1, will be computed for each change of the variable state, using the
function f ji selected by the new value of state, which function depends by state. For each constant
value of in1 another set of functions is selected. In the two-level case, which describe no loop system,
this second level is responsible for the autonomous behavior.
⋄

4.2 Classifying Digital Systems

The two mechanisms, of composing and of ”looping”, give us a very good instrument for a new classifi-
cation of digital systems. If the system grows by different compositions, then it allows various kinds of
connections. In this context the loops are difficult to be avoided. They occur sometimes in large systems
without the explicit knowledge of the designer, disturbing the design process. But, usually we design
being aware of the effect introduced by this special connection – the loop. This mechanism leads us
to design a complex network of loops which include each other. Thus, in order to avoid ambiguities in
using the loops we must define what means ”included loop”. We shall use frequently in the next pages
this expression for describing how digital systems are built.
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Definition 4.2 A loop includes another loop only when it is closed over a serial or a serial-parallel
composition which have at least one subsystem containing an internal loop, called an included loop. ⋄

Attention! In a parallel composition a loop going through one of the parallel connected subsystem
does not include a loop closed over another parallel connected subsystem. A new loop of the kind
“grows” only a certain previously closed loop, but does not add a new one.

Example 4.2 In Figure 4.2 the loop (1) is included by the loop (2). In a serial composition built with S1
and S2 interconnected by (3), we use the connection (2) to add a new loop. ⋄

S2

S1

?

??

?

?

X

Y

(1)

(2) (3)

i
the serial connection

*

the included loop

1
the loop which includes

Figure 4.2: Included loops. The loop (2) includes loop (1), closed over the subsystem S2, because S2 is serially
connected with the subsystem S1 and loop (2) includes both S1 and S2.

Now we can use the next recursive definition for a new classification of digital systems. The classi-
fication contains orders, from 0 to n.

Definition 4.3 Let be a n-order system, n-OS. A (n+1)-OS can be built only adding a new loop which
includes the first n loops. The 0-OS contains only combinational circuits (the loop-less circuits). ⋄

This classification in orders is very consistent with the nowadays technological reality for n< 5. Over
this order the functions of digital systems are imposed mainly by information, this strange ingredient who
blinks in 2-OS, is born in 3-OS and grows in 4-OS monopolizing the functional control in digital systems
(see Chapter 16 in this book). But obviously, a function of a circuit belonging of certain order can be
performed also by circuits from any higher ones. For this reason we use currently circuits with more than
4 loops only for they allow us to apply different kind of optimizations. Even if a new loop is not imposed
by the desired functionality, we will use it sometimes because of its effect on the system complexity.
As will be exemplified, a good fitted loop allows the segregation of the simple part from an apparent
complex system, having as main effect a reduced complexity.

Our intention in the second part of this book is to propose and to show how works the following
classification:

0-OS - combinational circuits, with no autonomy

1-OS - memories, having the autonomy of internal state

2-OS - automata, with the autonomy to sequence

3-OS - processors, with the autonomy to control
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4-OS - computers, with the autonomy to interpret

. . .

n-OS - systems with the highest autonomy: to self-organize.
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Figure 4.3: Examples of circuits belonging to different orders. A combinational circuit is in 0-OS class
because has no loops. A memory circuit contains one-loop circuits and therefore it is in 1-OS class. Because the
register belongs to 1-OS class, closing a loop containing a register and a combinational circuit (which is in 0-OS
class) results an automaton: a circuit in 2-OS class. Two loop connected automata – a circuit in 3-OS class –
can work as a processor. An example of 4-OS is a simple computer obtained loop connecting a processor with a
memory. Cellular automata contains a number of loops related with the number of automata it contains.

This new classification can be exemplified2 (see also Figure 4.3) as follows:

• 0-OS: gate, elementary decoder (as the simplest parallel composition), buffered elementary de-
coder (the simplest serial-parallel composition), multiplexer, adder, priority encoder, ...

• 1-OS: elementary latch, master-slave flip-flop (serial composition), random access memory (par-
allel composition), register (serial-parallel composition), ...

2For almost all the readers the following enumeration is now meaningless. They are kindly invited to revisit this end of
chapter after assimilating the first 7 chapter of this book.



4.3. # DIGITAL SUPER-SYSTEMS 115

• 2-OS: T flip-flop (the simplest two states automaton), J-K flip-flop (the simplest two input automa-
ton), counters, automata, finite automata, ...

• 3-OS: automaton using loop closed through K-J flip-flops or counters, stack-automata, elementary
processors, ...

• 4-OS: micro-controller, computer (as Processor & RAM loop connected), stack processor, co-
processor

• ...

• n-OS: cellular automaton.

The second part of this book is devoted to sketch a digital system theory based on these two-
mechanism principle of evolving in digital circuits: composing & looping. Starting with combinational,
loop-less circuits with no autonomy, the theory can be developed following the idea of the increasing
system autonomy with each additional loop. Our approach will be a functional one. We will start with
simple functions and we will end with complex structures with emphasis on the relation between loops
and complexity.

4.3 # Digital Super-Systems

When a global loop is introduced in an n-order system results a digital super-system (DSS).

4.4 Preliminary Remarks On Digital Systems

The purpose of this first part of the book is to run over the general characteristics of digital systems using
an informal high level approach. If the reader become accustomed with the basic mechanisms already
described, then in the second part of this book he will find the necessary details to make useful the just
acquired knowledge. In the following paragraphs the governing ideas about digital systems are summed
up.

Combinational circuits vs. sequential circuits Digital systems receive symbols or stream of symbols
on their inputs and generate other symbols or stream of symbols on their outputs by computation. For
combinational systems each generated symbol depends only by the last recently received symbol. For
sequential systems at least certain output symbols are generated taking into account, instead of only one
input symbol, a stream of more than one input symbols. Thus, a sequential system is history sensitive,
memorizing the meaningful events for its own evolution in special circuits – called registers – using a
special synchronization signal – the clock.

Composing circuits & closing loops A big circuit results composing many small ones. A new kind
of feature can be added only closing a new loop. The structural composing corresponds the the mathe-
matical concept of composition. The loop corresponds somehow to the formal mechanism of recursion.
Composing is an “additive” process which means to put together different simple function to obtain a
bigger or a more complex one. Closing a loop new behaviors occur. Indeed, when a snake eats a mouse
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nothing special happens, but if the Orouboros3 serpent bits its own tail something very special must be
expected.

Composition allows data parallelism and time parallelism Digital systems perform in a “natural”
way parallel computation. The composition mechanism generate the context for the most frequent forms
of parallelism: data parallelism (in parallel composition) and time parallelism (in serial composition).
Time parallel computation is performed in pipeline systems, where the only limitation is the latency,
which means we must avoid to stop the flow of data through the “pipe”. The simplest data parallel
systems can be implemented as combinational circuits. The simplest time parallel systems must be
implemented as sequential circuits.

Closing loops disturbs time parallelism The price we pay for the additional features we get when a
new loop is closed is, sometimes, the necessity to stop the data flow through the pipelined circuits. The
stop is imposed by the latency and the effect can be loosing, totaly or partially, the benefit of the existing
time parallelism. Pipelines & loops is a bad mixture, because the pipe delays the data coming back from
the output of the system to its own input.

Speculation can restore time parallelism If the data used to decide comes back to late, the only
solution is to delay also the decision. Follows, instead of selecting what to do, the need to perform all
the computations envisaged by the decision and to select later only the desired result according to the
decision. To do all the computations means to perform speculative parallel computation. The structure
imposed for this mechanism is a MISD (multiple instruction single data) parallel computation on certain
pipeline stage(s). Concluding, three kind of parallel processes can be stated in a digital system: data
parallelism, time parallelism and speculative parallelism.

Closed loops increase system autonomy The features added by a loop closed in a digital system refer
mainly to different kinds of autonomy. The loop uses the just computed data to determine how the
computation must be continued. It is like an internal decision is partially driven by the system behavior.
Not all sort of autonomy is useful. Some times the increased autonomy makes the system too “stubborn”,
unable to react to external control signals. For this reason, only an appropriately closed loop generates an
useful autonomy, that autonomy which can be used to minimize the externally exercised control. More
about how to close proper loops in the next chapters.

Closing loops induces a functional hierarchy in digital systems The degree of autonomy is a good
criteria to classify digital systems. The proposed taxonomy establishes the degree of autonomy counting
the number of the included loops closed inside a system. Digital system are classified in orders: the
0-order systems contain no loop circuits, and n-order systems contain at least one circuit with n included
loops. This taxonomy corresponds with the structural and functional diversity of the circuits used in the
actual digital systems.

3This symbol appears usually among the Gnostics and is depicted as a dragon, snake or serpent biting its own tail. In
the broadest sense, it is symbolic of time and the continuity of life. The Orouboros biting its own tail is symbolic of self-
fecundation, or the ”primitive” idea of a self-sufficient Nature - a Nature, that is continually returning, within a cyclic pattern,
to its own beginning.
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The top view of the digital circuits domain is almost completely characterized by the previous features.
Almost all of them are not technology dependent. In the following, the physical embodiment of these
concepts will be done using CMOS technology. The main assumptions grounding this approach may
change in time, but now they are enough robust and are simply stated as follows: computation is an
effective formally defined process, specified using finite descriptions, i.e., the length of the description is
not related with the dimension of the processed data, with the amount of time and of physical resources
involved.

Important question: What are the rules for using composition and looping? No rules restrict us to
compose or to loop. The only restrictions come from our limited imagination.

4.5 Problems

Autonomous circuits

Problem 4.1 Prove the reciprocal of Theorem 1.1.

Problem 4.2 Let be the circuit from Problem 1.25. Use the Verilog simulator to prove its autonomous
behavior. After a starting sequence applied on its inputs, keep a constant set of values on the input and
see if the output is evolving.

Can be defined an input sequence which brings the circuit in a state from which the autonomous
behavior is the longest (maybe unending)? Find it if it exists.

Problem 4.3 Design a circuit which after the reset generates in each clock cycle the next Fibbonaci
number starting from zero, until the biggest Fibbonaci number smaller than 232. When the biggest
number is generated the machine will start in the next clock cycle from the beginning with 0. It is
supposed the biggest Fibbonaci number smaller than 232 in unknown at the design time.

Problem 4.4 To the previously designed machine add a new feature: an additional output generating
the index of the current Fibbonaci number.

4.6 Projects

Use Appendix How to make a project to learn how to proceed in implementing a project.

Project 4.1
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Chapter 5

OUR FINAL TARGET

In the previous chapter
a new, loop based taxonomy was introduced. Because each newly added loop increases the autonomy of the system,
results a functional circuit hierarchy:

• history free, no-loop, combinational circuits performing logic and arithmetic functions (decoders, multiplexors,
adders, comparators, ...)

• one-loop circuits used mainly as storage support (registers, random access memories, register files, shift registers,
...)

• two-loop, automata circuits used for recognition, generation, control, in simple (counters, ...) or complex (finite
automata) embodiments

• three-loop, processors systems: the simplest information & circuit entanglement used to perform complex func-
tions

• four-loop, computing machines: the simplest digital systems able to perform complex programmable functions,
because of the segregation between the simple structure of the circuit and the complex content of the program
memory

• ...

In this chapter
a very simple programmable circuit, called toyMachine, is described using the shortest Verilog
description which can be synthesized using the current tools. It is used to delimit the list of circuits
that must be taught for undergraduates students. This version of a programmable circuit is selected
because:

• its physical implementation contains only the basic structures involved in defining a digital
system

• it is a very small & simple entangled structure of circuits & information used for defining,
designing and building a digital system with a given transfer function

• it has a well weighted complexity so as, after describing all the basic circuits, an enough
meaningful structure can be synthesized.

In the next chapter
starts the second part of this book which describes digital circuits closing a new loop after each chapter. It starts with
the chapter about no-loop digital circuits, discussing about:

• simple (and large sized) uniform combinational circuits, easy to be described using a recursive pattern

• complex and size limited random combinational circuits, whose description’s size is in the same range with their
size

119
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We must do away with all explanation, and description
alone must take its place. . . . The problems are solved,
not by giving new information, but by arranging what we
have always known.

Ludwig Wittgenstein 1

Before proceeding to accomplish our targeted project we
must describe it using what we have always known.

Our final target, for these lessons on Digital Design, is described in this chapter as an architecture.
The term is borrowed from builders. They use it to define the external view and the functionality of a
building. Similarly, in computer science the term of architecture denotes the external connections and
the functions performed by a computing machine. The architecture does not tell anything about how
the defined functionality is actually implemented inside the system. Usually there are multiple possible
solutions for a given architecture.

The way from “what” to “how” is the content of the next part of this book. The architecture we will
describe here states what we intend to do, while for learning how to do, we must know a lot about simple
circuits and the way they can be put together in order to obtain more complex functions.

5.1 toyMachine: a small & simple computing machine

The architecture of one of the simplest meaningful machine will be defined by (1) its external connec-
tions, (2) its internal state and (3) its transition functions. The transition functions refer to how both,
the internal state (the function f from the general definition) and the outputs (the function g from the
general definition) switch.

Let us call the proposed system toyMachine. It is almost the simplest circuit whose functionality
can be defined by a program. Thus, our target is to provide the knowledge for building a simple pro-
grammable circuit in which both, the physical structure of the circuit and the informational structure of
the program contribute to the definition of a certain function.

The use of such a programmable circuit is presented in Figure 5.1, where inputStream[15:0]

represents the stream of data which is received by the toyMachine processor, it is processed according
to the program stored in programMemory, while, f needed, dataMemory stores intermediate data or
support data. The result is issued as the data stream outputStream[15:0].

The use of such a programmable circuit is presented in Figure 5.1, where inputStream[15:0]

represents the stream of data which is received by the toyMachine processor, it is processed according
to the program stored in programMemory, while, if needed, dataMemory stores intermediate data or
support data. The result is issued as the data stream outputStream[15:0].

For the purpose of this chapter, the internal structure of toyMachine is presented in Figure 5.2. The
internal state of toyMachine is stored in:

1From Witgenstein’s Philosophical Investigation (#109). His own very original approach looked for an alternative way to
the two main streams of the 20th Century philosophy: one originated in Frege’s formal positivism, and another in Husserl’s
phenomenology. Wittgenstein can be considered as a forerunner of the architectural approach, his vision being far beyond
his contemporary fellows were able to understand.
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toyMachinedataMemory programMemory� - � -
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inStream

outStream

Programmable Logic Controller

Figure 5.1: Programmable Logic Controller designed with toyMachine.

programCounter : is a 32-bit register which stores the current address in the program memory; it
points in the program memory to the currently executed instruction; the reset signal sets its value
to zero; during the execution of each instruction its content is modified in order to read the next
instruction

intEnable : is a 1-bit state register which enable the action of the input int; the reset signal sets it
to 0, thus disabling the interrupt signal

regFile : the register file is a collection of 32 32-bit registers organized as a three port small memory
(array of storage elements):

• one port for write to the address destAddr

• one port for read the left operand from the address leftAddr

• one ort for read the right operand from the address rightAddr

used to store the most frequently used variables involved in each stage of the computation

carry : is a 1-bit register to store the value of the carry signal when an arithmetic operation is performed;
the value can be used for one of the next arithmetic operation

inRegister : is a 16-bit input register used as buffer

outRegister : is a 16-bit output register used as buffer

The external connections are of two types:

• data connections:

inStream : the input stream of data

outStream : the output stream of data

progAddr : the address for the programm memory

instruction : the instruction received from the program memory read using progAddr

dataAddr : the address for data memory

dataOut : the data sent to the data memory
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Figure 5.2: The internal state of toyMachine.

dataIn : the data received back from the data memory

• control connections:

empty : the input data on inStream is not valid, i.e., the system which provides the input stream
of data has noting to send for toyMachine

read : loads in inRegister the data provided by the sender only if empty = 0, else nothing
happens in toyMachine or in the sender

full : the receiver of the data is unable to receive data sent by toyMachine, i.e., the receiver

write : send the date to the receiver of outStream2

int : interrupt signal is an “intrusive” signal used to trigger a “special event”; the signal int acts,
only if the interrupt is enabled (intEnable = 1), as follows:

2The previously described four signals define one of the most frequently used interconnection device: the First-In-First-Out
buffer (FIFO). A FIFO (called also queue) is defined by the following data connections

– data input
– data output

and the following control connections:
– empty: the queue is empty, nothing to be read
– read: the read signal used to extract the last recently stored data
– full: the queue is full, no place to add new data
– write: add in queue the data input value

In our design, the sender’s output is the output of a FIFO, and the receiver’s input is the input of another FIFO, let us call them
outFIFO and inFIFO. The signals inStream, empty and read belong to the outFIFO of the sender, while outStream, full
and write belong to the inFIFO of the receiver.
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begin r e g F i l e [ 3 0 ] <= programCounte r ; / / one− l e v e l s t a c k
programCounte r <= r e g F i l e [ 3 1 ] ;

end

The location regFile[30] is loaded with the current value of programCounter when the
interrupt is acknowledged, and the content of regFile[31] is loaded as the next program
counter, i.e., the register 31 contains the address of the routine started by the occurrence of
the interrupt when it is acknowledged. The content of regFile[30] will be used to restore
the state of the machine when the program started by the acknowledged signal int ends.

inta : interrupt acknowledge

store : the write signal for the data memory; is is used to write dataOut at dataAddr in the
external data memory

reset : the synchronous reset signal is activated to initialize the system

clock : the clock signal

For the interconnections between the buffer registers, internal registers and the external signals area
is responsible the unspecified bloc Combinatorial logic.

The transition function is given by the program stored in an external memory called Program Mem-
ory (reg[31:0] programMemory[0:1023], for example). The program “decides” (1) when a new
value of the inStream is received, (2) when and how a new state of the machine is computed and (3)
when the output outStram is actualized. Thus, the output outStream evolves according to the inputs
of the machine and according to the history stored in its internal state.

The internal state of the above described engine is processed using combinational circuits, whose
functionality will be specified in this section using a Verilog behavioral description. At the end of the next
part of this book we will be able to synthesize the overall system using a Verilog structural description.

The toyMachine’s instruction set architecture (ISA) is a very small subset of any 32-bit processor
(for example, the MicroBlaze processor [MicroBlaze]).

Each location in the program memory contains one 32-bit instruction organized in two formats, as
follows:

instruction = {opCode[5:0], destAddr[4:0], leftAddr[4:0], rightAddr[4:0], 11’b0} |

{opCode[5:0], destAddr[4:0], leftAddr[4:0], immValue[15:0]};

where: opCode[5:0] : operation code

destAddr[4:0] : selects the destination in the register file

leftAddr[4:0] : selects the left operand from the register file

rightAddr[4:0]: selects the right operand from the register file

immValue[15:0]: immediate value

The actual content of the first field – opCode[5:0] – determines how the rest of the instruction
is interpreted, i.e., what kind of instruction format has the current instruction. The first format applies
the operation coded by opCode to the values selected by leftAddr and rightAddr from the register
file; the result is stored in register file to the location selected by destAddr. The second format uses
immValue extended with sign as a 32-bit value to be stored in register file at destAddr or as a relative
address for jump instructions.



124 CHAPTER 5. OUR FINAL TARGET

/ * ************************************************************************
F i l e name : t o y M a c h i n e A r c h i t e c t u r e . v . v
C i r c u i t name : I n s t r u c t i o n S e t A r c h i t e c t u r e
D e s c r i p t i o n : d e f i n e s t h e b i n a r y form o f t h e i n s t r u c t i o n s e t
************************************************************************ * /

parameter
nop = 6 ’ b000000 , / / no o p e r a t i o n : i n c r e m e n t programCounter

/ / CONTROL INSTRUCTIONS
jmp = 6 ’ b000001 , / / programCounter l oa de d form a r e g i s t e r
zjmp = 6 ’ b000010 , / / jump i f t h e s e l e c t e d r e g i s t e r i s 0
nzjmp = 6 ’ b000011 , / / jump i f t h e s e l e c t e d r e g i s t e r i s n o t 0
r jmp = 6 ’ b000100 , / / r e l a t i v e jump : pc = pc + immVal
e i = 6 ’ b000110 , / / e n a b l e i n t e r r u p t
d i = 6 ’ b000111 , / / d i s a b l e i n t e r r u p t
h a l t = 6 ’ b001000 , / / programCounter does n o t change

/ / DATA INSTRUCTIONS : pc = pc + 1
/ / A r i t h m e t i c & l o g i c i n s t r u c t i o n s

neg = 6 ’ b010000 , / / b i t w i s e n o t
bwand = 6 ’ b010001 , / / b i t w i s e and
bwor = 6 ’ b010010 , / / b i t w i s e or
bwxor = 6 ’ b010011 , / / b i t w i s e e x c l u s i v e or
add = 6 ’ b010100 , / / add
sub = 6 ’ b010101 , / / s u b t r a c t
addc = 6 ’ b010110 , / / add w i t h c a r r y
subc = 6 ’ b010111 , / / s u b t r a c t w i t h c a r r y
move = 6 ’ b011000 , / / move
a s h r = 6 ’ b011001 , / / a r i t h m e t i c s h i f t r i g h t one p o s i t i o n
v a l = 6 ’ b011010 , / / l oad immed ia t e w i t h s i g n e x t e n s i o n
h v a l = 6 ’ b011011 , / / append immed ia t e on h igh p o s i t i o n s

/ / I n p u t o u t p u t i n s t r u c t i o n s
r e c e i v e = 6 ’ b100000 , / / l oad i n R e g i s t e r i f empty = 0
i s s u e = 6 ’ b100001 , / / send o u t R e g i s t e r i f f u l l = 0
g e t = 6 ’ b100010 , / / l oad i n f i l e r e g i s t e r t h e i n R e g i s t e r
send = 6 ’ b100011 , / / l oad o u t R e g i s t e r r e g i s t e r ’ s c o n t e n t
d a t a r d = 6 ’ b100100 , / / read from da ta memory
da t a wr = 6 ’ b100101 ; / / w r i t e t o da ta memory

Figure 5.3: toyMachine’s ISA defined by the file 0 toyMachineArchitecture.v.
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The Instruction Set Architecture (ISA) of toyMachine is described in Figure 5.3, where are listed
two subset of instructions:

• control instructions: used to control the program flow by different kinds of jumps performed con-
ditioned, unconditioned or triggered by the acknowledged interrupt interrupt

• data instructions: used to modify the content of the file register, or to exchange data with the
external systems (each execution is accompanied with programCounter <= programCounter

+ 1).

The file is used to specify opCode, the binary codes associated to each instruction.
The detailed description of each instruction is given by the Verilog behavioral descriptions included

in the module toyMachine (see Figure 5.4).
The first ‘include includes the binary codes defined in 0 toyMachineArchitecture.v (see Fig-

ure 5.3) for each instruction executed by our simple machine.
The second ‘include includes the file used to describe how the instruction fields are structured.
The last two ‘include lines include the behavioral description for the two subset of instructions

performed by our simple machine. These last two files reflect the ignorance of the reader in the domain
of digital circuits. They are designed to express only what the designer intent to build, but she/he doesn’t
know yet how to do what must be done. The good news: the resulting description can be synthesized.
The bad news: the resulting structure is very big (far from optimal) and has a very complex form, i.e.,
no pattern can be emphasized. In order to provide a small & simple circuit, in the next part of this book
we will learn how to segregate the simple part from the complex part of the circuits used to provide
an optimal actual structure. Then, we will learn how to optimize both, the simple, pattern-dominated
circuits and the complex, pattern-less ones.

The file instructionStructure.v (see Figure 5.5) defines the fields of the instruction. For the
two forms of the instruction appropriate fields are provided, i.e., the instruction content is divided in
many forms, thus allowing different interpretation of it. The bits instruction[15:0] are used in two
ways according to the opCode. If the instruction uses two operands, and both are supplied by the content
of the register file, then instruction[15:0] = rightAddr, else the same bits are the most significant
5 bits of the 16-bit immediate value provided to be used as signed operand or as a relative jump address.

The file controlFunction.v (see Figure 5.6) describes the behavior of the control instructions.
The control of toyMachine refers to both, interrupt mechanism and the program flow mechanism.

The interrupt signal int is acknowledged, activating the signal inta only if intEnable = 1 (see
the assign on the first line in Figure 5.6). Initially, the interrupt is not allowed to act: reset signal
forces intEnable = 0. The program decides when the system is “prepared” to accept interrupts. Then,
the execution of the instruction ei (enable interrupt) determines intEnable = 1. When an interrupt is
acknowledged, the interrupt is disabled, letting the program decide when another interrupt is welcomed.
The interrupt is disabled by executing the instruction di – disable interrupt.

The program flow is controlled by unconditioned and conditioned jump instructions. But, the inta

signal once activated, has priority, allowing the load of the program counter with the value stored in
regFile[31] which was loaded, by the initialization program of the system, with the address of the
subroutine associated to the interrupt signal.

The value of the program counter, programCounter, is by default incremented with 1, but when a
control instruction is executed its value can be incremented with the signed integer instruction[15:0]
or set to the value of a register contained in the register file. The program control instructions are:
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/ * ************************************************************************
F i l e name : toyMachine . v
C i r c u i t name : Toy Machine
D e s c r i p t i o n : t h e t o p l e v e l o f t h e p r o c e s s o r Toy Machine
************************************************************************ * /
module toyMachine (

input [ 1 5 : 0 ] i n S t r e a m , / / i n p u t s t r ea m o f da ta
input empty , / / i n S t r e a m has no meaning
output r e a d , / / read from t h e s e n d e r
output [ 1 5 : 0 ] o u t S t r e a m , / / o u t p u t s t r ea m o f da ta
input f u l l , / / t h e r e c e i v e r i s f u l l
output w r i t e , / / w r i t e form o u t R e g i s t e r
input i n t e r r u p t , / / i n t e r r u p t i n p u t
output i n t a , / / i n t e r r u p t acknowledge
output [ 3 1 : 0 ] da taAddr , / / a d d r e s s f o r da ta memory
output [ 3 1 : 0 ] d a t a O u t , / / da ta f o r da ta memory
output s t o r e , / / s t o r e da taOut a t da taAddr
input [ 3 1 : 0 ] d a t a I n , / / da ta from da ta memory
output reg [ 3 1 : 0 ] programCounter , / / a d d r e s s f o r program memory
input [ 3 1 : 0 ] i n s t r u c t i o n , / / i n s t r u c t i o n from memory
input r e s e t , / / r e s e t i n p u t
input c l o c k ) ; / / c l o c k i n p u t / / 2429 LUTs

/ / INTERNAL STATE
reg [ 1 5 : 0 ] i n R e g i s t e r ;
reg [ 1 5 : 0 ] o u t R e g i s t e r ;
reg [ 3 1 : 0 ] r e g F i l e [ 0 : 3 1 ] ;
reg c a r r y ;
reg i n t E n a b l e ;

‘ i n c l u d e ” 0 t o y M a c h i n e A r c h i t e c t u r e . v ”
‘ i n c l u d e ” i n s t r u c t i o n S t r u c t u r e . v ”
‘ i n c l u d e ” c o n t r o l F u n c t i o n . v ”
‘ i n c l u d e ” d a t a F u n c t i o n . v ”

endmodule

Figure 5.4: The file toyMachine.v containing the toyMachine’s behavioral description.



5.1. TOYMACHINE: A SMALL & SIMPLE COMPUTING MACHINE 127

/ * ************************************************************************
F i l e name : i n s t r u c t i o n S t r u c t u r e . v
C i r c u i t name : I n s t r u c t i o n S t r u c t u r e
D e s c r i p t i o n : f i l e used t o d e t a i l t h e i n s t r u c t i o n ’ s s t r u c t u r e
************************************************************************ * /

wire [ 5 : 0 ] opCode ;
wire [ 4 : 0 ] d e s t A d d r ;
wire [ 4 : 0 ] l e f t A d d r ;
wire [ 4 : 0 ] r i g h t A d d r ;
wire [ 3 1 : 0 ] immValue ;

a s s i g n opCode = i n s t r u c t i o n [ 3 1 : 2 6 ] ;
a s s i g n d e s t A d d r = i n s t r u c t i o n [ 2 5 : 2 1 ] ;
a s s i g n l e f t A d d r = i n s t r u c t i o n [ 2 0 : 1 6 ] ;
a s s i g n r i g h t A d d r = i n s t r u c t i o n [ 1 5 : 1 1 ] ;
a s s i g n immValue = {{16{ i n s t r u c t i o n [ 1 5 ]}} , i n s t r u c t i o n [ 1 5 : 0 ] } ;

Figure 5.5: The file instructionStructure.v.

jmp : absolute jump with the value selected from the register file by the field leftAddr; the register
programCounter takes the value contained in the selected register

zjmp : relative jump with the signed value immValue if the content of the register selected by leftAddr
from the register file is 0, else programCounter = programCounter + 1

nzjmp : relative jump with the signed value immValue if the content of the register selected by
leftAddr from the register file is not 0, else programCounter = programCounter + 1

receive : relative jump with the signed value immValue if readyIn is 1, else programCounter =

programCounter + 1

issue : relative jump with the signed value immValue if readyOut is 1, else programCounter =

programCounter + 1

halt : the program execution halts, programCounter = programCounter (it is a sort of nop instruc-
tion without incrementing the register programCounter = programCounter).

Warning! If intEnable = 0 when the instruction halt is executed, then the overall system is
blocked. The only way to turn it back to life is to activate the reset signal.

The file dataFunction.v (see Figure 5.7) describes the behavior of the data instructions. The signal
inta has the highest priority. It forces the register 30 of the register file to store the current state of the
register programCounter. It will be used to continue the program, interrupted by the acknowledged
interrupt signal int, by executing a jmp instruction with the content of regFile[30].

The following data instructions are described in this file:

add : the content of the registers selected by leftAddr and rightAddr are added and the result is
stored in the register selected by destAddr; the value of the resulted carry is stored in the carry
one-bit register
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/ * ************************************************************************
F i l e name : c o n t r o l F u n c t i o n . v
C i r c u i t name : C o n t r o l F u n c t i o n
D e s c r i p t i o n : d e s c r i b e s t h e c o n t r o l f u n c t i o n o f t h e p r o c e s s o r
************************************************************************ * /
/ * ************************************************************************
F i l e name : c o n t r o l F u n c t i o n . v
C i r c u i t name : C o n t r o l F u n c t i o n
D e s c r i p t i o n : d e s c r i b e s t h e c o n t r o l f u n c t i o n o f t h e p r o c e s s o r
************************************************************************ * /

a s s i g n i n t a = i n t E n a b l e & i n t e r r u p t ;
always @( posedge c l o c k )

i f ( r e s e t ) i n t E n a b l e <= 0 ;
e l s e i f ( i n t a ) i n t E n a b l e <= 0 ;

e l s e i f ( opCode == e i ) i n t E n a b l e <= 1 ;
e l s e i f ( opCode == d i ) i n t E n a b l e <= 0 ;

always @( posedge c l o c k )
i f ( r e s e t ) p rogramCounte r <= 0 ;

e l s e
i f ( i n t a ) p rogramCounte r <= r e g F i l e [ 3 1 ] ;

e l s e case ( opCode )
jmp : p rogramCounte r <= r e g F i l e [ l e f t A d d r ] ;
zjmp : i f ( r e g F i l e [ l e f t A d d r ] == 0)

programCounte r <= programCounte r + immValue ;
e l s e programCounte r <= programCounte r + 1 ;

nzjmp : i f ( r e g F i l e [ l e f t A d d r ] !== 0)
p rogramCounte r <= programCounte r + immValue ;

e l s e programCounte r <= programCounte r + 1 ;
r jmp : p rogramCounte r <= programCounte r + immValue ;
r e c e i v e : i f ( ! empty )

p rogramCounte r <= programCounte r + 1 ;
e l s e programCounte r <= programCounte r ;

i s s u e : i f ( ! f u l l )
p rogramCounte r <= programCounte r + 1 ;

e l s e programCounte r <= programCounte r ;
h a l t : p rog ramCounte r <= programCounte r ;
d e f a u l t programCounte r <= programCounte r + 1 ;
endcase

Figure 5.6: The file controlFunction.v.



5.1. TOYMACHINE: A SMALL & SIMPLE COMPUTING MACHINE 129

sub : the content of the register selected by rightAddr is subtracted form the content of the register
selected by leftAddr, the result is stored in the register selected by destAddr; the value of the
resulted borrow is stored in the carry one-bit register

addc : add with carry - the content of the registers selected by leftAddr and rightAddr and the content
of the register carry are added and the result is stored in the register selected by destAddr; the
value of the resulted carry is stored in the carry one-bit register

subc : subtract with carry - the content of the register selected by rightAddr and the content of carry
are subtracted form the content of the register selected by leftAddr, the result is stored in the
register selected by destAddr; the value of the resulted borrow is stored in the carry one-bit
register

ashr : the content of the register selected by leftAddr is arithmetically shifted right one position and
stored in the register selected by destAddr

neg : every bit contained in the register selected by leftAddr are inverted and the result is stored in the
register selected by destAddr

bwand : the content of the register selected by leftAddr is AND-ed bit-by-bit with the content of the
register selected by rightAddr and the result is stored in the register selected by destAddr

bwor : the content of the register selected by leftAddr is OR-ed bit-by-bit with the content of the
register selected by rightAddr and the result is stored in the register selected by destAddr

bwxor : the content of the register selected by leftAddr is XOR-ed bit-by-bit with the content of the
register selected by rightAddr and the result is stored in the register selected by destAddr

val : the register selected by destAddr is loaded with the signed integer immValue

hval : is used to construct a 32-bit value placing instruction[15:0] on the 16 highest binary position
in the content of the register selected by leftAddr; the result is stored at destAddr in the register
file

get : the register selected by destAddr are loaded with the content of inRegister

send : the outRegister register is loaded with the least 15 significant bits of the register selected by
leftAddr

receive : if readyIn = 1, then the inRegister is loaded with the current varue applied on the input
inStream and the readIn signal is activated for the sender to “know” that the current value was
received

datard : the data accessed at the address dataAddr = leftOp = regFile[leftAddr] is loaded in
register file at th elocatioin destAddr

issue : generate, only when readyOut = 1, the signal writeOut used by the receiver to take the value
from the outRegister register

datawr : generate the signal write used by the data memory to write at the address
regFile[leftAddr] the data stored in regFile[rightAddr]
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/ * ************************************************************************
F i l e name : d a t a F u n c t i o n . v . v
C i r c u i t name : Data F u n c t i o n
D e s c r i p t i o n : d e s c r i b e s t h e da ta f u n c t i o n s o f t h e p r o c e s s o r
************************************************************************ * /

always @( posedge c l o c k )
i f ( i n t a ) r e g F i l e [ 3 0 ] <= programCounte r ;

e l s e
case ( opCode )

add : { c a r r y , r e g F i l e [ d e s t A d d r ]}
<= r e g F i l e [ l e f t A d d r ] + r e g F i l e [ r i g h t A d d r ] ;

sub : { c a r r y , r e g F i l e [ d e s t A d d r ]}
<= r e g F i l e [ l e f t A d d r ] − r e g F i l e [ r i g h t A d d r ] ;

addc : { c a r r y , r e g F i l e [ d e s t A d d r ]}
<= r e g F i l e [ l e f t A d d r ] + r e g F i l e [ r i g h t A d d r ] + c a r r y ;

subc : { c a r r y , r e g F i l e [ d e s t A d d r ]}
<= r e g F i l e [ l e f t A d d r ] − r e g F i l e [ r i g h t A d d r ] − c a r r y ;

move : r e g F i l e [ d e s t A d d r ] <= r e g F i l e [ l e f t A d d r ] ;
a s h r : r e g F i l e [ d e s t A d d r ]

<= { r e g F i l e [ l e f t A d d r ] [ 3 1 ] , r e g F i l e [ l e f t A d d r ] [ 3 1 : 1 ] } ;
neg : r e g F i l e [ d e s t A d d r ] <= ˜ r e g F i l e [ l e f t A d d r ] ;
bwand : r e g F i l e [ d e s t A d d r ]

<= r e g F i l e [ l e f t A d d r ] & r e g F i l e [ r i g h t A d d r ] ;
bwor : r e g F i l e [ d e s t A d d r ] <=

r e g F i l e [ l e f t A d d r ] | r e g F i l e [ r i g h t A d d r ] ;
bwxor : r e g F i l e [ d e s t A d d r ]

<= r e g F i l e [ l e f t A d d r ] ˆ r e g F i l e [ r i g h t A d d r ] ;
v a l : r e g F i l e [ d e s t A d d r ] <= immValue ;
h v a l : r e g F i l e [ d e s t A d d r ]

<= { immValue [ 1 5 : 0 ] , r e g F i l e [ l e f t A d d r ] [ 1 5 : 0 ] } ;
g e t : r e g F i l e [ d e s t A d d r ] <= i n R e g i s t e r ;
send : o u t R e g i s t e r <= r e g F i l e [ l e f t A d d r ] [ 1 5 : 0 ] ;
r e c e i v e : i f ( ! empty )

i n R e g i s t e r <= i n S t r e a m ;
d a t a r d : r e g F i l e [ d e s t A d d r ] <= d a t a I n ;
d e f a u l t r e g F i l e [ 0 ] <= r e g F i l e [ 0 ] ;

endcase

a s s i g n r e a d = ( opCode == r e c e i v e ) & ( ! empty ) ;
a s s i g n w r i t e = ( opCode == i s s u e ) & ( ! f u l l ) ;
a s s i g n s t o r e = ( opCode == d a t a wr ) ;
a s s i g n da taAddr = r e g F i l e [ l e f t A d d r ] ;
a s s i g n d a t a O u t = r e g F i l e [ r i g h t A d d r ] ;
a s s i g n o u t S t r e a m = o u t R e g i s t e r ;

Figure 5.7: The file dataFunction.v.
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5.2 How toyMachine works

The simplest, but not the easiest way to use toyMachine is to program it in machine language3, i.e.,
to write programs as sequence of binary coded instructions stored in programMemory starting from the
address 0.

The general way to solve digital problems using toyMachine, or a similar device, is (1) to define the
input stream, (2) to specify the output stream, and (3) to write the program which transforms the input
stream into the corresponding output stream. Usually, we suppose an input signal which is sampled at a
program controlled rate, and the results is an output stream of samples which is interpreted as the output
signal. The transfer function of the system is programmed in the binary sequence of instructions stored
in the program memory.

The above described method to implement a digital system is called programmed logic, because
a general purpose programmable machine is used to implement a certain function which generate an
output stream of data starting from an input stream of data. The main advantage of this method is its
flexibility, while the main disadvantages are the reduced speed and the increased size of the circuit. If
the complexity, price and time to market issues are important, then it can be the best solution.

At http://arh.pub.ro/gstefan/toyMachine.zip you can find the files used to simulate a toy-
Machine system.

5.2.1 The Code Generator

The file toyMachineCodeGenerator.v contains the description of the engine used to fill up the pro-
gram memory – progMem – containing the “executable” code, i.e., the binary form of the program to be
executed.

For the instructions we use capital letters with parameters in parenthesis, if needed. For example:
ADD(4, 3, 17) which stands for add in the register 4 the content of the register 3 with the content of
the register 17. To specify the jump addresses are used labels of form LB(2). When the instruction
ZJMP(2) is executed, the jump address is calculated using the address labeled with LB(2).

The full form of the file toyMachineCodeGenerator.v is in the folder pointed by
http://arh.pub.ro/gstefan/toyMachine.zip, while, in the following, a shorted form is presented
in order to explain only the way the code is generated and stored in the program memory.

3The next levels are to use an assembly language or a high level language (for example: C), but these approaches are
beyond our goal in this text book.
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/ * ************************************************************************
F i l e name : toyMachineCodeGenera tor . v
C i r c u i t name : S im p l e a s s e m b l e r f o r t o y Machine
D e s c r i p t i o n : g e n e r a t e s t h e b i n a r y code i n program memory ; o n l y t y p i c a l

i n s t r u c t i o n s are as semb led
************************************************************************ * /
/ / CODE GENERATOR

reg [ 5 : 0 ] opCode ;
reg [ 4 : 0 ] d e s t A d d r ;
reg [ 4 : 0 ] l e f t A d d r ;
reg [ 4 : 0 ] r i g h t A d d r ;
reg [ 1 0 : 0 ] v a l u e ;
reg [ 5 : 0 ] a d d r C o u n t e r ;
reg [ 5 : 0 ] l a b e l T a b [ 0 : 6 3 ] ;

‘ i n c l u d e ” 0 t o y M a c h i n e A r c h i t e c t u r e . v ”

ta sk endLine ;
begin

d u t . progMem [ a d d r C o u n t e r ] = {opCode ,
de s t A d d r ,
l e f t A d d r ,
r i g h t A d d r ,
v a l u e } ;

a d d r C o u n t e r = a d d r C o u n t e r + 1 ;
end

endtask
/ / LB t a s k s e t s l a b e l T a b i n t h e f i r s t pas s a s s o c i a t i n g ’ c o u n t e r ’
/ / w i t h ’ l a b e l I n d e x ’
ta sk LB ;

input [ 4 : 0 ] l a b e l I n d e x ;
l a b e l T a b [ l a b e l I n d e x ] = a d d r C o u n t e r ;

endtask
/ / ULB t a s k u s e s t h e c o n t e n t o f l a b e l T a b i n t h e second pass
ta sk ULB;

input [ 4 : 0 ] l a b e l I n d e x ;
{ r i g h t A d d r , v a l u e } = l a b e l T a b [ l a b e l I n d e x ] − a d d r C o u n t e r ;

endtask

task NOP;
begin opCode = nop ;

d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = 5 ’ b0 ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
endLine ;

end
endtask

task JMP ;
input [ 4 : 0 ] l e f t ;
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begin opCode = jmp ;
d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = l e f t ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
endLine ;

end
endtask

task ZJMP ;
input [ 4 : 0 ] l e f t ;
input [ 5 : 0 ] l a b e l ;
begin opCode = zjmp ;

d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = l e f t ;
ULB( l a b e l ) ;
endLine ;

end
endtask
/ / . . .
ta sk RJMP ;

input [ 5 : 0 ] l a b e l ;
begin opCode = rjmp ;

d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = 5 ’ b0 ;
ULB( l a b e l ) ;
endLine ;

end
endtask

task EI ;
begin opCode = e i ;

d e s t A d d r = 5 ’ b0 ;
l e f t A d d r = 5 ’B0 ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
endLine ;

end
endtask
/ / . . .
ta sk AND;

input [ 4 : 0 ] d e s t ;
input [ 4 : 0 ] l e f t ;
input [ 4 : 0 ] r i g h t ;
begin opCode = bwand ;

d e s t A d d r = d e s t ;
l e f t A d d r = l e f t ;
{ r i g h t A d d r , v a l u e } = { r i g h t , 11 ’ b0 } ;
endLine ;

end
endtask
/ / . . .
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ta sk ADD;
input [ 4 : 0 ] d e s t ;
input [ 4 : 0 ] l e f t ;
input [ 4 : 0 ] r i g h t ;
begin opCode = add ;

de s t A d d r = d e s t ;
l e f t A d d r = l e f t ;
{ r i g h t A d d r , v a l u e } = { r i g h t , 11 ’ b0 } ;
endLine ;

end
endtask
/ / . . .
ta sk ADDC;

input [ 4 : 0 ] d e s t ;
input [ 4 : 0 ] l e f t ;
input [ 4 : 0 ] r i g h t ;
begin opCode = addc ;

de s t A d d r = d e s t ;
l e f t A d d r = l e f t ;
{ r i g h t A d d r , v a l u e } = { r i g h t , 11 ’ b0 } ;
endLine ;

end
endtask
/ / . . .
ta sk VAL;

input [ 4 : 0 ] d e s t ;
input [ 1 5 : 0 ] immVal ;
begin opCode = v a l ;

de s t A d d r = d e s t ;
l e f t A d d r = 5 ’B0 ;
{ r i g h t A d d r , v a l u e } = immVal ;
endLine ;

end
endtask
/ / . . .
ta sk RECEIVE ;

begin opCode = r e c e i v e ;
de s t A d d r = 5 ’ b0 ;
l e f t A d d r = 5 ’ b0 ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
endLine ;

end
endtask
/ / . . .
ta sk DATARD;

input [ 4 : 0 ] d e s t ;
begin opCode = d a t a r d ;

de s t A d d r = d e s t ;
l e f t A d d r = 5 ’ b0 ;
{ r i g h t A d d r , v a l u e } = 16 ’ b0 ;
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endLine ;
end

endtask
/ / . . .
/ / RUNNING
i n i t i a l begin a d d r C o u n t e r = 0 ;

‘ i n c l u d e ” 0 t h e P r o g r a m . v ” ; / / f i r s t pas s
a d d r C o u n t e r = 0 ;
‘ i n c l u d e ” 0 t h e P r o g r a m . v ” ; / / s econd pas s

end

The code generator program is a two-pass generator (see RUNNING ... in the above code) which
uses, besides the program memory progMem, a counter, addrCounter, and a memory, called labelTab,
for storing the address labeled by LB(n). In the first pass, in labelTab are stored the addresses counted
by addrCounter (see task LB), while dummy jump addresses are computed using the not up-dated
content of the labelTab memory. In the second pass, the content of the labelTab memory is used by
task ULB to compute the correct jump addresses.

The main tasks involved are of two types:

• additional tasks used for generating the binary code

endLine : once a line of code is filled up by an instruction task (such as NOP, AND, OR, ...,

JMP, HALT, ...), the resulting binary code is loaded in the program memory at the address
given by addrCounter, and the counter addrCounter is incremented.

LB : the label’s argument is loaded in the labelTab memory at the address addrCounter; the
action make sense only at the first pass

ULB : uses, at the second pass, the content of the labelTab memory to compute the actual value
of the jump address; it is pointless at the fists pass

• instruction generating tasks, of type:

NOP : no operand instructions

JMP(n) : control instruction with one parameter, n, which is a number indicating the register to
be used

ZJMP(m,n) : control instruction with two parameters, n and m, indicating a register and a label to
be used for a conditioned jump

ADD(d,l,r) : three-parameter instruction indicating destination regiter, d, left operand register,
l, and right operand register, r

The program is sequence of tasks which is translated in binary code by the
0 toyMachineCodeGenerator.v program.

Example 5.1 The following simple program:

VAL(1, 5);

VAL(2, 6);

ADD(3, 2, 1);
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adds in the register 3 the numbers loaded in the registers 1 and 2. The code generator sees this program
as a sequence of three tasks and generates three 32-bit words in the program memory starting with the
address 0.
⋄

5.2.2 The Simulation Module

The simulation module (stored in the file 0 toyMachineSimulator.v under the name
toyMachineSimulator) is used for two purposes:

• as the verification environment for the correctness of the design

• as the verification environment for the correctness of the programs written for the toyMachine
simple processor.

The full form of the file toyMachineSimlator.v is in the folder pointed by
http://arh.pub.ro/gstefan/toyMachine.zip, while, in the following, a little edited form
is presented.

/ * ************************************************************************
F i l e name : t o y M a c h i n e S i m u l a t o r . v
C i r c u i t name : S i m u l a t o r module f o r Toy Machine
D e s c r i p t i o n : s i m u l a t e a s y s t e m w i t h Toy Machine
************************************************************************ * /
module t o y M a c h i n e S i m u l a t o r ;

reg [ 1 5 : 0 ] i n S t r e a m ; / / i n p u t s t r ea m o f da ta
reg empty ; / / i n p u t s t r ea m i s ready
wire r e a d ; / / read one e l e m e n t from t h e i n p u t s t r ea m
wire [ 1 5 : 0 ] o u t S t r e a m ; / / o u t p u t s t r ea m o f da ta
reg f u l l ; / / r eady t o r e c e i v e from t h e o u t p u t s t r ea m
wire w r i t e ; / / w r i t e t h e e l e m e n t form o u t R e g i s t e r
reg i n t e r r u p t ; / / i n t e r r u p t i n p u t
wire i n t a ; / / i n t e r r u p t acknowledge
reg r e s e t ; / / r e s e t i n p u t
reg c l o c k ; / / c l o c k i n p u t

i n t e g e r i ;

i n i t i a l begin c l o c k = 0 ;
f o r e v e r #1 c l o c k = ˜ c l o c k ;

end

‘ i n c l u d e ” 0 t o y M a c h i n e C o d e G e n e r a t o r . v ”

i n i t i a l f o r ( i =0 ; i <32; i = i +1)
$ d i s p l a y ( ”progMem[%0d ] = %b ” , i , d u t . progMem [ i ] ) ;

i n i t i a l begin r e s e t = 1 ;
i n S t r e a m = 0 ;
empty = 0 ;
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f u l l = 0 ;
#3 r e s e t = 0 ;
#380 $ s t o p ;

end

always @( posedge c l o c k )
i f ( r e s e t ) i n S t r e a m [ 2 : 0 ] <= 0 ;

e l s e i n S t r e a m [ 2 : 0 ] <= r e a d I n ? i n S t r e a m [ 2 : 0 ] + 1 :
i n S t r e a m [ 2 : 0 ] ;

toySys tem d u t ( i n S t r e a m ,
empty ,
r e a d ,
o u t S t r e a m ,
f u l l ,
w r i t e ,
i n t e r r u p t ,
i n t a ,
r e s e t ,
c l o c k ) ;

i n i t i a l
$monitor ( ” t ime=%0d \ t r s t =%b pc=%0d . . . ” , / / ! ! !

$t ime ,
r e s e t ,
d u t . p rogramCounter ,
d u t . tM . c a r r y ,
d u t . tM . r e g F i l e [ 0 ] ,
d u t . tM . r e g F i l e [ 1 ] ,
d u t . tM . r e g F i l e [ 2 ] ,
d u t . tM . r e g F i l e [ 3 ] ,
d u t . tM . r e g F i l e [ 4 ] ,
d u t . tM . r e g F i l e [ 5 ] ,
d u t . tM . r e g F i l e [ 6 ] ,
d u t . tM . r e g F i l e [ 7 ] ,
d u t . tM . read ,
d u t . tM . i n R e g i s t e r ,
d u t . tM . w r i t e ,
d u t . tM . o u t R e g i s t e r ) ;

endmodule

The toySystem module instantiated in the simulator contains, besides the processor, two memories:
one for data and another for programs (see Figure 5.1. The module toySystem described in a file con-
tained in the folder pointed by http://arh.pub.ro/gstefan/toyMachine.zip. It has the following
form:
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/ * ************************************************************************
F i l e name : t o y S y s t e m . v
C i r c u i t name : Toy Sys tem
D e s c r i p t i o n : a s y s t e m b u i l d around Toy Machine
************************************************************************ * /
module t oySys tem

( input [ 1 5 : 0 ] i n S t r e a m , / / i n p u t s t r ea m o f da ta
input empty , / / i n p u t s t r ea m i s ready
output r e a d , / / read one e l e m e n t from t h e s t r ea m
output [ 1 5 : 0 ] o u t S t r e a m , / / o u t p u t s t r ea m o f da ta
input f u l l , / / r eady t o r e c e i v e from o u t p u t s t r ea m
output w r i t e , / / w r i t e t h e e l e m e n t form o u t R e g i s t e r
input i n t e r r u p t , / / i n t e r r u p t i n p u t
output i n t a , / / i n t e r r u p t acknowledge
input r e s e t , / / r e s e t i n p u t
input c l o c k ) ; / / c l o c k i n p u t

reg [ 3 1 : 0 ] progMem [ 0 : 1 0 2 3 ] ; / / i s a read o n l y memory
reg [ 3 1 : 0 ] dataMem [ 0 : 1 0 2 3 ] ;
wire [ 3 1 : 0 ] da taAddr ; / / a d d r e s s f o r da ta memory
wire [ 3 1 : 0 ] d a t a O u t ; / / da ta o f be s t o r e d i n da ta memory
wire s t o r e ; / / w r i t e i n da ta memory
wire [ 3 1 : 0 ] d a t a I n ; / / da ta from da ta memory
wire [ 3 1 : 0 ] p rogramCounte r ; / / a d d r e s s f o r program memory
wire [ 3 1 : 0 ] i n s t r u c t i o n ; / / i n s t r u c t i o n form t h e memory

toyMachine tM ( i n S t r e a m ,
empty ,
r e a d ,
o u t S t r e a m ,
f u l l ,
w r i t e ,
i n t e r r u p t ,
i n t a ,
da t aAddr ,
d a t a O u t ,
s t o r e ,
d a t a I n ,
p rogramCounte r ,
i n s t r u c t i o n ,
r e s e t ,
c l o c k ) ;

always @( posedge c l o c k ) dataMem [ da taAddr [ 9 : 0 ] ] <= d a t a O u t ;
a s s i g n d a t a I n = dataMem [ da taAddr [ 9 : 0 ] ] ;
a s s i g n i n s t r u c t i o n = progMem [ programCounte r [ 9 : 0 ] ] ;

endmodule
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5.2.3 Programming toyMachine

A program, 0 theProgram.v, written by one user is an input for the code genera-
tor, 0 toyMachineCodGenerator.v, which at its turn uses the architecture, described in
0 toyMachineArchitecture.v, and is included in the simulator, 0 toyMachineSimulator.v.

Each line in the file 0 theProgram.v contains one instruction or a label followed by an instruction.
Each instruction or label represents a task for the cod generator program. The simulator starts by printing
the binary form of the program and ends by printing the behavior of the system.

Example 5.2 Let us revisit the pixel correction problem whose solution as circuit was presented in Chap-
ter 1. Now we consider a more elaborated environment (see Figure 5.8). The main difference is that
the transfers of the streams of data are now conditioned by specific dialog signals. The subSystem

generating pixels is interrogated, by empty, before its output is loaded in inRegister; receiving
the data is notified back by the signal read. Similarly, there is a dialog with the subSystem using

pixels. It is interrogated by full and notified by write.

toyMachine
subSystem
generating

pixels

subSystem
using
pixels

- -
-

�

-

�read

?

reset

?

clock

int

6

?

outStream

progAddr

programMemory

instruction

write

full

empty

inStream

Figure 5.8: Programmed logic implementation for the interpol circuit.

In this application the data memory is not needed and the int signal is not used. The corresponding
signals are omitted or connected to fix values in Figure 5.8.

The program (see Figure 5.9) is structured to use three sequences of instructions called pseudo-
macros4.

• The first, called input, reads the input dealing with the dialog signals, empty and read.

• The second, called output, controls the output stream dealing with the signals full and write.

• The third pseudo-macro tests if the correction is needed, and apply it if necessary.

The pseudo-macro input: The registers 0, 1, and 2 from regFile are used to store three successive
values of pixels from the input stream. Then, before receiving a new value, the content of register 1 is
moved in the register 2 and the content of register 0 is moved in register 1 (see the first two line in the
code printed in Figure 5.9 in the section called "input" pseudo-macro). Now the register 0 form the

4The true macros are used in assembly languages. For this level of the machine language a more rudimentary form of macro
is used.
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register file is ready to receive a new value. The next instruction loads in inRegister the value of the
input stream when it is valid. The instruction receive loops with the same value in programCounter

until the empty signal becomes 0. The input value, once buffered in the inRegister, could be loaded
in regFile[0].

The sequence of instructions just described performs the shift operation defined in the module
stateTransition which is instantiated in the module pixelCorrector used as example in our in-
troductory first chapter.

The pseudo-macro output: See the code printed in Figure 5.9 in the section called "output"

pseudo-macro. The value to be sent out as the next pixel is stored in the register 1. Then, outRegister
register must be loaded with the content of regFile[1] (SEND(1)) and the signal write must be kept
active until full becomes 0, i. e., the instruction ISSUE loops with the same value in programCounter

until full = 0.

/ / i n i t i a l i z i n g t h e n e v e r end in g loop
RECEIVE ; / / l oad i n R e g i s t e r i f ( empty = 0) e l s e w a i t
GET ( 0 ) ; / / r e g F i l e [ 0 ] <= i n R e g i s t e r
RECEIVE ; / / l oad i n R e g i s t e r i f ( empty = 0) e l s e w a i t
GET ( 1 ) ; / / r e g F i l e [ 1 ] <= i n R e g i s t e r

/ / ” i n p u t ” pseudo −macro
LB ( 1 ) ; MOVE( 2 , 1 ) ; / / r e g F i l e [ 2 ] <= r e g F i l e [ 1 ]

MOVE( 1 , 0 ) ; / / r e g F i l e [ 1 ] <= r e g F i l e [ 0 ]
RECEIVE ; / / l oad i n R e g i s t e r i f ( empty = 0) e l s e w a i t
GET ( 0 ) ; / / r e g F i l e [ 0 ] <= i n R e g i s t e r

/ / ”compute” pseudo −macro
NZJMP( 1 , 2 ) ; / / i f ( r e g F i l e [ 1 ] !== 0) t h e n jump t o ” o u t p u t ”
ADD( 1 , 0 , 2 ) ; / / r e g F i l e [ 1 ] = r e g F i l e [ 0 ] + r e g F i l e [ 2 ]
ASHR( 1 , 1 ) ; / / r e g F i l e [ 1 ] = r e g F i l e [ 1 ] / 2

/ / ” o u t p u t ” pseudo −macro
LB ( 2 ) ; SEND ( 1 ) ; / / o u t R e g i s t e r = r e g F i l e [ 1 ]

ISSUE ; / / da ta i s i s s u e d i f ( f u l l = 0 ) , e l s e w a i t

RJMP ( 1 ) ; / / u n c o n d i t i o n e d jump t o LB ( 1 )

Figure 5.9: Machine language program for interpol.

The pseudo-macro compute: This pseudo-macro first perform the test on the content of the register
1 (NZJMP(1,2)), and, if necessary, makes the correction adding in the register 1 the content of the
registers 0 and 1 (ADD(1,0,2)), and then dividing the result by two performing an arithmetic shift right
(ASHR(1,1)).

The actual program, stored in the internal program memory (see Figure 5.9), has a starting part
receiving two input values, followed by an unending loop which receives a new value, compute the value
to be sent out and sends it.

The behavior of the system, provided by the simulator, is:
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progMem [ 0 ] = 10000000000000000000000000000000
progMem [ 1 ] = 10001000000000000000000000000000
progMem [ 2 ] = 10000000000000000000000000000000
progMem [ 3 ] = 10001000001000000000000000000000
progMem [ 4 ] = 01100000010000010000000000000000
progMem [ 5 ] = 01100000001000000000000000000000
progMem [ 6 ] = 10000000000000000000000000000000
progMem [ 7 ] = 10001000000000000000000000000000
progMem [ 8 ] = 00001000000000010000000000000110
progMem [ 9 ] = 00000000000000000000000000000000
progMem [ 1 0 ] = 00000000000000000000000000000000
progMem [ 1 1 ] = 10001100000000010000000000000000
progMem [ 1 2 ] = 10000100000000000000000000000000
progMem [ 1 3 ] = 00010000000000001111111111110111
progMem [ 1 4 ] = 01010000001000000001000000000000
progMem [ 1 5 ] = 01100100001000010000000000000000
progMem [ 1 6 ] = 10001100000000010000000000000000
progMem [ 1 7 ] = 10000100000000000000000000000000
progMem [ 1 8 ] = 00010000000000001111111111110010

Figure 5.10: The binary form of the program for interpol.

t ime =0 r s t =1 pc=x cr=x r f [0]= x r f [1]= x r f [2]= x read=x inReg=x w r i t e=x outReg=x
t ime =1 r s t =1 pc=0 cr=x r f [0]= x r f [1]= x r f [2]= x read=1 inReg=x w r i t e =0 outReg=x
t ime =3 r s t =0 pc=1 cr=x r f [0]= x r f [1]= x r f [2]= x read=0 inReg=0 w r i t e =0 outReg=x
t ime =5 r s t =0 pc=2 cr=x r f [0]=0 r f [1]= x r f [2]= x read=1 inReg=0 w r i t e =0 outReg=x
t ime =7 r s t =0 pc=3 cr=x r f [0]=0 r f [1]= x r f [2]= x read=0 inReg=1 w r i t e =0 outReg=x
t ime =9 r s t =0 pc=4 cr=x r f [0]=0 r f [1]=1 r f [2]= x read=0 inReg=1 w r i t e =0 outReg=x
t ime =11 r s t =0 pc=5 cr=x r f [0]=0 r f [1]=1 r f [2]=1 read=0 inReg=1 w r i t e =0 outReg=x
t ime =13 r s t =0 pc=6 cr=x r f [0]=0 r f [1]=0 r f [2]=1 read=1 inReg=1 w r i t e =0 outReg=x
t ime =15 r s t =0 pc=7 cr=x r f [0]=0 r f [1]=0 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=x
t ime =17 r s t =0 pc=8 cr=x r f [0]=2 r f [1]=0 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=x
t ime =19 r s t =0 pc=9 cr=x r f [0]=2 r f [1]=0 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=x
t ime =21 r s t =0 pc=10 cr =0 r f [0]=2 r f [1]=3 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=x
t ime =23 r s t =0 pc=11 cr =0 r f [0]=2 r f [1]=1 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=x
t ime =25 r s t =0 pc=12 cr =0 r f [0]=2 r f [1]=1 r f [2]=1 read=0 inReg=2 w r i t e =1 outReg=1
t ime =27 r s t =0 pc=13 cr =0 r f [0]=2 r f [1]=1 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=1
t ime =29 r s t =0 pc=4 cr =0 r f [0]=2 r f [1]=1 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=1
t ime =31 r s t =0 pc=5 cr =0 r f [0]=2 r f [1]=1 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=1
t ime =33 r s t =0 pc=6 cr =0 r f [0]=2 r f [1]=2 r f [2]=1 read=1 inReg=2 w r i t e =0 outReg=1
t ime =35 r s t =0 pc=7 cr =0 r f [0]=2 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=1
t ime =37 r s t =0 pc=8 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=1
t ime =39 r s t =0 pc=11 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=1
t ime =41 r s t =0 pc=12 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =1 outReg=2
t ime =43 r s t =0 pc=13 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=2
t ime =45 r s t =0 pc=4 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=2
t ime =47 r s t =0 pc=5 cr =0 r f [0]=3 r f [1]=2 r f [2]=2 read=0 inReg=3 w r i t e =0 outReg=2
t ime =49 r s t =0 pc=6 cr =0 r f [0]=3 r f [1]=3 r f [2]=2 read=1 inReg=3 w r i t e =0 outReg=2
t ime =51 r s t =0 pc=7 cr =0 r f [0]=3 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=2
t ime =53 r s t =0 pc=8 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=2
t ime =55 r s t =0 pc=11 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=2
t ime =57 r s t =0 pc=12 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =1 outReg=3
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t ime =59 r s t =0 pc=13 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=3
t ime =61 r s t =0 pc=4 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=3
t ime =63 r s t =0 pc=5 cr =0 r f [0]=4 r f [1]=3 r f [2]=3 read=0 inReg=4 w r i t e =0 outReg=3
t ime =65 r s t =0 pc=6 cr =0 r f [0]=4 r f [1]=4 r f [2]=3 read=1 inReg=4 w r i t e =0 outReg=3
t ime =67 r s t =0 pc=7 cr =0 r f [0]=4 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =0 outReg=3
t ime =69 r s t =0 pc=8 cr =0 r f [0]=5 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =0 outReg=3
t ime =71 r s t =0 pc=11 cr =0 r f [0]=5 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =0 outReg=3
t ime =73 r s t =0 pc=12 cr =0 r f [0]=5 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =1 outReg=4
t ime =75 r s t =0 pc=13 cr =0 r f [0]=5 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =0 outReg=4
t ime =77 r s t =0 pc=4 cr =0 r f [0]=5 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =0 outReg=4
t ime =79 r s t =0 pc=5 cr =0 r f [0]=5 r f [1]=4 r f [2]=4 read=0 inReg=5 w r i t e =0 outReg=4
t ime =81 r s t =0 pc=6 cr =0 r f [0]=5 r f [1]=5 r f [2]=4 read=1 inReg=5 w r i t e =0 outReg=4
t ime =83 r s t =0 pc=7 cr =0 r f [0]=5 r f [1]=5 r f [2]=4 read=0 inReg=6 w r i t e =0 outReg=4
t ime =85 r s t =0 pc=8 cr =0 r f [0]=6 r f [1]=5 r f [2]=4 read=0 inReg=6 w r i t e =0 outReg=4
t ime =87 r s t =0 pc=11 cr =0 r f [0]=6 r f [1]=5 r f [2]=4 read=0 inReg=6 w r i t e =0 outReg=4
t ime =89 r s t =0 pc=12 cr =0 r f [0]=6 r f [1]=5 r f [2]=4 read=0 inReg=6 w r i t e =1 outReg=5
t ime =91 r s t =0 pc=13 cr =0 r f [0]=6 r f [1]=5 r f [2]=4 read=0 inReg=6 w r i t e =0 outReg=5
t ime =93 r s t =0 pc=4 cr =0 r f [0]=6 r f [1]=5 r f [2]=4 read=0 inReg=6 w r i t e =0 outReg=5
t ime =95 r s t =0 pc=5 cr =0 r f [0]=6 r f [1]=5 r f [2]=5 read=0 inReg=6 w r i t e =0 outReg=5
t ime =97 r s t =0 pc=6 cr =0 r f [0]=6 r f [1]=6 r f [2]=5 read=1 inReg=6 w r i t e =0 outReg=5
t ime =99 r s t =0 pc=7 cr =0 r f [0]=6 r f [1]=6 r f [2]=5 read=0 inReg=7 w r i t e =0 outReg=5
t ime =101 r s t =0 pc=8 cr =0 r f [0]=7 r f [1]=6 r f [2]=5 read=0 inReg=7 w r i t e =0 outReg=5
t ime =103 r s t =0 pc=11 cr =0 r f [0]=7 r f [1]=6 r f [2]=5 read=0 inReg=7 w r i t e =0 outReg=5
t ime =105 r s t =0 pc=12 cr =0 r f [0]=7 r f [1]=6 r f [2]=5 read=0 inReg=7 w r i t e =1 outReg=6
t ime =107 r s t =0 pc=13 cr =0 r f [0]=7 r f [1]=6 r f [2]=5 read=0 inReg=7 w r i t e =0 outReg=6
t ime =109 r s t =0 pc=4 cr =0 r f [0]=7 r f [1]=6 r f [2]=5 read=0 inReg=7 w r i t e =0 outReg=6
t ime =111 r s t =0 pc=5 cr =0 r f [0]=7 r f [1]=6 r f [2]=6 read=0 inReg=7 w r i t e =0 outReg=6
t ime =113 r s t =0 pc=6 cr =0 r f [0]=7 r f [1]=7 r f [2]=6 read=1 inReg=7 w r i t e =0 outReg=6
t ime =115 r s t =0 pc=7 cr =0 r f [0]=7 r f [1]=7 r f [2]=6 read=0 inReg=0 w r i t e =0 outReg=6
t ime =117 r s t =0 pc=8 cr =0 r f [0]=0 r f [1]=7 r f [2]=6 read=0 inReg=0 w r i t e =0 outReg=6
t ime =119 r s t =0 pc=11 cr =0 r f [0]=0 r f [1]=7 r f [2]=6 read=0 inReg=0 w r i t e =0 outReg=6
t ime =121 r s t =0 pc=12 cr =0 r f [0]=0 r f [1]=7 r f [2]=6 read=0 inReg=0 w r i t e =1 outReg=7
t ime =123 r s t =0 pc=13 cr =0 r f [0]=0 r f [1]=7 r f [2]=6 read=0 inReg=0 w r i t e =0 outReg=7
t ime =125 r s t =0 pc=4 cr =0 r f [0]=0 r f [1]=7 r f [2]=6 read=0 inReg=0 w r i t e =0 outReg=7
t ime =127 r s t =0 pc=5 cr =0 r f [0]=0 r f [1]=7 r f [2]=7 read=0 inReg=0 w r i t e =0 outReg=7
t ime =129 r s t =0 pc=6 cr =0 r f [0]=0 r f [1]=0 r f [2]=7 read=1 inReg=0 w r i t e =0 outReg=7
t ime =131 r s t =0 pc=7 cr =0 r f [0]=0 r f [1]=0 r f [2]=7 read=0 inReg=1 w r i t e =0 outReg=7
t ime =133 r s t =0 pc=8 cr =0 r f [0]=1 r f [1]=0 r f [2]=7 read=0 inReg=1 w r i t e =0 outReg=7
t ime =135 r s t =0 pc=9 cr =0 r f [0]=1 r f [1]=0 r f [2]=7 read=0 inReg=1 w r i t e =0 outReg=7
t ime =137 r s t =0 pc=10 cr =0 r f [0]=1 r f [1]=8 r f [2]=7 read=0 inReg=1 w r i t e =0 outReg=7
t ime =139 r s t =0 pc=11 cr =0 r f [0]=1 r f [1]=4 r f [2]=7 read=0 inReg=1 w r i t e =0 outReg=7
t ime =141 r s t =0 pc=12 cr =0 r f [0]=1 r f [1]=4 r f [2]=7 read=0 inReg=1 w r i t e =1 outReg=4
t ime =143 r s t =0 pc=13 cr =0 r f [0]=1 r f [1]=4 r f [2]=7 read=0 inReg=1 w r i t e =0 outReg=4
t ime =145 r s t =0 pc=4 cr =0 r f [0]=1 r f [1]=4 r f [2]=7 read=0 inReg=1 w r i t e =0 outReg=4
t ime =147 r s t =0 pc=5 cr =0 r f [0]=1 r f [1]=4 r f [2]=4 read=0 inReg=1 w r i t e =0 outReg=4
t ime =149 r s t =0 pc=6 cr =0 r f [0]=1 r f [1]=1 r f [2]=4 read=1 inReg=1 w r i t e =0 outReg=4
t ime =151 r s t =0 pc=7 cr =0 r f [0]=1 r f [1]=1 r f [2]=4 read=0 inReg=2 w r i t e =0 outReg=4
t ime =153 r s t =0 pc=8 cr =0 r f [0]=2 r f [1]=1 r f [2]=4 read=0 inReg=2 w r i t e =0 outReg=4
t ime =155 r s t =0 pc=11 cr =0 r f [0]=2 r f [1]=1 r f [2]=4 read=0 inReg=2 w r i t e =0 outReg=4
t ime =157 r s t =0 pc=12 cr =0 r f [0]=2 r f [1]=1 r f [2]=4 read=0 inReg=2 w r i t e =1 outReg=1
t ime =159 r s t =0 pc=13 cr =0 r f [0]=2 r f [1]=1 r f [2]=4 read=0 inReg=2 w r i t e =0 outReg=1
t ime =161 r s t =0 pc=4 cr =0 r f [0]=2 r f [1]=1 r f [2]=4 read=0 inReg=2 w r i t e =0 outReg=1
t ime =163 r s t =0 pc=5 cr =0 r f [0]=2 r f [1]=1 r f [2]=1 read=0 inReg=2 w r i t e =0 outReg=1
t ime =165 r s t =0 pc=6 cr =0 r f [0]=2 r f [1]=2 r f [2]=1 read=1 inReg=2 w r i t e =0 outReg=1
t ime =167 r s t =0 pc=7 cr =0 r f [0]=2 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=1
t ime =169 r s t =0 pc=8 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=1
t ime =171 r s t =0 pc=11 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=1
t ime =173 r s t =0 pc=12 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =1 outReg=2
t ime =175 r s t =0 pc=13 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=2
t ime =177 r s t =0 pc=4 cr =0 r f [0]=3 r f [1]=2 r f [2]=1 read=0 inReg=3 w r i t e =0 outReg=2
t ime =179 r s t =0 pc=5 cr =0 r f [0]=3 r f [1]=2 r f [2]=2 read=0 inReg=3 w r i t e =0 outReg=2
t ime =181 r s t =0 pc=6 cr =0 r f [0]=3 r f [1]=3 r f [2]=2 read=1 inReg=3 w r i t e =0 outReg=2
t ime =183 r s t =0 pc=7 cr =0 r f [0]=3 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=2
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t ime =185 r s t =0 pc=8 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=2
t ime =187 r s t =0 pc=11 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=2
t ime =189 r s t =0 pc=12 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =1 outReg=3
t ime =191 r s t =0 pc=13 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=3
t ime =193 r s t =0 pc=4 cr =0 r f [0]=4 r f [1]=3 r f [2]=2 read=0 inReg=4 w r i t e =0 outReg=3
t ime =195 r s t =0 pc=5 cr =0 r f [0]=4 r f [1]=3 r f [2]=3 read=0 inReg=4 w r i t e =0 outReg=3
t ime =197 r s t =0 pc=6 cr =0 r f [0]=4 r f [1]=4 r f [2]=3 read=1 inReg=4 w r i t e =0 outReg=3
t ime =199 r s t =0 pc=7 cr =0 r f [0]=4 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =0 outReg=3
t ime =201 r s t =0 pc=8 cr =0 r f [0]=5 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =0 outReg=3
t ime =203 r s t =0 pc=11 cr =0 r f [0]=5 r f [1]=4 r f [2]=3 read=0 inReg=5 w r i t e =0 outReg=3

⋄

5.3 Concluding about toyMachine

Our final target is to be able to describe the actual structure of toyMachine using as much as possible
simple circuits. Maybe we just catched a glimpse about the circuits we must learn how to design. It
is almost obvious that the following circuits are useful for building toyMachine: adders, subtractors,
increment circuits, selection circuits, various logic circuits, registers, file-registers, memories, read-only
memories (for fix program memory). The next chapters present detailed descriptions of all above circuits,
and a little more.

The behavioral description of toyMachine is synthesisable , but the resulting structure is too big
and has a completely unstructured shape. The size increases the price, and the lack of structure make
impossible any optimization of area, of speed or of the energy consumption.

The main advantages of the just presented behavioral description is its simplicity, and the possibility
to use it as a more credible “witness” when the structural description will be verified.

Pros & cons for programmed logic :

• it is a very flexible tool, but can not provide hi-performance solutions

• very good time-to-market, but not for mass production

• good for simple one chip solution, but not to be integrated as an IP on a complex SoC solution.

5.4 Problems

Problem 5.1 Write for toyMachine the program which follows-up as fast as possible by the value on
outStream the number of 1s on the inputs inStream.

Problem 5.2 Redesign the interpol program for a more accurate interpolation rule:

pi = 0.2× pi−2 +0.3× pi−1 +0.3× pi+1 +0.2× pi+2

Problem 5.3
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5.5 Projects

Project 5.1 Design the test environment for toyMachine, and use it to test the example from this chapter.



Part II

LOOPING IN THE DIGITAL DOMAIN
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Chapter 6

GATES:
Zero order, no-loop digital systems

In the previous chapter
ended the first part of this book, where we learned to “talk” in the Verilog HDL about how to
build big systems composing circuits and smaller systems, how to accelerate the computation in
a lazy system, and how to increase the autonomy of a system closing appropriate loops. Where
introduced the following basic concepts:

• serial, parallel, and serial-parallel compositions used to increase the size of a digital system,
maintaining the functional capabilities at the same level

• data (synchronic) parallelism and time (diachronic) parallelism (the pipeline connection) as
the basic mechanism to improve the speed of processing in digital systems

• included loops, whose effect of limiting the time parallelism is avoided by speculating – the
third form of parallelism, usually ignored in the development of the parallel architectures

• classifying digital circuits in orders, the n-th order containing circuits with n levels of em-
bedded loops

The last chapter of the first part defines the architecture of the machine whose components will be
described in the second part of this book.

In this chapter
the zero order, no-loop circuits are presented with emphasis on:

• how to expand the size of a basic combinational circuit

• the distinction between simple and complex combinatorial circuits

• how to deal with the complexity of combinatorial circuits using “programmable” devices

In the next chapter
the first order, memory circuits are introduced presenting

• how a simple loop allows the occurrence of the memory function

• the basic memory circuits: elementary lathes, clocked latches, master-slave flip-flops

• memories and registers as basic systems composed using the basic memory circuits

147
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Belief #5: That qualitative as well as quantita-
tive aspects of information systems will be accel-
erated by Moore’s Law. . . . In the minds of some
of my colleagues, all you have to do is identify one
layer in a cybernetic system that’s capable of fast
change and then wait for Moore’s Law to work its
magic.

Jaron Lanier1

The Moore’s Law applies to size not to complexity.

In this chapter we will forget for the moment about loops. Composition is the only mechanism in-
volved in building a combinational digital system. No-loop circuits generate the class of history free
digital systems whose outputs depend only by the current input variables, and are reassigned “continu-
ously” at each change of inputs. Anytime the output results as a specific “combination” of inputs. No
autonomy in combinational circuits, whose outputs obey “not to say a word” to inputs.

The combinational functions with n 1-bit inputs and m 1-bit outputs are called Boolean function and
they have the following form:

f : {0,1}n→{0,1}m.

For n = 1 only the NOT function is meaningful in the set of the 4 one-input Boolean functions. For n = 2
from the set of 16 different functions only few functions are currently used: AND, OR, XOR, NAND,
NOR, NXOR. Starting with n = 3 the functions are defined only by composing 2-input functions. (For a
short refresh see Appendix Boolean functions.)

Composing small gates results big systems. The growing process was governed in the last 40 years
by Moore’s Law2. For a few more decades maybe the same growing law will act. But, starting from
millions of gates per chip, it is very important what kind of circuits grow exponentially!

Composing gates results two kinds of big circuits. Some of them are structured following some
repetitive patterns, thus providing simple circuits. Others grow patternless, providing complex circuits.

6.1 Simple, Recursive Defined Circuits

The first circuits used by designers were small and simple. When they were grew a little they were
called big or complex. But, now when they are huge we must talk, more carefully, about big sized simple
circuits or about big sized complex circuits. In this section we will talk about simple circuits which can
be actualized at any size, i.e., their definitions don’t depend by the number, n, of their inputs.

In the class of n-inputs circuits there are 22n
distinct circuits. From this tremendous huge number of

logical function we use currently an insignificant small number of simple functions. What is strange is
that these functions are sufficient for almost all the problem which we are confronted (or we are limited
to be confronted).

1Jaron Lanier coined the term virtual reality. He is a computer scientist and a musician.
2The Moore’s Law says the physical performances in microelectronics improve exponentially in time.
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One fact is clear: we can not design very big complex circuits because we can not specify them. The
complexity must get away in another place (we will see that this place is the world of symbols). If we
need big circuit they must remain simple.

In this section we deal with simple, if needed big, circuits and in the next with the complex circuits,
but only with ones having small size.

From the class of the simple circuits we will present only some very usual such as decoders, demul-
tiplexors, multiplexors, adders and arithmetic-logic units. There are many other interesting and useful
functions. Many of them are proposed as problems at the end of this chapter.

6.1.1 Decoders

The simplest problem to be solved with a combinational logic circuit (CLC) is to answer the question:
“what is the value applied to the input of this one-input circuit?”. The circuit which solves this problem
is an elementary decoder (EDCD). It is a decoder because decodes its one-bit input value by activating
distinct outputs for the two possible input values. It is elementary because does this for the smallest
input word: the one-bit word. By decoding, the value applied to the input of the circuit is emphasized
activating distinct signals (like lighting only one of n bulbs). This is one of the main functions in a digital
system. Before generating an answer to the applied signal, the circuit must “know” what signal arrived
on its inputs.

Informal definition

The n-input decoder circuit – DCDn – (see Figure 6.1) performs one of the basic function in digital
systems: with one of its m one-bit outputs specifies the binary configuration applied on its inputs. The
binary number applied on the inputs of DCDn takes values in the set X = {0,1, ...2n− 1}. For each of
these values there is one output – y0,y1, ...ym−1 – which is activated on 1 if its index corresponds with
the current input value. If, for example, the input of a DCD4 takes value 1010, then y10 = 1 and the rest
15 one-bit outputs take the value 0.

x0x1
. . .

xn−1
y0 y1 . . . ym−1

DCDn

--

-

? ? ?

Figure 6.1: The n-input decoder (DCDn).

Formal definition

In order to rigorously describe and to synthesize a decoder circuit a formal definition is requested. Using
Verilog HDL, such a definition is very compact certifying the non-complexity of this circuit.

Definition 6.1 DCDn is a combinational circuit with the n-bit input X, xn−1, . . . ,x0, and the m-bit output
Y , ym−1, . . . ,y0, where: m = 2n, with the behavioral Verilog description:
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/ * ************************************************************************
F i l e name : dec . v
C i r c u i t name : Decoder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n−i n p u t decoder
************************************************************************ * /

module dec # ( parameter inDim = n ) ( input [ inDim − 1 : 0 ] s e l ,
output [ ( 1 << inDim ) − 1 : 0 ] o u t ) ;

a s s i g n o u t = 1 << s e l ;
endmodule

⋄

The previous Verilog description is synthesisable by the current software tools which provide an efficient
solution. It happens because this function is simple and it is frequently used in designing digital systems.

Recursive definition

The decoder circuit DCDn for any n can be defined recursively in two steps:

• defining the elementary decoder circuit (EDCD = DCD1) as the smallest circuit performing the
decode function

• applying the divide & impera rule in order to provide the DCDn circuit using DCDn/2 circuits.

For the first step EDCD is defined as one of the simplest and smallest logical circuits. Two one-input
logical function are used to perform the decoding. Indeed, parallel composing (see Figure 6.2a) the
circuits performing the simplest functions: f 1

2 (x0) = y1 = x0 (identity function) and f 1
1 (x0) = y0 = x′0

(NOT function), we obtain an (EDCD). If the output y0 is active, it means the input is zero. If the output
y1 is active, then the input has the value 1.

EDCD

x0
y0

y1

a.

x0

y0

y1

b.

Figure 6.2: The elementary decoder (EDCD). a. The basic circuit. b. Buffered EDCD, a serial-parallel
composition.

In order to isolate the output from the input the buffered EDCD version is considered serial compos-
ing an additional inverter with the previous circuit (see Figure 6.2b). Hence, the fan-out of EDCD does
not depend on the fan-out of the circuit that drives the input.

The second step is to answer the question about how can be build a (DCDn) for decoding an n-bit
input word.

Definition 6.2 The structure of DCDn is recursive defined by the rule represented in Figure 6.3. The
DCD1 is an EDCD (see Figure 6.2b). ⋄
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DCDn/2

DCDn/2

-

6

xn−1 . . .x0

n/2

n/2

y0

y1

yp−1

y0 y1
yp−1

y0 y1 yp−1

yp

ym−1

n

Figure 6.3: The recursive definition of n-inputs decoder (DCDn). Two DCDn/2 are used to drive a two
dimension array of AND2 gates. The same rule is applied for the two DCDn/2, and so on until DCD1 = EDCD is
needed.

The previous definition is a constructive one, because provide an algorithm to construct a decoder
for any n. It falls into the class of the “divide & impera” algorithms which reduce the solution of the
problem for n to the solution of the same problem for n/2.

The quantitative evaluation of DCDn offers the following results:

Size: GSDCD(n) = 2nGSAND(2)+2GSDCD(n/2) = 2(2n +GSDCD(n/2))
GSDCD(1) = GSEDCD = 2
GSDCD(n) ∈ O(2n)

Depth: DDCD(n) = DAND(2)+DDCD(n/2) = 1+DDCD(n/2) ∈ O(log n)
DDCD(1) = DEDCD = 2

Complexity: CDCD ∈ O(1) because the definition occupies a constant drown area (Figure 6.3) or a con-
stant number of symbols in the Verilog description for any n.

The size, the complexity and the depth of this version of decoder is out of discussion because the
order of the size can not be reduced under the number of outputs (m = 2n), for complexity O(1) is the
minimal order of magnitude, and for depth O(log n) is optimal takeing into account we applied the
“divide & impera” rule to build the structure of the decoder.

Non-recursive description

An iterative structural version of the previous recursive constructive definition is possible, because the
outputs of the two DCDn/2 from Figure 6.3 are also 2-input AND circuits, the same as the circuits on
the output level. In this case we can apply the associative rule, implementing the last two levels by only
one level of 4-input ANDs. And so on, until the output level of the 2n n-input ANDs is driven by n
EDCDs. Now we have the decoder represented in Figure 6.4). Apparently it is a constant depth circuit,
but if we take into account that the number of inputs in the AND gates is not constant, then the depth
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is given by the depth of an n-input gate which is in O(log n). Indeed, an n-input AND has an efficient
implementation as as a binary tree of 2-input ANDs.

x0

x1

xn−1

y0 y1 ym−1

. . . . . . . . .

Figure 6.4: “Constant depth” DCD Applying the associative rule into the hierarchical network of AND2 gates
results the one level ANDn gates circuit driven by n EDCDs.

This “constant depth” DCD version – CDDCD – is faster than the previous for small values of n
(usually for n < 6; for more details see Appendix Basic circuits), but the size becomes SCDDCD(n) =
n×2n+2n ∈O(n2n). The price is over-dimensioned related to the gain, but for small circuits sometimes
it can be accepted.

The pure structural description for DCD3 is:

/ * ************************************************************************
F i l e name : dec3 . v
C i r c u i t name : 3− i n p u t Decoder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a 3− i n p u t decoder
************************************************************************ * /
module dec3 ( output [ 7 : 0 ] out ,

input [ 2 : 0 ] i n ) ;
/ / i n t e r n a l c o n n e c t i o n s

wire in0 , nin0 , in1 , nin1 , in2 , n i n2 ;
/ / EDCD f o r i n [ 0 ]

not no t00 ( nin0 , i n [ 0 ] ) , no t01 ( in0 , n in0 ) ;
/ / EDCD f o r i n [ 1 ]

not no t10 ( nin1 , i n [ 1 ] ) , no t11 ( in1 , n in1 ) ;
/ / EDCD f o r i n [ 2 ]

not no t20 ( nin2 , i n [ 2 ] ) , no t21 ( in2 , n in2 ) ;
/ / t h e second l e v e l

and and0 ( o u t [ 0 ] , n in2 , nin1 , n in0 ) ; / / o u t p u t 0
and and1 ( o u t [ 1 ] , n in2 , nin1 , i n 0 ) ; / / o u t p u t 1
and and2 ( o u t [ 2 ] , n in2 , in1 , n in0 ) ; / / o u t p u t 2
and and3 ( o u t [ 3 ] , n in2 , in1 , i n 0 ) ; / / o u t p u t 3
and and4 ( o u t [ 4 ] , in2 , nin1 , n in0 ) ; / / o u t p u t 4
and and5 ( o u t [ 5 ] , in2 , nin1 , i n 0 ) ; / / o u t p u t 5
and and6 ( o u t [ 6 ] , in2 , in1 , n i n0 ) ; / / o u t p u t 6
and and7 ( o u t [ 7 ] , in2 , in1 , i n 0 ) ; / / o u t p u t 7

endmodule
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For n = 3 the size of this iterative version is identical with the size which results from the recursive
definition. There are meaningful differences only for big n. In real designs we do not need this kind of
pure structural descriptions because the current synthesis tools manage very well even pure behavioral
descriptions such that from the formal definition of the decoder.

Arithmetic interpretation

The decoder circuit is also an arithmetic circuit. It computes the numerical function of exponentiation:
Y = 2X . Indeed, for n = i only the output yi takes the value 1 and the rest of the outputs take the value 0.
Then, the number represented by the binary configuration Y is 2i.

Application

Because the expressions describing the m outputs of DCDn are:

y0 = x′n−1 · x′n−2 · . . .x′1 · x′0
y1 = x′n−1 · x′n−2 · . . .x′1 · x0
y2 = x′n−1 · x′n−2 · . . .x1 · x′0
...
ym−2 = xn−1 · xn−2 · . . .x1 · x′0
ym−1 = xn−1 · xn−2 · . . .x1 · x0

the logic interpretation of these outputs is that they represent all the min-terms for an n-input function.
Therefore, any n-input logic function can be implemented using a DCDn and an OR with maximum m−1
inputs.

Example 6.1 Let be the 3-input 2-output function defined in the table from Figure 6.5. A DCD3 is used
to compute all the min-terms of the 3 variables a, b, and c. A 3-input OR is used to “add” the min-terms
for the function X, and a 4-input OR is used to “add” the min-terms for the function Y.

x0
x1
x2

y0 y1 y2 y3 y4 y5 y6 y7

DCD3

X

Y

-
-
-a

b
c

0 0 0
100

1 00
0 1 1
1
1
1
1

1
1

1
0 0
0

0
1

a b c X Y

1

1
1

1
1

1

1

0

0 0
0
0 0

0 0

0

Figure 6.5:

Each min-term is computed only once, but it can be used as many times as the implemented functions
suppose.
⋄
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6.1.2 Demultiplexors

The structure of the decoder is included in the structure of the other usual circuits. Two of them are the
demultiplexor circuit and the multiplexer circuit. These complementary functions are very important in
digital systems because of their ability to perform “communication” functions. Indeed, demultiplexing
means to spread a signal from a source to many destinations, selected by a binary code and multiplexing
means the reverse operation to catch signals from distinct sources also selected using a selection code.
Inside of both circuits there is a decoder used to identify the source of the signal or the destination of the
signal by decoding the selection code.

Informal definition

The first informally described solution for implementing the function of an n-input demultiplexor is to
use a decoder with the same number of inputs and m 2-input AND connected as in Figure 6.6. The value
of the input enable is generated to the output of the gate opened by the activated output of the decoder
DCDn. It is obvious that a DCDn is a DMUXn with enable = 1. Therefore, the size, depth of DMUXs
are the same as for DCDs, because the depth is incremented by 1 and to the size is added a value which
is in O(2n).

y0 y1 ym−1

x0

DCDn

x1

xn−1

-
-

-

y0 y1 ym−1

enable

Figure 6.6: Demultiplexor. The n-input demultiplexor (DMUXn) includes a DCDn and 2n AND2 gates used to
distribute the input enable in 2n different places according to the n-bit selection code.

For example, if on the selection input X = s, then the outputs yi take the value 0 for i ̸= s and
ys = enable. The inactive value on the outputs of this DMEX is 0.

Formal definition

Definition 6.3 The n-input demultiplexor – DMUXn – is a combinational circuit which transfers the 1-
bit signal from the input enable to the one of the outputs ym−1, . . . ,y0 selected by the n-bit selection code
X = xn−1, . . . ,x0, where m = 2n. It has the following behavioral Verilog description:
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/ * ************************************************************************
F i l e name : dmux . v
C i r c u i t name : D e m u l t i p l e x o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r a n−i n p u t d e m u l t i p l e x o r
************************************************************************ * /

module dmux #( parameter inDim = n ) ( input [ inDim − 1 : 0 ] s e l ,
input enab le ,
output [ ( 1 << inDim ) − 1 : 0 ] o u t ) ;

a s s i g n o u t = e n a b l e << s e l ;
endmodule

⋄

Recursive definition

The DMUX circuit has also a recursive definition. The smallest DMUX, the elementary DMUX –
EDMUX –, is a 2-output one, with a one-bit selection input. EDMUX is represented in Figure 6.7.
It consists of an EDCD used to select, with its two outputs, the way for the signal enable. Thus, the
EDMUX is a circuit that offers the possibility to transfer the same signal (enable) in two places (y0 and
y1), according with the selection input (x0) (see Figure 6.7.

EDMUX-

? ?

?

x0

y0 y1

enable

a. b.

enable

x0
EDCD

y0 y1

Figure 6.7: The elementary demultiplexor. a. The internal structure of an elementary demultiplexor (ED-
MUX) consists in an elementary decoder, 2 AND2 gates, and an inverter circuit as input buffer. b. The logic
symbol.

The same rule – divide & impera – is used to define an n-input demultiplexor, as follows:

Definition 6.4 DMUXn is defined as the structure represented in Figure 6.8, where the two DMUXn−1
are used to select the outputs of an EDMUX. ⋄

If the recursive rule is applied until the end the resulting circuit is a binary tree of EDMUXs. It has
SDMUX(N)∈O(2n) and DDMUX(n)∈O(n). If this depth is considered too big for the current application,
the recursive process can be stopped at a convenient level and that level is implemented with a “constant
depth” DMUXs made using “constant depth” DCDs. The mixed procedures are always the best. The
previous definition is a suggestion for how to use small DMUXs to build bigger ones.
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DMUXn−1

? ?

�
-

enable

y0 y m
2 −1

DMUXn−1

? ?

�
-enable

y0

�
EDMUX

-

xn−2 , . . . ,x0

n−1

enable

x0

xn−1

y0 y1

y0

. . .

y m
2 −1 y m

2

. . .

ym−1

y m
2 −1

enable

Figure 6.8: The recursive definition of DMUXn. Applying the same rule for the two DMUXn−1 a new level
of 2 EDMUXs is added, and the output level is implemented using 4 DMUXn−2. And so on until the
output level is implemented using 2n−1 EDMUXs. The resulting circuit contains 2n−1 EDMUXs.

6.1.3 Multiplexors

Now about the inverse function of demultiplexing: the multiplexing, i.e., to take a bit of information
from a selected place and to send in one place. Instead of spreading by demultiplexing, now the multi-
plexing function gathers from many places in one place. Therefore, this function is also a communication
function, allowing the interconnecting between distinct places in a digital system. In the same time, this
circuit is very useful for implementing random, i.e. complex, logical functions, as we will see at the end
of this chapter. More, in the next chapter we will see that the smallest multiplexor is used to build the
basic memory circuits. Looks like this circuit is one of the most important basic circuit, and we must pay
a lot of attention to it.

Informal definition

The direct intuitive implementation of a multiplexor with n selection bits – MUXn – starts also from a
DCDn which is now serially connected with an AND-OR structure (see Figure 6.9). The outputs of the
decoder open, for a given input code, only one AND gate that transfers to the output the corresponding
selected input which, by turn, is OR-ed to the output y.

Applying in this structure the associativity rule, for the AND gates to the output of the decoder and
the supplementary added ANDs, results the actual structure of MUX. The structure AND-OR maintains
the size and the depth of MUX in the same orders as for DCD.

Formal definition

As for the previous two circuits – DCD and DMUX –, we can define the multiplexer using a behavioral
(functional) description.

Definition 6.5 A multiplexer MUXn is a combinational circuit having n selection inputs xn−1, . . . ,x0 that
selects to the output y one input from the m = 2n selectable inputs, im−1, . . . , i0. The Verilog description
is:
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y1

6
xn−1 , . . . ,x0

y0

ym−1

. . .

DCDn

. . .

n

i0 i1 im−1

y

. . .

Figure 6.9: Multiplexer. The n selection inputs multiplexer MUXn is made serial connecting a DCDn with an
AND-OR structure.

/ * ************************************************************************
F i l e name : mux . v
C i r c u i t name : M u l t i p l e x o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r a n s e l e c t i o n i n p u t s

m u l t i p l e x o r
************************************************************************ * /

module mux #( parameter inDim = n )
( input [ inDim − 1 : 0 ] s e l , / / s e l e c t i o n i n p u t s

input [(1<< inDim ) − 1 : 0 ] i n , / / s e l e c t e d i n p u t s
output o u t ) ;

a s s i g n o u t = i n [ s e l ] ;
endmodule

⋄

The MUX is obviously a simple function. Its formal description, for any number of inputs has a
constant size. The previous behavioral description is synthesisable efficiently by the current software
tools.

Recursive definition

There is also a rule for composing large MUSs from the smaller ones. As usual, we start from an
elementary structure. The elementary MUX – EMUX – is a selector that connects the signal i1 or i0
in y according to the value of the selection signal x0. The circuit is presented in Figure 6.10a, where
an EDCD with the input x0 opens only one of the two ANDs ”added” by the OR circuit in y. Another
version for EMUX uses tristate inverting drivers (see Figure 6.10c).

The definition of MUXn starts from EMUX, in a recursive manner. This definition will show us that
MUX is also a simple circuit (CMUX(n) ∈ O(1)). In the same time this recursive definition will be a
suggestion for the rule that composes big MUXs from the smaller ones.
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x0

i0 i1

y
a. b.

EMUX-

? ?

?

x0

y

i0 i1

c.

c’

c’

c

x0

yi1

i0

c

c’c

Figure 6.10: The elementary multiplexer (EMUX). a. The structure of EMUX containing an EDCD and
the smallest AND-OR structure. b. The logic symbol of EMUX. c. A version of EMUX using transmission gates
(see section Basic circuits).

Definition 6.6 MUXn can be made by serial connecting two parallel connected MUXn/2 with an EMUX
(see Figure 6.11 that is part of the definition), and MUX1 = EMUX. ⋄

MUXn−1

? ?

-
i0 i m

2 −1

y

MUXn−1

? ?

-
i0 i m

2 −1

y

EMUX

? ?

?

-

i0 i m
2 −1 i m

2 im−1

xn−2 , . . . ,x0

xn−1

y

y

x0
i0 i1

. . . . . .

. . . . . .

Figure 6.11: The recursive definition of MUXn. Each MUXn−1 has a similar definition (two MUXn−2 and
one EMUX), until the entire structure contains EMUXs. The resulting circuit is a binary tree of 2n−1 EMUXs.

Structural aspects

This definition leads us to a circuit having the size in O(2n) (very good, because we have m = 2n inputs
to be selected in y) and the depth in O(n). In order to reduce the depth we can apply step by step the next
procedure: for the first two levels in the tree of EMUXs we can write the equation

y = x1(x0i3 + x′0i2)+ x′1(x0i1 + x′0i0)

that becomes
y = x1x0i3 + x1x′0i2 + x′1x0i1 + x′1x′0i0.
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Using this procedure two or more levels (but not too many) of gates can be reduced to one. Carefully
applied this procedure accelerate the speed of the circuit.

Application

Because the logic expression of a n selection inputs multiplexor is:

y = xn−1 . . .x1x0im−1 + . . .+ x′n−1 . . .x
′
1x0i1 + x′n−1 . . .x

′
1x′0i0

any n-input logic function is specified by the binary vector {im−1, . . . i1, i0}. Thus any n input logic
function can be implemented with a MUXn having on its selected inputs the binary vector defining it.

Example 6.2 Let be function X defined in Figure 6.12 by its truth table. The implementation with a
MUX3 means to use the right side of the table as the defining binary vector.

x0
x1
x2

i0 i1 i2 i3 i4 i5 i6 i7

MUX3

???????
0 0 0

100
1 00

0 1 1
1
1
1
1

1
1

1
0 0
0

0
1

a b c X

?1

1
1 ?

y

X

0

0

0

0
0

0

0

1 0 0 01 1

-
-
-a

b
c

Figure 6.12:

⋄

6.1.4 ∗ Shifters
One of the simplest arithmetic circuit is a circuit able to multiply or to divided with a number equal with a power
of 2. The circuit is called also shifter because these operations do not change the relations between the bits of
the number, they change only the position of the bits. The bits are shifted a number of positions to the left, for
multiplication, or to the right for division.

The circuit used for implementing a shifter for n-bit numbers with m− 1 positions is an m-input multiplexor
having the selected inputs defined on n bits.

In the previous subsection were defined multiplexors having 1-bit selected inputs. How can be expanded
the number of bits of the selected inputs? An elementary multiplexor for p-bit words, pEMUX, is made using
p EMUXs connected in parallel. If the two words to be multiplexed are ap−1, . . .a0 and bp−1, . . .b0, then each
EMUX is used to multiplex a pair of bits (ai,bi). The one-bit selection signal is shared by the p EMUXs. nEMUX
is a parallel extension of EMUX.

Using pEMUXs an pMUXn can be designed using the same recursive procedure as for designing MUXn start-
ing from EMUXs.

An 2n − 1 positions left shifter for p-bit numbers, pLSHIFTn, is designed connecting the selected inputs
of an pEMUX, i0, . . . im−1 where m = 2n, to the number to be shifted N = {an−1, an−2, . . . a0} (ai ∈ {0.1} for
i = 0,1, . . .(m−1)) in 2n−1 ways, according to the following rule:

i j = {{an− j−1, an− j−2, . . . a0}, { j{0}}}

for: j = 0,1, . . .(m−1).
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ap−1 bp−1

yp−1

ap−2 bp−2

yp−2

a0 b0

y0

x

Figure 6.13: The structure of pEMUX. Because the selection bit is the same for all EMUXs one EDCD is
shared by all of them.

Example 6.3 For 4LSHIFT2 an 4MUX2 is used. The binary code specifying the shift dimension is
shiftDim[1:0], the number to be shifted is in[3:0], and the ways the selected inputs, in0, in1, in2, in3,
are connected to the number to be shifted are:

in0 = {in[3], in[2], in[1], in[0]}

in1 = {in[2], in[1], in[0], 0 }

in2 = {in[1], in[0], 0 , 0 }

in3 = {in[0], 0 , 0 , 0 }

Figure 6.14 represents the circuit.
The Verilog description of the shifter is done by instantiating a 4-way 4-bit multiplexor with its inputs con-

nected according to the previously described rule.

/ * ************************************************************************
F i l e name : l e f t S h i f t e r . v
C i r c u i t name : 4− i n p u t l e f t s h i f t e r
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a l e f t s h i f t e r f o r a 4− b i t i n p u t
************************************************************************ * /

module l e f t S h i f t e r ( output [ 3 : 0 ] o u t ,
input [ 3 : 0 ] i n ,
input [ 1 : 0 ] s h i f t D i m ) ;

mux4 4 s h i f t M u x ( . o u t ( o u t ) ,
. i n 0 ( i n ) ,
. i n 1 ({ i n [ 2 : 0 ] , 1 ’ b0 } ) ,
. i n 2 ({ i n [ 1 : 0 ] , 2 ’ b0 } ) ,
. i n 3 ({ i n [ 0 ] , 3 ’ b0 } ) ,
. s e l ( s h i f t D i m ) ) ;

endmodule

The multiplexor used in the previous module is built using 3 instantiations of an elementary 4-bit multiplexors.
Results the two level tree of elementary multiplexors interconnected as the following Verilog code describes.
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in0 in1 in2 in3

sel mux4

in[0]
in[1]
in[2]

?

in0 in1 in2 in3

sel mux4

in[3]

?

?

in0 in1 in2 in3

sel mux4

? ? ? ?

-

?

in0 in1 in2 in3

sel mux4-
? ? ? ?

-

?

-
mux0mux1mux2mux3

out[0]out[1]out[2]out[3]

? ? ? ? ? ? ?

shiftDim

Figure 6.14: The structure of 4LSHIFT2, a maximum 3-position, 4-bit number left shifter.

/ * ************************************************************************
F i l e name : mux4 4 . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module mux4 4 ( output [ 3 : 0 ] out ,
input [ 3 : 0 ] in0 , in1 , in2 , in3 ,
input [ 1 : 0 ] s e l ) ; / / 4−way 4− b i t m u l t i p l e x o r (4MUX 2 )

wire [ 3 : 0 ] out1 , ou t0 ; / / c o n n e c t i o n s be tween t h e two l e v e l s
mux2 4 mux ( out , out0 , out1 , s e l [ 1 ] ) , / / o u t p u t m u l t i p l e x o r

mux1 ( out1 , in2 , in3 , s e l [ 0 ] ) , / / m u l t i p l e x o r f o r in3 , i n 2
mux0 ( out0 , in0 , in1 , s e l [ 0 ] ) ; / / m u l t i p l e x o r f o r in1 , i n 0

endmodule

/ * ************************************************************************
F i l e name : mux4 4 . v
C i r c u i t name : M u l t i p l e x o r f o r 4 4− b i t i n p u t s
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a m u l t i p l e x o r w i t h 4 4− b i t

i n p u t s
************************************************************************ * /

module mux4 4 ( output [ 3 : 0 ] out ,
input [ 3 : 0 ] in0 , in1 , in2 , in3 ,
input [ 1 : 0 ] s e l ) ;

wire [ 3 : 0 ] out1 , ou t0 ; / / i n t e r n a l c o n n e c t i o n s
mux2 4 mux ( out , out0 , out1 , s e l [ 1 ] ) , / / o u t p u t m u l t i p l e x o r

mux1 ( out1 , in2 , in3 , s e l [ 0 ] ) , / / m u l t i p l e x o r f o r i n 3 and i n 2
mux0 ( out0 , in0 , in1 , s e l [ 0 ] ) ; / / m u l t i p l e x o r f o r i n 1 and i n 0

endmodule

Any n-bit elementary multiplexer is described by the following parameterized module:
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/ * ************************************************************************
F i l e name : mux2 4 . v
C i r c u i t name : M u l t i p l e x o r f o r 2 4− b i t i n p u t s
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r a 2 4− b i t i n p u t s m u l t i p l e x o r
************************************************************************ * /

module mux2 4 #( parameter n = 4 ) ( output [ n − 1 : 0 ] out ,
input [ n − 1 : 0 ] in0 ,

in1 ,
input s e l ) ;

a s s i g n o u t = s e l ? i n 1 : i n 0 ; / / i f ( s e l ) t h e n in1 , e l s e i n 0
endmodule

⋄

The same idea helps us to design a special kind of shifter, called barrel shifter which performs a rotate
operation described by the following rule: if the input number is N = {an−1, an−2, . . . a0} (ai ∈ {0.1} for i =
0,1, . . .(m−1)), then rotating it with i positions will provide:

ii = {an−i−1, an−i−2, . . . a0, an−1,an−2, . . .an−i}

for: i = 0,1, . . .(m−1). This first solution for the rotate circuit is very similar with the shift circuit. The only dif-
ference is: all the inputs of the multiplexor are connected to an input value. No 0s on any inputs of the multiplexor.

A second solution uses only elementary multiplexors. A version for 8-bit numbers is presented in the following
Verilog code.

/ * ************************************************************************
F i l e name : l e f t R o t a t e . v
C i r c u i t name : 8− b i t L e f t R o t a t e c i r c u i t
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f an 8− b i t l e f t r o t a t e c i r c u i t
************************************************************************ * /

module l e f t R o t a t e ( output [ 7 : 0 ] o u t ,
input [ 7 : 0 ] i n ,
input [ 2 : 0 ] r S i z e ) ; / / r o t a t e s i z e

wire [ 7 : 0 ] out0 , ou t1 ;
mux2 8 l e v e l 0 ( . o u t ( ou t0 ) ,

. i n 0 ( i n ) ,

. i n 1 ({ i n [ 6 : 0 ] , i n [ 7 ]} ) ,

. s e l ( r S i z e [ 0 ] ) ) ,
l e v e l 1 ( . o u t ( ou t1 ) ,

. i n 0 ( ou t0 ) ,

. i n 1 ({ ou t0 [ 5 : 0 ] , ou t0 [ 7 : 6 ] } ) ,

. s e l ( r S i z e [ 1 ] ) ) ,
l e v e l 2 ( . o u t ( o u t ) ,

. i n 0 ( ou t1 ) ,

. i n 1 ({ ou t1 [ 3 : 0 ] , ou t1 [ 7 : 4 ] } ) ,

. s e l ( r S i z e [ 2 ] ) ) ;
endmodule
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/ * ************************************************************************
F i l e name : mux2 8 . v
C i r c u i t name : M u l t i p l e x o r f o r 2 8− b i t i n p u t s
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r a 2 8− b i t i n p u t s m u l t i p l e x o r
************************************************************************ * /

module mux2 8 ( output [ 7 : 0 ] out ,
input [ 7 : 0 ] in0 , in1 ,
input s e l ) ;

a s s i g n o u t = s e l ? i n 1 : i n 0 ;
endmodule

While the first solution uses for n bit numbers n MUXlog2 (rotateDim), the second solution uses log2 (rotateDim)
nEMUXs. Results:

S f irstSolutionO f Le f tRotate = (n× (rotateDim−1))×SEMUX

SsecondSolutionO f Le f tRotate = (n× log2 (rotateDim))×SEMUX

6.1.5 ∗ Priority encoder

An encoder is a circuit which connected to the outputs of a decoder provides the value applied on the input of the
decoder. As we know only one output of a decoder is active at a time. Therefore, the encoder compute the index of
the activated output. But, a real application of an encoder is to encode binary configurations provided by any kind
of circuits. In this case, more than one input can be active and the encoder must have a well defined behavior. One
of this behavior is to encode the most significant bit and to ignore the rest of bits. For this reason the encoder is a
priority encoder.

The n-bit input, enabled priority encoder circuit, PE(n), receives xn−1,xn−2, . . .x0 and, if the enable input
is activated, en = 1, it generates the number Y = ym−1,ym−2, . . .y0, with n = 2m, where Y is the biggest index
associated with xi = 1 if any, else zero output is activated. (For example: if en = 1, for n = 8, and x7,x6, . . .x0 =
00110001, then y2,y1,y0 = 101 and zero = 0) The following Verilog code describe the behavior of PE(n).
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/ * ************************************************************************
F i l e name : p r i o r i t y e n c o d e r . v
C i r c u i t name : P r i o r i t y Encoder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an 8− b i t i n p u t p r i o r i t y encoder
************************************************************************ * /

module p r i o r i t y e n c o d e r # ( parameter m = 3)
( input [ ( 1 ’ b1<<m) − 1 : 0 ] i n ,

input e n a b l e ,
output reg [m− 1 : 0 ] o u t ,
output reg z e r o ) ;

i n t e g e r i ;
always @( * ) i f ( e n a b l e ) begin o u t = 0 ;

f o r ( i =(1 ’ b1 << m) −1; i >=0; i = i −1)
i f ( ( o u t == 0) && i n [ i ] ) o u t = i ;

i f ( i n == 0) z e r o = 1 ;
e l s e z e r o = 0 ;

end
e l s e begin o u t = 0 ;

z e r o = 1 ;
end

endmodule

For testing the previous description the following test module is used:
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/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module t e s t p r i o r i t y e n c o d e r # ( parameter m = 3 ) ;
reg [ ( 1 ’ b1<<m) − 1 : 0 ] i n ;
reg e n a b l e ;
wire [m− 1 : 0 ] o u t ;
wire z e r o ;
i n i t i a l begin e n a b l e = 0 ;

i n = 8 ’ b11111111 ;
#1 e n a b l e = 1 ;
#1 i n = 8 ’ b00000001 ;
#1 i n = 8 ’ b0000001x ;
#1 i n = 8 ’ b000001xx ;
#1 i n = 8 ’ b00001xxx ;
#1 i n = 8 ’ b0001xxxx ;
#1 i n = 8 ’ b001xxxxx ;
#1 i n = 8 ’ b01xxxxxx ;
#1 i n = 8 ’ b1xxxxxxx ;
#1 i n = 8 ’ b110 ;
#1 $ s t o p ;

end
p r i o r i t y e n c o d e r d u t ( i n ,

e n a b l e ,
o u t ,
z e r o ) ;

i n i t i a l $monitor ( $t ime , ” e n a b l e=%b i n=%b o u t=%b z e r o=%b ” ,
enab le , in , out , z e r o ) ;

endmodule

Running the previous code the simulation provides the following result:

t ime = 0 e n a b l e = 0 i n = 11111111 o u t = 000 z e r o = 1
t ime = 1 e n a b l e = 1 i n = 11111111 o u t = 111 z e r o = 0
t ime = 2 e n a b l e = 1 i n = 00000001 o u t = 000 z e r o = 0
t ime = 3 e n a b l e = 1 i n = 0000001 x o u t = 001 z e r o = 0
t ime = 4 e n a b l e = 1 i n = 000001 xx o u t = 010 z e r o = 0
t ime = 5 e n a b l e = 1 i n = 00001 xxx o u t = 011 z e r o = 0
t ime = 6 e n a b l e = 1 i n = 0001 xxxx o u t = 100 z e r o = 0
t ime = 7 e n a b l e = 1 i n = 001 xxxxx o u t = 101 z e r o = 0
t ime = 8 e n a b l e = 1 i n = 01 xxxxxx o u t = 110 z e r o = 0
t ime = 9 e n a b l e = 1 i n = 1 xxxxxxx o u t = 111 z e r o = 0
t ime =10 e n a b l e = 1 i n = 00000110 o u t = 010 z e r o = 0

It is obvious that this circuit computes the integer part of the base 2 logarithm. The output zero is used to notify
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that the input value is unappropriate for computing the logarithm, and “prevent” us from takeing into account the
output value.

6.1.6 ∗ Prefix computation network

There is a class of circuits, called prefix computation networks, PCN f unc(n), defined for n inputs and
having the characteristic function f unc. If f unc is expressed using the operation ◦, then the function
of PCN◦(n) is performed by a circuit having the inputs x0, . . .xn−1 and the outputs y0, . . .yn−1 related as
follows:

y0 = x0

y1 = x0 ◦ x1

y2 = x0 ◦ x1 ◦ x2

. . .

yn−1 = x0 ◦ x1 ◦ . . .◦ xn−1

where the operation “◦” is an associative and commutative operation. For example, ◦ can be the arith-
metic operation add, or the logic operation AND. In the first case xi is an m-bit binary number, and in the
second case it is a 1-bit Boolean variable.

Example 6.4 If ◦ is the Boolean function AND, then PCNAND(n) is described by the following behavioral
description:

/ * ************************************************************************
F i l e name : a n d p r e f i x e s . v
C i r c u i t name : AND P r e f i x e s
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r 64− i n p u t AND p r e f i x e s c i r c u i t
************************************************************************ * /

module a n d p r e f i x e s # ( parameter n = 6 4 ) ( input [ 0 : n −1] i n ,
output reg [ 0 : n −1] o u t ) ;

i n t e g e r k ;
always @( i n ) begin o u t [ 0 ] = i n [ 0 ] ;

f o r ( k =1; k<n ; k=k +1) o u t [ k ] = i n [ k ] & o u t [ k − 1 ] ;
end

endmodule

⋄

There are many solutions for implementing PCNAND(n). If we use AND gates with up to n inputs,
then there is a first direct solution for PCNAND starting from the defining equations (it consists in one
2-input gate, plus one 3-input gate, . . . plus one (n-1)-input gate). A very large high-speed circuit is
obtained. Indeed, this direct solution offers a circuit with the size S(n) ∈ O(n2) and the depth D(n) ∈
O(1). We are very happy about the speed (depth), but the price paid for this is too high: the squared
size. In the same time our design experience tells us that this speed is not useful in current applications
because of the time correlations with other subsystems. (There is also a discussion about gate having n
inputs. These kind of gates are not realistic.)



6.1. SIMPLE, RECURSIVE DEFINED CIRCUITS 167

PCNAND(n/2)

x0 x1 x2 x3 x4 x5 xn−2 xn−1

y0 y1 y2 y3 y4 yn−3 yn−2 yn−1

Figure 6.15: The internal structure of PCNAND(n). It is recursively defined: if PCNAND(n/2) is a prefix
computation network, then the entire structure is PCNn.

A second solution offers a very good size but a too slow circuit. If we use only 2-input AND gates,
then the definition becomes:

y0 = x0

y1 = y0 & x1

y2 = y1 & x2

. . .

yn−1 = yn−2 & xn−1

A direct solution starting from this new form of the equations (as a degenerated binary tree of ANDs) has
S(n) ∈ O(n) and D(n) ∈ O(n). This second solution is also very inefficient, now because of the speed
which is too low.

The third implementation is a optimal one. For PCNAND(n) is used the recursive defined network
represented in Figure 6.15 [Ladner ’80], where in each node, for our application, there is a 2-inputs
AND gate. If PCNAND(n/2) is a well-functioning prefix network, then all the structure works as a prefix
network. Indeed, PCNAND(n/2) computes all even outputs because of the n/2 input circuits that perform
the y2 function between successive pairs of inputs. On the output level the odd outputs are computed
using even outputs and odd inputs. The PCNAND(n/2) structure is built upon the same rule and so on
until PCNAND(1) that is a system without any circuit. The previous recursive definition is applied for
n = 16 in Figure 6.16.

The size of PCNAND(n), S(n) (with n a power of 2), is evaluated starting from: S(1) = 0, S(n) =
S(n/2)+ (n− 1)Sy1 where Sy1 is the size of the elementary circuit that defines the network (in our case
is a 2-inputs AND gate). The next steps leads to:

S(n) = S(n/2i)+(n/2i−1 + . . .+n/20− i)Sy1
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PNand (4)

PNand (8)

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15
PNand (16)

M
EPNand

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

Figure 6.16: PCNAND(16)

and ends, for i = log2 n (the rule is recursively applied log n times), with:

S(n) = (2n−2− log2n)Sy1 ∈ O(n).

(The network consists in two binary trees of elementary circuits. The first with the bottom root having
n/2 leaves on the first level. The second with the top root having n/2− 1 leaves on the first level.
Therefore, the first tree has n− 1 elementary circuits and the second tree has n− 1− log n elementary
circuits.) The depth is D(n) = 2Dy2 log2 n ∈O(log n) because D(n) =−1+D(n/2)+2 (at each step two
levels are added to the system starting from one level). But attention, not each way to output is affected
on each level. Thus, the actual depth for each output can be smallae than D(n).

6.1.7 Increment circuit

The simplest arithmetic operation is the increment. The combinational circuit performing this function
receives an n-bit number, xn−1, . . .x0, and a one-bit command, inc, enabling the operation. The outputs,
yn−1, . . .y0, and crn−1 behaves according to the value of the command:

If inc = 1, then
{crn−1,yn−1, . . .y0}= {xn−1, . . .x0}+1
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else
{crn−1,yn−1, . . .y0}= {0,xn−1, . . .x0}.

EINC INCn−1

?

?

�� �

? ?

? ?

x0xn−2xn−1

yn−1 yn−2 y0

inccrn−1
crn−2

in

out

inccr

b.

EINC

in

out

inc
cr

a.

INCn

Figure 6.17: Increment circuit. a. The elementary increment circuit (called also half adder). b. The recursive
definition for an n-bit increment circuit.

The increment circuit is built using as “brick” the elementary increment circuit, EINC, represented
in Figure 6.17a, where the XOR circuit generate the increment of the input if inc = 1 (the current bit is
complemented), and the circuit AND generate the carry for the the next binary order (if the current bit
is incremented and it has the value 1). An n-bit increment circuit, INCn is recursively defined in Figure
6.17b: INCn is composed using an INCn−1 serially connected with an EINC, where INC0 = EINC.

6.1.8 Adders

Another usual digital functions is the sum. The circuit associated to this function can be also made
starting from a small elementary circuits, which adds two one-bit numbers, and looking for a simple
recursive definitions for n-bit numbers.

The elementary structure is the well known full adder which consists in two half adders and an OR2.
An n-bit adder could be done in a recursive manner as the following definition says.

Definition 6.7 The full adder, FA, is a circuit which adds three 1-bit numbers generating a 2-bit result:

FA(in1, in2, in3) = {out1,out0}

FA is used to build n-bit adders. For this purpose its connections are interpreted as follows:

• in1, in2 represent the i-th bits if two numbers

• in3 represents the carry signal generated by the i−1 stage of the addition process

• out0 represents the i-th bit of the result

• out1 represents the carry generated for the i+1-th stage of the addition process

Follows the Verilog description:
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/ * ************************************************************************
F i l e name : f u l l a d d e r . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a f u l l adder
************************************************************************ * /

module f u l l a d d e r ( output sum , c a r r y o u t , input in1 , in2 , c a r r y i n ) ;
h a l f a d d e r ha1 ( sum1 , c a r r y 1 , in1 , i n 2 ) ,

ha2 ( sum , c a r r y 2 , sum1 , c a r r y i n ) ;
a s s i g n c a r r y o u t = c a r r y 1 | c a r r y 2 ;

endmodule

/ * ************************************************************************
F i l e name : h a l f a d d e r . v
C i r c u i t name : Ha l f Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a h a l f adder
************************************************************************ * /

module h a l f a d d e r ( output sum , c a r r y , input in1 , i n 2 ) ;
a s s i g n sum = i n 1 ˆ in2 ,

c a r r y = i n 1 & i n 2 ;
endmodule

⋄

Note: The half adder circuit is also an elementary increment circuit (see Figure 6.17a).

Definition 6.8 The n-bits ripple carry adder, (ADDn), is made by serial connecting on the carry chain
an ADDn−1 with a FA (see Figure 6.18). ADD1 is a full adder.

FA ADDn−1

A B

S
CC+ C+ C

? ? ? ?? ?

? ? ?

� ��
Cn C0

An−1 Bn−1 An−2 A0 Bn−2 B0
. . . . . .

Sn−2 S0

. . .

Sn−1

Figure 6.18: The recursive defined n-bit ripple-carry adder (ADDn). ADDn is simply designed adding to
an ADDn−1 a full adder (FA), so as the carry signal ripples from one FA to the next.
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/ * ************************************************************************
F i l e name : adder . v
C i r c u i t name : Adder
D e s c r i p t i o n : r e c u r s i v e s t r u c t u r a l d e s c r i p t i o n o f a n− b i t adder u s i n g

t h e c o n d i t i o n a l g e n e r a t e s t a t e m e n t
************************************************************************ * /

module a d d e r # ( parameter n = 4 ) ( output [ n − 1 : 0 ] o u t ,
output c r y ,
input [ n − 1 : 0 ] i n 1 ,
input [ n − 1 : 0 ] i n 2 ,
input c i n ) ;

wire [ n : 1 ] c a r r y ;
a s s i g n c r y = c a r r y [ n ] ;
g e n e r a t e
i f ( n == 1) f u l l A d d e r f i r s t A d e r ( . o u t ( o u t [ 0 ] ) ,

. c r y ( c a r r y [ 1 ] ) ,

. i n 1 ( i n 1 [ 0 ] ) ,

. i n 2 ( i n 2 [ 0 ] ) ,

. c i n ( c i n ) ) ;
e l s e begin a d d e r # ( . n ( n − 1 ) ) p a r t A d d e r ( . o u t ( o u t [ n − 2 : 0 ] ) ,

. c r y ( c a r r y [ n −1] ) ,

. i n 1 ( i n 1 [ n − 2 : 0 ] ) ,

. i n 2 ( i n 2 [ n − 2 : 0 ] ) ,

. c i n ( c i n ) ) ;
f u l l A d d e r l a s t A d d e r ( . o u t ( o u t [ n −1] ) ,

. c r y ( c a r r y [ n ] ) ,

. i n 1 ( i n 1 [ n −1] ) ,

. i n 2 ( i n 2 [ n −1] ) ,

. c i n ( c a r r y [ n −1] ) ) ;
end

endgenerate
endmodule

/ * ************************************************************************
F i l e name : f u l l A d d e r . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a f u l l adder
************************************************************************ * /
module f u l l A d d e r ( output out , c r y ,

input in1 , in2 , c i n ) ;
a s s i g n c r y = i n 1 & i n 2 | ( i n 1 ˆ i n 2 ) & c i n ;
a s s i g n o u t = i n 1 ˆ i n 2 ˆ c i n ;

endmodule

⋄
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The previous definition used the conditioned generation block.3 The Verilog code from the previous
recursive definition can be used to simulate and to synthesize the adder circuit. For this simple circuit this
definition is too sophisticated. It is presented here only to provide a simple example of how a recursive
definition is generated.

A simpler way to define an adder is provided in the next example where a generate block is used.

Example 6.5 Generated n-bit adder:

/ * ************************************************************************
F i l e name : add . v
C i r c u i t name : Adder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a n−i n p u t adder u s i n g t h e

g e n e r a t e s t a t e m n t
************************************************************************ * /

module add #( parameter n = 8 ) ( input [ n − 1 : 0 ] in1 , in2 ,
input c I n ,
output [ n − 1 : 0 ] o u t ,
output cOut ) ;

wire [ n : 0 ] c r ;
a s s i g n c r [ 0 ] = c I n ;
a s s i g n cOut = c r [ n ] ;
genvar i ;
g e n e r a t e f o r ( i =0 ; i<n ; i = i +1) begin : S

f a a d d e r ( . i n 1 ( i n 1 [ i ] ) ,
. i n 2 ( i n 2 [ i ] ) ,
. c I n ( c r [ i ] ) ,
. o u t ( o u t [ i ] ) ,
. cOut ( c r [ i + 1 ] ) ) ; end

endgenerate
endmodule

/ * ************************************************************************
F i l e name : f a . v
C i r c u i t name : F u l l Adder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a f u l l adder
************************************************************************ * /

module f a ( input in1 , in2 , c I n ,
output out , cOut ) ;

wire xr ;
a s s i g n xr = i n 1 ˆ i n 2 ;
a s s i g n o u t = xr ˆ c I n ;
a s s i g n cOut = i n 1 & i n 2 | c I n & xr ;

endmodule

⋄
3The use of the conditioned generation block for recursive definition was suggested to me by my colleague Radu Hobincu.
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Because the add function is very frequently used, the synthesis and simulation tools are able to
”understand” the simplest one-line behavioral description used in the following module:

/ * ************************************************************************
F i l e name : add . v
C i r c u i t name : Adder
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an adder
************************************************************************ * /

module add #( parameter n = 8 ) ( input [ n − 1 : 0 ] in1 , in2 ,
input c I n ,
output [ n − 1 : 0 ] o u t ,
output cOut ) ;

a s s i g n {cOut , o u t } = i n 1 + i n 2 + c I n ;
endmodule

Carry-Look-Ahead Adder

The size of ADDn is in O(n) and the depth is unfortunately in the same order of magnitude. For improving
the speed of this very important circuit there was found a way for accelerating the computation of the
carry: the carry-look-ahead adder (CLAn). The fast carry-look-ahead adder can be made using a carry-
look-ahead (CL) circuit for fast computing all the carry signals Ci and for each bit an half adder and a
XOR (the modulo two adder)(see Figure 6.19). The half adder has two roles in the structure:

HA

A B

S CR

. . . . . .

?�

? ?

Ai Bi

GiPi
Ci

Si

�

Gn−1

C0

Carry-Lookahead Circuit

? ? ??

? ? ?

G0 Pn−1 P0
. . . . . .

. . .

Cn Cn−1 C1

Figure 6.19: The fast n-bit adder. The n-bit Carry-Lookahead Adder (CLAn) consists in n HAs, n 2-input
XORs and the Carry-Lookahead Circuit used to compute faster the n Ci, for i = 1,2, . . .n.

• sums the bits Ai and Bi on the output S

• computes the signals Gi (that generates carry as a local effect) and Pi (that allows the propagation
of the carry signal through the binary level i) on the outputs CR and P.

The XOR gate adds modulo 2 the value of the carry signal Ci to the sum S.
In order to compute the carry input for each binary order an additional fast circuit must be build: the

carry-look-ahead circuit. The equations describing it start from the next rule: the carry toward the level
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(i+1) is generated if both Ai and Bi inputs are 1 or is propagated from the previous level if only one of
Ai or Bi are 1. Results:

Ci+1 = AiBi +(Ai +Bi)Ci = AiBi +(Ai⊕Bi)Ci = Gi +PiCi.

Applying the previous rule we obtain the general form of Ci+1:

Ci+1 = Gi +PiGi−1 +PiPi−1Gi−2 +PiPi−1Pi−2Gi−3 + . . .+PiPi−1 . . .P1P0C0

for i = 0, . . . ,n.
Computing the size of the carry-look-ahead circuit results SCL(n) ∈ O(n3), and the theoretical depth

is only 2. But, for real circuits an n-input gates can not be considered as a one-level circuit. In Basic
circuits appendix (see section Many-Input Gates) is shown that an optimal implementation of an n-input
simple gate is realized as a binary tree of 2-input gates having the depth in O(log n). Therefore, in a real
implementation the depth of a carry-look ahead circuit has DCLA ∈ O(log n).

For small n the solution with carry-look-ahead circuit works very good. But for larger n the two
solutions, without carry-look-ahead circuit and with carry-look-ahead circuit, must be combined in many
fashions in order to obtain a good price/performance ratio. For example, the ripple carry version of ADDn

is divided in two equal sections and two carry look-ahead circuits are built for each, resulting two serial
connected CLAn/2. The state of the art in this domain is presented in [Omondi ’94].

It is obvious that the adder is a simple circuit. There exist constant sized definition for all the variants
of adders.

∗ Prefix-Based Carry-Look-Ahead Adder

Let us consider the expressions for C1, C2, . . .Ci, . . .. It looks like each product from Ci−1 is a prefix of a product
from Ci. This suggests a way to reduce the too big size of the carry-look-ahead circuit from the previous paragraph.
Following [Cormen ’90] (see section 29.2.2), an optimal carry-look-ahead circuit (with asymptotically linear size
and log depth) is described in this paragraph. It is known as Brent-Kung adder.

Let be xi, the carry state, the information used in the stage i to determine the value of the carry. The carry
state takes three values, according to the table represented in Figure 6.20, where Ai and Bi are the i-th bits of the
numbers to be added. If Ai = Bi = 0, then the carry bit is 0 (it is killed). If Ai = Bi = 1, then the carry bit is 1 (it is
generated). If Ai = 0, and Bi = 1 or Ai = 1 and Bi = 0, then the carry bit is equal with the carry bit generated in
the previous stage, Ci−1 (the carry from the previous range propagates). Therefore, in each binary stage the carry
state has three values: k, p, g.

Ai−1 Bi−1 Ci xi

0 0 0 kill
0 1 Ci−1 propagate
1 0 Ci−1 propagate
1 1 1 generate

Figure 6.20: Kill-Propagate-Generate table.

We define the function ⊗ which composes the carry states of the two binary ranges. In Figure 6.21 the states
xi and xi−1 are composed generating the carry state of two successive bits, i− 1 an i. If xi = k, then the resulting
composed state is independent by xi−1 and it takes the value k. If xi = g, then the resulting composed state is
independent by xi−1 and it takes the value g. If xi = p, then the resulting composed state propagates and it is xi−1.
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The carry state for the binary range i is determined using the expression:

yi = yi−1⊗ xi = x0⊗ x1⊗ . . .xi

starting with:
y0 = x0 = {k,g}

which is associated with the carry state used to specify the carry input C0 (for k is no carry, for g is carry, while p
has no meaning for the input carry state).

xi

⊗ k p g
k k k g

xi−1 p k p g
g k g g

Figure 6.21: The elementary Carry-Look-Ahead (eCLA) function [Cormen ’90].

Thus, carry states are computed as follows:

y0 = x0
y1 = x0⊗ x1
y2 = x0⊗ x1⊗ x2
. . .
yi = x0⊗ x1⊗ x2 . . .xi

It is obvious that we have a prefix computation. Let us call the function ⊗ eCLA (elementary Carry-Look-Ahead).
Then, the circuit used to compute the carry states y0,y1,y2, . . . ,yi is prefixCLA.

Theorem 6.1 If x0 = {k,g}, then y1 = {k,g} for i = 1,2, . . . i and the value of Ci is set to 0 by k and to 1 by g.

Proof: in the table from Figure 6.21 if the line p is not selected, then the value p does not occur in any carry
state. Because, x0 = {k,g} the previous condition is fulfilled.
⋄

An appropriate codding of the three values of x will provide a simple implementation. We propose the codding
represented in the table from Figure 6.22. The two bits used to code the state x are P and G (with the meaning used
in the previous paragraph). Then, yi[0] =Ci.

xi P G
k 0 0
p 1 0
g 0 1

Figure 6.22: Coding the carry state.

The first, direct form of the adder circuit, for n = 7, is represented in Figure 6.23, where there are three levels:

• the input level of half-adders which compute xi = {Pi,Gi} for 1 = 1,2, . . .6, where:

Pi = Ai−1⊕Bi−1

Gi = Ai−1 ·Bi−1
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• the intermediate level of prefixCLA which computes the carry states y1,y2, . . .y7 with a chain of eCLA
circuits

• the output level of XORs used to compute the sum Si starting from Pi+1 and Ci.

The size of the resulting circuit is in O(n), while the depth is in the same order of magnitude. The next step is to
reduce the depth of the circuit to O(logn).
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Figure 6.23: The 7-bit adder with ripple eCLA.

The eCLA circuit is designed using the eCLA function defined inFigure 6.21 and the codding of the carry
state presented in Figure 6.22. The resulting logic table is represented in Figure 6.24. It is build takeing into
consideration that the code 11 is not used to define the carry state x. Thus in the lines containing xi = {Pi,Gi}= 11
and xi−1 = {Pi−1,Gi−1}= 11 the function is not defined (instead of 0 or 1 the value of the function is “don’t care”).
The expressions for the two outputs of the eCLA circuit are:

Pout = Pi ·Pi−1

Gout = G− i+P− i ·Gi−1

For the pure serial implementation of the prefixCLA circuit from Figure 6.23, because x0 = {0,C0}, in each
eCLA circuit Pout = 0. The full circuit will be used in the log-depth implementation of the prefixCLA circuit.
Following the principle exposed in the paragraph Prefix Computation network the prefixCLA circuit is redesigned
optimally for the adder represented in Figure 6.25. If we take from Figure 6.16 the frame labeled PNand(8) and the
2-input AND circuits are substituted with eCLA circuits, then results the prefixCLA circuit from Figure 6.25.

Important notice: the eCLA circuit is not a symmetric one. The most significant inputs, Pi and Gi correspond
to the i-th binary range, while the other two correspond to the previous binary range. This order should be taken
into consideration when the log-depth prefixCLA (see Figure 6.25) circuit is organized.

While in the prefixCLA circuit from Figure 6.23 all eCLA circuits have the output Pout = 0, in the log-depth
prefixCLA from Figure 6.25 some of them are fully implemented. Because x0 = {0,C0}, eCLA indexed with 0
and all the eCLAs enchained after it, indexed with 4,6, 7, 8, 9, and 10, are of the simple form with Pout = 0. Only
the eCLA indexed with 1, 2, 3, and 5 are fully implemented, because their inputs are not restricted.

This version of n-bit adder is asymptotically optimal, because the size of the circuit is in O(n) and the depth is
in O(logn). Various versions of this circuit are presented in [webRef 3].

∗ Carry-Save Adder

For adding m n-bit numbers there is a faster solution than the one which supposes to use the direct circuit build as
a tree of m−1 2-number adders. The depth and the size of the circuit is reduced using a carry-save adder circuit.
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Pi Gi Pi−1 Gi−1 Pout Gout
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 - -
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 - -
1 0 0 0 0 0
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 - -
1 1 0 0 - -
1 1 0 1 - -
1 1 1 0 - -
1 1 1 1 - -

Figure 6.24: The logic table for eCLA.

The carry save adder receives three n-bit numbers:

x = {xn−1,xn−2, . . .x1,x0}

y = {yn−1,yn−2, . . .y1,y0}

z = {zn−1,zn−2, . . .z1,z0}

and generate two (n+1)-bit numbers:

c = {cn−1,cn−2, . . .c1,c0,0}

s = {0,sn−1,sn−2, . . .s1,s0}

where:
c+ s = x+ y+ z.

The function of the circuit is described by the following transfer function applied for i = 0, . . .n−1:

xi + yi + zi = {ci,si}.

The internal structure of the carry-save adders contains n circuits performing the previous function which is the
function of a full adder. Indeed, the binary variables xi and yi are applied on the two inputs of the FA, zi is applied
on the carry input of the same FA, and the two inputs ci, si are the carry-out and the sum outputs. Therefore, an
elementary carry-save adder, ECSA, has the structure of a FA (see Figure 6.26a).

To prove for the functionality of CSA we write for each ECSA:

{cn−1,sn−1}= xn−1 + yn−1 + zn−1

{cn−2,sn−2}= xn−2 + yn−2 + zn−2

. . .

{c1,s1}= x1 + y1 + z1

{c0,s0}= x0 + y0 + z0
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Figure 6.25: The adder with the prefix based carry-look-ahead circuit.

from which results that:

x+ y+ z = {cn−1,sn−1}×2n−1 +{cn−2,sn−2}×2n−2 + . . .{c1,s1}×21 +{c0,s0}×20 =

{cn−1,cn−2, . . .c1,c0}×2+{sn−1,sn−2, . . .s1,s0}= {cn−1,cn−2, . . .c1,c0,0}+{0,sn−1,sn−2, . . .s1,s0}.

Figure 6.26c shows a 4-number adder for n-bit numbers. Instead of 3 adders, 2 3CSAn circuits and a (n+1)-bit
adder are used. The logic symbol for the resulting 4-input reduction adder – 4REDAn – is represented in Figure
6.26d. The depth of the circuit is of 2 FAs and an (n+1)-bit adder, instead of the depth associated with one n-bit
adder and an (n+1)-bit adder. The size is also minimized if in the standard solution carry-look-ahead adders are
used.

Example 6.6 The module 3CSAm is generated using the following template where m must be specified:
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/ * ************************************************************************
F i l e name : csa3 m . v
C i r c u i t name : Carry −Save Adder
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a m− b i t i n p u t s carry −save adder
************************************************************************ * /

module csa3 m #( parameter n=m) ( input [ n − 1 : 0 ] in0 , in1 , i n 2 ,
output [ n : 0 ] sOut , cOut ) ;

wire [ n − 1 : 0 ] o u t ;
wire [ n − 1 : 0 ] c r ;

genvar i ;
g e n e r a t e f o r ( i =0 ; i<n ; i = i +1) begin : S

f a a d d e r ( i n 0 [ i ] , i n 1 [ i ] , o u t [ i ] , c r [ i ] ) ;
end

endgenerate

a s s i g n sOut = {1 ’ b0 , o u t } ;
a s s i g n cOut = { cr , 1 ’ b0} ;

endmodule

where: (1) an actual value for m must be provided and (2) the module fa is defined in the previous example. ⋄

Example 6.7 For the design of a 8 1-bit input adder (8REDA1) the following modules are used:

/ * ************************************************************************
F i l e name : re d a 8 1 . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module r e d a 8 1 ( output [ 3 : 0 ] o u t ,
input [ 7 : 0 ] i n ) ;

wire [ 2 : 0 ] sou t , c o u t ;
c s a 8 1 c s a ( i n [ 0 ] , i n [ 1 ] , i n [ 2 ] , i n [ 3 ] , i n [ 4 ] , i n [ 5 ] , i n [ 6 ] , i n [ 7 ] , cou t , s o u t ) ;
a s s i g n o u t = c o u t + s o u t ;

endmodule
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Figure 6.26: Carry-Save Adder. a. The elementary carry-save adder. b. CSA for 3 n-bit numbers: 3CSAn.
c. How to use carry-save adders to add 4 n-bit numbers. d. The logic symbol for a 4 n-bit inputs reduction adder
(4REDAn) implemented with two 3CSAn and a (n+1)-bit adder.

/ * ************************************************************************
F i l e name : c s a 8 1 . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module c s a 8 1 ( input in0 , in1 , in2 , in3 , in4 , in5 , in6 , in7 ,
output [ 2 : 0 ] cout , s o u t ) ;

wire [ 1 : 0 ] sou t0 , cout0 , sou t1 , c o u t 1 ;
c s a 4 1 csa0 ( in0 , in1 , in2 , in3 , sou t0 , c o u t 0 ) ,

c s a1 ( in4 , in5 , in6 , in7 , sou t1 , c o u t 1 ) ;
c s a 4 2 csa2 ( sou t0 , cout0 , sou t1 , cout1 , cou t , s o u t ) ;

endmodule

where csa4 1 and csa4 2 are instances of the following generic module:
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/ * ************************************************************************
F i l e name : c s a 4 p . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module c s a 4 p ( input [ 1 : 0 ] in0 , in1 , in2 , i n 3 ,
output [ 2 : 0 ] sou t , c o u t ) ;

wire [ 2 : 0 ] s1 , c1 ;
wire [ 3 : 0 ] s2 , c2 ;
c s a 3 p csa0 ( in0 , in1 , in2 , s1 , c1 ) ;
c s a 3 q csa1 ( s1 , c1 , {1 ’ b0 , i n 3 } , s2 , c2 ) ;
a s s i g n s o u t = s2 [ 2 : 0 ] , c o u t = c2 [ 2 : 0 ] ;

endmodule

for p = 1 and p = 2, while q = p+1. The module csa3 m is defined in the previous example. ⋄

The efficiency of this method to add many numbers increases, compared to the standard solution, with the
number of operands.

6.1.9 ∗ Combinational Multiplier
One of the most important application of the CSAs circuits is the efficient implementation of a combinational
multiplier. Because multiplying n-bit numbers means to add n 2n− 1-bit partial products, a nCSA2n−1 circuit
provides the best solution. Adding n n-bit numbers using standard carry-adders is done, in the best case, in time
belonging to O(n× log n) on a huge area we can not afford. The proposed solution provides a linear time.

In Figure 6.27 is an example for how for the binary multiplication for n = 4 works. Thus, the combinational
multiplication is done in the following three stages:

p5

a0a1a2a3

p10

×

p00p01p02p03

b0b1b2b3

p11p12p13
p20p21p22p23

p30p31p32p33

p0p1p2p3p4p6p7

multiplicand: a

partial product: pp1

partial product: pp0

multiplier: b

partial product: pp2
partial product: pp3

final product: p

1 0 1 1
1 1 10

×

111 0
0000

111
111

0
0

11111 0 0 0

Figure 6.27: Multiplying 4-bit numbers.

1. compute n partial products – pp0, . . . ppn−1 – using a two-dimension array of n× n AND2 circuits (see in
Figure 6.28 the “partial products computation” dashed box); for n = 4 the following relations describe this
stage:

pp0 = {a3 ·b0, a2 ·b0, a1 ·b0, a0 ·b0}

pp1 = {a3 ·b1, a2 ·b1, a1 ·b1, a0 ·b0}

pp2 = {a3 ·b2, a2 ·b2, a1 ·b2, a0 ·b0}

pp3 = {a3 ·b3, a2 ·b3, a1 ·b3, a0 ·b0}
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Figure 6.28: 4-bit combinational multiplier. .

2. shift each partial product ppi i binary positions left; results n (2n−1)-bit numbers; for n = 4:

n0 = pp0 << 0 = {0,0,0, pp0}

n1 = pp1 << 1 = {0,0, pp1,0}

n2 = pp2 << 2 = {0, pp2,0,0}

n3 = pp3 << 3 = {pp3,0,0,0}

easy to be done, with no circuits, by an appropriate connection of the AND array outputs to the next circuit
level (see in Figure 6.28 the “hardware-less shifter” dashed box)

3. add the resulting n numbers using a nCSA2n−1; for n = 4:

p = {0,0,0, pp0}plus{0,0, pp1,0}plus{0, pp2,0,0}plus{pp3,0,0,0}

The combinational multiplier circuit is presented in Figure 6.28 for the small case of n = 4. The first stage –
partial products computation – generate the partial products ppi using 2-input ANDs as one bit multipliers. The
second stage of the computation request a hardware-less shifter circuit, because the multiplying n-bit numbers with
a power of 2 no bigger than n−1 is done by an appropriate connection of each ppi to the (2n−1)-bit inputs of the
next stage, filling up the unused positions with zeroes. The third stage consists of a reduction carry-save adder –
nREDA2n−1 – which receives, as 2n−1-bit numbers, the partial products ppi, each multiplied with 2i.

The circuit represented in Figure 6.28 for n = 4, has in the general case the size in O(n2) and the depth in
O(n). But, the actual size and depth of the circuit is established by the 0s applied to the input of the nREDA2n−1
circuit, because some full-adders are removed from design and others are reduced to half-adders. The actual size
of nREDA2n−1 results to be very well approximated with the actual size of a nREDAn. The actual depth of the
combinational multiplier is well approximated with the depth of a 2.5n-bit adder.

The decision to use a combinational multiplier must be done takeing into account (1) its area, (2) the acceler-
ation provided for the function it performs and (3) the frequency of the multiplication operation in the application.
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6.1.10 Arithmetic and Logic Unit

All the before presented circuits have had associated only one logic or one arithmetic function. Now is
the time to design the internal structure of a previously defined circuit having many functions, which can
be selected using a selection code: the arithmetic and logic unit – ALU. ALU is the main circuit in any
computational device, such as processors, controllers or embedded computation structures.

A generic version of a simple ALU is presented in the following example.

Example 6.8 The 8-function ALU working on 32-bit numbers is described by the following Verilog mod-
ule:

a+b a−b n×AND2 n×OR2

?

0

{carryOut, out[n-1:0]}

left[n-1:0]

right[n-1:0]

carryIn

?
n×XOR2

? ??? ?? ? ?

1 54

{2’b0, left[n-1:1]}

32 7

?

????????
(n+1)×MUX8

- sel

? ? ?

6

n×
NOT

func

Figure 6.29: The internal structure of the speculative version of an arithmetic and logic unit. Each
function is performed by a specific circuit and the output multiplexer selects the desired result.
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/ * ************************************************************************
F i l e name : a l u . v
C i r c u i t name : a r i t h m e t i c and l o g i c u n i t
D e s c r i p t i o n : t h e c i r c u i t s e l e c t s , u s i n g t h e s e l e c t i o n code ’ func ’ , one

o f t h e 8 f u n c t i o n s
************************************************************************ * /
module ALU( input c a r r y I n ,

input [ 2 : 0 ] f unc ,
input [ 3 1 : 0 ] l e f t , r i g h t ,
output reg c a r r y O u t ,
output reg [ 3 1 : 0 ] o u t ) ;

always @( * )
ca se ( func )

3 ’ b000 : { ca r ryOu t , o u t } = l e f t + r i g h t + c a r r y I n ; / / add
3 ’ b001 : { ca r ryOu t , o u t } = l e f t − r i g h t − c a r r y I n ; / / sub
3 ’ b010 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t & r i g h t } ; / / and
3 ’ b011 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t | r i g h t } ; / / or
3 ’ b100 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t ˆ r i g h t } ; / / xor
3 ’ b101 : { ca r ryOu t , o u t } = {1 ’ b0 , ˜ l e f t } ; / / n o t
3 ’ b110 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t } ; / / l e f t
3 ’ b111 : { ca r ryOu t , o u t } = {1 ’ b0 , l e f t >> 1} ; / / s h r
d e f a u l t { ca r ryOu t , o u t } = 33 ’ b0 − 1 ’ b1 ;

endcase
endmodule

⋄

The ALU circuit can be implemented in many forms. One of them is the speculative version (see
Figure 6.29) described by the Verilog module from Example 6.8, where the case structure describes, in
fact, an 8-input multiplexor for 33-bit words. We call this version speculative because all the possible
functions are computed in order to be all available to be select when the function code arrives to the func
input of ALU. This approach is efficient when the operands are available quickly and the function to be
performed “arrives” lately (because it is usually decoded from the instruction fetched from a program
memory). The circuit “speculates” computing all the defined functions offering 8 results from which
the func code selects one. (This approach will be useful for the ALU designed for the stack processor
described in Chapter 10.)

The speculative version provides a fast version in some specific designs. The price is the big size of
the resulting circuit (mainly because the arithmetic section contains and adder and an subtractor, instead
a smaller circuit performing add or subtract according to a bit used to complement the right operand and
the carryIn signal).

An area optimized solution is provided in the next example.

Example 6.9 Let be the 32-bit ALU with 8 functions described in Example 2.8. The implementation will
be done using an adder-subtractor circuit and a 1-bit slice for the logic functions. Results the following
Verilog description:
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/ * ************************************************************************
F i l e name : s t r u c t u r a l A l u . v
C i r c u i t name : ALU
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n f o r
************************************************************************ * /

module s t r u c t u r a l A l u ( output [ 3 1 : 0 ] o u t ,
output ca r ryOu t ,
input c a r r y I n ,
input [ 3 1 : 0 ] l e f t , r i g h t ,
input [ 2 : 0 ] func ) ;

wire [ 3 1 : 0 ] s h i f t , add sub , a r i t h , l o g i c ;

addSub addSub ( . o u t ( a d d s u b ) ,
. c o u t ( c a r r y O u t ) ,
. l e f t ( l e f t ) ,
. r i g h t ( r i g h t ) ,
. c i n ( c a r r y I n ) ,
. sub ( func [ 0 ] ) ) ;

l o g i c l o g ( . o u t ( l o g i c ) ,
. l e f t ( l e f t ) ,
. r i g h t ( r i g h t ) ,
. op ( func [ 1 : 0 ] ) ) ;

mux2 s h i f t Mu x ( . o u t ( s h i f t ) ,
. i n 0 ( l e f t ) ,
. i n 1 ({1 ’ b0 , l e f t [ 3 1 : 1 ] } ) ,
. s e l ( f unc [ 0 ] ) ) ,

a r i t hMux ( . o u t ( a r i t h ) ,
. i n 0 ( s h i f t ) ,
. i n 1 ( a d d su b ) ,
. s e l ( func [ 1 ] ) ) ,

outMux ( . o u t ( o u t ) ,
. i n 0 ( a r i t h ) ,
. i n 1 ( l o g i c ) ,
. s e l ( f unc [ 2 ] ) ) ;

endmodule

/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module mux2 ( input s e l ,
input [ 3 1 : 0 ] in0 , in1 ,
output [ 3 1 : 0 ] o u t ) ;

a s s i g n o u t = s e l ? i n 1 : i n 0 ;
endmodule
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Figure 6.30: The internal structure of an area optimized version of an ALU. The add sub module is
smaller than an adder and a subtractor, but the operation “starts” only when func[0] is valid.

/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module addSub ( output [ 3 1 : 0 ] o u t ,
output c o u t ,
input [ 3 1 : 0 ] l e f t , r i g h t ,
input c in , sub ) ;

a s s i g n { cout , o u t } = l e f t + ( r i g h t ˆ {32{ sub }} ) + ( c i n ˆ sub ) ;
endmodule
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/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module l o g i c ( output reg [ 3 1 : 0 ] o u t ,
input [ 3 1 : 0 ] l e f t , r i g h t ,
input [ 1 : 0 ] op ) ;

i n t e g e r i ;
wire [ 3 : 0 ] f ;
a s s i g n f = {op [ 0 ] , ˜ ( ˜ op [ 1 ] & op [ 0 ] ) , op [ 1 ] , ˜ | op } ;
always @( l e f t or r i g h t or f )

f o r ( i =0 ; i <32; i = i +1) l o g i c S l i c e ( o u t [ i ] , l e f t [ i ] , r i g h t [ i ] , f ) ;

ta sk l o g i c S l i c e ;
output o ;
input l , r ;
input [ 3 : 0 ] f ;
o = f [{ l , r } ] ;

endtask
endmodule

The resulting circuit is represented in Figure 6.30. This version can be synthesized on a smaller area,
because the number of EMUXs is smaller, instead of an adder and a subtractor an adder/subtractor is
used. The price for this improvement is a smaller speed. Indeed, the add submodule “starts” to compute
the addition or the subtract only when the signal sub = func[0] is received. Usually, the code func

results from the decoding of the current operation to be performed, and, consequently, comes later. ⋄

We just learned a new feature of the Verilog language: how to use a task to describe a circuit used
many times in implementing a simple, repetitive structure.

The internal structure of ALU consists mainly in n slices, one for each input pair left[i],

rught[i] and a carry-look-ahead circuit(s) used for the arithmetic section. It is obvious that ALU
is also a simple circuit. The magnitude order of the size of ALU is given by the size of the carry-look-
ahead circuit because each slice has only a constant dimension and a constant depth. Therefore, the
fastest version implies a size in O(n3) because of the carry-look-ahead circuit. But, let’s remind: the
price for the fastest solution is always too big! For optimal solutions see [Omondi ’94].

6.1.11 Comparator

Comparing functions are used in decisions. Numbers are compared to decide if they are equal or to
indicate the biggest one. The n-bit comparator, COMPn, is represented in Figure 6.31a. The numbers
to be compared are the n-bit positive integers a and b. Three are the outputs of the circuit: lt out,
indicating by 1 that a < b, eq out, indicating by 1 that a = b, and gt out, indicating by 1 that a > b.
Three additional inputs are used as expanding connections. On these inputs is provided information
about the comparison done on the higher range, if needed. If no higher ranges of the number under
comparison, then these thre inputs must be connected as follows: lt in = 0, eq in = 1, gt in = 0.
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Figure 6.31: The n-bit comparator, COMPn. a. The n-bit comparator. b. The elementary comparator. c. A
recursive rule to built an COMPn, serially connecting an ECOMP with a COMPn−1

The comparison is a numerical operation which starts inspecting the most significant bits of the
numbers to be compared. If a[n−1] = b[n−2], then the result of the comparison is given by comparing
a[n−2 : 0] with b[n−1 : 0], else, the decision can be done comparing only a[n−1] with b[n−1] (using
an elementary comparator, ECOMP =COMP1 (see Figure 6.31b)), ignoring a[n−2 : 0] and b[n−2 : 0].
Results a recursive definition for the comparator circuit.

Definition 6.9 An n-bit comparator, COMPn, is obtained serially connecting an COMP1 with a
COMPn−1. The Verilog code describing COMP1 (ECOMP) follows:

/ * ************************************************************************
F i l e name : e comp . v
C i r c u i t name : E l e m e n t a r y Comparator
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an e l e m e n t a r y compara tor
************************************************************************ * /

module e comp ( input a ,
b ,
l t i n , / / t h e p r e v i o u s e comp d e c i d e d l t
e q i n , / / t h e p r e v i o u s e comp d e c i d e d eq
g t i n , / / t h e p r e v i o u s e comp d e c i d e d g t

output l t o u t , / / a < b
e q o u t , / / a = b
g t o u t ) ; / / a > b ) ;

a s s i g n l t o u t = l t i n | e q i n & ˜ a & b ,
e q o u t = e q i n & ˜ ( a ˆ b ) ,
g t o u t = g t i n | e q i n & a & ˜ b ;

endmodule

⋄
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The size and the depth of the circuit resulting from the previous definition are in O(n). The size is
very good, but the depth is too big for a high speed application.

An optimal comparator is defined using another recursive definition based on the divide et impera
principle.

Definition 6.10 An n-bit comparator, COMPn, is obtained using two COMPn/2, to compare the higher
and the lower half of the numbers (resulting {lt out high, eq out high, gt out high} and
{lt out low, eq out low, gt out low}), and a COMP1 to compare gt out low with lt out low

in the context of {lt out high, eq out high, gt out high}. The resulting circuit is represented in
Figure 6.32. ⋄

COMPn/2

-

-
-

? ?
“1”

COMPn/2

-

-
-

? ?
“1”

ECOMP

-
-
-

? ? -
-
-

-

lt out

eq out

gt out

a[n-1:n/2] b[n-1:n/2] a[n/2-1:0] b[n/2-1:0]

Figure 6.32: The optimal n-bit comparator. Applying the divide et impera principle a COMPn is built using
two COMPn/2 and an ECOMP. Results a log-depth circuit with the size in O(n).

The resulting circuit is a log-level binary tree of ECOMPs. The size remains in the same order4, but
now the depth is in O(log n).

The bad news is: the HDL languages we have are unable to handle safely recursive definitions. The
good news is: the synthesis tools provide good solutions for the comparison functions starting from a
very simple behavioral description.

6.1.12 ∗ Sorting network
In the most of the cases numbers are compared in order to be sorted. There are a lot of algorithms for sorting
numbers. They are currently used to write programs for computers. But, in G2CE the sorting function will migrate
into circuits, providing specific accelerators for general purpose computing machines.

To solve in circuits the problem of sorting numbers we start again from an elementary module: the elementary
sorter (ESORT).

Definition 6.11 An elementary sorter (ESORT) is a combinational circuit which receives two n-bit integers, a and
b and generate outputs them as min(a,b) and max(a,b). The logic symbol of ESORT is represented in Figure
6.33b. ⋄

The internal organization of an ESORT is represented in Figure 6.33a. If COMPn is implemented in an optimal
version, then this circuit is optimal because its size is linear and its depth is logarithmic.

4The actual size of the circuit can be minimized takeing into account that: (1) the compared input of ECOMP cannot be
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COMPn

n×EMUX
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min(a,b) max(a,b)
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a b

min(a,b) max(a,b)

a. b.

Figure 6.33: The elementary sorter. a. The internal structure of an elementary sorter. The output lt out of
the comparator is used to select the input values to output in the received order (if lt out = 1) or in the crossed
order (if lt out = 0). b. The logic symbol of an elementary sorter.

a

b

c

d

min(min(a,b), min(c,d))

min(min(max(a,b)max(cd),max(min(a,b), min(c,d)))

max(min(max(a,b)max(cd),max(min(a,b), min(c,d)))

max(max(a,b), max(c,d))

stage 1 stage 2 stage 3

Figure 6.34: The 4-input sorter. The 4-input sorter is a three-stage combinational circuit built by 5 elementary
sorters.

The circuit for sorting a vector of n numbers is build by ESORTs organized on many stages. The resulting
combinational circuit receives the input vector (x1,x2,x3, . . .xn) and generates the sorted version of it. In Figure
6.34 is represented a small network of ESORTs able to sort the vector of integers (a,b,c,d). The sorted is organized
on three stages. On the first stage two ESORTs are used sort separately the sub-vectors (a,b) and (c,d). On the
second stage, the minimal values and the maximal values obtained from the previous stage are sorted, resulting
the the smallest value (the minimal of the minimals), the biggest value (the maximal of the maximal) and the two
intermediate values. For the last two the third level contains the last ESORT which sorts the middle values.

The resulting 4-input sorting circuit has the depth Dsort(4) = 3×Desort(n) and the size Ssort(4) = 5×Sesort(n),
where n is the number of bits used to represent the sorted integers.

Bathcer’s sorter

What is the rule to design a sorter for a n-number sequence? This topic will pe presented using [Batcher ’68],
[Knuth ’73] or [Parberry ’87].

The n-number sequence sorter circuit, Sn, is presented in Figure 6.35. It is a double-recursive construct con-
taining two Sn/2 modules and the merge module Mn, which has also a recursive definition, because it contains two

both 1, (2) the output eq out of one COMPn/2 is unused, and (3) the expansion inputs of both COMPn/2 are all connected to
fix values.
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Mn/2 modules and n/2− 1 elementary sorters, S2. The Mn module is defined as a sorter which sorts the input
sequence of n numbers only if it is formed by two n/2-number sorted sequences.

In order to prove that Batcher’s sorter represented in Figure 6.35 sorts the input sequence we need the following
theorem.

Theorem 6.2 An n-input comparator network is a sorting network iff it works as sorter for all sequences of n
symbols of zeroes and ones. ⋄

The previous theorem is known as Zero-One Principle.
We must prove that, if Mn/2 are merge circuits, then Mn is a merge circuit. The circuit M2 is an elementary

sorter, S2.
If {x0, . . . ,xn−1} is a sequence of 0 and 1, and {a0, . . . ,an−1} is a sorted sequence with g zeroes, while

{b0, . . . ,bn−1} is a sorted sequence with h zeroes, then the left Mn/2 circuit receives ⌈g/2⌉+ ⌈h/2⌉ zeroes5, and
the right Mn/2 circuit receives ⌊g/2⌋+ ⌊h/2⌋ zeroes6. The value:

Z = ⌈g/2⌉+ ⌈h/2⌉− (⌊g/2⌋+ ⌊h/2⌋)

takes only three values with the following output behavior for Mn:

Z=0 : at most one S2 receives on its inputs the unsorted sequence {1,0} and does it work, while all the above
receive {0,0} and the bellow receive {1,1}

Z=1 : y0 = 0, follows a number of elementary sorters receiving {0,0}, while the rest receive {1,1} and the last
output is yn−1 = 1

Z=2 : y0 = 0, follows a number of elementary sorters receiving {0,0}, then one sorter with {0,1} on its inputs,
while the rest receive {1,1} and the last output is yn−1 = 1

Thus, no more than one elementary sorter is used to reverse the order in the received sequence.
The size and depth of the circuit is computed in two stages, corresponding to the two recursive levels of the

definition. The size of the n-input merge circuit, SM(n), is iteratively computed starting with:

SM(n) = 2SM(n/2)+(n/2−1)SS(2)

SM(2) = SS(2)

Once the size of the merge circuit is obtained, the size of the n-input sorter, SS(n), is computed using:

SS(n) = 2SS(n/2)+SM(n)

Results:
SS(n) = (n(log2 n)(−1+ log2 n)/4+n−1)SS(2)

A similar approach is used for the computation of the depth. The depth of the n-input merge circuit, DM(n), is
iteratively computed using:

DM(n) = DM(n/2)+DS(2)

DM(2) = DS(2)

while the depth of the n-input sorter, DS(n), is computed with:

DS(n) = DS(n/2)+DM(n)

Results:
DS(n) = (log2 n)(log2 n+1)/2

5⌈a⌉ means rounded up integer part of the number a.
6⌊a⌋ means rounded down integer part of the number a.
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Figure 6.35: Batcher’s sorter. The n-input sorter, Sn, is defined by a double-recursive construct: “Sn = 2×
Sn/2 +Mn”, where the merger Mn consists of “Mn = 2×Mn/2 +(n/2−1)S2”.
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Figure 6.36: 16-input Batcher’s sorter.
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Figure 6.37: 32-input Batcher’s merege circuit.
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We conclude that: SS(n) ∈ O(n× log2n) and DS(n) ∈ O(log2n).

In Figure 6.36 a 16-input sorter designed according to the recursive rule is shown, while in Figure 6.37 a
32-input merge circuit is detailed. With 2 16-input sorters and a 32-input merger a 32-input sorted can be build.

In [Ajtai ’83] is a presented theoretically improved algorithm, with SS(n)∈O(n× log n) and DS(n)∈O(log n).
But, the constants associated to the magnitude orders are too big to provide an optimal solution for currently
realistic circuits characterized by n < 109.

The recursive Verilog description is very useful for this circuit because of the difficulty to describe in a
HDL a double recursive circuit.

The top module describe the first level of the recursive definition: a n-input sorter is built using two n/2-input
sorters and a n-input merger, and the 2-input sorter is the elementary sorter. Results the following description in
Verilog:

/ * ************************************************************************
F i l e name : s o r t e r . v
C i r c u i t name : S o r t e r Network
D e s c r i p t i o n : r e c u r s i v e d e f i n i t i o n f o r a s o r t e r n m− b i t numbers
************************************************************************ * /
module s o r t e r # ( ‘ i n c l u d e ” 0 p a r a m e t e r s . v ” )

( output [m*n − 1 : 0 ] o u t ,
input [m*n − 1 : 0 ] i n ) ;

wire [m*n / 2 − 1 : 0 ] ou t0 ;
wire [m*n / 2 − 1 : 0 ] ou t1 ;

g e n e r a t e
i f ( n == 2)

e S o r t e r e S o r t e r ( . ou t0 ( o u t [m− 1 : 0 ] ) ,
. ou t1 ( o u t [2*m−1:m] ) ,
. i n 0 ( i n [m− 1 : 0 ] ) ,
. i n 1 ( i n [2*m−1:m] ) ) ;

e l s e begin
s o r t e r # ( . n ( n / 2 ) ) s o r t e r 0 ( . o u t ( ou t0 ) ,

. i n ( i n [m*n / 2 − 1 : 0 ] ) ) ,
s o r t e r 1 ( . o u t ( ou t1 ) ,

. i n ( i n [m*n −1:m*n / 2 ] ) ) ;
merger # ( . n ( n ) ) merger ( . o u t ( o u t ) ,

. i n ({ out1 , ou t0 } ) ) ;
end

endgenerate
endmodule

For the elementary sorter, eSorter, we have the following description:
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/ * ************************************************************************
F i l e name : e S o r t e r . v
C i r c u i t name : E l e m e n t a r y S o r t e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an e l e m e n t a r y s o r t e r f o r m− b i t

numbers
************************************************************************ * /
module e S o r t e r # ( ‘ i n c l u d e ” 0 p a r a m e t e r s . v ” )

( output [m− 1 : 0 ] out0 ,
output [m− 1 : 0 ] out1 ,
input [m− 1 : 0 ] i n 0 ,
input [m− 1 : 0 ] i n 1 ) ;

a s s i g n ou t0 = ( i n 0 > i n 1 ) ? i n 1 : i n 0 ;
a s s i g n ou t1 = ( i n 0 > i n 1 ) ? i n 0 : i n 1 ;

endmodule

The n-input merge circuit is described recursively using two n/2-input merge circuits and the elementary
sorters as follows:
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/ * ************************************************************************
F i l e name : merger . v
C i r c u i t name : Merger Network
D e s c r i p t i o n : r e c u r s i v e d e f i n i t i o n o f a merger ne twork f o r n m− b i t

numbers
************************************************************************ * /
module merger # ( ‘ i n c l u d e ” 0 p a r a m e t e r s . v ” )

( output [m*n − 1 : 0 ] o u t ,
input [m*n − 1 : 0 ] i n ) ;

wire [m*n / 4 − 1 : 0 ] even0 ;
wire [m*n / 4 − 1 : 0 ] odd0 ;
wire [m*n / 4 − 1 : 0 ] even1 ;
wire [m*n / 4 − 1 : 0 ] odd1 ;
wire [m*n / 2 − 1 : 0 ] ou t0 ;
wire [m*n / 2 − 1 : 0 ] ou t1 ;

genvar i ;
g e n e r a t e
i f ( n == 2) e S o r t e r e S o r t e r ( . ou t0 ( o u t [m− 1 : 0 ] ) ,

. ou t1 ( o u t [2*m−1:m] ) ,

. i n 0 ( i n [m− 1 : 0 ] ) ,

. i n 1 ( i n [2*m−1:m] ) ) ;
e l s e begin

f o r ( i =0 ; i<n / 4 ; i = i +1) begin : oddEven
a s s i g n even0 [ ( i +1)*m−1: i *m] =

i n [2* i *m+m−1:2* i *m] ;
a s s i g n even1 [ ( i +1)*m−1: i *m] =

i n [m*n /2+2* i *m+m−1:m*n /2+2* i *m] ;
a s s i g n odd0 [ ( i +1)*m−1: i *m] =

i n [2* i *m+2*m−1:2* i *m+m] ;
a s s i g n odd1 [ ( i +1)*m−1: i *m] =

i n [m*n /2+2* i *m+2*m−1:m*n /2+2* i *m+m] ;
end
merger # ( . n ( n / 2 ) ) merger0 ( . o u t ( ou t0 ) ,

. i n ({ even1 , even0 } ) ) ,
merger1 ( . o u t ( ou t1 ) ,

. i n ({ odd1 , odd0} ) ) ;
f o r ( i =1 ; i<n / 2 ; i = i +1) begin : e l S o r t

e S o r t e r e S o r t e r ( . ou t0 ( o u t [ ( 2 * i −1)*m+m− 1 : ( 2 * i −1)*m] ) ,
. ou t1 ( o u t [2* i *m+m−1:2* i *m] ) ,
. i n 0 ( ou t0 [ i *m+m−1: i *m] ) ,
. i n 1 ( ou t1 [ i *m− 1 : ( i −1)*m] ) ) ;

end
a s s i g n o u t [m− 1 : 0 ] = ou t0 [m− 1 : 0 ] ;
a s s i g n o u t [m*n −1:m*( n − 1 ) ] = ou t1 [m*n / 2 − 1 :m*( n / 2 − 1 ) ] ;
end

endgenerate
endmodule
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The parameters of the sorter are defined in the file 0 parameters.v:

/ * ************************************************************************
F i l e name : p a r a m e t e r s . v
C i r c u i t name : i t i s n o t a c i r c u i t
D e s c r i p t i o n : d e f i n e s t h e two p a r a m e t e r s used i n t h e s o r t e r ’ s d e f i n i t i o n
************************************************************************ * /

parameter n = 16 , / / number o f i n p u t s
m = 8 / / number o f b i t s per i n p u t

6.1.13 ∗ First detection network
Let be the vector of Boolean variable: inVector = {x0, x1, ... x(n-1)}. The function firstDetect

outputs three vectors of the same size:

first = {0, 0, ... 0, 1, 0, 0, ... 0}

beforeFirst = {1, 1, ... 1, 0, 0, 0, ... 0}

afterFirst = {0, 0, ... 0, 0, 1, 1, ... 1}

indicating, by turn, the position of the first 1 in inVector, all the positions before the first 1, and all the positions
after the first 1.

Example 6.10 Let be a 16-bit input circuit performing the function firstDetect.

inVector = {0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1}

first = {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

beforeFirst = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

afterFirst = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

⋄

The circuit performing the function firstDetect is described by the following Verilog program:

/ * ************************************************************************
F i l e name : f i r s t D e t e c t . v
C i r c u i t name : F i r s t D e t e c t i o n Network
D e s c r i p t i o n : d e t e c t t h e f i r s t o c c u r r e n c e o f 1 i n a Boolean v e c t o r
************************************************************************ * /

module f i r s t D e t e c t # ( parameter n = 4 ) ( input [ 0 : n −1] i n ,
output [ 0 : n −1] f i r s t ,
output [ 0 : n −1] b e f o r e F i r s t ,
output [ 0 : n −1] a f t e r F i r s t ) ;

wire [ 0 : n −1] o r P r e f i x e s ;
o r p r e f i x e s p r e f i x N e t w o r k ( . i n ( i n ) ,

. o u t ( o r P r e f i x e s ) ) ;
a s s i g n f i r s t = o r P r e f i x e s & ˜ ( o r P r e f i x e s >> 1 ) ,

b e f o r e F i r s t = ˜ o r P r e f i x e s ,
a f t e r F i r s t = ( o r P r e f i x e s >> 1) ;

endmodule
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/ * ************************************************************************
F i l e name : o r p r e f i x e s . v
C i r c u i t name : OR P r e f i x e s
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f an OR p r e f i x e s ne twork
************************************************************************ * /

module o r p r e f i x e s # ( parameter n = 4 ) ( input [ 0 : n −1] i n ,
output reg [ 0 : n −1] o u t ) ;

i n t e g e r k ;
always @( i n ) begin o u t [ 0 ] = i n [ 0 ] ;

f o r ( k =1; k<n ; k=k +1) o u t [ k ] = i n [ k ] | o u t [ k − 1 ] ;
end

endmodule

The function firstDetect classifies each component of a Boolean vector related to the first occurrence of
the value 17.

6.1.14 ∗ Spira’s theorem
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Figure 6.38:

7The function firstDetect becomes very meaningful related to the minimalization rule in Kleene’s computational model
[Kleene ’36].
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6.2 Complex, Randomly Defined Circuits

6.2.1 An Universal circuit

Besides the simple, recursively defined circuits there is the huge class of the complex or random circuits.
Is there a general solution for these category of circuits? A general solution asks a general circuit and
this circuit surprisingly exists. Now rises the problem of how to catch the huge diversity of random in
this approach. The following theorem will be the first step in solving the problem.

Theorem 6.3 For any n, all the functions of n binary-variables have a solution with a combinational
logic circuit. ⋄

Proof Any Boolean function of n variables can be written as:

f (xn−1, . . . ,x0) = x′n−1g(xn−2, . . . ,x0)+ xn−1h(xn−2, . . .x0).
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where:
g(xn−2, . . . ,x0) = f (0,xn−2, . . . ,x0)

h(xn−2, . . . ,x0) = f (1,xn−2, . . . ,x0)
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Figure 6.40: The universal circuit. For any CLC f (n), where f (xn−1, . . . ,x0) this recursively defined structure
is a solution. EMUX behaves as an elementary universal circuit.

Therefore, the computation of any n-variable function can be reduced to the computation of two other
(n−1)-variables functions and an EMUX. The circuit, and in the same time the algorithm, is represented
in Figure 6.40. For the functions g and h the same rule may applies. And so on until the two zero-variable
functions: the value 0 and the value 1. The solution is an n-level binary tree of EMUXs having applied
to the last level zero-variable functions. Therefore, solution is a MUXn and a binary string applied on
the 2n selected inputs. The binary sting has the length 2n. Thus, for each of the 22n

functions there is a
distinct string defining it. ⋄

The universal circuit is indeed the best example of a big simple circuit, because it is described by the
following code:

/ * ************************************************************************
F i l e name : n U c i r c u i t . v
C i r c u i t name : U n i v e r s a l Log ic C i r s u i t
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e n−i n p u t u n i v e r s a l l o g i c

c i r c u i t
************************************************************************ * /
module n U c i r c u i t # ( ‘ i n c l u d e ” p a r a m e t e r . v ” )

( output o u t ,
input [ ( 1 ’ b1 << n ) − 1 : 0 ] program ,
input [ n − 1 : 0 ] d a t a ) ;

a s s i g n o u t = program [ d a t a ] ;
endmodule

The file parameter.v contains the value for n. But, attention! The size of the circuit is:
SnU circuit(n) ∈ O(2n).
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Thus, circuits are more powerful than Turing Machine (TM), because TM solve only problem having
the solution algorithmically expressed with a sequence of symbols that does not depend by n. Beyond
the Turing-computable function there are many functions for which the solution is a family of circuits.

The solution imposed by the previous theorem is an universal circuit for computing the n bi-
nary variable functions. Let us call it nU-circuit (see Figure 6.41). The size of this circuit is
Suniversal(n) ∈ O(2n) and its complexity is Cuniversal(n) ∈ O(1). The functions is specified by the “pro-
gram” P = mp−1,mp−2, . . .m0 which is applied on the selected inputs of the n-input multiplexer MUXn.
It is about a huge simple circuit. The functional complexity is associated with the “program” P, which is
a binary string.
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Figure 6.41: The Universal Circuit as a tree of EMUXs. The depth of the circuit is equal with the number,
n, of binary input variables. The size of the circuit increases exponentially with n.

This universal solution represents the strongest segregation between a simple physical structure -
the n-input MUX - and a complex symbolic structure - the string of 2n bits applied on the selected inputs
which works like a “program”. Therefore, this is THE SOLUTION, MUX is THE CIRCUIT and we can
stop here our discussion about digital circuits!? ... But, no! There are obvious reasons to continue our
walk in the world of digital circuits:

• first: the exponential size of the resulting physical structure

• second: the huge size of the “programs” which are in a tremendous majority represented by ran-
dom, uncompressible, strings (hard or impossible to be specified).

The strongest segregation between simple and complex is not productive in no-loop
circuits. Both resulting structure, the simple circuit and the complex binary string,
grow exponentially.
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6.2.2 Using the Universal circuit

We have a chance to use MUXn to implement f (xn−1, . . . ,x0) only if one of the following conditions is
fulfilled:

1. n is small enough resulting realizable and efficient circuits

2. the “program” is a string with useful regularities (patterns) allowing strong minimization of the
resulting circuit

Follows few well selected examples. First is about an application with n enough small to provide an
useful circuit (it is used in Connection Machine as an “universal” circuit performing anyone of the 3-
input logic function [Hillis ’85]).

Example 6.11 Let be the following Verilog code:

/ * ************************************************************************
F i l e name : t h r e e i n p u t f u n c t i o n s . v
C i r c u i t name : Templa te f o r any 3− i n p u t l o g i c f u n c t i o n
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r any 3− i n p u t l o g i c f u n c t i o n
************************************************************************ * /

module t h r e e i n p u t f u n c t i o n s ( output o u t ,
input [ 7 : 0 ] func ,
input in0 , in1 , i n 2 ) ;

a s s i g n o u t = func [{ in0 , in1 , i n 2 } ] ;
endmodule

The circuit three input functions can be programmed, using the 8-bit string func as “pro-
gram”, to perform anyone 3-input Boolean function. It is obviously a MUX3 performing

out = f (in0, in1, in2)

where the function f is specified (“programmed”) by an 8-bit word (“program”). ⋄

The “programmable” circuit for any 4-input Boolean function is obviously MUX4:

out = f (in0, in1, in2, in3)

where f is “programmed” by a 16-bit word applied on the selected inputs of the multiplexer.
The bad news is: we can not go to far on this way because the size of the resulting universal circuits

increases exponentially. The good news is: usually we do not need universal but particular solution. The
circuits are, in most of cases, specific not universal. They “execute” a specific “program”. But, when
a specific binary word is applied on the selected inputs of a multiplexer, the actual circuit is minimized
using the following removing rules and reduction rules.

An EMUX defined by:

out = x ? in1 : in0;

can be removed, if on its selected inputs specific 2-bit binary words are applied, according to the follow-
ing rules:
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• if {in1, in0}= 00 then out = 0

• if {in1, in0}= 01 then out = x′

• if {in1, in0}= 10 then out = x

• if {in1, in0}= 11 then out = 1

or, if the same variable, y, is applied on both selected inputs:

• if {in1, in0}= yy then out = y

An EMUX can be reduced, if on one its selected inputs a 1-bit binary word are applied, being substituted
with a simpler circuit according to the following rules:

• if {in1, in0}= y0 then out = xy

• if {in1, in0}= y1 then out = y+ x′

• if {in1, in0}= 0y then out = x′y

• if {in1, in0}= 1y then out = x+ y

Results: the first level of 2n−1 EMUXs of a MUXn is reduced, and on the inputs of the second level
(of nn−2 EMUXs) is applied a word containing binary values (0s and 1s) and binary variables (x0s and
x′0s). For the next levels the removing rules or the reducing rules are applied.

emux
1 0
?

?
m3(x2 ,x1 ,x0)

?
- emux

1 0
??

-

-

x2

emux
1 0
??

- emux
1 0
??

-

emux
1 0
??

- emux
1 0
??

-

emux
1 0
??

x0

x1

1 1 1 0 1 0 0 0

the “program”
the input “dataIn”

�
�

Figure 6.42: The majority function. The majority function for 3 binary variables is solved by a 3-level binary
tree of EMUXs. The actual “program” applied on the “leafs” will allow to minimize the tree.

Example 6.12 Let us solve the problem of majority function for three Boolean variable. The function
ma j(x2,x1,x0) returns 1 if the majority of inputs are 1, and 0 if not. In Figure 6.42 a “programmable”
circuit is used to solve the problem.

Because we intend to use the circuit only for the function ma j(x2,x1,x0) the first layer of EMUXs can
be removed resulting the circuit represented in Figure 6.43a.

On the resulting circuit the reduction rules are applied. The result is presented in Figure 6.43b. ⋄
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Figure 6.43: The reduction process. a. For any function the first level of EMUSs is reduced to a binary
vector ((1,0) in this example). b. For the actual “program” of the 3-input majority function the second level is
supplementary reduced to simple gates (an AND2 and an OR2).

The next examples refer to big n, but “program” containing repetitive patterns.

Example 6.13 If the ”program” is 128-bit string i127 . . . i0 = (10)64, it corresponds to a function of form:

f (x6, . . . ,x0)

where: the first bit, i0 is the value associated to the input configuration x6, . . . ,x0 = 0000000 and the last
bit i127 is the value associated to input configuration x6, . . . ,x0 = 1111111 (according with the represen-
tation from Figure 6.11 which is equivalent with Figure 6.40).

The obvious regularities of the “program” leads our mind to see what happened with the resulting
tree of EMUXs. Indeed, the structure collapses under this specific “program”. The upper layer of 64
EMUXs are selected by x0 and each have on their inputs i0 = 1 and i1 = 0, generating x′0 on their
outputs. Therefore, the second layer of EMUXs receive on all selected inputs the value x′0, and so on
until the output generates x′0. Therefore, the circuit performs the function f (x0) = x′0 and the structure is
reduced to a simple inverter.

In the same way the “program” (0011)32 programs the 7-input MUX to perform the function f (x1) =
x1 and the structure of EMUXs disappears.

For the function f (x1,x0) = x1x′0 the “program” is (0010)32.
For a 7-input AND the“program” is 01271, and the tree of MUXs degenerates in 7 EMUXs seri-

ally connected each having the input i0 connected to 0. Therefore, each EMUX become an AND2 and
applying the associativity principle results an AND7.

In a similar way, the same structure become an OR7 if it is “programmed” with 01127. ⋄

It is obvious that if the “program” has some uniformities, these uniformities allow to minimize the
size of the circuit in polynomial limits using removing and reduction rules. The simple “programs” lead
toward small circuits.
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6.2.3 The many-output random circuit: Read Only Memory

The simple solution for the following many-output random circuits having the same inputs:

f (xn−1, . . .x0)

g(xn−1, . . .x0)

. . .

s(xn−1, . . .x0)

is to connect in parallel many one-output circuits. The inefficiency of the solution become obvious when
the structure of the MUX presented in Figure 6.9 is considered. Indeed, if we implement many MUXs
with the same selection inputs, then the decoder DCDn is replicated many time. One DCD is enough for
many MUXs if the structure from Figure 6.44a is adopted. The DCD circuit is shared for implementing
the functions f , g, . . .s. The shared DCD is used to compute all possible minterms (see Appendix C.4)
needed to compute an n-variable Boolean function.

Figure 6.44b is an example of using the generic structure from Figure 6.44a to implement a specific
many-output function. Each output is defined by a different binary string. A 0 removes the associated
AND, connecting the corresponding OR input to 0, and an 1 connects to the corresponding i-th input of
each OR to the i-th DCD output. The equivalent resulting circuit is represented in Figure 6.44c, where
some OR inputs are connected to ground and other directly to the DCD’s output. Therefore, we use a
technology allowing us to make “programmable” connections of some wires to other (each vertical line
must be connected to one horizontal line). The uniform structure is “programmed” with a more or less
random distribution of connections.

If De Morgan transformation is applied, the circuit from Figure 6.44c is transformed in the circuit
represented in Figure 6.45a, where instead of an active high outputs DCD an active low outputs DCD is
considered and the OR gates are substituted with NAND gates. The DCD’s outputs are generated using
NAND gates to decode the input binary word, the same as the gates used to encode the output binary
word. Thus, a multi-output Boolean function works like a trans-coder. A trans-coder works translating
all the binary input words into output binary words. The list of input words can by represented as an
ordered list of sorted binary numbers starting with 0 and ending with 2n−1. The table from Figure 6.46
represents the truth table for the multi-output function used to exemplify our approach. The left column
contains all binary numbers from 0 (on the first line) until 2n− 1 = 11 . . .1 (on the last line). In the
right column the desired function is defined associating to each input an output. If the left column is an
ordered list, the right column has a more or less random content (preferably more random for this type
of solution).

The trans-coder circuit can be interpreted as a fix content memory. Indeed, it works like a memory
containing at the location 00...00 the word 11...0, ... at the location 11...10 the word 10...0, and at the last
location the word 01...1. The name of this kind of programmable device is read only memory, ROM.

Example 6.14 The trans-coder from the binary coded decimal numbers to 7 segments display is a com-
binational circuit with 4 inputs, a,b,c,d, and 7 outputs A,B,C,D,E,F,G, each associated to one of the
seven segments. Therefore we have to solve 7 functions of 4 variables (see the truth table from Figure
6.48).

The Verilog code describing the circuit is:
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DCD

6n

fm−1 fm−2 f0 gm−1 gm−2 g0 sm−1 sm−2 s0

f (xn−1 , . . .x0) g(xn−1 , . . .x0) s(xn−1 , . . .x0)

xn−1 , . . .x0
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6n

0 0 0 01 1 1 1 1

f (xn−1 , . . .x0) g(xn−1 , . . .x0) s(xn−1 , . . .x0)
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DCD

c.

b.

a.
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Om−2

O0

Om−1
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O0

6n

f (xn−1 , . . .x0) g(xn−1 , . . .x0) s(xn−1 , . . .x0)
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Figure 6.44: Many-output random circuit. a. One DCD and many AND-OR circuits. b. An example. c.
The version using programmable connections.
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DCD

6

f g s

xn−1 , . . .x0

O′m−1

O′m−1

O′0

a.

DCD

6
?xn−1 , . . .x0

O′m−1

O′m−1

O′0

? ?
f g s

b.

VDD

Figure 6.45: The internal structure of a Read Only Memory used as trans-coder. a. The internal
structure. b. The simplified logic symbol where a thick vertical line is used to represent an m-input NAND gate.

Input Output

00 ... 00 11 ... 0

... ...

11 ... 10 10 ... 0

11 ... 11 01 ... 1

Figure 6.46: The truth table for a multi-output Boolean function. The input rows can be seen as ad-
dresses, from 00 . . .0 to 11 . . .1 and the output columns as the content stored at the corresponding addresses.

/ * ************************************************************************
F i l e name : e v e n s e g m e n t s . v
C i r c u i t name : Seven −Segment T r a n s c o d e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e seven −segment t r a n s c o d e r
************************************************************************ * /

module s e v e n s e g m e n t s ( output reg [ 6 : 0 ] o u t ,
input [ 3 : 0 ] i n ) ;

always @( i n ) case ( i n )
4 ’ b0000 : o u t = 7 ’ b0000001 ;
4 ’ b0001 : o u t = 7 ’ b1001111 ;
4 ’ b0010 : o u t = 7 ’ b0010010 ;
4 ’ b0011 : o u t = 7 ’ b0000110 ;
4 ’ b0100 : o u t = 7 ’ b1001100 ;
4 ’ b0101 : o u t = 7 ’ b0100100 ;
4 ’ b0110 : o u t = 7 ’ b0100000 ;
4 ’ b0111 : o u t = 7 ’ b0001111 ;
4 ’ b1000 : o u t = 7 ’ b0000000 ;
4 ’ b1001 : o u t = 7 ’ b0000100 ;
d e f a u l t o u t = 7 ’ bxxxxxxx ;

endcase
endmodule
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The first solution is a 16-location of 7-bit words ROM (see Figure 6.47a. If inverted outputs are
needed results the circuit from Figure 6.47b.

???????

DCD4

x3 x2 x1 x0

A B C D E F G

15

0

???????

DCD4

x3 x2 x1 x0

A’ B’ C’ D’ E’ F’ G’

15

0

6
6

666
a b c d

6
6

666
a b c d

a. b.

Figure 6.47: The CLC as trans-coder designed serially connecting a DCD with an encoder. Example:
BCD to 7-segment trans-coder. a. The solution for non-inverting functions. b. The solution for inverting functions.

⋄

∗ Programmable Logic Array In the previous example each output of DCD compute the inverted value of a
minterm. But our applications do not need all the possible minterms, for two reasons:

• the function is not defined for all possible input binary configurations (only the input codes representing
numbers from 0 to 9 define the output behavior of the circuit)

• in the version with inverted outputs the minterm corresponding for the input 1000 (the number 8) is not
used.

A more flexible solution is needed. ROM consists in two arrays of NANDs, one fix and another configurable
(programmable). What if also the first array is configurable, i.e., the DCD circuit is programmed to compute
only some minterms? More, what if instead of computing only minterms (logic products containing all the input
variable) we compute also some, or only, terms (logic products containing only a part of input variable)? As we
know a term corresponds to a logic sum of minterms. Computing a term in a programmable array of NANDs two
or more NANDs with n inputs are substituted with a NAND with n−1 or less inputs. Applying these ideas results
another frequently used programmable circuit: the famous PLA (programmable logic array).

Example 6.15 Let’s revisit the problem of 7 segment trans-coder. The solution is to use a PLA. Because now
the minimal form of equations is important the version with inverted outputs is considered. Results the circuit
represented in Figure 6.49, where a similar convention for representing NANDs as a thick line is used. ⋄

When PLA are used as hardware support the minimized form of Boolean functions (see Appendix C.4 for a
short refresh) are needed. In the previous example for each inverted output its minimized Boolean expression was
computed.

The main effect of substituting, whenever is possible, ROMs with PLAs are:

• the number of decoder outputs decreases
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abcd ABCDEFG

0000 1111110

0001 0110000

0010 1101101

0011 1111001

0100 0110011

0101 1011011

0110 1011111

0111 1110000

1000 1111111

1001 1111011

1010 -------

.... .......

1111 -------

Figure 6.48: The truth table for the 7 segment trans-coder. Each binary represented decimal (in the left
columns of inputs) has associated a 7-bit command (in the right columns of outputs) for the segments used for
display. For unused input codes the output is “don’t care”.

• the size of circuits that implements the decoder decreases (some or all minterms are substituted with less
terms)

• the number of inputs of the NANds on the output level also decreases.

There are applications supposing ROMs with a very random content, so as the equivalent PLA has the same
ar almost the same size and the effort to translate the ROM into a PLA does not deserve. A typical case is when
we “store” into a ROM a program executed by a computing machine. No regularities are expected in such an
applications.

It is also surprising the efficiency of a PLA in solving pure Boolean problems which occur in current digital
designs. A standard PLA circuit, with 16 inputs, 8 outputs and only 48 programmable (min)terms on the first
decoding level, is able to solve a huge amount of pure logic (non-arithmetic) applications. A full decoder in a
ROM circuit computes 66536 minterms, and the previous PLA is designed to support no more than 48 terms!

Warning! For arithmetic applications PLA are extremely inefficient. Short explanation: a 16-input XOR
supposes 32768 minterms to be implemented, but a 16-input AND can be computed using one minterm. The
behavioral diversity to the output of an adder is similar with the behavioral diversity on its inputs. But the diversity
on the output of 8-input NAND is almost null. The probability of 1 on the output of 16-input AND is 1/216 =
0.000015.

6.3 Concluding about combinational circuits

The goal of this chapter was to introduce the main type of combinational circuits. Each presented circuit
is important first, for its specific function and second, as a suggestion for how to build similar ones. There
are a lot of important circuits undiscussed in this chapter. Some of them are introduced as problems at
the end of this chapter.

Simple circuits vs. complex circuits Two very distinct class of combinational circuits are emphasized.
The first contains simple circuits, the second contains complex circuits. The complexity of a circuit is
distinct from the size of a circuit. Complexity of a circuit is given by the size of the definition used
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Figure 6.49: Programmable Logic Array (PLA). Example: BCD to 7-segment trans-coder. Both, decoder
and encoders are programmable structures.

to specify that circuit. Simple circuits can achieve big sizes because they are defined using a repetitive
pattern. A complex circuit can not be very big because its definition is dimensioned related with its size.

Simple circuits have recursive definitions Each simple circuit is defined initially as an elementary
module performing the needed function on the smallest input. Follows a recursive definition about how
can be used the elementary circuit to define a circuit working for any input dimension. Therefore, any
big simple circuit is a network of elementary modules which expands according to a specific rule. Unfor-
tunately, the actual HDL, Verilog included, are not able to manage without (strong) restrictions recursive
definitions neither in simulation nor in synthesis. The recursiveness is a property of simple circuits to be
fully used only for our mental experiences.

Speeding circuits means increase their size Depth and size evolve in opposite directions. If the speed
increases, the pay is done in size, which also increases. We agree to pay, but in digital systems the pay is
not fair. We conjecture the bigger is performance the bigger is the unit price. Therefore, the pay increases
more than the units we buy. It is like paying urgency tax. If the speed increases n times, then the size of
the circuit increases more than n times, which is not fair but it is real life and we must obey.

Big sized complex circuits require programmable circuits There are software tolls for simulating
and synthesizing complex circuits, but the control on what they generate is very low. A higher level
of control we have using programmable circuits such as ROMs or PLA. PLA are efficient only if non-
arithmetic functions are implemented. For arithmetic functions there are a lot of simple circuits to be
used. ROM are efficient only if the randomness of the function is very high.

Circuits represent a strong but ineffective computational model Combinational circuits represent
a theoretical solution for any Boolean function, but not an effective one. Circuits can do more than
algorithms can describe. The price for their universal completeness is their ineffectiveness. In the general
case, both the needed physical structure (a tree of EMUXs) and the symbolic specification (a binary
string) increase exponentially with n (the number of binary input variables). More, in the general case
only a family of circuits represents the solution.
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To provide an effective computational tool new features must be added to a digital machine and some
restrictions must be imposed on what is to be computable. The next chapters will propose improvements
induced by successively closing appropriate loops inside the digital systems.

6.4 Problems

Gates

Problem 6.1 Determine the relation between the total number, N, of n-input m-output Boolean functions
( f : {0,1}n→{0,1}m) and the numbers n and m.

Problem 6.2 Let be a circuit implemented using 32 3-input AND gates. Using the appendix evaluate the
area if 3-input gates are used and compare with a solution using 2-input gates. Analyze two cases: (1)
the fan-out of each gate is 1, (2) the fan-out of each gate is 4.

Decoders

Problem 6.3 Draw DCD4 according to Definition 2.9. Evaluate the area of the circuit, using the cell
library from Appendis E, with the placement efficiency8 70%. Estimate the maximum propagation time.
The wires are considered enough short to be ignored their contribution in delaying signals.

Problem 6.4 Design a constant depth DCD4. Draw it. Evaluate the area and the maximum propagation
time using the cell library from Appendix E. Compare the results with the results of the previous problem.

Problem 6.5 Propose a recursive definition for DCDn using EDMUXs. Evaluate the size and the depth
of the resulting structure.

Multiplexors

Problem 6.6 Draw MUX4 using EMUX. Make the structural Verilog design for the resulting circuit.
Organize the Verilog modules as hierarchical as possible. Design a tester and use it to test the circuit.

Problem 6.7 Define the 2-input XOR circuit using an EDCD and an EMUX.

Problem 6.8 Make the Verilog behavioral description for a constant depth left shifter by maximum m−1
positions for m-bit numbers, where m = 2n. The “header” of the project is:

module l e f t s h i f t ( output [2m− 2 : 0 ] o u t ,
input [m− 1 : 0 ] i n ,
input [ n − 1 : 0 ] s h i f t ) ;

. . .
endmodule

8For various reason the area used to place gates on Silicon can not completely used. Some unused spaces remain between
gates. Area efficiency measures the degree of area use.
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Problem 6.9 Make the Verilog structural description of a log-depth (the depth is log216 = 4) left shifter
by 16 positions for 16-bit numbers. Draw the resulting circuit. Estimate the size and the depth comparing
the results with a similar shifter designed using the solution of the previous problem.

Problem 6.10 Draw the circuit described by the Verilog module leftRotate in the subsection Shifters.

Problem 6.11 A barrel shifter for m-bit numbers is a circuit which rotate the bits the input word a
number of positions indicated by the shift code. The “header” of the project is:

module b a r r e l s h i f t ( output [m− 1 : 0 ] o u t ,
input [m− 1 : 0 ] i n ,
input [ n − 1 : 0 ] s h i f t ) ;

. . .
endmodule

Write a behavioral code and a minimal structural version in Verilog.

Prefix network

Problem 6.12 A prefix network for a certain associative function f ,

Pf (x0,x1, . . .xn−1) = {y0,y1, . . .yn−1}

receives n inputs and generate n outputs defined as follows:
y0 = f (x0)
y1 = f (x0,x1)
y2 = f (x0,x1,x2)
...
yn−1 = f (x0,x1, . . .xn−1).
Design the circuit POR(n) for n = 16 in two versions: (1) with the smallest size, (2) with the smallest

depth.

Problem 6.13 Design POR(n) for n = 8 and the best product size×depth.

Problem 6.14 Design Paddition(n) for n = 4. The inputs are 8-bit numbers. The addition is a mod256
addition.

Recursive circuits
Problem 6.15 A comparator is circuit designed to compare two n-bit positive integers. Its definition is:

module c o m p a r a t o r ( input [ n − 1 : 0 ] i n 1 , / / f i r s t operand
input [ n − 1 : 0 ] i n 2 , / / s econd operand
output eq , / / i n 1 = i n 2
output l t , / / i n 1 < i n 2
output g t ) ; / / i n 1 > i n 2

. . .
endmodule
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1. write the behavioral description in Verilog

2. write a structural description optimized for size

3. design a tester which compare the results of the simulations of the two descriptions: the behavioral
description and the structural description

4. design a version optimized for depth

5. define an expandable structure to be used in designing comparators for bigger numbers in two
versions: (1) optimized for depth, (2) optimized for size.

Problem 6.16 Design a comparator for signed integers in two versions: (1) for negative numbers rep-
resented in 2s complement, (2) for negative numbers represented a sign and number.

Problem 6.17 Design an expandable priority encoder with minimal size starting from an elementary
priority encoder, EPE, defined for n = 2. Evaluate its depth.

Problem 6.18 Design an expandable priority encoder, PE(n), with minimal depth.

Problem 6.19 What is the numerical function executed by a priority encoder circuit if the input is inter-
preted as an n-bit integer, the output is an m-bit integer and n ones is a specific warning signal?

Problem 6.20 Design the Verilog structural descriptions for an 8-input adder in two versions: (1) using
8 FAs and a ripple carry connection, (2) using 8 HAs and a carry look ahead circuit. Evaluate both
solutions using the cell library from Appendix E.

Problem 6.21 Design an expandable carry look-ahead adder starting from an elementary circuit.

Problem 6.22 Design an enabled incrementer/decrementer circuit for n-bit numbers. If en = 1, then the
circuit increments the input value if inc = 1 or decrements the input value if inc = 0, else, if en = 0, the
output value is equal with the input value.

Problem 6.23 Design an expandable adder/subtracter circuit for 16-bit numbers. The circuit has a
carry input and a carry output to allow expandability. The 1-bit command input is sub. For sub = 0 the
circuit performs addition, else it subtracts. Evaluate the area and the propagation time of the resulting
circuit using the cell library from Appendix E.

Problem 6.24 Provide a “divide et impera” solution for the circuit performing firstDetect function.

Random circuits

Problem 6.25 The Gray counting means to count, starting from 0, so as at each step only one bit is
changed. Example: the three-bit counting means 000, 001, 011, 010, 110, 111, 101, 100, 000, ... Design
a circuit to convert the binary counting into the Gray counting for 8-bit numbers.

Problem 6.26 Design a converter from Gray counting to binary counting for n-bit numbers.

Problem 6.27 Write a Verilog structural description for ALU described in Example 2.3. Identify the
longest path in the resulting circuit. Draw the circuit for n = 8.



214 CHAPTER 6. GATES: ZERO ORDER, NO-LOOP DIGITAL SYSTEMS

Problem 6.28 Design a 8-bit combinational multiplier for a7, . . .a0 and b7, . . .b0, using as basic “brick”
the following elementary multiplier, containing a FA and an AND:

module em( c a r r y o u t , sum out , a , b , c a r r y , sum ) ;
input a , b , c a r r y , sum ;
output c a r r y o u t , sum out ;

a s s i g n { c a r r y o u t , sum out } = ( a & b ) + sum + c a r r y ;
endmodule

Problem 6.29 Design an adder for 32 1-bit numbers using the carry save adder approach.
Hint: instead of using the direct solution of a binary tree of adders a more efficient way (from the point
of view of both size and depth) is to use circuits to “compact” the numbers. The first step is presented
in Figure 6.50, where 4 1-bit numbers are transformed in two numbers, a 1-bit number and a 2-bit
number. The process is similar in Figure 6.51 where 4 numbers, 2 1-bit numbers and 2 2-bit numbers are
compacted as 2 numbers, one 2-bit number and one 3-bit number. The result is a smaller and a faster
circuit than a circuit realized using adders.

FA

???

????

0123

in[3:0]

out0[1:0]out1[1:0]

csa4
0123

0 x x x

????

?? ??
a. b.

Figure 6.50: 4-bit compacter.

Compare the size and depth of the resulting circuit with a version using adders.

Problem 6.30 Design in Verilog the behavioral and the structural description of a multiply and accu-
mulate circuit, MACC, performing the function: (a×b)+ c, where a and b are 16-bit numbers and c is
a 24-bit number.

Problem 6.31 Design the combinational circuit for computing

c =
7

∑
i=0

ai×bi

where: ai,bi are 16-bit numbers. Optimize the size and the depth of the 8-number adder using a technique
learned in one of the previous problem.

Problem 6.32 Exemplify the serial composition, the parallel composition and the serial-parallel com-
position in 0 order systems.
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Figure 6.51: 8-bit compacter.

Problem 6.33 Write the logic equations for the BCD to 7-segment trans-coder circuit in both high active
outputs version and low active outputs version. Minimize each of them individually. Minimize all of them
globally.

Problem 6.34 Applying removing rules and reduction rules find the functions performed by 5-level uni-
versal circuit programmed by the following binary strings:

1. (0100)8

2. (01000010)4

3. (0100001011001010)2

4. 024(01000010)

5. 00000001001001001111000011000011

Problem 6.35 Compute the biggest size and the biggest depth of an n-input, 1-output circuit imple-
mented using the universal circuit.

Problem 6.36 Provide the prof for Zero-One Principle.

6.5 Projects

Project 6.1 Finalize Project 1.1 using the knowledge acquired about the combinational structures in
this chapter.

Project 6.2 Design a combinational floating point single precision (32 bit) multiplier according to the
ANSI/IEEE Standard 754-1985, Standard for Binary Floating Point Arithmetic.
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Chapter 7

MEMORIES:
First order, 1-loop digital systems

In the previous chapter
the main combinational, no-loop circuits were presented with emphasis on

• the simple, pattern-based basic combinational circuits performing functions like: decode using demultiplexors,
selection using multiplexors, increment, add, various selectable functions using arithmetic and logic units, com-
pare, shift, priority encoding, ...

• the difference between the simple circuits, which grow according to recursive rules, and the complex, pattern-less
circuits whose complexity must be kept at lowest possible level

• the compromise between area and speed, i.e., how to save area accepting to give up the speed, or how can be
increased the speed accepting to enlarge the circuit’s area.

In this chapter
the first order, one-loop circuits are introduced studying

• how to close the first loop inside a combinational circuit in order to obtain a stable and useful
behavior

• the elementary storage support – the latch – and the way to expand it using the serial, parallel,
and serial-parallel compositions leading to the basic memory circuits, such as: the master-
slave flip-flop, the random access memory and the register

• how to use first order circuits to design basic circuits for real applications, such as register
files, content addressable memories, associative memories or systolic systems.

In the next chapter
the second order, automata circuits are described. While the first order circuits have the smallest degree of autonomy –
they are able only to maintain a certain state – the second order circuits have an autonomous behavior induced by the
loop just added. The following circuits will be described:

• the simplest and smallest elementary, two-state automata: the T flip-flop and JK flip-flop, which besides the
storing function allow an autonomous behavior under a less restrictive external command

• simple automata performing recursive functions, generated by expanding the function of the simplest two-state
automata (example: n-bit counters)

• the complex, finite automata used for control or for recognition and generation of regular streams of symbols.

217
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The magic images were placed on the wheel of the memory sys-
tem to which correspondent other wheels on which were remem-
bered all the physical contents of the terrestrial world – ele-
ments, stones, metals, herbs, and plants, animals, birds, and so
on – and the whole sum of the human knowledge accumulated
through the centuries through the images of one hundred and
fifty great men and inventors. The possessor of this system thus
rose above time and reflected the whole universe of nature and
of man in his mind.

Frances A. Yates1

A true memory is an associative one. Please do not confuse the
physical support – the random access memory – with the func-
tion – the associative memory.

According to the mechanisms described in Chapter 3 of this book, the step toward a new class of
circuits means to close a new loop. This will be the first loop which closed over the combinational circuits
already presented. Thus, a first degree of autonomy will be reached in digital systems: the autonomy of
the state of the circuit. Indeed, the state of the circuit will be partially independent by the input signals,
i.e., the output of the circuits do not depend on or not respond to certain input switching.

In this chapter we introduce some of the most important circuits used for building digital systems.
The basic function in which they are involved is the memory function. Some events on the input of a
memory circuit are significant for the state of the circuits and some are not. Thus, the circuit “memo-
rizes”, by the state it reaches, the significant events and “ignores” the rest. The possibility to have an
“attitude” against the input signals is given to the circuit by the autonomy induced by its internal loop.
In fact, this first loop closed over a simple combinational circuit makes insignificant some input signals
because the circuit is able to compensate their effect using the signals received back from its output.

The main circuits with one internal loop are:

• the elementary latch - the basic circuit in 1-OS, containing two appropriately loop-coupled gates;
the circuit has two stable states being able to store 1 bit of information

• the clocked latch - the first digital circuit which accepts the clock signal as an input distinct from
data inputs; the clock signal determines by its active level when the latch is triggered, while the
data input determines how the latch switches

• the master-slave flip-flop - the serial composition in 1-OS, built by two clocked latches serially
connected; results a circuit triggered by the active transition of clock

• the random access memory (RAM) - the parallel composition in 1-OS, containing a set of n
clocked elementary latches accessed with a DMUXlog2 n and a MUXlog2 n

• the register - the serial-parallel composition in 1-OS, made by parallel connecting master-slave
flip-flops.

1She was Reader in the History of the Renaissance at the University of London. The quote is from Giordano Bruno and the
Hermetic Tradition. Her other books include The Art of Memory.
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These first order circuits don’t have a direct computational functionality, but are involved in support-
ing the following main processes in a computational machine:

• offer the storage support for implementing various memory functions (register files, stacks, queues,
content addressable memories, associative memories, ...)

• are used for synchronizing different subsystems in a complex system (supports the pipeline mech-
anism, implements delay lines, stores the state of automata circuits).

7.1 Stable/Unstable Loops

There are two main types of loops closed over a combinational logic circuit: loops generating a stable
behavior and loops generating an unstable behavior. We are interested in the first kind of loop that
generates a stable state inside the circuit. The other loop cannot be used to build anything useful for
computational purposes, except some low performance signal generators.

The distinction between the two types of loops is easy exemplified closing loops over the simplest
circuit presented in the previous chapter, the elementary decoder (see Figure 7.1a).

The unstable loop is closed connecting the output y0 of the elementary decoder to its input x0 (see
Figure 7.1b). Suppose that y0 = 0 = x0. After the time interval equal with tpLH

2 the output y0 becomes
1. After another time interval equal with tpHL the output y0 becomes again 0. And so on, the two outputs
of the decoder are unstable oscillating between 0 and 1 with a period of time Tosc = tpLH + tpHL, or the
frequency fosc = 1/(tpLH + tpHL).

y1

EDCD
x0

y0

y1

EDCD
x0

y0

x0

y0

y1

out1

out2

a.

b. c.

Figure 7.1: The two loops closed over an elementary decoder. a. The simplest combinational circuit: the
one-input, elementary decoder. b. The unstable, inverting loop containing one (odd) inverting logic level(s). c.
The stable, non-inverting loop containing two (even) inverting levels.

The stable loop is obtained connecting the output y1 of the elementary decoder to the input x0 (see
Figure 7.1c). If y1 = 0 = x0, then y0 = 1 fixing again the value 0 to the output y1. If y1 = 1 = x0,
then y0 = 0 fixing again the value 1 to the output y1. Therefore, the circuit has two stable states. (For
the moment we don’t know how to switch from one state to another state, because the circuit has no input
to command the switching from 0 to 1 or conversely. The solution comes soon.)

2the propagation time through the inverter when the output switches from the low logic level to the high level.
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What is the main structural distinction between the two loops?

• The unstable loop has an odd number of inverting levels, thus the signal comes back to the output
having the complementary value.

• The stable loop has an even number of inverting levels, thus the signal comes back to the output
having the same value.

Example 7.1 Let be the circuit from Figure 7.2a, with 3 inverting levels on its internal loop. If the
command input C is 0, then the loop is “opened”, i.e., the flow of the signal through the circular way is
interrupted. If C switches in 1, then the behavior of the circuit is described by the wave forms represented
in Figure 7.2b. The circuit generates a periodic signal with the period Tosc = 3(tpLH +tpHL) and frequency
fosc = 1/3(tpLH + tpHL). (To keep the example simple we consider that tpLH and tpHL have the same value
for the three circuits.)⋄
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Figure 7.2: The unstable loop. The circuit version used for a low-cost and low-performance clock generator.
a. The circuit with a three (odd) inverting circuits loop coupled. b. The wave forms drawn takeing into account
the propagation times associated to the low-high transitions (tpLH ) and to the high-low transitions (tpHL).

In order to be useful in digital applications, a loop closed over a combinational logic circuit must
contain an even number of inverting levels for all binary combinations applied to its inputs. Else, for
certain or for all input binary configurations, the circuit becomes unstable, unuseful for implementing
computational functions. In the following, only even (in most of cases two) number of inverting levels
are used for building the circuits belonging to 1-OS.

7.2 The Serial Composition: the Edge Triggered Flip-Flop

The first composition in 1-order systems is the serial composition, represented mainly by:

• the master-slave structure as the main mechanism that avoids the transparency of the storage struc-
tures
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• the delay flip-flop, the basic storage circuit that allows to close the second loop in the synchronous
digital systems

• the serial register, the fist big and simple memory circuit having a recursive definition.

This class of circuits allows us to design synchronous digital systems. Starting from this point the
inputs in a digital system are divided in two categories:

• clock inputs for synchronizing different parts of a digital system

• data and control inputs that receive the “informational” flow inside a digital system.

7.2.1 The Serial Register

Starting from the delay function of the last presented circuit (see Figure 2.15) a very important function
and the associated structure can be defined: the serial register. It is very easy to give a recursive definition
to this simple circuit.

Definition 7.1 An n-bit serial register, SRn, is made by serially connecting a D flip-flop with an SRn−1.
SR1 is a D flip-flop. ⋄

In Figure 7.3 is shown a SRn. It is obvious that SRn introduces a n clock cycle delay between its input
and its output. The current application is for building digital controlled “delay lines”.
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Q’-

- -

-
RSF-F

S

R

Q

Q’-

- -- . . .

. . .

. . .

IN

CK

OUT

Figure 7.3: The n-bit serial register (SRn). Triggered by the active edge of the clock, the content of each
RSF-F is loaded with the content of the previous RSF-F.

We hope that now it is very clear what is the role of the master-slave structure. Let us imagine a
“serial register built with D latches”! The transparency of each element generates the strange situation
in which at each clock cycle the input is loaded in a number of latches that depends by the length of the
active level of the clock signal and by the propagation time through each latch. Results an uncontrolled
system, useless for any application. Therefore, for controlling the propagation with the clock signal
we must use the master-slave, non-transparent structure of D flip-flop that switches on the positive or
negative edge of clock.

VeriSim 7.1 The functional description currently used for an n-bit serial register active on the positive
edge of clock is:
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/ * ************************************************************************
F i l e name : s e r i a l r e g i s t e r . v
C i r c u i t name : S e r i a l r e g i s t e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n− b i t s e r i a l r e g i s t e r
************************************************************************ * /

module s e r i a l r e g i s t e r # ( parameter n = 1024)
( output o u t ,

input in , enab l e , c l o c k ) ;
reg [ 0 : n −1] s e r i a l r e g ;

a s s i g n o u t = s e r i a l r e g [ n − 1 ] ;
always @( posedge c l o c k )

i f ( e n a b l e ) s e r i a l r e g <= { in , s e r i a l r e g [ 0 : n − 2 ]} ;
endmodule

⋄

7.3 The Parallel Composition: the Random Access Memory

The parallel composition in 1-OS provides the random access memory (RAM), which is the main storage
support in digital systems. Both, data and programs are stored on this physical support in different forms.
Usually we call these circuits improperly memories, even if the memory function is something more
complex, which suppose besides a storage device a specific access mechanism for the stored information.
A true memory is, for example, an associative memory (see the next subchapters about applications), or
a stack memory (see next chapter).

This subchapter introduces two structures:

• a trivial composition, but a very useful circuit: the n-bit latch

• the asynchronous random access memory (RAM),

both involved in building big but simple recursive structures.

7.3.1 The n-Bit Latch

The n-bit latch, Ln, is made by parallel connecting n data latches clocked by the same CK. The system
has n inputs and n outputs and stores an n-bit word. Ln is a transparent structure on the active level of the
CK signal. The n-bit latch must be distinguished by the n-bit register (see the next section) that switches
on the edge of the clock. In a synchronous digital system is forbidden to close a combinational loop over
Ln.

VeriSim 7.2 A 16-bit latch is described in Verilog as follows:
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/ * ************************************************************************
F i l e name : n l a t c h . v
C i r c u i t name : n−B i t La tch
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a n− b i t l a t c h
************************************************************************ * /

module n l a t c h # ( parameter n = 1 6 ) ( output reg [ n − 1 : 0 ] o u t ,
input [ n − 1 : 0 ] i n ,
input c l o c k ) ;

always @( i n or c l o c k )
i f ( c l o c k == 1) / / t h e a c t i v e −h igh c l o c k v e r s i o n
/ / i f ( c l o c k == 0) / / t h e a c t i v e −low c l o c k v e r s i o n

o u t = i n ;
endmodule

⋄

The n-bit latch works like a memory, storing n bits. The only deficiency of this circuit is due to the
access mechanism. We must control the value applied on all n inputs when the latch changes its content.
More, we can not use selectively the content of the latch. The two problems are solved adding some
combinational circuits to limit both the changes and the use of the stored bits.

7.3.2 Asynchronous Random Access Memory

Adding combinational circuits for accessing in a more flexible way an m-bit latch for write and read
operations, results one of the most important circuits in digital systems: the random access memory.
This circuit is the biggest and simplest digital circuit. And we can say it can be the biggest because it is
the simplest.

Definition 7.2 The m-bit random access memory, RAMm, is a linear collection of m D (data) latches par-
allel connected, with the 1-bit common data inputs, DIN. Each latch receives the clock signal distributed
by a DMUXlog2 m. Each latch is accessed for reading through a MUXlog2 m. The selection code is com-
mon for DMUX and MUX and is represented by the p-bit address code: Ap−1, . . . ,A0, where p = log2m.
⋄

The logic diagram associated with the previous definition is shown in Figure 7.4. Because no one
of the input signal is clock related, this version of RAM is considered an asynchronous one. The signal
WE ′ is the low-active write enable signal. For WE ′ = 0 the write operation is performed in the memory
cell selected by the address An−1, . . . ,A0.3 The wave forme describing the relation between the input
and output signals of a RAM are represented in Figure 7.5, where the main time restrictions are the
followings:

• tACC: access time - the propagation time from address input to data output when the read operation
is performed; it is defined as a minimal value

3The actual implementation of this system uses optimized circuits for each 1-bit storage element and for the access circuits.
See Appendix C for more details.)



224 CHAPTER 7. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS
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Figure 7.4: The principle of the random access memory (RAM). The clock is distributed by a DMUX to
one of m = 2p DLs, and the data is selected by a MUX from one of the m DLs. Both, DMUX and MUX use as
selection code a p-bit address. The one-bit data DIN can be stored in the clocked DL.

• tW : write signal width - the length of active level of the write enable signal; it is defined as the
shortest time interval for a secure writing

• tASU : address set-up time related to the occurrence of the write enable signal; it is defined as a
minimal value for avoiding to disturb the content of other than the storing cell selected by the
current address applied on the address inputs

• tAH : address hold time related to the end transition of the write enable signal; it is defined as a
minimal value for similar reasons

• tDSU : data set-up time related to the end transition of the write enable signal; it is defined as a
minimal value that ensure a proper writing

• tDH : data hold time related to the end transition of the write enable signal; it is defined as a minimal
value for similar reasons.

The just described version of a RAM represents only the asynchronous core of a memory subsystem,
which must have a synchronous behavior in order to be easy integrated in a robust design. In Figure 7.4
there is no clock signal applied to the inputs of the RAM. In order to synchronize the behavior of this
circuit with the external world, additional circuits must be added (see the first application in the next
subchapter: Synchronous RAM).

The actual organization of an asynchronous RAM is more elaborated in order to provide the storage
support for a big number of m-bit words.

VeriSim 7.3 The functional description of a asynchronous n = 2p m-bit words RAM follows:
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Figure 7.5: Read and write cycles for an asynchronous RAM. Reading is a combinational process of
selecting. The access time, tACC, is given by the propagation through a big MUX. The write enable signal must be
strictly included in the time interval when the address is stable (see tASU and tAH ). Data must be stable related to
the positive transition of WE ′ (see tDSU and tDH ).

/ * ************************************************************************
F i l e name : ram . v
C i r c u i t name : Asynchronous RAM
D e s c r i p t i o n : b e h a v i o r a l d e s c r i i p t i o n o f an a s y n c h r o n o u s random−a c c e s s

memory
************************************************************************ * /

module ram ( input [m− 1 : 0 ] d i n , / / da ta i n p u t
input [ p − 1 : 0 ] addr , / / a d d r e s s
input we , / / w r i t e e n a b l e
output [m− 1 : 0 ] dou t ) ; / / da ta o u t

reg [m− 1 : 0 ] mem[ ( 1 ’ b1<<p ) − 1 : 0 ] ; / / t h e memory

a s s i g n dou t = mem[ add r ] ; / / r e a d i n g

always @( d i n or add r or we ) i f ( we ) mem[ add r ] = d i n ; / / w r i t i n g
endmodule

⋄

The real structural version of the storage array will be presented in two stages. First the number of
bits per word will be expanded, then the e solution for a big number of words number of words will be
presented.
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Expanding the number of bits per word

The pure logic description offered in Figure 7.4 must be reconsidered in order (1) to optimize it and
(2) to show how the principle it describe can be used for designing a many-bit word RAM. The circuit
structure from Figure 7.6 represents the m-bit word RAM. The circuit is organized in m columns, one for
each bit of the m-bit word. The DMUX structure is shared all by the m columns, while each column has
it own MUX structure. Let us remember that both, the DMUX and MUX circuits are structured around
a DCD. See Figure 6.6 and 6.9, where the first level in both circuits is a decoder, followed by a linear
network of 2-input ANDs for DMUX, and by an AND-OR circuit for MUX. Then, only one decoder,
DCDp, must be provided for the entire memory. It is shared by the demultiplexing function and by the
m multiplexors. Indeed, the outputs of the decoder, LINEn−1, ... LINE1, LINE0, are used to drive:

• one AND2 gate associate cu each line in the array, whose output clocks the DL latches associated
to one word; with these gates the decoder forms the demultimplexing circuit used to clock, when
WE = 1, the latches selected (addressed) by the current value of the address: Ap−1, . . .A0

• m AND2 gates, one in each column, selecting the read word to be ORed to the outputs DOUTm−1,
DOUTm−2, ... DOUT0; with the AND-OR circuit from each COLUMN the decoder forms the
multiplexor circuit associated to each output bit of the memory.

The array of lathes is organized in n and m columns. Each line is driven for write by the output
of a demultiplexer, while for the read function the addressed line (word) is selected by the output of a
decoder. The output value is gathered from the array using m multiplexors.

The reading process is a pure combinational one, while the writing mechanism is an asynchronous
sequential one. The relation between the WE signal and the address bits is very sensitive. Due to the
combinational hazard to the output of DCD, the WE’ signal must be activated only when the DCD’s
outputs are stabilized to the final value, i.e., tASU before the fall edge of WE’ or tH after the rise edge of
WE’.

Expanding the number of words by two dimension addressing

The factor form on silicon of the memory described in Figure 7.6 is very unbalanced for n >>> m.
Expanding the number of words for the a RAM in the previous, one block version is not efficient because
request a complex lay-out involving very long wires. We are looking for a more “squarish” version of
the lay-out for a big memory. The solution is to connect in parallel many m-column blocks, thus defining
a many-word from which to select one word using another level of multiplexing. The reading process
selects the many-word containing the requested word from which the requested word is selected.

The internal organization of memory is now a two dimension array of rows and columns. Each
row contains a many-word of 2q words. Each column contains a number of 2r words. The memory is
addressed using the (p = r+q)-bit address:

addr[p-1:0] = {rowAddr[r-1:0], colAddr[q-1:0]}

The row address rowAddr[r-1:0] selects a many-word, while from the selected many-word, the column
address colAddr[q-1:0] selects the word addressed by the address addr[p-1:0]. Playing with the
values of r and q an appropriate lay-out of the memory array can be designed.

In Figure 7.7 the block schematic for the resulting memory is presented. The second decoder –
COLUMN DECODE – selects from the s m-bit words provided by the s COLUMN BLOCKs the word
addressed by addr[p-1:0].
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Figure 7.6: The asynchronous m-bit word RAM. Expanding the number of bits per word means to connect
in parallel one-bit word memories which share the same decoder. Each COLUMN contains the storing latches and
the AND-OR circuits for one bit.

While the size decoder for a one block memory version is in the same order with the number of words
(SDCDp ∈ 2p), the sum of the sizes of the two decoders in the two dimension version is much smaller,
because usually 2p >> 2r +2q, for p = r+q. Thus, the area of the memory circuit is dominated only by
the storage elements.

The second level of selection is based also on a shared decoder – COLUMN DECODER. It forms,
with the s two-input ANDs a DMUXq – the q-input DMUX in Figure 7.7 – which distributes the write
enable signals, we, to the selected m-column block. The same decoder is shared by the m s-input MUXs
used to select the output word from the many-word selected by ROW DECODE.

The well known principle of ”divide et impera” (divide and conquer) is applied when the address is
divided in two parts, one for selecting a row and another for selecting a column. The access circuits is
thus minimized.

Unfortunately, RAM has not the function of memorizing. It is only a storage support. Indeed, if we
want to “memorize” the number 13, for example, we must store it to the address 131313, for example,
and to keep in mind (to memorize) the value 131313, the place where the number is stored. And than,
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Figure 7.7: RAM version with two dimension storage array. A number of m-bit blocks are parallel
connected and driven by the same row decoder. The column decoder selects to outoput an m-bit word from the
(s×m)-bit row.
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what’s the help provided us by a the famous RAM memory? No one. Because RAM is not a memory,
it becomes a memory only if the associated processor runs an appropriate procedure which allows us to
forget about the address 131313. Another solution is provided by additional circuits used to improve the
functionality (see the subsection about Associative Memories.)

7.4 Applications

Composing basic memory circuits with combinational structures result typical system configurations or
typical functions to be used in structuring digital machines. The pipeline connection, for example, is
a system configuration for speeding up a digital system using a sort of parallelism. This mechanism
is already described in the subsections 2.5.1 Pipelined connections, and 3.3.2 Pipeline structures. Few
other applications of the circuits belonging to 1-OS are described in this section. The first is a frequent
application of 1-OS: the synchronous memory, obtained adding clock triggered structures to an asyn-
chronous memory. The next is the file register – a typical storage subsystem used in the kernel of the
almost all computational structures. The basic building block in one of the most popular digital device,
the Field Programmable Gate Array, is also SRAM based structure. Follows the content addressable
memory which is a hardware mechanism useful in controlling complex digital systems or for designing
genuine memory structures: the associative memories.

7.4.1 Synchronous RAM

It is very hard to consider the time restriction imposed by the wave forms presented in Figure 7.5 when the
system is requested to work at high speed. The system designer will be more comfortable with a memory
circuit having all the time restrictions defined related only to the active edge of the system clock. The
synchronous RAM (SRAM) is conceived to have all time relations defined related to the active edge of
the clock signal. SRAM is the preferred embodiment of a storage circuit in the contemporary designs.
It performs write and read operations synchronized with the active edge of the clock signal (see Figure
7.8).

VeriSim 7.4 The functional description of a synchronous RAM (0.5K of 64-bit words) follows:

/ * ************************************************************************
F i l e name : sram . v
C i r c u i t name : Synchronous RAM
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a s y n c h r o n o u s RAM
************************************************************************ * /

module sram ( input [ 6 3 : 0 ] d i n ,
input [ 8 : 0 ] addr ,
output reg [ 6 3 : 0 ] dout ,
input we , c l k ) ;

reg [ 6 3 : 0 ] mem[ 5 1 1 : 0 ] ;
always @( posedge c l k ) i f ( we ) d ou t <= d i n ;

e l s e dou t <= mem[ add r ] ; / / r e a d i n g
always @( posedge c l k ) i f ( we ) mem[ add r ] <= d i n ; / / w r i t i n g

endmodule
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Figure 7.8: Read and write cycles for SRAM. For the flow-through version of a SRAM the time behavior
is similar to a register. The set-up and hold time are defined related to the active edge of clock for all the input
connections: data, write-enable, and address. The data output is also related to the same edge.

⋄

The previously described SRAM is the flow-through version of a SRAM. A pipelined version is also
possible. It introduces another clock cycle delay for the output data.

7.4.2 Register File

The most accessible data in a computational system is stored in a small and fast memory whose locations
are usually called machine registers or simply registers. In most usual embodiment they have actually
the physical structure of a register. The machine registers of a computational (processing) element are
organized in what is called register file. Because computation supposes two operands and one result in
most of cases, two read ports and one write port are currently provided to the small memory used as
register file (see Figure 7.9).

VeriSim 7.5 Follows the Verilog description of a register file containing 32 32-bit registers. In each
clock cycle any two pair of registers can be accessed to be used as operands and a result can be stored
in any one register.
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register file m n

-

-

-

-

-

-

?

write enable clock

left operand[m-1:0]

right operand[m-1:0]

left addr[n-1:0]

right addr[n-1:0]

dest addr[n-1:0]

result[m-1:0]

Figure 7.9: Register file. In this example it contains 2n m-bit registers. In each clock cycle any two registers
can be read and writing can be performed in anyone.

/ * ************************************************************************
F i l e name : r e g i s t e r f i l e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module r e g i s t e r f i l e ( output [ 3 1 : 0 ] l e f t o p e r a n d ,

output [ 3 1 : 0 ] r i g h t o p e r a n d ,
input [ 3 1 : 0 ] r e s u l t ,
input [ 4 : 0 ] l e f t a d d r ,
input [ 4 : 0 ] r i g h t a d d r ,
input [ 4 : 0 ] d e s t a d d r ,
input w r i t e e n a b l e ,
input c l o c k ) ;

reg [ 3 1 : 0 ] f i l e [ 0 : 3 1 ] ;
a s s i g n l e f t o p e r a n d = f i l e [ l e f t a d d r ] ,

r i g h t o p e r a n d = f i l e [ r i g h t a d d r ] ;
always @( posedge c l o c k ) i f ( w r i t e e n a b l e ) f i l e [ d e s t a d d r ] <= r e s u l t ;

endmodule

⋄

The internal structure of a register file can be optimized using m× 2n 1-bit clocked latches to store
data and 2 m-bit clocked latches to implement the master-slave mechanism.

7.4.3 Field Programmable Gate Array – FPGA

Few decades ago the prototype of a digital system was realized in a technology very similar with the one
used for the final form of the product. Different types of standard integrated circuits where connected
according to the design on boards using a more or less flexible interconnection technique. Now we do
not have anymore standard integrated circuits, and making an Application Specific Integrated Circuit
(ASIC) is a very expensive adventure. Fortunately, now there is a wonderful technology for prototyping
(which can be used also for small production chains). It is based on a one-chip system called Field
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Programmable Gate Array – FPGA. The name comes from its flexibility to be configured by the user
after manufacturing, i.e., “in the field”. This generic circuit can be programmed to perform any digital
function.

In this subsection the basic configuration of an FPGA circuit will be described4. The internal cellular
structure of the system is described for the simplest implementation, letting aside details and improve-
ments used by different producer on this very diverse market (each new generation of FPGA integrates
different usual digital blocks in order to help efficient implementations; for example: multipliers, block
RAMs, ...; learn more about this from the on-line documentation provided by the FPGA producers).

CLB CLB

CLB CLB

I/O I/O I/O

I/O

I/O

I/O

=

Switch matrix

Long connection

�

Local connection

)

Figure 7.10: Top level organization of FPGA.

The system level organization of an FPGA

The FPGA chip has a cellular structure with three main programmable components, whose function is
defined by setting on 0 or on 1 control bits stored in memory elements. An FPGA can be seen as a big
structured memory containing million of bits used to control the state of million of switches. The main
type of cells are:

• Configurable Logic Blocks (CLB) used to perform a programmable combinational and/or se-
quential function

4The terminology introduced in this section follows the Xlilinx style in order to support the associated lab work.
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• Switch Nodes which interconnect in the most flexible way the CLB modules and some of them to
the IO pins, using a matrix of programmed switches

• Input-Output Interfaces are two-direction programmable interfaces, each one associated with an
IO pin.

Figure 7.10 provides a simplified representation of the internal structure of an FPGA at the top level.
The area of the chip is filled up with two interleaved arrays. One of the CLBs and another of the Switch
Nodes. The chip is boarded by IO interfaces.

The entire functionality of the system can be programmed by an appropriate binary configuration
distributed in all the cells. For each IO pin is enough one bit to define if the pin is an input or an output.
For a Switch Node more bits are needed because each switch asks for 6 bits to be configured. But,
most of bits (in some implementations more than 100 per CLB) are used to program the functions of the
combinational and sequential circuits in each node containing a CLB.

The IO interface

Each signal pin of the FPGA chip can be assigned to be an input or an output. The simplest form of the
interface associated to each IO pin is presented in Figure 7.11, where:

• D-FF0: is the D master-slave flip-flop which synchronously receives the value of the I/O pin
through the associated input non-inverting buffer

• m: the storage element which contains the 1-bit program for the input interface used to command
the tristate buffer; if m = 1 then the tristate buffer is enabled and interface is in the output mode,
else the tristate buffer is disabled and interface is in the input mode

• D-FF1: is the flip-flop loaded synchronously with the output bit to be sent to the I/O pin if m = 1.

D-FF0

D-FF1

m

� -

D

D-

�

Q

Q

clock

I
I/O pin

Programmable memory element

+

Figure 7.11: Input-Output interface.

The storage element m is part of the big distributed RAM containing all the storage elements used to
program the FPGA.
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The switch node

The switch node (Figure 7.12a) consists of a number of programmable switches (4 in our description).
Each switch (Figure 7.12b) manages 4 wires, connection them in different configurations using 6 nMOS
transistors, each commanded by the state of 1-bit memory (Figure 7.12c). If mi = 1 then the associated
nMOS transistor is on and between its drain end source the resistor has a small value. If mi = 0 then the
associated nMOS transistor is off and the two ends of the switch are not connected.
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Figure 7.12: The structure of a Switch Node. a. A Switch Node with 4 switches. b. The organization of a
switch. c. A line switch. d. An example of actual connections.

For example, the configuration shown in Figure 7.12d is programmed as follows:

switch 0 : {m0, m1, m2, m3, m4, m5} = 011010;

switch 1 : {m0, m1, m2, m3, m4, m5} = 101000;

switch 2 : {m0, m1, m2, m3, m4, m5} = 000001;

switch 3 : {m0, m1, m2, m3, m4, m5} = 010000;

Any connection is a two-direction connection.

The basic building block

Because any digital circuit can be composed by properly interconnected gates and flip-flops, each CLB
contains a number of basic building blocks, called bit slices (BSs), each able to provide at least an
n-input, 1-output programmable combinational circuit and an 1-bit register.

In the previous chapter was presented an Universal combinational circuit: the n-input multiplexer
able to perform any n-variable Boolean function. It was programmed applying on its selected inputs
an m-bit binary configuration (where m = 2n). Thereby, an MUXn and a memory for storing the m-bit
program provide the structure able to be programmed to perform any n-input 1-output combinational
circuit. In Figure 7.13 it is represented, for n = 4, by the multiplexer MUX and the 16 memory elements
m0, m1, ... m15. The entire sub-module is called LUT (from look-up table). The memory elements
m0, m1, ... m15, being part of the big distributed RAM of the FPGA chip, can be loaded with any
out of 65536 binary configuration used to define the same number of 4-input Boolean function.

Because the arithmetic operations are very frequently used the BS contains a specific circuit for any
arithmetic operation: the circuit computing the value of the carry signal. The module carry Figure
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Figure 7.13: The basic building block: the bit slice (BS).

7.13 has also its specific propagation path defined by a specific input, carryIn, and a specific output
carryOut.

The BS module contains also the one-bit register D-FF. Its contribution can be considered in the
current design if the memory element md is programmed appropriately. Indeed, if md = 1, then the
output of the BS comes form the output of D-FF, else the output of the BS is a combinational one, the
flip-flop being shortcut.

The memory element mc is used to program the selection of the LUT output or of the Carry output
to be considered as the programmable combinational function of this BS.

The total number of bits used to program the function of the BS previously described is 18. Real
FPGA circuits are now featured with much more complex BSs (please search on their web pages for
details).

There are two kinds of BS: logic type and memory type. The logic type uses LUT to implement
combinational functions. The memory type uses LUT for implementing both, combinatorial functions
and memory function (RAM or serial shift register).

The configurable logic block

The main cell used to build an FPGA, CLB (see Figure 7.10) contains many BSs organized in slices. The
most frequent organization is of 2 slices, each having 4 BSs (see Figure 7.14). There are slices containing
logic type BSs (usually called SLICEL), or slices containing memory type BSs (usually called SLICEM).
Some CLBs are composed by two SLICEL, others are composed by one SLICEL and one SLICEM.

A slice has some fix connections between its BSs. In our simple description, the fix connections
refers to the carry chain connections. Obviously, we can afford to make fix connections for circuits
having specific function.
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Figure 7.14: Configurable logic block.

7.4.4 ∗ Content Addressable Memory
A normal way to “question” a memory circuit is to ask for:

Q1: the value of the property A of the object B

For example: How old is George? The age is the property and the object is George. The first step to design an
appropriate device to be questioned as previously is exemplified is to define a circuit able to answer the question:

Q2: where is the object B?

with two possible answers:

1. the object B is not in the searched space

2. the object B is stored in the cell indexed by X.

The circuit for answering Q2-type questions is called Content Addressable Memory, shortly: CAM. (About the
question Q1 in the next subsection.)

The basic cell of a CAM is consists of:

• the storage elements for binary objects

• the “questioning” circuits for searching the value applied to the input of the cell.

In Figure 7.15 there are 4 D latches as storage elements and four XORs connected to a 4-input NAND used as
comparator. The cell has two functions:

• to store: the active level of the clock modify the content of the cell storing the 4-bit input data into the four
D latches

• to search: the input data is continuously compared with the content of the cell generating the signal AO′ = 0
if the input matches the content.

The cell is written as an m-bit latch and is continuously interrogated using a combinational circuit as com-
parator. The resulting circuit is an 1-OS because results serially connecting a memory, one-loop circuit with a
combinational, no-loop circuit. No additional loop is involved.

An n-word CAM contains n CAM cells and some additional combinational circuits for distributing the clock
to the selected cell and for generating the global signal M, activated for signaling a successful match between the
input value and one or more cell contents. In Figure 7.16a a 4-word of 4 bits each is represented. The write enable,
WE, signal is demultiplexed as clock to the appropriate cell, according to the address codded by A1A0. The 4-input
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Figure 7.15: The Content Addressable Cell. a. The structure: data latches whose content is compared
against the input data using 4 XORs and one NAND. Write is performed applying the clock with stable data input.
b. The logic symbol.

NAND generate the signal M. If, at least one address output, AO′i is zero, indicating match in the corresponding
cell, then M = 1 indicating a successful search.

The input address Ap−1, . . . ,A0 is binary codded on p = log2n bits. The output address AOn−1, . . . ,AO0 is an
unary code indicating the place or the places where the data input Dm−1, . . . ,D0 matches the content of the cell.
The output address must be unary codded because there is the possibility of match in more than one cell.

Figure 7.16b represents the logic symbol for a CAM with n m-bit words. The input WE indicate the function
performed by CAM. Be very careful with the set-up time and hold time of data related to the WE signal!

The CAM device is used to locate an object (to answer the question Q2). Dealing with the properties of
an object (answering Q1-type questions) means to use o more complex devices which associate one or more
properties to an object. Thus, the associative memory will be introduced adding some circuits to CAM.

7.4.5 ∗ An Associative Memory
A partially used RAM can be an associative memory, but a very inefficient one. Indeed, let be a RAM addressed
by An−1 . . .A0 containing 2-field words {V, Dm−1 . . .D0}. The objects are codded using the address, the values of
the unique property P are codded by the data field Dm−1 . . .D0. The one-bit field V is used as a validation flag. If
V = 1 in a certain location, then there is a match between the object designated by the corresponding address and
the value of property P designated by the associated data field.

Example 7.2 Let be the 1Mword RAM addressed by A19 . . .A0 containing 2-field 17-bit words {V, D15 . . .D0}.
The set of objects, OBJ, are codded using 20-bit words, the property P associated to OBJ is codded using 16-bit
words. If

RAM[11110000111100001111] = 1 0011001111110000

RAM[11110000111100001010] = 0 0011001111110000

then:

• for the object 11110000111100001111 the property P is defined (V = 1) and has the value
0011001111110000
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Figure 7.16: The Content Addressable Memory (CAM). a. A 4-word CAM is built using 4 content ad-
dressable cells, a demultiplexor to distribute the write enable (WE) signal, and a NAND4 to generate the match
signal (M). b. The logic symbol.

• for the object 11110000111100001010 the property P is not defined (V = 0) and the data field is meaning-
less.

Now, let us consider the 20-bit address codes four-letter names using for each letter a 5-bit code. How many
locations in this memory will contain the field V instantiated to 1? Unfortunately, only extremely few of them,
because:

• only 24 from 32 binary configurations of 5 bits will be used to code the 24 letters of Latin alphabet (244 <
220)

• but more important: how many different name expressed by 4 letters can be involved in a real application?
Usually no more than few hundred, meaning almost nothing related to 220.

⋄

The previous example teaches us that a RAM used as associative memory is a very inefficient solution. In real
applications are used names codded very inefficiently:

number o f possible names >>> number o f actual names.

In fact, the natural memory function means almost the same: to remember about something immersed in a huge
set of possibilities.

One way to implement an efficient associative memory is to take a CAM and to use it as a programmable
decoder for a RAM. The (extremely) limited subset of the actual objects are stored into a CAM, and the address
outputs of the CAM are used instead of the output of a combinational decoder to select the accessed location of a
RAM containing the value of the property P. In Figure 7.17 this version of an associative memory is presented.
CAMm×n is usually dimensioned with 2m >>> n working as a decoder programmed to decode any very small
subset of n addresses expressed by m bits.

Here are the three working mode of the previously described associative memory:

define object : write the name of an object to the selected location in CAM
wa’ = 0, address = name of object, sel = cam address

wd’ = 1, din = don’t care
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Figure 7.17: An associative memory (AM). The structure of an AM can be seen as a RAM with a pro-
grammable decoder implemented with a CAM. The decoder is programmed loading CAM with the considered
addresses.

associate value : write the associated value in the randomly accessed array to the location selected by the active
address output of CAM
wa’ = 1, address = name of object, sel = don’t care

wd’ = 0, din = value

search : search for the value associated with the name of the object applied to the address input
wa’ = 1, address = name of object, sel = don’t care

wd’ = 1, din = don’t care

dout is valid only if valide dout = 1.

This associative memory will be dimensioned according to the dimension of the actual subset of names, which
is significantly smaller than the virtual set of the possible names (2p <<< 2m). Thus, for a searching space with
the size in O(2m) a device having the size in O(2p) is used.

7.4.6 ∗ Beneš-Waxman Permutation Network
In 1968, even though it was defined by others before, Václav E. Beneš promoted a permutation network [Benes ’68]
and Abraham Waxman published an optimized version [Waksman ’68] of it.

A permutation circuit is a network of programmable switching circuits which receives the sequence x1, . . . ,xn
and can be programmed to to provide on its outputs any of the n! possible permutations.

The two-input programmable switching circuit is represented in Figure 7.18 a. It consists of a D-FF to store the
programming bit and two 2-input multiplexors to perform the programmed switch. The circuit works as follows:

D-FF = 0 : x′1 = x1 and x′2 = x2

D-FF = 1 : x′1 = x2 and x′2 = x1

The input enable allows to load D-FF with the programming bit. The storage element is a master-slave structure
because in a complex network the D flip-flops are chained because they are loaded with the programming bits by
shifting. The logic symbol for this elementary circuit is represented in Figure 7.18 b (the clock input and enable
input are omitted for simplicity).

Beneš-Waxman permutation network (we must recognize credit for this circuit, at least, for both, Beneš and
Waxman) with n inputs has the recursive definition presented in Figure 7.18 c. (The only difference between the
definition provided by Beneš and the optimization done by Waxman refers to the number of switches on the output
layer: in Waxman’s approach there are only n/2−1 switches, inetead of n for the version presented by Beneš.)

Theorem 7.1 The switches of Beneš-Waxman permutation network can be set to realize any permutation.
⋄



240 CHAPTER 7. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

Proof. For n = 2 the permutation network is a programmable switch circuit. For n > 2 we consider, for
simplicity, n as a power of 2.

If the two networks Le f tPn/2 and RightPn/2 are permutation networks with n/2 inputs, then we will prove that
it is possible to program the input switches so as each sequence of two successive value on the outputs contains
values that reach the output switch going through different permutation network. If the “local” order, on the output
pair, is not the desired one, then the output switch is used to fix the problem by an appropriate programming.

The following steps can be followed to establish the programming Boolean sequence – {qIn1, . . . ,qInn/2} –
for the n/2 input switches and the programming Boolean sequence – {qOut2, . . . ,qOutn/2} – for the n/2−1 output
switches:

1. because y1 ← xi, the input switch where xi is connected is programmed to qIn⌈i/2⌉ = i+ 1− 2×⌈i/2⌉ in
order to let xi to be applied on the Le f tPn/2 permutation network (if i is an odd number, then qIn⌈i/2⌉ = 0,
else qIn⌈i/2⌉ = 1); the xi−(−1)i input is the “companion” of xi on the same switch; it is consequently routed
to the input of RightPn/2

2. the output switch ⌈ j/2⌉ is identified using the correspondence y j← xi−(−1)i ; the state of the switch is set to
sOut⌈ j/2⌉ = j−2×⌊ j/2⌋ (if j is an odd number, then qOut⌈ j/2⌉ = 1, else qOut⌈ j/2⌉ = 0)

3. for y j−(−1) j ← xk, the “companion” of y j on the j/2-th output switch, we go back to the step 1 until in the
step 2 we reach the second output, y2; for the first two outputs there is no need of a switch because a partial
or the total programming cycle ends when y2 receives its value from the output of the RightPn/2 permutation
network

4. if all the output switches are programmed the process stops, else, we start again from the left output of an
un-programmed output switch.

Any step 1, let us call it up-step, programs an input switch, while any step 2, let us call it down-step, programs
an output switch. Any up-step, which solves the connection yi ← x j, is feasible because the source x j is always
connected to a still un-programmed switch. Similarly, any down-step is also feasible.
⋄
The size and depth of the permutation network Pn is computed using the relations:

SP(n) = (2×SP(n/2)+n−1)×SP(2)

SP(2) ∈ O(1)

DP(n) = DP(n)+2×DP(2)

DP(2) ∈ O(1)

Results:
SP(n) = (n× log2n−n+1)×SP(2) ∈ O(nlogn)

DP(n) =−1+2× log2n ∈ O(logn)

Example 7.3 Let be an 8-input permutation network which must be programmed to perform the following permu-
tation:

{x1,x2,x3,x4,x5,x6,x7,x8}→ {x8,x6,x3,x1,x4,x7,x5,x2}= {y1, . . . ,y8}

The permutation network with 8 inputs is represented in Figure 7.19. It is designed starting from the recursive
definition.

The programming bits for each switch are established according to the algorithm described in the previ-
ous proof. In the first stage the programming bits for the first layer – {p11, p12, p13, p14} – and last layer –
{p52, p53, p54} – are established, as follows:

1. (y1 = x8)⇒ (x8→ le f tP4)⇒ (p14 = 1)

2. (p14 = 1)⇒ (x7→ rightP4)⇒ (p53 = 0)
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Figure 7.18: Beneš-Waxman permutation network. a. The programmable switching circuit. b. The
logic symbol for the programmable switching circuit. c. The recursive definition of a n-input Beneš-Waxman
permutation network, Pn.
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3. (y5 = x4)⇒ (x4→ le f tP4)⇒ (p12 = 1)

4. (p12 = 1)⇒ (x3→ rightP4)⇒ (p52 = 1)

5. (y4 = x1)⇒ (x1→ le f tP4)⇒ (p11 = 0)

6. (p11 = 0)⇒ (x2→ rightP4)⇒ (p54 = 0)

7. (y7 = x5)⇒ (x5→ le f tP4)⇒ (p13 = 0)

8. (p13 = 0)⇒ (x6→ rightP4)⇒ the first stage of programming closes successfully.

In the second stage there are two P4 permutation networks to be programmed: le f tP4 and rightP4. From the
first stage of programming resulted the following permutations to be performed:

for le f tP4: {x1,x4,x5,x8}→ {x8,x1,x4,x5}

for rightP4: {x2,x3,x6,x7}→ {x6,x3,x7,x2}

The same procedure is applied now twice providing the programming bits for the second and the fourth layers of
switches.

The last step generate the programming bits for the third layer of switches.
The programming sequences for the five layers of switches are:
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prog1 = {0 1 0 1}

prog2 = {1 1 0 0}

prog3 = {1 0 1 0}

prog4 = {- 0 - 1}

prog5 = {- 1 0 0}

To insert in five clock cycles the programming sequences into the permutation network on the inputs {p1, p2, p3, p4}
(see Figure 7.19) are successively applied the following 4-bit words: 0100, 0001, 1010, 1100, 0101. During the
insertion the input enable on each switch is activated.
⋄

7.4.7 ∗ First-Order Systolic Systems
When a very intense computational function is requested for an Application Specific Integrated Circuit (ASIC) sys-
tolic systems represent an appropriate solution. In a systolic system data are inserted and/or extracted rhythmically
in/from a uniform modular structure. H. T. Kung and Charles E. Leiserson published the first paper describing
a systolic system in 1978 [Kung ’79] (however, the first machine known to use a a systolic approach was the
Colossus Mark II in 1944). The following example of systolic system is taken from this paper.

Let us design the circuit which multiplies a band matrix with a vector as follows:

a11 a12 0 0 0 · · ·
a21 a22 a23 0 0 · · ·
a31 a32 a33 a34 0 · · ·
0 a42 a43 a44 a45 · · ·

0 0
. . . . . . . . . . . .

0 0 0
. . . . . . . . .


×



x1
x2
x3
x4
x5
...

=



y1
y2
y3
y4
y5
...


The main operation executed for matrix-vector operations is multiply and accumulate (MACC):

Z = A×B+C

for which a specific combinational module is designed. Interleaving MACCs with memory circuits is provided a
structure able to compute and to control the flow of data in the same time. The systolic vector-matrix multiplier is
represented in Figure 7.20.

The systolic module is represented in Figure 7.20a, where a combinational multiplier (M = A×B) is serially
connected with an combinational adder (M +C). The result of MACC operation is latched in the output latch
which latches besides the result of the computation, the two input value A and B. The latch is transparent on the
high level of the clock. It is used to buffer intermediary results and to control the data propagation through the
system.

The system is configured using pairs of modules to generate a master-slave structures, where one module
receives ck and another ck’. The resulting structure is a non-transparent one ready to be used in a pipelined
connection.

For a band matrix having the width 4, two non-transparent structures are used (see Figure 7.20c). Data is
inserted in each phase of the clock (correlate data insertion with the phase of clock represented in Figure 7.20b) as
follows:

The result of the computation is generated sequentially to the output yi of the circuit from Figure 7.20c, as
follows:

y1 = a11x1 +a12x2
y2 = a21x1 +a22x2 +a23x3
y3 = a31x1 +a32x2 +a33x3 +a34x4
y4 = a42x2 +a43x3 +a44x4 +a45x5
y5 = . . .
. . .
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Figure 7.20: Systolic vector-matrix multiplier. a. The module. b. The clock signal with indexed half
periods. c. How the modular structure is fed with the data in each half period of the clock signal.
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The output X of the module is not used in this application (it is considered for matrix matrix multiplication
only). The state of the system in each phase of the clock (see Figure 7.20b) is represented by two quadruples:

(Y1,Y2,Y3,Y4)

(Z1,Z2,Z3,Z4)

If the initial state of the system is unknown,
(Y1,Y2,Y3,Y4) = (−,−,−,−)
(Z1,Z2,Z3,Z4) = (−,−,−,−)
then the state of the system in the first 10 phases of the clock, numbered in Figure 7.20c, are the following:

Phase: (1)
(Y1,Y2,Y3,Y4) = (−,−,−,−)
(Z1,Z2,Z3,Z4) = (−,−,−,0)

Phase: (2)
(Y1,Y2,Y3,Y4) = (0,−,−,−)
(Z1,Z2,Z3,Z4) = (−,−,0,0)

Phase: (3)
(Y1,Y2,Y3,Y4) = (0,0,−,−)
(Z1,Z2,Z3,Z4) = (−,0,0,0)

Phase: (4)
(Y1,Y2,Y3,Y4) = (x1,0,0,−)
(Z1,Z2,Z3,Z4) = (0,0,0,0)
(5)
(Y1,Y2,Y3,Y4) = (x1,x1,0,0)
(Z1,Z2,Z3,Z4) = (0,a11x1,0,0)
(6)
(Y1,Y2,Y3,Y4) = (x2,x1,x1,0)
(Z1,Z2,Z3,Z4) = (a11x1 +a12x2,a11x1,a21x1,0)
(7)
(Y1,Y2,Y3,Y4) = (x2,x2,x1,x1)
(Z1,Z2,Z3,Z4) = (y1,a21x1 +a22x2,a21x1,a31x1)
(8)
(Y1,Y2,Y3,Y4) = (x3,x2,x2,x1)
(Z1,Z2,Z3,Z4) = (a21x1 +a22x2 +a23x3,a21x1 +a22x2,a31x1 +a32x2,a31x1)
(9)
(Y1,Y2,Y3,Y4) = (x3,x3,x2,x2)
(Z1,Z2,Z3,Z4) = (y2,a31x1 +a32x2 +a33x3,a31x1 +a32x2,a42x2)
(10)
(Y1,Y2,Y3,Y4) = (x4,x3,x3,x2)
(Z1,Z2,Z3,Z4) = (a31x1 +a32x2 +a33x3 +a34x4,a31x1 +a32x2 +a33x3,a42x2 +a43x3,a42x2)
(11)
(Y1,Y2,Y3,Y4) = (x4,x4,x3,x3)
(Z1,Z2,Z3,Z4) = (y3, . . .)
. . .
In each clock cycle 4 multiplications and 4 additions are performed. The pipeline connections allow the syn-
chronous insertion and extraction of data. The maximum width of the matrix band determines the number of
modules used to design the systolic system.

7.5 Concluding About Memory Circuits

For the first time, in this chapter, both composition and loop are used to construct digital systems. The
loop adds a new feature and the composition expands it. The chapter introduced only the basic concepts
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and the main ways to use them in implementing actual digital systems.

The first closed loop in digital circuits latches events Closing properly simple loops in small com-
binational circuits vey useful effects are obtained. The most useful is the “latch effect” allowing to store
certain temporal events. An internal loop is able to determine an internal state of the circuit which is
independent in some extent from the input signals (the circuit controls a part of its inputs using its own
outputs). Associating different internal states to different input events the circuit is able to store the input
event in its internal states. The first loop introduces the first degree of autonomy in a digital system: the
autonomy of the internal state. The resulting basic circuit for building memory systems is the elementary
latch.

Meaningful circuits occur by composing latches The elementary latches are composed in different
modes to obtain the main memory systems. The serial composition generates the master-slave flip-flop
which is triggered by the active edge of the clock signal. The parallel composition introduces the concept
of random access memory. The serial-parallel composition defines the concept of register.

Distinguishing between “how?” and “when?” At the level of the first order systems occurs a very
special signal called clock. The clock signal becomes responsible for the history sensitive processes
in a digital system. Each “clocked” system has inputs receiving information about “how” to switch
and another special input – the clock input acting on one of its edge called the active edge of clock –
and another special input indicating “when” the system switches. We call this kind of digital systems
synchronous systems, because any change inside the system is triggered synchronously by the same edge
(positive or negative) of the clock signal.

Registers and RAMs are basic structures First order systems provide few of the most important type
of digital circuits used to support the future developments when new loops will be closed. The register
is a synchronous subsystem which, because of its non-transparency, allows closing the next loop leading
to the second order digital systems. Registers are used also for accelerating the processing by designing
pipelined systems. The random access memory will be used as storage element in developing systems
for processing a big amount of data or systems performing very complex computations. Both, data and
programs are stored in RAMs.

RAM is not a memory, it is only a physical support Unfortunately RAM has not the function of
memorizing. It is only a storage element. Indeed, when the word W is stored at the address A we must
memorize the address A in order to be able to retrieve the word W . Thus, instead of memorizing W we
must memorize A, or, as usual, we must have a mechanism to regenerate the address A. In conjunction
with other circuits RAM can be used to build systems having the function of memorizing. Any memory
system contains a RAM but not only a RAM, because memorizing means more than storing.

Memorizing means to associate Memorizing means both to store data and to retrieve it. The most
“natural” way to design a memory system is to provide a mechanism able to associate the stored data
with its location. In an associative memory to read means to find, and to write means to find a free
location. The associative memory is the most perfect way of designing a memory, even if it is not
always the most optimal as area (price), time and power.
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To solve ambiguities a new loop is needed At the level of the first order systems the second latch
problem can not be solved. The system must be more “intelligent” to solve the ambiguity of receiving
synchronously contradictory commands. The system must know more about itself in order to be “able”
to behave under ambiguous circumstances. Only a new loop will help the system to behave coherently.
The next chapter, dealing with the second level of loops, will offer a robust solution to the second latch
problem.

The storing and memory functions, typical for the first order systems, are not true computational
features. We will see that they are only useful ingredients allowing to make digital computational systems
efficient.

7.6 Problems

Stable/unstable loops

Problem 7.1 Simulate in Verilog the unstable circuit described in Example 3.1. Use 2 unit time (#2)
delay for each circuit and measure the frequency of the output signal.

Problem 7.2 Draw the circuits described by the following expressions and analyze their stability taking
into account all the possible combinations applied on their inputs:

d = b(ad)′+ c

d = (b(ad)′+ c)′

c = (ac′+bc)′

c = (a⊕ c)⊕b.

Simple latches

Problem 7.3 Illustrate the second latch problem with a Verilog simulation. Use also versions of the
elementary latch with the two gates having distinct propagation times.

Problem 7.4 Design and simulate an elementary clocked latch using a NOR latch as elementary latch.

Problem 7.5 Let be the circuit from Figure 7.21. Indicate the functionality and explain it.
Hint: emphasize the structure of an elementary multiplexer.

Problem 7.6 Explain how it works and find an application for the circuit represented in Figure 7.22.
Hint: Imagine the tristate drivers are parts of two big multiplexors.
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Master-slave flip-flops

Problem 7.7 Design an asynchronously presetable master-slave flip-flop.
Hint: to the slave latch must be added asynchronous set and reset inputs (S’ and R’ in the NAND latch
version, or S and R in the NOR latch version).

Problem 7.8 Design and simulate in Verilog a positive edge triggered master-slave structure.

Problem 7.9 Design a positive edge triggered master slave structure without the clock inverter.
Hint: use an appropriate combination of latches, one transparent on the low level of the clock and
another transparent on the high level of the clock.

Problem 7.10 Design the simulation environment for illustrating the master-slave principle with em-
phasis on the set-up time and the hold time.

Problem 7.11 Let be the circuit from Figure 7.23. Indicate the functionality and explain it. Modify the
circuit to be triggered by the other edge of the clock.
Hint: emphasize the structures of two clocked latches and explain how they interact.

Problem 7.12 Let be the circuit from Figure 7.24. Indicate the functionality and explain it. Assign a
name for the questioned input. What happens if the NANDs are substituted with NORs. Rename the
questioned input. Combine both functionality designing a more complex structure.
Hint: go back to Figure 2.6c.
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Enabled circuits

Problem 7.13 An n-bit latch stores the n-bit value applied on its inputs. It is transparent on the low
level of the clock. Design an enabled n-bit latch which stores only in the clock cycle in which the enable
input, en, take the value 1 synchronized with the positive edge of the clock. Define the set-up time and
the hold time related to the appropriate clock edge for data input and for the enable signal.

Problem 7.14 Provide a recursive Verilog description for an n-bit enabled latch.

RAMs

Problem 7.15 Explain the reason for tASU and for tAH in terms of the combinational hazard.

Problem 7.16 Explain the reason for tDSU and for tDH .

Problem 7.17 Provide a structural description of the RAM circuit represented in Figure 7.4 for m= 256.
Compute the size of the circuit emphasizing both the weight of storing circuits and the weight of the access
circuits.

Problem 7.18 Design a 256-bit RAM using a two-dimensional array of 16× 16 latches in order to
balance the weight of the storing circuits with the weight of the accessing circuits.



250 CHAPTER 7. MEMORIES: FIRST ORDER, 1-LOOP DIGITAL SYSTEMS

Problem 7.19 Design the flow-through version of SRAM defined in Figure 7.8.
Hint: use additional storage circuits for address and input data, and relate the WE ′ signal with the clock
signal.

Problem 7.20 Design the register to latch version of SRAM defined in Figure 7.25.
Hint: the write process is identical with the flow-through version.

� � �
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CLOCK
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6
-

ADDRESS

DOUT

t

t

t

addr

-

-

data(addr)

data(addr)
6

DOUT

t

-

Register to Latch

Pipeline

Figure 7.25: Read cycles. Read cycle for the register to latch version and for the pipeline version of SRAM.

Problem 7.21 Design the pipeline version of SRAM defined in Figure 7.25.
Hint: only the output storage device must be adapted.

Registers

Problem 7.22 Provide a recursive description of an n-bit register. Prove that the (algorithmic) complex-
ity of the concept of register is in O(n) and the complexity of a ceratin register is in O(log n).

Problem 7.23 Draw the schematic for an 8-bit enabled and resetable register. Provide the Verilog envi-
ronment for testing the resulting circuit. Main restriction: the clock signal must be applied only directly
to each D flip-flop.
Hint: an enabled device performs its function only if the enable signal is active; to reset a register means
to load it with the value 0.

Problem 7.24 Add to the register designed in the previous problem the following feature: the content of
the register is shifted one binary position right (the content is divided by two neglecting the reminder)
and on most significant bit (MSB) position is loaded the value of the one input bit called SI (serial input).
The resulting circuit will be commanded with a 2-bit code having the following meanings:

nop : the content of the register remains unchanged (the circuit is disabled)
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reset : the content of the register becomes zero

load : the register takes the value applied on its data inputs

shift : the content of the register is shifted.

Problem 7.25 Design a serial-parallel register which shifts 16 16-bit numbers.

Definition 7.3 The serial-parallel register, SPRn×m, is made by a SPR(n−1)×m serial connected with a
Rm. The SPR1×m is Rm. ⋄

Hint: the serial-parallel register, SPRn×m can be seen in two manners. SPRn×m consists in m parallel
connected serial registers SRn, or SPRn×m consists in n serially connected registers Rm. We prefer usually
the second approach. In Figure 7.26 is shown the serial-parallel SPRn×m.

Rm - Rm - Rm --. . .-

. . .

IN OUT

CK

SPRn×m- -IN OUT

a.

b.
CK

Figure 7.26: The serial-parallel register. a. The structure. b. The logic symbol.

Problem 7.26 Let be tSU , tH , tp, for a register and tpCLC the propagation time associated with the CLC
loop connected with the register. The maximal and minimal value of each is provided. Write the relations
governing these time intervals which must be fulfilled for a proper functioning of the loop.

Pipeline systems

Problem 7.27 Explain what is wrong in the following always construct used to describe a pipelined
system.
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module p i p e l i n e # ( parameter n = 8 , m = 16 , p = 20)
( output reg [m− 1 : ] o u t p u t r e g ,

input wire [ n − 1 : 0 ] in ,
c l o c k ) ;

reg [ n − 1 : 0 ] i n p u t r e g ;
reg [ p − 1 : 0 ] p i p e l i n e r e g ;
wire [ p − 1 : 0 ] ou t1 ;
wire [m− 1 : 0 ] ou t2 ;
c l c 1 f i r s t c l c ( out1 , i n p u t r e g ) ;
c l c 2 s e c o n d c l c ( out2 , p i p e l i n e r e g ) ;

always @( posedge c l o c k ) begin i n p u t r e g = i n ;
p i p e l i n e r e g = ou t1 ;
o u t p u t r e g = ou t2 ;

end
endmodule
module c l c 1 ( out1 , i n 1 ) ;

/ / . . .
endmodule
module c l c 2 ( out2 , i n 2 ) ;

/ / . . .
endmodule

Hint: revisit the explanation about blocking and nonblocking evaluation in Verilog.

Register file

Problem 7.28 Draw register file 16 4 at the level of registers, multiplexors and decoders.

Problem 7.29 Evaluate for register file 32 5 minimum input arrival time before clock (tin reg),
minimum period of clock (Tmin), maximum combinational path delay (tin out) and maximum output re-
quired time after clock (treg out) using circuit timing from Appendix Standard cell libraries.

CAMs

Problem 7.30 Design a CAM with binary codded output address, which provides as output address the
first location containing the searched binary configuration, if any.

Problem 7.31 Design an associative memory, AM, implemented as a maskable and readable CAM. A
CAM is maskable if any of the m input bits can be masked using an m-bit mask word. The masked bit
is ignored during the comparison process. A CAM is readable if the full content of the first matched
location in sent to the data output.

Problem 7.32 Find examples for the inequality

number o f possible names >>> number o f actual names

which justify the use of the associative memory concept in digital systems.
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7.7 Projects

Project 7.1 Let be the module system containing system1 and system2 interconnected through the
two-direction memory buffer module bufferMemory. The signal mode controls the sense of the transfer:
for mode = 0 system1 is in read mode and system2 in write mode, while for mode = 1 system2 is in
read mode and system1 in write mode. The module library provide the memory block described by the
module memory.

module sys tem ( input [m− 1 : 0 ] i n 1 ,
input [ n − 1 : 0 ] i n 2 ,
output [ p − 1 : 0 ] ou t1 ,
output [ q − 1 : 0 ] ou t2 ,
input c l o c k ) ;

wire [ 6 3 : 0 ] memOut1 ;
wire [ 6 3 : 0 ] memIn1 ;
wire [ 1 3 : 0 ] ] addr1 ;
wire we1 ;
wire [ 2 5 5 : 0 ] memOut2 ;
wire [ 2 5 5 : 0 ] memIn2 ;
wire [ 1 1 : 0 ] addr2 ;
wire we2 ;
wire mode ; / / mode = 0: s y s t e m 1 reads , s y s t e m 2 w r i t e s

/ / mode = 1: s y s t e m 2 reads , s y s t e m 1 w r i t e s
wire [ 1 : 0 ] com12 , com21 ;
sys tem1 sys tem1 ( in1 , out1 , com12 , com21 ,

memOut1 ,
memIn1 ,
addr1 ,
we1 ,
mode ,
c l o c k ) ;

sys tem2 sys tem2 ( in2 , out2 , com12 , com21 ,
memOut2 ,
memIn2 ,
addr2 ,
we2 ,
c l o c k ) ;

bufferMemory bufferMemory ( memOut1 ,
memIn1 ,
addr1 ,
we1 ,
memOut2 ,
memIn2 ,
addr2 ,
we2 ,
mode ,
c l o c k ) ;

endmodule
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module memory #( parameter n =32 , m=10)
( output reg [ n − 1 : 0 ] d a t a O u t , / / da ta o u t p u t

input [ n − 1 : 0 ] d a t a I n , / / da ta i n p u t
input [m− 1 : 0 ] readAddr , / / read a d d r e s s
input [m− 1 : 0 ] w r i t e A d d r , / / w r i t e a d d r e s s
input we , / / w r i t e e n a b l e
input e n a b l e , / / module e n a b l e
input c l o c k ) ;

reg [ n − 1 : 0 ] memory [ 0 : ( 1 << m) − 1 ] ;

always @( posedge c l o c k ) i f ( e n a b l e ) begin
i f ( we ) memory [ w r i t e A d d r ] <= d a t a I n ;
d a t a O u t <= memory [ readAddr ] ;

end
endmodule

Design the module bufferMemory.

Project 7.2 Design a systolic system for multiplying a band matrix of maximum width 16 with a vector.
The operands are stored in serial registers.



Chapter 8

AUTOMATA:
Second order, 2-loop digital systems

In the previous chapter
the memory circuit were described discussing about

• how is built an elementary memory cell

• how applying all type of compositions the basic memory structures (flip-flops, registers,
RAMs) can be obtained

• how the basic memory structures are in used real applications

In this chapter
the second order, two-loop circuits are presented with emphasis on

• defining what is an automaton

• the smallest 2-state automata, such as T flip-flop and JK flip-flop

• big and simple automata exemplified by the binary counters

• small and complex finite automata exemplified by the control automata

In the next chapter
the third order, three-loop systems are described taking into account the type of system through
which the third loop is closed:

• combinational circuit - resulting optimized design procedures for automata

• memory systems - supposing simplified control

• automata - with the processor as typical structure.

255
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The Tao of heaven is impartial.
If you perpetuate it, it perpetuates you.

Lao Tzu1

Perpetuating the inner behavior is the
magic of the second loop.

The next step in building digital systems is to add a new loop over systems containing 1-OS. This
new loop must be introduced carefully so as the system remains stable and controllable. One of the most
reliable ways is to build synchronous structures, that means to close the loop through a way containing a
register. The non-transparency of registers allows us to separate with great accuracy the current state of
the machine from the next state of the same machine.

This second loop increases the autonomous behavior of the system including it. As we shall see, in
2-OS each system has the autonomy of evolving in the state space, partially independent from the input
dynamics, rather than in 1-OS in which the system has only the autonomy of preserving a certain state.

The basic structure in 2-OS is the automaton, a digital system with outputs evolving according to two
variables: the input variable and a “hidden” internal variable named the internal state variable, simply
the em state. The autonomy is given by the internal effect of the state. The behavior of the circuit output
can not be explained only by the evolution of the input, the circuit has an internal autonomous evolution
that “memorizes” previous events. Thus the response of the circuit to the actual input takes into account
the more or less recent history. The state space is the space of the internal state and its dimension is
responsible for the behavioral complexity. Thus, the degree of autonomy depends on the dimension of
the state space.

clock

b.a.

Unclocked Latch

CLC

Cloked Lathes

?
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?
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?

1-OS
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register

1-OS
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clock

Cloked Lathes

?
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6
clock

Figure 8.1: The two type of 2-OS. a. The asynchronous automata with a hazardous loop over a transparent
latch. b. The synchronous automata with a edge clock controlled loop closed over a non-transparent register.

An automaton is built closing a loop over a 1-OS represented by a collection of latches. The loop
can be structured using the previous two type of systems. Thus, there are two type of automata:

1Quote from Tao Te King of Lao Tzu translated by Brian Browne Walker.
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• asynchronous automata, for which the loop is closed over unclocked latches, through combina-
tional circuit and/or unclocked latches as in Figure 8.1a

• synchronous automata, having the loop closed through an 1-OS and all latches are clocked latches
connected on the loop in master-slave configurations (see Figure 8.1b).

Our approach will be focused on the synchronous automata, after considering only in the first subchapter
an asynchronous automaton used to optimize the internal structure of the widely used flip-flop: DFF.

8.1 Basic definitions in automata theory

Definition 8.1 An automaton, A, is defined by the following 5-uple:

A = (X ,Y,Q, f ,g)

where:

X : the finite set of input variables

Y : the finite set of output variables

Q : the set of state variables

f : the state transition function, described by f : X×Q→ Q

g : the output transition function, with one of the following definitions:

• g : X×Q→ Y for Mealy type automaton

• g : Q→ Y for Moore type automaton

• g(q) = q for Y ≡ Q, where q ∈ Q for half-automaton, symbolized with A1/2.

At each clock cycle the state of the automaton switches and the output takes the value according to the
new state (and the current input, in Mealy’s approach). ⋄

Definition 8.2 A finite automaton, FA, is an automaton with Q a finite set. ⋄

FA is a complex circuit because the size of its definition depends by |Q|.

Definition 8.3 A recursively defined n-state automaton, n-SA, is an automaton with |Q| ∈ O( f (n)). ⋄

An n-SA has a finite (usually short) definition depending by one or many parameters. Its size will
depend by parameters. Therefore, it is a simple circuit.

Definition 8.4 An initial state is a state having no predecessor state. ⋄

Definition 8.5 An initial automaton is an automaton having a set of initial states, Q′, which is a subset
of Q, Q′ ⊂ Q. ⋄

Definition 8.6 A strict initial automaton is an automaton having only one initial state, Q′ = {q0}. ⋄
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A strict initial automaton is defined by:

A = (X ,Y,Q, f ,g;q0)

and has a special input, called reset, used to led the automaton in the initial state q0. If the automaton is
initial only, the input reset switches the automaton in one, specially selected, initial state.

Definition 8.7 The delayed (Mealy or Moore) automaton is an automaton with the output values gener-
ated through a (delay) register, thus the current output value corresponds to the previous internal state
of the automaton, instead of the current value of the state, as in non-delayed version. ⋄

The half automaton is an automaton with identity function as the output function (see Figure 8.2a,b)
defined for two reasons:

• many optimization techniques are related only with the loop circuits of the automaton. The main
feature of an automaton is the autonomy and the associated half-automaton, concept which de-
scribes especially this type of behavior

• there are applications that use directly the state as outputs.

All kind of automata can be described starting from a half-automaton, adding only combinational
(no loops) circuits and/or memory (one loop) circuits. In Figure 8.2 are presented all the four types of
automata:

Mealy automaton : results connecting to the “output” of an A1/2 the output CLC that receives also the
input X (Figure 8.2c) and computes the output function g; a combinational way occurs between
the input and the output of this automaton allowing a fast response, in the same clock cycle, to the
input variation

Moore automaton : results connecting to the “output” of an A1/2 the output CLC (Figure 8.2d) that
computes the output function g; this automaton reacts to the input signal in the next clock cycle

delayed Mealy automaton : results serially connecting a register, R, to the output of the Mealy au-
tomaton (Figure 8.2e); this automaton reacts also to the input signal in the next clock cycle, but
the output is hazard free because it is registered

delayed Moore automaton : results serially connecting a register, R, to the output of the Moore au-
tomaton (Figure 8.2f); this automaton reacts to the input signal with a two clock cycles delay.

Real applications use all the previous type of automata, because they react with different delay to the
input change. The registered outputs are preferred if possible.

Theorem 8.1 The time relation between the input value and the output value is the following for the four
types of automata:

1. for Mealy automaton the output to the moment t, y(t) ∈ Y depends on the current input value,
x(t) ∈ X, and by the current state, q(t) ∈ Q, i.e., y(t) = g(x(t),q(t))

2. for delayed Mealy automaton and Moore automaton the output corresponds with the input value
from the previous clock cycle:



8.1. BASIC DEFINITIONS IN AUTOMATA THEORY 259

Y Y

- ?
stateReg

loopCLC

?

? ?

CK

X

Q

a.

halfAut

-

b.

CKX

halfAut

- CKX

? ?

halfAut

- CKX

? ?

outCLC outCLC-

c.

halfAut

d.

- CKX

? ?

halfAut

- CKX

? ?

outCLC outCLC-

outReg

?
Y

outReg

?
Yf.e.

Figure 8.2: Automata types. a. The structure of the half-automaton (A1/2), the no-output automaton: the state is
generated by the previous state and the previous input. b. The logic symbol of half-automaton. c. Immediate Mealy
automaton: the output is generated by the current state and the current input. d. Immediate Moore automaton: the
output is generated by the current state. e. Delayed Mealy automaton: the output is generated by the previous state
and the previous input. f. Delayed Moore automaton: the output is generated by the previous state.

• y(t) = g(x(t−1),q(t−1)) for Mealy delayed automaton

• y(t) = g(q(t)) = g( f (x(t−1),q(t−1)) for Moore automaton

3. for delayed Moore automaton the input transition acts on the output transition delayed with two
clock cycles:

y(t) = g(q(t−1)) = g( f (x(t−2),q(t−2)).⋄

Proof The proof is evident starting from the previous two definitions. ⋄
The possibility emphasized by this theorem is that we dispose of automata with different time re-

action to the input variations. The Mealy automaton follows immediate the input transitions, delayed
Mealy and Moore automata react with one clock cycle delay to the input transitions and delayed Moore
automaton delays with two cycles the response to the input.
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The symbols from the sets X , Y , and Q are binary coded using bits specified by X0,X1, . . . for X ,
Y0,Y1, . . . for Y , Q0,Q1, . . . for Q.

Actually, all implementable automata are finite. Traditionally, the term finite automaton is used to
distinguish a subset of automata whose behavior is described using a constant number of states. Even if
the input string is infinite, the behavior of the automaton is limited to a trajectory traversing a constant
(finite) number of states. A finite automaton will be an automaton having a random combinational
function for its transition functions f and g. Therefore, a finite automaton is a complex structure.

A “non-finite” automaton that is an automaton designed to evolve in a state space proportional with
the length of the input string. Now, if the input string is “infinite” the number of states must be also
“infinite”. Such an automaton can be defined only if its transition function is simple. Its combinational
loop is a simple circuit even if it can be a big one. The “non-finite” automaton has a number of states
that does not affect the definition (see the following examples of counters, for sum prefix automaton, ...).
We classify the automata in two categories:

• “non-finite”, recursive defined, simple automata, called functional automata, or simply automata

• non-recursive defined, complex automata, called finite automata.

We continue this chapter with an example of asynchronous circuit, because of its utility and because
we intend to show how complex is the management of its behavior. We will continue presenting only
synchronous automata, starting with small automata having only two states (the smallest state space).
We will continue with simple, recursive defined automata and we will end with finite automata, that are
the most complex automata.

8.2 Two States Automata

The smallest two-state half-automata can be explored almost systematically. Indeed, there are only 16
one-input two-state half-automata and 256 with two inputs. We choose only two of them: the T flip-flop,
the JK flip-flop, which are automata with Q = Y and f = g. For simple 2-operand computations 2-input
automata can be used. One of them is the adder automaton. This section ends with a small and simple
universal automaton having 2 inputs and 2 states.

8.2.1 Optimizing DFF with an asynchronous automaton

The very important feature added by the master-slave configuration – that of edge triggering the flip-flop
– was paid by increasing two times the size of the structure. An improvement is possible for DFF (the
master-slave D flip-flop) using the structure presented in Figure 8.3, where instead of 8 2-input NANDs
and 2 invertors only 6 2-input gates are used. The circuit contains three elementary unclocked latches:
the output latch, with the inputs R’ and S’ commanded by the outputs of the other two latches, L1 and
L2. L1 and L2 are loop connected building up a very simple asynchronous automaton with two inputs –
D and CK – and two outputs – R’ and S’.

The explanation of how this DFF, designed as a 2-OS, works uses the static values on the inputs of
the latches. For describing the process of switching in 1 the triplets (x,y,z) are used, while for switching
in 0 are used [x,y,z], where:

x : is the stable value in the set-up time interval (in a time interval, equal with tsu, before the positive
transition of CK)
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y : is the stable value in the hold time interval (in a time interval of th, after the positive transition of
CK; the transition time, t+ is considered very small and is neglected)

z : is a possible value after the hold time interval (after th measured from the positive transition of CK)

For the process of transition in 1 we follow the triplets (x,y,z) in Figure 8.3:

in set-up time interval : CK = 0 forces the values R’ and S’ to 1, does not matter what is the value on
D. Thus, the output latch receives passive values on both of its inputs.

in hold time interval : CK = 1 frees L1 and L2 to follow the signals they receive on their inputs. The
first order and the second order loops are now closed. L2 switches to S’ = 0, because of the 0
received from L1, which maintains its state because D and CK have passive values and the output
S’ of L2 reinforces its state to R’ = 1. The output latch is then set because of S’ = 0.

after the hold time interval : the possible transition in 0 of D after the hold time does not affect the
output of the circuit, because the second loop, from L2 to L1, forces the output R’ to 1, while L2
is not affected by the transition of its input to the passive value because of D = 0. Now, the second
loop allow the system to “ignore” the switch of D after the hold time.

D

CK

Q’ Q

L1
L2

R’ S’

(0,1,1)

[0,1,1]

(1,1,1)

[1,0,0]

(1,0,0)

[1,1,1]

Async. Automaton
(1,1,0)

[0,0,1]

(0,0,1)

[1,1,1]

(1,1,1)

[0,0,0]

Figure 8.3: The D flip-flop implemented as a 2-OS system. The asynchronous automaton built up loop
connecting two unclocked latches allows to trigger the output latch according to the input data value available at
the positive transition of clock.

For the process of transition in 0 we follow the triplets [x,y,z] in Figure 8.3:

in set-up time interval : CK = 0 forces the values R’ and S’ to 1, does not matter what is the value on
D. Thus, the output latch receives passive values on both of its inputs. The output of L1 applied to
L2 is also forced to 1, because of the input D = 0.
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in hold time interval : CK = 1 frees L1 and L2 to follow the signals they receive on their inputs. The
first order and the second order loops are now closed. L1 switches to R’ = 0, because of the 0
maintained on D. L2 does not change its state because the input received from L1 has the passive
value and the CK input switches also in the passive value. The output latch is then reset because
of R’ = 0.

after the hold time interval : the possible transition in 1 of D after the hold time does not affect the
state of the circuit, because 1 is a passive value for a NAND elementary latch.

The effect of the second order loop is to “inform” the circuit that the set signal was, and still is,
activated by the positive transition of CK and any possible transition on the input D must be ignored.
The asynchronous automaton L1 & L2 behaves as an autonomous agent who “knows” what to do in the
critical situation when the input D takes an active value in an unappropriate time interval.

8.2.2 The Smallest Automaton: the T Flip-Flop

The size and the complexity of an automaton depends at least on the dimension of the sets defining it.
Thus, the smallest (and also the simplest) automaton has two states, Q = {0,1} (represented with one
bit), one-bit input, T = {0,1}, and Q = Y . The associated structure in represented in Figure 8.4, where
is represented a circuit with one-bit input, T, having a one-bit register, a D flip-flop, for storing the 1-bit
coded state, and a combinational logic circuit, CLC, for computing the function f .

What can be the meaning of an one-bit “message”, received on the input T, by a machine having only
two states? We can “express” with the two values of T only the following things:

no op : T = 0 - the state of the automaton remains the same

switch : T = 1 - the state of the automaton switches.

DF-F

?

D

Q

T

6

DF-F

D

Q

CLC
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?Q Qa. b.

TF-F
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?

T

Q
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Figure 8.4: The T flip-flop. a. It is the simplest automaton because: has 1-bit state register (a DF-F), a 2-input
loop circuit (one as automaton input and another to close the loop), and direct output from the state register. b. The
structure of the T flip-flop: the XOR2 circuits complements the state is T = 1. c. The logic symbol.

The resulting automaton is the well known T flip-flop. The actual structure of a T flip-flop is obtained
connecting on the loop a commanded invertor, i.e., a XOR gate (see Figure 8.4b). The command input
is T and the value to be inverted is Q, the state and the output of the circuit.

This small and simple circuit can be seen as a 2-modulo counter because for T = 1 the output “says”:
01010101... Another interpretation of this circuit is: the T flip-flop is a frequency divider. Indeed, if the
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clock frequency is fCK , then the frequency of the signal received to the output Q is fCK/2 (after each
clock cycle the circuit comes back in the same state).

8.2.3 The JK Automaton: the Greatest Flip-Flop

The “next” automaton in an imaginary hierarchy is one having two inputs. Let’s call them J and K. Thus,
we can define the famous JK flip-flop. Also, the function of this automaton results univocally. For an
automaton having only two states the four input messages coded with J and K will be compulsory:

no op : J = K = 0 - the flip-flop output does not change (the same as T = 0 for T flip-flop)

reset : J = 0, K = 1 - the flip-flop output takes the value 0 (specific for D flip-flop)

set : J = 1, K = 0 - the flip-flop output takes the value 1 (specific for D flip-flop)

switch : J = K = 1 - the flip-flop output switches in the complementary state (the same as T = 1 for T
flip-flop)

Only for the last function the loop acts specific for a second order circuit. The flip-flop must “tell
to itself” what is its own state in order “to knows” how to switch in the other state. Executing this
command the circuit asserts its own autonomy. The vagueness of the command “switch” imposes a
sort of autonomy to determine a precise behavior. The loop that assures this needed autonomy is closed
through two AND gates (see Figure 8.5a).

RSF-F

JKF-F

??

? ?

? ?

J K

J K

CK

S R

Q’ Q

Q’ Q

Q Q’

a. b.

6

Figure 8.5: The JK flip-flop. It is the simplest two-input automaton. a. The structure: the loop is closed over a
master-slave RSF-F using only two AND2. b. The logic symbol.

Finally, we solved the second latch problem. We have a two state machine with two command
inputs and for each input configuration the circuit has a predictable behavior. The JK flip-flop is the best
flip-flop ever defined. All the previous ones can be reduced to this circuit with minimal modifications
(J = K = T for T flip-flop or K′ = J = D for D flip-flop).

8.2.4 ∗ Serial Arithmetic
As we know the ripple carry adder has the size in O(n) and the depth also in O(n) (remember Figure 6.18). If we
agree with the time in this magnitude order, then there is a better solution where a second order circuit is used.

The best solution for the n-bit adder is a solution involving a small and simple automaton. Instead of storing
the two numbers to be added in (parallel) registers, as in the pure combinational solution, the sequential solutions
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Figure 8.6: Serial n-bit adder. The state of the adder automaton has the value of the carry generated adding the
previous 2 bits received from the output of the two serial registers containing the operands.

needs serial registers for storing the operands. The system is presented in Figure 8.6, containing three serial
registers (two for the operands and one for the result) and the adder automaton.

The adder automaton is a two states automaton having in the loop the carry circuit of a full adder (FA). The one-
bit state register contains the carry bit from the previous cycle. The inputs A and B of FA receive synchronously,
at each clock cycle, bits having the same binary range from the serial registers. First, LSBs are read from the serial
registers. Initially, the automaton is in the state 0, that means CR = 0. The output S is stored bit by bit in the third
serial register during n clock cycles. The final (n+1)-bit result is contained in the output serial register and in the
state register.

The operation time remains in the order of O(n), but the structure involved in computation becomes the con-
stant structure of the adder automaton. The product of the size, SADD(n), into the time, TADD(n) is in O(n) for this
sequential solution. Again, Conjecture 2.1 acts emphasizing the slowest solution as optimal. Let us remember that
for a carry-look-ahead adder, the fastest O(1) variant, the same product was in O(n3). The price for the constant
execution time is, in this example, in O(n2). I believe it is too much. We will prefer architectural solutions which
allow us to avoid the structural necessity to perform the addition in constant time.

8.2.5 ∗ Hillis Cell: the Universal 2-Input, 1-Output and 2-State Automaton

Any binary (two-operand) simple operation on n-bit operands can be performed serially using a 2-state automaton.
The internal state of the automaton stores the “carry” information from one stage of processing to another. In the
adder automaton, just presented, the internal state is used to store the carry bit generated adding the i-th bits of a
number. It is used in the next stage for adding the (i+1)-th bits. This mechanism can be generalized, resulting an
universal 2-input (for binary operation), one-output and 2-state (for “carry” bit) automaton.

Definition 8.8 An Universal 2-input (in1, in2),one-output, 2-state (codded by state[0]) automaton is a pro-
grammable structure using a 16-bit program word, {next state f unc[7 : 0],out f unc[7 : 0]}. It is defined by the
following Verilog code:
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/ * ************************************************************************
F i l e name : u n i v A u t . v
C i r c u i t name : H i l l i s C e l l : t h e U n i v e r s a l 2− I n p u t , 1−Outpu t and 2− S t a t e

Automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e 2− s t a t e , 2− i n p u t and

1− o u t p u t programmable f i n i t e automaton
************************************************************************ * /
module univAut ( output o u t , / / o u t p u t

input in1 , i n 2 , / / operands
input [ 7 : 0 ] n e x t S t a t e F u n c , / / l oop program

outFunc , / / o u t p u t program
input r e s e t , c l o c k ) ;

reg s t a t e ;
a s s i g n o u t = outFunc [{ s t a t e , in2 , i n 1 } ] ;
always @( posedge c l o c k )

s t a t e <= r e s e t ? 1 ’ b0 : n e x t S t a t e F u n c [{ s t a t e , in2 , i n 1 } ] ;
endmodule

⋄

mux8 1 mux8 1
s0
s1
s2

s0
s1
s2

-- --

D-FF

?

- -

?? ? ?? ?

- out

outFunc
nextStateFunc

state

in1
in2

Figure 8.7: Hillis cell.

The universal programmable automaton is implemented using two 3-input universal combinational circuits (8
to 1 multiplexers), one for the output function and another for the loop function (Figure 8.7. The total number
of automata can be programmed on this structure is 216 (the total number of 16-bit “programs”). Most of them
are meaningless, but the simplicity of solution deserves our attention. Let us call this universal automaton Hillis
Cell because, as far as I know, this small and simple circuit was first used by Daniel Hillis as execution unit in
Connection Machine parallel computer he designed in 1980 years [Hillis ’85].

8.3 Functional Automata: the Simple Automata

The smallest automata before presented are used in recursively extended configuration to perform similar
functions for any n. From this category of circuits we will present in this section only the binary counters.
The next circuit will be also a simple one, having the definition independent by size. It is a sum-prefix
automaton. The last subject will be a multiply-accumulate circuit built with two simple automata serially
connected.
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8.3.1 Counters

The first simple automaton is a composition starting from one of the function of T flip-flop: the counting.
If one T flip-flop counts modulo-21, maybe two T flip-flops will count modulo-22 and so on. Seems to
be right, but we must find the way for connecting many T flip-flops to perform the counter function.

For the synchronous counter2 built with n T flip-flops, Tn−1, . . . ,T0, the formal rule is very simple:
if INC0, then the first flip-flop, T0, switches, and the i-th flip-flop, for i = 1, . . . ,n− 1, switches only if
all the previous flip-flops are in the state 1. Therefore, in order to detect the switch condition for i-th
flip-flop an ANDi+1 must be used.

Definition 8.9 The n-bit synchronous counter, COUNTn, has a clock input, CK, a command input, INC0,
an n-bit data output, Qn−1, . . .Q0, and an expansion output, INCn. If INC0 = 1, the active edge of clock
increments the value on the data output (see Figure 8.8). ⋄

There is also a recursive, constructive, definition for COUNTn.

Definition 8.10 An n-bit synchronous counter, COUNTn is made by expanding a COUNTn−1 with a T
flip-flop with the output Qn−1, and an ANDn+1, with the inputs INC0, Qn−1, . . . ,Q0, which computes INCn

(see Figure 8.8). COUNT1 is a T flip-flop and an AND2 with the inputs Q0 and INC0 which generates
INC1. ⋄

Tn−1 COUNTn−1

T

Q

INC0

Q0Qn−2

Qn−1

? ?

? ?

. . .

?

CK

INC0

INCn

. . .

Qn−2 Q0. . .

. . .

INCn−1

Figure 8.8: The synchronous counter. The recursive definition of a synchronous counter has SCOUNT (n) ∈
O(n2) and TCOUNT (n) ∈ O(log n), because for the i-th range one TF-F and one ANDi are added.

Example 8.1 ∗The Verilog description of a synchronous counter follows:

2There exist also asinchronous counters. They are simpler but less performant.
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/ * ************************************************************************
F i l e name : s y n c c o u n t e r . v
C i r c u i t name : Synchronous Counter
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a s y n c h r o n o u s c o u n t e r as a

T−t y p e r e g i s t e r l oo p c o n n e c t e d w i t h an AND p r e f i x ne twork
************************************************************************ * /

module s y n c c o u n t e r # ( parameter n = 8 ) ( output [ n − 1 : 0 ] o u t ,
output i n c n ,
input i n c 0 ,

r e s e t ,
c l o c k ) ;

t r e g t r e g ( . o u t ( o u t ) ,
. i n ( p r e f i x o u t [ n − 1 : 0 ] ) ,
. r e s e t ( r e s e t ) ,
. c l o c k ( c l o c k ) ) ;

a n d p r e f i x a n d p r e f i x ( . o u t ( p r e f i x o u t ) ,
. i n ({ out , i n c 0 } ) ) ;

a s s i g n i n c n = p r e f i x o u t [ n ] ;
endmodule

/ * ************************************************************************
F i l e name : t r e g . v
C i r c u i t name : T−t y p e R e g i s t e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a r e g i s t e r b u i l t u s i n g T−t y p e

f l i p − f l o p s i n s t e a d o f D−t y p e f l i p f l o p s
************************************************************************ * /
module t r e g # ( parameter n = 8 ) ( output reg [ n − 1 : 0 ] o u t ,

input [ n − 1 : 0 ] i n ,
input r e s e t ,

c l o c k ) ;
always @( posedge c l o c k ) i f ( r e s e t ) o u t <= 0 ;

e l s e o u t <= o u t ˆ i n ;
endmodule

The reset input is added because it is used in real applications. Also, a reset input is good in simulation
because makes the simulation possible allowing an initial value for the flip-flops (reg[n-1:0] out in module
t reg) used in design. ⋄

It is obvious that CCOUNT (n) ∈ O(1) because the definition for any n has the same, constant size (in
number of symbols used to write the Verilog description for it or in the area occupied by the drawing
of COUNTn). The size of COUNTn, according to the Definition 4.4, can be computed starting from the
following iterative form:

SCOUNT (n) = SCOUNT (n−1)+(n+1)+ST
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and results:
SCOUNT (n) ∈ O(n2)

because of the AND gates network used to command the T flip-flop. The counting time is the clock
period. The minimal clock period is limited by the propagation time inside the structure. It is computed
as follows:

TCOUNT (n) = tpT + tpANDn + tSU ∈ O(log n)

where: tpT ∈ O(1) is the propagation time through the T flip-flop, tpANDn ∈ O(log n) is the propagation
time through the ANDn (in the fastest version it is implemented using a tree of AND2 gates) gate and
tSU ∈ O(1) is the set-up time at the input of T flip-flop.

In order to reduce the size of the counter we must find another way to solve the function performed
by the network of ANDs. Obviously, the network of ANDs is an AND prefix-network. Thus, the problem
could be reduced to the problem of the general form of prefix-network. The optimal solution exists and
has the size in O(n) and the time in O(log n) (see in this respect the section 8.2).

Finishing this short discussion about counters must be emphasized the autonomy of this circuit which
consists in switching in the next state according to the current state. We “tell” simply to the circuit
“please count”, and the circuit know what to do. The loop allow “him to know” how to behave.

Real applications uses more complex counters able to be initialized in any states or the count in both
ways, up and down. Such a counter is described by the following code:

/ * ************************************************************************
F i l e name : f u l l c o u n t e r . v
C i r c u i t name : F u l l Counter
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a c o u n t e r w i t h a l l t h e p o s s i b l e

f e a t u r e s ( r e s e t , load , up−count , down−c o u n t )
************************************************************************ * /

module f u l l c o u n t e r # ( parameter n = 4 ) ( output reg [ n − 1 : 0 ] o u t ,
input [ n − 1 : 0 ] i n ,
input r e s e t ,

l o a d ,
down ,
c o u n t ,
c l o c k ) ;

always @( posedge c l o c k )
i f ( r e s e t ) o u t <= 0 ;

e l s e i f ( l o a d ) o u t <= i n ;
e l s e i f ( c o u n t ) i f ( down ) o u t <= o u t − 1 ;

e l s e o u t <= o u t + 1 ;
e l s e o u t <= o u t ;

endmodule

The reset operation has the highest priority, and the counting operations have the lowest priority.

8.3.2 Linear Feedback Shift Registers

Linear feedback shift registers (LFSR) provide a simple way for generating non-sequential lists of num-
bers which behaves as a random sequence of numbers. For this reason LFSR are called also pseudo-
random number generators. Thus, generating a sequence of pseudo-random numbers only requires a
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shift register and a number of XORs. The mathematical description of these circuits is based on the
Galois Field theory3.

The structure is very simple: a n-bit left shift serial register whose serial input is feeded with the
output of a XOR circuit. The inputs of the XOR circuit are selected from the n outputs of the register. A
loop of 2-input XORs is closed as the second loop. The LFSR is, thus, a simple automaton.

Example 8.2 Let’s consider a 4-bit left shift register, sReg[3:0], and the loop closed through a 2-input
XOR in two versions:

• from sReg[3] and sReg[0] (see Figure 8.9a)

• from sReg[3] and sReg[1] (see Figure 8.9b)

Let’s consider the initial state in both cases: sReg = 4’b0001. The circuit from Figure 8.9a generates
the following periodic sequence starting from the initial state:

0001

0011

0111

1111

1110

1101

1010

0101

1011

0110

1100

1001

0010

0100

1000

0001

...

while the circuit form Figure 8.9b generate a shorter periodic sequence, as follow:

0001

0010

0101

1010

0100

1000

0001

...

Important note: the initial state sReg = 4’b0000 must be avoided, because from this state there is
no evolution.
⋄

3See a tutorial at: http://homepages.cae.wisc.edu/ẽce553/handouts/LFSR-notes.PDF
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sReg

? ? ? ?

clk

sReg[3] sReg[2] sReg[1] sReg[0]

sReg

? ? ? ?

clk

sReg[3] sReg[2] sReg[1] sReg[0]

a. b.

Figure 8.9: Examples of LFSR.

The LFSR of interest are mainly those who generate the longest periodic sequence. Because form
00...0 there is no evolution, the longest sequence generated by a n-bit LFSR is of 2n− 1 numbers.
The length of the period depends of the loop. More specific, it is about what outputs of the register are
XORed. If the XORs considered have at least 2 inputs, then there are 2n− (n+ 1) version of LFSRs.
They are specified by the binary sequence used to select the outputs. For example: if the register is
sReg[7 : 0] and the loop is selected by A2, then it corresponds to the loop having the logic function:

sReg[7]⊕ sReg[5]⊕ sReg[1]

the 3 inputs to the 3-input XOR being selected by the 1s of the selection code A2 = 1010 0010. For
n = 8 the following selection codes: 8E 95 96 A6 AF B1 B2 B4 B8 C3 C6 D4 E1 E7 F3 FA correspond
to the LFSRs with cycles of 255 numbers, which are maximal4. Therefore, LFSR(C3) stands for the
LFSR with the loop characterized by the 8-bit number C3.

Experiments with LFSRs suppose:

• to initialize the register is a certain state

• to select the loop configuration, i.e., select the output of the register to be XORed to the serial input

The following circuit can be used to simulate the 8-bit LFSRs:

4https://users.ece.cmu.edu/∼koopman/lfsr/index.html
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/ * ************************************************************************
F i l e : progLFSR . v
C i r c u i t name : Programmable L i n e a r Feedback S h i f t R e g i s t e r
D e s c r i p t i o n : Used as pseudo −random numbers g e n e r a t o r

The i n p u t prog i s used f o r :
− s e t t h e i n i t i a l s t a t e o f t h e r e g i s t e r when r s t = 1; i t

must be d i f f e r e n t from 0000 0000
− ”programming ” , i . e . , s e l e c t t h e o u t p u t s t o be XORed t o

t h e i n p u t o f t h e r e g i s t e r ; when r s t = 0

The 16 ”programs” f o r t h e l o n g e s t c y c l e ( s e q u e n c e o f 255 8− b i t
numbers ) :

8E 95 96 A6 AF B1 B2 B4 B8 C3 C6 D4 E1 E7 F3 FA
************************************************************************ * /
module progLFSR ( output reg [ 7 : 0 ] o u t ,

input [ 7 : 0 ] prog ,
input r s t ,
input c l k ) ;

always @( posedge c l k ) i f ( r s t ) o u t <= prog ;
e l s e o u t <= { o u t [ 6 : 0 ] , ˆ ( o u t & prog ) } ;

endmodule

In order to use LFSR(AF) initialized at 0000 0011, during at least one clock cycle apply prog =

8’b0000 0011 with rst = 1, then switch to rst = 0 with prog = 8’b1010 1111.

8.3.3 RALU: Registers with Arithmetic-Logic Unit

For very big sized state space the associated combinational circuits used to compute the next state and
the output become too big to be efficiently implemented. Therefore, a possible solution is to structure
the state so as in each cycle only a part of the state will be affected by the transition. Thus the the time
for provide a transition of the entire state will increase linearly, but the size of the circuits associated to
the functions f and g will decrease exponentially.

Structured State Space Automaton(S3A)

Definition 8.11 The function:
P(i,n,x0,x1, . . . ,xn−1) = xi

is the projection (selection) function which returns the i-th element from a set of n elements.
⋄

Definition 8.12 A 3-port S3A is defined by: S3A = (F×X×D×L×R;Y ;S ; f ,g) where:

• S = (S0×S1× . . . ,×Sm−1) with Si = {0,1}n for i = 0, . . . ,m−1 is the structured state space

• H = {0,1}log2 p is used to select a function from the set {h0,h1, . . . ,hp}

• X = {0,1}n is the finite set of inputs binary represented on n bits
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• Y = ({0,1}n×{0,1}n) is the finite set of outputs binary represented by two n-bit words

• D = L = R = {0,1}log2 m are sets of pointers in the Cartesian product S

• g : (L×R)→ (SL×SR) is the output transition function

• f : (H×X×D×L×R×S )→ SD is the state transition function of form hH : (X ,SL,SR)→ SD.

⋄

An S3A is implemented using a synchronous RAM to store the state. The inputs D,L,R are the
address which select the elements of the Cartesian product stored in the m locations of the RAM. The
efficiency of this approach could be evaluated as follows. The execution time for a full transition of
S3A is m times bigger than for the equivalent standard automaton, because only one element of the
Cartesian product can be computed in one cycle. Therefore the time performance is 1/m. The size of the
combinational circuit for f belongs, in the worst case, to O(22n+log2 p), while for the standard automaton
it belongs, in the worst case, to Omn+log2 p. Results a decrease in size belonging to O(2n(m−2)). The time
performance decreases linearly with m, while the size decreases exponentially with m. There is no room
for debate: when possible, the S3A is the solution.

Multi-port S3A

Because the binary functions dominate the class of arithmetic and logic functions, multi-port S3As are
used in designing the executing core of any processing element. The most frequently used multi-port
S3A is a 3-port S3A. Two ports are used to fetch the operands and the third for selecting the destination
of the result. The following definition refers only the the half-automaton, because only the way the
loop is closed in important. We can get the output of the system in various ways, depending on the
application.gg

Definition 8.13 A 3-port Structured State Space Half-Automaton, S3HA is defined as following:

S3HA = (X×DA×LA×RA,Q, f )

where:

• Q= (Q0×Q1× . . . ,×Qs−1) : is the structured state space described as a Cartesian set of elements
binary represented on m bits

• X : the finite set of inputs binary represented on p bits

• DA : the finite set of codes used to select the element of the set Q to be modified (is the destination
of the change) in the current state transition

• LA : the finite set of codes used to select the element of the set Q to be used as left operand in the
current state transition

• RA : the finite set of codes used to select the element of the set Q to be used as right operand in
the current state transition

• f : (X ×LA×RA×Q) = (X ×P(i,s,Q)×P( j,s,Q)) = (X ×Qi×Q j)→ P(k,s,Q) = Qk is the
state transition function where i ∈ LA, j ∈ RA, k ∈ DA
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� write enable

�
�
�
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MUX
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Figure 8.10: 32-bit RALU.

⋄

Example 8.3 Let be a RALU designed with two modules already presented in the previous sections:
the ALU exemplified in Example 6.8 and the register file presented in Simulation 7.5. In Figure 16.5 is
represented the schematic of a 32-bit RALU.
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/ * ************************************************************************
F i l e : RALU . v
C i r c u i t name : RALU: R e g i s t e r f i l e w i t h A r i t h m e t i c and Log ic Un i t
D e s c r i p t i o n : r e g i s t e r f i l e w i t h 16 32− b i t r e g i s t e r and an ALU w i t h 8

g e n e r i c a r i t h m e t i c and l o g i c f u n c t i o n s .
************************************************************************ * /
module RALU( output [ 3 1 : 0 ] l e f t o u t ,

output [ 3 1 : 0 ] r i g h t o u t ,
output c a r r y O u t ,
input l o a d ,
input [ 3 : 0 ] l e f t a d d r ,
input [ 3 : 0 ] r i g h t a d d r ,
input [ 3 : 0 ] d e s t a d d r ,
input w r i t e e n a b l e ,
input [ 3 1 : 0 ] i n ,
input c a r r y I n ,
input [ 2 : 0 ] func ,
input c l o c k ) ;

wire [ 3 1 : 0 ] o u t ;

r e g i s t e r f i l e r f ( . l e f t o p e r a n d ( l e f t o u t ) ,
. r i g h t o p e r a n d ( r i g h t o u t ) ,
. r e s u l t ( o u t ) ,
. l e f t a d d r ( l e f t a d d r ) ,
. r i g h t a d d r ( r i g h t a d d r ) ,
. d e s t a d d r ( d e s t a d d r ) ,
. w r i t e e n a b l e ( w r i t e e n a b l e ) ,
. c l o c k ( c l o c k ) ) ;

ALU a l u ( . c a r r y I n ( c a r r y I n ) ,
. f unc ( func ) ,
. l e f t ( l o a d ? i n : l e f t o u t ) ,
. r i g h t ( r i g h t o u t ) ,
. c a r r y O u t ( c a r r y O u t ) ,
. o u t ( o u t ) ) ;

endmodule

⋄

8.3.4 ∗ Accumulator Automaton
The accumulator automaton is a generalization of the counter automaton. A counter can add 1 to the value of its
state in each clock cycle. An accumulator automaton can add in each clock cycle any value applied on its inputs.

Many applications require the accumulator function performed by a system which adds a string of numbers
returning the final sum and all partial results – the prefixes. Let be p numbers x1, . . . ,xp. The sum-prefixes are:
y1 = x1
y2 = x1 + x2
y3 = x1 + x2 + x3
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. . .
yp = x1 + x2 + . . .+ xp.

This example of arithmetic automata generates at each clock cycle one prefix starting with y1. The initial
value in the register Rm+n is zero. The structure is presented in Figure 8.11 and consists in an adder, ADDm+n, two
multiplexors and a state register, Rm+n. This automaton has 2m+n states and computes sum prefixes for p = 2m

numbers, each represented with n bits. The supplementary m bits are needed because in the worst case adding two
numbers of n bits results a number of n+1 bits, and so on, ... adding 2m n-bit numbers results, in the worst case, a
n+m-bit number. The automaton must be dimensioned such as in the worst case the resulting prefix can be stored
in the state register. The two multiplexors are used to initialize the system clearing the register (for acc = 0 and
clear = 1), to maintain unchanged the accumulated value (for acc = 0 and clear = 0), or to accumulate the
n-bit input value (for acc = 1 and clear = 0). It is obvious the accumulate function has priority: for acc = 1

and clear = 1 the automaton accumulates ignoring the clear command.

?

?
(m+n)×EMUX

?

?

(m+n)×EMUX

?

Rm+n

?
01

out

clock

�

acc

clear

?

01

?

�

?

ADDm+n

m+n

A0 Bm+n−1 B0. . . . . .

Sm+n−1 S0. . .

in

nm

Am+n−1

Figure 8.11: Accumulator automaton. It can be used as sum prefix automaton because in each clock cycle
outputs a new value as a result of a sequential addition of a stream of signed integers.

The size of the systems depends on the speed of adder and can be found between O(m+ n) (for ripple carry
adder) and O((m+n)3) (for carry-look-ahead adder).

It is evident that this automaton is a simple one, having a constant sized definition. The four components are all
simple recursive defined circuits. This automaton can be build for any number of states using the same definition.
In this respect this automaton is a “non-finite”, functional automaton.

8.3.5 ∗ Sequential multiplication

Multiplication is performed sequentially by repeated additions and shifts. The n-bit multiplier is inspected and
the multiplicand is accumulated shifted according to the position of the inspected bit or bits. If in each cycle one
bit is inspected (radix-2 multiplication), then the multiplication is is performed in n cycles. If 2 bits are inspected
(radix-2 multiplication) in each cycle, then the operation is performed in n/2 cycles, and so on.

∗ Radix-2 multiplication

The generic three-register structure for radix-2 multiplication is presented in the following Verilog module.
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op2 prod op1
en en en

Combinatorial Logic
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6 6? ?6?

-
?

op com

product[2*n-1:n] product[n-1:0]

Figure 8.12: Radix-2 sequential multiplier.

/ * ************************************************************************
F i l e name : ra d 2 m u l t . v
C i r c u i t name : Radix −2 M u l t i p l i e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a r a d i x −2 s e q u e n t i a l m u l t i p l i e r
************************************************************************ * /

module r a d 2 m u l t # ( parameter n = 8)
( output [2* n − 1 : 0 ] p r o d u c t , / / r e s u l t o u t p u t

input [ n − 1 : 0 ] op , / / operands i n p u t
input [ 2 : 0 ] com , / / command i n p u t
input c l o c k ) ;

reg [ n − 1 : 0 ] op2 , / / m u l t i p l i c a n d
op1 , / / m u l t i p l i e r
prod ; / / upper b i t s o f r e s u l t

wire [ n : 0 ] sum ;

a s s i g n sum = prod + op2 ;

always @( posedge c l o c k ) i f ( com [ 2 ] )
case ( com [ 1 : 0 ] )

2 ’ b00 : prod <= 0 ; / / c l e a r prod
2 ’ b01 : op1 <= op ; / / l oad m u l t i p l i e r
2 ’ b10 : op2 <= op ; / / l oad m u l t i p l i c a n d
2 ’ b11 : {prod , op1} <= ( op1 [ 0 ] == 1) ?

{sum , op1 [ n − 1 : 1 ]} :
{prod , op1} >> 1 ; / / m u l t i p l i c a t i o n s t e p

endcase

a s s i g n p r o d u c t = {prod , op1 } ;
endmodule

The sequence of commands applied to the previous module is:



8.3. FUNCTIONAL AUTOMATA: THE SIMPLE AUTOMATA 277

i n i t i a l begin com = 3 ’ b100 ;
#2 com = 3 ’ b101 ;

op = 8 ’ b0000 1001 ;
#2 com = 3 ’ b110 ;

op = 8 ’ b0000 1100 ;
#2 com = 3 ’ b111 ;
#2 com = 3 ’ b111 ;
#2 com = 3 ’ b111 ;
#2 com = 3 ’ b111 ;
#2 com = 3 ’ b111 ;
#2 com = 3 ’ b111 ;
#2 com = 3 ’ b111 ;
#2 com = 3 ’ b111 ;
#2 com = 3 ’ b000 ;
#2 $ s t o p ;

end

In real application the first three steps can be merged in one, depending on the way the multiplier is connected.
The effective number of clock cycles for multiplication is n.

∗ Radix-4 multiplication

The time performance for the sequential multiplication is improved if in each clock cycle 2 bits are considered in-
stead of one. In order to keep simple the operation performed in each cycle a small and simple two-state automaton
is included in design.

op2 prod op1
en en en

Combinatorial Logic

? ? ?

? ?

6 6? ?6?

-
?

op com

ptoduct[2*n-1:0] product[n-1:0]

CLC

state

?6

? ?

op1[1:0]

Figure 8.13: Radix-4 sequential multiplier.

Let us consider positive integer multiplication. The design inspects by turn each 2-bit group of the multiplier,
m[i+1:i] for i = 0, 2, ... n-2, doing the following simple actions:

m[i+1:i] = 00 : adds 0 to the result and multiply by 4 the multiplicand

m[i+1:i] = 01 : adds the multiplicand to the result and multiply by 4 the multiplicand

m[i+1:i] = 10 : adds twice the multiplicand to the result and multiply by 4 the multiplicand

m[i+1:i] = 11 : subtract the multiplicand from the results, multiply by 4 the multiplicand, and sends to the
next cycle the information that the current value of multiplicand must be added 4 times to the result
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The inter-cycle message is stored in the state of the automaton. In the initial cycle the state of the automaton is
ignored, while in the next stages it is added to the value of m[i+1:i].

/ * ************************************************************************
F i l e name : ra d 4 m u l t . v
C i r c u i t name : Radix −4 M u l t i p l i e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e r a d i x −4 m u l t i p l i e r c i r c u i t
************************************************************************ * /

module r a d 4 m u l t # ( parameter n = 8)
( output [2* n − 1 : 0 ] p r o d u c t , / / r e s u l t o u t p u t

input [ n − 1 : 0 ] op , / / operands i n p u t
input [ 2 : 0 ] com , / / command i n p u t
input c l o c k ) ;

reg [ n − 1 : 0 ] op2 , op1 ; / / m u l t i p l i c a n d , m u l t i p l i e r
reg [ n + 1 : 0 ] prod ; / / upper p a r t o f r e s u l t
reg s t a t e ; / / s t a t e r e g i s t e r

reg [ n + 1 : 0 ] n e x t P r o d ;
reg n e x t S t a t e ;

wire [2* n + 1 : 0 ] n e x t ;
/ *
com = 3 ’ b000 / / nop
com = 3 ’ b001 / / c l e a r prod r e g i s t e r & i n i t i a l i z e automaton
com = 3 ’ b010 / / l oad op1
com = 3 ’ b011 / / l oad op2
com = 3 ’ b101 / / mu l t
com = 3 ’ b110 / / l a s t S t e p
* /
always @( posedge c l o c k )

case ( com )
3 ’ b001 : begin prod <= 0 ;

s t a t e <= 0 ;
end

3 ’ b010 : op1 <= op ;
3 ’ b011 : op2 <= op ;
3 ’ b101 : begin {prod , op1} <= n e x t ;

s t a t e <= n e x t S t a t e ;
end

3 ’ b110 : i f ( s t a t e ) prod <= prod + op2 ;
d e f a u l t prod <= prod ;

endcase

a s s i g n n e x t = {{2{ n e x t P r o d [ n +1]}} , nex tProd , op1 [ n − 1 : 2 ] } ;
/ / b e g i n a l g o r i t h m

always @( * )
i f ( s t a t e )

case ( op1 [ 1 : 0 ] )
2 ’ b00 : begin n e x t P r o d = prod + op2 ;
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n e x t S t a t e = 0 ;
end

2 ’ b01 : begin n e x t P r o d = prod + ( op2 << 1) ;
n e x t S t a t e = 0 ;

end
2 ’ b10 : begin n e x t P r o d = prod − op2 ;

n e x t S t a t e = 1 ;
end

2 ’ b11 : begin n e x t P r o d = prod ;
n e x t S t a t e = 1 ;

end
endcase

e l s e case ( op1 [ 1 : 0 ] )
2 ’ b00 : begin n e x t P r o d = prod ;

n e x t S t a t e = 0 ;
end

2 ’ b01 : begin n e x t P r o d = prod + op2 ;
n e x t S t a t e = 0 ;

end
2 ’ b10 : begin n e x t P r o d = prod + ( op2 << 1) ;

n e x t S t a t e = 0 ;
end

2 ’ b11 : begin n e x t P r o d = prod − op2 ;
n e x t S t a t e = 1 ;

end
endcase

/ / end a l g o r i t h m
a s s i g n p r o d u c t = { prod [ n − 1 : 0 ] , op1 } ;

endmodule

The sequence of commands for n = 8 is:

i n i t i a l begin com = 3 ’ b001 ;
#2 com = 3 ’ b010 ;

op = 8 ’ b1100 1111 ;
#2 com = 3 ’ b011 ;

op = 8 ’ b1111 1111 ;
#2 com = 3 ’ b101 ;
#2 com = 3 ’ b101 ;
#2 com = 3 ’ b101 ;
#2 com = 3 ’ b101 ;
#2 com = 3 ’ b110 ;
#2 com = 3 ’ b000 ;
#2 $ s t o p ;

end

The effective number of clock cycles for positive integer radix-4 multiplication is n/2+1.
Let’s now solve the problem multiplying signed integers. The Verilog description of the circuit is:
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/ * ************************************************************************
F i l e name : s i g n e d R a d 4 m u l t . v
C i r c u i t name : S ig ne d Radix −4 M u l t i p l i e r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e r a d i x −4 m u l t i p l i e r f o r

s i g n e d numbers
************************************************************************ * /

module s ignedRad4mul t # ( parameter n = 8)
( output [2* n − 1 : 0 ] p r o d u c t , / / r e s u l t o u t p u t

input [ n − 1 : 0 ] op , / / operands i n p u t
input [ 2 : 0 ] com , / / command i n p u t
input c l o c k ) ;

reg [ n − 1 : 0 ] op1 ; / / s i g n e d m u l t i p l i e r
reg [ n : 0 ] op2 ; / / s i g n e d m u l t i p l i c a n d
reg [ n : 0 ] prod ; / / upper p a r t o f t h e s i g n e d r e s u l t
reg s t a t e ; / / s t a t e r e g i s t e r

reg [ n : 0 ] n e x t P r o d ;
reg n e x t S t a t e ;

wire [2* n : 0 ] n e x t ;
/ *
com = 3 ’ b000 / / nop
com = 3 ’ b001 / / c l e a r prod r e g i s t e r & i n i t i a l i z e automaton
com = 3 ’ b010 / / l oad op1
com = 3 ’ b011 / / l oad op2 w i t h one b i t s i g n e x p a n s i o n
com = 3 ’ b100 / / mu l t
* /
always @( posedge c l o c k )

case ( com )
3 ’ b001 : begin prod <= 0 ;

s t a t e <= 0 ;
end

3 ’ b010 : op1 <= op ;
3 ’ b011 : op2 <= {op [ n − 1] , op } ;
3 ’ b100 : begin {prod , op1} <= n e x t ;

s t a t e <= n e x t S t a t e ;
end

d e f a u l t prod <= prod ;
endcase

a s s i g n n e x t = {{2{ n e x t P r o d [ n ]}} , nex tProd , op1 [ n − 1 : 2 ] } ;
/ / b e g i n a l g o r i t h m

always @( * )
i f ( s t a t e )

case ( op1 [ 1 : 0 ] )
2 ’ b00 : begin n e x t P r o d = prod + op2 ;

n e x t S t a t e = 0 ;
end

2 ’ b01 : begin n e x t P r o d = prod + ( op2 << 1) ;
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n e x t S t a t e = 0 ;
end

2 ’ b10 : begin n e x t P r o d = prod − op2 ;
n e x t S t a t e = 1 ;

end
2 ’ b11 : begin n e x t P r o d = prod ;

n e x t S t a t e = 1 ;
end

endcase
e l s e case ( op1 [ 1 : 0 ] )

2 ’ b00 : begin n e x t P r o d = prod ;
n e x t S t a t e = 0 ;

end
2 ’ b01 : begin n e x t P r o d = prod + op2 ;

n e x t S t a t e = 0 ;
end

2 ’ b10 : begin n e x t P r o d = prod − ( op2 << 1) ;
n e x t S t a t e = 1 ;

end
2 ’ b11 : begin n e x t P r o d = prod − op2 ;

n e x t S t a t e = 1 ;
end

endcase
/ / end a l g o r i t h m

a s s i g n p r o d u c t = { prod [ n − 1 : 0 ] , op1 } ;
endmodule

The sequence of commands for n = 8 is:

i n i t i a l begin com = 3 ’ b001 ;
#2 com = 3 ’ b010 ;

op = 8 ’ b1111 0001 ;
#2 com = 3 ’ b011 ;

op = 8 ’ b1111 0001 ;
#2 com = 3 ’ b100 ;
#2 com = 3 ’ b100 ;
#2 com = 3 ’ b100 ;
#2 com = 3 ’ b100 ;
#2 com = 3 ’ b000 ;
#2 $ s t o p ;

end

The effective number of clock cycles for signed integer radix-4 multiplication is n/2.

8.3.6 ∗ “Bit-eater” automaton
A very useful function is to search the bits of a binary word in order to find the positions occupied by the 1s.
For example, inspecting the number 00100100 we find in 2 steps a 1 on the 5-th position and another on the 2-
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nd position. A simple automaton does this operation in a number of clock cycles equal with the number of 1s
contained in its initial state. In Figure 8.14 is represented The “bit-eater” automaton which is a simple machine
containing:
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Figure 8.14: “Bit-eater” automaton. Priority encoder outputs the index of the most significant 1 in register,
and the loop switches it into 0 using the demultiplexer to “point” it and a XOR to invert it.

• an n-bit state register

• a multiplexer used to initialize the automaton with the number to be inspected, if load = 1, then the register
takes the input value, else the automaton’s loop is closed

• a priority encoder circuit which computes the index of the most significant bit of the state and activates the
demultiplexer (E ′ = 0), if its enable input is activated, (eat = 1)

• an enabled decoder (or a demultiplexor) which decodes the value generated by the priority encoder applying
1 only to the input of one XOR circuit if zero = 0 indicating at least one bit of the state word is 1

• n 2-input XORs used to complement the most significant 1 of the state.

In each clock cycle after the initialization cycle the output takes the value of the index of the most significant
bit of state having the value 1, and the next state is computed clearing the pointed bit.

Another, numerical interpretation is: while state ̸= 0, the output of the automaton takes the integer value of
the base 2 logarithm of the state value, |log2(state)|, and the next state will be next state = state−|log2(state)|.
If state = 0, then n bit = 1, the output takes the value 0, and the state remains in 0.

8.3.7 ∗ Sequential divider
The sequential divisor circuit receives two n-bit positive integers, the dividend and the divisor, and returns other
n-bit positive integers: the quotient and the remainder. The sequential algorithm to compute:

dividend/divisor = quotient + remainder

a sort of “trial & error” algorithm which computes the n bits of the quotient starting with quotient[n-1]. Then in
the first step remainder = dividend - (divisor << (n-1)) is computed and if the result is a positive num-
ber the most significant bit of the quotient is 1 and the operation is validated as the new state of the circuit, else the
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most significant bit of the quotient is 0. Next step we try with divisor << (n-2) computing quotient[n-2],
and so on until the quotient[o] bit is determined. The structure of the circuit is represented in figure 8.15.
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Figure 8.15: Sequential divisor.

The Verilod description of the circuit is:
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/ * ************************************************************************
F i l e name : d i v i s o r . v
C i r c u i t name : S e q u e n t i a l D i v i s o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a s e q u e n t i a l d i v i s o r
************************************************************************ * /

module d i v i s o r # ( parameter n = 8 ) ( output reg [ n − 1 : 0 ] q u o t i e n t ,
output reg [ n − 1 : 0 ] r e m a i n d e r ,
output e r r o r ,
input [ n − 1 : 0 ] d i v i d e n d ,
input [ n − 1 : 0 ] d i v i s o r ,
input [ 1 : 0 ] com ,
input c l k ) ;

parameter nop = 2 ’ b00 ,
l d = 2 ’ b01 ,
d i v = 2 ’ b10 ;

wire [ n : 0 ] sub ;

a s s i g n e r r o r = ( d i v i s o r == 0) & ( com == d i v ) ;
a s s i g n sub = { r ema inde r , q u o t i e n t [ n −1]} − {1 ’ b0 , d i v i s o r } ;

always @( posedge c l k )
i f ( com == l d )

begin q u o t i e n t <= d i v i d e n d ;
r e m a i n d e r <= 0 ;

end
e l s e

i f ( com == d i v )
begin q u o t i e n t <= { q u o t i e n t [ n − 2 : 0 ] , ˜ sub [ n ]} ;

r e m a i n d e r <= sub [ n ] ?
{ r e m a i n d e r [ n − 2 : 0 ] , q u o t i e n t [ n −1]} :

sub [ n − 1 : 0 ] ;
end

endmodule

8.4 ∗ Composing with simple automata
Using previously defined simple automata some very useful subsystem can be designed. In this section are
presented some subsystems currently used to provide solutions for real applications: Last-In First-Out memory
(LIFO), First-In-First-Out memory (FIFO), and a version of the multiply accumulate circuit (MACC). All are sim-
ple circuits because result as simple compositions of simple circuits, and all are expandable for any n . . .m, where
n . . .m are a parameters defining different part of the circuit. For example, the memory size and the word size are
independent parameters is a FIFO implementation.

8.4.1 ∗ LIFO memory

The LIFO memory or the stack memory has many applications in structuring the processing systems. It is used
both for building the control part of the system, or for designing the data section of a processing system.
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Definition 8.14 LIFO memory implements a data structure which consists of a string S = <s0, s1, s2, ...>

of maximum 2m n-bit recordings accessed for write, called push, and read, called pop, at the same end, s0, called
top of stack (TOS). ⋄

Example 8.4 Let be the stack S = <s0, s1, s2, ...>. It evolve as follows under the sequence of five com-
mands:

push a --> S = <a, s0, s1, s2, ...>

push b --> S = <b, a, s0, s1, s2, ...>

pop --> S = <a, s0, s1, s2, ...>

pop --> S = <s0, s1, s2, ...>

pop --> S = <s1, s2, ...>

⋄

Real applications request additional functions for a LIFO used for expression evaluation. An minimally ex-
panded set of functions for the LIFO S = <s0, s1, s2, ...> contains the following operations:

• nop: no operation; the contents of S in untouched

• write a: write a in TOS

<s0, s1, s2, ...> --> <a, s1, s2, ...>

used for unary operations; for example:
a = s0 + 1

the TOS is incremented and write back in TOS (pop, push = write)

• pop:
<s0, s1, s2, ...> --> <s1, s2, ...>

• popwr a: pop & write
<s0, s1, s2, ...> --> <a, s2, ...>

used for binary operations; for example:
a = s0 + s1

the first two positions in LIFO are popped, added and the result is pushed back into the LIFO memory (pop,
pop, push = pop, write)

• push a:
<s0, s1, s2, ...> --> <a, s0, s1, s2, ...>

A possible implementation of such a LIFO is presented in Figure 11.2, where:

• Register File is organized, using the logic surrounding it, as a 2m n-bit stream of words accessed at TOS

• LeftAddrReg is a m-bit register containing the pointer to TOS = s0

• Dec is the decrement circuit pointing to s1

• IncDec is the circuit which increment, decrement or do not touch the content of the register LeftAddrReg
as follows:

– increment for push

– decrement for pop or popwr

– keeps unchanged for nop or write

Its output is used to select the destination in Register File and to up date, in each clock cycle, the content
of the register LeftAddrReg.

A Verilog description of the previously defined LIFO (stack) is:



286 CHAPTER 8. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

leftAddr

result

destAddr

rightAddr

leftOp

rightOp

Register File

writeEnable

LeftAddrReg

IncDec

Dec -

-

-

6

-

-

-

?

6

-

-

com

in

stack1

stack0

6
reset

Figure 8.16: LIFO memory. The LeftAddrReg register is, in conjunction with IncDec commbinational circuit,
an up/downn counter used as stack pointer to organize in Register File an expression evaluation stack.

/ * ************************************************************************
F i l e name : l i f o . v
C i r c u i t name : Las t −In F i r s t −Out Memory
************************************************************************ * /
module l i f o # ( ‘ i n c l u d e ” 0 p a r a m e t e r s . v ” ) ( output [m− 1 : 0 ] s t a c k 0 , s t a c k 1 ,

input [m− 1 : 0 ] i n ,
input [ 2 : 0 ] com ,
input r e s e t , c l o c k ) ;

/ * The command codes : nop = 3 ’ b000 , / / no o p e r a t i o n
w r i t e = 3 ’ b001 , / / we
pop = 3 ’ b010 , / / dec
popwr = 3 ’ b011 , / / dec , we
push = 3 ’ b101 ; / / inc , we * /

reg [ n − 1 : 0 ] l e f t A d d r ; / / t h e main p o i n t e r
wire [ n − 1 : 0 ] nex tAddr ;

/ / The i n c r e m e n t / decremen t c i r c u i t
a s s i g n nextAddr = com [ 2 ] ? ( l e f t A d d r + 1 ’ b1 ) :

( com [ 1 ] ? ( l e f t A d d r − 1 ’ b1 ) : l e f t A d d r ) ;
/ / The a d d r e s s r e g i s t e r f o r TOS

always @( posedge c l o c k ) i f ( r e s e t ) l e f t A d d r <= 0 ;
e l s e l e f t A d d r <= nextAddr ;

/ / The r e g i s t e r f i l e
reg [m− 1 : 0 ] f i l e [ 0 : ( 1 ’ b1 << n ) − 1 ] ;

a s s i g n s t a c k 0 = f i l e [ l e f t A d d r ] ,
s t a c k 1 = f i l e [ l e f t A d d r − 1 ’ b1 ] ;

always @( posedge c l o c k ) i f ( com [ 0 ] ) f i l e [ nex tAddr ] <= i n ;
endmodule
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Faster implementations can be done using registers instead of different kind of RAMs and counters (see the
chapter SELF-ORGANIZING STRUCTURES: N-th order digital systems). For big stacks, optimized solutions are
obtained combining a small register implemented stack with a big RAM based implementation.

8.4.2 ∗ FIFO memory
The FIFO memory, or the queue memory is used to interconnect subsystems working logical, or both logical and
electrical, asynchronously.x

Definition 8.15 FIFO memory implements a data structure which consists in a string of maximum 2m n-bit record-
ings accessed for write and read, at its two ends. Full and empty signals are provided indicating the write opera-
tion or the read operation are not allowed. ⋄

RAM

write counter

eq

read counter

-

up uprst rst

6 6

reset

read

- �

�
w addr[n-1:0]

in -- out

empty

w addr[n-1:0] r addr[n-1:0]

in

clock

full

r addr[n-1:0]

w addr[n]

we

write

r addr[n]

out

Figure 8.17: FIFO memory. Two pointers, evolving in the same direction, and a two-port RAM implement a
LIFO (queue) memory. The limit flags are computed combinational from the addresses used to write and to read
the memory.

A FIFO is considered synchronous if both read and write signals are synchronized with the same clock signal.
If the two commands, read and write, are synchronized with different clock signals, then the FIFO memory is
called asynchronous.

In Figure 8.17 is presented a solution for the synchronous version, where:

• RAM is a 2n m-bit words two-port asynchronous random access memory, one port for write to the address
w addr and another for read form the address r addr

• write counter is an (n+ 1)-bit resetable counter incremented each time a write is executed; its output is
w addr[n:0], initially it is reset

• read counter is an (n+ 1)-bit resetable counter incremented each time a read is executed; its output is
r addr[n:0], initially it is reset

• eq is a comparator activating its output when the least significant n bits of the two counters are identical.
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FIFO works like a circular memory addressed by two pointers (w addr[n-1:0] and r addr[n-1:0]) running
on the same direction. If the write pointer after a write operation becomes equal with the read pointer, then the
memory is full and the full signal is 1. If the read pointer after a read operation becomes equal with the write
pointer, then the memory is empty and the empty signal is 1. The n+1-th bit in each counter is used to differentiate
between empty and full when w addr[n-1:0] and r addr[n-1:0] are the same. If w addr[n] and r addr[n]

are different, then w addr[n-1:0] = r addr[n-1:0] means full, else it means empty.
The circuit used to compare the two addresses is a combinational one. Therefore, its output has a hazardous

behavior which affects the outputs full and empty. These two outputs must be used carefully in designing the
system which includes this FIFO memory. The problem can be managed because the system works in the same
clock domain (clock is the same for both ends of FIFO and for the entire system). We call this kind of FIFO
synchronous FIFO.

VeriSim 8.1 A Verilog synthesisable description of a synchronous FIFO follows:

/ * ************************************************************************
F i l e name : s i m p l e f i f o . v
C i r c u i t name : Synchronous F i r s t −In F i r s t O u t memory
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a s y n c h r o n o u s FIFO
************************************************************************ * /

module s i m p l e f i f o ( output [ 3 1 : 0 ] o u t ,
output empty ,
output f u l l ,
input [ 3 1 : 0 ] i n ,
input w r i t e ,
input r e a d ,
input r e s e t ,
input c l o c k ) ;

wire [ 9 : 0 ] w r i t e a d d r , r e a d a d d r ;

c o u n t e r w r i t e c o u n t e r ( . o u t ( w r i t e a d d r ) ,
. r e s e t ( r e s e t ) ,
. c o u n t u p ( w r i t e ) ,
. c l o c k ( c l o c k ) ) ,

r e a d c o u n t e r ( . o u t ( r e a d a d d r ) ,
. r e s e t ( r e s e t ) ,
. c o u n t u p ( r e a d ) ,
. c l o c k ( c l o c k ) ) ;

d u a l r a m memory ( . o u t ( o u t ) ,
. i n ( i n ) ,
. r e a d a d d r ( r e a d a d d r [ 8 : 0 ] ) ,
. w r i t e a d d r ( w r i t e a d d r [ 8 : 0 ] ) ,
. we ( w r i t e ) ,
. c l o c k ( c l o c k ) ) ;

a s s i g n eq = r e a d a d d r [ 8 : 0 ] == w r i t e a d d r [ 8 : 0 ] ,
phase = ˜ ( r e a d a d d r [ 9 ] == w r i t e a d d r [ 9 ] ) ,
empty = eq & phase ,
f u l l = eq & ˜ phase ;

endmodule
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/ * ************************************************************************
F i l e name : c o u n t e r . v
C i r c u i t name : Counter
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e c o u n t e r s used t o imp lemen t

t h e a s y n c h r o n o u s FIFO
************************************************************************ * /

module c o u n t e r ( output reg [ 9 : 0 ] o u t ,
input r e s e t ,
input coun t up ,
input c l o c k ) ;

always @( posedge c l o c k ) i f ( r e s e t ) o u t <= 0 ;
e l s e i f ( c o u n t u p ) o u t <= o u t + 1 ;

endmodule

/ * ************************************************************************
F i l e name : dua l ram . v
C i r c u i t name : Dual−Por t RAM
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e dual −p o r t RAM used t o

imp lemen t t h e s y n c h r o n o u s FIFO
************************************************************************ * /

module d u a l r a m ( output [ 3 1 : 0 ] o u t ,
input [ 3 1 : 0 ] i n ,
input [ 8 : 0 ] r e a d a d d r ,
input [ 8 : 0 ] w r i t e a d d r ,
input we ,
input c l o c k ) ;

reg [ 6 3 : 0 ] mem[ 5 1 1 : 0 ] ;
a s s i g n o u t = mem[ r e a d a d d r ] ;
always @( posedge c l o c k ) i f ( we ) mem[ w r i t e a d d r ] <= i n ;

endmodule

⋄

An asynchronous FIFO uses two independent clocks, one for write counter and another for read

counter. This type of FIFO is used to interconnect subsystems working in different clock domains. The previ-
ously described circuit is unable to work as an asynchronous FIFO. The signals empty and full are meaningless,
being generated in two clock domains. Indeed, write counter and read counter are triggered by different
clocks generating the signal eq with hazardous transitions related to two different clocks: write clock and read
clock. This signal can not be used neither in the system working with write clock nor in the system working with
read clock. Read clock is unable to avoid the hazard generated by write clock, and write clock is unable to avoid
the hazard generated by read clock. Special tricks must be used.

8.4.3 ∗ The Multiply-Accumulate Circuit
The functional automata can be composed in order to perform useful functions in a digital system. Otherwise,
we can say that a function can be decomposed in many functional units, some of them being functional automata,
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in order to implement it efficiently. Let’s take the example of the Multiply-Accumulate Circuit (MACC) and
implement it in few versions. It is mainly used to implement one of the most important numerical functions
performed in our digital machines, the scalar product of two vectors: a1×b1 + . . .+an×bn.
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Figure 8.18:

We will offer in the following a solution involving two serially connected functional automata: an accumulator
automaton and “bits eater” automaton.

The starting idea is that the multiplication is also an accumulation. Thus we use an accumulator automaton for
implementing both operations, the multiplication and the sum of products, without any loss in the execution time.

The structure of the multiply-accumulate circuit is presented in Figure 8.19 and consists in:

“bits eater” automaton – used to indicates successively the positions of the bits having the value 1 from the first
operand ai; it also points out the end of the multiplication (see Figure 8.14)

combinational shifter – shifts the second operand, bi, with a number of positions indicated by the previous
automaton

accumulate automaton – performs the partial sums for each multiplication step and accumulate the sum of prod-
ucts, if it is not cleared after each multiplication (see Figure 8.11).

In order to execute a multiplication only we must execute the following steps:

• load the “beat-eater” automaton with the first operand and clear the content of the output register in accu-
mulator automaton

• select to the input the second operand which remains applied to the input of the shifter circuit during the
operation

• wait for the end of operation indicated by the done output.
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Figure 8.19: A multiply-accumulate circuit (MAC). A sequential version of MAC results serially connecting
an automaton, generating by turn the indexes of the binary ranges equal with 1 in multiplier, with a combinational
shifter and an accumulator.

The operation is performed in a number of clock cycles equal with the number of 1s of the first operand. Thus, the
mean execution time is proportional with n/2. To understand better how this machine works the next example will
be an automaton which controls it.

If a MACC function is performed the clear of the state register of the accumulator automaton is avoided after
each multiplication. Thus, the register accumulates the results of the successive multiplications.

8.4.4 ∗Weighted Pseudo-Random Generator
A Pseudo-Random Generator, PRG, generate a balanced sequence of 0s and 1s. There are applications for PRG
with programmable weight of 1’s. The solution5 starts with a n-bit LFSR which provides a pseudo-random se-
quence of 2n−1 n-bit numbers (revisit 8.3.2). A priority encoder is used to generate the selection bits for a n-input
one-bit multiplexer. An example, for n = 8 is represented in Figure 8.20. During a cycle of 255 states:

• the input in[7] will be selected 128 times

• the input in[6] will be selected 64 times

• ...

• the input in[0] will be selected once

Therefore, the binary sequence on the output wprs will be on 1 a time interval proportional with the number
w[7:0] applied on the multiplexer’s inputs. This means, if the output is measured randomly, then the probability
to find 1 is w/255, where w is the integer value coded by the input w. There are various applications for this circuit.

One application of this circuit is in designing an Digital-to-Analog Convertor, DAC. If the output is mediated
by an integrator, then the resulting DC level is proportional with the value w applied on the multiplexor’s input.

5The suggestion for this circuit comes from [Alfke ’73], p. 4-12.



292 CHAPTER 8. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

in[7] in[6] in[5] in[4] in[3] in[2] in[1] in[0]

sel[2]

sel[1]

sel[0]

MUX

out

Priority Encoder

LFSR(A6)

?

????????? ? ? ? ? ? ? ?

w[7] w[6] w[5] w[4] w[3] w[2] w[1] w[0]

?

-
-
-

clk

rst

wprs

Figure 8.20: Weighted Pseudo-Random Generator.

Another application is in stochastic computing. Let be two Weighted Pseudo-Random Generator with the
associated outputs, wprs(w1) and wprs(w2). If the sequence are independent, then ANDing them results a binary
sequence with the probability of 1 equal with (w1×w2)/2552. The 2-input AND performs the multiplication of
the two probabilities.

In the application note from [Alfke ’73], instead of the LFSR is used a 8-bit binary counter. More, it is
connected to the input of the priority encoder in two ways: with the output bits in normal order and with the output
bits in reverse order. Please compare these versions with the version just presented.

8.5 Finite Automata: the Complex Automata

After presenting the elementary small automata and the large and simple functional automata it is the
time to discuss about the complex automata. The main property of these automata is to use a random
combinational circuit, CLC, for computing the state transition function and the output transition function.
Designing a finite automaton means mainly to design two CLC: the loop CLC (associated to the state
transition function f ) and the output CLC (associated to the output transition function g).

8.5.1 Representing finite automata

A finite automaton is represented by defining its transition functions f , the state transition function, and
g, the output transition function. For a half-automaton only the function f defined.

Flow-charts

A flow-chart contains for each state a circle and for each type of transition an arrow. In each clock cycle
the automaton “runs” on an arrow going from the current state to the next state. In our simple model the
“race” on arrow is done in the moment of the active edge of the clock.

The flow-chart for a half-automaton The first version is a pure symbolic representation, where the
flow chart is marked on each circle with the name of the state, and on each arrow with the transition
condition, if any. The initial states can be additionally marked with the minus sign (-), and the final states
can be additionally marked with the plus sign (+).
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Figure 8.21: Example of flow-chart for a half-automaton. The machine is a “double b detector”. It stops
when the first bb occurs.

The second version is used when the input are considered in the binary form. Instead of arches are
used rhombuses containing the symbol denoting a binary variable.

Example 8.5 Let be a finite half-automaton that receives on its input strings containing symbols from
the alphabet X = {a,b}. The machine stops in the final state when the first sequence bb is received. The
first version of the associated flow-chart is in Figure 8.21a. Here is how the machine works:

• the initial state is q0; if a is received the machine remains in the same state, else, if b is received,
then the machine switch in the state q1

• in the state q1 the machine “knows” that one b was just received; if a is received the half-
automaton switch back in q0, else, if b is received, then the machine switch in q2

• q2 is the final state; the next state is unconditionally q2.

The second version uses tests represented by a rhombus containing the tested binary input variable (see
(Figure 8.21b). The input I takes the binary value 0 for the the symbol a and the binary value 1 for the
symbol b. ⋄

The second version is used mainly when a circuit implementation is envisaged.

The flow-chart for a Moore automaton When an automaton is represented the output behavior must
be also included.

The first, pure symbolic version contains in each circle besides, the name of the sate, the value of
the output in that sates. The output of the automaton shows something which is meaningful for the user.
Each state generates an output value that can be different from the state’s name. The output set of value
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are used to classify the state set. The input events are mapped into the state set, and the state set is
mapped into the output set.
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q2/1, +

a

a

b

b

0

0

10

01

1

X0

X0

reset

a. b.

q0

q1

q2

Figure 8.22: Example of flow-chart for a Moore automaton. The output of this automaton tells us: “bb
was already detected”.

The second uses for each pair state/output one rectangle. Inside of the rectangle is the value of the
output and near to it is marked the state (by its name, by its binary code,, or both).

Example 8.6 The problem solved in the previous example is revisited using an automaton. The output
set is Y = {0,1}. If the output takes the value 1, then we learn that a double b was already received. The
state set Q = {q0,q1,q2} is divided in two classes: Q0 = {q0,q1} and Q1 = {q2}. If the automaton stays
in Q0 with out = 1, then it is looking for bb. If the automaton stays in Q1 with out = 1, then it stopped
investigating the input because a double b was already received.

The associated flow-chart is in, in the first version represented by Figure 8.22a. The states q0 and q1
belong to Q0 because in the corresponding circles we have q0/0 and q1/0. The state q2 belongs to Q1

because in the corresponding circle we have q2/1. Because the evolution from q2 does not depend by
input, the arrow emerging from the corresponding circle is not labelled.

The second version (see Figure 8.22b) uses three rectangles, one for each state. ⋄

A meaningful event on the input of a Moore automaton is shown on the output with a delay of a clock
cycle. All goes through the state set. In the previous example, if the second b from bb is applied on the
input in the period Ti of the clock cycle, then the automaton points out the event in the period Ti+1 of the
clock cycle.

The flow-chart for a Mealy automaton The first, pure symbolic version contains on each arrow be-
sides, the name of the condition, the value of the output generated in the state where the arrow starts with
the input specified on the arrow.

The Mealy automaton reacts on its outputs more promptly to a meaningful input event. The output
value depends on the input value from the same clock cycle.

The second, implementation oriented version uses rectangles to specify the output’s behavior.
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Figure 8.23: Example of flow-chart for a Mealy automaton. The occurrence of the second b from bb is
detected as fast as possible.

Example 8.7 Let us solve again the same problem of bb detection using a Mealy automaton. The result-
ing flow-chart is in Figure 8.23a. Now the output is activated (out = 1) when the automaton is in the
state q1 (one b was detected in the previous cycle) and the input takes the value b. The same condition
triggers the switch in the state q2. In the final state q2 the output is unconditionally 1. In the notation
−/1 the sign − stands for “don’t care”.

Figure 8.23b represents the second representation. ⋄

We can say the Mealy automaton is a “transparent” automaton, because a meaningful change on its
inputs goes directly to its output.

Transition diagrams

Flow-charts are very good to offer an intuitive image about how automata behave. The concept is very
well represented. But, automata are also actual machines. In order to help us to provide the real design
we need different representation. Transition diagrams are less intuitive, but they work better for helping
us to provide the image of the circuit performing the function of a certain automaton.
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Transition diagrams uses Vetch-Karnaugh diagrams, VKD, for representing the transition functions.
The representation maps the VKD describing the state set of the automaton into the VKDs defining the
function f and the function g.

Transition diagrams are about real stuff. Therefore, the symbols like a,b,q0, . . . must be codded
binary, because a real machine work with bits, 0 and 1, not with symbols.

The output is already codded binary. For the input symbols the code is established by “the user”
of the machine (similarly the output codes have been established by “the user”). Let say, for the input
variable, X0, was decided the following codification: a→ X0 = 0 and b→ X0 = 1.

Because the actual value of the state is “hidden” from the user, the designer has the freedom to
assign the binary values according to its own (engineering) criteria. Because the present approach is a
theoretical one, we do not have engineering criteria. Therefore, we are completely free to assign the
binary codes. Two option are presented:

option 1: q0 = 00, q1 = 01, q2 = 10

option 2: q0 = 00, q1 = 10, q2 = 11

For both the external behavior of the automaton must be the same.

Transition diagrams for half-automata The transition diagram maps the reference VKD into the next
state VKD, thus defining the state transition function. Results a representation ready to be used to design
and to optimize the physical structure of a finite half-automaton.

Example 8.8 The flow-chart from Figure 8.21 has two different correspondent representations as tran-
sition diagrams in Figure 8.24, one for the option 1 of coding (Figure 8.24a), and another for the option
2 (Figure 8.24b).
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Figure 8.24: Example of transition diagram for a half-automaton. a. For the option 1 of coding. b. For
the option 2 of coding.

In VKD S1,S0 each box contains a 2-bit code. Three of them are used to code the states, and one
will be ignored. VKD S+1 ,S

+
0 represents the transition from the corresponding states. Thus, for the first

coding option:
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• from the state codded 00 the automaton switch in the state 0x, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 01 (q1)

• from the state codded 01 the automaton switch in the state x0, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 10 (q2)

• from the state codded 10 the automaton switch in the same state, 10 that is the final state

• the transition from 11 is not defined.

If in the clock cycle Ti the state of the automaton is S1,S0 (defined in the reference VKD), then in the next
clock cycle, Ti+1, the automaton switches in the state S+1 ,S

+
0 (defined in the next state VKD).

For the second coding option:

• from the state codded 00 the automaton switch in the state X00, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 10 (q1)

• from the state codded 10 the automaton switch in the state X0X0, that is to say:

– if X0 = 0 then the next state is 00 (q0)

– if X0 = 1 then the next state is 11 (q2)

• from the state codded 11 the automaton switch in the same state, 11 that is the final state

• the transition from 01 is not defined.

⋄

The transition diagram can be used to extract the Boolean functions of the loop of the half-automaton.

Example 8.9 The Boolean function of the half-automaton working as “double b detector” can be ex-
tracted from the transition diagram represented in Figure 8.24a (for the first coding option). Results:

S+1 = S1 +X0S0

S+0 = X0S′1S′0

⋄
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Transition diagrams Moore automata The transition diagrams define the two transition functions
of a finite automaton. To the VKDs describing the associated half-automaton is added another VKD
describing the output’s behavior.

Example 8.10 The flow-chart from Figure 8.22 have a correspondent representation in the transition
diagrams from Figure 8.25a or Figure 8.25b. Besides the transition diagram for the state, the output
transition diagrams are presented for the two coding options.

For the first coding option:

• for the states coded with 00 and 01 the output has the value 0

• for the state coded with 10 the output has the value 1

• we do not care about how works the function g for the state coded with 11 because this code is
not used in defining our automaton (the output value can 0 or 1 with no consequences on the
automaton’s behavior).

⋄
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Figure 8.25: Example of transition diagram for a Moore automaton.

Example 8.11 The resulting output function is:

out = S1.

Now the resulting automaton circuit can be physically implemented, in the version resulting from the first
coding option, as a system containing a 2-bit register and few gates. Results the circuit in Figure 8.26,
where:

• the 2-bit register is implemented using two resetable D flip-flops

• the combinational loop for state transition function consists in few simple gates

• the output transition function is so simple as no circuit are needed to implement it.
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When reset = 1 the two flip-flops switch in 0. When reset = 0 the circuit starts to analyze the stream
received on input symbol by symbol. In each clock cycle a new symbol is received and the automaton
switches according to the new state computed by three gates. ⋄
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loop combinational circuit
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in = X0

Figure 8.26: The Moore version of “bb detector” automaton.

Transition diagrams Mealy automata The transition diagrams for a Mealy automaton are a little
different from those of Moore, because the output transition function depends also by the input variable.
Therefore the VKD defining g contains, besides 0s and 1s, the input variable.

Example 8.12 Revisiting the same problem result, in Figure 8.27 the transition diagrams associated to
the flow-chart from Figure 8.23.
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Figure 8.27: Example of transition diagram for a Mealy automaton.
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The two functions f are the same. The function g is defined for the first coding option (Figure 8.27a)
as follows:

• in the state coded by 00 (q0) the output takes value 0

• in the state coded by 01 (q1) the output takes value x

• in the state coded by 10 (q2) the output takes value 1

• in the state coded by 11 (unused) the output takes the “don’t care” value

Extracting the function out results:

out = S1 +X0S0

a more complex from compared with the Moore version. (But fortunately out = S+1 , and the same circuits
can be used to compute both functions. Please ignore. Engineering stuff.)
⋄

Procedures

The examples used to explain how the finite automata can be represented are simple because of obvious
reasons. The real life is much more complex and we need tools to face its real challenges. For real
problems software tools are used to provide actual machines. Therefore, software oriented representation
must be provided for representing automata. The so called Hardware Description Languages, HDLs, are
widely used to manage complex applications. (The Verilog HDL is used to exemplify the procedural
way to specify a finite automaton.)
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HDL representations for Moore automata A HDL (Verilog, in our example) representation consists
in a program module describing the connections and the behavior of the automaton.

Example 8.13 The same “bb detector” is used to exemplify the procedures used for the Moore automa-
ton representation.

/ * ************************************************************************
F i l e name : moore automaton . v
C i r c u i t name : An example o f Moore−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Moore f i n i t e automaton

d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am o f symbo l s b e l o n g i n g
t o t h e s e t {a , b}

************************************************************************ * /
module moore au tomaton ( out , in , r e s e t , c l o c k ) ;

/ / i n p u t codes
parameter a = 1 ’ b0 ,

b = 1 ’ b1 ;
/ / s t a t e codes

parameter i n i t s t a t e = 2 ’ b00 , / / t h e i n i t i a l s t a t e
o n e b s t a t e = 2 ’ b01 , / / t h e s t a t e f o r one b r e c e i v e d
f i n a l s t a t e = 2 ’ b10 ; / / t h e f i n a l s t a t e

/ / o u t p u t codes
parameter no = 1 ’ b0 , / / no bb y e t r e c e i v e d

yes = 1 ’ b1 ; / / two s u c c e s s i v e b have been r e c e i v e d
/ / e x t e r n a l c o n n e c t i o n s

input in , r e s e t , c l o c k ;
output o u t ;

reg [ 1 : 0 ] s t a t e ; / / s t a t e r e g i s t e r
reg o u t ; / / o u t p u t v a r i a b l e

/ / f : t h e s t a t e s e q u e n t i a l t r a n s i t i o n f u n c t i o n
always @( posedge c l o c k )

i f ( r e s e t ) s t a t e <= i n i t s t a t e ;
e l s e case ( s t a t e )

i n i t s t a t e : i f ( i n == b ) s t a t e <= o n e b s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

o n e b s t a t e : i f ( i n == b ) s t a t e <= f i n a l s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

f i n a l s t a t e : s t a t e <= f i n a l s t a t e ;
endcase

/ / g : t h e o u t p u t c o m b i n a t i o n a l t r a n s i t i o n f u n c t i o n
always @( s t a t e ) case ( s t a t e )

i n i t s t a t e : o u t = no ;
o n e b s t a t e : o u t = no ;
f i n a l s t a t e : o u t = yes ;
d e f a u l t : o u t = 1 ’ bx ;

endcase
endmodule



302 CHAPTER 8. AUTOMATA: SECOND ORDER, 2-LOOP DIGITAL SYSTEMS

For the delayed version there is the following code:

/ * ************************************************************************
F i l e name : m o o r e d e l a y e d a u t o m a t o n . v
C i r c u i t name : An example o f Moore−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e d e l a y e d Moore f i n i t e

automaton d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am o f symbo l s
b e l o n g i n g t o t h e s e t {a , b}

************************************************************************ * /
module m o o r e d e l a y e d a u t o m a t o n ( out , in , r e s e t , c l o c k ) ;
/ / i n p u t codes

parameter a = 1 ’ b0 ,
b = 1 ’ b1 ;

/ / s t a t e codes
parameter i n i t s t a t e = 2 ’ b00 , / / t h e i n i t i a l s t a t e

o n e b s t a t e = 2 ’ b01 , / / t h e s t a t e f o r one b r e c e i v e d
f i n a l s t a t e = 2 ’ b10 ; / / t h e f i n a l s t a t e

/ / o u t p u t codes
parameter no = 1 ’ b0 , / / no bb y e t r e c e i v e d

yes = 1 ’ b1 ; / / two s u c c e s s i v e b have been r e c e i v e d
/ / e x t e r n a l c o n n e c t i o n s

input in , r e s e t , c l o c k ;
output o u t ;

reg [ 1 : 0 ] s t a t e ; / / s t a t e r e g i s t e r
reg o u t ; / / o u t p u t r e g i s t e r

/ / f : t h e s t a t e s e q u e n t i a l t r a n s i t i o n f u n c t i o n
always @( posedge c l o c k )

i f ( r e s e t ) s t a t e <= i n i t s t a t e ;
e l s e case ( s t a t e )

i n i t s t a t e : i f ( i n == b ) s t a t e <= o n e b s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

o n e b s t a t e : i f ( i n == b ) s t a t e <= f i n a l s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

f i n a l s t a t e : s t a t e <= f i n a l s t a t e ;
endcase

/ / g : t h e d e l a y e d t r a n s i t i o n f u n c t i o n
always @( posedge c l o c k ) case ( s t a t e )

i n i t s t a t e : o u t <= no ;
o n e b s t a t e : o u t <= no ;
f i n a l s t a t e : o u t <= yes ;

endcase
endmodule

⋄
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HDL representations for Mealy automata A Verilog description consists in a program module de-
scribing the connections and the behavior of the automaton.

Example 8.14 The same “bb detector” is used to exemplify the procedures used for the Mealy automa-
ton representation.

/ * ************************************************************************
F i l e name : mea ly au toma ton . v
C i r c u i t name : An example o f Mealy−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Mealy f i n i t e automaton

d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am o f symbo l s b e l o n g i n g
t o t h e s e t {a , b}

************************************************************************ * /
module mea ly au toma ton ( out , in , r e s e t , c l o c k ) ;

parameter a = 1 ’ b0 ,
b = 1 ’ b1 ;

parameter i n i t s t a t e = 2 ’ b00 , / / t h e i n i t i a l s t a t e
o n e b s t a t e = 2 ’ b01 , / / t h e s t a t e f o r one b r e c e i v e d
f i n a l s t a t e = 2 ’ b10 ; / / t h e f i n a l s t a t e

parameter no = 1 ’ b0 , / / no bb y e t r e c e i v e d
yes = 1 ’ b1 ; / / two s u c c e s s i v e b have been r e c e i v e d

input in , r e s e t , c l o c k ;
output o u t ;
reg [ 1 : 0 ] s t a t e ;
reg o u t ;
always @( posedge c l o c k )

i f ( r e s e t ) s t a t e <= i n i t s t a t e ;
e l s e case ( s t a t e )

i n i t s t a t e : i f ( i n == b ) s t a t e <= o n e b s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

o n e b s t a t e : i f ( i n == b ) s t a t e <= f i n a l s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

f i n a l s t a t e : s t a t e <= f i n a l s t a t e ;
endcase

always @( s t a t e or i n ) case ( s t a t e )
i n i t s t a t e : o u t = no ;
o n e b s t a t e : i f ( i n == b ) o u t = yes ;

e l s e o u t = no ;
f i n a l s t a t e : o u t = yes ;
d e f a u l t : o u t = 1 ’ bx ;

endcase
endmodule
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For the delayed version:

/ * ************************************************************************
F i l e name : m e a l y d e l a y e d a u t o m a t o n . v
C i r c u i t name : An example o f Mealy−t y p e automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e Mealy f i n i t e automaton

d e s i g n e d t o d e t e c t ’ bb ’ i n a s t r e am o f symbo l s b e l o n g i n g
t o t h e s e t {a , b}

************************************************************************ * /
module m e a l y d e l a y e d a u t o m a t o n ( out , in , r e s e t , c l o c k ) ;

parameter a = 1 ’ b0 ,
b = 1 ’ b1 ;

parameter i n i t s t a t e = 2 ’ b00 , / / t h e i n i t i a l s t a t e
o n e b s t a t e = 2 ’ b01 , / / t h e s t a t e f o r one b r e c e i v e d
f i n a l s t a t e = 2 ’ b10 ; / / t h e f i n a l s t a t e

parameter no = 1 ’ b0 , / / no bb y e t r e c e i v e d
yes = 1 ’ b1 ; / / two s u c c e s s i v e b have been r e c e i v e d

input in , r e s e t , c l o c k ;
output reg o u t ;
reg [ 1 : 0 ] s t a t e ;
always @( posedge c l o c k )

i f ( r e s e t ) s t a t e <= i n i t s t a t e ;
e l s e case ( s t a t e )

i n i t s t a t e : i f ( i n == b ) s t a t e <= o n e b s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

o n e b s t a t e : i f ( i n == b ) s t a t e <= f i n a l s t a t e ;
e l s e s t a t e <= i n i t s t a t e ;

f i n a l s t a t e : s t a t e <= f i n a l s t a t e ;
endcase

always @( posedge c l o c k )
case ( s t a t e )

i n i t s t a t e : o u t <= no ;
o n e b s t a t e : i f ( i n == b ) o u t <= yes ;

e l s e o u t <= no ;
f i n a l s t a t e : o u t <= yes ;

endcase
endmodule

⋄

The procedural representations are used as inputs for automatic design tools.

8.5.2 Designing Finite Automata

Preliminary Examples

The behavior of a finite automaton can be defined in many ways. Graphs, transition tables, flow-charts,
transition V/K diagrams or HDL description are very good for defining the transition functions f and
g. All this forms provide non-recursive definitions. Thus, the resulting automata has the size of the
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definition in the same order with the size of the structure. Therefore, the finite automata are complex
structures even when they have small size.

In order to exemplify the design procedure for a finite automaton let be two examples, one dealing
with a 1-bit input string and another related with a system built around the multiply-accumulate circuit
(MAC) previously described.

Example 8.15 The binary strings 1n0m, for n≥ 1 and m≥ 1, are recognized by a finite half-automaton
by its internal states. Let’s define and design it. The transition diagram defining the behavior of the
half-automaton is presented in Figure 8.28, where:

q0

q1

q2

q3

1

1

0

0

�^

-

}

�

�U

1

0

w

reset

[10]

[11]

[01]

[00]

Figure 8.28: Transition diagram. The transition diagram for the half-automaton which recognizes strings of
form 1n0m, for n ≥ 1 and m ≥ 1. Each circle represent a state, each (marked) arrow represent a (conditioned)
transition.

• q0 - is the initial state in which 1 must be received, if not the the half-automaton switches in q3, the
error state

• q1 - in this state at least one 1 was received and the first 0 will switch the machine in q2

• q2 - this state acknowledges a well formed string: one or more 1s and at least one 0 are already
received

• q3 - the error state: an incorrect string was received.

The first step in implementing the structure of the just defined half-automaton is to assign binary
codes to each state.

In this stage we have the absolute freedom. Any assignment can be used. The only difference will be
in the resulting structure but not in the resulting behavior.

For a first version let be the codes assigned int square brackets in Figure 8.28. Results the transition
diagram presented in Figure 8.29. The resulting transition functions are:

Q+
1 = Q1 ·X0 = ((Q1 ·X0)

′)′
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Q1

Q0

Q1

Q01 1

1

10

0 0 0 00

0X0

X0 X0

X ′01

*
f (Q1 ,Q0 ,X0) = {Q+

1 ,Q+
0 }

Q1 ,Q0 Q+
1 ,Q+

0

a.

Q1

Q0

Q1

Q0X0

X0

0 1

X00 0

X ′0

Q+
1 Q+

0
b. c.

Figure 8.29: VK transition maps. The VK transition map for the half-automaton used to recognize 1n0m, for
n ≥ 1 and m ≥ 1. a. The state transition function f . b. The VK diagram for the next most significant state bit,
extracted from the previous full diagram. c. The VK diagram for the next least significant state bit.

D-FF1

D

QQ’

-�

Q1

resetclock X0

Q+
1

SR
D-FF0

D

QQ’

Q0

Q+
0

SR

Figure 8.30: A 4-state finite half-automaton. The structure of the finite half-automaton used to recognize
binary string belonging to the 1n0m set of strings.

Q+
0 = Q1 ·X0 +Q0 ·X ′0 = ((Q1 ·X0)

′ · (Q0 ·X ′0))′

(The 1 from q+0 map is double covered. Therefore, it is taken into consideration as a “don’t care”.) The
circuit is represented in Figure 8.68 in a version using inverted gated only. The 2-bit state register is
designed by 2 D flip-flops. The reset input is applied on the set input of D-FF1 and on the reset input
of D-FF0.
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The Verilog behavioral description of the automaton is:

/ * ************************************************************************
F i l e name : r e c a u t . v
C i r c u i t name : R e c o g n i z i n g Automaton f o r s t r e a m s o f form a ˆ nb ˆm
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e automaton used t o r e c o g n i z e

s t r e a m s o f symbo l s o f form a ˆ nb ˆm
************************************************************************ * /
module r e c a u t ( output reg [ 1 : 0 ] s t a t e ,

input i n ,
input r e s e t ,
input c l o c k ) ;

always @( posedge c l o c k )
i f ( r e s e t ) s t a t e <= 2 ’ b10 ;

e l s e case ( s t a t e )
2 ’ b00 : s t a t e <= 2 ’ b00 ;
2 ’ b01 : s t a t e <= {1 ’ b0 , ˜ i n } ;
2 ’ b10 : s t a t e <= { in , i n } ;
2 ’ b11 : s t a t e <= { in , 1 ’ b1} ;

endcase
endmodule

⋄

Example 8.16 Let us revisit the previous example in a more accurate implementation. Now a stream
of characters to be recognized is delimited by the empty character e. Therefore an actual stream to be
recognized has the form:

q0

q1

q2

q3

b/search

a/nnot

a/search

b/search

�^

-

}

�

�U
a/search

e/yes

e/wait

reset

[000]

[010]

[011]

)?

q4

�

�

b/not

not
yes[100][001]

je/not

Figure 8.31:
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. . .eeaa . . .abb . . .bee . . .

The stream is considers recognized only when it ends. The graph describing the automaton has one state
more compared with the previous approach, without the delimiting symbol e. It is represented in Figure
8.31. The automaton has the following 5 states:

q2 q1 q0 x1 x0 q2+ q1+ q0+ y1 y0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 1
0 0 0 1 0 0 1 1 0 1
0 0 0 1 1 - - - - -
0 0 1 0 0 0 1 1 0 1
0 0 1 0 1 0 0 1 1 1
0 0 1 1 0 0 1 0 1 1
0 0 1 1 1 - - - - -
0 1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 1 1 0 1
0 1 0 1 0 0 1 0 1 1
0 1 0 1 1 - - - - -
0 1 1 0 0 0 1 1 0 1
0 1 1 0 1 0 1 1 0 1
0 1 1 1 0 0 1 1 0 1
0 1 1 1 1 - - - - -
1 0 0 0 0 1 0 0 1 0
1 0 0 0 1 1 0 0 1 0
1 0 0 1 0 1 0 0 1 0
1 0 0 1 1 - - - - -
1 0 1 0 0 - - - - -
...

...
...

...
... - - - - -

Table 8.1: The truth table for the transition functions.

q0 : the initial state in which the automaton goes by reset, and if

in = a the automaton switches in q1 signaling that it entered in the search state

in = b the automaton switches in q3 signaling that the stream started wrong and the search process
failed

in = e the automaton remains in q0 waiting the start of an input stream of as and bs

q1 : the state waiting the flow of as

q2 : the state waiting the flow of bs

q3 : the state indicating that the string does not belong to the set 1n0m|n,m≥ 1
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Figure 8.32: The V-K diagrams for the state and output transition functions.

q4 : the state indicating that the string belongs to the set 1n0m|n,m≥ 1

The symbols used to describe the automaton are binary codded as follows:

X = {a, b, e} = {01, 10, 00}

Y = {wait, search, not, yes} = {00, 11, 01, 10}

Q = {q0, q1, q2, q3, q4} = {000, 001, 010, 011, 100}

The sets X and Y are defined by the user (the one who proposed the design), while the state coding is at
the discretion of the designer. Then, the Table 8.1 describing the state transition function and the output
transition function.

We have to solve 5 functions of 5 variables. Let us use V-K diagrams for 4 variables (q2, q1, q0,

x1) and the 5th variable, x0, will be used to define the value of some boxes belonging to the diagrams.
In Figure 8.32, we represented first the reference diagram to help us in defining the diagrams for f and
g. We will explain at length how the diagram for the function q2+ is built:

• in the box 0 is filled with 0, because for {q2, q1, q0, x1} = {0 0 0 0} the output q2+ does
not depend on x0 and takes the value 0

• in the box 1 in filled with 0, because for {q2, q1, q0, x1} = {0 0 0 1} the output q2+ could
be considered 0 if we decide to select for the don’t care value the value 0

• in the box 2 we fill up as in the box 0

• in the box 3 we fill up as in the box 1

• in the box 4 is filled with x0’, because for {q2, q1, q0, x1} = {0 1 0 0} the output q2+
takes the value 1, if x0 = 0 and the value 0 if x0 = 1
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Figure 8.33: The first stage in the extracting algebraic expressions from V-K diagrams: the functions
included in diagrams are ignored.
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Figure 8.34: The second stage in the extracting algebraic expressions from V-K diagrams: the 1s are
considered “don’t care”s.
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Figure 8.35: The first stage in the extracting algebraic expressions from V-K diagrams.

• in the boxes 5 and 7 we do as for the box 1

• in the box 6 we do as for the box 0

• in the box 8 in the box 1, because for {q2, q1, q0, x1} = {1 0 0 0} the output q2+ does not
depend on x0 and takes the value 1

• in the box 9 in filled with 1, because for {q2, q1, q0, x1} = {1 0 0 1} the output q2+ could
be considered 1 if we decide to select for the don’t care value the value 1

• in the boxes 10 to 15 we fill up with don’t cares

The 5 function are extracted from the V-K diagrams in two stages. The first stage (which consider
only the 1s from the diagram) is represented in Figure 8.33. The second stage (which considers the 1s as
“don’t care”s) is represented in Figure 8.34 The resulting expressions are the following:

q2+ = q2 + q1 q0’ x1’ x0’

q1+ = q2’ x1 + q1 q0 + q0 x0’ + q1 x0

q0+ = q1 q0 + q0 x1’ + q2’ q1’ q0’ x1 + q2’ x1’ x0

y1 = q2 + q1’q0 x1 + q1 q0’ x1 + q1 q0’ x0’ + q1’ x1’ x0

y0 = q0 + q2’ x1 + q2’x0

Until now we minimized each of the 5 functions independently. Each function is minimal, but what
about the whole circuit? The global minimization supposes the maximization of the number of gates
shared in the implementation of the 5 functions. Therefore, we must try to define the surfaces in the
V-K diagram so as to maximize the number of identical surfaces, even if we will be pushed to avoid the
minimal form for some functions.

In Figure 8.35 the diagram for y0 is modified: instead of the surface q0, emphasize in Figure 8.33,
here we have a smaller one, q0 x1’, because this surface is selected also in the diagram for q0+. The
impact on the final circuit is minimal: the fan-out of the D-FF0 is reduced.
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Figure 8.36: The second stage in the extracting algebraic expressions from V-K diagrams.
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Figure 8.37: The resulting circuit.
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The impact of this approach in the second stage is more important: the NAND circuit for q2’ q1’

x0 is shared for the implementation of q0+ and y0, and the NAND circuit for q1 q0’ x1’ x0’ is shared
for the implementation of q2+ and y1.

The resulting expressions are (with various brackets are emphasized the shared logic products):

q2+ = q2 + [q1 q0’ x1’ x0’]

q1+ = q2’ x1 + <q1 q0> + q0 x0’ + q1 x0

q0+ = <q1 q0> + (q0 x1’) + q2’ q1’ q0’ x1 + {q2’ x1’ x0}

y1 = q2 + q1’q0 x1 + q1 q0’ x1 + [q1 q0’ x1’ x0’] + q1’ x1’ x0

y0 = (q0 x1’) + q2’ x1 + {q2’ x1’ x0}

In Figure 8.37 is represented the resulting circuit, where the state register is implemented using 3
delay-flip-flops (D-FF) with their pair of outputs, one for Q and another for Q’. Thus, we do not need
inverters for the bits codding the state. The circuit is implemented using NAND gates by applying the de
Morgan law which transforms the AND-OR structure in a NAND-NAND configuration.
⋄

Example 8.17 Let us revisit the previous example using another state coding:

Q = {q0, q1, q2, q3, q4} = {000, 001, 111, 011, 010}

Then, the Table ?? describes the state transition function and the output transition function for the new
coding.

The transition functions are represented with 3-variable V-K diagrams in Figure 8.38
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0 0
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1 1

1

1-

- -

-

-

- -- -

q2

q1

q0q2+ q1+ q0+

q2

q1

q0y1 y0

(x1 + x0)x0’ (x1 + x0) (x1 + x0) x0

0 01

1

1-

-

-

-

- -

Figure 8.38:

From V-K diagrams result the following expressions :

q2+ = q1’ q0 x1

q1+ = q2 + q1 + q0 x0’ + q0’ x1

q0+ = q2’ q0 + q1 (x1 + x0)

y1 = q1 q0’ + q2 x0’ + q0’ x0 + q2’ q1’ q0 (x1 + x0)

y0 = q2’ q0 + q1’ (x1 + x0) = q0+

The resulting circuit is represented in Figure 8.39
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Figure 8.39: The circuit for the codding dominated by the reduce dependency coding style.

The size of the combinational circuits is only 70% from the previous solution. This reduction was
obtained only by changing the state coding.
⋄

Example 8.18 ∗ The execution time of the MAC circuit is data dependent, depends on how many 1s contains the
multiplicand. Therefore, the data flow through it has no a fix rate. The best way to interconnect this version of MAC
circuit supposes two FIFOs, one to its input and another to its output. Thus, a flexible buffered way to interconnect
MAC is provided.

A complex finite automaton must be added to manage the signals and the commands associated with the three
simple subsystems: IN FIFO, OUT FIFO, and MAC (see Figure 8.40). The flow-chart describing the version for
performing multiplications is presented in Figure 8.41, where:

q0 : wait first state – the system waits to have at least one operand in IN FIFO, clearing in the same time the
output register of the accumulator automaton, when empty = 0 reads the first operand from IN FIFO and
loads it in MAC

q1 : wait second state – if IN FIFO is empty, the system waits for the second operand

q2 : multiply state – the system perform multiplication while done = 0

q3 : write state – the system writes the result in OUT FIFO and read the second operand from IN FIFO if full
= 0 to access the first operand for the next operation, else waits while full = 1.

The flow chart can be translated into VK transition maps (see Figure 8.42) or in a Verilog description. From
the VK transition maps result the following equations describing the combinational circuits for the loop (q1+,q0+)
and for the outputs.
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Figure 8.40: The Multiply-Accumulate System. The system consists in a multiply-accumulate circuit
(MAC), two FIFOs and a finite automaton (FA) controlling all of them.
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Figure 8.41: Flow chart describing a Mealy finite automaton. The flow-chart describes the finite automa-
ton FA from Figure 8.40, which controls MAC and the two FIFOs in MAC system. (The state coding shown in
parenthesis will be used in the next chapter.)
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Figure 8.42: Veitch-Karnaugh transition diagrams. The transition VK diagrams for FA (see Figure 8.40).
The reference diagram has a box for each state. The state transition diagram, Q+

1 Q+
1 , contains in the same positions

the description of the next state. For each output a diagram describe the output’s behavior in the corresponding
state.
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Figure 8.43: FA’s structure. The FA is implemented with a two-bit register and a PLA with 5 input variables
(2 for state bits, and 3 for the input sibnals), 7 outputs and 10 products.

Q+
1 = Q1 ·Q0 +Q0 · empty′+Q1 · f ull

Q+
0 = Q′1 ·Q0 +Q0 ·done′+Q′1 · empty′

clear = Q′1 ·Q′0
nop = Q′1 ·Q′0 +Q′1 · empty

load = Q′1 ·Q′0 · empty′

read = Q1 ·Q′0 · f ull′+Q′1 ·Q′0 · empty′

write = Q1 ·Q′0 · f ull′
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The resulting circuit is represented in Figure 8.43, where the state register is implemented using 2 D flip-flops
and the combinational circuits are implemented using a PLA.

If we intend to use a software tool to implement the circuit the following Verilog description is a must.

/ * ************************************************************************
F i l e name : m a c c c o n t r o l . v
C i r c u i t name : M u l t i p l y & Accumula te C o n t r o l au tomaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e automaton used t o c o n t r o l a

o f FIFOs used t o f e e d and d i s c a r d a MACC u n i t
************************************************************************ * /
module m a c c c o n t r o l ( output r e a d , / / read from IN FIFO

output w r i t e , / / w r i t e i n OUT FIFO
output l o a d , / / l oad t h e m u l t i p l i e r i n MAC
output c l e a r , / / r e s e t t h e o u t p u t o f MAC
output nop , / / s t o p s t h e m u l t i p l i c a t i o n
input empty , / / IN FIFO i s empty
input f u l l , / / OUT FIFO i s f u l l
input done , / / m u l t i p l i c a t i o n ended
input r e s e t , c l o c k ) ;

reg [ 1 : 0 ] s t a t e ;
reg read , w r i t e , load , c l e a r , nop ; / / as v a r i a b l e s
parameter w a i t f i r s t = 2 ’ b00 ,

w a i t s e c o n d = 2 ’ b01 ,
m u l t i p l y = 2 ’ b11 ,
w r i t e r e s u l t = 2 ’ b10 ;

/ / THE STATE TRANSITION FUNCTION
always @( posedge c l o c k ) i f ( r e s e t ) s t a t e <= w a i t f i r s t ;

e l s e case ( s t a t e )
w a i t f i r s t : i f ( empty ) s t a t e <= w a i t f i r s t ;

e l s e s t a t e <= w a i t s e c o n d ;
w a i t s e c o n d : i f ( empty ) s t a t e <= w a i t s e c o n d ;

e l s e s t a t e <= m u l t i p l y ;
m u l t i p l y : i f ( done ) s t a t e <= w r i t e r e s u l t ;

e l s e s t a t e <= m u l t i p l y ;
w r i t e r e s u l t : i f ( f u l l ) s t a t e <= w r i t e r e s u l t ;

e l s e s t a t e <= w a i t f i r s t ;
endcase

/ / THE OUTPUT TRANSITION FUNCTION (MEALY IMMEDIATE )
always @( * )

case ( s t a t e )
w a i t f i r s t : i f ( empty ) { read , w r i t e , load , c l e a r , nop} = 5 ’ b00011 ;

e l s e { read , w r i t e , load , c l e a r , nop} = 5 ’ b10111 ;
w a i t s e c o n d : i f ( empty ) { read , w r i t e , load , c l e a r , nop} = 5 ’ b00001 ;

e l s e { read , w r i t e , load , c l e a r , nop} = 5 ’ b00000 ;
m u l t i p l y : { read , w r i t e , load , c l e a r , nop} = 5 ’ b00000 ;
w r i t e r e s u l t : i f ( f u l l ) { read , w r i t e , load , c l e a r , nop} = 5 ’ b00000 ;

e l s e { read , w r i t e , load , c l e a r , nop} = 5 ’ b11000 ;
endcase

endmodule
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The resulting circuit will depend by the synthesis tool used because the previous description is “too” behav-
ioral. There are tools which will synthesize the circuit codding the four states using four bits ....!!!!!. If we intend
to impose a certain solution, then a more structural description is needed. For example, the following “very”
structural code which translate directly the transition equations extracted from VK transition maps.

/ * ************************************************************************
F i l e name : m a c c c o n t r o l . v
C i r c u i t name : M u l t i p l y & Accumula te C o n t r o l au tomaton
D e s c r i p t i o n : a more d e t a i l e d d e s c r i p t i o n o f t h e automaton used t o

c o n t r o l a o f FIFOs used t o f e e d and d i s c a r d a MACC u n i t
************************************************************************ * /
module m a c c c o n t r o l ( output r e a d , / / read from IN FIFO

output w r i t e , / / w r i t e i n OUT FIFO
output l o a d , / / l oad t h e m u l t i p l i e r i n MAC
output c l e a r , / / r e s e t t h e o u t p u t o f MAC
output nop , / / s t o p s t h e m u l t i p l i c a t i o n
input empty , / / IN FIFO i s empty
input f u l l , / / OUT FIFO i s f u l l
input done , / / t h e m u l t i p l i c a t i o n i s c o n c l u d e d
input r e s e t , c l o c k ) ;

reg [ 1 : 0 ] s t ; / / s t a t e r e g i s t e r
/ / THE STATE TRANSITION FUNCTION

always @( posedge c l o c k )
i f ( r e s e t ) s t <= 2 ’ b00 ;

e l s e s t <= { ( s t [ 1 ] & s t [ 0 ] | s t [ 0 ] & ˜ empty | s t [ 1 ] & f u l l ) ,
( ˜ s t [ 1 ] & s t [ 0 ] | s t [ 0 ] & ˜ done | ˜ s t [ 1 ] & ˜ empty ) } ;

a s s i g n r e a d = ˜ s t [ 1 ] & ˜ s t [ 0 ] & ˜ empty | s t [ 1 ] & ˜ s t [ 0 ] & ˜ f u l l ,
w r i t e = s t [ 1 ] & ˜ s t [ 0 ] & ˜ f u l l ,
l o a d = ˜ s t [ 1 ] & ˜ s t [ 0 ] & ˜ empty ,
c l e a r = ˜ s t [ 1 ] & ˜ s t [ 0 ] ,
nop = ˜ s t [ 1 ] & ˜ s t [ 0 ] | ˜ s t [ 1 ] & empty ;

endmodule

The resulting circuit will be eventually an optimized form of the version represented in Figure 8.43 because
instead a PLA, the current tools use an minimized network of gates.

For delayed Mealy version the code is:
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/ * ************************************************************************
F i l e name : m a c c c o n t r o l . v
C i r c u i t name : M u l t i p l y & Accumula te C o n t r o l au tomaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e d e l a y e d automaton used t o

c o n t r o l a o f FIFOs used t o f e e d and d i s c a r d a MACC u n i t
************************************************************************ * /
module m a c c d e l a y e d c o n t r o l

( output reg r e a d , / / read from IN FIFO
output reg w r i t e , / / w r i t e i n OUT FIFO
output reg l o a d , / / l oad t h e m u l t i p l i e r i n MAC
output reg c l e a r , / / r e s e t t h e o u t p u t o f MAC
output reg nop , / / s t o p s t h e m u l t i p l i c a t i o n
input empty , / / IN FIFO i s empty
input f u l l , / / OUT FIFO i s f u l l
input done , / / m u l t i p l i c a t i o n ended
input r e s e t , c l o c k ) ;

reg [ 1 : 0 ] s t a t e ;
parameter w a i t f i r s t = 2 ’ b00 ,

w a i t s e c o n d = 2 ’ b01 ,
m u l t i p l y = 2 ’ b11 ,
w r i t e r e s u l t = 2 ’ b10 ;

/ / THE STATE TRANSITION FUNCTION
always @( posedge c l o c k ) i f ( r e s e t ) s t a t e <= w a i t f i r s t ;

e l s e case ( s t a t e )
w a i t f i r s t : i f ( empty ) s t a t e <= w a i t f i r s t ;

e l s e s t a t e <= w a i t s e c o n d ;
w a i t s e c o n d : i f ( empty ) s t a t e <= w a i t s e c o n d ;

e l s e s t a t e <= m u l t i p l y ;
m u l t i p l y : i f ( done ) s t a t e <= w r i t e r e s u l t ;

e l s e s t a t e <= m u l t i p l y ;
w r i t e r e s u l t : i f ( f u l l ) s t a t e <= w r i t e r e s u l t ;

e l s e s t a t e <= w a i t f i r s t ;
endcase

/ / THE OUTPUT TRANSITION FUNCTION (DELAYED MEALY)
always @( posedge c l o c k )

case ( s t a t e )
w a i t f i r s t : i f ( empty ) { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00011 ;

e l s e { read , w r i t e , load , c l e a r , nop} <= 5 ’ b10111 ;
w a i t s e c o n d : i f ( empty ) { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00001 ;

e l s e { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00000 ;
m u l t i p l y : { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00000 ;
w r i t e r e s u l t : i f ( f u l l ) { read , w r i t e , load , c l e a r , nop} <= 5 ’ b00000 ;

e l s e { read , w r i t e , load , c l e a r , nop} <= 5 ’ b11000 ;
endcase

endmodule

⋄

The finite automaton has two distinct parts:
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• the simple, recursive defined part, that consists in the state register; it can be minimized only by
minimizing the definition of the automaton

• the complex part, that consists in the PLA that computes functions f and g and this is the part
submitted to the main minimization process.

Our main goal in designing finite automaton is to reduce the random part of the automaton, even if the
price is to enlarge the recursive defined part. In the current VLSI technologies we prefer big size instead
of big complexity. A big sized circuit has now a technological solution, but for describing very complex
circuits we have not yet efficient solutions (maybe never).

State Coding

The function performed by an automaton does not depend by the way its states are encoded, because the
value of the state is a “hidden variable”. But, the actual structure of a finite automaton and its proper
functioning are very sensitive to the state encoding.

The designer uses the freedom to code in different way the internal state of a finite automaton for
its own purposes. A finite automaton is a concept embodied in physical structures. The transition from
concept to an actual structure is a process with many traps and corner cases. Many of them are avoided
using an appropriate codding style.

Example 8.19 Let be a first example showing the structural dependency by the state encoding. The
automaton described in Figure 8.44a has three state. The first codding version for this automaton is:
q0 = 00, q1 = 01, q2 = 10. We compute the next state Q1, Q+

0 , and the output Y1, Y0 using the first two
VK transition diagrams from Figure 8.44b:

Q+
1 = Q0 +X0Q′1

Q+
0 = Q′1Q′0X ′0

Y1 = Q0 +X0Q′1

Y0 = Q′1Q′0.

The second codding version for the same automaton is: q0 = 00, q1 = 01, q2 = 11. Only the code
for q2 is different. Results, using the last two VK transition diagrams from Figure 8.44b:

Q+
1 = Q′1Q0 +X0Q′1 = (Q1 +(Q0 +X0)

′)′

Q+
0 = Q′1

Y1 = Q′1Q0 +X0Q′1 = (Q1 +(Q0 +X0)
′)′

Y0 = Q′0.

Obviously the second codding version provides a simpler and smaller combinational circuit associ-
ated to the same external behavior. In Figure 8.45 the resulting circuit is represented. ⋄
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Figure 8.44: A 3-state automaton with two different state encoding. a. The flow-chart describing the
behavior. b. The VK diagrams used to implement the automaton: the reference diagram for states, two transition
diagrams used for the first code assignment, and two for the second state assignment.

Minimal variation encoding Minimal variation state assignment (or encoding) refers to the codes
assigned to successive states.

Definition 8.16 Codding with minimal variation means successive state are codded with minimal Ham-
ming distance. ⋄

Example 8.20 Let be the fragment of a flow chart represented in Figure 8.46a. The state qi is followed
by the state q j and the assigned codes differ only by the least significant bit. The same for qk and ql
which both follow the state q j. ⋄

Example 8.21 Some times the minimal variation encoding is not possible. An example is presented in
Figure 8.46b, where qk can not be codded with minimal variation. ⋄

The minimal variation codding generates a minimal difference between the reference VK diagram
and the state transition diagram. Therefore, the state transition logical function extracted form the VK
diagram can be minimal.

Reduced dependency encoding Reduced dependency encoding refers to states which conditionally
follow the same state. The reduced dependency is related to the condition tested.
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Figure 8.45: The resulting circuit It is done for the second state assignment of the automaton defined in Figure
8.44a.
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Figure 8.46: Minimal variation encoding. a. An example. b. An example where the minimal variation
encoding is not possible.

Definition 8.17 Reduced dependency encoding means the states which conditionally follow a certain
state to be codded with binary configurations which differs minimal (have the Hamming distance mini-
mal). ⋄

Example 8.22 In Figure 8.47a the states q j and qk follow, conditioned by the value of 1-bit variable
X0, the state qi. The assigned codes for the first two differ only in the most significant bit, and they are
not related with the code of their predecessor. The most significant bit used to code the successors of qi

depends by X0, and it is X ′0. We say: the next states of qi are X ′011, for X0=0 the next state is 111, and for
X0=1 it is 011. Reduced dependency means: only one bit of the codes associated with the successors of
qi depends by X0, the variable tested in qi. ⋄

Example 8.23 In Figure 8.47b the transition from the state qi depends by two 1-bit variable, X0 and
X1. A reduced dependency codding is possible by only one of them. Without parenthesis is a reduced
dependency codding by the variable X1. With parenthesis is a reduced dependency codding by X0. ⋄

The reader is invited to provide the proof for the following theorem.
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Figure 8.47: Examples of reduced dependency encoding. a. The transition from the state is conditioned
by the value of a single 1-bit variable. b. The transition from the state is conditioned by two 1-bit variables.

Theorem 8.2 If the transition from a certain state depends by more than one 1-bit variable, the reduced
dependency encoding can not be provided for more than one of them. ⋄

The reduced dependency encoding is used to minimize the transition function because it allows to
minimize the number of included variables in the VK state transition diagrams. Also, we will learn soon
that this encoding style is very helpful in dealing with asynchronous input variables.

Incremental codding The incremental encoding provides an efficient encoding when we are able to
use simple circuits to compute the value of the next state. An incrementer is the simple circuit used to
design the simple automaton called counter. The incremental encoding allows sometimes to center the
implementation of a big half-automaton on a presetable counter.

Definition 8.18 Incremental encoding means to assign, whenever it is possible, for a state following qi

a code determined by incrementing the code of qi. ⋄

Incremental encoding can be useful for reducing the complexity of a big automaton, even if some-
times the price will be to increase the size. But, as we more frequently learn, bigger size is a good price
for reducing complexity.

One-hot state encoding The register is the simple part of an automaton and the combinational cir-
cuits computing the state transition function and the output function represent the complex part of the
automaton. More, the speed of the automaton is limited mainly by the size and depth of the associated
combinational circuits. Therefore, in order to increase the simplicity and the speed of an automaton we
can use a codding stile which increase the dimension of the register reducing in the same time the size
and the depth of the combinational circuits. Many times a good balance can be established using the
one-hot state encoding.

Definition 8.19 The one-hot state encoding associates to each state a bit, and consequently the state
register has a number of flip-flops equal with the number of states. ⋄

All previous state encodings used a log-number of bits to encode the state. The size of the state reg-
ister will grow, using one-hot encoding, from O(log n) to O(n) for an n-state finite automaton. Deserves
to pay sometimes this price for various reasons, such as speed, signal accuracy, simplicity, . . ..
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Minimizing finite automata

There are formal procedure to minimize an automaton by minimizing the number of internal states. All
these procedures refer to the concept. When the conceptual aspects are solved remain the problems
related with the minimal physical implementation. Follow a short discussion about minimizing the size
and about minimizing the complexity.

Minimizing the size by an appropriate state codding There are some simple rules to be applied in
order to generate the possibility to reach a minimal implementation. Applying all of these rules is not
always possible or an easy task and the result is not always guarantee. But it is good to try to apply them
as much as possible.

A secure and simple way to optimize the state assignment process is to evaluate all possible codding
versions and to choose the one which provide a minimal implementation. But this is not an effective way
to solve the problem because the number of different versions is in O(n!). For this reason are very useful
some simple rules able to provide a good solution instead of an optimal one.

A lucky, inspired, or trained designer will discover an almost optimal solution applying the following
rule in the order they are enounced.

Rule 1 : apply the reduced dependency codding style whenever it is possible. This rule allows a minimal
occurrence of the input variable in the VK state transition diagrams. Almost all the time this
minimal occurrence has as the main effect reducing the size of the state transition combinational
circuits.

Rule 2 : the states having the same successor with identical test conditions (if it is the case) will have
assigned adjacent codes (with the Hamming distance 1). It is useful because brings in adjacent
locations of a VK diagrams identical codes, thus generating the conditions to maximize the arrays
defined in the minimizing process.

Rule 3 : apply minimal variation for unconditioned transitions. This rule generates the conditions in
which the VK transition diagram differs minimally from the reference diagram, thus increasing
the chance to find bigger surfaces in the minimizing process.

Rule 4 : the states with identical outputs are codded with minimal Hamming distance (1 if possible).
Generates similar effects as Rule 2.

To see at work these rules let’s take an example.

Example 8.24 Let be the finite automaton described by the flow-chart from Figure 8.48. Are proposed
two codding versions, a good one (the first), using the codding rules previously listed, and a bad one (the
second with the codes written in parenthesis), ignoring the rules.

For the first codding version results the expressions:

Q+
2 = Q2Q′0 +Q′2Q1

Q+
1 = Q1Q′0 +Q′2Q′1Q0 +Q′2Q0X0

Q+
0 = Q′0 +Q′2Q′1X ′0

Y2 = Q2 +Q1Q0
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Figure 8.48: Minimizing the structure of a finite automaton. Applying appropriate codding rules the
occurrence of the input variable X0 in the transition diagrams can be minimized, thus resulting smaller Boolean
forms.
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Y1 = Q2Q1Q′0 +Q′2Q′1

Y0 = Q2 +Q′1 +Q′0

the resulting circuit having the size SCLCver1 = 37.
For the second codding version results the expressions:

Q+
2 = Q2Q1Q′0 +Q′1Q0 +Q′2Q0X0 +Q1Q′0X ′0

Q+
1 = Q′1Q0 +Q′2Q′1 +Q′2X ′0

Q+
0 = Q′1Q0 +Q′2Q′1 +Q′2X0

Y2 = Q2Q′0 +Q2Q1 +Q′2Q′1Q0 +Q1Q′0

Y1 = Q′2Q0 +Q′2Q′1

Y0 = Q2 +Q′1 +Q0

the resulting circuit having the size SCLCver2 = 50. ⋄

Minimizing the complexity by one-hot encoding Implementing an automaton with one-hot encoded
states means increasing the simple part of the structure, the state register. It is expected at least a part
of this additional structure to be compensated by a reduced combinational circuit used to compute the
transition functions. But, for sure the entire complexity is reduced because of a simpler combinational
circuit.

Example 8.25 Let be the automaton described by the flow-chart from Figure 8.49, for which two codding
version are proposed: a one-hot encoding using 6 bits (Q6 . . .Q1), and a compact binary encoding using
only 3 bits (Q2Q1Q0).

Y1=1

X0
0 1

Y2=1 Y3=1

X0
0 1

X0
0 1

Y4=1 Y5=1 Y6=1

Q1 = 1

Q2 = 1 Q3 = 1

Q5 = 1 Q6 = 1Q4 = 1

000

011 111

010 110

100

Figure 8.49: Minimizing the complexity using one-hot encoding.

The outputs are Y6, . . . ,Y1 each active in a distinct state.
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Version 1: with ”one-hot” encoding The state transition functions, Q+
i , i = 1, . . . ,Q+

6 , can be written
directly inspecting the definition. Results:

Q+
1 = Q4 +Q5 +Q6

Q+
2 = Q1X ′0

Q+
3 = Q1X0

Q+
4 = Q2X ′0

Q+
5 = Q2X0 +Q3X ′0

Q+
6 = Q3X0

Because in each state only one output bit is active, results:

Yi = Qi, pentru i = 1, . . . ,6.

The combinational circuit associated with the state transition function is very simple, and for outputs no
circuits are needed. The size of the entire combinational circuit is SCLC,var1 = 18, with the big advantage
that the outputs come directly from a flip-flop without additional unbalanced delays or other parasitic
effects (like different kinds of hazards).

Version 2: compact binary codding The state transition functions for this codding version (see Figure
8.49 for the actual binary codes) are:

Q+
2 = Q2Q0 +Q0X0 +Q′2Q′1X0

Q+
1 = Q′2Q0 +Q′2Q′1 +Q0X ′0

Q+
0 = Q′2Q′1

For the output transition function an additional decoder, DCD3, is needed. The resulting combinational
circuit has the size SCLC,var2 = 44, with the additional disadvantage of generating the outputs signal
using a combinational circuit, the decoder. ⋄

Asynchronous inputs

A real automaton is connected to the “external world” from which it receives of where it sends signals
only partially are controlled. This happens mainly when the connection is not sequential, mediated by a
synchronous register, because sometimes this is not possible. The designer controls very well the signals
on the loop. But, the uncontrolled arriving signals can by very dangerous for the proper functioning of
an automaton. Similarly, an uncontrolled output signal can have “hazardous” behaviors.

An automaton is implemented as a synchronous circuit changing its internal states at each active
(positive or negative) edge of clock. Let us remember the main restrictions imposed by the set-up time
and hold time related to the active edge of a clock applied to a flip-flop. No input signal can change in
the time interval beginning tSU before the clock transition and ending tH after the clock transition. Call it
the prohibited time interval. But, if at least one input of a certain finite automaton determines a switch on
at least one input of the state register, then no one can guarantee a proper functioning of that automaton.

Let be a finite automaton with one input, A, changing unrelated with the system clock. Its transition
can determine a transition on the input of a state flip-flop in the prohibited time interval. We call this
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kind of variable asynchronous input variable or simply asynchronous variable, and we use for it the
notation A∗. If, in a certain state the automaton test A∗ and switches in 1AA0 (which means in 1000 if
A∗ = 0, or 1110 is A∗= 1), then we are in trouble. The actual behavior of the automaton will allow also
the transition in 1010 and in 1100, which means the actual transition of the automaton will be in fact
in 1xx0, where x ∈ {0,1}. Indeed, if A∗ determine the transition of two state flip-flops in the prohibited
time interval, any binary configuration can be loaded in that flip-flops, not only 11 or 00.

The case of one asynchronous input What is the solution for this pathological behavior induced by
one asynchronous variable? To use reduced dependency codding for the transition from the state in which
X∗0 is tested. If the state assignment will allow, for example, a transition to 11X00, then the behavior of the
automaton becomes coherent. Indeed, if X∗0 determine a transition in the prohibited time interval on only
one state flip-flop, then the next state will be only 1110 or 1100. In both cases the automaton behaves
according to its definition. If the transition of X∗0 is considered then the behavior of the automaton is
correct, but even if the transition is not catched it will be considered at the net clock cycle.

Example 8.26 In Figure 8.50 is defined a 3-state automaton with the asynchronous input variable X∗0 .
Two code assignment are proposed. The first one uses the minimal variation kind of codding, and the
second uses for the transition from the state q0 a reduced dependency codding.

The first codding is:
q0 = 01, q1 = 00, q2 = 10, q3 = 11.

Results the following circuits for state transition:

Q+
1 = Q′0 +Q′1X0

Q+
0 = Q1 +Q0X0.

The transition from the state Q1Q0 = 01 is dangerous for the proper functioning of the finite automaton.
Indeed, from q0 the transition is defined by:

Q+
1 = X0, Q+

0 = X0

and the transition of X0 can generate changing signals on the state flip-flops in the prohibited time
interval. Therefore, the state q0 can be followed by any state.

The second codding, with reduced (minimal) dependency, is:

q0 = 01, q1 = 00, q2 = 11, q3 = 10

Results the following equations describing the loop circuits:

Q+
1 = Q1Q0 +Q′1Q′0 +Q0X0

Q+
0 = Q′0.

The transition from the critical state, q0, is

Q+
1 = A, Q+

0 = Q′0.

Only Q+
1 depends by the asynchronous input.

The size, the depth and the complexity of the resulting circuit is similar, but the behavior is correct
only for the second version. The correctness is achieved only by a proper encoding. ⋄
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Figure 8.50: Implementing a finite automaton with an asynchronous input.

Obviously, transition determined by more than one asynchronous variable must be avoided, because,
as we already know, the reduced dependency codding can be done only for one asynchronous variable
in each state. But, what is the solution for more than one asynchronous input variable? Introducing new
states in the definition of the automaton, so as in each state no more than one asynchronous variable will
be tested.

The case of more than one asynchronous inputs If there are more than one asynchronous inputs the
danger occurs when more than one of such variables are tested in the same state. Let be these asyn-
chronous variables A∗ and B∗, and, for example, there are a transition in 1A∗B∗0. Then, this transition
become equivalent with the transition in 1xx0. According to Theorem 8.2, the reduce dependency encod-
ing, at the transition from each state, is possible only for one asynchronous variable. What can be done
in this case?

We can tray to synchronize the two variable, A∗ and B∗, using a register. This attempt is represented in
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Figure 8.51. But, unfortunately, this solution does’t work. Because, the two asynchronous variables can
switch in the prohibited time interval, the active edge of clock in the t2 moment can load in the register
any 2-bit binary configuration. Thus, in the flow of input data could be inserted parasitic configurations
such as 10→ 00→ 01 or 10→ 11→ 01 instead of the correct flow of data represented by 10→ 10→ 01
or by 10→ 01→ 01.
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Figure 8.51:

We must conclude that synchronizing binary configurations consisting in more than on bit is not
possible in a digital system.

For our 2-input asynchronous input we must propose the following solution: in the flowchart a
supplementary state must be introduces so as in each state no more than one asynchronous input variable
is tested.

Example 8.27 Let be the fragment of flowchart from Figure 8.52a, where two asynchronous variable,
A∗ and B∗, are tested. An additional state is added in Figure 8.52b. In this new state the output is the
same with the first state.
⋄

Hazard

Some additional problems must be solved to provide accurate signals to the outputs of the immediate
finite automata. The output combinational circuit introduces, besides a delay due to the propagation time
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Figure 8.52: Reduce dependency coding. a. The coding is possible only related to one asynchronous
variable. The first version is according to B∗, while the second (in in square brackets) is according to A∗.
b. The second version added a new state, doubling the first state.

through the gate used to build it, some parasitic effects due to a kind of “indecision” in establishing the
output value. Each bit on the output is computed using a different network o gates and the effect of an
input switch reaches the output going trough different logic path. The propagation trough these various
circuits can provide hazardous transient behaviors on certain outputs.

Hazard generated by asynchronous inputs A first form of hazardous behavior, or simply hazard, is
generated by the impossibility to have synchronous transitions to the input of a combinational circuit.

Let be circuit from Figure 8.53a representing the typical gates receiving the signal A and B, ideally
represented in Figure 8.53b. Ideally means the two signals switches synchronously. They are considered
ideal because no synchronous signal can be actually generated. In Figure 8.53c and Figure 8.53d two
actual relations between the signals A and B are represented (other two are possible, but our purpose this
two cases will allow to emphasize the main effects of the actual asynchronicity).

Ideally, the AND gate must have the output continuously on 0, and the OR and XOR gates on 1.
Because of the inherent asynchronnicity between the input signals some parasitic transitions occur to the
outputs of the three gates (see Figure 8.53c and Figure 8.53d). Ideally, to the inputs of the three gates
are applied only two binary configurations: AB = 10 and AB = 01. But, because of the asynchronicity
between the two inputs, all possible binary configurations are applied, two of them for long time (AB= 10
and AB = 01) and the other two (AB = 00 and AB = 11) only for short (transitory) time. Consequently,
transitory effects are generated, by hazard, on the outputs of the three circuits.

Some times the transitory unexpected effects can be ignored including them into the transition time
of the circuit. But, there are applications where they can generate big disfunctionalities. For example,
when one of the hazardous output is applied on a set or reset input of a latch.

In order to offer an additional explanation for this kind of hazard VK diagrams are used in Figure
8.54, where in the first column of diagrams the ideal case is presented (the input switches directly to the
desired value). In the next two column the input reach the final value through an intermediary value.
Some times the intermediary value is associated with a parasitic transition of the output.

When between two subsystems multi-bit binary configurations are transferred, parasitic configuration
must be considered because of the asynchronicity. The hazardous effects can be “healed” being “patient”
waiting for the hazardous transition to disappear. But, we can wait only if we know when the transition
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Figure 8.53: How the asynchronous inputs generate hazard.

occurred, i.e., the hazard is easy to be avoided in synchronous systems.
Simply, when more than one input of a combinational is changing we must expect hazardous transi-

tions at least on some outputs.

Propagation hazard Besides the hazard generated by the two or many switching inputs there exists
hazard due to the transition of only one input. In this case the internal propagations inside of the com-
binational circuit generate the hazard. It could by a sort of asynchronicity generated by the different
propagation paths inside the circuit.

Let be a simple example of the circuit represented in Figure 8.55a, where two input are stable (A =
C = 1) and only one input switches. The problem of asynchronoous inputs is not an issue because only
one input is in transition. In Figure 8.55b the detailed wave forms allow us to emphasize a parasitic
transition on the output D. For A =C = 1 the output must stay on 1 independent by the value applied on
B. The actual behavior of the circuit introduces a parasitic (hazardous) transition in 0 due to the switch
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Figure 8.54: VK diagrams explaining the hazard due to the asynchronous inputs. ”A < B” means the
input A switch before the input B, and ”A > B” means the input B switch before the input A.

of B from 1 to 0. An ideal circuit with zero propagation times should maintain its output on 1.
A simple way to explain this kind of hazard is to say that in the VK diagram of the circuit (see Figure

8.55c) when the input “flies” from one surface of 1s to another it goes through the 0 surface generating
a temporary transition to 0. In order to avoid this transitory journey through the 0 surface an additional
surface (see Figure 8.55d) is added to transform the VK diagram in a surface containing two contiguous
surfaces, one for 0s and one for 1s. The resulting equation of the circuit has an additional term: AC. The
circuit with the same logic behavior, but without hazardous transitions is represented in Figure 8.55e.

Example 8.28 Let be the function presented in VK diagram from Figure 8.56a. An immediate solution
is shown in Figure 8.56b, where a square surface is added in the middle. But this solution is partial
because ignores the fact that the VK diagram is defined as a thor, with a three-dimensional adjacency.
Consequently the surfaces A′BCD′ and A′B′CD′ are adjacent, and the same for AB′C′D and A′B′C′D.
Therefore, the solution to completely avoid the hazard is presented in Figure 8.56c, where two additional
surfaces are added. ⋄

Theorem 8.3 If the expression of the Boolean function

f (xn−1, . . .x0)

takes the form
xi + x′i
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Figure 8.55: The typical example of propagation hazard. a. The circuit. b. The wave forms. c. The VK
diagram of the function executed by the circuit. d. The added surface allowing the behavior of the circuit
to have a continuous 1 surface. e. The equivalent circuit without hazard.

for at least one combination of the other variables than xi, then the actual associated circuit generates
hazard when xi switches. (The theorem of hazard) ⋄

Example 8.29 The function f (A,B,C) = AB′+BC, is hazardous because: f (1,B,1) = B′+B.
The function g(A,B,C,D) = AD + BC + A′B′ is hazardous because: g(A,0,−,1) = A + A′, and

g(0,B,1,−) = B+B′. Therefore, there are 4 input binary configuration generating hazardous condi-
tions. ⋄

Dynamic hazard The hazard generated by asynchronous inputs occurs in circuits after a first level of
gates. The propagation hazard needs a logic sum of products (2 or 3 levels of gates). The dynamic hazard
is generated by similar causes but manifests in circuits having more than 3 layers of gates. In Figure 8.57
few simple dynamic hazards are shown.

There are complex and not very efficient techniques to avoid dynamic hazard. Usually it is preferred
to transform the logic in sums of products (enlarging the circuit) and to apply procedures used to remove
propagation hazard (enlarging again the circuit).
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Fundamental limits in implementing automata

Because of the problems generated in the real world by the hazardous behaviors some fundamental
limitations are applied when an actual automaton works.

1. The asynchronous input bits can be interpreted only independently in distinct states. In each
clock cycle the automaton interprets the bits used to determine the transition form the current
state. If more than one of these bits are asynchronous the reduced dependency coding style must
be applied for all of them. But, as we know, this is impossible, only one bit can be considered with
reduced dependency. Therefore, in each state no more than one tested bit can be asynchronous. If
more than one is asynchronous, then the definition of the automaton must be modified introducing
additional states.

2. Immediate Mealy automaton with asynchronous inputs has no actual implementation The
outputs of an immediate Mealy automaton are combinational conditioned by inputs. Therefore, an
asynchronous input will determine untolerable asynchronous transitions on some or on all of the
outputs.

3. Delayed Mealy automaton can not be implemented with asynchronous input variables Even
if all the asynchronous inputs are took into consideration properly when the state code are assigned,
the assemble formed by the state register plus the output register works wrong. Indeed, if at least
one state bit and one output bit change triggered by an asynchronous input there is the risk that the
output register to be loaded with a value unrelated with the value loaded into the state register.
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4. Hazard free Moore automaton with asynchronous inputs has no actual implementation
Asynchronous inputs involve coding with reduced dependency encoding. Hazard free outputs
ask coding with minimal variation. But, these two codding styles are incompatible.

8.5.3 ∗ Control Automata: the First “Turning Point”
A very important class of finite automata is the class of control automata. A control automaton is embedded in a
system using three main connections (see Figure 8.58):

• the p-bit input operation[p-1:0] selects the control sequence to be executed by the control automaton (it
receives the information about “what to do”); it is used to part the ROM in 2p parts, each having the same
dimension; in each part a sequence of maximum 2n operation can be “stored” for execution

• the m-bit command output, command[m-1:0], the control automaton uses to generate “the command”
toward the controlled subsystem

• the n-bit input flags[q-1:0] the control automaton uses to receive information, represented by
some independent bits, about “what happens” in the controlled subsystems commanded by the output
command[m-1:0].

CLC(ROM)

R

”What to do”
�

-
”What happens”

�

�

state[n-1:0]

flags[q-1:0]

?

command[m-1:0]

?

operation[p-1:0]

Q+

”The command”

Figure 8.58: Control Automaton. The functional definition of control automaton. Control means to issue
commands and to receive back signals (flags) characterizing the effect of the command.

The size and the complexity of the control sequence asks the replacement of the PLA with a ROM, at least for
the designing and testing stages in implementing the application. The size of the ROM has the magnitude order:

SROM(n, p,q) ∈ O(2n+p+q).

In order to reduce the ROM’s size we start from the actual applications which emphasize two very important
facts:

1. the automaton can “store” the information about “what to do” in the state space, i.e., each current state
belongs to a path through the state space, started in one initial state given by the code used to specify the
operation

2. in most of the states the automaton tests only one bit from the flags[q-1:0] input and if not, a few
additional states in the flow-chart solve the problem in most of the cases.

Starting from these remarks the structure of the control automaton can be modified (see Figure 8.59). Because
the sequence is only initialized using the code operation[n-1:0], this code is used only for addressing the first
command line from ROM in a single state in which MOD = 1. For this feature we must add n EMUXs and a new
output to the ROM to generate the signal MOD. This change allows us to use in a more flexible way the “storing
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Figure 8.59: Optimized version of control automata. The flags received from the controlled system have
independent meaning considered in distinct cycles. The flag selected by the code TEST, T, decides from what half
of ROM the next state and output will be read.

space” of ROM. Because a control sequence can have the dimension very different from the dimension of the other
control sequence it is not efficient to allocate fix size part of ROM for each sequence as in we did in the initial
solution. The version presented in Figure 8.59 uses for each control sequence only as much of space as needed to
store all lines of command.

The second modification refers to the input flags[q-1:0]. Because the bits associated with this input are
tested in different states, MUXq selects in each state the appropriate bit using the t-bit field TEST. Thus, the q−1
bits associated to the input flags[q-1:0] are removed from the input of the ROM, adding only t output bits to
ROM. Instead of around q bits we connect only one, T, to the input of ROM.

This new structure works almost the same as the initial structure but the size of ROM is very strongly mini-
mized. Now the size of the ROM is estimated as being:

SROM(2n).

Working with the control automaton in this new version we will make another remark: the most part of the
sequence generated is organized in a linear sequence. Therefore, the commands associated to the linear sequences
can be stored in ROM at the successive addresses, i.e., the next address for ROM can be obtained incrementing
the current address stored in the register R. The structure represented in Figure 8.60 results. What is new in this
structure is an increment circuit connected to the output of the state register and a small combinational circuit that
transcodes the bits M1,M0,T into S1 and S0. There are 4 transition modes coded by M1,M0:

• inc, codded by M1M0 = 00: the next address for ROM results by incrementing the current address; the
selection code must be S1S0 = 00

• jmp, codded by M1,M0 = 01: the next address for ROM is given by the content of the one field to the output
of ROM; the selection code must be S1S0 = 01

• cjmp, codded by M1,M0 = 10: if the value of the selected flag, T, is 1, then the next address for ROM
is given by the content of the one field to the output of ROM, else the next address for ROM results by
incrementing the current address; the selection code must be S1S0 = 0T
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Figure 8.60: The simplest Controller with ROM (CROM). The Moore form of control automaton is
optimized using an incremented circuit (INC) to compute the most frequent next address for ROM.

• init, codded by M1,M0 = 11: the next address for ROM is selected by nMUX4 from the initialization input
operation; the selection code must be S1S0 = 1−

Results the following logic functions for the transcoder TC: S1 = M1M0, S0 = M1T +M0.
The output of ROM can be seen as a microinstruction defined as follows:

<microinstruction>::= <setLabel> <Command> <Mod> <Test> <useLabel>;

<command>::= <to be defined when use>;

<mod>::= jmp | cjmp | init | inc ;

<test>::= <to be defined when use>;

<setLabel>::= setLabel(<number>);

<useLabel>::= useLabel(<number>);

<number>::= 0 | 1 | ... | 9 | <number><number>;

This last version will be called CROM (Controller with ROM) and will be considered, in the present approach, to
have enough functional features to be used as controller for the most complex structures described in this book.

Very important comment! The previous version of the control automaton’s structure is characterized by two
processes:

• the first is the increasing of the structural complexity.

• the second is the decreasing of the dimension and of the complexity of the binary configuration “stored” in
ROM.

In this third step both, the size and the complexity of the system grows without any functional improvement. The
only effect is reducing the (algorithmic) complexity of ROM’s content.

We are in a very important moment of digital system development, in which the physical complexity starts to
compensate the “symbolic” complexity of ROM’s content. Both, circuits and symbols, are structures but there is a
big difference between them. The physical structures have simple recursive definitions. The symbolic content of
ROM is (almost) random and has no simple definition.

We agree to grow a little the complexity of the physical structure, even the size, in order to create the condition
to reduce the effort to set up the complex symbolic content of ROM.
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This is the first main “turning point” in the development of digital systems. We have here the first sign
about the higher complexity of symbolic structures. Using recursive defined objects the physical structures are
maintained at smaller complexity, rather than the symbolic structures, that must assume the complexity of the
actual problems to be solved with the digital machines. The previous defined CROM structure is so thought as
the content of ROM to be easy designed, easy tested and easy maintained because it is complex. This is the first
moment, in our approach, when the symbolic structure has more importance than the physical structure of a digital
machine.

Example 8.30 Let’s revisit the automaton used to control the MAC system. Now, because a more powerful tool
is available, the control automaton will perform three functions, multiply, multiply and accumulate, no operation,
codded as follows:
mult: op = 01,

macc: op = 11,

noop: op = 00.
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Figure 8.61: Using a CROM. A more complex control can be done for Multiply Accumulate System using a
CROM instead of a standard finite automaton.

The CROM circuit is actualized in Figure 8.61 with the word of ROM organized as follows:

<microinstruction>::= <setLabel><Command> <Mod> <Test> <useLabel>

<command>::= <c1> <c2> <c3> <c4> <c5>

<c1> ::= nop | -

<c2> ::= clear | -

<c3> ::= load | -

<c4> ::= read | -

<c5> ::= write | -
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<mod>::= jmp | cjmp | init | inc

<test>::= empty | full | done | stop | n_done | n_empty

<setLabel>::= setLabel(<number>);

<useLabel>::= useLabel(<number>);

<number>::= 0 | 1 | ... | 9 | <number><number>;

The fields <c1> ... <c5> are one-bit fields takeing the value 0 for “-”. When nothing is specified, then in
the corresponding position is 0. The bit end is used to end the accumulation. If stop = 0 the macc operation
does not end, the system waits for a new pairs of numbers to be multiplied and accumulated. The result is sent out
only when stop = 1.
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Figure 8.62: Control flowchart. The control flowchart for the function macc.

The function mult is defined in the flowchart from Figure 8.43 as a Mealy automaton. Because the CROM
automaton is defined as a Moore automaton the code sequence will be defined takeing into account the Moore
version of the control multiply-accumulate automaton. The function macc is defined in Figure 8.62 as a Moore
automaton. The function nop consist in looping in the reset state waiting for a command different from nop. The
content of ROM has the following symbolic definition:

// no operation
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setLabel(0) init; // 00000

// multiplication

setLabel(1) nop clear cjmp empty useLabel(1);

nop load read inc;

setLabel(2) nop cjmp empty useLabel(2);

setLabel(3) cjmp done useLabel(3);

setLabel(4) cjmp full useLabel(4);

read write jmp useLabel(0);

// multiply and accumulate

setLabel(5) nop clear cjmp empty useLabel(5); // q0

setLabel(8) nop load read inc; // q1

setLabel(6) nop cjmp empty useLabel(6); // q2

setLabel(7) cjmp n_done useLabel(7); // q3

read inc; // q4

cjmp n_empty useLabel(8); // q5

cjmp stop useLabel(10); // q6

setLabel(9) cjmp empty useLabel(9); // q9

jmp useLabel(8); // q10!

setLabel(10) cjmp full useLabel(10); // q7

write jmp useLabel(0); // q8

The binary sequence is stored in ROM starting from the address zero with the line labelled as setLabel(0).
The sequence associated to the function mult has 6 lines because a Moore automaton has usually more states when
the equivalent Mealy version. For macc function the correspondence with the state are included in commentaries
on each line. An additional state (q10) occurs also here, because this version of CROM can not consider jump
addresses depending on the tested bits; only one jump address per line is available.

The binary image of the previous code asks codes for the fields acting on the loop. ⋄

Verilog descriptions for CROM

The most complex part in defining a CROM unit is the specification of the ROM’s content. There are few versions
to be used. One is to provide the bits using a binary file, another is to generate the bits using a Verilog program.
Let us start with the first version.

The description of the unit CROM implies the specification of the following parameters used for dimensioning
the ROM:

• comDim: the number of bits used to encode the command(s) generated by the control automaton; it depends
by the system under control

• adrDim: the number of bits used to encode the address for ROM; it depends on the number of state of the
control automaton

• testDim: the number of bits used to select one of the flags coming back from the controlled system; it
depends by the functionality performed by the entire system.

The following description refers to the CROM represented in Figure 8.60. It is dimensioned to generate a 5-bit
command, to have maximum 32 internal states, and to evolve according to maximum 8 flags (the dimensioning
fits with the simple application presented in the previous example). Adjusting these parameters, the same design
can by reused in different projects. Depending on the resulting size of the ROM, its content is specified in various
ways. For small sizes the ROM content can be specified by a hand written file of bits, while for big sizes it must
be generated automatically starting from a “friendly” definition. A Verilog description follows:
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/ * ************************************************************************
F i l e name : crom . v
C i r c u i t name : C o n t r o l l e r w i t h Read−Only Memory
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a CROM
************************************************************************ * /

module crom #( ‘ i n c l u d e ” 0 p a r a m e t e r . v ” )
( output [ comDim − 1 : 0 ] command ,

input [ addrDim − 1 : 0 ] o p e r a t i o n ,
input [ ( 1 << t e s t D i m ) − 1 : 0 ] f l a g s ,
input r e s e t , c l o c k ) ;

reg [ addrDim − 1 : 0 ] s t a t e R e g i s t e r ;
wire [ comDim + t e s t D i m + addrDim + 1 : 0 ] romOut ;
wire f l a g ;
wire [ t e s t D i m − 1 : 0 ] t e s t ;
wire [ 1 : 0 ] mode ;
wire [ addrDim − 1 : 0 ] nextAddr , jumpAddr ;
rom rom ( . a d d r e s s ( s t a t e R e g i s t e r ) ,

. d a t a ( romOut ) ) ;
a s s i g n {command , t e s t , jumpAddr , mode} = romOut ,

f l a g = f l a g s [ t e s t ] ;
mux4 addrSelMux ( . o u t ( nex tAddr ) ,

. i n 0 ( s t a t e R e g i s t e r + 1 ) ,

. i n 1 ( jumpAddr ) ,

. i n 2 ( o p e r a t i o n ) ,

. i n 3 ( o p e r a t i o n ) ,

. s e l ({&mode , ( mode [ 1 ] & f l a g | mode [ 0 ] ) } ) ) ;
always @( posedge c l o c k ) i f ( r e s e t ) s t a t e R e g i s t e r <= 0 ;

e l s e s t a t e R e g i s t e r <= nextAddr ;
endmodule

The simple uniform part of the previous module consists in two multiplexer, an increment circuit, and a register.
The complex part of the module is formed by a very small one (the transcoder) and a big one the ROM.

From the simple only the addrSelMux multiplexor asks for a distinct module. It follows:



8.5. FINITE AUTOMATA: THE COMPLEX AUTOMATA 343

/ * ************************************************************************
F i l e name : mux4 . v
C i r c u i t name : Four−i n p u t m u l t i p l e x o r
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f a 4− i n p u t MUX
************************************************************************ * /

module mux4 #( ‘ i n c l u d e ” 0 p a r a m e t e r . v ” ) ( out , in0 , in1 , in2 , in3 , s e l ) ;
input [ 1 : 0 ] s e l ;
input [ addrDim − 1 : 0 ] in0 , in1 , in2 , i n 3 ;
output [ addrDim − 1 : 0 ] o u t ;
reg [ addrDim − 1 : 0 ] o u t ;
always @( i n 0 or i n 1 or i n 2 or i n 3 or s e l )

case ( s e l )
2 ’ b00 : o u t = i n 0 ;
2 ’ b01 : o u t = i n 1 ;
2 ’ b10 : o u t = i n 2 ;
2 ’ b11 : o u t = i n 3 ;

endcase
endmodule

The big complex part has a first version described by the following Verilog module:

/ * ************************************************************************
F i l e name : rom . v
C i r c u i t name : Read−Only Memory
D e s c r i p t i o n : d e f i n e s t h e ROM
************************************************************************ * /

module rom #( ‘ i n c l u d e ” 0 p a r a m e t e r . v ” )
( input [ addrDim − 1 : 0 ] a d d r e s s ,

output [ comDim + t e s t D i m + addrDim + 1 : 0 ] d a t a ) ;
reg [ comDim + t e s t D i m + addrDim + 1 : 0 ] mem [ 0 : ( 1 << addrDim ) − 1 ] ;

i n i t i a l $readmemb ( ” 0 romCon ten t . v ” , mem ) ; / / c o n t e n t o f t h e memory

a s s i g n d a t a = mem[ a d d r e s s ] ; / / i t i s a read o n l y memory
endmodule

The file 0 parameter.v defines the dimensions used in the project crom. It must be placed in the same folder
with the rest of the files defining the project. For our example its content is:
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/ * ************************************************************************
F i l e name : 0 p a r a m e t e r . v . v
C i r c u i t name : i s n o t a c i r c u i t
D e s c r i p t i o n : d e f i n e s t h e p a r a m e t e r s o f t h e d e s i g n
************************************************************************ * /

parameter comDim = 5 ,
addrDim = 5 ,
t e s t D i m = 3

The initial line loads in background, in a transparent mode, the memory module mem. The module rom

does not have explicit writing capabilities, behaving like a “read only” device. The synthesis tools are able to infer
from the previous description that it is about a ROM combinational circuit.

The content of the file 0 romContent.v is filled up according to the micro-code generated in Example 7.6.
Obviously, after the first 4 line the our drive to continue is completely lost.

/* 00 */ 00000_000_00000_11

/* 01 */ 11000_011_00001_10

/* 02 */ 10100_000_00000_00

/* 03 */ 10000_011_00011_10

// ...

/* 30 */ 00000_000_00000_00

/* 31 */ 00000_000_00000_00

Obviously, after filling up the first 4 lines our internal drive to continue is completely lost. The full solution
asks for 270 bits free of error bits. Another way to generate them must be found!

Binary code generator

Instead of defining and writing bit by bit the content of the ROM, using a hand written file (in our example
0 romContent.v), is easiest to design a Verilog description for a “machine” which takes a file containing lines of
microinstructions and translate it into the corresponding binary representation. Then, in the module rom the line
initial ...; must be substituted with the following line:

‘include "codeGenerator.v" // generates ROM’s content using to ’theDefinition.v’

which will act by including the the description of a loading mechanism for the memory mem. The code gen-
erating machine is a program which has as input a file describing the behavior of the automaton. Considering the
same example of the control automaton for MAC system, the file theDefinition is a possible input for our code
generator. It has the following form:
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/ * ************************************************************************
F i l e name : t h e D e f i n i t i o n . v
C i r c u i t name : i t i s n o t a c i r c u i t
D e s c r i p t i o n : i s microprogram
************************************************************************ * /
/ / MAC c o n t r o l au tomaton

s e t L a b e l ( 0 ) ; i n i t ;
/ / m u l t i p l i c a t i o n
s e t L a b e l ( 1 ) ; nop ; c l e a r ; cjmp ; empty ; u s e L a b e l ( 1 ) ;

nop ; l o a d ; r e a d ; i n c ;
s e t L a b e l ( 2 ) ; nop ; cjmp ; empty ; u s e L a b e l ( 2 ) ;
s e t L a b e l ( 3 ) ; cjpm ; done ; u s e L a b e l ( 3 ) ;
s e t L a b e l ( 4 ) ; cjmp ; f u l l ; u s e L a b e l ( 4 ) ;

r e a d ; w r i t e ; jmp ; u s e L a b e l ( 0 ) ;
/ / m u l t i p l y & a c c u m u l a t e
s e t L a b e l ( 5 ) ; nop ; c l e a r ; cjmp ; empty ; u s e L a b e l ( 5 ) ;
s e t L a b e l ( 8 ) ; nop ; l o a d ; r e a d ; i n c ;
s e t L a b e l ( 7 ) ; cjmp ; notDone ; u s e L a b e l ( 7 ) ;

r e a d ; i n c ;
cjmp ; notEmpty ; u s e L a b e l ( 8 ) ;
cjmp ; s t o p ; u s e L a b e l ( 1 0 ) ;

s e t L a b e l ( 9 ) ; cjmp ; empty u s e L a b e l ( 9 ) ;
jmp ; u s e L a b e l ( 8 ) ;

s e t L a b e l ( 1 0 ) ; cjmp ; f u l l ; u s e L a b e l ( 1 0 ) ;
w r i t e ; jmp ; u s e L a b e l ( 0 ) ;

The theDefinition file consist in a stream of Verilog tasks. The execution of these tasks generate the
ROM’a content.

The file codeGenerator.v “understand” and use the file theDefinition, whose content follows:

/ * ************************************************************************
F i l e name : codeGenera to r . v
C i r c u i t name : i t i s n o t a c i r c u i t
D e s c r i p t i o n : t h i s code g e n e r a t e t h e b i n a r y code d e f i n i n g t h e c o n t e n t o f

t h e ROM
************************************************************************ * /
/ / Genera te t h e b i n a r y c o n t e n t o f t h e ROM

reg nopReg ;
reg c l e a r R e g ;
reg loadReg ;
reg readReg ;
reg wr i t e R e g ;
reg [ 1 : 0 ] mode ;
reg [ 2 : 0 ] t e s t ;
reg [ 4 : 0 ] a d d r e s s ;
reg [ 4 : 0 ] c o u n t e r ;
reg [ 4 : 0 ] l a b e l T a b [ 0 : 3 1 ] ;
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ta sk endLine ;
begin
mem[ c o u n t e r ] =
{nopReg , c l ea rReg , loadReg , readReg , wr i teReg , mode , t e s t ,
a d d r e s s } ;

nopReg = 1 ’ b0 ;
c l e a r R e g = 1 ’ b0 ;
loadReg = 1 ’ b0 ;
readReg = 1 ’ b0 ;
w r i t e R e g = 1 ’ b0 ;
c o u n t e r = c o u n t e r + 1 ;

end
endtask

/ / s e t s l a b e l T a b i n t h e f i r s t pas s a s s o c i a t i n g ’ c o u n t e r ’ t o ’ l a b e l I n d e x ’
ta sk s e t L a b e l ;

input [ 4 : 0 ] l a b e l I n d e x ;
l a b e l T a b [ l a b e l I n d e x ] = c o u n t e r ;

endtask
/ / u s e s t h e c o n t e n t o f l a b e l T a b i n t h e second pass

ta sk u s e L a b e l ;
input [ 4 : 0 ] l a b e l I n d e x ;
begin a d d r e s s = l a b e l T a b [ l a b e l I n d e x ] ;

endLine ;
end

endtask
/ / e x t e r n a l commands

ta sk nop ; nopReg = 1 ’ b1 ; endtask
task c l e a r ; c l e a r R e g = 1 ’ b1 ; endtask
task l o a d ; loadReg = 1 ’ b1 ; endtask
task r e a d ; readReg = 1 ’ b1 ; endtask
task w r i t e ; w r i t e R e g = 1 ’ b1 ; endtask

/ / t r a n s i t i o n mode
ta sk i n c ; begin mode = 2 ’ b00 ; endLine ; end endtask
task jmp ; mode = 2 ’ b01 ; endtask
task cjmp ; mode = 2 ’ b10 ; endtask
task i n i t ; begin mode = 2 ’ b11 ; endLine ; end endtask

/ / f l a g s e l e c t i o n
ta sk empty ; t e s t = 3 ’ b000 ; endtask
task f u l l ; t e s t = 3 ’ b001 ; endtask
task done ; t e s t = 3 ’ b010 ; endtask
task s t o p ; t e s t = 3 ’ b011 ; endtask
task notDone ; t e s t = 3 ’ b100 ; endtask
task notEmpt ; t e s t = 3 ’ b101 ; endtask

i n i t i a l begin c o u n t e r = 0 ;
nopReg = 0 ;
c l e a r R e g = 0 ;
loadReg = 0 ;
readReg = 0 ;
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w r i t e R e g = 0 ;
‘ i n c l u d e ” t h e D e f i n i t i o n . v ” ; / / f i r s t pas s
‘ i n c l u d e ” t h e D e f i n i t i o n . v ” ; / / s econd pas s

end

The file theDefinition is included twice because if a label is used before it is defined, only at the second
pass in the memory labelTab the right value of a label will be found when the task useLabel is executad.

8.6 ∗ Automata vs. Combinational Circuits
As we saw, both combinational circuits (0-OS) and automata (2-OS) execute digital functions. Indeed, there are
combinational circuits performing addition or multiplication, but there are also sequential circuits performing the
same functions. What is the correlation between a gates network and an automaton executing the same function?
What are the conditions in which we can transform a combinational circuit in an automaton or conversely? The
answer to this question will be given in this last section.

Let be a Mealy automaton, his two CLCs (LOOP CLC and OUT CLC), the initial state of the automaton, q(t0)
and the input sequence for the first n clock cycle: x(t0), . . . ,x(tn−1). The combinational circuit that generates the
corresponding output sequence y(t0), . . . ,y(tn−1) is represented in Figure 8.63. Indeed, the first pair LOOP CLC,
OUT CLC computes the first output, y(t0), and the next state, q(t1) to be used by the second pair of CLCs to
compute the second output and the next state, and so on.

LOOP CLC OUT CLC

? ? ?
- -

x(t0) y(t0)

q(t0)

LOOP CLC OUT CLC

? ? ?
- -

x(t1) y(t1)

q(t1)

LOOP CLC OUT CLC

? ? ?
- -

x(t2) y(t2)

q(t2)

LOOP CLC OUT CLC

? ? ?
- -

6

x(tn) y(tn)

q(tn)

?

?
.
.
.

initial state

Figure 8.63: Converting an automata into a combinational circuit. The conversion rule from the finite
(Mealy) automaton into a combinational logic circuit means to use a pair of circuits (LOOP CLC, OUTPUT CLC)
for each clock cycle. The time dimension is transformed in space dimension.

Example 8.31 The ripple carry adder (Figure 6.18) has as correspondent automaton the adder automaton from
the serial adder (Figure 8.6). ⋄
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Figure 8.64: The Universal Circuit “programmed” to recognize 1a0b. A full tree of 2n EMUXs are used
to recognize the strings belonging to 1a0b. The “program” is applied on the selected inputs of the first level of
EMUXs.

Should be very interesting to see how a complex problem having associated a finite automaton can be solved
starting from a combinational circuit and reducing it to a finite automaton. Let us revisit in the next example the
problem of recognizing strings from the set 1a0b, for a,b > 0.

Example 8.32 The universal combinational circuit (see 2.3.1) is used to recognize all the strings having the form:

x0,x1, . . .xi, . . .xn−1 ∈ 1a0b

for a,b > 0, and a+b = n. The function performed by the circuit will be:

f (xn−1, . . . ,x0)

which takes value 1 for the following inputs:

xn−1, . . . ,x0 = 0000 . . .01
xn−1, . . . ,x0 = 000 . . .011
xn−1, . . . ,x0 = 00 . . .0111

. . .
xn−1, . . . ,x0 = 00011 . . .1
xn−1, . . . ,x0 = 0011 . . .11
xn−1, . . . ,x0 = 011 . . .111

Any function f (xn−1, . . . ,x0) of n variables can be expressed using certain minterms from the set of 2n minterms
of n variables. Our functions uses only n−2 minterms from the total number of 2n. They are:

m2i−1

for i = 1, . . .(n−1), i.e., the functions takes the value 1 for m1 or m3 or m7 or m15 or . . ..
Figure 8.64 represents the universal circuits receiving as ”program” the string:

. . .001000000010001010

where 1s corresponds to minterms having the value 1, and 0s to the minterms having the value 0.
Initially the size of the resulting circuit is too big. For an n-bit input string from x0 to xn−1 the circuits contains

2n− 1 elementary multiplexors. But, a lot of EMUXs have applied 0 on both selected inputs. They will generate
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0 on their outputs. If the multiplexors generating 0 are removed and substituted with connections to 0, then the
resulting circuit containing only n(n−1)/2 EMUXs is represented in Figure 8.65a.
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Figure 8.65: Minimizing the Universal Circuit “programmed to recognize 1a0b. a. The first step
of minimizing the full tree of 2n− 1 EMUXs to a tree containing 0.5n(n+ 1) EMUXs. Each EMUX selecting
between 0 and 0 is substituted with a connection to 0. b. The minimal combinational network of EMUXs obtained
removing the duplicated circuits. The resulting network is a linear stream of identical CLCs.

The circuit can be more reduced if we take into account that some of them are identical. Indeed, on the first
line all EMUXs are identical an the third (from left to right) can do the ”job” of the first tree circuits. Therefore,
the output of the third circuit from the first line will be connected to the input of all the circuits from the second
line. Similarly, on the second line we will maintain only two EMUXs, and so on on each line. Results the circuit
from Figure 8.65b containing (2n−1) EMUXs.

This last form consists in a serial composition made using the same combinational circuit: an EMUX and
an 2-input AND (the EMUX with the input 0 connected to 0). Each stage of the circuit receives one input value
starting with x0. The initial circuit receives on the selected inputs a fix binary configuration (see Figure 8.65b). It
can be considered as the initial state of the automaton. Now we are in the position to transform the circuit in a
finite half-automaton connecting the emphasized module in the loop with a 2-bit state register (see Figure 8.66a).

The resulting half-automaton can be compared with the half-automaton from Figure 8.68, reproduced in Figure
8.66b. Not-surprisingly they are identical. ⋄

To transform a combinational circuit in a (finite) automaton the associated tree (or trees) of EMUXs must
degenerate into a linear graph of identical modules. An interesting problem is: how many of “programs”, P =
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Figure 8.66: From a big and simple CLC to a small and complex finite automata. a. The resulting
half-automaton obtained collapsing the stream of identical circuits. b. Minimizing the structure of the two EMUXs
results a circuit identical with the solution provided in Figure 8.68 for the same problem.

mp−1,mp−2, . . .m0, applied as “leaves” of Universal Circuit allows the tree of EMUXs to be reduced to a linear
graph of identical modules?

8.7 ∗ The Circuit Complexity of a Binary String
Greg Chaitin taught us that simplicity means the possibility to compress. He expressed the complexity of a binary
string as being the length of the shortest program used to generate that string. An alternative form to express the
complexity of a binary string is to use the size of the smallest circuit used to generate it.

Definition 8.20 The circuit complexity of a binary string P of length p, CCP(p), is the size of the minimized
circuit used to generate it. ⋄

Definition 8.21 The universal circuit used to generate any p-bit sting, pU-Generator, consists in a nU-Circuit
programmed with the string to be generated and triggered by a resetable counter (see Figure 8.67). ⋄

According to the actual content of the “program” P = mp−1 . . .m0 the nU-Circuit can be reduced to a minimal
size using techniques previously described in the section 2.3. The minimal size of the counter is in O(log p) (the
“first” proposal for an actual value is 11(1+ log2 p)+ 5). Therefore, the minimal size of pU-Generator, used to
generate an actual string of p bits is the very precisely defined number CCP(p).

Example 8.33 Let us compute the circuit size of the following 16-bit strings:

P1 = 0000000000000000

P2 = 1111111111111111

P3 = 0101000001010000

P4 = 0110100110110001

For both, P1 and P2 the nU-Circuit is reduced to circuits containing no gates. Therefore, CC(P1) =CC(P2) =
11(1+ log2 16)+5+0 = 60.
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Figure 8.67: The universal string generator. The counter, starting from zero, selects to the output out the
bits of the “program” one by one starting with m0.

For P3, applying the removing rules the first level of EMUXs in nU-Circuitis is removed and to the inputs of
the second level the following string is applied:

x′0,x
′
0,0,0,x

′
0,x
′
0,0,0

We continue applying removing and reducing rules. Results the inputs of the third level:

x′0x2,x′0x2

The last level is removed because its inputs are identic. The resulting circuit is: x′0x2. It has the size 3. Therefore
CC(P3) = 60+3 = 63.

For P4, applying the removing rules results the following string for the second level of EMUXs:

x′0,x0,x0,x′0,x0,1,0,x′0

No removing or reducing rule apply for the next level. Therefore, the size of the resulting circuit is: CC(P4) =
1+7SEMUX +88 = 103. ⋄

The main problem in computing the circuit complexity of a string is to find the minimal form of a Boolean
function. Fortunately, there are rigorous formal procedures to minimize logic functions (see Appendix C.4 for
some of them). (Important note: the entire structure of pU-Generator can be designed composing and closing
loops in a structure containing only elementary multiplexors and inverters. In the langauge of the partial recursive
functions these circuits perform the elementary selection and the elementary increment. “Programming” uses only
the function zero and the elementary increment. No restrictions imposed by primitive recursiveness or minimaliza-
tion are applied!)

An important problem rises: how many of the n-bit variable function are simple? The answer comes from the
next theorem.

Theorem 8.4 The weight, w, of Turing-computable functions, of n binary variables, in the set of the formal func-
tions decreases twice exponentially with n. ⋄

Proof Let be a given n. The number of formal n-input function is N = 22n
, because the definition are expressed

with 2n bits. Some of this functions are Turing-computable. Let be these functions defined by the compressed m-
bit strings. The value of m depends on the actual function, but is realized the condition that max(m) < 2n and m
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does not depends by n. Each compressed form of m bits corresponds only to one 2n-bit uncompressed form. Thus,
the ratio between the Turing-computable function of and the formal function, both of n variables, is smaller than

max(w) = 2−(2
n−max(m)).

And, because max(m) does not depends by n, the ratio has the same form for no matter how big becomes n.
Results:

max(w) = const/22n
.

⋄
A big question arises: how could be combinational circuits useful with this huge ratio between complex

circuits and simple circuits? An answer could be: potentially this ratio is very high, but actually, in the real world
of problems this ratio is very small. It is small because we do not need to compute too many complex functions.
Our mind is usually attracted by simple functions in a strange manner for which we do not have (yet?) a simple
explanation.

The Turing machine is limited to perform only partial recursive functions (see Chapter 9 in this book). The
halting problem is an example of a problem that has no solutions on a Turing machine (see subsection 9.3.5????
in this book). Circuits are more powerful but they are not so easy“programmed” as the Turing Machine, and the
related systems. We are in a paradoxical situation: the circuit does not need algorithms and Turing Machine is
limited only to the problems that have an algorithm. But without algorithms many solutions exist and we do not
know the way to find them. The complexity of the way to find of a solution becomes more and more important.

The working hypothesis will be that at the level of combinational (without autonomy) circuits the segregation
between simple circuits and complex programs is not productive. In most of cases the digital system grows toward
higher orders where the autonomy of the structures allow an efficient segregation between simple and complex.

8.8 Concluding about automata

A new step is made in this chapter in order to increase the autonomous behavior of digital systems. The
second loop looks justified by new useful behaviors.

Synchronous automata need non-transparent state registers The first loop, closed for gain the stor-
ing function, is applied carefully to obtain stable circuits. Tough restrictions can be applied (even number
of inverting levels on the loop) because of the functional simplicity. The functional complexity of au-
tomata rejects any functional restrictions applied for the transfer function associated to loop circuits. The
unstable behavior is avoided using non-transparent memories (registers) to store the state6. Thus, the
state switches synchronized by clock. The output switches synchronously for delayed version of the
implementation. The output is asynchronous for the immediate versions.

The second loop means the behavior’s autonomy Using the first loop to store the state and the second
to compute any transition function, a half-automaton is able to evolve in the state space. The evolution
depends by state and by input. The state dependence allows an evolution even if the input is constant.
Therefore, the automaton manifests its autonomy being able to behave, evolving in the state space, under
constant input. An automaton can be used as “pure” generator of more or less complex sequence of
binary configuration. the complexity of the sequence depends by the complexity of the state transition
function. A simple function on the second loop determine a simple behavior (a simple increment circuit
on the second loop transforms a register in a counter which generate the simple sequence of numbers in
the strict increasing order).

6Asynchronous automata are possible but their design is restricted by to complex additional criteria. Therefore, asyn-
chronous design is avoided until stronger reason will force us to use it.
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Simple automata can have n states When we say n states, this means n can be very big, it is not
limited by our ability to define the automaton, it is limited only by the possibility to implement it using the
accessible technologies. A simple automata can have n states because the state register contains logn flip-
flops, and its second loop contains a simple (constant defined) circuit having the size in O( f (logn)). The
simple automata can be big because they can be specified easy, and they can be generated automatically
using the current software tools.

Complex automata have only finite number of states Finite number of states means: a number of
states unrelated with the length (theoretically accepted as infinite) of the input sequence, i.e., the number
of states is constant. The definition must describe the specific behavior of the automaton in each state.
Therefore, the definition is complex having the size (at least) linearly related with the number of states.
Complex automata must be small because they suppose combinational loops closed through complex
circuits having the description in the same magnitude order with their size.

Control automata suggest the third loop Control automata evolve according to their state and they
take into account the signals received from the controlled system. Because the controlled system receives
commands from the same control automaton a third loop prefigures. Usually finite automata are used as
control automata. Only the simple automata are involved directly in processing data.

An important final question: adding new loops the functional power of digital systems is expanded
or only helpful features are added? And, if indeed new helpful features occur, who is helped by these
additional features?

8.9 Problems

Problem 8.1 Draw the JK flip-flop structure (see Figure 8.5) at the gate level. Analyze the set-up time
related to both edges of the clock.

Problem 8.2 Design a JK FF using a D flip-flop by closing the appropriate combinational loop. Com-
pare the set-up time of this implementation with the set-up time of the version resulting in the previous
problem.

Problem 8.3 Design the sequential version for the circuit which computes the n-bit AND prefixes. Fol-
low the approach used to design the serial n-bit adder (see Figure 8.6).

Problem 8.4 Write the Verilog structural description for the universal 2-input, 2-state programmable
automaton.

Problem 8.5 Draw at the gate level the universal 2-input, 2-state programmable automaton.

Problem 8.6 Use the universal 2-input, 2-state automaton to implement the following circuits:

• n-bit serial adder

• n-bit serial subtractor

• n-bit serial comparator for equality
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• n-bit serial comparator for inequality

• n-bit serial parity generator (returns 1 if odd)

Problem 8.7 Define the synchronous n-bit counter as a simple n-bit Increment Automaton.

Problem 8.8 Design a Verilog tester for the resetable synchronous counter from Example 4.1.

Problem 8.9 Evaluate the size and the speed of the counter defined in Example 4.1.

Problem 8.10 Improve the speed of the counter designed in Example 4.1 designing an improved version
for the module and prefix.

Problem 8.11 Design a reversible counter defined as follows:

module s m a r t e s t c o u n t e r # ( parameter n = 16)
( output [ n − 1 : 0 ] o u t ,

input [ n − 1 : 0 ] i n , / / p r e s e t v a l u e
input r e s e t , / / r e s e t c o u n t e r t o z e r o
input l o a d , / / l oad c o u n t e r w i t h ’ in ’
input down , / / c o u n t s down i f ( c o u n t )
input c o u n t , / / c o u n t s up or down
input c l o c k ) ;

/ / . . .
endmodule

Problem 8.12 Simulate a 3-bit counter with different delay on its outputs. It is the case in real world
because the flop-flops can not be identical and their load could be different. Use it as input for a three
input decoder implemented in two versions. One without delays and another assigning delays to the
inverters and the the gates used to implement the decoder. Visualize the outputs of the decoder in both
cases and interpret what you will find.
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Solution:

/ * ************************************************************************
F i l e name : d e c s p y k e . v
C i r c u i t name : S i m u l a t i o n module t o emphas i z e t h e s p y k e t o t h e o u t p u t o f

decoder d r i v e n by a c o u n t e r
D e s c r i p t i o n : d e s c r i b e s a s y s t e m w i t h a c l o c k g e n e r a t o r , a c o u n t e r and

a decoder , i n two v e r s i o n s : w i t h d e l a y s and w i t h o u t
d e l a y s a s s o c i a t e d t o t h e g a t e s

************************************************************************ * /
module d e c s p y k e ;

reg c lock ,
e n a b l e ;

reg [ 2 : 0 ] c o u n t e r ;
wire out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 ;

i n i t i a l begin c l o c k = 0 ;
e n a b l e = 1 ;
c o u n t e r = 0 ;
f o r e v e r #20 c l o c k = ˜ c l o c k ;

end

i n i t i a l #400 $ s t o p ;

always @( posedge c l o c k )
begin c o u n t e r [ 0 ] <= #3 ˜ c o u n t e r [ 0 ] ;

i f ( c o u n t e r [ 0 ] ) c o u n t e r [ 1 ] <= #4 ˜ c o u n t e r [ 1 ] ;
i f (& c o u n t e r [ 1 : 0 ] ) c o u n t e r [ 2 ] <= #5 ˜ c o u n t e r [ 2 ] ;

end

dmux dmux ( . ou t0 ( ou t0 ) ,
. ou t1 ( ou t1 ) ,
. ou t2 ( ou t2 ) ,
. ou t3 ( ou t3 ) ,
. ou t4 ( ou t4 ) ,
. ou t5 ( ou t5 ) ,
. ou t6 ( ou t6 ) ,
. ou t7 ( ou t7 ) ,
. i n ( c o u n t e r ) ,
. e n a b l e ( e n a b l e ) ) ;

i n i t i a l $vw dumpvars ;

endmodule
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/ * ************************************************************************
F i l e name : dmux . v
C i r c u i t name : DMUX
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a DMUX w i t h and w i t h o u t d e l a y s

a s s o c i a t e d t o t h e g a t e s
************************************************************************ * /

module dmux ( out0 , out1 , out2 , out3 , out4 , out5 , out6 , out7 , in , e n a b l e ) ;

input e n a b l e ;
input [ 2 : 0 ] i n ;
output out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 ;

/ / w i t h no d e l a y v e r s i o n
/ *

a s s i g n { out0 , out1 , out2 , out3 , out4 , out5 , out6 , ou t7 } = 1 ’ b1 << i n ;
/ / * /
/ / w i t h d e l a y s v e r s i o n
/ / *

not #1 no t0 ( nin2 , i n [ 2 ] ) ;
not #1 no t1 ( nin1 , i n [ 1 ] ) ;
not #1 no t2 ( nin0 , i n [ 0 ] ) ;
not #1 no t3 ( in2 , n in2 ) ;
not #1 no t4 ( in1 , n in1 ) ;
not #1 no t5 ( in0 , n in0 ) ;

nand #2 nand0 ( out0 , nin2 , nin1 , nin0 , e n a b l e ) ;
nand #2 nand1 ( out1 , nin2 , nin1 , in0 , e n a b l e ) ;
nand #2 nand2 ( out2 , nin2 , in1 , nin0 , e n a b l e ) ;
nand #2 nand3 ( out3 , nin2 , in1 , in0 , e n a b l e ) ;
nand #2 nand4 ( out4 , in2 , nin1 , nin0 , e n a b l e ) ;
nand #2 nand5 ( out5 , in2 , nin1 , in0 , e n a b l e ) ;
nand #2 nand6 ( out6 , in2 , in1 , nin0 , e n a b l e ) ;
nand #2 nand7 ( out7 , in2 , in1 , in0 , e n a b l e ) ;

/ / * /
endmodule

Problem 8.13 Justify the reason for which the LIFO circuit works properly without a reset input, i.e.,
the initial state of the address counter does not matter.

Problem 8.14 How behaves simple stack .

Problem 8.15 Design a LIFO memory using a synchronous RAM (SRAM) instead of an asynchronous
one as in the embodiment represented in Figure 11.2.

Problem 8.16 Some applications ask the access to the last two data stored into the LIFO. Call them
tos, for the last pushed data, and prev tos for the previously pushed data. Both accessed data can
be popped from stack. Double push is allowed. The accessed data can be rearranged swapping their
position. Both, tos and prev tos can be pushed again in the top of stack. Design such a LIFO defined
as follows:
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module t w o h e a d l i f o ( output [ 3 1 : 0 ] t o s ,
output [ 3 1 : 0 ] p r e v t o s ,
input [ 3 1 : 0 ] i n ,
input [ 3 1 : 0 ] s e c o n d i n ,
input [ 2 : 0 ] com , / / t h e o p e r a t i o n
input c l o c k ) ;

/ / t h e s e m a n t i c s o f ’com ’
parameter nop = 3 ’ b000 , / / no o p e r a t i o n

swap = 3 ’ b001 , / / swap t h e f i r s t two
pop = 3 ’ b010 , / / pop t o s
pop2 = 3 ’ b011 , / / pop t o s and p r e v t o s
push = 3 ’ b100 , / / push i n as new t o s
push2 = 3 ’ b101 , / / push ’ in ’ and ’ s e c o n d i n ’
p u s h t o s = 3 ’110 b , / / push ’ t o s ’ ( d ou b l e t o s )
p u s h p r e v = 3 ’ b111 ; / / push ’ p r e v t o s ’

/ / . . .
endmodule

Problem 8.17 Write the Verilog description of the FIFO memory represented in Figure 8.17.

Problem 8.18 Redesign the FIFO memory represented in Figure 8.17 using a synchronous RAM (SRAM)
instead of the asynchronous RAM.

Problem 8.19 There are application asking for a warning signal before the FIFO memory is full or
empty. Sometimes full and empty come to late for the system using the FIFO memory. For example,
no more then 3 write operation are allowed, or no more than 7 read operation are allowed are very
useful in systems designed using pipeline techniques. The threshold for this warning signals is good
to be programmable. Design a 256 8-bit entries FIFO with warnings activated using a programmable
threshold. The interconnection of this design are:

module t h f i f o ( output [ 7 : 0 ] o u t ,
input [ 7 : 0 ] i n ,
input [ 3 : 0 ] w r i t e t h , / / w r i t e t h r e s h o l d
input [ 3 : 0 ] r e a d t h , / / read t h r e s h o l d
input w r i t e ,
input r e a d ,
output w warn , / / w r i t e warning
output r w a r n , / / read warning
output f u l l ,
output empty ,
input r e s e t ,
input c l o c k ) ;

/ / . . .
endmodule
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Problem 8.20 A synchronous FIFO memory is written or read using the same clock signal. There are
many applications which use a FIFO to interconnect two subsystems working with different clock signals.
In this cases the FIFO memory has an additional role: to cross from the clock domain clock in into
another clock domain, clock out. Design an asynchronous FIFO using a synchronous RAM.

Problem 8.21 A serial memory implements the data structure of a fix length circular list. The first
location is accessed, for write or read operation, activating the input init. Each read or write operation
move the access point one position right. Design an 8-bit word serial memory using a synchronous RAM
as follows:

module s e r i a l m e m o r y ( output [ 7 : 0 ] o u t ,
input [ 7 : 0 ] i n ,
input i n i t ,
input w r i t e ,
input r e a d ,
input c l o c k ) ;

endmodule

Problem 8.22 A list memory is a circuit in which a list can be constructed by insert, can be accessed
by read forward, read back, and modified by insert, delete. Design such a circuit using two
LIFOs.

Problem 8.23 Design a sequential multiplier using as combinational resources only an adder, a multi-
plexors.

Problem 8.24 Write the behavioral and the structural Verilog description for the MAC circuit repre-
sented in Figure 8.19. Test it using a special test module.

Problem 8.25 Redesign the MAC circuit represented in Figure 8.19 adding pipeline register(s) to im-
prove the execution time. Evaluate the resulting speed performance using the parameters form Appendix
E.

Problem 8.26 How many 2-bit code assignment for the half-automaton from Example 4.2 exist? Revisit
the implementation of the half-automaton for four of them different from the one already used. Compare
the resulting circuits and try to explain the differences.

Problem 8.27 Ad to the definition of the half-automaton from Example 4.2 the output circuits for: (1)
error, a bit indicating the detection of an incorrectly formed string, (2)ack, another bit indicating the
acknowledge of a well formed sting.

Problem 8.28 Multiplier control automaton can be defined testing more than one input variable in some
states. The number of states will be reduced and the behavior of the entire system will change. Design
this version of the multiply automaton and compare it with the circuit resulted in Example 4.3. Reevaluate
also the execution time for the multiply operation.

Problem 8.29 Revisit the system described in Example 4.3 and design the finite automaton for multiply
and accumulate (MACC) function. The system perform MACC until the input FIFO is empty and end =

1.
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Problem 8.30 Design the structure of TC in the CROM defined in 4.4.3 (see Figure 8.60). Define the
codes associated to the four modes of transition (jmp, cjmp, init, inc) so as to minimize the num-
ber of gates.

Problem 8.31 Design an easy to actualize Verilog description for the CROM unit represented in Figure
8.60.

Problem 8.32 Generate the binary code for the ROM described using the symbolic definition in Example
4.4.

Problem 8.33 Design a fast multiplier converting a sequential multiplier into a combinational circuit.

Problem 8.34 Let be the finite automaton defined in Figure 8.68. Do the following:

10

10

00

11

00

01

A

reset

0 1

Figure 8.68:

1. assign the sate codes in two versions:

(a) according priority to the reduce dependency coding style

(b) according priority to the minimal variation coding style

2. implement the finite automaton in the resulting two versions by:

• drawing the transition VK diagrams

• extracting the logic functions for Q+
2 ,Q

+
1 ,Q

+
0 ,Y2,Y1,Y0

• drawing the logic schematic of the resulting automaton

Problem 8.35 Describe in Verilog the automaton defined in Problem 8.34 and simulate it.
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8.10 Projects

Project 8.1 Finalize Project 1.2 using the knowledge acquired about the combinational and sequential
structures in this chapter and in the previous two.

Project 8.2 The idea of simple FIFO presented in this chapter can be used to design an actual block
having the following additional features:

• fully buffered inputs and outputs

• programmable thresholds for generating the empty and full signals

• asynchronous clock signals for input and for output (the design must take into consideration that
the two clocks – clockIn, clockOut – are considered completely asynchronous)

• the read or write commands are executed only if the it is possible (reads only if not-empty, or
writes only if not-full).

The module header is the following:

module asyncFIFO #( ‘ i n c l u d e ” f i f o P a r a m e t e r s . v ” )
( output reg [ n − 1 : 0 ] o u t ,

output reg empty ,
output reg f u l l ,
input [ n − 1 : 0 ] i n ,
input w r i t e ,
input r e a d ,
input [m− 1 : 0 ] inTh , / / i n p u t t h r e s h o l d
input [m− 1 : 0 ] outTh , / / o u t p u t t h r e s h o l d
input r e s e t ,
input c l o c k I n ,
input c l o c k O u t ) ;

/ / . . .
endmodule

The file fifoParameters.v has the content:

parameter n = 16 , / / word s i z e
m = 8 / / number o f l e v e l s

Project 8.3 Design a stack execution unit with a 32-bit ALU. The stack is 16-level depth (stack0,
stack1, ... stack15) with stack0 assigned as the top of stack. ALU has the following functions:

• add: addition
{stack0, stack1, stack2, ...} <= {(stack0 + stack1), stack2, stack3,...}

• sub: subtract
{stack0, stack1, stack2, ...} <= {(stack0 - stack1), stack2, stack3,...}
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• inc: increment
{stack0, stack1, stack2, ...} <= {(stack0 + 1), stack1, stack2, ...}

• dec: decrement
{stack0, stack1, stack2, ...} <= {(stack0 - 1), stack1, stack2, ...},

• and: bitwise AND
{stack0, stack1, stack2, ...} <= {(stack0 & stack1), stack2, stack3,...}

• or: bitwise OR
{stack0, stack1, stack2, ...} <= {(stack0 | stack1), stack2, stack3,...}

• xor: bitwise XOR
{stack0, stack1, stack2, ...} <= {(stack0 ⊕ stack1), stack2, stack3,...}

• not: bitwise NOT
{stack0, stack1, stack2, ...} <= {(∼stack0), stack1, stack2, ...}

• over:
{stack0, stack1, stack2, ...} <= {stack1, stack0, stack1, stack2, ...}

• dup: duplicate
{stack0, stack1, stack2, ...} <= {stack0, stack0, stack1, stack2, ...}

• rightShift: right shift one position (integer division)
{stack0, stack1, ...} <= {({1’b0, stack0[31:1]}), stack1, ...}

• arithShift: arithmetic right shift one position
{stack0, stack1, ...} <= {({stack0[31], stack0[31:1]}), stack1, ...}

• get: push dataIn in top of stack
{stack0, stack1, stack2, ...} <= {dataIn, stack0, stack1, ...},

• acc: accumulate dataIn
{stack0, stack1, stack2, ...} <= {(stack0 + dataIn), stack1, stack2, ...},

• swp: swap the last two recordings in stack
{stack0, stack1, stack2, ...} <= {stack1, stack0, stack2, ...}

• nop: no operation
{stack0, stack1, stack2, ...} <= {stack0, stack1, stack2, ...}.

All the register buffered external connections are the following:

• dataIn[31:0] : data input provided by the external subsystem

• dataOut[31:0] : data output sent from the top of stack to the external subsystem

• aluCom[3:0] : command code executed by the unit

• carryIn : carry input

• carryOut : carry output
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• eqFlag : is one if (stack0 == stack1)

• ltFlag : is one if (stack0 ¡ stack1)

• zeroFlag : is one if (stack0 == 0)

Project 8.4



Chapter 9

PROCESSORS:
Third order, 3-loop digital systems

In the previous chapter
the circuits having an autonomous behavior were introduced pointing on

• how the increased autonomy adds new functional features in digital systems

• the distinction between finite automata and uniform automata

• the segregation mechanism used to reduce the complexity

In this chapter
the third order, three-loop systems are studied presenting

• how a “smart register” can reduce the complexity of a finite automaton

• how an additional memory helps for designing easy controllable systems

• how the general processing functions can be performed loop connecting two appropriate
automata forming a processor

In the next chapter
the fourth order, four-loop systems are suggested with emphasis on

• the four types of loops used for generating different kind of computational structures

• the strongest segregation which occurs between the simple circuits and the complex programs

363



364 CHAPTER 9. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

The soft overcomes the hard in the world
as a gentle rider controls a galloping horse.

Lao Tzu1

The third loop allows the softness of symbols to act im-
posing the system’s function.

In order to add more autonomy in digital systems the third loop must be closed. Thus, new effects
of the autonomy are used in order to reduce the complexity of the system. One of them will allow us to
reduce the apparent complexity of an automaton, another, to reduce the complexity of the sequence of
commands, but, the main form of manifesting of this third loop will be the control process.

Automaton

? ?

? ?

?

6
2-OS

Automaton

? ?

? ?

?

6
2-OS

Automaton

? ?

? ?

?

6
2-OS

CLC

Memory

Automaton

0-OS

1-OS

2-OS

a.

b.

c.

simpler (& smalleer)

Processor

easier to control

automaton

automaton

Figure 9.1: The three types of 3-OS machines. a. The third loop is closed through a combinational circuit
resulting less complex, sometimes smaller, finite automaton. b. The third loop is closed through memories allowing
a simplest control. c. The third loop is closed through another automaton resulting the Processor: the most
complex and powerful circuit.

The third loop can be closed in three manners, using the three types of circuits presented in the
previous chapters.

• The first 3-OS type system is a system having the third loop closed through a combinational circuit,
i.e., over an automaton or a network of automata the loop is closed through a 0-OS (see Figure
9.1a).

• The second type (see Figure 9.1b) has on the loop a memory circuit (1-OS).

1Quote from Tao Te King of Lao Tzu translated by Brian Browne Walker.
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• The third type connects in a loop two automata (see Figure 9.1c). This last type is typical for 3-OS,
having the processor as the main component.

All these types of loops will be exemplified emphasizing a new and very important process appearing
at the level of the third order system: the segregation of the simple from the complex in order to
reduce the global (apparent) complexity.

9.1 Implementing finite automata with ”intelligent registers”

The automaton function rises at the second order level, but this function can be better implemented using
the facilities offered by the systems having a higher order. Thus, in this section we resume a previous
example using the feature offered by 3-OS. The main effect of these new approaches: the ratio between
the simple circuits and the complex circuits grows, without spectacular changes in the size of circuits.
The main conclusion of this section: more autonomy means less complexity.

9.1.1 Automata with JK “registers”

In the first example we will substitute the state register with a more autonomous device: a “register”
made by JK flip-flops. The “JK register” is not a register, it is a network of parallel connected simple
automata. We shall prove that, using this more complicated flip-flop, the random part of the system will
be reduced and in most of big sized cases the entire size of the system could be also reduced. Thus, both
the size and the complexity diminishes when we work with autonomous (“smart”) components.

But let’s start to disclose the promised magic method which, using flip-flops having two inputs in-
stead of one, offers a minimized solution for the combinational circuit performing the loop’s function f .
The main step is to offer a simple rule to substitute a D flip-flop with a JK flip-flop in the structure of the
automaton.

The JK flip-flop has more autonomy than the D flip-flop. The first is an automaton and the second is
only a storage element used to delay. The JK flip-flop has one more loop than the D flip-flop. Therefore,
for switching from a state to another the input signals of a JK flip-flop accepts more “ambiguity” than
the signal to the input of a D flip-flop. The JK flip-flop transition can be commanded as follows:

• for 0→ 0 transition, JK can be 00 or 01, i.e., JK=0– (“–” means “don’t care” value)

• for 0→ 1 transition, JK can be 11 or 10, i.e., JK=1–

• for 1→ 0 transition, JK can be 11 or 01, i.e., JK=–1

• for 1→ 1 transition, JK can be 00 or 10, i.e., JK=–0

From the previous rule results the following rule:

• for 0→ A, JK=A–

• for 1→ A, JK=–A’.

Using these rules, each transition diagram for Q+
i can be translated in two transition diagrams for Ji and

Ki. Results: twice numbers of equations. But surprisingly, the entire size of the random circuit which
computes the state transition will diminish.
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Figure 9.2: Translating D transition diagrams in the corresponding JK transition diagrams. The
transition VK diagrams for the JK implementation of the finite half-automaton used to recognize binary string
belonging to the 1n0m set of strings.

Example 9.1 The half-automaton designed in Example 8.4 is reconsidered in order to be designed using
JK flip-flops instead of D flip-flops. The transition map from Figure 8.29 (reproduces in Figure 9.2a) is
translated in JK transition maps in Figure 9.2b. The resulting circuit is represented in Figure 9.2c.

The size of the random circuit which computes the state transition function is now smaller (from the
size 8 for D–FF to size 5 for JK–FF). The increased autonomy of the now used flip-flops allows a smaller
“effort” for the same functionality. ⋄

Example 9.2 ∗ Let’s revisit also Example 8.5. Applying the transformation rules results the VK diagrams from
Figure 9.3 from which we extract:

J1 = Q0 · empty′

K1 = Q′0 · f ull′

J0 = Q′1 · empty′

K0 = Q1 ·done

If we compare with the previous D flip-flop solution where the loop circuit is defined by

Q+
1 = Q1 ·Q0 +Q0 · empty′+Q1 · f ull

Q+
0 = Q′1 ·Q0 +Q0 ·done′+Q′1 · empty′

results a big reduction of complexity. ⋄

In this new approach, using a “smart register”, a part of loopCLC from the automaton built with a
true register was segregated in the uniform structure of the “JK register”. Indeed, the size of loopCLC
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Figure 9.3: Translating D transition diagrams in the corresponding JK transition diagrams. The
transition VK diagrams for the JK implementation of the finite automaton used to control MAC circuit (see Exam-
ple 4.3).

decreases, but the size of each flip-flop increases with 3 units (instead of an inverter between S and R in
D flip-flop, there are two AND2 in JK flip-flop). Thus, in this new variant the size of loopCLC decreases
on the account of the size of the “JK register”.

This method acts as a mechanism that emphasizes more uniformities in the designing process and al-
lows to build for the same function a less complex and, only sometimes, a smaller circuit. The efficiency
of this method increases with the complexity and the size of the system.

We can say that loopCLC of the first versions has only an apparent complexity, because of a certain
quantity of “order” distributed, maybe hidden, among the effective random parts of it. Because the
“order” sunken in “disorder” can not be easy recognized we say that “disorder + order” means “disorder”.
In this respect, the apparent complexity must be defined. The apparent complexity of a circuit is reduced
segregating the “hidden order”, until the circuit remains really random. The first step is done. The next
step, in the following subsection.

What is the explanation for this segregation that implies the above presented minimization in the ran-
dom part of the system? Shortly: because the “JK register” is a “smart register” having more autonomy
than the true register built by D flip-flops. A D flip-flop has only the partial autonomy of staying in a
certain state, instead of the JK flip-flop that has the autonomy to evolve in the state space. Indeed, for a D
flip-flop we must all the time “say” on the input what will be the next state, 0 or 1, but for a JK flip-flop
we have the vague, almost “evasive”, command J = K = 1 that says: “switch in the other state”, without
indicating precisely, as for D flip-flop, the next state, because the JK “knows”, aided by the second loop,
what is its present state.

Because of the second loop, that informs the JK flip-flop about its own state, the expressions for
Ji and Ki do not depend by Qi, rather than Q+

i that depends on Qi. Thus, Ji and Ki are simplified. More
autonomy means less control. For this reason the PLA that closes the third loop over a “JK register” is
smaller than a PLA that closes the second loop over a true register.

9.1.2 ∗ Automata using counters as registers
Are there ways to “extract” more “simplicity” by segregation from the PLA associated to an automaton? For some
particular problems there is at least one more solution: to use a synchronous setable counter, SCOUNTn. The
synchronous setable counter is a circuit that combines two functions, it is a register (loaded on the command L)
and in the same time it is a counter (counting up under the command U). The load has priority before the count.

Instead of using few one-bit counters, i.e. JK flip-flops, one few-bit counter is used to store the state and to
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Figure 9.4: Finite automaton with smart “JK register”. The new implementation of FA from Figure
8.40 using a ”JK register” as a state register. The associated half-automaton is simpler (the corresponding PLA is
smaller).

simplify, if possible, the control of the state transition. The coding style used is the incremental encoding (see
E.4.3), which provides the possibility that some state transitions to be performed by counting (increment).

Warning: using setable counters is not always an efficient solution!
Follows two example. One is extremely encouraging, and another is more realistic.

Example 9.3 The half-automaton associated to the codes assignment written in parenthesis in Figure 8.41 is
implemented using an SCOUNTn with n = 2. Because the states are codded using increment encoding, the state
transitions in the flow-chart can be interpreted as follows:

• in the state q0 if empty = 0, then the state code is incremented, else it remains the same

• in the state q1 if empty = 0, then the state code is incremented, else it remains the same

• in the state q2 if done = 1, then the state code is incremented, else it remains the same

• in the state q3 if f ull = 0, then the state code is incremented, else it remains the same

Results the very simple (not necessarily very small) implementation represented in Figure 9.5, where a 4-input
multiplexer selects according to the state the way the counter switches: by increment (up = 1) or by loading
(load = 1).

Comparing with the half-automaton part in the circuit represented in Figure 9.4, the version with counter is
simpler, eventually smaller. But, the most important effect is the reducing complexity. ⋄

Example 9.4 This example is also a remake. The half-automaton of the automaton which controls the operation
macc in Example 4.6 will be implemented using a presetable counter as register. See Figure 8.62 for the state
encoding. The idea is to have in the flow-chart as many as possible transitions by incrementing.
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Figure 9.5: Finite half-automaton implemented with a setable counter. The last implementation of the
half-automaton associated with FA from Figure 8.40 (with the function defined in Figure 8.41 where the states
coded in parenthesis). A synchronous two-bit counter is used as state register. The simple four-input MUX
commands the counter.

Building the solution starts from a SCOUNT4 and a MUX4 connected as in Figure 9.6. The multiplexer selects
the counter’s operation (load or up-increment) in each state according to the flow-chart description. For example
in the state 0000 the transition is made by counting if empty = 0, else the state remains the same. Therefore, the
multiplexer selects the value of empty′ to the input U of the counter.

The main idea is that the loading inputs I3, I2, I1 and I0 must have correct values only if in the current state
the transition can be made by loading a certain value in the counter. Thus, in the definition of the logical functions
associated with these inputs we have many “don’t care”s. Results the circuit represented in Figure 9.6. The
random part of the circuit is designed using the transition diagrams from Figure 9.7.

The resulting structure has a minimized random part. We assumed even the risk of increasing the recursive
defined part of the circuit in order to reduce the random part of it. ⋄

Now, the autonomous device that allows reducing the randomness is the counter used as state register. An
adequate state assignment implies many transitions by incrementing the state code. Thus, the basic function of the
counter is many times involved in the state transition. Therefore, the second loop of the system, the simple defined
“loop that counts”, is frequently used by the third loop, the random loop. The simple command UP, on the third
loop, is like a complex “macro” executed by the second loop using simple circuits. This hierarchy of autonomies
simplifies the system, because at the higher level the loop uses simple commands for complex actions. Let us
remember:

• the loop over a true register (in 2-OS) uses the simple commands for the simplest actions: load 0 in D
flip-flop and load 1 in D flip-flop

• the loop over a “JK register” (in 3-OS) uses beside the previous commands the following: no op (remain in
the same state!) and switch (switch in the complementary state!)

• the loop over a SCOUNTn substitutes the command switch with the same simple expressed, but more
powerful, command increment.

The “architecture” used on the third loop is more powerful than the two previous. Therefore, the effort of this loop
to implement the same function is smaller, having the simpler expression: a reduced random circuit.

The segregation process is more deep, thus we imply in the designing process more simple, recursive defined,
circuits. The apparent complexity of the previous solution is reduced towards, maybe on, the actual complexity.
The complexity of the simple part is a little increased in order to “pay the price” for a strong minimization of the
random part of the system. The quantitative aspects of our small example are not very significant. Only the design
of the actual large systems offers a meaningful example concerning the quantitative effects.
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Figure 9.6: Finite half-automaton for controlling the function macc. The function was previously imple-
mented using a CROM in Example 4.6.

9.2 Loops closed through memories

Because the storage elements do not perform logical or arithmetical functions - they only store - a loop
closed through the 1-OS seems to be unuseful or at least strange. But a selective memorizing action is
used sometimes to optimize the computational process! The key is to know what can be useful in the
next steps.

The previous two examples of the third order systems belongs to the subclass having a combinational
loop. The function performed remains the same, only the efficiency is affected. In this section, because
automata having the loop closed through a memory is presented, we expect the occurrence of some
supplementary effects.

In order to exemplify how a trough memory loop works an Arithmetic & Logic Automaton – ALA
– will be used (see Figure 9.8a). This circuit performs logic and arithmetic functions on data stored in
its own state register called accumulator – ACC –, used as left operand and on the data received on its
input in, used as right operand. A first version uses a control automaton to send commands to ALA,
receiving back one flag: crout.

A second version of the system contains an additional D flip-flop used to store the value of the CRout

signal, in each clock cycle when it is enabled (E = 1), in order to be applied on the CRin input of ALU.
The control automaton is now substituted with a command automaton, used only to issue commands,
without receiving back any flag.

Follow two example of using this ALA, one without an additional loop and another with the third
loop closed trough a simple D flip-flop.
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Figure 9.7: Transition diagrams for the presetable counter used as state register. The complex (ran-
dom) part of the automaton is represented by the loop closed to the load input of the presetable counter.

Version 1: the controlled Arithmetic & Logic Automaton

In the first case ALA is controlled (see Figure 9.8a) using the following definition for the undefined
fields of < microinstruction> specified in 8.4.3:

<command> ::= <func> <carry>;

<func> ::= and | or | xor | add | sub | inc | shl | right;

<test> ::= crout | -;

Let be the sequence of commands that controls the increment of a double-length number:

inc cjmp crout bubu // ACC = in + 1

right jmp cucu // ACC = in

bubu inc // ACC = in + 1

cucu ...

The first increment command is followed by different operarion according to the value of crout. If
crout = 1 then the next command is an increment, else the next command is a simple load of the upper
bits of the double-length operand into the accumulator. The control automaton decides according to the
result of the first increment and behaves accordingly.

Version 2: the commanded Arithmetic & Logic Automaton

The second version of Arithmetic & Logic Automaton is a 3-OS because of the additional loop closed
through the D flip-flop. The role of this new loop is to reduce, to simplify and to speed up the routine
that performs the same operation. Now the microinstruction is actualized differently:

<command> ::= <func>;

<func> ::= right | and | or | xor | add |

sub | inc | shl | addcr | subcr | inccr | shlcr;

<test> ::= - ;

The field <test> is not used, and the control automaton can be substituted by a command automaton.
The field <func> is codded so as one of its bit is 1 for all arithmetic functions. This bit is used to enable
the switch of D-FF. New functions are added: addcr, subcr, inccr, shlcr. The instructions xxxcr
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Figure 9.8: The third loop closed over an arithmetic and logic automaton. a. The basic structure: a
simple automaton (its loop is closed through a simple combinational circuit: ALU) working under the supervision
of a control automaton. b. The improved version, with an additional 1-bit state register to store the carry signal.
The control is simpler if the third loop “tells” back to the arithmetic automaton the value of the carry signal in the
previous cycle.

operates with the value of carry F-F. The set of operations are defined now on in, ACC, carry with
values in carry, ACC, as follows:

right: {carry, ACC} <= {carry, in}

and: {carry, ACC} <= {carry, ACC & in}

or: {carry, ACC} <= {carry, ACC | in}

xor: {carry, ACC} <= {carry, ACC ^ in}

add: {carry, ACC} <= ACC + in

sub: {carry, ACC} <= ACC - in

inc: {carry, ACC} <= in + 1

shl: {carry, ACC} <= {in, 0}

addcr: {carry, ACC} <= ACC + in + carry

subcr: {carry, ACC} <= ACC - in - carry

inccr: {carry, ACC} <= in + carry

shlcr: {carry, ACC} <= {in, carry}

The resulting difference in how the system works is that in each clock cycle CRin is given by the
content of the D flip-flop. Thus, the sequence of commands that performs the same action becomes:

inc // ACC = in + 1

inccr // ACC = in + Q
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In the two previous use of the arithmetic and logic automaton the execution time remains the same,
but the expression used to command the structure in the second version is shorter and simpler. The
explanation for this effect is the improved autonomy of the second version of the ALA. The first version
was a 2-OS but the second version is a 3-OS. A significant part of the random content of the ROM from
CROM can be removed by this simple new loop. Again, more autonomy means less control. A small
circuit added as a new loop can save much from the random part of the structure. Therefore, this kind of
loop acts as a segregation method.

Specific for this type of loop is that adding simple circuits we save random, i.e., complex, structured
symbolic structures. The circuits grow by simple physical structure and the complex symbolic structures
are partially avoided.

In the first version the sequence of commands are executed by the automaton all the time in the same
manner. In the second version, a simpler sequence of commands are executed different, according to
the processed data that impose different values in the carry flop-flop. This “different execution” can be
thought as an “interpretation”.

In fact, the execution is substituted by the interpretation, so as the apparent complexity of the sym-
bolic structure is reduced based on the additional autonomy due to the third structural loop. The au-
tonomy introduced by the new loop through the D flip-flop allowed the interpretation of the commands
received from the sequencer, according to the value of CR.

The third loop allows the simplest form of interpretation, we will call it static interpretation. The
fourth loop allows a dynamic interpretation, as we will see in the next chapter.

9.3 Loop coupled automata: the second ”turning point”

This last step in building 3-OS stresses specifically on the maximal segregation between the simple
physical structure and the complex symbolic structures. The third loop allows us to make a deeper
segregation between simple and complex.

We are in the point where the process of segregation between simple and complex physical structures
ends. The physical structures reach the stage from which the evolution can be done only coupled with
the symbolic structures. From this point a machine means: circuits that execute or interpret bit configu-
rations structured under restrictions imposed by the formal languages used to describe the functionality
to be performed.

9.3.1 Counter extended automata (CEA)

Let us revisit Example 8.15 and try to solve the problem for m = n.

9.3.2 ∗ Push-down automata

The first example of loop coupled automata uses a finite automaton and a functional automaton: the stack (LIFO
memory). A finite complex structure is interconnected with an “infinite” but simple structure. The simple and
the complex are thus perfectly segregated. This approach has the role of minimizing the size of the random part.
More, this loop affects the magnitude order of the randomness, instead of the previous examples (Arithmetic &
Logic Automaton) in which the size of randomness is reduced only by a constant. The proposed structure is a well
known system having many theoretical and practical applications: the push-down automaton.

Definition 9.1 The push-down automaton, PDA, (see Figure 9.9) built by a finite automaton loop connected with
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Figure 9.9: The push-down automaton (PDA). A finite (random) automaton loop-coupled with an “infinite”
stack (a simple automaton) is an enhanced toll for dealing with formal languages.

a push-down stack (LIFO), is defined by the six-tuple:

PDA = (X×X ′,Y ×Y ′×X ,Q, f ,g,z0)

where:

X : is the finite alphabet of the machine; the input string is in X∗

X’ : is the finite alphabet of the stack, X ′ = X ′∪{z0}

Y : is the finite output set of the machine

Y’ : is the set of commands issued by the finite automaton toward LIFO, {PUSH,POP,−}

Q : is the finite set of the automaton states (i.e., |Q| ̸= h(max l(s)), where s ∈ X∗ is received on the input of the
machine)

f : is the state transition function of the machine

f : X×X ′×Q→ Q×X×Y ′

(i.e., depending on the received symbol, by the value of the top of stack (TOS) and by the automaton’s state,
the automaton switches in a new state, a new value can be sent to the stack and the stack receives a new
command (PUSH, POP or NOP))

g : is the output transition function of the automaton - g : Q→ Y

z0 : is the initial value of TOS. ⋄

Example 9.5 The problem to be solved is designing a machine that recognizes strings having the form $x&y$,
where $,& ∈ X and x,y ∈ X∗, X being a finite alphabet and y is the antisymmetric version of x.

The solution is to use a PDA with f and g described by the flow-chart given in Figure 9.10. Results a five state,
initial (in q0) automaton, each state having the following meaning and role:

q0 : is the initial state in which the machine is waiting for the first $

q1 : in this state the received symbols are pushed into the stack, excepting & that switches the automaton in the
next state

q2 : in this state, each received symbol is compared with TOS, that is poped on, while the received symbol is
not $; when the input is $ and TOS = z0 the automaton switches in q3, else, if the received symbols do not
correspond with the successive value of the TOS or the final value of TOS differs from z0, the automaton
switches in q4
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Figure 9.10: Defining the behavior of a PDA. The algorithm detecting the antisymmetrical sequences of
symbols.

q3 : if the automaton is in this state the received string was recognized as a well formed string

q4 : if the automaton is in this state the received string was wrong. ⋄

The reader can try to solve the problem using only an automaton. For a given X set, especially for a small
set, the solution is possible and small, but the LOOP PLA of the resulting automaton will be a circuit with the size
and the form depending by the dimension and by the content of the set X . If only one symbol is added or at least
is changed, then the entire design process must be restarted from scratch. The automaton imposes a solution in
which the simple, recursive part of the solution is mixed up with the random part, thus all the system has a very
large apparent complexity. The automaton must store in the state space what PDA stores in stack. You imagine
how huge become the state set in a such crazy solution. Both, the size and the complexity of the solution become
unacceptable.

The solution with PDA, just presented, does not depend by the content and by the dimension of the set X .
In this solution the simple is well segregated from the complex. The simple part is the “infinite” stack and the
complex part is a small, five-state finite automaton.

9.3.3 The elementary processor

The most representative circuit in the class of 3-OS is the processor. The processor is maybe the most
important digital circuit because of its flexibility to compute any computable function.

Definition 9.2 The processor, P, is a circuit realized loop connecting a functional automaton with a finite
(control) automaton. ⋄
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The function of a processor P is specified by the sequences of commands “stored” in the loopCLC of
the finite automaton used for control. (In a microprogrammed processor each sequence represents a mi-
croprogram. A microprogram consists in a sequence of microinstructions each containing the commands
executed by the functional automaton and fields that allow to select the next microinstruction.)

In order to understand the main mechanisms involved by the third loop closed in digital systems we
will present initially only how an elementary processor works.

Definition 9.3 The elementary processor, EP, is a processor executing only one control sequence, i.e.,
the associated finite automaton is a strict initial automaton. ⋄

An EP performs only one function. It is a structure having a fix, nonprogrammable function. The
two parts of an EP are very different. One, the control automaton, is a complex structure, while another,
the functional automaton, is a simple circuit assembled from few recursively defined circuits (registers,
ALU, file registers, multiplexors, and the kind). This strong segregation between the simple part and the
complex part of a circuit is the key idea on which the efficiency of this approach is based.

Even on this basic level the main aspect of computation manifest. It is about control and execution.
The finite automaton performs the control, while the functional automaton executes the logic or arith-
metic operations on data. The control depends on the function to be computed (the 2nd level loop at the
level of the automaton) and on the actual data received by the system (the 3rd level loop at the system
level).

Example 9.6 Let’s revisit Example 5.2 in order to implement the function interpol using an EP. The
organization of the EP intepolEP is presented in Figure 9.11.

The functional automaton consists of a register file, an Arithmetic and Logic Unit and a 2-way
multiplexer. Such a simple functional automaton can be called RALU (Registers & ALU). In each clock
cycle two operands are read from the register file, they are operated in ALU, and the result is stored back
at destination register in the register file. The multiplexor is used to load the register file with data. The
loop closed from the ALU’s output to the MUX’s input is a 2nd level loop, because each register in the
file register contains a first level loop.

The system has fully buffered connections. Synchronization signals (send, get, sendAck,

getAck) are connected through D–FFs (one-bit registers) and data through two 8-bit registers: inR

and outR.
The control of the system is performed by the finite automaton FA. It is initialized by the reset signal,

and evolve by testing three independent 1-bit signals: send (the sending external subsystem provides a
new input byte), get (the receiving external subsystem is getting the data provided by the EP), zero
(means the current output of ALU has the value 0). The last 1-bit signal closes the third loop of the
system. The transition function is described in the following lines:

STATE FUNCTION TEST EXT. SIGNAL NEXT STATE

waitSend reg0 <= inReg, if (send) sendAck, next = test;

else next = waitSend;

test reg1 <= reg1, if (zero) next = add;

else next = waitGet;

waitGet outReg <= reg1, if (get) getAck, next = move1;

else next = waitGet;

move1 reg2 <= reg1, next = move0;

move0 reg1 <= reg0, next = waitSend;

add reg1 <= reg0 + reg2, next = divide;

divide reg1 <= reg1 >> 1, next = waitGet;
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Figure 9.11: The elementary processor interpolEP.

The outputs of the automaton provide the command for the acknowledge signals for the external
subsystems, and the internal command signals for RALU and output register outR. ⋄

Example 9.7 ∗ The EP structure is exemplified framed inside the simple system represented in Figure 9.12, where:

inFIFO : provides the input data for EP when read = 1 if empty = 0

outFIFO : receives the output data generated by EP when write = 1 if full = 0

LIFO : stores intermediary data for EP if push = 1 and send back the last sent data if pop

Elementary Processor : is one of the simplest embodiment of an EP containing:

Control Automaton : a strict initial control automaton (see CROM from Figure 8.60)

alu : an Arithmeetic & Logic Unit

acc reg : an accumulator register, used as state register for Arithmetic & Logic Automaton which is a
functional automaton

mux : is the multiplexer for select the left operand from inFIFO or from LIFO.

The control automaton is a one function CROM that commands the functional automaton, receiving from it only
the carry output, cr, of the adder embedded in ALU.

The description of PE must be supplemented with the associated microprogramming language, as follows:

<microinstruction> ::= <label> <command> <mod> <test> <next>;

<label> ::= <any string having maximum 6 symbols>;

<command> ::= <func> <inout>;
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Figure 9.12: An example of elementary processor (EP). The third loop is closed between a simple execution
automaton (alu & acc reg) and a complex control automaton used to generate the sequence of operations to be
performed by alu and to control the data flow between EP and the associated memory resources: LIFO, inFIFO,

outFIFO.

<mod> ::= jmp | cjmp | - ;

<test> ::= zero | notzero | cr | notcr | empty | nempty | full | nfull;

<next> ::= <label>;

<func> ::= left | add | half0 | half1 | - ;

<inout> ::= read | write | push | pop ;

where:

notcr: inverted cr

nempty: inverted empty

nfull: inverted full

left: acc_reg <= left

add: acc_reg <= left + acc_reg

half0: acc_reg <= {0, acc_reg[n-1:1]}

half1: acc_reg <= {1, acc_reg[n-1:1]}

left = read ? out(inFIFO) : out(LIFO)

and by default command are:

inc for <mode>

right: acc_reg <= acc_reg

The only microprogram executed by the previous described EP receives a string of numbers and generates
another string of numbers representing the mean values of the successive two received numbers. The numbers are
positive integers. Using the previous defined microprogramming language results the following microprogram:

microprogram mean;

bubu read, cjmp, empty, bubu, left;

cucu cjmp, empty, cucu;

read, add, cjmp, cr, one;

half0;
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out write, cjmp, full, out;

jmp, bubu;

one half1, jmp, out;

endmicroprogram

On the first line PE waits for non-empty inFIFO; when empty becomes inactive the last left command puts
in the accumulator register the correct value. The second microinstruction PE waits for the second number, when
the number arrives the microprogram goes to the next line. The third line adds the content of the register with the
just read number from inFIFO. If cr = 1, the next microinstruction will be one, else the next will be the following
microinstruction. The fourth and the last microinstructions performs the right shift setting the most significant bit
on 0, i.e., the division for finishing to compute the mean between the two received numbers. The line out send
out the result when full = 0. The jump to bubu restart again the procedure, and so on unending. The line one

performs a right shift setting the most significant bit on 1. ⋄

The entire physical structure of EP is not relevant for the actual function it performs. The function
is defined only by the loopCLC of the finite automaton. The control performed by the finite automaton
combines the simple functional facilities of the functional automaton that is a simple logic-arithmetic
automaton. The randomness is now concentrated in the structure of loopCLC which is the single complex
structure in the system. If loopCLC is implemented as a ROM, then its internal structure is a symbolic
one. As we said at the beginning of this section, at the level of 3-OS the complexity is segregated in
the symbolic domain. The complexity is driven away from the circuits being lodged inside the symbolic
structures supported by ROM. The complexity can not be avoided, it can be only transferred in the more
controllable space of the symbolic structures.

9.3.4 Executing instructions vs. interpreting instructions

A processor is a machine which composes & loops functions performed by elementary processors.
Let us call them elementary computations or, simply, instructions. But now it is not about composing
circuits. The big difference from a physical composition or a physical looping, already discussed, is that
now the composition and looping are done ”in the symbolic domain”.

As we know, an EP computes a function of variables received from an external sub-system (in the
previous example from inFIFO), and sends the result to an external sub-system (in the previous example
to outFIFO). Besides input variables a processor receives also functions. The results are stored sometimes
internally or in specific external resources (for example a LIFO memory), and only at the end of a
complex computation a result or a partial result is outputed.

The ”symbolic composition” is performed applying the computation g on the results of computations
hm, . . .h0. Let’s call now g, hi, or other similar simple computations, instructions.

The ”symbolic looping” means to apply the same string of instructions to the same variables as many
time as needed.

Any processor is characterized by its instruction set architecture (ISA). As we mentioned, an in-
struction is equivalent with an elementary computation performed by an EP, and its code is used to
specify:

• the operation to be performed (<op code>)

• sometimes an immediate operand, i.e., a value known at the moment the computation is defined
(<value>),

therefore, in the simplest cases instruction ::= <op code> <value>



380 CHAPTER 9. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

A program is a sequence of instructions allowing to compose and to loop more or less complex
computations.

There are two ways to perform an instruction:

• to execute it: to transcode op code in one or many elementary operations executed in one clock
cycle

• to interpret it: to expand op code is a sequence of operations performed in many clock cycles.

Accordingly, two kind of processors are defined:

• executing processors

• interpreting processors.

VARIABLES
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NEXT PC

storage elements
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PROGRAMS

elementary functions composing & looping

w
�

PROGRAM

COUNTER

EXECUTION UNIT
or

INTERPRETATION UNIT

storage elements

decoding or µ-composing & µ-looping
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Figure 9.13: The processor (P) in its environment. P works loop connected with an external memory
containing data and programs. Inside P elementary function, applied to a small set of very accessible variables,
are composed in linear or looped sequences. The instructions read from the external memory are executed in one
(constant) clock cycle(s) or they are interpreted by a sequence of elementary functions.

In Figure 9.13 the processing module is framed in a typical context. The data to be computed and the
instructions to be used perform the computation are stored in a RAM module (see in Figure 9.13 DATA
& PROGRAMS). PROCESSOR is a separate unit used to compose and to loop strings of instructions.
The internal resources of a processor consists, usually, in:

• a block to perform elementary computations, containing:

– an ALU performing at least simple arithmetic operations and the basic logic operations

– a memory support for storing the most used variable

• the block used to transform each instruction in an executable internal mico-code, with two possible
versions:
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– a simple decoder allowing the execution of each instruction in one clock cycle

– a microprogrammed unit used to ”expand” each instruction in a microprogram, thus allowing
the interpretation of each instruction in a sequence of actions

• the block used to compose and to loop by:

– reading the successive instructions organized as a program (by incrementing the PROGRAM
COUNTER register) from the external memory devices, here grouped under the name DATA
& PROGRAMS

– jumping in the program space (by adding signed value to PROGRAM COUNTER)

In this section we introduce only the executing processors (in Chapter 11 the interpreting processor
will be used to exemplify how the functional information works).

Informally, the processor architecture consists in two main components:

• the internal organization of the processor at the top level used to specify:

– how are interconnected the top levels blocks of processor

– the micro-architecture: the set of operations performed by each top level block

• the instruction set architecture (ISA) associated to the top level internal organization.

Von Neumann architecture / Harvard architecture

When the instruction must be executed (in one clock cycle) two distinct memories are mandatory, one
for programs and one for data, because in each cycle a new instruction must be fetched and sometimes
data must be exchanged between the external memory and the processor. But, when an instructions
is interpreted in many clock cycles it is possible to have only one external memory, because, if a data
transfer is needed, then it can be performed adding one or few extra cycles to the process of interpretation.

PROCESSOR

DATA

MEMORY

PROGRAM

MEMORY

6
?

6
?

PROCESSOR

DATA & PROGRAM

MEMORY

6
?

a. b.

Figure 9.14: The two main computer architectures. a. Harvard Architecture: data and programs are stored
in two different memories. b. Von Neumann Architecture: both data and programs are stored in the same memory.

Two kind of computer architecture where imposed from the beginning of the history of computers:

• Harvard architecture with two external memories, one for data and another for programs (see
Figure 10.6a)
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• von Neumann architecture with only one external memory used for storing both data and pro-
grams (see Figure 10.6b).

The preferred embodiment for an executing processor is a Hardvare architecture, and the preferred
embodiment for an interpreting processor is a von Neumann architecture. For technological reasons
in the first few decades of development of computing the von Neumann architecture was more taken
into account. Now the technology being freed by a lot of restriction, we pay attention to both kind of
architectures.

In the next two subsections both, executing processor (commercially called Reduced Instruction Set
Computer – RISC – processors) and interpreting processor (commercially called Complex Instruction
Set Computer – CISC – processors) are exemplified by implementing very simple versions.

9.3.5 An executing processor

The executing processor is simpler than an interpreting processor. The complexity of computation moves
almost completely from the physical structure of the processor into the programs executed by the proces-
sor, because a RISC processor has an organization containing mainly simple, recursively defined circuits.

The organization

The Harvard architecture of a RISC executing machine (see Figure 10.6a) determine the internal struc-
ture of the processor to have mechanisms allowing in each clock cycle cu address both, the program
memory and the data memory. Thus, the RALU-type functional automaton, directly interfaced with the
data memory, is loop-connected with a control automaton designed to fetch in each clock cycle a new
instruction from the program memory. The control automaton does not “know” the function to be per-
formed, as it does for the elementary processor, rather he “knows” how to “fetch the function” from an
external storage support, the program memory2.

The organization of the simple executive processortoyRISC is given in Figure 9.15, where the RALU
subsystem is connected with the Control subsystem, thus closing a 3rd loop.

Control section is simple functional automaton whose state, stored in the register called Program
Counter (PC), is used to compute in each clock cycle the address from where the next instruction is
fetched. There are two modes to compute the next address: incrementing, with 1 or signed number the
current address. The next address can be set, independently from the current value of PC, using a value
fetched from an internal register or a value generated by the currently executed instruction. The way the
address is computed can be determined by the value, 0 or different from 0, of a selected register. More,
the current pc+1 can be stored in an internal register when the control of the program call a new function
and a return is needed. For all the previously described behaviors the combinational circuit NextPC is
designed. It contains outCLC and loopCLC of the automaton whose state is stored in PC.

RALU section accepts data coming form data memory, from the currently executed instruction, or
from the Control automaton, thus closing the 3dr loop.

Both, the Control automaton and the RALU automaton are simple, recursively defined automata.
The computational complexity is completely moved in the code stored inside the program memory.

2The relation between an elementary processor and a processor is somehow similar with the relation between a Turing
Machine and an Universal Turing Machine.
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Figure 9.15: The organization of toyRISC processor.

The instruction set architecture

The architecture of toyRISC processor is described in Figure 9.16.
The 32-bit instruction has two forms: (1) control form, and (2) arithmetic-logic & memory form.

The first field, opCode, is used to determine what is the form of the current instruction. Each instruction
is executed in one clock cycle.

Implementing toyRISC

The structure of toyRISC will be implemented as part of a bigger project realized for a SoC, where the
program memory and data memory are on the same chip, tightly coupled with our design. Therefore, the
connections of the module are not very rigorously buffered.

The Figure 9.17 describe the structure of the top level of our design, which is composed by two
simple modules and a small and complex one.

The time performance

The longest combinational path in a system using our toyRISC, which imposes the minimum clock
period, is:

Tclock = tclock to instruction + tle f tAddr to le f tOp + tthroughALU + tthroughMUX + t f ileRegSU

Because the system is not buffered the clock frequency depends also by the time behavior of the system
directly connected with toyRISC. In this case tclock to instruction – the access time of the program memory,
related to the active edge of the clock – is an extra-system parameter limiting the speed of our design.
The internal propagation time to be considered are: the read time from the file register (tle f tAddr to le f tOp
or trightAddr to rightOp), the maximum propagation time through ALU (dominated by the time for an 32-bit
arithmetic operation), the propagation time through a 4-way 32-bit multiplexer, and the set-up time on
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/ * ************************************************************************
INSTRUCTION SET ARCHITECTURE
reg [ 1 5 : 0 ] pc ; / / program c o u n t e r
reg [ 3 1 : 0 ] programMemory [ 0 : 6 5 5 3 5 ] ;
reg [ 3 1 : 0 ] dataMemory [ 0 : n −1];
i n s t r u c t i o n [ 3 1 : 0 ] =

{opCode [ 5 : 0 ] , d e s t [ 4 : 0 ] , l e f t [ 4 : 0 ] , v a l u e [ 1 5 : 0 ]} |
{opCode [ 5 : 0 ] , d e s t [ 4 : 0 ] , l e f t [ 4 : 0 ] , r i g h t [ 4 : 0 ] , noUse [ 1 0 : 0 ] } ;

************************************************************************ * /
parameter
/ / CONTROL
nop = 6 ’ b00 0000 , / / no o p e r a t i o n : pc = pc +1;
r jmp = 6 ’ b00 0001 , / / r e l a t i v e jump : pc = pc + v a l u e ;
zjpm = 6 ’ b00 0010 , / / pc = ( r f [ l e f t ] = 0) ? pc + v a l u e : pc+1
nzjmp = 6 ’ b00 0011 , / / pc = ! ( r f [ l e f t ] = 0) ? pc + v a l u e : pc+1
r e t = 6 ’ b00 0101 , / / r e t u r n from s u b r o u t i n e : pc = r f [ l e f t ] [ 1 5 : 0 ] ;
ajmp = 6 ’ b00 0110 , / / pc = v a l u e ;
c a l l = 6 ’ b00 0111 , / / s u b r o u t i n e c a l l : pc = v a l u e ; r f [ d e s t ] = pc +1;
/ / ARITHMETIC & LOGIC , f o r a l l t h e s e i n s t r u c t i o n s : pc = pc +1;
i n c = 6 ’ b11 0000 , / / r f [ d e s t ] = r f [ l e f t ] + 1;
dec = 6 ’ b11 0001 , / / r f [ d e s t ] = r f [ l e f t ] − 1;
add = 6 ’ b11 0010 , / / r f [ d e s t ] = r f [ l e f t ] + r f [ r i g h t ] ;
sub = 6 ’ b11 0011 , / / r f [ d e s t ] = r f [ l e f t ] − r f [ r i g h t ] ;
i n c c r = 6 ’ b11 0100 , / / r f [ d e s t ] = ( r f [ l e f t ] + 1 ) [ 3 2 ] ;
d e c c r = 6 ’ b11 0101 , / / r f [ d e s t ] = ( r f [ l e f t ] − 1 ) [ 3 2 ] ;
a d d c r = 6 ’ b11 0110 , / / r f [ d e s t ] = ( r f [ l e f t ] + r f [ r i g h t ] ) [ 3 2 ] ;
s u b c r = 6 ’ b11 0111 , / / r f [ d e s t ] = ( r f [ l e f t ] − r f [ r i g h t ] ) [ 3 2 ] ;
l s h = 6 ’ b11 1000 , / / r f [ d e s t ] = r f [ l e f t ] >> 1;
ash = 6 ’ b11 1001 , / / r f [ d e s t ] = { r f [ l e f t ] [ 3 1 ] , r f [ l e f t ] [ 3 1 : 1 ] } ;
move = 6 ’ b11 1010 , / / r f [ d e s t ] = r f [ l e f t ] ;
swap = 6 ’ b11 1011 , / / r f [ d e s t ] = { r f [ l e f t ] [ 1 5 : 0 ] , r f [ l e f t ] [ 3 1 : 1 6 ] } ;
neg = 6 ’ b11 1100 , / / r f [ d e s t ] = ˜ r f [ l e f t ] ;
bwand = 6 ’ b11 1101 , / / r f [ d e s t ] = r f [ l e f t ] & r f [ r i g h t ] ;
bwor = 6 ’ b11 1110 , / / r f [ d e s t ] = r f [ l e f t ] | r f [ r i g h t ] ;
bwxor = 6 ’ b11 1111 , / / r f [ d e s t ] = r f [ l e f t ] ˆ r f [ r i g h t ] ;
/ / MEMORY, f o r a l l t h e s e i n s t r u c t i o n s : pc = pc +1;
r e a d = 6 ’ b10 0000 , / / read from dataMemory [ r f [ r i g h t ] ] ;
l o a d = 6 ’ b10 0111 , / / r f [ d e s t ] = dataOut ;
s t o r e = 6 ’ b10 1000 , / / dataMemory [ r f [ r i g h t ] ] = r f [ l e f t ] ;
v a l = 6 ’ b01 0111 ; / / r f [ d e s t ] = {{16*{ v a l u e [ 1 5 ]}} , v a l u e } ;

Figure 9.16: The architecture of toyRISC processor.
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/ * ************************************************************************
F i l e name : toyRISC . v
C i r c u i t name : Toy R i s c
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f Toy R i s c p r o c e s s o r
************************************************************************ * /

module toyRISC
( output [ 1 5 : 0 ] i n s t r A d d r , / / program memory a d d r e s s

input [ 3 1 : 0 ] i n s t r u c t i o n , / / i n s t r u c t i o n from program memory
output [ 3 1 : 0 ] da taAddr , / / da ta memory a d d r e s s
output [ 3 1 : 0 ] d a t a O u t , / / da ta send t o da ta memory
input [ 3 1 : 0 ] d a t a I n , / / da ta r e c e i v e d from da ta memory
output we , / / w r i t e e n a b l e f o r da ta memory
input r e s e t ,
input c l o c k ) ;

wire w r i t e E n a b l e ;
wire [ 1 5 : 0 ] i n c P c ;
wire [ 3 1 : 0 ] l e f t O p ;

Decode Decode ( . we ( we ) ,
. w r i t e E n a b l e ( w r i t e E n a b l e ) ,
. opCode ( i n s t r u c t i o n [ 3 1 : 2 6 ] ) ) ;

C o n t r o l C o n t r o l ( i n s t r A d d r ,
i n s t r u c t i o n ,
i n c P c ,
l e f t O p ,
r e s e t ,
c l o c k ) ;

RALU RALU( i n s t r u c t i o n ,
da taAddr ,
d a t a O u t ,
d a t a I n ,
i n c P c ,
l e f t O p ,
w r i t e E n a b l e ,
c l o c k ) ;

endmodule

Figure 9.17: The top module of toyRISC processor. The modules Control and RALU of the design are
simple circuits, while the module Decode is a small complex module.
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/ * ************************************************************************
F i l e name : Decode . v
C i r c u i t name : I n s t r u c t i o n Decodeer
D e s c r i p t i o n : d e s c r i b e t h e d e c o d i n g c i r c u i t s f o r Toy RISC p r o c e s s o r
************************************************************************ * /

module Decode ( output we ,
output w r i t e E n a b l e ,
input [ 5 : 0 ] opCode ) ;

a s s i g n we = opCode == 6 ’ b101000 ;
a s s i g n w r i t e E n a b l e = &opCode [ 5 : 4 ] | &opCode [ 2 : 0 ] ;

endmodule

Figure 9.18: The module Decode of the toyRISC processor.

/ * ************************************************************************
F i l e name : C o n t r o l . v
C i r c u i t name : C o n t r o l S e c t i o n o f toyRISC P r o c e s s o r
D e s c r i p t i o n : s t r u c u t r u r a l d e s c r i p t i o n o f t h e c o n t r o l s e c t i o n i n

toyRISC P r o c e s s o r
************************************************************************ * /
module C o n t r o l ( output [ 1 5 : 0 ] i n s t r A d d r ,

input [ 3 1 : 0 ] i n s t r u c t i o n ,
output [ 1 5 : 0 ] i n c P c ,
input [ 3 1 : 0 ] l e f t O p ,
input r e s e t ,
input c l o c k ) ;

reg [ 1 5 : 0 ] pc ;

always @( posedge c l o c k ) i f ( r e s e t ) pc <=0 ;
e l s e pc <= i n s t r A d d r ;

nex tP c nex tP c ( . add r ( i n s t r A d d r ) ,
. i n c P c ( i n c P c ) ,
. pc ( pc ) ,
. jmpVal ( i n s t r u c t i o n [ 1 5 : 0 ] ) ,
. l e f t O p ( l e f t O p ) ,
. opCode ( i n s t r u c t i o n [ 3 1 : 2 6 ] ) ) ;

endmodule

Figure 9.19: The module Control of the toyRISC processor.
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/ * ************************************************************************
F i l e name : RALU . v
C i r c u i t name : R e g i s t e r & A r i t h m e t i c −Log ic Un i t
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f t h e RALU used i n toyRISC
************************************************************************ * /

module RALU( input [ 3 1 : 0 ] i n s t r u c t i o n ,
output [ 3 1 : 0 ] da taAddr ,
output [ 3 1 : 0 ] d a t a O u t ,
input [ 3 1 : 0 ] d a t a I n ,
input [ 1 5 : 0 ] i n c P c ,
output [ 3 1 : 0 ] l e f t O p ,
input w r i t e E n a b l e ,
input c l o c k ) ;

wire [ 3 1 : 0 ] a l uO u t ;
wire [ 3 1 : 0 ] r i g h t O p ;
wire [ 3 1 : 0 ] r e g F i l e I n ;

a s s i g n da taAddr = r i g h t O p ;
a s s i g n d a t a O u t = l e f t O p ;

f i l e R e g f i l e R e g ( . l e f t O u t ( l e f t O p ) ,
. r i g h t O u t ( r i g h t O p ) ,
. i n ( r e g F i l e I n ) ,
. l e f t A d d r ( i n s t r u c t i o n [ 1 5 : 1 1 ] ) ,
. r i g h t A d d r ( i n s t r u c t i o n [ 2 0 : 1 6 ] ) ,
. d e s t A d d r ( i n s t r u c t i o n [ 2 5 : 2 1 ] ) ,
. w r i t e E n a b l e ( w r i t e E n a b l e ) ,
. c l o c k ( c l o c k ) ) ;

mux4 32 mux ( . o u t ( r e g F i l e I n ) ,
. i n 0 ({16 ’ b0 , i n c P c } ) ,
. i n 1 ({{16{ i n s t r u c t i o n [ 1 5 ]}} , i n s t r u c t i o n [ 1 5 : 0 ] } ) ,
. i n 2 ( d a t a I n ) ,
. i n 3 ( a l uO u t ) ,
. s e l ( i n s t r u c t i o n [ 3 1 : 3 0 ] ) ) ;

a l u a l u ( . o u t ( a lu Ou t ) ,
. l e f t I n ( l e f t O p ) ,
. r i g h t I n ( r i g h t O p ) ,
. f unc ( i n s t r u c t i o n [ 2 9 : 2 6 ] ) ,
. c l o c k ( c l o c k ) ) ;

endmodule

Figure 9.20: The module RALU of the toyRISC processor.
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/ * ************************************************************************
F i l e name : a r i t h m e t i c . v
C i r c u i t name : A r i t h m e t i c S e c t i o n o f ALU ( f i r s t v e r s i o n )
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e a r i t h m e t i c s e c t i o n o f ALU
************************************************************************ * /
module a r i t h m e t i c ( output reg [ 3 1 : 0 ] a r i t h O u t ,

input [ 3 1 : 0 ] l e f t I n ,
input [ 3 1 : 0 ] r i g h t I n ,
input [ 2 : 0 ] func ,
input c l o c k ) ;

reg c a r r y ;
reg n e x t C a r r y ;

always @( posedge c l o c k ) c a r r y <= n e x t C a r r y ;

always @( * )
case ( func )

3 ’ b000 : { n e x t C a r r y , a r i t h O u t } = l e f t I n + 1 ’ b1 ; / / i n c
3 ’ b001 : { n e x t C a r r y , a r i t h O u t } = l e f t I n − 1 ’ b1 ; / / dec
3 ’ b010 : { n e x t C a r r y , a r i t h O u t } = l e f t I n + r i g h t I n ; / / add
3 ’ b011 : { n e x t C a r r y , a r i t h O u t } = l e f t I n − r i g h t I n ; / / sub
3 ’ b100 : { n e x t C a r r y , a r i t h O u t } = l e f t I n + c a r r y ; / / i n c c r
3 ’ b101 : { n e x t C a r r y , a r i t h O u t } = l e f t I n − c a r r y ; / / d e c c r
3 ’ b110 : { n e x t C a r r y , a r i t h O u t } = l e f t I n + r i g h t I n + c a r r y ; / / addcr
3 ’ b111 : { n e x t C a r r y , a r i t h O u t } = l e f t I n − r i g h t I n − c a r r y ; / / s u b c r

endcase
endmodule

Figure 9.21: The version 1 of the module alu of the toyRISC processor.
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/ * ************************************************************************
F i l e name : a r i t h m e t i c . v
C i r c u i t name : A r i t h m e t i c S e c t i o n o f ALU ( second v e r s i o n )
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e a r i t h m e t i c s e c t i o n o f ALU
************************************************************************ * /

module a r i t h m e t i c ( output [ 3 1 : 0 ] a r i t h O u t ,
input [ 3 1 : 0 ] l e f t I n ,
input [ 3 1 : 0 ] r i g h t I n ,
input [ 2 : 0 ] func ,
input c l o c k ) ;

reg c a r r y ;
wire n e x t C a r r y ;

always @( posedge c l o c k ) c a r r y <= n e x t C a r r y ;

a s s i g n { n e x t C a r r y , a r i t h O u t } =
l e f t I n +
{32{ func [ 0 ]}} ˆ ( func [ 1 ] ? r i g h t I n :

{{31{1 ’ b0 }} , ˜ f unc [ 2 ] } ) +
func [ 0 ] ˆ ( func [ 2 ] ? c a r r y : 1 ’ b0 ) ;

endmodule

Figure 9.22: The version 2 of the module alu of the toyRISC processor.
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/ * ************************************************************************
F i l e name : a r i t h m e t i c . v
C i r c u i t name : A r i t h m e t i c S e c t i o n o f ALU ( t h i r d v e r s i o n )
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e a r i t h m e t i c s e c t i o n o f ALU
************************************************************************ * /
module a r i t h m e t i c ( output [ 3 1 : 0 ] a r i t h O u t ,

input [ 3 1 : 0 ] l e f t I n ,
input [ 3 1 : 0 ] r i g h t I n ,
input [ 2 : 0 ] func ,
input c l o c k ) ;

reg c a r r y ;
wire n e x t C a r r y ;
wire [ 3 1 : 0 ] r i g h t O p ;
wire c r ;

always @( posedge c l o c k ) c a r r y <= n e x t C a r r y ;

a s s i g n r i g h t O p = {32{ func [ 0 ]}} ˆ ( func [ 1 ] ? r i g h t I n :
{{31{1 ’ b0 }} , ˜ f unc [ 2 ] } ) ;

a s s i g n c r = func [ 0 ] ˆ ( func [ 2 ] ? c a r r y : 1 ’ b0 ) ;
a s s i g n { n e x t C a r r y , a r i t h O u t } = l e f t I n + r i g h t O p + c r ;

endmodule

Figure 9.23: The version 3 of the module alu of the toyRISC processor.

the file register’s data inputs. The way from the output of the file register through Next PC circuit is
“shorter” because it contains a 16-bit adder, comparing with the 32-bit one of the ALU.

9.3.6 ∗ An interpreting processor
The interpreting processor are known also as processors having a Complex Instruction Set Computer (CISC)
architecture, or simply as CISC Processors. The interpreting approach allows us to design complex instructions
which are transformed at the hardware level in a sequence of operations. Lets remember that an executing (RISC)
processor has almost all instructions implemented in one clock cycle. It is not decided what style of designing an
architecture is the best. Depending on the application sometimes a RISC approach is mode efficient, sometimes a
CISC approach is preferred.

The organization

Our CISC Processor is a machine characterized by using a register file to store the internal (the most frequently
used) variables. The top level view of this version of processor is represented in Figure 9.24. It contains the
following blocks:

• REGISTER & ALU – RALU – 32 32-bit registers organized in a register file, and an ALU; the registers are
used also for control purposes (program counter, return address, stack pointer in the external memory, ...)

• INPUT & OUTPUT BUFFER REGISTERS used to provide full synchronous connections with the exter-
nal “world”, minimizing tin reg, treg out , maximizing fmax, and avoiding tin out (see subsection 1.1.5); the
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Figure 9.24: An interpreting processor. The organization is simpler because only one external memory is
used.

registers are the following:

COM REG : sends out the 2-bit read or write command for the external data & program memory

ADDR REG : sends out the 32-bit address for the external data & program memory

OUT REG : sends out the 32-bit data for the external memory

DATA REG : receives back, with one clock cycle delay related to the command loaded in COM REG,
32-bit data from the external data & program memory

INST REG : receives back, with one clock cycle delay related to the command loaded in COM REG,
32-bit instruction from the external data & program memory

• CONTROL AUTOMATON used to control the fetch and the interpretation of the instructions stored in
the external memory; it is an initial automaton initialized, for each new instruction, by the operation code
(inst[31:26] received from INST REG)

The instruction of our CISC Processor has two formats. The first format is:
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{ opcode[5:0] , // operation code

dest_addr[4:0] , // selects the destination

left_addr[4:0] , // selects the left operand

right_addr[4:0] , // selects the right operand

rel_addr[10:0] } // small signed jump for program address

= instr[31:0];

The relative address allows a positive or a negative jump of 1023 instructions in the program space. It is sufficient
for almost all jumps in a program. If not, special absolute jump instruction can solve this very rare cases.

The second format is used when the right operand is a constant value generated at the compiling time in the
instruction body. It is:

{ opcode[5:0] ,

dest_addr[4:0] ,

left_addr[4:0] ,

value[15:0] } // signed integer

= instr[31:0];

When the instruction is fetched from the external memory it is memorized in INST REG because its content
will be used in different stages of the interpretation, as follows:

• inst[31:26] = opcode[5:0] to initialize CONTROL AUTOMATON in the state from which flows the
sequence of commands used to interpret the current instruction

• inst[29:26] = opcode[3:0] to command the function performed by ALU in the step associated to
perform the main operation associated with the current instruction (for example, if the instruction is add
12, 3, 7, then the bits opcode[3:0] are used to command the ALU to do the addition of registers 3 and
7 in the appropriate step of interpretation)

• inst[25:11] = {dest addr, left addr, right addr} is used to address the REGISTER FILE unit
when the main operation associated with the current instruction is performed

• inst[15:0] = value is selected to form the right operand when an instruction operating with immediate
value is interpreted

• inst[10:0] = rel addr is used in jump instructions, in the appropriate clock cycle, to compute the next
program address.

The REGISTER FILE unit contains 32 32-bit registers. In each clock cycle, any ordered pair of registers can
be selected as operands, and the result can be stored back in any of them. They have the following use:

• r0, r1, ... r29 are general purpose registers;

• r31 is used as Program Counter (PC);

• r30 is used to store the Return Address (RA) when the call instruction is interpreted (no embedded calls are
allowed for this simple processor3).

CONTROL AUTOMATON has the structure presented in Figure 9.25. In the fetch cycle init = 1 allows the
automaton to jump into the state codded by opcode, from which a sequence of operations flows with init = 0,
ignoring the initialization input. This is the simplest way to associate for each instruction the interpreting sequence
of elementary operation.

The output of CONTROL AUTOMATON commands all the top level blocks of our CISC Processor using the
following fields:

3If embedded calls are needed, then this register contains the stack pointer into a stack organized in the external memory.
We are not interested in adding the feature of embedded calls, because in this digital system lessons we intend to keep the
examples small and simple.
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Figure 9.25: The control automaton for our CISC Processor. It is a more compact version of CROM (see
Figure 8.60). Instead of a CLC used for the complex part of executing processor, for an interpreting processor a
sequential machine is used to solve the problem of complexity.

{en_inst , // write enable for the instruction register

write_enable , // write back enable for the register file

dest_addr[4:0] , // destination address in file register

left_addr[4:0] , // left operand address in file register

alu_com[3:0] , // alu functions

right_addr[4:0], // right operand address in file register

left_sel , // left operand selection

right_sel[1:0] , // right operand selection

mem_com[1:0] } // memory command

= command

The fields dest addr, left addr, right addr, alu com are sometimes selected from INST REG (see
ADDR MUX and FUNC MUX in Figure 9.25) and sometimes their value is generated by CONTROL AUTOMA-
TON according to the operation to be executed in the current clock cycle. The other command fields are generated
by CONTROL AUTOMATON in each clock cycle.

CONTROL AUTOMATON receives back from ALU only one flag: the least significant bit of ALU,
alu out[0]; thus closing the third loop4.

In each clock cycle the content of two registers can be operated in ALU and the result stored in a third register.
The left operand can be sometimes data in if left sel = 1. It must be addressed two clock cycles before

use, because the external memory is supposed to be a synchronous one, and the input register introduces another
one cycle delay. The sequence generated by CONTROL AUTOMATON takes care by this synchronization.

4The second loop is closed once in the big & simple automaton RALU, and another in the complex finite automaton
CONTROL AUTOMATON. The first loop is closed in each flip-flop used to build the registers.
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/ * ************************************************************************
F i l e name : c i s c p r o c e s s o r . v
C i r c u i t name : CISC P r o c e s s o r
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a CISC p r o c e s s o r
************************************************************************ * /
module c i s c p r o c e s s o r ( input c l o c k , r e s e t ,

output reg [ 3 1 : 0 ] a d d r r e g , o u t r e g ,
output reg [ 1 : 0 ] com reg ,
input [ 3 1 : 0 ] i n ) ;

wire [ 2 5 : 0 ] command ;
wire f l a g ;
wire [ 3 1 : 0 ] a l u o u t , l e f t , r i g h t , l e f t o u t , r i g h t o u t ;
reg [ 3 1 : 0 ] d a t a r e g , i n s t r e g ;
always @( posedge c l o c k ) begin i f ( command [ 2 5 ] ) i n s t r e g <= i n ;

d a t a r e g <= i n ;
a d d r r e g <= l e f t o u t ;
o u t r e g <= r i g h t o u t ;
com reg <= command [ 1 : 0 ] ; end

c o n t r o l a u t o m a t o n c o n t r o l a u t o m a t o n ( . c l o c k ( c l o c k ) ,
. r e s e t ( r e s e t ) ,
. i n s t ( i n s t r e g [ 3 1 : 1 1 ] ) ,
. command ( command ) ,
. f l a g ( a l u o u t [ 0 ] ) ) ;

r e g i s t e r f i l e r e g i s t e r f i l e ( . l e f t o u t ( l e f t o u t ) ,
. r i g h t o u t ( r i g h t o u t ) ,
. r e s u l t ( a l u o u t ) ,
. l e f t a d d r ( command [ 1 8 : 1 4 ] ) ,
. r i g h t a d d r ( command [ 9 : 5 ] ) ,
. d e s t a d d r ( command [ 2 3 : 1 9 ] ) ,
. w r i t e e n a b l e ( command [ 2 4 ] ) ,
. c l o c k ( c l o c k ) ) ;

mux2 l e f t m u x ( . o u t ( l e f t ) ,
. i n 0 ( l e f t o u t ) ,
. i n 1 ( d a t a r e g ) ,
. s e l ( command [ 4 ] ) ) ;

mux4 r i g h t m u x ( . o u t ( r i g h t ) ,
. i n 0 ( r i g h t o u t ) ,
. i n 1 ({{21{ i n s t r e g [ 1 0 ]}} , i n s t r e g [ 1 0 : 0 ] } ) ,
. i n 2 ({16 ’ b0 , i n s t r e g [ 1 5 : 0 ] } ) ,
. i n 3 ({ i n s t r e g [ 1 5 : 0 ] , 16 ’ b0} ) ,
. s e l ( command [ 3 : 2 ] ) ) ;

c i s c a l u a l u ( . a l u o u t ( a l u o u t ) ,
. l e f t ( l e f t ) ,
. r i g h t ( r i g h t ) ,
. a lu com ( command [ 1 3 : 1 0 ] ) ) ;

endmodule

Figure 9.26: The top module of our CISC Processor.
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The right operand can be sometimes value = instr reg[15:0] if right sel = 2’b1x. If right sel =

2’b01 the right operand is the 11-bit signed integer rel addr = instr reg[10:0]

The external memory is addressed with a delay of one clock cycle using the value of left out. We are not
very happy about this additional delay, but this is the price for a robust design. What we loose in number of
clock cycles used to perform some instructions is, at least partially, recuperated by the possibility to increase the
frequency of the system clock.

Data to be written in the external memory is loaded into OUT REG from the right output of FILE REG. It is
synchronous with the address.

The command for the external memory is also delayed one cycle by the synchronization register COM REG.
It is generated by CONTROL AUTOMATON.

Data and instructions are received back from the external memory with two clock cycle delay, one because
of we have an external synchronous memory, and another because of the input re-synchronization done by DATA
REG and INST REG.

The structural Verilog description of the top level of our CISC Processor is in Figure 9.26.

Microarchitecture

The complex part of our CISC Processor is located in the block called CONTROL AUTOMATON. More precisely,
the only complex circuit in this design is the loop of the automaton called “RANDOM CLC” (see Figure 9.25).
The Verilog module describing CONTROL AUTOMATON is represented in Figure 9.27.

The micro-architecture defines all the fields used to command the simple parts of this processor. Some of them
are used inside the control automaton module, while others command the top modules of the processor.

The inside used fields command are the following:

init : allows the jump of the automaton into the initial state associated with each instruction when init =

new seq

addr sel : the three 5-bit addresses for FILE REGISTER are considered only if the field addr sel takes the
value from inst, else three special combinations of addresses are generated by the control automaton

func sel : the field alu com is considered only if the field func sel takes the value from out, else the code
opcode[3:0] selects the ALU’s function

The rest of fields command the function performed in each clock cycle by the top modules of our CISC
Processor. They are:

en inst : enables the load of data received from the external memory only when it represents the next instruction
to be interpreted

write enable : enables write back into FILE REGISTER the result from the output of ALU

alu com : is a 4-bit field used to command ALU’s function for the specific purpose of the interpretation process
(it is considered only if func sel = from aut)

left sel : is the selection code for LEFT MUX (see Figure 9.24)

right sel : is the selection code for RIGHT MUX (see Figure 9.24)

mem com : generated the commands for the external memory containing both data and programs.

The micro-architecture (see Figure 9.28) is subject of possible changes during the definition of the transition
function of CONTROL AUTOMATON.



396 CHAPTER 9. PROCESSORS: THIRD ORDER, 3-LOOP DIGITAL SYSTEMS

/ * ************************************************************************
F i l e name : c o n t r o l a u t o m a t o n . v
C i r c u i t name : C o n t r o l Automaton o f t h e CISC p r o c e s s o r
D e s c r i p t i o n :
************************************************************************ * /

module c o n t r o l a u t o m a t o n ( input c l o c k ,
input r e s e t ,
input [ 2 0 : 0 ] i n s t ,
output [ 2 5 : 0 ] command ,
input [ 3 : 0 ] f l a g s ) ;

‘ i n c l u d e ” m i c r o a r c h i t e c t u r e . v ”
‘ i n c l u d e ” i n s t r u c t i o n s e t a r c h i t e c t u r e . v ”

/ / THE STRUCTURE OF ’ i n s t ’
wire [ 5 : 0 ] opcode ; / / o p e r a t i o n code
wire [ 4 : 0 ] d e s t , / / s e l e c t s d e s t i n a t i o n r e g i s t e r

l e f t o p , / / s e l e c t s l e f t operand r e g i s t e r
r i g h t o p ; / / s e l e c t s r i g h t operand r e g i s t e r

a s s i g n {opcode , d e s t , l e f t o p , r i g h t o p } = i n s t ;

/ / THE STRUCTURE OF ’command ’
reg e n i n s t ; / / e n a b l e load a new i n s t r u c t i o n
reg w r i t e e n a b l e ; / / w r i t e s t h e r e s u l t a t d e s t a d d r
reg [ 4 : 0 ] d e s t a d d r ; / / s e l e c t s t h e d e s t i n a t i o n r e g i s t e r
reg [ 4 : 0 ] l e f t a d d r ; / / s e l e c t s t h e l e f t operand
reg [ 3 : 0 ] a lu com ; / / s e l e c t s t h e o p e r a t i o n
reg [ 4 : 0 ] r i g h t a d d r ; / / s e l e c t s t h e r i g h t operand
reg l e f t s e l ; / / s e l e c t s t h e l e f t operand
reg [ 1 : 0 ] r i g h t s e l ; / / s e l e c t s t h e r i g h t operand
reg [ 1 : 0 ] mem com ; / / g e n e r a t e s t h e command f o r memory

a s s i g n command =
{ e n i n s t , w r i t e e n a b l e , d e s t a d d r , l e f t a d d r , a lu com ,

r i g h t a d d r , l e f t s e l , r i g h t s e l , mem com } ;

/ / THE STATE REGISTER
reg [ 5 : 0 ] s t a t e r e g ; / / t h e s t a t e r e g i s t e r
reg [ 5 : 0 ] n e x t s t a t e ; / / a ” r e g i s t e r ” used as v a r i a b l e
always @( posedge c l o c k ) i f ( r e s e t ) s t a t e r e g <= 0 ;

e l s e s t a t e r e g <= n e x t s t a t e ;

‘ i n c l u d e ” t h e c o n t r o l a u t o m a t o n ’ s l o o p . v ”
endmodule

Figure 9.27: Verilog code for control automaton.
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/ * ************************************************************************
F i l e name : micro − a r c h i t e c t u r e . v
C i r c u i t name : i s n o t a c i r c u i t
D e s c r i p t i o n : d e f i n e t h e mnemonics and t h e a s s o c i a t e d codes f o r t h e

i n s t r u c t i o n s e t a r c h i t e c t u r e o f t h e CISC p r o c e s s o r
************************************************************************ * /

/ / MICRO−ARCHITECTURE
/ / e n i n s t
parameter n o l o a d = 1 ’ b0 , / / d i s a b l e i n s t r u c t i o n r e g i s t e r

l o a d i n s t = 1 ’ b1 ; / / e n a b l e i n s t r u c t i o n r e g i s t e r
/ / w r i t e e n a b l e
parameter n o w r i t e = 1 ’ b0 ,

w r i t e b a c k = 1 ’ b1 ; / / w r i t e back t h e ALU o u t p u t
/ / a l u f u n c
parameter

a l u l e f t = 4 ’ b0000 , / / a l u o u t = l e f t
a l u r i g h t = 4 ’ b0001 , / / a l u o u t = r i g h t
a l u i n c = 4 ’ b0010 , / / a l u o u t = l e f t + 1
a l u d e c = 4 ’ b0011 , / / a l u o u t = l e f t − 1
a l u a d d = 4 ’ b0100 , / / a l u o u t = l e f t + r i g h t
a l u s u b = 4 ’ b0101 , / / a l u o u t = l e f t − r i g h t
a l u s h l = 4 ’ b0110 , / / a l u o u t = {1 ’ b0 , l e f t [ 3 1 : 1 ]}
a l u h a l f = 4 ’ b0111 , / / a l u o u t = { l e f t [ 3 1 ] , l e f t [ 3 1 : 1 ]}
a l u z e r o = 4 ’ b1000 , / / a l u o u t = {31 ’ b0 , ( l e f t == 0)}
a l u e q u a l = 4 ’ b1001 , / / a l u o u t = {31 ’ b0 , ( l e f t == r i g h t )}
a l u l e s s = 4 ’ b1010 , / / a l u o u t = {31 ’ b0 , ( l e f t < r i g h t )}
a l u c a r r y = 4 ’ b1011 , / / a l u o u t = {31 ’ b0 , add [32]}
a l u b o r r o w = 4 ’ b1100 , / / a l u o u t = {31 ’ b0 , sub [32]}
a l u a n d = 4 ’ b1101 , / / a l u o u t = l e f t & r i g h t
a l u o r = 4 ’ b1110 , / / a l u o u t = l e f t | r i g h t
a l u x o r = 4 ’ b1111 , / / a l u o u t = l e f t ˆ r i g h t

/ / l e f t s e l
parameter

l e f t o u t = 1 ’ b0 , / / l e f t o u t o f t h e reg f i l e as l e f t op
from mem = 1 ’ b1 ; / / da ta from memory as l e f t op

/ / r i g h t s e l
parameter

r i g h t o u t = 2 ’ b00 , / / r i g h t o u t o f t h e reg f i l e as r i g h t op
jmp addr = 2 ’ b01 , / / r i g h t op = {{22{ i n s t [ 1 0 ]}} , i n s t [ 9 : 0 ]}
l o w v a l u e = 2 ’ b10 , / / r i g h t op = {{16{ i n s t [ 1 5 ]}} , i n s t [ 1 5 : 0 ]}
h i g h v a l u e = 2 ’ b11 ; / / r i g h t op = { i n s t [ 1 5 : 0 ] , 16 ’ b0}

/ / mem com
parameter

mem nop = 2 ’ b00 ,
r e a d = 2 ’ b10 , / / read from memory
w r i t e = 2 ’ b11 ; / / w r i t e t o memory

Figure 9.28: The micro-architecture of our CISC Processor.
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/ * ************************************************************************
F i l e name : i n s t r u c t i o n s e t a r c h i t e c t u r e . v
C i r c u i t name : ISA
D e s c r i p t i o n :
************************************************************************ * /

/ / INSTRUCTION SET ARCHITECTURE ( o n l y samples )
/ / a r i t h m e t i c & l o g i c i n s t r u c t i o n s & pc = pc + 1
parameter
move = 6 ’ b10 0000 , / / d e s t r e g = l e f t o u t
i n c = 6 ’ b10 0010 , / / d e s t r e g = l e f t o u t + 1
dec = 6 ’ b10 0011 , / / d e s t r e g = l e f t o u t − 1
add = 6 ’ b10 0100 , / / d e s t r e g = l e f t o u t + r i g h t o u t
sub = 6 ’ b10 0101 , / / d e s t r e g = l e f t o u t − r i g h t o u t
bwxor = 6 ’ b10 1111 ; / / d e s t r e g = l e f t o u t ˆ r i g h t o u t
/ / . . .
/ / da ta move i n s t r u c t i o n s & pc = pc + 1
parameter
r e a d = 6 ’ b01 0000 , / / d e s t r e g = mem( l e f t o u t )
r d i n c = 6 ’ b01 0001 , / / d e s t r e g = mem( l e f t o u t + v a l u e )
w r i t e = 6 ’ b01 1000 , / / mem( l e f t o u t ) = r i g h t o u t
wrinc = 6 ’ b01 1001 ; / / mem( l e f t o u t + v a l u e ) = r i g h t o u t
/ / . . .
/ / c o n t r o l i n s t r u c t i o n s
parameter
nop = 6 ’ b11 0000 , / / pc = pc + 1
jmp = 6 ’ b11 0001 , / / pc = pc + v a l u e
c a l l = 6 ’ b11 0010 , / / pc = va lue , ra = pc + 1
r e t = 6 ’ b11 0011 , / / pc = ra
j z e r o = 6 ’ b11 0100 , / / i f ( l e f t o u t = 0) pc = pc + v a l u e ;

/ / e l s e pc = pc + 1
j n z e r o = 6 ’ b11 0101 ; / / i f ( l e f t o u t != 0) pc = pc + v a l u e ;

/ / e l s e pc = pc + 1
/ / . . .

Figure 9.29: The instruction set architecture of our CISC Processor. The partial definition of the file
instruction set architecture.v included in the conttrol automaton.v file.
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Instruction set architecture (ISA)

There is a big flexibility in defining the ISA for a CISC machine, because we accepted to interpret each instruction
using a sequence of micro-operations. The control automaton is used as sequencer for implementing instructions
beyond what can be simply envisaged inspecting the organization of our simple CISC processor.

An executing (RISC) processor displays its architecture in its organization, because the control is very simple
(the decoder is a combinational circuit used to trans-code only). The complexity of the control of an interpreting
processor hides the architecture in the complex definition of the control automaton (which can have a strong
generative power).

In Figure 9.29 is sketched a possible instruction set for our CISC processor. There are at least the following
classes of instructions:

• Arithmetic & Logic Instructions: the destination register takes the value resulted from operating any two
registers (unary operations, such as increment, are also allowed)

• Data Move Instructions: data exchange between the external memory and the file register are performed

• Control Instructions: the flow of instruction is controlled according to the fix or data dependent patterns

• ...

We limit our discussion to few and small classes of instructions because our goal is to offer only a structural image
about what an interpretative processor is. An exhaustive approach is an architectural one, which is far beyond out
intention in these lessons about digital systems, not about computational systems.

Implementing ISA

Implementing a certain Instruction Set Architecture means to define the transition functions of the control automa-
ton:

• the output transition function, in our case to specify for each state the value of the command code (see Figure
9.27)

• the state transition function, which specifies the value of next state

The content of the file the control automaton’s loop.v contains the description of the combinational circuit
associated to the control automaton. It generates both the 26-bit command code and the 6-bit next state code.
The following Verilog code is the most compact way to explain how the control automaton works. Please read the
next “always” as the single way to explain rigorously how out CISC machine works.

/ / THE CONTROL AUTOMATON’ S LOOP
always @( s t a t e r e g or opcode or d e s t or l e f t o p or r i g h t o p or f l a g )

begin e n i n s t = 1 ’ bx ;
w r i t e e n a b l e = 1 ’ bx ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = 2 ’ bxx ;
n e x t s t a t e = 6 ’ bxxxxxx ;

/ / INITIALIZE THE PROCESSOR
i f ( s t a t e r e g == 6 ’ b00 0000 )
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/ / pc = 0
begin

e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = 5 ’ b11111 ;
l e f t a d d r = 5 ’ b11111 ;
a lu com = a l u x o r ;
r i g h t a d d r = 5 ’ b11111 ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = r i g h t o u t ;
mem com = mem nop ;
n e x t s t a t e = s t a t e r e g + 1 ;

end
/ / INSTRUCTION FETCH
i f ( s t a t e r e g == 6 ’ b00 0001 )
/ / r q u e s t f o r a new i n s t r u c t i o n & i n c r e m e n t pc

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = 5 ’ b11111 ;
l e f t a d d r = 5 ’ b11111 ;
a lu com = a l u i n c ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem read ;
n e x t s t a t e = s t a t e r e g + 1 ;

end
i f ( s t a t e r e g == 6 ’ b00 0010 )
/ / w a i t f o r memory t o read do ing n o t h i n g ( s y n c h r o n o u s memory )

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = s t a t e r e g + 1 ;

end
i f ( s t a t e r e g == 6 ’ b00 0011 )
/ / l oad t h e new i n s t r u c t i o n i n i n s t r r e g

begin
e n i n s t = l o a d i n s t ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
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r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = s t a t e r e g + 1 ;

end
i f ( s t a t e r e g == 6 ’ b00 0100 )
/ / i n i t i a l i z e t h e c o n t r o l au tomaton

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = opcode [ 5 : 0 ] ;

end
/ / EXECUTE THE ONE CYCLE FUNCTIONAL INSTRUCTIONS
i f ( s t a t e r e g [ 5 : 4 ] == 2 ’ b10 )
/ / d e s t = l e f t o p OPERATION r i g h t o p

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = d e s t ;
l e f t a d d r = l e f t o p ;
a lu com = opcode [ 3 : 0 ] ;
r i g h t a d d r = r i g h t o p ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = r i g h t o u t ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
/ / EXECUTE MEMORY READ INSTRUCTIONS
i f ( s t a t e r e g == 6 ’ b01 0000 )
/ / read from l e f t r e g i n d e s t r e g

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = l e f t o p ;
a lu com = a l u l e f t ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem read ;
n e x t s t a t e = 6 ’ b01 0010 ;

end
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i f ( s t a t e r e g == 6 ’ b01 0001 )
/ / read from l e f t r e g + <va lue> i n d e s t r e g

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = l e f t o p ;
a lu com = a l u a d d ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = l o w v a l u e ;
mem com = mem read ;
n e x t s t a t e = 6 ’ b01 0010 ;

end
i f ( s t a t e r e g == 6 ’ b01 0010 )
/ / w a i t f o r memory t o read do ing n o t h i n g

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = s t a t e r e g + 1 ;

end
i f ( s t a t e r e g == 6 ’ b01 0011 )
/ / t h e da ta from memory i s l oa de d i n d a t a r e g

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = s t a t e r e g + 1 ;

end
i f ( s t a t e r e g == 6 ’ b01 0100 )
/ / d a t a r e g i s l o ad ed i n d e s t r e g & go t o f e t c h

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = d e s t ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = a l u l e f t ;
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r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = from mem ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
/ / EXECUTE MEMORY WRITE INSTRUCTIONS
i f ( s t a t e r e g == 6 ’ b01 1000 )
/ / w r i t e r i g h t o p t o l e f t o p & go t o f e t c h

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = l e f t o p ;
a lu com = a l u l e f t ;
r i g h t a d d r = r i g h t o p ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem write ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
i f ( s t a t e r e g == 6 ’ b01 1000 )
/ / w r i t e r i g h t o p t o l e f t o p + <va lue> & go t o f e t c h

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = l e f t o p ;
a lu com = a l u a d d ;
r i g h t a d d r = r i g h t o p ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = l o w v a l u e ;
mem com = mem write ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
/ / CONTROL INSTRUCTIONS
i f ( s t a t e r e g == 6 ’ b11 0000 )
/ / no o p e r a t i o n & go t o f e t c h

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
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i f ( s t a t e r e g == 6 ’ b11 0001 )
/ / jump t o ( pc + <va lue >) & go t o f e t c h

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = 5 ’ b11111 ;
l e f t a d d r = 5 ’ b11111 ;
a lu com = a l u a d d ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = l o w v a l u e ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
i f ( s t a t e r e g == 6 ’ b11 0010 )
/ / c a l l : f i r s t s t e p : ra = pc + 1

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = 5 ’ b11110 ;
l e f t a d d r = 5 ’ b11111 ;
a lu com = a l u l e f t ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b11 0110 ;

end
i f ( s t a t e r e g == 8 ’ b0011 0110 )
/ / c a l l : second s t e p : pc = v a l u e

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = 5 ’ b11111 ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = a l u r i g h t ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = jmp addr ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
i f ( s t a t e r e g == 6 ’ b11 0011 )
/ / r e t : pc = ra

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = 5 ’ b11111 ;
l e f t a d d r = 5 ’ b11110 ;
a lu com = a l u l e f t ;
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r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
i f ( ( s t a t e r e g == 6 ’ b11 0100 ) && f l a g )
/ / j z e r o : i f ( l e f t o u t = 0) pc = pc + v a l u e ;

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = 5 ’ b11111 ;
l e f t a d d r = 5 ’ b11111 ;
a lu com = a l u a d d ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = l o w v a l u e ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
i f ( ( s t a t e r e g == 6 ’ b11 0100 ) && ˜ f l a g )
/ / j z e r o : i f ( l e f t o u t = 1) pc = pc + 1;

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
i f ( ( s t a t e r e g == 6 ’ b11 0100 ) && ˜ f l a g )
/ / j n z e r o : i f ( l e f t o u t = 1) pc = pc + v a l u e ;

begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = w r i t e b a c k ;
d e s t a d d r = 5 ’ b11111 ;
l e f t a d d r = 5 ’ b11111 ;
a lu com = a l u a d d ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = l e f t o u t ;
r i g h t s e l = l o w v a l u e ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
i f ( ( s t a t e r e g == 6 ’ b11 0100 ) && f l a g )
/ / j n z e r o : i f ( l e f t o u t = 0) pc = pc + 1;
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begin
e n i n s t = n o l o a d ;
w r i t e e n a b l e = n o w r i t e ;
d e s t a d d r = 5 ’ bxxxxx ;
l e f t a d d r = 5 ’ bxxxxx ;
a lu com = 4 ’ bxxxx ;
r i g h t a d d r = 5 ’ bxxxxx ;
l e f t s e l = 1 ’ bx ;
r i g h t s e l = 2 ’ bxx ;
mem com = mem nop ;
n e x t s t a t e = 6 ’ b00 0001 ;

end
end

The automaton described by the previous code has 36 states for the 25 instructions implemented (see Figure
9.29). More instructions can added if new state are described in the previous “always”. Obviously, the most
complex part of the processor is this combinational circuit associated to the control automaton.

Time performance

The representation from Figure 9.30 is used to evaluate the time restrictions imposed by our CISC processor.
The full registered external connections of the circuit allows us to provide the smallest possible values for

minimum input arrival time before clock, tin reg, maximum output required time after clock, treg out , and no path
for maximum combinational path delay, tin out . The maximum clock frequency is fully determined by the inter-
nal structure of the processor, by the path on the loop closed inside RALU or between RALU and CONTROL
AUTOMATON. The actual time characterization is:

• tin reg = tsu – the set-up time for the input registers

• treg out = treg – the propagation time for the output registers

• Tmin = max(tRALU loop, tprocessor loop), where:

tRALU loop = tstate reg + taut out clc + treg f ile + tmux + talu + treg f ile su

tprocessor loop = tstate reg + taut out clc + treg f ile + tmux + talu f lag + taut in clc + tstate reg su

This well packed version of a simple processor is very well characterized as time behavior. The price for this
is the increasing number of clock cycle used for executing an instruction. The effect of the increased number of
clock cycles is sometimes compensated by the possibility to use a higher clock frequency. But, all the time the
modularity is the main benefit.

Concluding about our CISC processor

A CISC processor is more complex than a stack processor because for each instruction the operands must be
selected from the file register. The architecture is more flexible, but the loop closed in RALU is longer than the
loop closed in SALU.

A CISC approach allows more complex operations performed during an instruction because it is interpreted,
not simply executed in one clock cycle.

Interpretation allows a single memory for both data and programs with all the resulting advantages and disad-
vantages.

An interpreting processor contains a simple automaton – RALU – and a complex one – Control Automaton –
because its complex behavior.
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Figure 9.30: The simple block diagram of our CISC processor. The fully buffered solution imposed
for designing this interpretative processor minimizes the depth of signal path entering and emerging in/from the
circuit, and avoid a going through combinational path.

Both, Stack Processor and CISC Processor are only simple exercises designed for presenting the circuit aspects
of the closing of hte third loop. The real and complex architectural aspects are minimally presented because this
text book is about circuits not abut computation.

9.4 ∗ The assembly language: the lowest programming level
The instruction set represent the machine language: the lowest programming level in a computation machine. The
programming is very difficult at this level because of the concreteness of the process. Too many details must be
known by the programmer. The main improvement added by a higher level language is the level of abstraction
used to present the computational resources. Writing a program in machine language we must have in mind a lot
of physical details of the machine. Therefore, a real application must be developed in a higher level language.

The machine language can be used only for some very critical section of the algorithms. The automatic
translation done by a compiler from a high level language into the machine language is some times unsatisfactory
for high performance application. Only in this cases small part of the code must be generated “manually” using
the machine language.

9.5 Concluding about the third loop

The third loop is closed through simple automata avoiding the fast increasing of the complexity in
digital circuit domain. It allows the autonomy of the control mechanism.
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”Intelligent registers” ask less structural control maintaining the complexity of a finite automaton
at the smallest possible level. Intelligent, loop driven circuits can be controlled using smaller complex
circuits.

The loop through a storage element ask less symbolic control at the micro-architectural level. Less
symbols are used to determine the same behavior because the local loop through a memory element
generates additional information about the recent history.

Looping through a memory circuit allows a more complex “understanding” because the controlled
circuits “knows” more about its behavior in the previous clock cycle. The circuit is somehow “conscious”
about what it did before, thus being more “responsible” for the operation it performs now.

Looping through an automaton allows any effective computation. Using the theory of computation
(see chapter Recursive Functions & Loops in this book) can be proved that any effective computation
can be done using a three loop digital system. More than three loops are needed only for improving the
efficiency of the computational structures.

The third loop allows the symbolic functional control using the arbitrary meaning associated to
the binary codes embodied in instructions or micro-instructions. Both, the coding and the decoding
process being controlled at the design level, the binary symbols act actualizing the potential structure of
a programmable machine.

Real processors use circuit level parallelism discussed in the first chapter of this book. They are:
data parallelism, time parallelism and speculative parallelism. How all these kind of parallelism are used
is a computer architecture topic, beyond the goal of these lecture notes.

9.6 Problems

Problem 9.1 Interrupt automaton with asynchronous input.

Problem 9.2 Solving the second degree equations with an elementary processor.

Problem 9.3 Compute y if x, m and n is given with an elementary processor..

Problem 9.4 Modify the unending loop of the processor to avoid spending time in testing if a new in-
struction is in inFIFO when it is there.

Problem 9.5 Define an instruction set for the processor described in this chapter using its microarchi-
tecture.

Problem 9.6 Is it closed another loop in our Stack Processor connecting tos to the input of DECODE
unit?

Problem 9.7 Our CISC Processor: how must be codded the instruction set to avoid FUNC MUX?
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9.7 Projects

Project 9.1 Design a specialized elementary processor for rasterization function.

Project 9.2 Design a system integrating in a parallel computational structure 8 rasterization processors
designed in the previous project.

Project 9.3 Design a floating point arithmetic coprocessor.

Project 9.4 Design the RISC processor defined by the following Verilog behavioral description:

module risc_processor(

);

endmodule

Project 9.5 Design a version of Stack Processor modifying SALU as follows: move MUX4 to the output
of ALU and the input of STACK.
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Chapter 10

COMPUTING MACHINES:
≥4–loop digital systems

In the previous chapter
was introduced the main digital system - the processor - and we discussed how works the third
loop in a digital system emphasizing

• effects on the size of digital circuits

• effects on the complexity of digital systems

• how the apparent complexity can be reduced to the actual complexity in a digital system

In this chapter
a very short introduction in the systems having more than three internal loops is provided, talking
abut

• how are defined the basic computational structures: microcontrollers, computers, stack ma-
chines, co-processors

• how the classification in orders starts to become obsolete with the fourth order systems

• the concept of embedded computation

In the next chapter
some futuristic systems are described as N-th order systems having the following features:

• they can behave as self-organizing systems

• they are cellular systems easy to be expanded in very large and simple powerful computa-
tional systems

411
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Software is getting slower more rapidly than hardware
becomes faster.

Wirth’s law1

To compensate the effects of the bad behavior of software
guys, besides the job done by the Moore law a lot of ar-
chitectural work must be added.

The last examples of the previous chapter emphasized a process that appears as a ”turning point” in
3-OS: the function of the system becomes lesser and lesser dependent on the physical structure and the
function is more and more assumed by a symbolic structure (the program or the microprogram). The
physical structure (the circuit) remains simple, rather than the symbolic structure, “stored” in program
memory of in a ROM, that establishes the functional complexity. The fourth loop creates the condition
for a total functional dependence on the symbolic structure. By the rule, at this level an universal circuit -
the processor - executes (in RISC machines) or interprets (in CISC machines) symbolic structures stored
in an additional device: the program memory.

10.1 Types of fourth order systems

There are four main types of fourth order systems (see Figure 10.1) depending on the order of the system
through which the loop is closed:

1. P & ROM is a 4-OS with loop closed through a 0-OS - in Figure 10.1a the combinational circuit
is a ROM containing only the programs executed or interpreted by the processor

2. P & RAM is a 4-OS with loop closed through a 1-OS - is the computer, the most representative
structure in this order, having on the loop a RAM (see Figure 10.1b) that stores both data and
programs

3. P & LIFO is a 4-OS with loop closed through a 2-OS - in Figure 10.1c the automaton is repre-
sented by a push-down stack containing, by the rule, data (or sequences in which the distinction
between data and programs does not make sense, as in the Lisp programming language, for exam-
ple)

4. P & CO-P is a 4-OS with loop closed through a 3-OS - in Figure 10.1d COPROCESSOR is also
a processor but a specialized one executing efficiently critical functions in the system (in most of
cases the coprocessor is a floating point arithmetic processor).

The representative system in the class of P & ROM is the microcontroller the most successful circuit
in 4-OS. The microcontroller is a “best seller” circuit realized as a one-chip computer. The core of a
microcontroller is a processor executing/interpreting the programs stored in a ROM.

1Niklaus Wirth is an already legendary Swiss born computer scientist with many contributions in developing various pro-
gramming languages. The best known is Pascal. Wirth’s law is a sentence which Wirth made popular, but he attributed it to
Martin Reiser.
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Figure 10.1: The four types of 4-OS machines. a. Fix program computers usual in embedded computation. b.
General purpose computer. c. Specialized computer working working on a restricted data structure. d. Accelerated
computation supported by a specialized co-processor.
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The representative structure in the class of P & RAM is the computer. More precisely, the struc-
ture Processor - Channel - Memory represents the physical support for the well known von Neumann
architecture. Almost all present-day computers are based on this architecture.

The third type of system seems to be strange, but a recent developed architecture is a stack oriented
architecture defined for the successful Java language. Naturally, a real Java machine is endowed also
with the program memory.

The third and the fourth types are machines in which the segregation process emphasized physical
structures, a stack or a coprocessor. In both cases the segregated structures are also simple. The con-
sequence is that the whole system is also a simple system. But, the first two systems are very complex
systems in which the simple is net segregated by the random. The support of the random part is the ROM
physical structure in the first case and the symbolic content of the RAM memory in the second.

The actual computing machines have currently more than order 4, because the processors involved
in the applications have additional features. Many of these features are introduced by new loops that
increase the autonomy of certain subsystems. But theoretically, the computer function asks at least four
loops.

10.1.1 Counter extended CEA

Let us revisit again Example 8.15 and try to expand the problem to the process of recognizing 1n0m1p,
for n = m = p≥ 1.

10.1.2 The computer – support for the strongest segregation

The ROM content is defined symbolically and after that it is converted in the actual physical structure
of ROM. Instead, the RAM content remains in symbolic form and has, in consequence, more flexibil-
ity. This is the main reason for considering the PROCESSOR & RAM = COMPUTER as the most
representative in 4-OS.

The computer is not a circuit. It is a new entity with a special functional definition, currently called
computer architecture. Mainly, the computer architecture is given by the machine language. A program
written in this language is interpreted or executed by the processor. The program is stored in the RAM
memory. In the same subsystem are stored data on which the program “acts”. Each architecture can have
many associated computer structures (organizations).

Starting from the level of four order systems the behavior of the system is controlled mainly by the
symbolic structure of programs. The architectural approach settles the distinction between the physical
structures and the symbolic structures. Therefore, any computing machine supposes the following triadic
definition (suggested by [”Milutinovic” ’89]):

• the machine language (usually called architecture)

• the storage containing programs written in the machine language

• the machine that interprets the programs, containing:

– the machine language ...

– the storage ...

– the machine ... containing:

* ...
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and so on until the machine executes the programs.
Does it make any sense to add new loops? Yes, but not too much! It can be justified to add loops

inside the processor structure to improve its capacity to interpret fast the machine language by using
simple circuits. Another way is to see PROCESSOR & COPROCESSOR or PROCESSOR & LIFO as
performant processors and to add over them the loop through RAM. But, mainly these machines remain
structures having the computer function. The computer needs at least four loops to be competent, but
currently it is implemented on system having more loops in order to become performant.

10.2 ∗ The stack processor – a processor as 4-OS
The best way to explain how to use the concept of architecture to design an executive processor is to use an example
having an appropriate complexity. One of the simplest model of computing machine is the stack machine. A stack
machine finds always its operands in the first two stages of a stack (LIFO) memory. The last two pushed data are
the operands involved in the current operation. The computation must be managed to have accessible the current
operand(s) in the data stack. The stack used in a stack processor have some additional features allowing an efficient
data management. For example: double pop, swap, . . ..

The high level description of a stack processor follows. The purpose of this description is to offer an example
of how starts the design of a processor. Once the functionality of the machine is established at the higher level of
the architecture, there are many ways to implement it.

10.2.1 ∗ The organization

Our Stack Processor is a sort of simple processing element characterized by using a stack memory (LIFO) for
storing the internal variables. The top level internal organization of a version of Stack Processor (see Figure 10.2)
contains the following blocks:

• STACK & ALU – SALU – is the unit performing the elementary computations; it contains:

– a two-output stack; the top of stack (stack0 or tos) and the previous recording (stack1) are acces-
sible

– an ALU with the operands from the top of stack (left op = stack0 and right io = stack1)

– a selector for the input of stack grabbing data from: (0) the output of ALU, (1) external data memory,
(2) the value provided by the instruction, or (3) the value of pc +1 to be used as return address

• PROGRAM FETCH – a unit used to generate in each clock cycle a new address for fetching from the
external program memory the next instruction to be executed

• DECODER – is a combinational circuit used to trans-code the operation code – op code – into commands
executed by each internal block or sub-block.

Figure 10.3 represents the Verilog top module for our Stack Processor (stack processor).
The two loop connected automata are SALU and PROGRAM FETCH. Both are simple, recursive defined

structures. The complexity of the Stack Processor is given by the DECODE unit: a combinational circuit used
to trans-code op code providing 5 small command words to specify how behaves each component of the system.
The Verilog decode module uses test in = tos and mem ready to make decisions. The value of tos can be
tested (if it is zero or not, for example) to decide a conditional jump in program (on this way only PROGRAM
FETCH module is affected). The mem ready input received from data memory allows the processor to adapt itself
to external memories having different access time.

The external data and program memories are both synchronous: the content addressed in the current clock
cycle is received back in the next clock cycle. Therefore, instruction received in each clock cycle corresponds
to instr addr generated in the previous cycle. Thus, the fetch mechanism fits perfect with the behavior of the
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Figure 10.2: An executing Stack Processor. Elementary functions are performed by ALU on variables stored
in a stack (LIFO) memory. The decoder supports the one-cycle execution of the instructions fetched from the
external memory.

synchronous memory. For data memory mem ready flag is used to “inform” the decode module to delay one clock
cycle the use of the data received from the external data memory.

In each clock cycle ALU unit from SALU receives on its data inputs the two outputs of the stack, and generates
the result of the operation selected by the alu com code. If MUX4 has the input 0 selected by the data sel code,
then the result is applied to the input of stack. The result is written back in tos if a unary operation (increment, for
example) is performed (write the result of increment in tos is equivalent with the sequence pop, increment &
push). If a binary operation (addition, for example) is performed, then the first operand is popped from stack and
the result is written back over the the new tos (double pop & push involved in a binary operation is equivalent
with pop & write).

MUX4 selects for the stack input, according to the command data sel, besides the output of ALU, data
received back from the external data memory, the value carried by the currently executed instruction, or the value
pc+1 (to be used as return address).

The unit PC generates in each clock cycle the address for program memory. It uses mainly the value from the
register PC, which contains the last used address, to fetch an instruction. The content of tos or the value contained
in the current instruction are also used to compute different conditioned or unconditioned jumps.

To keep this example simple, the program memory is a synchronous one and it contains anytime the addressed
instruction (no misses in this memory).

Because our Stack Processor is designed to be an executing machine, besides the block associated with the



10.2. ∗ THE STACK PROCESSOR – A PROCESSOR AS 4-OS 417

/ * ************************************************************************
F i l e name : s t a c k p r o c e s s o r . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module s t a c k p r o c e s s o r ( input c l o c k , r e s e t ,
output [ 3 1 : 0 ] i n s t r a d d r , d a t a a d d r ,
output [ 1 : 0 ] data mem com ,
output [ 3 1 : 0 ] d a t a o u t ,
input [ 2 3 : 0 ] i n s t r u c t i o n ,
input [ 3 1 : 0 ] d a t a i n ,
input mem ready ) ;

wire [ 2 : 0 ] s t a c k c o m ; / / s t a c k command
wire [ 3 : 0 ] a lu com ; / / a l u command
wire [ 1 : 0 ] d a t a s e l ; / / da ta s e l e c t i o n f o r SALU
wire [ 2 : 0 ] pc com ; / / program c o u n t e r command
wire [ 3 1 : 0 ] t o s , / / t o p o f s t a c k

r e t a d d r ; / / r e t u r n from s u b r o u t i n e a d d r e s s
decode decode ( . op code ( i n s t r u c t i o n [ 2 3 : 1 6 ] ) ,

. t e s t i n ( t o s ) ,

. mem ready ( mem ready ) ,

. s t a c k c o m ( s t a c k c o m ) ,

. a lu com ( a lu com ) ,

. d a t a s e l ( d a t a s e l ) ,

. pc com ( pc com ) ,

. data mem com ( data mem com ) ) ;
s a l u s a l u ( . s t a c k 0 ( t o s ) ,

. s t a c k 1 ( d a t a o u t ) ,

. i n 1 ( d a t a i n ) ,

. i n 2 ({16 ’ b0 , i n s t r u c t i o n [ 1 5 : 0 ] } ) ,

. i n 3 ( r e t a d d r ) ,

. s com ( s t a c k c o m ) ,

. d a t a s e l ( d a t a s e l ) ,

. a lu com ( a lu com ) ,

. r e s e t ( r e s e t ) ,

. c l o c k ( c l o c k ) ) ;
a s s i g n d a t a a d d r = t o s ;
p r o g r a m c o u n t e r pc ( . c l o c k ( c l o c k ) ,

. r e s e t ( r e s e t ) ,

. add r ( i n s t r a d d r ) ,

. i n c p c ( r e t a d d r ) ,

. v a l u e ( i n s t r u c t i o n [ 1 5 : 0 ] ) ,

. t o s ( t o s ) ,

. pc com ( pc com ) ) ;
endmodule

Figure 10.3: The top level structural description of a Stack Processor. The Verilog code associated to
the circuit represented in Figure 10.2.
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/ * ************************************************************************
F i l e name : decode . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module decode ( input [ 7 : 0 ] op code ,
input [ 3 1 : 0 ] t e s t i n ,
input mem ready ,
output [ 2 : 0 ] s t a c k c o m ,
output [ 3 : 0 ] a lu com ,
output [ 1 : 0 ] d a t a s e l ,
output [ 2 : 0 ] pc com ,
output [ 1 : 0 ] data mem com ) ;

‘ i n c l u d e ” m i c r o a r c h i t e c t u r e . v ”
‘ i n c l u d e ” i n s t r u c t i o n s e t a r c h i t e c t u r e . v ”
‘ i n c l u d e ” d e c o d e r i m p l e m e n t a t i o n . v ”

endmodule

Figure 10.4: The decode module. It contains the three complex components of the description of Stack
Processor.

elementary functions (SALU) and the block used to compose & and loop them (PC) there is only a decoder used as
execution unit (see Figure 9.13. The decoder module – decode – is the most complex module of Stack Processor
(see Figure 10.4). It contains three sections:

• micro-architecture: it describes the micro-operations performed by each top level block listing the
meaning of all binary codes used to command them

• instruction set architecture: describe each instruction performed by Stack Processor

• decoder implementation: describe how the micro-architecture is used to implement the instruction set
architecture.

10.2.2 ∗ The micro-architecture
Any architecture can be implemented using various micro-architectures. For our Stack Processor one of them is
presented in Figure 10.5.

The decoder unit generates in each clock cycle a command word having the following 5-field structure:

{alu com, data sel, stack com data mem com, pc com} = command

where:

• alu com: is a 4-bit code used to select the arithmetic or logic operation performed by ALU in the current
cycle; it specifies:

– well known binary operations such as: add, subtract, and, or, xor

– usual unary operations such as: increment, shifts
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/ * ************************************************************************
F i l e name : m i c r o a r c h i t e c t u r e . v
C i r c u i t name : MICROARCHITECTURE
D e s c r i p t i o n :
************************************************************************ * /

parameter / / pc com
s t o p = 3 ’ b000 , / / pc = pc
n e x t = 3 ’ b001 , / / pc = pc + 1
s m a l l j m p = 3 ’ b010 , / / pc = pc + v a l u e
b i g jm p = 3 ’ b011 , / / pc = pc + t o s
abs jmp = 3 ’ b100 , / / pc = v a l u e
r e t j m p = 3 ’ b101 ; / / pc = t o s

parameter / / a lu com
a l u l e f t = 4 ’ b0000 , / / a l u o u t = l e f t
a l u r i g h t = 4 ’ b0001 , / / a l u o u t = r i g h t
a l u i n c = 4 ’ b0010 , / / a l u o u t = l e f t + 1
a l u d e c = 4 ’ b0011 , / / a l u o u t = l e f t − 1
a l u a d d = 4 ’ b0100 , / / a l u o u t = l e f t + r i g h t = add [ 3 1 : 0 ]
a l u s u b = 4 ’ b0101 , / / a l u o u t = l e f t − r i g h t = sub [ 3 1 : 0 ]
a l u s h l = 4 ’ b0110 , / / a l u o u t = {1 ’ b0 , l e f t [ 3 1 : 1 ]}
a l u h a l f = 4 ’ b0111 , / / a l u o u t = { l e f t [ 3 1 ] , l e f t [ 3 1 : 1 ]}
a l u z e r o = 4 ’ b1000 , / / a l u o u t = {31 ’ b0 , ( l e f t == 0)}
a l u e q u a l = 4 ’ b1001 , / / a l u o u t = {31 ’ b0 , ( l e f t == r i g h t )}
a l u l e s s = 4 ’ b1010 , / / a l u o u t = {31 ’ b0 , ( l e f t < r i g h t )}
a l u c a r r y = 4 ’ b1011 , / / a l u o u t = {31 ’ b0 , add [32]}
a l u b o r r o w = 4 ’ b1100 , / / a l u o u t = {31 ’ b0 , sub [32]}
a l u a n d = 4 ’ b1101 , / / a l u o u t = l e f t & r i g h t
a l u o r = 4 ’ b1110 , / / a l u o u t = l e f t | r i g h t
a l u x o r = 4 ’ b1111 ; / / a l u o u t = l e f t ˆ r i g h t

parameter / / d a t a s e l
a l u = 2 ’ b00 , / / s t a c k i n p u t = a l u o u t
mem = 2 ’ b01 , / / s t a c k i n p u t = d a t a i n
v a l = 2 ’ b10 , / / s t a c k i n p u t = v a l u e
r e t u r n = 2 ’ b11 ; / / s t a c k i n p u t = r e t a d d r

parameter / / s t a c k c o m
s nop = 3 ’ b000 , / / no o p e r a t i o n
s swap = 3 ’ b001 , / / swap t h e c o n t e n t o f t h e f i r s t two
s p u s h = 3 ’ b010 , / / push
s w r i t e = 3 ’ b100 , / / w r i t e i n t o s
s pop = 3 ’ b101 , / / pop
s popwr = 3 ’ b110 , / / pop2 & push
s pop2 = 3 ’ b111 ; / / pops two v a l u e s

parameter / / data mem com
mem nop = 2 ’ b00 , / / no da ta memory command
r e a d = 2 ’ b01 , / / read from da ta memory
w r i t e = 2 ’ b10 ; / / w r i t e t o da ta memory

Figure 10.5: The micro-architecture of our Stack Processor. The content of file micro architecture.v

defines each command word generated by the decoder describing the associated micro-commands and their binary
codes.



420 CHAPTER 10. COMPUTING MACHINES: ≥4–LOOP DIGITAL SYSTEMS

– test operations indicating by alu out[0] the result of testing, for example: if an input is zero or if an
input is less than another input

• data sel: is a 2-bit code used to select the value applied on the input of the stack for the current cycle as
one from the following:

– the output of ALU

– data received from data memory addressed by tos (with a delay of one clock cycle controlled by
mem ready signal because the external data memory is synchronous)

– the 16-bit integer selected from the current instruction

– pc+1, generated by the PROGRAM FETCH module, to be pushed in stack when the a call instruction
is executed

• stack com: is a 3-bit code used to select the operation performed by the stack unit in the current cycle (it
is correlated with the ALU operation selected by alu com); the following micro-operations are codded:

– push: it is the well known standard writing operation into a stack memory

– pop: it is the well known standard reading operation into a stack memory

– write: it writes in top of stack, which is equivalent with popping an operand and pushing back the
result of operation performed on it (used mainly in performing unary operations)

– pop & write: it is equivalent with popping two operands from stack and pushing back the result of
operation performed on them (used mainly in performing binary operations)

– double pop: it is equivalent with two successive pops, but is performed in one clock cycle; some
instructions need to remove both the content of stack0 and of stack1 (for example, after a data write
into the external data memory)

– swap: it exchange the content of stack0 and of stack1; it is useful, for example to make a subtract
in the desired order.

• data mem com: is a 2-bit command for the external data memory; it has three instantiations:

– memory nop: keep memory doing nothing is a very important command

– read: commands the read operation from data memory with the address from tos; the data will
be returned in the next clock cycle; in the current cycle mem read is activated to allow stoping the
processor one clock cycle (the associated read instruction will be executed in two clock cycles)

– write: the data contained in stack1 is written to the address contained in stack0 (both, address and
data will be popped from stack)

• pc com: is a 3-bit code used to command how is computed the address for the fetching of the next instruc-
tion; 6 modes are used:

– stop: program counter is not incremented (the processor halts or is waiting for a condition to be
fulfilled)

– next: it is the most frequent mode to compute the program counter by incrementing it

– small jump: compute the next program counter adding to it the value contained in the current in-
struction (instruction[15:0]) interpreted as a 16-bit signed integer; a relative jump in program is
performed

– big jump: compute the next program counter adding to it the value contained in tos interpreted as a
32-bit signed integer; a relative big jump in program is performed

– absolute jump: the program counter takes the value of instruction[15:0]; thhe processor per-
forms an absolute jump in program
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– return jump: is an absolute jump performed using the content of tos (usually performs a return
from a subroutine, or is used to call a subroutine in a big addressing space)

The 5-field just explained can not be filled up without inter-restrictions imposed by the meaning of the micro-
operations. There exist inter-correlations between the micro-operations assembled in a command. For example,
if ALU performs an addition, then the stack must perform mandatory pop & poop& & push == pop write. If
the ALU operation is increment, then the stack must perform write. Some fields are sometimes meaningless. For
example, when an unconditioned small jump is performed the fields alu com and data sel can take don’t care

values. But, for obvious reasons, no times stack com and data mem com can take don’t care values.
Each unconditioned instruction has associated one 5-field commands, and each conditioned instructions is

defined using two 5-field commands.

10.2.3 ∗ The instruction set architecture
Instruction set architecture is the interface between the hardware and the software part of a computing machine.
It grounds the definition of the lowest level programming language: the assembly language. It is an interface
because allows the parallel work of two teams once its definitions is frozen. One is the hardware team which starts
to design the physical structure, and the other is the software team which starts to grow the symbolic structure
of the hierarchy of programs. Each architecture can be embodied in many forms according to the technological
restrictions or to the imposed performances. The main benefit of this concept is the possibility to change the
hardware without throwing out the work done by the software team.

The implementation of our Stack Processor has, as the majority of the currently produced processors, an
instruction set architecture containing the following class of instructions:

arithmetic and logic instructions having the form:

• [stack0, stack1, s2, ...] = [op(stack0, stack1), s2, ...]

where: stack0 is the top of stack, stack1 is the next recording in stack, and op is an arithmetic or
logic binary operation

• [stack0, stack1, s2, ...] = [(op(stack0), stack1, s2, ...]

if the operation op is unary

input-output instructions which uses stack0 as data addr and stack1 as data out

stack instructions (only for stack processors) used to immediate load the stack or to change the content in the
first two recordings (stack0 and stack1)

test instructions used to test the content of stack putting the result of the test back into the stack

control instructions used to execute unconditioned or conditioned jumps in the instruction stream by modifying
the variable program counter used to address in the program space.

The instruction set architecture is given as part of the Verilog code describing the module decode: the content
of the file instruction set architecture.v (a more complete stage of this module in Appendix: Designing a
stack processor). Figure 10.6 contains an incipient form of file instruction set architecture.v. From each
class of instructions only few examples are shown. Each instruction is performed in one clock cycle, except load
whose execution can be delayed if data ready = 0.

10.2.4 ∗ Implementation: from micro-architecture to architecture
Designing a processor (in our case designing the Stack Processor) means to use the micro-architecture to imple-
ment the instruction set architecture. For an executing processor the ”connection” between micro-architecture and
architecture is done by the decoder which is a combinational structure.

The main body of the decode module – decoder implementation.v – contains the description of the Stack
Processor’s instruction set architecture in term of micro-architecture.
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/ * ************************************************************************
F i l e name : i n s t r u c t i o n s e t a r c h i t e c t u r e . v
C i r c u i t name : INSTRUCTION SET ARCHITECTURE
D e s c r i p t i o n :
************************************************************************ * /

/ / a r i t h m e t i c & l o g i c i n s t r u c t i o n s ( pc <= pc + 1)
parameter
nop = 8 ’ b0000 0000 , / / s0 , s1 , s2 . . . <= s0 , s1 , s2 , . . .
add = 8 ’ b0000 0001 , / / s0 , s1 , s2 . . . <= s0 + s1 , s2 , . . .
i n c = 8 ’ b0000 0010 , / / s0 , s1 , s2 . . . <= s0 + 1 , s1 , s2 , . . .
h a l f = 8 ’ b0000 0011 ; / / s0 , s1 , s2 . . . <= s0 / 2 , s1 , s2 , . . .
/ / . . .

/ / i n p u t o u t p u t i n s t r u c t i o n s ( pc <= pc + 1)
parameter
l o a d = 8 ’ b0001 0000 , / / s0 , s1 , s2 . . . <= data mem [ s0 ] , s1 , s2 , . . .
s t o r e = 8 ’ b0001 0001 ; / / s0 , s1 , s2 . . . <= s2 , s3 , . . . ;

/ / data mem [ s0 ] = s1
/ / s t a c k i n s t r u c t i o n s ( pc <= pc + 1)
parameter
push = 8 ’ b0010 0000 , / / s0 , s1 , s2 . . . <= value , s0 , s1 , . . .
pop = 8 ’ b0010 0010 , / / s0 , s1 , s2 . . . <= s1 , s2 , . . .
dup = 8 ’ b0010 0011 , / / s0 , s1 , s2 . . . <= s0 , s0 , s1 , s2 , . . .
swap = 8 ’ b0010 0100 , / / s0 , s1 , s2 . . . <= s1 , s0 , s2 , . . .
ove r = 8 ’ b0010 0101 ; / / s0 , s1 , s2 . . . <= s1 , s0 , s1 , s2 , . . .
/ / . . .

/ / t e s t i n s t r u c t i o n s ( pc <= pc + 1)
parameter
z e r o = 8 ’ b0100 0000 , / / s0 , s1 , s2 . . . <= ( s0 == 0 ) , s1 , s2 , . . .
eq = 8 ’ b0100 0001 ; / / s0 , s1 , s2 . . . <= ( s0 == s1 ) , s2 , . . .
/ / . . .

/ / c o n t r o l i n s t r u c t i o n s
parameter
jmp = 8 ’ b0011 0000 , / / pc <= pc + v a l u e
c a l l = 8 ’ b0011 0001 , / / pc <= s0 ; s0 , s1 , . . . <= pc + 1 , s1 , . . .
cjmpz = 8 ’ b0011 0010 , / / pc <= ( s0 == 0) ? pc + v a l u e : pc + 1
cjmpnz = 8 ’ b0011 0011 , / / pc <= ( s0 == 0) ? pc + 1 : pc + v a l u e
r e t = 8 ’ b0011 0111 ; / / pc <= s0 ; s0 , s1 , . . . <= s1 , s2 , . . .
/ / . . .

Figure 10.6: Instruction set architecture of our Stack Processor. From each subset few typical example
are shown. The content of data stack is represented by: s0, s1, s2, ....
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The structure of the file decoder implementation.v is suggested in Figure 10.7, where the output variables
are the 5 command fields (declared as registers) and the input variables are: the operation code from instruction,
the value of tos received as test in and the flag received from the external memory: mem ready.

The main body of this vile consists in a big case structure with an entry for each instruction. In Figure 10.7
only few instructions are implemented (nop, add, load) to show how an unconditioned instruction nop, add

or a conditioned instruction load is executed.

Instruction nop does not affect the state of stack and PC is incremented. We‘must take care only about three
command fields. PC must be incremented (next, and the fields commanding memory resources (stack, external
data memory) must be set on ”no operation” (s nop, mem nop. The operation performed by ALU and data
selected as right operand have no meaning for this instruction.

Instruction add pops the two last recordings in stack, adds them, pushes back the result in tos, and increments
PC. Meantime the data memory receives no active command.

Instruction load is executed in two clock cycles. In the first cycle, when mem ready = 0, the command read
is sent to the external data memory, and the PC is maintained unchanged. The operation performed by ALU does
not matter. The selection code for MUX4 does not matter. In the next clock cycle data memory sets it flag on
1 (mem ready = 1 means the requested data is available), data selected is from memory mem), and the output of
MUX4 is pushed in stack ((s push).

By default the decoder generates “dont’care” commands. Another possibility is to have nop instruction the “by
default” instruction. Or by default to have a halt instruction which stops the processor. The first version is good as a
final solution because generates a minimal solution. The last version is preferred in the initial stage of development
because provides an easy testing and debugging solution.

Follows the description of some typical instructions from a possible instruction set executed by our Stack Pro-
cessor.

Instruction inc increments the top of stack, and increments also PC. The right operand of ALU does not
matter. The code describing this instruction, to be inserted into the big case sketched in Figure 10.7, is the
following:

i n c : begin pc com = n e x t ;
a lu com = a l u i n c ;
d a t a s e l = a l u ;
s t a c k c o m = s w r i t e ;
data mem = m nop ;

end

Instruction store stores the value contained in stack1 at the address from stack0 in external data memory.
Both, data and address are popped from stack. The associated code is:

s t o r e : begin pc com = n e x t ;
a lu com = 4 ’ bx ;
d a t a s e l = 2 ’ bx ;
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/ / THE IMPLEMENTATION
reg [ 3 : 0 ] a lu com ;
reg [ 2 : 0 ] pc com , s t a c k c o m ;
reg [ 1 : 0 ] d a t a s e l , data mem com ;

always @( op code or t e s t i n or mem ready )
case ( op code )

/ / a r i t h m e t i c & l o g i c i n s t r u c t i o n s
nop : begin pc com = n e x t ;

a lu com = 4 ’ bx ;
d a t a s e l = 2 ’ bx ;
s t a c k c o m = s nop ;
data mem com = mem nop ;

end
add : begin pc com = n e x t ;

a lu com = a l u a d d ;
d a t a s e l = a l u ;
s t a c k c o m = s popwr ;
data mem com = mem nop ;

end
/ / . . .

/ / i n p u t o u t p u t i n s t r u c t i o n s
l o a d : i f ( mem ready )

begin pc com = n e x t ;
a lu com = 4 ’ bx ;
d a t a s e l = mem ;
s t a c k c o m = s w r i t e ;
data mem com = mem nop ;

end
e l s e

begin pc com = s t o p ;
a lu com = 4 ’ bx ;
d a t a s e l = 2 ’ bx ;
s t a c k c o m = s nop ;
data mem com = r e a d ;

end
/ / . . .

/ / . . .
d e f a u l t begin pc com = 3 ’ bx ;

a lu com = 4 ’ bx ;
d a t a s e l = 2 ’ bx ;
s t a c k c o m = 3 ’ bx ;
data mem com = 2 ’ bx ;

end
endcase

Figure 10.7: Sample from the file decoder implementation.v. Implementation consists in a big case

form with an entry for each instruction.
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s t a c k c o m = s pop2 ;
data mem = w r i t e ;

end

Instruction push pushes {16’b0, instruction[15:0]} in in stack. The code is:

push : begin pc com = n e x t ;
a lu com = 4 ’ bx ;
d a t a s e l = v a l ;
s t a c k c o m = s p u s h ;
data mem = m nop ;

end

Instruction dup pushes in stack the top of stack, thus duplicating it. ALU performs alu left, the right
operand does not matter, and in the stack is pusher the output of ALU. The code is:

dup : begin pc com = n e x t ;
a lu com = a l u l e f t ;
d a t a s e l = a l u ;
s t a c k c o m = s p u s h ;
data mem = m nop ;

end

Instruction over pushes stack1 in stack, thus duplicating the second stage of stack. ALU performs
alu right, and in the stack is pusher the output of ALU.

ove r : begin pc com = n e x t ;
a lu com = a l u r i g h t ;
d a t a s e l = a l u ;
s t a c k c o m = s p u s h ;
data mem = m nop ;

end

The sequence of instructions:

over;

over;

duplicates the first two recordings in stack to be reused later in another stage of computation.

Instruction zero substitute the top of stack with 1, if its content is 0, or with 0 if the content is different from
0.
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z e r o : begin pc com = n e x t ;
a lu com = a l u z e r o ;
d a t a s e l = a l u ;
s t a c k c o m = s w r i t e ;
data mem = m nop ;

end

This instruction is used in conjunction with a conditioned jump (cjmpz or cjmpnz) to decide according to the
value of stack0.

Instruction jmp adds to PS the signed value instruction[15:0].

jmp : begin pc com = r e l j m p ;
a lu com = 4 ’ bx ;
d a t a s e l = 2 ’ bx ;
s t a c k c o m = s nop ;
data mem = m nop ;

end

This instruction is expressed as follows:

jmp <value>

where, <value> is expressed sometimes as an explicit signed integer, but usually as a label which takes a numerical
value only when the program is assembled. For example:

jmp loop1;

Instruction call performs an absolute jump to the subroutine placed at the address instruction[15:0],
and saves in tos the return address (ret addr) which is pc + 1. The address saved in stack will be used by ret

instruction to return the processor from the subroutine into the main program.

c a l l : begin pc com = abs jmp ;
a lu com = 4 ’ bx ;
d a t a s e l = r e t u r n ;
s t a c k c o m = s p u s h ;
data mem = m nop ;

end

The instruction is used, for example, as follows:

jmp subrt5;

where subrt5 is the label of a certain subroutine.
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Instruction cjmpz performs a relative jump if the content of tos is zero; else PC is incremented. The content
of stack is unchanged. (A possible version of this instruction pops the tested value from the stack.)

cjmpz : i f ( t e s t i n == 32 ’ b0 )
begin pc com = s m a l l j m p ;

a lu com = 4 ’ bx ;
d a t a s e l = 2 ’ bx ;
s t a c k c o m = s nop ;
data mem = m nop ;

end
e l s e

begin pc com = n e x t ;
a lu com = 4 ’ bx ;
d a t a s e l = 2 ’ bx ;
s t a c k c o m = s nop ;
data mem = m nop ;

end

The instruction is used, for example, as follows:

jmp george;

where george is a label to be converted in a signed 16-bit integer in the assembly process.

Instruction ret performs a jump from subroutine back into the main program using the address popped from
tos.

r e t : begin pc com = r e t j m p ;
a lu com = 4 ’ bx ;
d a t a s e l = 2 ’ bx ;
s t a c k c o m = s pop ;
data mem = m nop ;

end

The hardware resources of this Stack Processor permits up to 256 instructions to be defined. For this simple
machine we do not need to define too many instructions. Therefore, a “smart” codding of instructions will al-
low minimizing the size of decoder. More, for some critical paths the depth of decoder can be also minimized,
eventually reduced to zero. For example, maybe it is possible to set

alu com = instruction[19:16]

data sel = instruction[21:20]

allowing the critical loop to be closed faster.
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10.2.5 ∗ Time performances
Evaluating the time behavior of the just designed machine does not make us too happy. The main reason is provided
by the fact that all the external connections are unbuffered.

All the three inputs, instruction, data in, mem ready must be received long time before the active edge
of clock because their combinational path inside the Stack Processor are too deep. More, these paths are shared
partially with the internal loops responsible for the maximum clock frequency. Therefore, optimizing the clock
interferes with optimizing tin reg.

Similar comments apply to the output combinational paths.
The most disturbing propagation path is the combinational path going from inputs to outputs (for example:

from instruction to data mem com). The impossibility to avoid tin out make this design very unfriendly at the
system level. Connecting this module together with a data memory a program memory and some input-output
circuits will generate too many (restrictive) time dependencies.

This kind of approach can be useful only if it is strongly integrated with the design of the associated memories
and interfaces in a module having all inputs and outputs strictly registered.

The previously described Stack Processor remains to be a very good bad example of a pure functionally
centered design which ignores the basic electrical restrictions.

10.2.6 ∗ Concluding about our Stack Processor
The simple processor exemplified by Stack Processor is typical for a computational engine: it contains an simple
working 3loop system – SALU – and another simple automaton – Program Fetch – both driven by a decoder to
execute what is codded in each fetched instruction. Therefore, the resulting system is a 4th order one. This is not
the solution! A lot of improvement are possible, and a lot of new features can be added. But it is very useful to
exemplify one of the main virtue of the fourth loop: the 4-loop processing. A processor with more than the minimal
3 loops is easiest to be controlled. In our cases the operands are automatically selected by the stack mechanism.
Results a lot of advantages in control and some performance loss. But, the analysis of pros & cons is not a circuit
design problem. It is a topics to be investigated in the computer architecture domain.

The main advantages of a stack machine is its simplicity. The operands are in each cycle already selected,
because they are the first to recording in the top of stack. Results a simple instruction containing only two fields:
op code[7:0] and value[15:0].

The loop inside SALU is very short allowing a high clock frequency (if other loop do not impose a smaller
one).

The main disadvantage of a stack machine is the stack discipline which sometimes adds new instructions in
the code generated by the compiler.

Writing a compiler for this kind of machine is simple because the discipline in selecting the operands is high.
The efficiency of the resulting code is debatable. Sometimes a longer sequence of operation is compensated by the
higher frequency allowed by a stack architecture.

A real machine can adopt a more sophisticated stack in order to remove some limitation imposed by the
restricted access imposed by the discipline.

10.3 Embedded computation

Now we are prepared to revisit the Chapter OUR FINAL TARGET in order to offer an optimal imple-
mentation for the small & simple system toyMachine. The main application for such a machine is in the
domain of the embedded computation. The technology of embedded computation uses programmable
machines of various complexity to implement by programming functions formerly implemented by big
& complex circuits.

Instead of the behavioral description by the module toyMachine (see Figure 5.4) we are able to pro-
vide now a structural description. Even if the behavioral description offered by the module toyMachine
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is synthesisable will we see that the following structural version provides a half sized circuit.

10.3.1 The structural description of toyMachine

A structural description is supposed to be a detailed description which provide a hierarchical description
of the design using on the “leafs of the tree” simple and optimal circuits. A structural description answers
the question of “how”.

The top module

In the top module of the design – toyMachineStructure – there are two structures (see Figure 10.8):

controlSection : manages the instruction flow read from the program memory and executed, one per
clock cycle, by the entire system; the specific control instructions are executed by this module
using data, when needed, provided by the other modules (“dialog” bits for the stream flow, values
from controlSection); the asynchronous inta signal constrains the specific action of jumping
to the instruction addressed with the content of refFile[31]

dataSection : performs the functional aspect of computation, operating on data internally stored by the
register file, or received from the external world; it generate also the output signals loading the
output register outRegister with the results of the internal computation.
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Figure 10.8: The top level block schematic of the toyMachine design.
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The block dataSection is a third order (3-loop) digital system having the third loop closed over the
regFile through alu with carry (see Figure 10.9). The second loop is closed over alu and the carry
flip-flop. The first loop in this section is closed in the latches used to build the module regFile and the
flip-flop carry.

The block controlSection is a second order (2-loop) digital system, because the first loop is
closed in the master-slave flip-flops of the (programCounter module, the second loop is closed over
programCounter through pcMux inc and add (see Figure 10.9).

Thus, the toyMachine system is a fourth order digital system, the last loop being closed through
dataSection and controlSection. The module controlSection sends to the dataSection the
value progAddr as the return address from the sub-routine associated to the interruupt. The module
dataSection sends back to the module controlSection the absolute jump address.

See in Figure 10.10 the code describing the top module. Unlike the module toyMachine (see Chapter
OUR FINAL TARGET), which describe on one level design the behavior of toyMachine, the module
toyMachineStucture is a pure structural description providing only the top level description of the
same digital system. It contains two modules, one for each main sub-system of or design.

The interrupt

There are many ways to solve the problem of the interrupt signal in a computing machine. The solutions
are different depending on the way the signals int and inta are connected to the external systems.
The solution provided here is the simplest one. It is supposed that both signals are synchronous with
the toyMachine structure. This simple solution consists of a 2-state half-automaton (the one-bit register
intEnable and the multiplexer ieMux).

Because the input int is considered synchronously generated with the system clock, the signal inta
is combinational generated.

The next subsection provides an enhanced version of this module which is able to manage asyn-
chronous int signal.

The control section

This unit fetches in each clock cycle a new instruction from the program memory. The instruction is
decoded locally for its use and is also sent for the use of the data unit. For each instruction there is
a specific way to use the content of the program counter in order to compute the address of the next
instruction. For data and interrupt instructions (see Figure 5.3) the next instruction is always fetched
form the address programCounter + 1. For the control instructions (see Figure 5.3) there are different
modes for each instruction. The internal structure of the module controlSection is designed to provide
the specific modes of computing the next value for the program counter.

The multiplexers pcMux from the control section (see Figure 10.9) is used to select the next value of
the program counter, providing the value of progAddr, as follows:

• program counter keep its own value for the halt instruction or in the wait instructions for input or
output to become ready

• program counter is incremented for the linear part of the program

• program counter is added to the immValue provided by the current instruction

• program counter is set to the value provided by regFile[leftAddr] for unconditioned jump



10.3. EMBEDDED COMPUTATION 431

contrDecode

- -

nextPcSel

nextIESel

-

int

6
inta

6

intEnable

ieMux

6

adder

”1”

6

programCounter

6

pcMux

inc-

6

?

-

?

6

? ?

reset

6

?

?

-

readyIn

�

?

?

progAddr

instruction

-

write
-

dataDecode

?
-
-

� destAddr

leftAddr
rightAddr �

�
�

�

-

�

writeBack

contrloSection

?

-

dataOut

dataIn

addrOut

readIn

regFle

� writeOut

??

arithLogOp

leftOp rightOp

logicModule arithModule

resultMux

???

?? ??? ?

?

?
?

readyOut

?
carry

alu

result

inStream

inRegister

6

outRegister

-dataSection

?

outStream

Figure 10.9:



432 CHAPTER 10. COMPUTING MACHINES: ≥4–LOOP DIGITAL SYSTEMS

/ * ************************************************************************
F i l e name : t o y M a c h i n e S t r u c t u r e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module t o y M a c h i n e S t r u c t u r e

( input [ 1 5 : 0 ] i n S t r e a m ,
input [ 3 1 : 0 ] d a t a I n , i n s t r u c t i o n ,
input r e a d y I n , readyOut , i n t , r e s e t , c lock ,
output r e a d I n , wr i t eOu t , i n t a , w r i t e ,
output [ 1 5 : 0 ] o u t S t r e a m ,
output [ 3 1 : 0 ] dataAddr , da taOut , progAddr ) ;

wire [ 3 1 : 0 ] l e f t O p , immValue , p rogramCoun te r ;
wire [ 5 : 0 ] opCode ;
wire [ 4 : 0 ] des tAddr , l e f t A d d r , r i g h t A d d r ;
a s s i g n opCode = i n s t r u c t i o n [ 3 1 : 2 6 ] ;
a s s i g n d e s t A d d r = i n s t r u c t i o n [ 2 5 : 2 1 ] ;
a s s i g n l e f t A d d r = i n s t r u c t i o n [ 2 0 : 1 6 ] ;
a s s i g n r i g h t A d d r = i n s t r u c t i o n [ 1 5 : 1 1 ] ;
a s s i g n immValue = {{16{ i n s t r u c t i o n [ 1 5 ]}} , i n s t r u c t i o n [ 1 5 : 0 ] } ;
d a t a S e c t i o n d a t a S e c t i o n ( i n S t r e a m ,

r e a d y I n , readyOut , i n t a , c l o c k ,
r e a d I n , w r i t e ,
o u t S t r e a m ,
w r i t e O u t ,
da taAddr , d a t a O u t ,
d a t a I n , programCounter , immValue ,
opCode ,
des tAddr , l e f t A d d r , r i g h t A d d r ) ;

c o n t r o l S e c t i o n c o n t r o l S e c t i o n ( i n t , r e a d y I n , readyOut , r e s e t , c lock ,
i n t a ,
progAddr , p rogramCoun te r ,
da taAddr , immValue ,
opCode ) ;

endmodule

Figure 10.10: The top module toyMachineStructure. (Implemented on 321 LUTs, at 205 MHz)
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module c o n t r o l S e c t i o n
( input i n t , r e a d y I n , readyOut , r e s e t , c l o c k ,

output i n t a ,
output [ 3 1 : 0 ] progAddr , p rogramCoun te r ,
input [ 3 1 : 0 ] dataAddr , immValue ,
input [ 5 : 0 ] opCode ) ;

reg [ 3 1 : 0 ] p rogramCounte r ;
reg i n t E n a b l e ;
wire [ 1 : 0 ] n e x t P c S e l , n e x t I E S e l ;
wire n e x t I E ;
a s s i g n i n t a = i n t E n a b l e & i n t ;
con t rDecode

con t rDecode ( opCode ,
da taAddr ,
i n t a ,
r e a d y I n ,
r eadyOut ,
n e x t P c S e l ,
n e x t I E S e l ) ;

always @( posedge c l o c k )
i f ( r e s e t ) begin programCounte r <= 32 ’ b0 ;

i n t E n a b l e <= 1 ’ b0 ;
end

e l s e begin programCounte r <= progAddr ;
i n t E n a b l e <= n e x t I E ;

end
mux4 32 pcMux ( . o u t ( progAddr ) ,

. i n 0 ( p rogramCoun te r ) ,

. i n 1 ( p rogramCoun te r + 1 ) ,

. i n 2 ( p rogramCoun te r + immValue ) ,

. i n 3 ( da taAddr ) ,

. s e l ( n e x t P c S e l ) ) ;
mux4 1 ieMux ( . o u t ( n e x t I E ) ,

. i n 0 ( i n t E n a b l e ) ,

. i n 1 ( 1 ’ b0 ) ,

. i n 2 ( 1 ’ b1 ) ,

. i n 3 ( 1 ’ b0 ) ,

. s e l ( n e x t I E S e l ) ) ;
endmodule

Figure 10.11: The module controlSection.
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/ * ************************************************************************
F i l e name : con t rDecode . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module con t rDecode ( input [ 5 : 0 ] opCode ,

input [ 3 1 : 0 ] da taAddr ,
input i n t a ,
input r e a d y I n ,
input r eadyOut ,
output reg [ 1 : 0 ] n e x t P c S e l ,
output reg [ 1 : 0 ] n e x t I E S e l ) ;

‘ i n c l u d e ” 0 t o y M a c h i n e A r c h i t e c t u r e . v ”
always @( * )

i f ( i n t a ) n e x t I E S e l = 2 ’ b10 ;
e l s e i f ( opCode == e i ) n e x t I E S e l = 2 ’ b01 ;

e l s e i f ( opCode == d i ) n e x t I E S e l = 2 ’ b10 ;
e l s e n e x t I E S e l = 2 ’ b00 ;

always @( * )
i f ( i n t a ) n e x t P c S e l = 2 ’ b11 ;

e l s e case ( opCode )
jmp : n e x t P c S e l = 2 ’ b11 ;
zjmp : i f ( da t aAddr == 0) n e x t P c S e l = 2 ’ b10 ;

e l s e n e x t P c S e l = 2 ’ b01 ;
nzjmp : i f ( da t aAddr !== 0) n e x t P c S e l = 2 ’ b10 ;

e l s e n e x t P c S e l = 2 ’ b01 ;
r e c e i v e : i f ( r e a d y I n ) n e x t P c S e l = 2 ’ b01 ;

e l s e n e x t P c S e l = 2 ’ b00 ;
i s s u e : i f ( r eadyOut ) n e x t P c S e l = 2 ’ b01 ;

e l s e n e x t P c S e l = 2 ’ b00 ;
h a l t : n e x t P c S e l = 2 ’ b00 ;
d e f a u l t n e x t P c S e l = 2 ’ b01 ;

endcase
endmodule

Figure 10.12: The module contrDecode.
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The selection bits for pcMux are generated by the contrDecode. It uses for generating the selections for
the multiplexers opCode from instruction, asyncInta, the content of regFile[leftAddr] and the
input signals readyIn, readyOut.

The only complex module in the control section is the combinational circuit described in
contrDecode (see Figure 10.12). The type reg in this description must be understood as a variable.
The actual structure of a register is not generated.

The data section

The module dataSection includes mainly the data storage resources and the combinational circuits
allowing the execution of each data instruction in one clock cycle.

Data is stored in the register file, regFile, which allows to read two variable as operands for the cur-
rent instruction, selected by leftAddr and rightAddr, and to store the result of the current instruction
to the location selected by desrAddr (except the case when inta = 1 forces reading leftOp form the
location 30, to be used as absolute jump address, and loading the location 31 with the current value of
programCounter).

The arithmetic-logic unit, alu, operate in each clock cycle on the operands received from the two
outputs of the register file: leftOp and rightOp. The operation code is given directly from the output
of the dataDecode block described by the module dataDecode (see Figure 10.18).

The input of the register file is provided from the alu output and from other four sources:

• inRegister: because the input bits can be submitted to arithmetic and logic processing only if
they are stored in the register file first

• immValue: is used to generate immediate values for the purpose of the program

• dataIn: data provided by the external data memory addressed by leftOp

• programCounter: is saved as the “return” address to be used after running the program started
by the acknowledged interrupt

The first three of these inputs are selected according to the current instructions by the selection code
resultSel generated by the module dataDecode for the multiplexor resultMux. The last one is
forced at the input of the register file by the occurrence of the signal inta.

The register file description uses the code presented in the subsection Register file. Only the sizes
are adapted to our design (see Figure 10.14.

The module called alu (see Figure 10.15) performs the arithmetic-logic functions of our small in-
struction set. Because the current synthesis tools are able to synthesize very efficiently uniform arithmetic
and logic circuits, this Verilog contains a behavioral description.

The dataDecode block, described in our design by the Verilog module dataDecoder, takes the
opCode field from instruction, the dialog signals, readyIn and readyOut, and inta and trans-codes
them. This is the only complex module from the data section.

Multiplexors

The design of toyMachine uses a lot of multiplexors. Their description is part of the project.
As for the usual functions from an ALU, or small combinational circuits, for multiplexors behavioral

descriptions work very well because the software synthesis tools are enough “smart” to “know” how to
provide optimal solutions.
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/ * ************************************************************************
F i l e name : d a t a S e c t i o n . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module d a t a S e c t i o n ( input [ 1 5 : 0 ] i n S t r e a m ,

input r e a d y I n , readyOut , i n t a , c l o c k ,
output r e a d I n , w r i t e ,
output [ 1 5 : 0 ] o u t S t r e a m ,
output w r i t e O u t ,
output [ 3 1 : 0 ] dataAddr , d a t a O u t ,
input [ 3 1 : 0 ] d a t a I n , programCounter , immValue ,
input [ 5 : 0 ] opCode ,
input [ 4 : 0 ] des tAddr , l e f t A d d r , r i g h t A d d r ) ;

reg [ 1 5 : 0 ] i n R e g i s t e r , o u t R e g i s t e r ;
reg c a r r y ;
wire [ 3 1 : 0 ] r e s u l t , l e f t O p , r i g h t O p ;
wire [ 1 : 0 ] a r i t hLogOp ;
wire [ 2 : 0 ] r e s u l t S e l ;
wire wri t eBack , c a r ryO u t , inRegEnable , outRegEnable ,

c a r r y E n a b l e ;
a s s i g n da taAddr = l e f t O p ;
a s s i g n d a t a O u t = l e f t O p ;
a s s i g n o u t S t r e a m = o u t R e g i s t e r ;
da taDecode da taDecode

( ar i thLogOp , r e s u l t S e l , wr i t eBack , inRegEnable , outRegEnable ,
c a r r y E n a b l e , r e a d I n , wr i t eOu t , w r i t e , opCode , r e a d y I n ,
readyOut , i n t a ) ;

always @( posedge c l o c k )
begin i f ( inRegEnab le ) i n R e g i s t e r <= i n S t r e a m ;

i f ( ou tRegEnab le ) o u t R e g i s t e r <= l e f t O p [ 1 5 : 0 ] ;
i f ( c a r r y E n a b l e ) c a r r y <= c a r r y O u t ;

end
r e g F i l e

r e g F i l e ( . d e s t A d d r ( i n t a ? 5 ’ b11110 : d e s t A d d r ) ,
. w r i t e B a c k ( w r i t e B a c k ) ,
. l e f t A d d r ( i n t a ? 5 ’ b11111 : l e f t A d d r ) ,
. r i g h t A d d r ( r i g h t A d d r ) ,
. i n ( r e s u l t ) ,
. l e f t O u t ( l e f t O p ) ,
. r i g h t O u t ( r i g h t O p ) ,
. c l o c k ( c l o c k ) ) ;

a l u a l u ( r e s u l t , c a r ryOu t , l e f t O p , r igh tOp , c a r r y , i n R e g i s t e r ,
p rogramCounter , d a t a I n , immValue , a r i thLogOp , r e s u l t S e l ) ;

endmodule

Figure 10.13: The module dataSection.
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/ * ************************************************************************
F i l e name : r e g F i l e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module r e g F i l e ( input [ 4 : 0 ] d e s t A d d r ,

input w r i t e B a c k ,
input [ 4 : 0 ] l e f t A d d r ,
input [ 4 : 0 ] r i g h t A d d r ,
input [ 3 1 : 0 ] i n ,
output [ 3 1 : 0 ] l e f t O u t ,
output [ 3 1 : 0 ] r i g h t O u t ,
input c l o c k ) ;

reg [ 3 1 : 0 ] r e g F i l e [ 0 : 3 1 ] ;

always @( posedge c l o c k ) i f ( w r i t e B a c k ) r e g F i l e [ d e s t A d d r ] <= i n ;

a s s i g n l e f t O u t = r e g F i l e [ l e f t A d d r ] ;
a s s i g n r i g h t O u t = r e g F i l e [ r i g h t A d d r ] ;

endmodule

Figure 10.14: The module regFile.
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/ * ************************************************************************
F i l e name : a l u . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module a l u ( output [ 3 1 : 0 ] r e s u l t ,

output c a r r y O u t ,
input [ 3 1 : 0 ] l e f t O p ,
input [ 3 1 : 0 ] r i g h t O p ,
input c a r r y ,
input [ 1 5 : 0 ] i n R e g i s t e r ,
input [ 3 1 : 0 ] p rogramCoun te r ,
input [ 3 1 : 0 ] d a t a I n ,
input [ 3 1 : 0 ] immValue ,
input [ 1 : 0 ] a r i t hLogOp ,
input [ 2 : 0 ] r e s u l t S e l ) ;

wire [ 3 1 : 0 ] l o g i c R e s u l t ;
wire [ 3 1 : 0 ] a r i t h R e s u l t ;

l og i cModu le
log i cModu le ( l e f t O p ,

r i g h t O p ,
a r i t hLogOp ,
l o g i c R e s u l t ) ;

a r i t h M o d u l e
a r i t h M o d u l e ( l e f t O p ,

r i g h t O p ,
c a r r y ,
a r i t hLogOp ,
a r i t h R e s u l t ,
c a r r y O u t ) ;

mux8 32 r e s u l t M u x ( . o u t ( r e s u l t ) ,
. i n 0 ( a r i t h R e s u l t ) ,
. i n 1 ( l o g i c R e s u l t ) ,
. i n 2 ({ l e f t O p [ 3 1 ] , l e f t O p [ 3 1 : 1 ] } ) ,
. i n 3 ( immValue ) ,
. i n 4 ({ immValue [ 1 5 : 0 ] , l e f t O p [ 1 5 : 0 ] } ) ,
. i n 5 ({{16{ i n R e g i s t e r [ 1 5 ]}} , i n R e g i s t e r } ) ,
. i n 6 ( p rogramCoun te r ) ,
. i n 7 ( d a t a I n ) ,
. s e l ( r e s u l t S e l ) ) ;

Figure 10.15: The module alu.
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/ * ************************************************************************
F i l e name : a r i t h M o d u l e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module a r i t h M o d u l e ( input [ 3 1 : 0 ] l e f t O p ,

input [ 3 1 : 0 ] r i g h t O p ,
input c a r r y ,
input [ 1 : 0 ] a r i t hLogOp ,
output [ 3 1 : 0 ] a r i t h R e s u l t ,
output c a r r y O u t ) ;

a s s i g n { ca r ryOu t , a r i t h R e s u l t } =
l e f t O p + ( r i g h t O p ˆ {32{ a r i t hLogOp [ 0 ] } } ) +
( a r i t hLogOp [ 1 ] & ( a r i t hLogOp [ 0 ] ˆ c a r r y ) ) ;

endmodule

Figure 10.16: The module arithModule.

/ * ************************************************************************
F i l e name : l o g i c M o d u l e . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module l og i cModu le ( input [ 3 1 : 0 ] l e f t O p ,

input [ 3 1 : 0 ] r i g h t O p ,
input [ 1 : 0 ] a r i t hLogOp ,
output reg [ 3 1 : 0 ] l o g i c R e s u l t ) ;

always @( * ) case ( a r i t hLogOp )
2 ’ b00 : l o g i c R e s u l t = ˜ l e f t O p ;
2 ’ b01 : l o g i c R e s u l t = l e f t O p & r i g h t O p ;
2 ’ b10 : l o g i c R e s u l t = l e f t O p | r i g h t O p ;
2 ’ b11 : l o g i c R e s u l t = l e f t O p ˆ r i g h t O p ;

endcase
endmodule

Figure 10.17: The module logicModule.
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/ * ************************************************************************
F i l e name : dataDecode . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
module da taDecode ( output reg [ 1 : 0 ] a r i t hLogOp ,

output reg [ 2 : 0 ] r e s u l t S e l ,
output reg w r i t e B a c k ,
output reg i nRegEnab le , outRegEnable ,

c a r r y E n a b l e , r e a d I n , wr i t eOu t , w r i t e ,
input [ 5 : 0 ] opCode ,
input r e a d y I n , readyOut , i n t a ) ;

‘ i n c l u d e ” 0 t o y M a c h i n e A r c h i t e c t u r e . v ”
always @( * ) begin a r i t hLogOp = 2 ’ b00 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b0 ;
inRegEnab le = 1 ’ b0 ;
ou tRegEnab le = 1 ’ b0 ;
c a r r y E n a b l e = 1 ’ b0 ;
r e a d I n = 1 ’ b0 ;
w r i t e O u t = 1 ’ b0 ;
w r i t e = 1 ’ b0 ;
i f ( i n t a ) begin r e s u l t S e l = 3 ’ b110 ;

w r i t e B a c k = 1 ’ b1 ;
end

e l s e c ase ( opCode )
add : begin a r i t hLogOp = 2 ’ b00 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b1 ;
c a r r y E n a b l e = 1 ’ b1 ;

end
sub : begin a r i t hLogOp = 2 ’ b01 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b1 ;
c a r r y E n a b l e = 1 ’ b1 ;

end
addc : begin a r i t hLogOp = 2 ’ b10 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b1 ;
c a r r y E n a b l e = 1 ’ b1 ;

end
subc : begin a r i t hLogOp = 2 ’ b11 ;

r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b1 ;
c a r r y E n a b l e = 1 ’ b1 ;

end
a s h r : begin r e s u l t S e l = 3 ’ b010 ;

w r i t e B a c k = 1 ’ b1 ;
end

Figure 10.18: The module dataDecode.
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/ * ************************************************************************
F i l e name : dataDecode . v ( c o n t i n u e d )
************************************************************************ * /

neg : begin a r i t hLogOp = 2 ’ b00 ;
r e s u l t S e l = 3 ’ b001 ;
w r i t e B a c k = 1 ’ b1 ;

end
bwand : begin a r i t hLogOp = 2 ’ b01 ;

r e s u l t S e l = 3 ’ b001 ;
w r i t e B a c k = 1 ’ b1 ;

end
bwor : begin a r i t hLogOp = 2 ’ b10 ;

r e s u l t S e l = 3 ’ b001 ;
w r i t e B a c k = 1 ’ b1 ;

end
bwxor : begin a r i t hLogOp = 2 ’ b11 ;

r e s u l t S e l = 3 ’ b001 ;
w r i t e B a c k = 1 ’ b1 ;

end
v a l : begin r e s u l t S e l = 3 ’ b011 ;

w r i t e B a c k = 1 ’ b1 ;
end

h v a l : begin r e s u l t S e l = 3 ’ b100 ;
w r i t e B a c k = 1 ’ b1 ;

end
g e t : begin r e s u l t S e l = 3 ’ b101 ;

w r i t e B a c k = 1 ’ b1 ;
end

send : ou tRegEnab le = 1 ’ b1 ;
r e c e i v e : i f ( r e a d y I n )

begin i nRegEnab le = 1 ’ b1 ;
r e a d I n = 1 ’ b1 ;

end
i s s u e : i f ( r eadyOut ) w r i t e O u t = 1 ’ b1 ;
da t a wr : w r i t e = 1 ’ b1 ;
d a t a r d : begin r e s u l t S e l = 3 ’ b111 ;

w r i t e B a c k = 1 ’ b1 ;
end

d e f a u l t begin a r i t hLogOp = 2 ’ b00 ;
r e s u l t S e l = 3 ’ b000 ;
w r i t e B a c k = 1 ’ b0 ;
inRegEnab le = 1 ’ b0 ;
ou tRegEnab le = 1 ’ b0 ;
c a r r y E n a b l e = 1 ’ b0 ;
r e a d I n = 1 ’ b0 ;
w r i t e O u t = 1 ’ b0 ;
w r i t e = 1 ’ b0 ;

end
endcase

end
endmodule

Figure 10.19: The module dataDecode (continuation).
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/ * ************************************************************************
D e s c r i p t i o n : v a r i o u s m u l t i p l e x o r s
************************************************************************ * /
module mux4 32 ( output reg [ 3 1 : 0 ] o u t ,

input [ 3 1 : 0 ] in0 , in1 , in2 , i n 3 ,
input [ 1 : 0 ] s e l ) ;

always @( * ) case ( s e l )
2 ’ b00 : o u t = i n 0 ;
2 ’ b01 : o u t = i n 1 ;
2 ’ b10 : o u t = i n 2 ;
2 ’ b11 : o u t = i n 3 ;

endcase
endmodule

module mux4 1 ( output reg o u t ,
input i n 0 , i n 1 , i n 2 , i n 3 ,
input [ 1 : 0 ] s e l ) ;

always @( * ) case ( s e l )
2 ’ b00 : o u t = i n 0 ;
2 ’ b01 : o u t = i n 1 ;
2 ’ b10 : o u t = i n 2 ;
2 ’ b11 : o u t = i n 3 ;

endcase
endmodule

module mux8 32 ( output reg [ 3 1 : 0 ] o u t ,
input [ 3 1 : 0 ] in0 , in1 , in2 , i n 3 ,

in4 , in5 , in6 , i n 7 ,
input [ 2 : 0 ] s e l ) ;

always @( * ) case ( s e l )
3 ’ b000 : o u t = i n 0 ;
3 ’ b001 : o u t = i n 1 ;
3 ’ b010 : o u t = i n 2 ;
3 ’ b011 : o u t = i n 3 ;
3 ’ b100 : o u t = i n 4 ;
3 ’ b101 : o u t = i n 5 ;
3 ’ b110 : o u t = i n 6 ;
3 ’ b111 : o u t = i n 7 ;

endcase
endmodule

Figure 10.20: The multiplexor modules multiplexors.
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Concluding about toyMachine

For the same system – toyMachine – we have now two distinct descriptions: toyMachine, the
initial behavioral description (see Chapter OUR FINAL TARGET), and the structural description
toyMachineStructure just laid down in this subsection. Both descriptions, the structural and the
behavioral, are synthesisable, but the resulting structures are very different.

The synthesis of toyMachine design provides a number of components 5.85 times bigger than the
synthesis of the module toyMachineStructure. A detailed description (about 7105 symbols, without
spaces) provided a smallest structure then the structure provided by the behavioral description (about
3083 symbols, without spaces).

The actual structure generated by the behavioral description is not only bigger, but it is completely
unstructured. The structured version provided by the alternative design is easy to understand, to debug
and to optimize.

10.3.2 Interrupt automaton: the asynchronous version

Sometimes for the interrupt automaton a more rigorous solution is requested. In the already provided
solution the int signal must be stable until inta is activated. In many systems this is an unacceptable
restriction. Another restriction is the synchronous switch of int.

This new version for the interrupt automaton accepts an asynchronous int signal having any width
exceeding the period of the clock. The flow chart describing the automaton is in Figure 10.21. It has 4
states:

dis : the initial state of the automaton when the interrupt action is disabled

en : the state when the interrupt action is enabled

mem : is the state memorizing the occurrence of an interrupt when interrupt is disabled

inta : is the acknowledge state.

The input signals are:

int : is the asynchronous interrupt signal

ei : is a synchronous bit resulting from the decode of the instruction ei (enable interrupt)

di : is a synchronous bit resulting from the decode of the instruction di (disable interrupt)

The output signal is asyncInta. It is in fact a synchronous hazardous signal which will be synchronized
using a D–FF.

Because int is asynchronous it must be used to switch the automaton in another state in which
asyncInta will be eventually generated.

The state codding style applied for this automaton is imposed by a asynchronous int signal. It will
be of the reduced dependency by the asynchronous input variable int. Let us try first the following
binary codes (see the codes in square brackets in Figure 10.21) for the four states of the automaton:

dis : Q1Q0 = 00

en : Q1Q0 = 11
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dis

int∗

eiei

en mem

ei

int∗

di di

asyncInta

inta

asyncInta

0

0 0

0

0 0

0

1

1 1

1

1 1

reset

1

01 [01]

00 [00]

10 [11]

11 [10]

Figure 10.21: Interrupt automaton for a limited width and an asynchronous int signal.

mem : Q1Q0 = 01

inta : Q1Q0 = 10

The critical transitions are from the states dis and en, where the asynchronous input int is tested. There-
fore, the transitions from these two states takes place as follows:

• from state dis = 00: if (ei = 0) then {Q+
1 ,Q

+
0 }= {0, int}; else {Q+

1 ,Q
+
0 }= {1, int ′}; therefore:

{Q+
1 ,Q

+
0 }= {ei,ei⊕ int}

• from state en = 11: if (di = 0) then {Q+
1 ,Q

+
0 }= {1, int ′}; else {Q+

1 ,Q
+
0 }= {0, int}; therefore:

{Q+
1 ,Q

+
0 }= {di′,di′⊕ int}

Therefore, the transitions triggered by the asynchronous input int influence always only one state bit.
For an implementation with registers results the following equations for the state transition and output

functions:
Q+

1 = Q1Q0di′+Q′1Q′0ei

Q+
0 = Q1Q0(di′⊕ int)+Q′1Q0ei+Q′1Q′0(ei⊕ int)

asyncInta = Q1Q′0 +Q′1Q0ei

We are not very happy about the resulting circuits because the size is too big to my taste. Deserve to
try another equivalent state coding, preserving the condition that the transitions depending on the int

input are reduced dependency type. The second coding proposal is (see the un-bracketed codes in Figure
10.21):
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dis : Q1Q0 = 00

en : Q1Q0 = 10

mem : Q1Q0 = 01

inta : Q1Q0 = 11

The new state transition functions are:

Q+
1 = Q1Q′0di′+Q′1Q′0ei

Q+
0 = Q′0int +Q′1Q0ei′

The Verilog behavioral description for this version is presented in Figure 10.22.
If we make another step re-designing the loop for an “intelligent” JK register, then results for the

loop the following expressions:
J1 = Q′0ei

K1 = di+Q0

J0 = int

K0 = Q1 + ei

and for the output transition:
asyncInta = Q0(Q1 + ei) = Q0K0

A total of 4 2-input gates for the complex part of the automaton. The final count: 2 JK-FFs, 2 ANDs,
2 ORs. Not bad! The structural description for this version is presented in Figure 10.23 and in Figure
10.24

The synthesis process will provide a very small circuit with the complex part implemented using only
4 gates. The module interruptUnit in the toyMachine design must be redesigned including the just
presented module interruptAutomaton. The size of the overall project will increase, but the interrupt
mechanism will work with less electrical restrictions imposed to the external connections.

10.4 Problems

Problem 10.1 Interpretative processor with distinct program counter block.

10.5 Projects

Project 10.1
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/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module i n t e r r u p t A u t o m a t o n ( input i n t ,
input e i ,
input d i ,
output r e g a s y n c I n t ,
input r e s e t ,
input c l o c k ) ;

reg [ 1 : 0 ] s t a t e ;
reg [ 1 : 0 ] n e x t S t a t e ;

always @( posedge c l o c k ) i f ( r e s e t ) s t a t e <= 0 ;
e l s e s t a t e <= n e x t S t a t e ;

always @( i n t or e i or d i or s t a t e )
case ( s t a t e )

2 ’ b00 : i f ( i n t ) i f ( e i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b11 0 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b01 0 ;

e l s e i f ( e i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b10 0 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b00 0 ;

2 ’ b01 : i f ( e i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b00 1 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b01 0 ;

2 ’ b10 : i f ( i n t ) i f ( d i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b01 0 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b11 0 ;

e l s e i f ( d i ) { n e x t S t a t e , a s y n c I n t } = 3 ’ b00 0 ;
e l s e { n e x t S t a t e , a s y n c I n t } = 3 ’ b10 0 ;

2 ’ b11 : { n e x t S t a t e , a s y n c I n t } = 3 ’ b00 1 ;
endcase

endmodule

Figure 10.22: The module interruptAutomaton.
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/ * ************************************************************************
F i l e name : . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /
/ * ************************************************************************
F i l e name : i n t e r r u p t A u t o m a t o n . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module i n t e r r u p t A u t o m a t o n ( input i n t ,
input e i , d i ,
output a s y n c I n t a ,
input r e s e t ,
input c l o c k ) ;

wire q1 , q0 , notq1 , no tq0 ;
J K f l i p F l o p f f 1 ( . Q ( q1 ) ,

. notQ ( no tq1 ) ,

. J ( no tq0 & e i ) ,

.K ( d i | q0 ) ,

. r e s e t ( r e s e t ) ,

. c l o c k ( c l o c k ) ) ;
J K f l i p F l o p f f 0 ( . Q( q0 ) ,

. notQ ( no tq0 ) ,

. J ( i n t ) ,

.K ( q1 | e i ) ,

. r e s e t ( r e s e t ) ,

. c l o c k ( c l o c k ) ) ;
a s s i g n a s y n c I n t a = q0 & ( q1 | e i ) ;

endmodule

Figure 10.23: The structural description of the module interruptAutomaton implemented using
JK-FFs..
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/ * ************************************************************************
F i l e name : J K f l i p F l o p . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module J K f l i p F l o p ( output reg Q ,
output notQ ,
input J , K,
input r e s e t ,
input c l o c k ) ;

a s s i g n notQ = ˜Q;
always @( posedge c l o c k ) i f ( r e s e t ) Q <= 0 ;

e l s e Q <= J & notQ | ˜K & Q;
endmodule

Figure 10.24: The module JKflipFlop.



Chapter 11

# ∗ SELF-ORGANIZING STRUCTURES:
N-th order digital systems

In the previous chapter
the concept of computer, as at least four-loop system, was introduced. The basic part of the section
is contained in the Problems section. Adding few loops the functionality of the system remains the
same - basic computation - the only effect is optimizing area, power, speed.

In this chapter
the self-organizing systems are supported by a cellular approach consisting in n-loop systems.
The main structure discussed are:

• the stack memory, as the simplest n-loop system

• the cellular automata, as the simplest self-organizing system

• fractal structures, as “non-uniform” network of processors

In the next chapter
we make only the first step in closing a new kind of loops over an n-order system, thus introducing
the new category of systems with global loops.

449
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Von Neumann’s architecture is supported by a structure which consists of two distinct subsystems. The first
is a processor and the second is a memory that stores the bits to be processed. In order to be processed a bit must
be carried from the memory to the processor and many times back, from the processor to the memory. Too much
time is wasted and many structures are involved only to move bits inside the computing machine. The functional
development in the physical part of a digital systems stopped when this universal model was adopted. In the same
time the performances of the computation process are theoretically limited. All the sort of parallelism pay tribute
to this style that is sequentially founded. We have only one machine, each bit must be accessed, processed and
after that restored. This “ritual” stopped the growing process of digital machines around the fifth order. There are
a small number of useful systems having more than five loops.

The number of loops can become very large if we give up this model and we have the nerve to store “each bit”
near its own “processor”. A strange, but maybe a winning solution is to “interleave” the processing elements with
the storage circuits [Moto-Oka ’82]. Many of us believe that this is a more “natural” solution. Until now this way
is only a beautiful promise, but this way deserves more attention.

Definition 11.1 A digital system, DS, belongs to n-OS if having the size in O( f (n)) contains a number of internal
loop in O(n). ⋄

A paradigmatic example of n-loop digital system is the cellular automaton (CA). Many applications of CA
model self-organizing systems.

For the beginning, as a simple introduction, the stack memory is presented in a version belonging to n-OS. The
next subject will be a new type of memory which tightly interleaves the storage elements with processing circuits:
the Connex memory. This kind of memory allows fine grain deep parallel processes in computation. We end
with the eco-chip, a spectacular application of the two-dimensional cellular automata enhanced with the Connex
memory’s functions.

The systems belonging to n-OS support efficiently different mechanisms related to some parallel computation
models. Thus, there are many chances to ground true parallel computing architecture using such kind of circuits.

11.1 Left-Right Shift Register
The simplest example of n-OS is the left-right shift register. It is represented in Figure 11.1.

11.2 Push-Down Stack as n-OS
There are only a few “exotic” structures that are implemented as digital systems with a great number of loops. One
of these is the stack function that needs at least two loops to be realized, as a system in 2-OS (reversible counter &
RAM serially composed). There is another, more uniform solution for implementing the push-down stack function
or LIFO (last-in first-out) memory. This solution uses a simple, i.e., recursive defined, structure.

Definition 11.2 The n-level push-down stack, LIFOn, is built serial connecting a LIFOn−1 with a LIFO1 as in
Figure 11.2. The one level push-down stack is a register, R0, loop connected with MUX, so as:

S1S0 = 00 means: no op – the content of the register does not change

S1S0 = 01 means: pop – the register is loaded out1 from the output of LIFOn−1

S1S0 = 10 means: push – the register is loaded with the input value in

⋄

It is evident that LIFOn is a bi-directional serial-parallel shift register (see Figure 11.1). Because the content
of the serial-parallel register shifts in both directions each Rm is contained in two kind of loops:

• through its own MUX for no op function
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Figure 11.1: Left-right shift register. a. The main internal connections. b. The structure of each cell Ri.
c. The logic symbol.

• through two successive LIFO1

Thus, LIFO1 is a 2-OS, LIFO2 is a 3-OS, LIFO3 is a 4-OS, . . ., LIFOi is a (i+1)OS, . . ..
The push-down stack implemented as a bi-directional serial-parallel register is an example of digital system

having the order related with the size. Indeed: LIFOn−1 is a n−OS.
In real applications sometimes is requested a more complex LIFO able to perform more than push and pop.

Definition 11.3 The n-level two-pop stack, LIFOn (see Figure 11.3, is built serial connecting a LIFOn−2 with a
LIFO2 as in Figure 11.3. The two level stack LIFO2 is an 3-OS defined as follows:

S1S0 = 00 means: no op – the content of the two registers do not change

S1S0 = 01 means: pop – the content of the two registers change as follows:

• R0 <= R1

• R1 <= out2

S1S0 = 10 means: pop2 – the content of the two registers change as follows:

• R0 <= out2
• R1 <= out3

S1S0 = 11 means: push – the content of the two registers change as follows:
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Figure 11.3: The recursive definition of a two-pop LIFOn structure as n-OS

• R0 <= in0

• R1 <= R0

⋄

In section 10.2, the stack performs more functions than the four already defined. Thus, we will make another
step in enhancing the stack’s functionality.

Definition 11.4 The n-level enhanced stack, LIFOn is built serial connecting a LIFOn−2 with an enhanced LIFO2
(see Figure 11.4) as in Figure 11.3. The two level stack LIFO2 is an 3-OS defined as follows:
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Figure 11.4: The enhanced version of the LIFO2 structure as 3-OS. It is used as the first cell in the
recursive definition of a LIFO.

T1T0S1S0 = 0000 means: no op – the content of the two registers do not change

T1T0S1S0 = 0001 means: pop – the content of the two registers change as follows:

• R0 <= R1

• R1 <= in0

T1T0S1S0 = 0010 means: pop2 – the content of the two registers change as follows:

• R0 <= in0

• R1 <= in1

T1T0S1S0 = 0011 means: push – the content of the two registers change as follows:

• R0 <= in

• R1 <= R0

T1T0S1S0 = 0100 means: write – the content of the two registers change as follows:

• R0 <= in

• R1 <= R1

T1T0S1S0 = 0101 means: popwr – the content of the two registers change as follows:

• R0 <= in

• R1 <= in0

T1T0S1S0 = 1000 means: swap – the content of the two registers change as follows:

• R0 <= R1

• R1 <= R0
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⋄

The enhanced version of the two-pop stack differs from the two-pop stack only in the first instantiation of
LIFO2 when the entire stack is described in Verilog using generate.

VeriSim 11.1 ⋄

11.3 Cellular automata

A cellular automaton consists of a regular grid of cells. Each cell has a finite number of states. The grid has a finite
number of dimensions, usually no more than three. The transition function of each cell is defined in a constant
neighborhood. Usually, the next state of the cell depends on its own state and the states of the adjacent cells.

11.3.1 General definitions

The linear cellular automaton

Definition 11.5 The one-dimension cellular automaton is linear array of n identical cells, where each cell is
connected in a constant neighborhood of +/- m cells, see Figure 11.5a for m = 1. Each cell is a s-state finite
automaton.
⋄

Definition 11.6 An elementary cellular automaton is a one-dimension cellular automaton with m = 1 and s = 2.
The transition function of each automaton is a three-input Boolean function defined by the decimally expressed
associated Boolean vector.
⋄

Example 11.1 The Boolean vector of the three-input function

f (x2,x1,x0) = x2⊕ (x1 + x0)

is:

00011110

and defines the transition rule 30.
⋄

Definition 11.7 The Verilog definition of the elementary cellular automaton is:
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Figure 11.5: Cellular automaton. a. One-dimension cellular automaton. b. Two-dimension cellular automaton
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shape.
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/ * ************************************************************************
F i l e name : e C e l l A u t . v
C i r c u i t name : L i n e a r C e l l u l a r Automaton
D e s c r i p t i o n : s t r u c t u r a l d e s c r i p t i o n o f a l i n e a r c e l l u l a r automaton
************************************************************************ * /

module e C e l l A u t # ( parameter n = 127) / / n− c e l l c e l l u l a r automaton
( output [ n − 1 : 0 ] o u t ,

input [ 7 : 0 ] func , / / Boolean v e c t o r f o r t h e t r a n s i t i o n r u l e
input [ n − 1 : 0 ] i n i t , / / t o i n i t i a l i z e t h e c e l l u l a r automaton
input r s t , / / l o a d s t h e i n i t i a l s t a t e
input c l k ) ;

genvar i ;
g e n e r a t e f o r ( i =0 ; i<n ; i = i +1) begin : C

e C e l l e C e l l ( . o u t ( o u t [ i ] ) ,
. f unc ( f unc ) ,
. i n i t ( i n i t [ i ] ) ,
. i n 0 ( ( i ==0) ? o u t [ n −1] : o u t [ i −1] ) ,
. i n 1 ( ( i ==n −1) ? o u t [ 0 ] : o u t [ i +1] ) ,
. r s t ( r s t ) ,
. c l k ( c l k ) ) ;

end
endgenerate

endmodule

where the elementary cell, eCell, is:

/ * ************************************************************************
F i l e name : e C e l l . v
C i r c u i t name : E l e m e n t a r y C e l l f o r a c e l l u l a r automaton
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n o f t h e s i m p l e s t c e l l f o r a

c e l l u l a r automaton
************************************************************************ * /

module e C e l l / / e l e m e n t a r y c e l l
( output reg o u t ,

input [ 7 : 0 ] func ,
input i n i t ,
input i n 0 , / / i n p u t form t h e p r e v i o u s c e l l
input i n 1 , / / i n p u t from t h e n e x t c e l l
input r s t ,
input c l k ) ;

always @( posedge c l k ) i f ( r s t ) o u t <= i n i t ;
e l s e o u t <= func [{ in1 , out , i n 0 } ] ;

endmodule

⋄
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Example 11.2 The elementary cellular automaton characterized by the rule 90 (01011010) provides, starting
from the initial state 1’b1 << n/2, the behavior represented in Figure 11.6, where the sequence of lines of bits
represent the sequence of the states of the cellular automaton starting from the initial state.
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Figure 11.6:

The shape generated by the elementary cellular automaton 90 is the Sierpinski triangle or the Sierpinski Sieve.
It is a fractal named after the Polish mathematician Waclaw Sierpinski who first described it in 1915.
⋄

Example 11.3 The elementary cellular automaton characterized by the rule 30 (00011110) provides, starting
from the initial state 1’b1 << n/2, the behavior represented in Figure 11.7, where the sequence of lines of bits
represent the sequence of the states of the cellular automaton starting from the initial state.
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Figure 11.7:

⋄

The two-dimension cellular automaton

Definition 11.8 The two-dimension cellular automaton consists of a two-dimension array of identical cells, where
each cell is connected in a constant neighborhood, see Figure 11.5b (the von Neumann neighborhood) and 11.5c
(the Moore neighborhood). Each cell is a s-state finite automaton.
⋄

There are also many ways of connecting the border cells. The simplest one is to connect them to ground.
Another is close the array so as the surface takes a toroidal shape (see Figure 11.5d). A more complex form is
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possible if we intend to preserve also a linear connection between the cells. Results a twisted toroidal shape (see
Figure 11.5e).

Definition 11.9 The Verilog definition of the two-dimension elementary cellular automaton with a toroid shape
(Figure 11.5d) is:

/ * ************************************************************************
F i l e name : e C e l l A u t 4 . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module e C e l l A u t 4 # ( parameter n = 8) / / n*n− c e l l c e l l u l a r automaton
( output [ n*n − 1 : 0 ] o u t ,

input [ 3 1 : 0 ] func , / / t r a n s i t i o n r u l e
input [ n*n − 1 : 0 ] i n i t , / / used f o r i n i t i a l i z a t i o n
input r s t , / / l o a d s t h e i n i t a l s t a t e
input c l k ) ;

genvar i ;
g e n e r a t e f o r ( i =0 ; i<n*n ; i = i +1) begin : C

e C e l l 4
e C e l l 4 ( . o u t ( o u t [ i ] ) ,

. f unc ( func ) ,

. i n i t ( i n i t [ i ] ) ,

. i n 0 ( o u t [ ( i / n )* n +( i − ( ( i / n )* n )+ n−1)%n ] ) , / / e a s t

. i n 1 ( o u t [ ( i / n )* n +( i − ( ( i / n )* n )+1)%n ] ) , / / wes t

. i n 2 ( o u t [ ( i +n*n−n)%(n*n ) ] ) , / / s o u t h

. i n 3 ( o u t [ ( i +n )%( n*n ) ] ) , / / n o r t h

. r s t ( r s t ) ,

. c l k ( c l k ) ) ;
end

endgenerate
endmodule

where the elementary cell, eCell4, is:
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/ * ************************************************************************
F i l e name : e C e l l 4 . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module e C e l l 4 / / 4− i n p u t e l e m e n t a r y c e l l
( output reg o u t ,

input [ 3 1 : 0 ] func ,
input i n i t , / /
input i n 0 , / / n o r t h c o n n e c t i o n
input i n 1 , / / e a s t c o n n e c t i o i n
input i n 2 , / / s o u t h c o n n e c t i o n
input i n 3 , / / wes t c o n n e c t i o i n
input r s t ,
input c l k ) ;

always @( posedge c l k )
i f ( r s t ) o u t <= i n i t ;

e l s e o u t <= func [{ in3 , in2 , out , in1 , i n 0 } ] ;
endmodule

⋄

Example 11.4 Let be a 8× 8 cellular automaton with a von Neumann neighborhood and a toroidal shape. The
cells are 2-state automata. The transition function is a 5-input Boolean OR, and the initial state is state 1 in the
bottom right cell and 0 the the rest of cells. The system will evolve until all the cells will switch in the state 1.
Figure 11.8 represents the 8-step evolution from the initial state to the final state.

00000000 00000001 10000011 11000111 11101111 11111111 11111111 11111111 11111111

00000000 00000000 00000001 10000011 11000111 11101111 11111111 11111111 11111111

00000000 00000000 00000000 00000001 10000011 11000111 11101111 11111111 11111111

00000000 00000000 00000000 00000000 00000001 10000011 11000111 11101111 11111111

00000000 00000000 00000000 00000001 10000011 11000111 11101111 11111111 11111111

00000000 00000000 00000001 10000011 11000111 11101111 11111111 11111111 11111111

00000000 00000001 10000011 11000111 11101111 11111111 11111111 11111111 11111111

00000001 10000011 11000111 11101111 11111111 11111111 11111111 11111111 11111111

initial step 1 step 2 step 3 step 4 step 5 step6 step 7 final

Figure 11.8:

⋄

Definition 11.10 The Verilog definition of the two-dimension elementary cellular automaton with linearly con-
nected cells (Figure 11.5e) is:
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/ * ************************************************************************
F i l e name : e C e l l A u t 4 L . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module eCel lAut4L #( parameter n = 8) / / two−d i m e n s i o n c e l l u l a r automaton
( output [ n*n − 1 : 0 ] o u t ,

input [ 3 1 : 0 ] func , / / t r a n s i t i o n r u l e
input [ n*n − 1 : 0 ] i n i t , / / used t o i n i t i a l i z e
input r s t , / / l o a d s t h e i n i t i a l s t a t e
input c l k ) ;

genvar i ;
g e n e r a t e f o r ( i =0 ; i<n*n ; i = i +1) begin : C

e C e l l 4 e C e l l 4 ( . o u t ( o u t [ i ] ) ,
. f un c ( func ) ,
. i n i t ( i n i t [ i ] ) ,
. i n 0 ( o u t [ ( i +n*n −1)%(n*n ) ] ) , / / e a s t
. i n 1 ( o u t [ ( i +1)%(n*n ) ] ) , / / wes t
. i n 2 ( o u t [ ( i +n*n−n)%(n*n ) ] ) , / / s o u t h
. i n 3 ( o u t [ ( i +n )%( n*n ) ] ) , / / n o r t h
. r s t ( r s t ) ,
. c l k ( c l k ) ) ;

end
endgenerate

endmodule

where the elementary cell, eCell4, is the same as in the previous definition.
⋄

Example 11.5 Let us do the same for the two-dimension elementary cellular automaton with linearly connected
cells (Figure 11.5e). The insertion of 1s in all the cells is done now in 7 steps. See Figure 11.9.

Looks like a twisted toroidal shape offers a better neighborhood than a simple toroidal shape.

00000000 10000001 11000011 11100111 11111111 11111111 11111111 11111111

00000000 00000000 10000001 11000011 11100111 11111111 11111111 11111111

00000000 00000000 00000000 10000001 11000011 11100111 11111111 11111111

00000000 00000000 00000000 00000000 10000001 11000011 11100111 11111111

00000000 00000000 00000000 00000001 00000011 10000111 11001111 11111111

00000000 00000000 00000001 00000011 10000111 11001111 11111111 11111111

00000000 00000001 00000011 10000111 11001111 11111111 11111111 11111111

00000001 00000011 10000111 11001111 11111111 11111111 11111111 11111111

initial step 1 step 2 step 3 step 4 stap 5 step 6 final

Figure 11.9:

⋄
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11.3.2 Applications

11.4 Systolic systems
Leiserson’s systolic sorter. The initial state: in each cell = ∞. For no operation: in1 = +∞, in2 = −∞. To insert
the value v: in1 = v, in2 =−∞. For extract: in1 = in2 =+∞.
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Figure 11.10: Systolic sorter. a. The internal structure of cell. b. The logic symbol of cell. c. The organization
of the systolic sorter.

/ * ************************************************************************
F i l e name : s y s t o l i c S o r t e r C e l l . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module s y s t o l i c S o r t e r C e l l # ( parameter n = 8 ) ( input [ n − 1 : 0 ] a , b , c ,
output reg [ n − 1 : 0 ] x , y , z ,
input r s t , ck ) ;

wire [ n − 1 : 0 ] a1 , b1 ; / / s o r t e r ’ s f i r s t l e v e l o u t p u t s
wire [ n − 1 : 0 ] a2 , c2 ; / / s o r t e r ’ s second l e v e l o u t p u t s
wire [ n − 1 : 0 ] b3 , c3 ; / / s o r t e r ’ s t h i r d l e v e l o u t p u t s
a s s i g n a1 = ( a < b ) ? a : b ;
a s s i g n b1 = ( a < b ) ? b : a ;
a s s i g n a2 = ( a1 < c ) ? a1 : c ;
a s s i g n c2 = ( a1 < c ) ? c : a1 ;
a s s i g n b3 = ( b1 < c2 ) ? b1 : c2 ;
a s s i g n c3 = ( b1 < c2 ) ? c2 : b1 ;
always @( ck or r s t or a2 or b3 or c3 )

i f ( r s t & ck ) begin x = {n{1 ’ b1}} ;
y = {n{1 ’ b1}} ;
z = {n{1 ’ b1}} ;

end
e l s e i f ( ck ) begin x = a2 ;

y = b3 ;
z = c3 ;

end
endmodule
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/ * ************************************************************************
F i l e name : s y s t o l i c S o r t e r . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module s y s t o l i c S o r t e r # ( parameter n =8 , m=7)
( output [ n − 1 : 0 ] out ,

input [ n − 1 : 0 ] in1 , in2 ,
input r s t , ck1 , ck2 ) ;

wire [ n − 1 : 0 ] x [ 0 :m] ;
wire [ n − 1 : 0 ] y [ 0 :m− 1 ] ;
wire [ n − 1 : 0 ] z [ 0 :m− 1 ] ;

a s s i g n y [ 0 ] = i n 1 ;
a s s i g n z [ 0 ] = i n 2 ;
a s s i g n o u t = x [ 1 ] ;
a s s i g n x [m] = {n{1 ’ b1}} ;

genvar i ;
g e n e r a t e f o r ( i =1 ; i<m; i = i +1) begin : C

s y s t o l i c S o r t e r C e l l
s y s t o l i c C e l l ( . a ( x [ i +1] ) ,

. b ( y [ i −1] ) ,

. c ( z [ i −1] ) ,

. x ( x [ i ] ) ,

. y ( y [ i ] ) ,

. z ( z [ i ] ) ,

. r s t ( r s t ) ,

. ck ( ( ( i / 2 ) * 2 == i ) ? ck2 : ck1 ) ) ;
end

endgenerate
endmodule
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/ * ************************************************************************
F i l e name : s y s t o l i c S o r t e r S i m . v
C i r c u i t name :
D e s c r i p t i o n :
************************************************************************ * /

module s y s t o l i c S o r t e r S i m #( parameter n = 8 ) ;
reg ck1 , ck2 , r s t ;
reg [ n − 1 : 0 ] in1 , i n 2 ;
wire [ n − 1 : 0 ] o u t ;

i n i t i a l begin ck1 = 0 ;
f o r e v e r begin #3 ck1 = 1 ;

#1 ck1 = 0 ;
end

end
i n i t i a l begin ck2 = 0 ;

#2 ck2 = 0 ;
f o r e v e r begin #3 ck2 = 1 ;

#1 ck2 = 0 ;
end

end

i n i t i a l begin r s t = 1 ;
i n 2 = 0 ;
i n 1 = 8 ’ b1000 ;

#8 r s t = 0 ;
#4 i n 1 = 8 ’ b0010 ;
#4 i n 1 = 8 ’ b0100 ;
#4 i n 1 = 8 ’ b0010 ;
#4 i n 1 = 8 ’ b0001 ;
#4 i n 1 = 8 ’ b11111111 ;

i n 2 = 8 ’ b11111111 ;
#30 $ s t o p ;

end

s y s t o l i c S o r t e r d u t ( out ,
in1 , in2 ,
r s t , ck1 , ck2 ) ;

i n i t i a l
$monitor ( ” t ime = %d ck1 = %b ck2 = %b r s t = %b i n 1 = %d . . . ” ,

$ t ime , ck1 , ck2 , r s t , in1 , in2 , o u t ) ;
endmodule

The result of simulation is:

# t ime = 0 ck1 = 0 ck2 = 0 r s t = 1 i n 1 = 8 i n 2 = 0 o u t = x
# t ime = 3 ck1 = 1 ck2 = 0 r s t = 1 i n 1 = 8 i n 2 = 0 o u t = 255
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# t ime = 4 ck1 = 0 ck2 = 0 r s t = 1 i n 1 = 8 i n 2 = 0 o u t = 255
# t ime = 5 ck1 = 0 ck2 = 1 r s t = 1 i n 1 = 8 i n 2 = 0 o u t = 255
# t ime = 6 ck1 = 0 ck2 = 0 r s t = 1 i n 1 = 8 i n 2 = 0 o u t = 255
# t ime = 7 ck1 = 1 ck2 = 0 r s t = 1 i n 1 = 8 i n 2 = 0 o u t = 255
# t ime = 8 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 8 i n 2 = 0 o u t = 0
# t ime = 9 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 8 i n 2 = 0 o u t = 0
# t ime = 10 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 8 i n 2 = 0 o u t = 0
# t ime = 11 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 8 i n 2 = 0 o u t = 0
# t ime = 12 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 2 i n 2 = 0 o u t = 0
# t ime = 13 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 2 i n 2 = 0 o u t = 0
# t ime = 14 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 2 i n 2 = 0 o u t = 0
# t ime = 15 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 2 i n 2 = 0 o u t = 0
# t ime = 16 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 4 i n 2 = 0 o u t = 0
# t ime = 17 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 4 i n 2 = 0 o u t = 0
# t ime = 18 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 4 i n 2 = 0 o u t = 0
# t ime = 19 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 4 i n 2 = 0 o u t = 0
# t ime = 20 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 2 i n 2 = 0 o u t = 0
# t ime = 21 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 2 i n 2 = 0 o u t = 0
# t ime = 22 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 2 i n 2 = 0 o u t = 0
# t ime = 23 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 2 i n 2 = 0 o u t = 0
# t ime = 24 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 1 i n 2 = 0 o u t = 0
# t ime = 25 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 1 i n 2 = 0 o u t = 0
# t ime = 26 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 1 i n 2 = 0 o u t = 0
# t ime = 27 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 1 i n 2 = 0 o u t = 0
# t ime = 28 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 0
# t ime = 29 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 0
# t ime = 30 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 0
# t ime = 31 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 1
# t ime = 32 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 1
# t ime = 33 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 1
# t ime = 34 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 1
# t ime = 35 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 2
# t ime = 36 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 2
# t ime = 37 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 2
# t ime = 38 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 2
# t ime = 39 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 2
# t ime = 40 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 2
# t ime = 41 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 2
# t ime = 42 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 2
# t ime = 43 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 4
# t ime = 44 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 4
# t ime = 45 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 4
# t ime = 46 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 4
# t ime = 47 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 8
# t ime = 48 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 8
# t ime = 49 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 8
# t ime = 50 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 8
# t ime = 51 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 255
# t ime = 52 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 255
# t ime = 53 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 255
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# t ime = 54 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 255
# t ime = 55 ck1 = 1 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 255
# t ime = 56 ck1 = 0 ck2 = 0 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 255
# t ime = 57 ck1 = 0 ck2 = 1 r s t = 0 i n 1 = 255 i n 2 = 255 o u t = 255

11.5 Interconnection issues
Simple circuits scale up easy generating big interconnection problems.

11.5.1 Local vs. global connections
The origin of the memory wall is in the inability to avoid global connection on memory arrays, while in the logic
areas the local connections are easiest to impose.

Memory wall

11.5.2 Localizing with cellular automata

11.5.3 Many clock domains & asynchronous connections
The clock signal uses a lot of energy and area and slows down the design when the area of the circuit became too
big.

A fully synchronous design generate also power distribution issues, which come with all the associated prob-
lems.

11.6 Neural networks
Artificial neural network (NN) is a technical construct inspired from the biological neural networks. NN are
composed of interconnected artificial neurons. An artificial neuron is a programmed or circuit construct that
mimic the property of a biological neuron. A multi-layer NN is used as a connectionist computational model. The
introductory text [Zurada ’95] is used for a short presentation of the concept of NN.

11.6.1 The neuron
The artificial neuron (see Figure 11.11) receives the inputs x1, . . . ,xn (corresponding to n dendrites) and process
them to produce an output o (synapse). The sums of each node are weighted, using the weight vector w1, . . . ,wn
and the sum, net, is passed through a non-linear function, f (net), called activation function or transfer function.
The transfer functions usually have a sigmoid shape (see Figure 11.12) or step functions.

Formally, the transfer function of a neuron:

o = f (
n

∑
i=1

wixi) = f (net)

where f , the typical activation function, is:

f (y) =
2

1+ exp(−λy)
−1

The parameter λ determines the steepness of the continuous function f . For big value of λ the function f becomes:

f (y) = sgn(y)
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Figure 11.11: The general form of a neuron. a. The circuit structure of a n-input neuron. b. The logic
symbol.

The neuron works as a combinational circuit performing the scalar product of the input vector

x = [x1 x2 . . . xn]

with the weight vector
w = [w1 w2 . . . wn]

followed by the application of the activation function. The activation function f is simply implemented using as a
look-up table using a Read-Only Memory.

11.6.2 The feedforward neural network
A feedforward NN is a collection of m n-input neurons (see Figure 11.13). Each neuron receives the same input
vector

x = [x1 x2 . . . xm]

and is characterized by its own weight vector

wi = [w1 w2 . . . wm]

The entire NN provides the output vector
o = [o1 o2 . . . om]

t

The activation function is the same for each neuron.
Each NN is characterized by the weight matrix

W =


w11 w12 . . . w1n
w21 w22 . . . w2n

...
... . . .

...
wm1 wm2 . . . wmn
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Figure 11.12: The activation function.

having for each output a line, while for each input it has a column. The transition function of the NN is:

o(t) = Γ[Wx(t)]

where:

[·] =


f (·) 0 . . . 0
0 f (·) . . . 0
...

... . . .
...

0 0 . . . f (·)


The feedforwaed NN is of “instantaneous” type, i.e., it behaves as a combinational circuit which provides the result
in the same “cycle”. The propagation time associated do not involve storage elements.

Example 11.6 The shaded area in Figure 11.14 must be recognized by a two-layer feedforward NN. Four condi-
tions must be met to define the surface:

x1−1 > 0→ sgn(x1−1) = 1
x1−2 < 0→ sgn(−x1 +2) = 1
x2 > 0 → sgn(x2) = 1
x2−3 < 0→ sgn(−x2 +3)

For each condition a neuron from the first layer is used. The second layer determines whether all the conditions
tested by the first layer are fulfilled.

The first layer is characterized the weight matrix

W43 =


1 0 1
−1 0 −2
0 1 0
0 −1 −3


The weight vector for the second layer is

W = [1 1 1 1 3.5]

On both layers the activation function is sgn.
⋄
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Figure 11.13: The single-layer feedforward neural network. a. The organization of a feedforward NN
having m n-input neurons. b. The logic symbol.

11.6.3 The feedback neural network
The feedback NN is a sequential system. It provides the output with a delay of a number of clock cycles after the
initialization with the input vector x. The structure of a feedback NN is presented in Figure 11.15. The multiplexor
mux is used to initialize the loop closed through register. If init = 1 the vector x is applied to NNmn( f ) one clock
cycle, then init is switched to 0 and the loop is closed.

In the circuit approach of this concept, after the initialization cycle the output of the network is applied to the
input through the feedback register. The transition function is:

o(t +Tclock) = Γ[Wo(t)]

where Tclock (the clock period) is the delay on the loop. After k clock cycles the state of the network is described
by:

o(t + k×Tclock) = Γ[WΓ[. . .Γ[Wo(t)] . . .]]

A feedback NN can be considered as an initial automaton with few final states mapping disjoint subsets of
inputs.

Example 11.7 Let be a feedback NN with 4 4-input neurons with one-bit inputs and outputs. The activation
function is sgn. The feedback NN can be initialized with any 4-bit binary configuration from
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x = [-1 -1 -1 -1]

to
x = [1 1 1 1]

and the system has two final states:
o14 = [1 1 1 -1]

o1 = [-1 -1 -1 1]

reached in a number of clock cycles after the initialization.
The resulting discrete-time recurrent network has the following weight matrix:

W44 =


0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0


The resulting structure of the NN is represented in Figure 11.16, where the weight matrix is applied on the four
4-bit inputs destined for the weight vectors.

The sequence of transitions are computed using the form:

o(t +1) = [sgn(net1(t)) sgn(net2(t)) sgn(net3(t)) sgn(net4(t))]
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Figure 11.16: The feedback NN with two final states.

Some sequences end in o14 = [1 1 1 -1], while others in o1 = [-1 -1 -1 1].
⋄

11.6.4 The learning process
The learning process is used to determine the actual form of the matrix W. The learning process is an iterative one.
In each iteration, for each neuron the weight vector w is adjusted with ∆w, which is proportional with the input
vector x and the learning signal r. The general form of the learning signal is:

r = r(w,x,d)

where d is the desired response (the teacher’s signal). Thus, in each step the weight vector is adjusted as follows:

w(t +1) = w(t)+ c× r(w(t),x(t),d(t))×x(t)

where c is the learning constant. The learning process starts from an initial form of the weight vector (established
randomly or by a simple “hand calculation”) and uses as a set of training input vectors.

There are two types of learning:
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unsupervised learning :
r = r(w,x)

the desired behavior is not known; the network will adapt its response by “discovering” the appropriate
values for the weight vectors by self-organization

supervised learning :
r = r(w,x,d)

the desired behavior, d, is known and can be compared with the actual behavior of the neuron in order to
find how to adjust the weight vector.

In the following both types will be exemplified using the Hebbian rule and the perceptron rule.

Unsupervised learning: Hebbian rule

The learning signal is the output of the neuron. In each step the vector w will be adjusted (see Figure 11.17) as
follows:

w(t +1) = w(t)+ c× f (w(t),x(t))×x(t)

The learning process starts with small random values for wi.
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Figure 11.17: The Hebian learning rule

Example 11.8 Let be a four-input neuron with the activation function sgn. The initial weight vector is:

w(t0) = [1 −1 0 0.5]

The training inputs are:
x1 = [1 −2 1.5 0],
x2 = [1 −0.5 −2 −1.5],
x3 = [0 1 −1 1.5]

Applying by turn the three training input vectors for c = 1 we obtain:
w(t0 +1) = w(t0)+ sgn(net)×x1 = w(t0)+ sgn(3)×x1 = w(t0)+x1 = [2 −3 1.5 0.5]
w(t0 +2) = w(t0 +1)+ sgn(net)×x2 = w(t0 +1)+ sgn(−0.25)×x2 = w(t0 +1)−x2 = [1 −2.5 3.5 2]
w(t0 +3) = w(t0 +2)+ sgn(net)×x3 = w(t0 +2)+ sgn(−3)×x3 = w(t0 +2)−x3 = [1 −3.5 4.5 0.5]
⋄
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Supervised learning: perceptron rule

The perceptron rule performs a supervised learning. The learning is guided by the difference between the desired
output and the actual output. Thus, the learning signal for each neuron is:

r = d−o

In each step the weight vector is updated (see Figure 11.18) according to the relation:

w(t +1) = w(t)+ c× (d(t)− f (w(t),x(t)))×x(t)

The initial value for w does not matter.
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Figure 11.18: The perceptron learning rule

Example 11.9 Let be a four-input neuron with the activation function sgn. The initial weight vector is:

w(t0) = [1 −1 0 0.5]

The training inputs are:
x1 = [1 −2 0 −1],
x2 = [0 1.5 −0.5 −1],
x3 = [−1 1 0.5 −1]
and the desired output for the three input vectors are: d1 =−1, d2 =−1, d3 = 1. The learning constant is c = 0.1.

Applying by turn the three training input vectors for c = 1 we obtain:

step 1 : because (d− sgn(net)) ̸= 0
w(t0 +1) = w(t0)+0.1× (−1+ sgn(net))×x1 = w(t0)+0.1× (−1−1)×x1 = [0.8 −0.6 0 0.7]

step 2 : because (d− sgn(net) ̸= 0) no correction is needed in this step
w(t0 +2) = w(t0 +1)

step 3 : because (d− sgn(net)) = 2
w(t0 +3) = w(t0 +2)+0.1×2×x3 = [0.6 −0.4 0.1 0.5]

⋄
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11.6.5 Neural processing
NN are currently used to model complex relationships between inputs and outputs or to find patterns in streams of
data. Although NN has the full power of a Universal Turing Machine (some people claim that the use of irrational
values for weights results in a machine with “super-Turing” power), the real application of this paradigm are
limited only to few functions involving specific complex memory functions (please do not use this paradigm to
implement a text editor). They are grouped in the following categories:

• auto-association: the input (even a degraded input pattern) is associated to the closest stored pattern

• hetero-association: the association is made between pais of patterns; distorted input patterns are accepted

• classification: divides the input patterns into a number of classes; each class is indicated by a number (can
be understood as a special case of hetero-association which returns a number)

• recognition: is a sort of classification with input patterns which do not exactly correspond to any of the
patterns in the set

• generalization: is a sort of interpolation of new data applied to the input.

What is specific for this computational paradigm is that its “program” – the set of weight matrices generated
in the learning process – do not provide explicit information about the functionality of the net. The content
of the weight matrices can not be read and understood as we read and understand the program performed by a
conventional processor built by a register file, an ALU, .... The representation of an actual function of a NN defies
any pattern based interpretation. Maybe this is the price we must pay for the complexity of the functions performed
by NN.

11.7 Problems
Problem 11.1 Design a stack with the first two recordings accessible.

Problem 11.2 Design a stack with the following features in reorganizing the first recordings.

Problem 11.3 Design a stack with controlled deep access.

Problem 11.4 Design an expandable stack.

Problem 11.5 The global loop on a linear cellular automata providing a pseudo-noise generator.

Problem 11.6

Problem 11.7

Problem 11.8



Chapter 12

# ∗ GLOBAL-LOOP SYSTEMS

In the previous chapter
we ended to discuss about closing local loops in digital systems introducing the n-th order systems.

In this chapter
a new kind of loop will be introduced: the global loop. This loop has the following characteristics:

• it is closed over an n order system

• usually carries only control information about the state of the entire system

• the feedback introduced classifies each subsystems in the context of the entire system

In the next chapter
for now, the next chapter is missing.

475
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A super-system is characterized by global loops closed over an n-order digital system. A global loop re-
ceives on its inputs information distributed over an array of digital modules and sends back in each digital module
information related to the whole content of its inputs.

In the first section an introductory examples are provided closing global loops over one-dimension or two-
dimension cellular automata. The second section introduces ConnexArrayT M , a cellular engine used as a general
purpose parallel computing engine. It is controlled by one global loop closed over a linear cells of execution
elements. The third section closes the second global loop over the same linear array. The fourth section shows how
ConnexArrayT M can be integrated in a computing system as accelerator. The fourth section provides a high level
description of the system described in the previous two sections.

12.1 Global loops in cellular automata

A first attempt to close a loop over a simple cellular automaton is presented in [Ştefan ’98a]. The effect of a global
loop on the behavior of a cellular automaton is presented in [Maliţa ’13]. In [Gheolbanoiu ’14] the attempt from
[Ştefan ’98a] is finalized as an actual circuit.

How new features or an increased autonomy can be added in a n-OS? Closing global loops which consider the
global state of the system. Let us take, as a n-OS, the simple case of a linear cellular system. Three kinds of global
loops closed in a linear cellular system are represented in Figure 12.1:

a.

b.

c.

? ? ? ?
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-� -� -� -� -�

-� -� -� -� -�

Scan global loop

?6 ?6 ?6 ?6

? ? ? ?

? ? ? ?

Reduction global loop

Ci−1

Ci−1

Ci

Ci

Ci+1

Ci+1

Ci+2

Ci+2

?

-� -� -� -� -�

? ? ? ?
Reduction global loop

CiCi−1 Ci+2Ci+1

Figure 12.1: Super-loops over n-OS. a. Scan global loop. b. Reduction global loop. c. Controlled
global loop.
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• scan global loop: receives a data vector from the cells and sends back a vector computed according to the
global state of the array (Figure 12.1a); for example, a scan function which computes the sum prefixes

• reduction global loop: receives a data vector from the cells and sends back to each cell a value which
corresponds to the global state of the system (Figure 12.1b); for example, the sum of the vector’s components
or the maximal value

• controlled global loop: receives a vector from cells and sends back to each cell a command computed ac-
cording to the global value provided by the reduction network (Figure 12.1c); for example, CONTROLLER
could be a processing element which decides, according to its program and the current output of the reduc-
tion network, the command issued to the cellular system in the next cycle.

Each cell of n-OS could be a circuit, starting from a simple 2-state automaton [Ştefan ’98a] until an execution
or a processing element. What is the degree of generality of these super-loop circuits? It is very important to
evaluate the possibility to use them efficiently as parallel computational engines. But, what means a “parallel
computational engine”?

12.2 The First Global Loop: Generic ConnexArrayT M

In 1936 Stephen Kleene defined [Kleene ’36] the concept of partial recursive function as the general framework
for computing any function of form:

f : {0,1}n→{0,1}

h1(X) hp(X)

? ?

? ?

?

g(y1 , . . .yp)

X = (x1 , . . .xn)

f (x1 , . . .xn)

h1(X)

?

?

a.

g(y1)

?
f (x1 , . . .xn)

X = (x1 , . . .xn)

b.

�

c.

CONTROLLER

?

?

cell1 celln

? ?

-
? ?

-� � --
?

· · ·

�

6

REDUCE

MAP

y1 yp

Figure 12.2: From the mathematical model to the abstract machine model. a. The structure associated
to the composition rule in Kleene’s model. b. The limit case for p = 1. It provides the pipelined connection which
can be generalized for serially connected p cells. c. The abstract machine model for parallel computing. The MAP
section consists of the parallel connected cells, the REDUCE section stands for the function g, while the serial
connections between cells in MAP section provided by the serial pipelined connection for the limit case of p = 1.

In [Ştefan ’14] is proved that from the three basic rules proposed by Kleene only the first, the composition
rule, is independent. Therefore, computation could be defined as repeated application of the composition having
the form:

f (x1, . . .xn) = g(h1(x1, . . .xn), . . .hp(x1, . . .xn))

In Figure 12.2a the two-level circuit version of the composition rule is represented. Each function hi is computed
by a module on the first level, while the function g reduces the resulting vector to a scalar. In Figure 12.2b, the
limit case for p = 1 is represented. The repeated application of a composition requests the additional structures
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represented in Figure 12.2c. In [Ştefan ’14] the transition from Figure 12.2a and Figure 12.2b to Figure 12.2c is
described.

The two-direction connections between the cells provide the p = n levels of loops which gives the order n to
the system, while the global loop is closed through the CONTROLLER.

The simplest version of the engine is behaviorally described in the next subsection as the Generic
ConnexArrayT M system. Some temporal aspects are not catched in the following description because we will
be focused only on the functional aspects. A structural description takes into account at least the pipelines used to
optimize the clock frequency. Also, some aspects related with data transfer are treated in this behavioral description
ignoring the timing issues.

12.2.1 The behavioral description of Generic ConnexArrayT M

The cell used in the generic n-order array with the first global loop contains a data memory for the local data and
a simple accumulator-based engine.

Data Memory

Execution Unit

-

-
?

?

?

in

out

Processing Unit

Data MemoryProgram Memory

? ?

?

?
ProgramOut

-

?

?

?

DataInProgramIn

DataOut

a. b.

Figure 12.3: The components of the abstract machine model. a. The cell’s structure. b. The controller’s
structure.

The cell’s structure is presented in Figure 12.3a, while the controller’s structure is presented in Figure 12.3b.
The behavioral description uses the storage resources detailed in the file ConnexArray.v represented in Figure

12.5, where:

vectorial resources describes the resources distributed in array (for the contribution of each cell see Figure 12.4a)

ixv : index vector used to associate the index i, from 0 to 2x−1, to each cell

boolv : Boolean vector used to enable the execution in i-th cell; if boolv[i] is 1, then the cell is active,
else the instruction received in the current cycle is ignored (substituted with nop)

accv : is the scalar vector containing the accumulator registers of the cells; the execution unit is accumulator
based, thus accv[i] is the accumulator of the cell i

crv : is the Boolean vector containing the carry registers of each cell; crv[i] stores the carry bit generated
in cell i by the last arithmetic operation
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vmem : is the vector memory distributed along the cells; each cell, celli, stores in its local memory the i-th
components of all the 2v vectors

addrv : used to specify a locally computed address in each cell

control resources describes the resources involved in the sequential control (see Figure 12.4b)

pc : p-bit program counter

ir : 32-bit instruction register

progMem : the program memory organize in 2p 32-bit words

scalar resources describes the resources involved in the scalar computation (see Figure 12.4b)

acc : controller’s accumulator

cr : the carry flip-flop

addr : the address register used to compute the address for controller’s data memory

mem : controller’s data memory

i
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-- crv[i]cellCombLogicvmem[i] � �

?
q )

6 6
accv[i]

?
boolv[i]

?
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-- memcontrollerCombLogicprogMem �

carry

?
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?
acc

1
ir

controllerIn

?

6?

controllerOut

a. b.

Figure 12.4: The resources used in the behavioral description. a. Cell’s internal state support. b.
Controller’s internal state support.

The instruction read from the program memory in each clock cycle is of the following form:

instruction =

{arrayInstr, contrInstr} =

{aOpCode[4:0], // operation code for the array

aOpr[2:0] , // selection operand for array

aval[7:0] , // immediate value for array

cOpCode[4:0], // operation code for controller

cOpr[2:0] , // selection operand for controller

cval[7:0] } // immediate value for controller

The input received by each cell (see Figure 12.3a and Figure 12.4a) is:

in = {instruction[15:0], data[n-1:0], address[v-1:0]}
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while the output is:

out = {boolv[i], (boolv[i] ? accv[i][n-1:0] : 0)}

From the program memory, in each cycle is read a pair of instructions: one (progMem[nextPc][15:0]) for
the use of controller and another (progMem[nextPc][31:16]) to be executed in each active cell (where boolv[i]
= 1). The structure of the two instructions is detailed also in Figure 12.5.
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/ * ************************************************************************
F i l e name : ConnexArray . v
C i r c u i t name : Gener i c Connex Array
D e s c r i p t i o n : b e h a v i o r a l d e s c r i p t i o n f o r s i m u l a t i o n ; t h e c o n t e n t o f da ta

memory and program memory are g e n e r a t e d i n t h e s i m u l a t i o n
e n v i r o n m e n t

************************************************************************ * /
module ConnexArray # ( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ( input r e s e t , c l o c k ) ;
/ / c o n t r o l r e s o u r c e s

reg [ p − 1 : 0 ] pc ; / / program c o u n t e r
reg [ 3 1 : 0 ] i r ; / / i n s t r u c t i o n r e g i s t e r
reg [ 3 1 : 0 ] progMem[0:(1<<p ) −1] ; / / program memory

/ / s c a l a r r e s o u r c e s
reg [ n − 1 : 0 ] acc ; / / s c a l a r a c c u m u l a t o r
reg c r ; / / s c a l a r c a r r y
reg [ s − 1 : 0 ] add r ; / / s c a l a r a d d r e s s
reg [ n − 1 : 0 ] mem[0:(1<< s ) −1] ; / / s c a l a r memory

/ / v e c t o r r e s o u r c e s
reg boo l [0:(1<<x ) −1] ; / / Boolean v e c t o r
reg [ n − 1 : 0 ] accv [0:(1<<x ) −1] ; / / a c c u m u l a t o r v e c t o r
reg c r v [0:(1<<x ) −1] ; / / c a r r y v e c t o r
reg [ v − 1 : 0 ] addrv [0:(1<<x ) −1] ; / / a d d r e s s v e c t o r
reg [ n − 1 : 0 ] vmem[0:(1<<x ) −1][0:(1<<v ) − 1 ] ; / / v e c t o r memory

/ / s t r u c t u r e o f t h e i n s t r u c t i o n s f o r a r r a y and f o r c o n t r o l l e r
wire [ 4 : 0 ] aOpCode ; / / o p e r a t i o n code f o r t h e a r r a y
wire [ 2 : 0 ] aOpr ; / / s e l e c t i o n operand f o r a r r a y
wire [ 7 : 0 ] a v a l ; / / immed ia t e v a l u e f o r a r r a y
wire [ 4 : 0 ] cOpCode ; / / o p e r a t i o n code f o r c o n t r o l l e r
wire [ 2 : 0 ] cOpr ; / / s e l e c t i o n operand f o r c o n t r o l l e r
wire [ 7 : 0 ] c v a l ; / / immed ia t e v a l u e f o r c o n t r o l l e r
a s s i g n aOpCode = i r [ 3 1 : 2 7 ] ;
a s s i g n aOpr = i r [ 2 6 : 2 4 ] ;
a s s i g n a v a l = i r [ 2 3 : 1 6 ] ;
a s s i g n cOpCode = i r [ 1 5 : 1 1 ] ;
a s s i g n cOpr = i r [ 1 0 : 8 ] ;
a s s i g n c v a l = i r [ 7 : 0 ] ;

/ / b e h a v i o r o f t h e s y s t e m
i n t e g e r i ;
‘ i n c l u d e ” p r o g r a m C o n t r o l . v ”
‘ i n c l u d e ” cOperandSe l . v ”
‘ i n c l u d e ” c D a t a O p e r a t i o n s . v ”
‘ i n c l u d e ” s p a t i a l C o n t r o l . v ”
‘ i n c l u d e ” aOperandSe l . v ”
‘ i n c l u d e ” a D a t a O p e r a t i o n s . v ”
‘ i n c l u d e ” v e c t o r T r a n s f e r . v ”

endmodule

Figure 12.5: Generic Connex Array described in the file ConnexArray.v.
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The Instruction Set Architecture

/ * *******************************************************************************
F i l e name : p a r a m e t e r s . v
D e s c r i p t i o n : d e f i n e s I n s t r u c t i o n S e t A r c h i t e c t u r e f o r Gener i c Connex Array
******************************************************************************* * /

parameter n = 32 , / / word s i z e
x = 4 , / / i n d e x s i z e
v = 8 , / / v e c t o r memory a d d r e s s s i z e
s = 8 , / / s c a l a r memory a d d r e s s s i z e
p = 8 , / / program memory a d d r e s s s i z e

/ * *******************************************************************************
opCode : s e l e c t s t h e r i g h t operand . The a r c h i t e c t u r e i s a c c u m u l a t o r based
******************************************************************************* * /

v a l = 3 ’ b000 , / / immed ia t e v a l u e : {24{ s c a l a r [ 7 ]}} , s c a l a r }
mab = 3 ’ b001 , / / a b s o l u t e : mem[ s c a l a r ]
mrl = 3 ’ b010 , / / r e l a t i v e : mem[ addr+s c a l a r ]
mri = 3 ’ b011 , / / r e l a t i v e & i n c r e m e n t : mem[ addr+s c a l a r ] ; addr <= addr+s c a l a r
cop = 3 ’ b100 , / / co−operand
c t l = 3 ’ b111 , / / c o n t r o l o p e r a t i o n s

/ * *******************************************************************************
I n s t r u c t i o n S e t A r c h i t e c t u r e
******************************************************************************* * /

add = 5 ’ b00000 , / / { cr , acc} <= acc + op ;
addc = 5 ’ b00001 , / / { cr , acc} <= acc + op + cr ;
sub = 5 ’ b00010 , / / { cr , acc} <= acc − op ;
r s u b = 5 ’ b00011 , / / { cr , acc} <= operand − acc ;
subc = 5 ’ b00100 , / / { cr , acc} <= acc − op − cr ;
r s u b c = 5 ’ b00101 , / / { cr , acc} <= op − acc − cr ;
mul t = 5 ’ b00110 , / / acc <= acc * op ;
l o a d = 5 ’ b00111 , / / acc <= op ;
s t o r e = 5 ’ b01000 , / / op <= acc ;
bwand = 5 ’ b01001 , / / acc <= acc & op ;
bwor = 5 ’ b01010 , / / acc <= acc | op ;
bwxor = 5 ’ b01011 , / / acc <= acc ˆ op ;
i n s v a l = 5 ’ b01100 , / / acc <= {acc [ 2 3 : 0 ] , s c a l a r }
s h r i g h t c = 5 ’ b01101 , / / { cr , acc} <= {acc [ 0 ] , cr , acc [ n −1:1]}
s h r i g h t = 5 ’ b01110 , / / { cr , acc} <= {acc [ 0 ] , 1 ’ b0 , acc [ n −1:1]}
s h a r i g h t = 5 ’ b01111 , / / acc <= {acc [ n −1] , acc [ n −1:1]}

/ / ONLY FOR CONTROLLER
jmp = 5 ’ b10000 , / / pc <= pc + s c a l a r ;
b r z = 5 ’ b10001 , / / pc <= acc=0 ? pc + s c a l a r : pc + 1;
brnz = 5 ’ b10010 , / / pc <= acc=0 ? pc + 1 : pc + s c a l a r ;
b r z d e c = 5 ’ b10011 , / / pc <= acc=0 ? pc + s c a l a r : pc + 1; acc <= acc − 1
b r n z d e c = 5 ’ b10100 , / / pc <= acc=0 ? pc + 1 : pc + s c a l a r ; acc <= acc − 1

/ / ONLY FOR ARRAY
where = 5 ’ b10000 , / / boo l <= condv [ operand ] ? 1 : 0 ;
e l sew = 5 ’ b10001 , / / boo l <= ˜ b o o l V e c t ;
endwhere = 5 ’ b10010 , / / boo l <= 1;
i x l o a d = 5 ’ b10011 , / / acc <= i
g s h i f t = 5 ’ b11001 , / / acc [ i ] <= acc [ i +/ −1];
v l o a d = 5 ’ b11010 , / / accv [ i ] <= mem[ addr + i ]
v s t o r e = 5 ’ b11011 / / mem[ addr + i ] <= accv [ i ]

Figure 12.6: Instruction Set Architecture described in the file parameters.v.
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The arithmetic-logic operations performed in each cell and in the controller are very similar. Only the sequen-
tial control in controller and the spatial control in the array of cells differentiate the instruction set architecture
(ISA) (see Figure 12.6) which describes the functions of the controller and of the cells. The instructions are spec-
ified by three fields (see Figure 12.5 for the structure of the instruction): one for operation (opCode), one for the
right operand (operand), because the left operand is always the accumulator, and the last for an 8-bit immediate
value.

Program Control Section

The program control section of the controller works as it is described in Figure 12.7:

/ * ************************************************************************
F i l e name : programContro l . v
D e s c r i p t i o n : t h e code manages t h e v a l u e o f t h e program c o u n t e r ( pc )
************************************************************************ * /

reg [ p − 1 : 0 ] n ex tP c ;

always @( * ) i f ( cOpr == c t l )
case ( cOpCode )

jmp : ne x t Pc = pc + c v a l [ p − 1 : 0 ] ;
b r z : ne x t Pc = ( acc == 0) ? ( pc + c v a l [ p − 1 : 0 ] ) : ( pc + 1 ’ b1 ) ;
b rnz : n ex tP c = ( acc == 0) ? ( pc + 1 ’ b1 ) : ( pc + c v a l [ p − 1 : 0 ] ) ;
b r z d e c : n ex tP c = ( acc == 0) ? ( pc + c v a l [ p − 1 : 0 ] ) : ( pc + 1 ’ b1 ) ;
b r n z d e c : ne x tP c = ( acc == 0) ? ( pc + 1 ’ b1 ) : ( pc + c v a l [ p − 1 : 0 ] ) ;
d e f a u l t : n e x t Pc = pc + c v a l [ p − 1 : 0 ] ;

endcase
e l s e nex tP c = pc + 1 ’ b1 ;

always @( posedge c l o c k ) i f ( r e s e t ) begin pc <= {p{1 ’ b1}} ;
i r <= 0 ;

end
e l s e begin pc <= n ex tP c ;

i r <= progMem [ nex tP c ] ;
end

Figure 12.7: The file programControl.v describes the control function for Controller.
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Operand selection in controller

/ * ************************************************************************
F i l e name : cOperandSe l . v
D e s c r i p t i o n : t h e code s e l e c t s t h e r i g h t operand f o r C o n t r o l l e r
************************************************************************ * /

reg [ n − 1 : 0 ] op ;

always @( * )
case ( cOpr ) / / s e l e c t s t h e r i g h t operand f o r c o n t r o l l e r

mrl : op = mem[ add r + c v a l [ s − 1 : 0 ] ] ;
mri : op = mem[ add r + c v a l [ s − 1 : 0 ] ] ;
v a l : op = {{ ( n −8){ c v a l [ 7 ]}} , c v a l } ;
cop : case ( c v a l [ 1 : 0 ] )

2 ’ b00 : begin
op = accv [ 0 ] ;

f o r ( i =1 ; i <(1<<x ) ; i = i +1)
op = op + accv [ i ] ;

end
2 ’ b01 : begin

op = accv [ 0 ] ;
f o r ( i =1 ; i <(1<<x ) ; i = i +1)

op = ( op < accv [ i ] ) ? accv [ i ] : op ;
end

2 ’ b10 : begin
op = {{ ( n −1){1 ’ b0 }} , boo l [ 0 ]} ;

f o r ( i =1 ; i <(1<<x ) ; i = i +1)
op = {{ ( n −1){1 ’ b0 }} , op [ 0 ] | boo l [ i ] } ;

end
d e f a u l t : op = 0 ;

endcase
d e f a u l t : op = mem[ c v a l [ s − 1 : 0 ] ] ;

endcase

Figure 12.8: The code used to select the right operand in Controller: cOperandSel.v
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Data operations in controller

Data operations in controller is performed using as operands the accumulator, acc, and data selected by
contrOperand, as described in Figure 12.9.

/ * ************************************************************************
F i l e name : c D a t a O p e r a t i o n s . v
D e s c r i p t i o n : t h e code d e s c r i b e s t h e da ta o p e r a t i o n s i n C o n t r o l l e r
************************************************************************ * /

always @( posedge c l o c k )
case ( cOpCode )

add : { cr , acc } <= acc + op ;
addc : { cr , acc } <= acc + op + c r ;
sub : { cr , acc } <= acc − op ;
r s u b : { cr , acc } <= op − acc ;
subc : { cr , acc } <= acc − op − c r ;
r s u b c : { cr , acc } <= op − acc − c r ;
mul t : { cr , acc } <= { cr , acc * op} ;
l o a d : { cr , acc } <= { cr , op} ;
s t o r e : case ( cOpr )

mab : mem[ c v a l [ s − 1 : 0 ] ] <= acc ;
mri : mem[ c v a l [ s − 1 : 0 ] + add r ] <= acc ;
mri : begin mem[ c v a l [ s − 1 : 0 ] + add r ] <= acc ;

add r <= c v a l [ s − 1 : 0 ] + add r ;
end

v a l : ad d r <= acc [ s − 1 : 0 ] ;
d e f a u l t : add r <= acc [ s − 1 : 0 ] ;

endcase
bwand : { cr , acc } <= { cr , acc & op} ;
bwor : { cr , acc } <= { cr , acc | op} ;
bwxor : { cr , acc } <= { cr , acc ˆ op} ;
i n s v a l : { cr , acc } <= { cr , acc [ 2 3 : 0 ] , op [ 7 : 0 ] } ;
s h r i g h t c : { cr , acc } <= { acc [ 0 ] , cr , acc [ n − 1 : 1 ]} ;
s h r i g h t : { cr , acc } <= { acc [ 0 ] , 1 ’ b0 , acc [ n − 1 : 1 ]} ;
s h a r i g h t : { cr , acc } <= { acc [ 0 ] , acc [ n − 1] , acc [ n − 1 : 1 ]} ;
b r z d e c : { cr , acc } <= acc − 1 ’ b1 ;
b r n z d e c : { cr , acc } <= acc − 1 ’ b1 ;

endcase

Figure 12.9: The file describes the data operations performed in Controller: cDataOperations.v
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Spatial control in array

/ * ************************************************************************
F i l e name : s p a t i a l C o n t r o l . v
D e s c r i p t i o n : d e s c r i b e s t h e s p a t i a l c o n t r o l i n Array
************************************************************************ * /

reg [ 3 : 0 ] condv [0:(1<<x ) −1] ;

always @( * ) f o r ( i =0 ; i <(1<<x ) ; i = i +1)
condv [ i ] = { ! c r v [ i ] , ( accv [ i ] !== 0 ) , c r v [ i ] , ( accv [ i ] == 0 ) } ;

always @( posedge c l o c k ) f o r ( i =0 ; i <(1<<x ) ; i = i +1)
case ( aOpCode )

where : boo l [ i ] <= ( condv [ i ] [ a v a l [ 1 : 0 ] ] ) ? 1 ’ b1 : 1 ’ b0 ;
e l sew : boo l [ i ] <= ˜ boo l [ i ] ;
endwhere : boo l [ i ] <= 1 ’ b1 ;

endcase

Figure 12.10: File spatialControl.v which describes the spatial control functions in Array.

Operand selection in the array’s cells

Operand selection in the array’s cells is described by the code from Figure 12.11:

/ * ************************************************************************
F i l e name : a O p S e l e c t i o n . v
D e s c r i p t i o n : d e s c r i b e s t h e r i g h t operand s e l e c t i o n f o r Array
************************************************************************ * /

reg [ n − 1 : 0 ] opv [0:(1<<x ) −1] ;

always @( * ) f o r ( i =0 ; i <(1<<x ) ; i = i +1)
case ( aOpr ) / / s e l e c t s t h e r i g h t operand i n each c e l l

mrl : opv [ i ] = vmem[ i ] [ addrv [ i ] + a v a l [ v − 1 : 0 ] ] ;
mri : opv [ i ] = vmem[ i ] [ addrv [ i ] + a v a l [ v − 1 : 0 ] ] ;
v a l : opv [ i ] = {{ ( n −8){ a v a l [ 7 ]}} , a v a l } ;
cop : opv [ i ] = acc ;
d e f a u l t : opv [ i ] = vmem[ i ] [ a v a l [ v − 1 : 0 ] ] ;

endcase

Figure 12.11: The file aOpSelection.v describes the right operand selection for Array.
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Data operations in the array’s cells

Data operations in the array’s cells is performed using as operands the accumulator, accVect[i], and data selected
by arrayOperand, as shown in Figure 12.12.

/ * *******************************************************************************
F i l e name : aDa taOpera t i ons . v
D e s c r i p t i o n : d e s c r i b e s t h e da ta o p e r a t i o n s i n Array
******************************************************************************* * /

always @( posedge c l o c k ) f o r ( i =0 ; i<(1<<x ) ; i = i +1)
i f ( boo l [ i ] ) begin

i f ( aOpr == mri ) addrv [ i ] <= addrv [ i ] + a v a l [ v − 1 : 0 ] ;
case ( aOpCode )

add : { c r v [ i ] , accv [ i ]} <= accv [ i ] + opv [ i ] ;
addc : { c r v [ i ] , accv [ i ]} <= accv [ i ] + opv [ i ] + c r v [ i ] ;
sub : { c r v [ i ] , accv [ i ]} <= accv [ i ] − opv [ i ] ;
r s u b : { c r v [ i ] , accv [ i ]} <= opv [ i ] − accv [ i ] ;
subc : { c r v [ i ] , accv [ i ]} <= accv [ i ] − opv [ i ] − c r v [ i ] ;
r s u b c : { c r v [ i ] , accv [ i ]} <= opv [ i ] − accv [ i ] − c r v [ i ] ;
mul t : { c r v [ i ] , accv [ i ]} <= { c r v [ i ] , accv [ i ] * opv [ i ]} ;
l o a d : { c r v [ i ] , accv [ i ]} <= { c r v [ i ] , opv [ i ]} ;
s t o r e : case ( aOpr )

mab : vmem[ i ] [ a v a l [ v − 1 : 0 ] ] <= accv [ i ] ;
mrl : vmem[ i ] [ a v a l [ v − 1 : 0 ] + addrv [ i ] ] <= accv [ i ] ;
mri : vmem[ i ] [ a v a l [ v − 1 : 0 ] + addrv [ i ] ] <= accv [ i ] ;
v a l : addrv [ i ] <= accv [ i ] [ v − 1 : 0 ] ;
d e f a u l t addrv [ i ] <= addrv [ i ] ;

endcase
bwand : { c r v [ i ] , accv [ i ]} <= { c r v [ i ] , accv [ i ] & opv [ i ]} ;
bwor : { c r v [ i ] , accv [ i ]} <= { c r v [ i ] , accv [ i ] | opv [ i ]} ;
bwxor : { c r v [ i ] , accv [ i ]} <= { c r v [ i ] , accv [ i ] ˆ opv [ i ]} ;
i n s v a l : { c r v [ i ] , accv [ i ]} <= { c r v [ i ] , accv [ i ] [ 2 3 : 0 ] , opv [ i ] [ 7 : 0 ] } ;
g s h i f t : accv [ i ] <= opv [ i ] [ 0 ] ? ( i == ((1<<x ) −1) ? 0 : accv [ i + 1 ] ) :

( i == 0 ? 0 : accv [ i − 1 ] ) ;
s h r i g h t c : { c r v [ i ] , accv [ i ]} <= { accv [ i ] [ 0 ] , c r v [ i ] , accv [ i ] [ n − 1 : 1 ]}

;
s h r i g h t : { c r v [ i ] , accv [ i ]} <= { accv [ i ] [ 0 ] , 1 ’ b0 , accv [ i ] [ n − 1 : 1 ]} ;
s h a r i g h t : { c r v [ i ] , accv [ i ]} <=

{ accv [ i ] [ 0 ] , accv [ i ] [ n −1 ] , accv [ i ] [ n − 1 : 1 ] } ;
v l o a d : vmem[ i ] [ accv [ i ] ] <= mem[ acc + i * c v a l ] ;
i x l o a d : { c r v [ i ] , accv [ i ]} <= i ;

endcase
end

Figure 12.12: The file aDataOperations.v describes data operations in the array of cells.
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Vector transfer

instructions are used to exchange data between the vector memory distributed in the array of cell and the con-
troller’s memory. The transfer is strided with stride given by contrScalar. The definition is in Figure 12.13

/ * ************************************************************************
F i l e name : v e c t o r T r a n s f e r . v
D e s c r i p t i o n : d e s c r i b e s t h e v e c t o r t r a n s f e r o p e r a t i o n s
************************************************************************ * /

always @( posedge c l o c k ) f o r ( i =0 ; i <(1 ’ b1<<x ) ; i = i +1) begin
i f ( aOpCode == v l o a d ) accv [ i ] <= mem[ add r + i ] ;
i f ( aOpCode == v s t o r e ) mem[ add r + i ] <= accv [ i ] ;

end

Figure 12.13: The file vectorTransfer.v describes the vector transfer operations between array of
cells and Controller’s data memory.

12.2.2 Assembler Programming the Generic ConnexArrayT M

Each line of program must contain code for both instructions: the instruction issued for the array and the instruction
performed by the controller. For conditioned or unconditioned relative jumps in program some lines are labeled;
LB(i) denote the label i. The use of the label is indicated by by the value used by control instructions (example:
cJMP(2)).

Example 12.1 The program which compute in the accumulator of the controller the inner product of the index
vector ix with itself is:

cNOP ; ENDWHERE; / / a c t i v a t e a l l c e l l s
cNOP ; IXLOAD ; / / a c c V e c t [ i ] <= i x V e c t [ i ]
cNOP ; IXMULT; / / a c c V e c t [ i ] <= a c c V e c t [ i ] * i x V e c t [ i ]
cRSLOAD ; NOP; / / l oad acc w i t h t h e r e d u c t i o n sum
cHALT ; NOP;

The content of program memory is:

programMemory [ 0 ] = 10010111000000000000000000000000
programMemory [ 1 ] = 10011000000000000000000000000000
programMemory [ 2 ] = 01000001000000000000000000000000
programMemory [ 3 ] = 00110001000000000000000000000000
programMemory [ 4 ] = 00000000000000000011110000000000
programMemory [ 5 ] = 00000000000000001000011100000000

The result of simulation:
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t =0 r e s e t =1 pc=x acc = x ACC = [ x , x , x , . . . x ] b = [ xxxxxxxxxxxxxxxx ]
t =1 r e s e t =1 pc =255 acc = x ACC = [ x , x , x , . . . x ] b = [ xxxxxxxxxxxxxxxx ]
t =4 r e s e t =0 pc =255 acc = x ACC = [ x , x , x , . . . x ] b = [ xxxxxxxxxxxxxxxx ]
t =5 r e s e t =0 pc =0 acc = x ACC = [ x , x , x , . . . x ] b = [ xxxxxxxxxxxxxxxx ]
t =7 r e s e t =0 pc =1 acc = x ACC = [ x , x , x , . . . x ] b = [1111111111111111]
t =9 r e s e t =0 pc =2 acc = x ACC = [ 0 , 1 , 2 , . . . 15 ] b = [1111111111111111]
t =11 r e s e t =0 pc =3 acc = x ACC = [ 0 , 1 , 2 , . . . 15 ] b = [1111111111111111]
t =13 r e s e t =0 pc =4 acc = x ACC = [ 0 , 1 , 4 , . . . 225] b = [1111111111111111]
t =15 r e s e t =0 pc =5 acc =1240 ACC = [ 0 , 1 , 4 , . . . 225] b = [1111111111111111]

⋄

Example 12.2 The program which load the accumulator the index in each cell, stores it incremented in 12 suc-
cessive addresses starting from the address 2, than add in accumulator the stored values. The program is:

cVLOAD ( 1 2 ) ; ENDWHERE; / / acc <= 12; a c t i v a t e a l l c e l l s
cNOP ; VLOAD( 2 ) ; / / a c c V e c t [ i ] <= 2
cNOP ; ADDRLD; / / a d d r V e c t [ i ] <= a c c V e c t [ i ]
cNOP ; IXLOAD ; / / a c c V e c t [ i ] <= i n d e x

LB ( 1 ) ; cNOP ; RISTORE ( 1 ) ; / / vectMem [ i ] [ a d d r V e c t + 1] <= a c c V e c t [ i ] ;
/ / a d d r V e c t <= a d d r V e c t + 1

cBRNZDEC ( 1 ) ; VADD( 1 ) ; / / i f ( acc !== 0) branch t o LB ( 1 ) ; acc<=acc −1;
/ / a c c V e c t [ i ] <= a c c V e c t [ i ] + 1;

cVLOAD ( 1 3 ) ; VLOAD( 2 ) ; / / acc <= 13; a c c V e c t [ i ] <= 2
cNOP ; ADDRLD; / / a d d r V e c t [ i ] <= a c c V e c t [ i ]
cNOP ; VLOAD( 0 ) ; / / a c c V e c t [ i ] <= 0

LB ( 2 ) ; cBRNZDEC ( 2 ) ; RIADD ( 1 ) ; / / i f ( acc !== 0) branch t o LB ( 2 ) ; acc<=acc −1;
/ / a c c V e c t [ i ] <=
/ / a c c V e c t [ i ] + vectMem [ i ] [ a d d r V e c t + 1 ] ;
/ / a d d r V e c t <= a d d r V e c t + 1

cHALT ; NOP; / / h a l t

The result of simulation is:

t =97 ACC= [ 7 8 , 9 1 , 1 0 4 , 1 1 7 , 1 3 0 , 1 4 3 , 1 5 6 , 1 6 9 , 1 8 2 , 1 9 5 , 2 0 8 , 2 2 1 , 2 3 4 , 2 4 7 , 2 6 0 , 2 7 3 ]

v e c t [ 4 ] = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
v e c t [ 5 ] = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
v e c t [ 6 ] = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
v e c t [ 7 ] = 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
v e c t [ 8 ] = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
v e c t [ 9 ] = 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
v e c t [ 1 0 ] = 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
v e c t [ 1 1 ] = 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
v e c t [ 1 2 ] = 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
v e c t [ 1 3 ] = 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
v e c t [ 1 4 ] = 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
v e c t [ 1 5 ] = 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

⋄
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12.3 The Second Global Loop: Search Oriented Generic ConnexArrayT M

The global loop closed in the previous section sends back to the array the same data for each cell. A new feature is
added when another loop sends back to the array specific, differentiated information for each cell. Let us start with
a very simple function associated to this second global loop: it takes the Boolean vector boolVect[0:(1<<x)-1]
distributed along the array of cells and sends back two Boolean vectors:

• firstVect[0:(1<<x)-1]: with 1 only on the position of the first occurrence of 1 in boolVect; it is used
to indicate the first active cell

• nextVect[0:(1<<x)-1]: with 1 in all the positions next to the 1 in the firstVect Boolean vector; it is
used to indicate all the cells next to the first active cell

There are 5 additional instructions supported by this second global loop. In the file parameters.v the following
5 lines are added:

. . .
s e a r c h = 5 ’ b10100 , / / b [ i ] <= ( acc [ i ] == op ) ? 1 : 0
c s e a r c h = 5 ’ b10101 , / / b [ i ] <= ( acc [ i ] == op ) && b [ i −1] ? 1 : 0
i n s e r t = 5 ’ b10110 , / / acc [ f i r s t ] <= op ; acc [ n e x t ] <= acc [ i −1]
d e l e t e = 5 ’ b10111 , / / acc [ f i r s t | | n e x t ] <= acc [ i +1]
r e a d = 5 ’ b11000 , / / b [ i ] <= b [ i −1]

. . .

In the file ConnexArray.v the following line is added:

. . .
‘ i n c l u d e ” s e a r c h O p e r a t i o n s . v ”

. . .

where the searchOperations.v file is shown in Figure 12.14
The instruction search identifies all the positions in array where the accumulator has a certain value, while

the csearch supports the search of a certain string of values.
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/ * ************************************************************************
F i l e name : s e a r c h O p e r a t i o n s . v
D e s c r i p t i o n : d e s c r i b e s t h e s e a r c h o p e r a t i o n s i n a r r a y
************************************************************************ * /

reg px [0:(1<<x ) −1] ;
reg f i r s t [0:(1<<x ) −1] ;
reg n e x t [0:(1<<x ) −1] ;

/ / The scan loop
always @( * ) f o r ( i =0 ; i <(1<<x ) ; i = i +1) begin

px [ i ] = ( i == 0) ? boo l [ 0 ] : ( boo l [ i ] | px [ i − 1 ] ) ;
f i r s t [ i ] = ( i == 0) ? px [ 0 ] : ( px [ i ] & ˜ px [ i − 1 ] ) ;
n e x t [ i ] = ( i == 0) ? 1 ’ b0 : px [ i −1] ;

end

always @( posedge c l o c k ) f o r ( i =0 ; i <(1<<x ) ; i = i +1)
case ( aOpCode )

s e a r c h : boo l [ i ] <= ( accv [ i ] == opv [ i ] ) ? 1 ’ b1 : 1 ’ b0 ;
c s e a r c h : boo l [ i ] <= ( i == 0) ? 1 ’ b0 :

( ( ( accv [ i ] == opv [ i ] ) & boo l [ i − 1 ] ) ? 1 ’ b1 :
1 ’ b0 ) ;

r e a d : boo l [ i ] <= ( i ==0) ? 0 : boo l [ i −1] ;
i n s e r t : accv [ i ] <= f i r s t [ i ] ? opv [ i ] : ( n e x t [ i ] ?

accv [ i −1] : accv [ i ] ) ;
d e l e t e : accv [ i ] <= ( i == (1<<x ) −1) ? 0 :

( ( f i r s t [ i ] | n e x t [ i ] ) ? accv [ i +1] : accv [ i ] ) ;
endcase

Figure 12.14: File searchOperations.v describes the search operations in the array of cells.

Example 12.3 The program which load the index in each acc[i], identifies the occurrence of the stream <1 2
3> in accVect and adds in acc the next four numbers:

cNOP ; ENDWHERE; / / s e t a c t i v e a l l c e l l s
cVLOAD ( 1 ) ; IXLOAD ; / / acc = 1; l oad i n d e x i n each c e l l
cVLOAD ( 2 ) ; CSEARCH; / / acc = 2; s e a r c h ’ acc ’ i n each acc [ i ]
cVLOAD ( 3 ) ; CSEARCH; / / acc = 3; s e a r c h ’ acc ’ a f t e r each a c t i v e c e l l
cNOP ; CSEARCH; / / s e a r c h ’ acc ’ a f t e r each a c t i v e c e l l
cNOP ; READ; / / b o o l V e c t >> 1
cCLOAD ( 0 ) ; READ; / / acc = reduceSum ; b o o l V e c t >> 1
cCADD ( 0 ) ; READ; / / acc = acc + reduceSum ; b o o l V e c t >> 1
cCADD ( 0 ) ; READ; / / acc = acc + reduceSum ; b o o l V e c t >> 1
cCADD ( 0 ) ; NOP; / / acc = acc + reduceSum
cHALT ; NOP; / / h a l t
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pc =0 acc = x ACC = [ x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x ] b = [ xxxxxxxxxxxxxxxx ]
pc =1 acc = x ACC = [ x , x , x , x , x , x , x , x , x , x , x , x , x , x , x , x ] b = [1111111111111111]
pc =2 acc = 1 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [1111111111111111]
pc =3 acc = 2 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [0100000000000000]
pc =4 acc = 3 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [0010000000000000]
pc =5 acc = 3 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [0001000000000000]
pc =6 acc = 3 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [0000100000000000]
pc =7 acc = 4 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [0000010000000000]
pc =8 acc = 9 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [0000001000000000]
pc =9 acc = 15 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [0000000100000000]
pc =10 acc = 22 ACC = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ] b = [0000000100000000]

⋄

Example 12.4 The program which load the index in each acc[i], identifies the occurrence(s) of the stream <0
1> in accVect and insert in the vector accVect the sequence <13 15>.

cNOP ; ENDWHERE; / / s e t a c t i v e a l l c e l l s
cNOP ; IXLOAD ; / / l oad i n d e x i n each c e l l
cNOP ; VSEARCH ( 1 ) ; / / s e a r c h ’0 ’ i n each acc [ i ]
cNOP ; VCSEARCH ( 2 ) ; / / s e a r c h ’1 ’ a f t e r each a c t i v e c e l l
cNOP ; READ; / / b o o l V e c t >> 1
cNOP ; INSERT ( 1 3 ) ; / / i n s e r t ’13 ’ i n t h e f i r s t a c t i v e c e l l
cNOP ; INSERT ( 1 5 ) ; / / i n s e r t ’15 ’ i n t h e f i r s t a c t i v e c e l l
cHALT ; NOP; / / h a l t

⋄

The second global loop adds specific features which support search applications, sparse matrix/vector opera-
tions, ... .

12.4 Integrating ConnexArrayT M as Accelerator in a Computing System
Integrating the generic version of ConnexArrayT M as accelerator means to add interfaces and mechanisms to
transfer data in and out to/form the memories defined in ConnexArray. The program memory of the Controller must
be loaded and the data memory of controller and the vector memory distributed along the cells must communicate
with the external system memory. Besides these, the host processor must be able to activate the functions of the
accelerator and to receive the minimal information back.

In Figure 12.15 is shown how ConnexArrayT M is used to design an accelerator for a general purpose computing
system. The interface must support the following communication facilities:

• program load: the program memory, progMem (see Figure 12.4b), of the controller is loaded with the
program(s); the interface signals are:

– fromHost[31:0]: receives programs (stream of instructions) and calls (functions and, if needed,
parameters)

– write and ready: dialog signals
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Figure 12.15: Integrating ConnexArrayT M with a host means to add an interface for data, programs and
commends.

• data transfer: the data memory of the controller, mem (see Figure 12.4b), and the memory distributed along
the cells, vectorMem[i] (see Figure 12.4a), exchange data with the system memory of the host; the inter-
face signals are:

– fromMemory[q-1:0]: receives data form the system memory; it is recommended q = m× n with
m as big as possible to attenuate the effect of the “von Neumann Bottleneck” (usually, the range is
m = 4÷12)

– dataWrite and inReady: dialog signals

– toMemory[q-1:0]: sends data to the system memory

– dataRead and outReady: dialog signals

• control: the host processor calls the functions to be accelerated by starting the run of programs loaded in
controller’s program memory. The command is transferred through fromHost port. The synchronization is
done using the signals:

– flag: is the flag sent back by the accelerator, if needed, to notify the end of a process

– ack: acknowledges the receiving of the flag signal
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DESIGNING A COMPLEX DIGITAL
SYSTEM

In the previous chapter

In this chapter

•

•

•

In the next chapter

•

•

•
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Chapter 14

∗ RECURSIVE FUNCTIONS & LOOPS

In the previous chapter
the first part of this book ended with a chapter presenting the most promising physical support for parallel
computation. The main conclusion from the first part are:

• growing and optimizing a digital system means: composing & looping

• loop means autonomy

• loop mens segregation between simple circuits and complex control

In this chapter
the correlation between how features are added in the mathematical model of the partial recursive functions
and how the loops induce functional “growing” in digital systems is presented. The following correspon-
dences are stated:

• basic functions - no-loop combinational circuits

• composition rule - 1-loop memory circuits

• primitive recursive rule - 2-loop automata circuits

• minimalization - 3-loop processor systems

In the next chapter
we deal with the hierarchy of grammars and with the corresponding hierarchy induced by loops in the
associated digital machines. The main conclusions:

• restrictive generative rules means simple machines

• the grammar types and the digital orders are bijective

• the simplest Universal Turing Machine is possible as 0-state UTM

• basic hardware for computing means “search & select”.
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There are many explanations or motivations for the occurrence of computer science and of computers. We
prefer to believe that the strongest motivation was a theoretical one: the challenge offered by the decision problem
formulated by David Hilbert in 1900 at the International Congress of Mathematicians in Paris in his famous Math-
ematische Probleme. That was the most accurate form of an old problem un-formally stated 2500 years before by
Epimenides the Cretan when he said: “I lie”. Hilbert asked for a formal procedure.

The first important step was made by Kurt Gödel in his seminal paper discussing about the incompleteness of
some formal theories, published in 1931 [Gödel ’31]. Gödel proved that a formal system, having a complexity that
overpasses a certain level, cannot be, in the same time, complete and non-contradictory. In some formal systems,
an undecidable true sentence can be correctly constructed and we don’t have other chance than to add this new
sentence to the system. Gödel does not construct effectively such a sentence, but he shows the possibility of this
very complicated construction. The effective construction becomes a real challenge for mathematicians. (The
effective construction of an undecidable sentence had to wait a half century until, using the Lisp language, Ileana
Streinu wrote a few pages un-evaluable S-expression [Streinu ’85].)

The effective computation of the truth of a mathematical construct become a real challenge, thus in a half
decade after 1931 four computational models were proposed. Alonzo Church [Church ’36], Stephen C. Kleene
[Kleene ’36], Emil Post [Post ’36] and Alan M. Turing [Turing ’36] publish their basic papers in 1936.

All these models where, are and shall be important for computer science and for electronics because:

• recursive functions of Kleene founded the basic mechanisms in functional and structural developments of
computer architecture

• Turing machine was the main suggestion for the first computer structure and is, still, a referential model
(the Post’s computing model is substantially identical to that given by Turing, but is a consequence of an
independent work)

• the lambda-calculus of Church puts the base of the functional languages, such as the LISP programming
language.

Gödel proved that at least an undecidable sentence exists, but only Turing proved definitely that the decision
problem has no solution.

All computational models are theoretical models and cannot contribute to find concrete solutions for the com-
plexity of computing. A machine must be built! After one more decade, in 1945-46, John von Neumann imposes
the current used computer architecture [von Neumann ’45], based on the Turing suggestion and founded by the
Kleene model. (Unfortunately, the World War Two was one of the strongest motivations for accelerating the re-
search in this field.) Because the researches in computer science ignored, about twenty years, the lambda-calculus
of Church (until the LISP language development at the end of the ’50s) the functional approach was very much
delayed in computer science and in electronics.

Turing’s model says more about the control in a computing machine, rather than Kleene’s approach that shows
us many things about what actual computation is. For this reason the theory of recursive functions is more appro-
priate to be interpreted with circuits. This chapter is devoted to emphasize the relation between recursive functions
and the hierarchy of digital circuits based on loops. We try to prove that there are strong connections between
stages in defining a recursive function and the orders that define digital systems. The most important result proved
in this chapter is: the computing of any partial recursive computable function asks systems having at least
three included loops.

14.1 Kleene’s Recursive Functions
Recursiveness allows us to compute functions, defined in Nn with values in N, using few simple initial functions
and the following the basic rules: composition, primitive recursion, minimalization.

14.1.1 The Initial Functions
The initial functions represent a minimal set of simple functions that allow any computation with positive integers.
This set is not an optimal one. Some other elementary functions must be added for an efficient set of operations. But
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it will be obvious that these new functions are mainly based on these initial functions. In the same time these three
initial functions suggest the main functions of today’s computers: representation, computation, communication.
Let’s see the definition.

Definition 14.1 The initial functions are:

1. Z(x) = 0, the clear function

2. S(x) = x+1, the successor function

3. P(i,x1, . . . ,xn) = xi, the projection (or selection) function. ⋄

Indeed:

• the representation is based on the clear function

• the computation is based on the successor function

• the communication is mainly a selection realized by the projection function.

All the initial functions are total functions. Using the initial functions we can construct all computable func-
tions applying rules belonging to the next set:

1. the composition, for ”finite”, but algorithmic complex constructions

2. the primitive recursion, for compact, simple definition of n dependent computations

3. the minimization, for searching, using a simple rule, a value in a process that can be unending.

These are the three steps toward the completion of a strange process that is based on an unprovable thesis never
contradicted: the Church - Turing Thesis.

14.1.2 The Composition Rule
The composition rule introduces a sequential, two-step process. This sequential character allows us to use results
of a computation as input for another computation.

Definition 14.2 The composition rule allows us to construct the function

f (x1, . . . ,xn) = g(h1(x1, . . . ,xn), . . . ,hp(x1, . . . ,xn))

using the following p n-ary functions: h1(x1, . . . ,xn), . . . ,hp(x1, . . . ,xn) and a p-ary function: g(y1, . . . ,yp).⋄

A very important restriction is imposed by this rule: we can not start to compute the function g before the
completing the computation for the functions hi. For p = 1 this means a pure sequential process with no possible
(space) parallelism.

Example 14.1 If the function di f (x,y) = (x−y) represents the difference defined on (positive) integers (such that
5−2 = 3 and 3−5 = 0), then abs(x,y) = |x−y|, the absolute difference between x ∈N and y ∈N, is defined using
the composition rule by:

|x− y|= (x− y)+(y− x).

In this example:
h0(x,y) = (x− y)

h1(x,y) = (y− x)

and
g(y1,y2) = sum(y1,y2) = y0 + y1
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resulting:
abs(x,y) = sum(di f (x,y),di f (y,x)).

Note: the two functions di f (x,y) can be computed in parallel if the hardware resources allow, but the function
sum(y1,y2) can be computed only after the first two are completed. We call this restriction data dependency and it
is responsible for limiting the parallel processes in computing functions. ⋄

Example 14.2 The decrement function, dec(x) for x ∈ [0,n), is computed composing the basic functions as fol-
lows:

dec(x) = P(x,Z,Z,y2, . . . ,yn−1)

where: y2 = S(Z) and yi = S(yi−1) for i = 3, . . . ,(n−1). Results:

dec(x) = P(x,Z,Z,S(Z),S(S(Z)),S(S(S(Z))), . . .)

Let be n = 8. For this particular case, the definition of decrement becomes:

dec(x) = P(x,0,0,1,2,3,4,5,6)

thus: dec(5) = 4, dec(0) = 0.

14.1.3 The Primitive Recursion
Primitive recursion allows us to apply many times the same composition rule for performing a special kind of
computation. A process with n steps can be expressed in a condensed manner for any n. The size of definition is
in O(1). When we use the definition, the number n takes a certain value and it is expressed by O(log n) symbols.
Therefore, the size of an instance of the definition is in O(log n).

Definition 14.3 The total function: f (x1, . . . ,xp,y) can be defined using the total functions: g(x1, . . . ,xp) and
h(x1, . . . ,xp,y,w) applying the primitive recursion rule as follows:

f (x1, . . . ,xp,0) = g(x1, . . . ,xp)

f (x1, . . . ,xp,y) = h(x1, . . . ,xp,y, f (x1, . . . ,xp,y−1)).⋄

The previous definition describes an y-step process using only a number of symbols in O(1). In use, the
definition keeps also a small size, (O(log y)). Therefore, the primitive recursion express a simple action. The
previous rule, the composition, has a definition in the same order of magnitude as the described computation. The
primitive recursiveness has a more “expressive” appearance.

Example 14.3 The function sum(x1,x2) = x1 + x2, is computed, using the primitive recursive rule, as follows:

sum(x1,0) = x1

sum(x1,x2) = S(sum(x1,dec(x2)))

where the decrement function, dec(x) = x−1, is previously defined.
Let be sum(3,2). The primitive recursive rule works as follows:

sum(3,2) =
S(sum(3,dec(2))) =
S(sum(3,1)) =
S(S(sum(3,dec(1)))) =
S(S(sum(3,0))) =
S(S(3)) =
S(4) =
5. ⋄
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Example 14.4 The function called difference, di f (x,y) = (x− y), is computed using the following primitive re-
cursive procedure:

di f (x,0) = x

di f (x,y) = dec(di f (x,(y−1))).

⋄

By composition and by primitive recursion we construct the results. In many cases the result must be found in
a searching process. The next, last rule can be used to find the result only if it exists.

14.1.4 Minimalization

A less “natural” way to obtain a result is to look for it in an ordered searching process. Using this rule a set of
values can be progressively computed and tested as possible results of the computation process. In a formal way
this rule, the minimalization rule, is defined as follows.

Definition 14.4 The minimialization rule associates to each total function: g(y,x1, . . . ,xp) the function:
f (x1, . . . ,xp) whose value is the least value of y, if exists, for which g(y,x1, . . . ,xp) = 0 and is undefined if no
such y exists. We can write:

f (x1, . . . ,xp) = miny[g(y,x1, . . . ,xp) = 0].⋄

Example 14.5 Let be the function f (x) = x/5. It can be computed using minimalization using f (x) = miny[|5y−
x|= 0]. This function is partial computable because if x is a multiple of 5, then y = x/5, else y is undefined. Indeed,
for x = 13 results the following unending computation:
|5×0−13|= 13
|5×1−13|= 8
|5×2−13|= 3
|5×3−13|= 2
|5×4−13|= 7
. . . ⋄

The main problem introduced by this last rule is the halting of the process of computation. In the previous
example, if x is not a multiple of 5, then the computation is a never-ending process. The result is, theoretically,
forever undecided. Unfortunately, for such kind of computations that overpass certain complexity, we can not
decide if the machine halts or not. This is the famous halting problem, a generalization of the not less famous
Gödel’s theorem.

14.1.5 Classifying the Recursive Functions

It is very useful and consistent with real applications to make distinctions between classes of functions computed
using the previous initial functions and basic rules. For some applications we can use only a subset of these
functions and this subset can be so defined as the halting problem can be avoided. The main distinction there is
between primitive recursive functions and partial recursive functions.

Definition 14.5 The primitive recursive functions can be computed starting from initial functions and using re-
peated applications of the composition rule and/or of the primitive recursion rule. ⋄

Definition 14.6 A function is called partial recursive if it can be computed starting from initial functions and using
repeated applications of the composition rule and/or of the primitive recursion rule and/or of the minimalisation
rule. ⋄
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Definition 14.7 If the function g(y,x1,x2, . . . ,xn) has the property that the function

f (x1,x2, . . . ,xn) = miny[g(y,x1,x2, . . . ,xn) = 0

is a total function, than the function f is a (total) recursive function. ⋄

Theorem 14.1 The following inclusions are true:

(primitive rec. f unc.)⊂ (recursive f unctions)⊂ (partial rec. f unc.).⋄

Proof Starting from the definitions, the previous inclusions are evident. ⋄
Almost all the functions used in real applications are primitive recursive. For example, the division function

(that is partial recursive) can be avoided in all the applications involved in the electronics of signals. We use
sometimes partial recursive procedures for computing primitive recursive functions because of the simplicity of
the description they have. But in most of the cases the price is the increased execution time.

14.2 Circuit Implementations

All current approaches of the recursive functions domain pass from the theoretical level to implementations by
programs or related methods (such as microprograms). We believe that a circuit approach could be interesting
because some problems of time, of size and of complexity can be studied at this basic level. A good balance
between hardware executed functions and hardware interpreted functions can be found only if we have a realistic
image about the circuit implementation of the initial functions and of the basic rules. In order to be executed a
function must be implemented with digital circuits. The distinction between execution and interpretation become
very important at the computer architecture level. Our preliminary thesis is:

Simple computations can be executed and complex computations must be interpreted

We are interested in analyzing the possibility to implement by circuits the mechanisms involved in the recursive
functions theory.

The main goal of this chapter is to emphasize a very suggestive correspondence, between mechanisms involved
by recursion and the developing mechanism by loops and compositions used in digital circuits. We will use for
each function or rule optimal circuits. It is known the fact that any function can be computed using no-loop circuits.
In our approach we are interested only by the optimal circuits: with polynomial size and poly-log time. Using them,
in this chapter we will establish the correspondences summarized in the following:

• the initial functions - combinational circuits: loopless circuits (0−OS)

• the composition rule - supposes memory circuits: one loop circuits (1−OS)

• primitive recursivity - at least finite automata: two loop circuits (2−OS)

• minimalization - at least elementary processor realized as two loop coupled automata (3−OS).

14.2.1 Initial Functions & No-Loop Circuits

All the initial functions will be implemented with combinational logic circuits (CLC) having polynomial size and
poly-log depth (time). As we will see, the complexity of these circuits are not greater than O(1) (in fact O(log n)
for a certain instance of a definition, but we can consider them “almost” constant).
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The Clear Function & the Connections

For the clear function it is obvious that the solution is very simple: n inputs must be connected to the ground. We
can say that we use only wires, no time (no depth), no circuits. But, attention! In the new VLSI technologies wires
become more and more important, wasting time and area. Circuits become smaller and faster and wires remain at
the same dimension and introduce the same delays. The connections between circuits or subsystems play now an
important role in the system design. Therefore, attention to connections!

Wires will become soon a very important architectural component. An example: most of the time and of
the energy in the Connection Machine is used on the wires that interconnect all the 64K processors [Hillis ’85].
Another example is a GaAs RISC processor designed with special architectural features that pays much attention
to the delay introduced by the connections between the processor chip and memory subsystem [Helbing ’89].

The Projection Function & the Multiplexer

For the projection function a well known combinational circuit is the well fitted solution, it is the multiplexer
(MUX).

m×MUXn-

? ?

?

x1 . . . xn

i

log2 n

m

P(i,x1 , . . . ,xn)

m m

Figure 14.1: The selection circuits implementing the projection function

In Figure 14.1 is represented a selection circuit for n m-bit inputs. If each xi is coded with m bits, then m
n-ways MUXs are needed to implement the projection function P. The binary coded number i is applied to the
selection inputs of each MUX and xi are applied to the selected inputs of MUXs. Each MUX with n selected
inputs can be recursively defined by the structure represented in Figure 6.11. The elementary MUX (EMUX) is
a MUX with 2 selected inputs and, consequently, with one selection input. Using EMUX any MUX can be built
with S(n) ∈ O(n) and D(n) ∈ O(log n). (There is also a solution with S(n) ∈ O(nlogn) and D(n) ∈ O(1), but the
previous is more realistic and efficient because contains gates with constant number of inputs.)

The Successor Function & the AND Prefix Function Circuit

The successor function is implemented with an increment circuit based on the prefix computing network for the
logical function AND (PCNAND) and a linear array of XOR’s connected as in Figure 14.2. The XORs array
complements the bits selected by PCNAND according to the rule for increment function: the first bit switches and
the i-th bit must be complemented if all the precedent bits have the value 1. Indeed, PCNAND is an AND gate array
with n inputs, x1, . . . ,xn, and n outputs, f1, . . . , fn, having the following definition: f1 = x1, f2 = x1x2, and so on
until fn = x1x2 . . .xn. If the first i bits have the value 1, then the first i+1 bits switch in the complementary value.
The last output generates the extension signal.

Therefore, the successor function for n-bit numbers can be implemented with combinational logic circuits,
having polynomial size (S(n) ∈ O(n)) and poly-log depth (D(n) ∈ O(log n)).

Conclusion referring to initial functions

Is it the combinational solution the best for implementing the initial functions? We believe it is a good one, because:
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PCNAND

??? ?

a0 a1 a2 . . . an−1

x1 x2 x3 xn

f1 f2 fn−1 fn

b0 b1 b2 bn−1 bn

. . .

. . .

. . .

. . .

Figure 14.2: The combinational n-bit incrementer used for the successor function. It is made by a Prefix
Computation Network for the logical function AND (PCNAND) and by a linear array of XOR’s.

• the size of the resulting circuits remains in the limit of O(n) and we can not pretend to have for an n-input
structure the size less than this magnitude order

• the depth (time) of the circuits is in O(logn)

• the fan-in of all circuits involved are in O(1), more precisely f an− in = 2.

We have all the reason to say that these are optimal solutions.

14.2.2 Composition & One Loop Circuits
The structure associated with the composition rule is represented in Figure 14.3 in two versions:

• the direct connected version, without propagation control

• the pipeline connected version, with propagation control using clocked registers.

The first version, can be a full combinational version or not, consisting in two stages directly coupled (see
Figure 14.3a). In this approach the system works for only one input set of variables (x1,x2, . . . ,xn) on both levels.

In the second version (Figure 14.3b), the outputs of each levels are stored (memorized) in edge clocked regis-
ters. Results a pipeline like connection having all the advantages involved by this type of coupling. The main idea
is that the entire system works for two set of variables: the actual input (x1,x2, . . . ,xn) (on the first level) and the
previous input (on the second level).

Related with the structure imposed by the composition rule we can talk about two kinds of parallelism:

• synchronic parallelism or data parallelism realized at the first level, in both versions, because all the p hi
functions can be executed in parallel if we have sufficient hardware resources and if the entire input data is
available

• diachronic parallelism or time parallelism realized between the two levels, only in the second version that
has a pipeline structure.

Therefore, this computational model of recursive functions suggests us that the parallelism is a natural, but a
limited feature offered by the computational model. The model imposes also the distinction between the two kinds
of parallelism. In the same time the computational model limits the parallelism in the two forms emphasized. The
synchronic parallelism is limited by the inherent diachronic parallelism and the last by the limits imposed in the
pipeline structures by inherent loops, data dependencies, ... .
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g(y1 , . . . ,yp)
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Figure 14.3: The structures associated with the composition rule. a. Full combinational version: on the
first level of p structures, associated with hi, the computation can be made in parallel. The second level
can be activated only after all the circuits of the first level finished the computation. The computation
process is a sequence having two steps. b. Pipeline version: the outputs of the first level circuits are
stored in registers and the output of the entire circuit is also stored in a register. This approach allows a
pipeline parallelism.

The second (pipelined) version of composition is optimal in system design. The size of the system remains
in the same order, but the execution speed increases as consequence of the pipeline connection. Therefore, the
best solution for the composition rule is to choose a variant having at least the order 1, i.e., a system with at least
one loop, in the pipeline registers. The memory function inherent for 1−OS allows to control the synchronous
propagation in a high-speed parallel system.

Example 14.6 Let us define, using composition, the function acc(x1, . . . ,xn, which adds n numbers, as follows:

acc(x1, . . . ,xn) = sum(acc(x1, . . . ,xn/2),acc(xn/2+1, . . . ,xn)) =

= sum(sum(acc(x1, . . . ,xn/4),acc(xn/4+1, . . . ,xn/2)),

sum(acc(xn/2+1, . . . ,x3n/4),acc(x3n/4+1, . . . ,xn/2))) =

= . . .

until the number of variable used by acc become 2, when: acc(a,b) = sum(a,b). Results a (log2 n)-level binary
tree of sum functions. For example, if n = 8 results a 3-level tree of adders:

acc(x1, . . . ,x8) =

= sum(sum(sum(x1,x2),sum(x3,x4)),sum(sum(x5,x6),sum(x7,x8)))

A full combinational version supposes O(n) size and an O(log n) depth (time) performance.
The pipeline version of the circuit has the size in the same order but the execution time is in O(1) with a log n

latency.
The degree of data parallelism is n−1

log2 n , because we have log2 n levels of parenthesis and the total number of
additions performed is n−1.
⋄
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14.2.3 Primitive Recursiveness & Two-Loop Circuits

Primitive recursiveness involves repeated applications of the same composition rule having different, but easy to
compute inputs. The circuit associated with this rule is represented in Figure 14.4. If y = i is the input value, then
the Zero circuit from the i-th level outputs 1 and the MUX from the same level selects the value of the function g.
The upper levels are ignored and the lover levels computes the value of f , all MUXs being selected to transfer the
input 0, thus all h circuits receiving the appropriate input value from the output of the previous. If the functions
g and h are basic functions or are built using the composition rule starting from initial functions in the direct
connectable version, then the function f is computed by a combinational circuit having a polynomial complexity
and the depth in O(2n) if y ∈ [0,2n−1).
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Figure 14.4: The circuit associated with the primitive recursive rule.

It is quite obvious that the circuit for applying the primitive recursive functions has a recursive definition. Then
the complexity of this circuit is constant (the area used to draw the definition for any y has a constant value). But
the size and the depth are at least in O(2n) (because we don’t take into account the size and time for the functions
g and h). The circuit is too large and too slow.

For each primitive recursive form there is an iterative equivalent form that avoids the necessity of the ascendent
path from Figure 14.4. We can start directly with y = 0, incrementing it at each level and comparing with the input
value, y. Increasing the speed of computation and using a structure having the complexity in the same order
we obtain an equivalent structure. In Figure 14.5 we start from f (x1, . . . ,xp,0) = g(x1, . . . ,xp) and y = 0. The
computation is finished when the output of an Equal circuit is activated opening a tristate driver1 that puts the
final value to the output.

For both, the ascendent path and the descendent path in Figure 14.4, there are equivalent automata that imple-
ment sequentially the same functions (see section 4.5). We prefer the version from Figure 14.5 to be translated in a
sequential solution because their greater speed in computing the solution (the number of steps needed for finishing
the computation is half). As we know, a serial connected of identical combinational logical circuits, CLC, has

1A tristate driver is a driver with an additional input which disable its output switching it in a high impedance state (Hi-Z).
An enabled driver transmits to its output the input value.
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Figure 14.5: The iterative version for the combinational circuit that implements primitive recursion.

associated a sequential circuit that performs, in a number of cycles equal to the number of the identical levels, the
function executed by the original combinational circuit (see Figure 8.63). This sequential circuit is an automaton
realized with the previous CLC, that is used to close the loop over a state register (SR). Additional MUXs are used
for controlling the initialization and the interconnection between the two resulting automata. In Figure 14.6 we
represent a structure realized with two serial connected automata that is functional equivalent with the structure
from Figure 14.5. In this approach the magnitude order of time is the same as in the combinational version (be-
cause the execution is performed in a number of clock cycles equal with the actual value of y) and the size of the
circuit depends on the performed function, i.e., depends of how grows the value of function with the value of y.
But, even if the circuits g and h are very large, they are considered only once in the structure that performs f .

The solution with two serially connected automata has the minimal value for the product size-time. Indeed,

Spr rec(n) = Scount aut(n)+S f unc aut

an because:
Scount aut(n) ∈ O(n)

S f unc aut ∈ O(α(n))

Spr rec(n) is in “at least” O(n) but not “over pass” values from O(α(n)) depending on the actual form of g and h.
If the time for executing the function h is in O(β (n)), then the time for computing the function f is “at least”

in O(n) but not “over pass” values from O(n×β (n).
Therefore, the best solution for primitive recursive rule is indeed to be implemented as a two-loop system

(2-OS), because the product S f (n)×Tf (n) could be in O(n2) and in the worst case in O(n×α(n)×β (n)) . The
Conjecture 2.1 acts again promoting the sequential solution as the best solution.

14.2.4 Minimalization & Three Loops Circuits
What is the circuit associated with the minimalization rule? We can start in the same way as for the primitive
recursiveness, but we prefer, in this case, to draw directly the sequential solution in Figure 14.7. The circuit
consists in two loop-coupled structures:
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Figure 14.6: The sequential version of the circuit for primitive recursion.

• Counter Automaton: starts from the state/output equal with zero and increments it at each clock cycle until
the value computed by the second structure is zero

• Functional Circuit: is a structure that computes the function g and tests the output value generating the Valid
output signal.

If y is represented on n bits the size of the counter and the size of the circuit Zero are both in O(n) and the
size of the circuits g depends on the function to be computed. The time is also “at least” in O(n) but can be larger,
depending on the actual function.

The time is in O(2n) if y exists, else the circuit runs for ever.

Theorem 14.2 The partial recursive functions need at least three loops to be implemented with optimal circuits.
⋄

Proof Indeed, the minimalization structure has at least order 3, because the Counter Automaton is a two-loop
system and a new loop is closed over it. If the Functional Circuit has an order bigger than 2, then the order of the
entire structure increases over three. ⋄

The necessity to test the value of the function g imposes a new loop and more, generates a big and strange
problem: the halting problem. Beyond the function having values that are constructed, there are functions with
values which must be searched. But, as we know, many searched things do not exist.

14.2.5 Conclusions
As we know all functions can be computed using no-loop circuits if any size and complexity are both actually pos-
sible. But if we need effective machines we must have simple, polynomially sized and fast (log-time) solutions.
In this respect, we can conclude:

• the initial functions accept combinational, no-loop variants

• the composition rule asks pipelined, one-loop solutions

• the primitive recursive rule requires compulsory two-loop circuits in order to avoid exponentially extended
size

• the minimalization rule imposes three loops, the first for pipelining, the second to count (to compose the
increment with the increment) and the third to decide.

The actual circuits have more features in order to increase the performances and the flexibility.
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Figure 14.7: The circuit associated with the minimalization rule: the sequential version. The circuit is
made up by two loop coupled finite automata. The first “makes proposals” starting from y = 0 and the
second verifies if the proposed value can be accepted or not. If the value of y is found, then both automata
stop, the second generates the Valid output signal and the first generates the final value, if any.

14.3 Time & Mathematics

In the whole history of mathematics the time does not play any specific role, until the contemporary revolution
induced it by the computer science. The time was a very important variable only in physics. But, when the
computation leaves the pure intellectual domain and becomes a process outside the human brain, time starts to
play a very important role, because the computational process means

• structural resources involved in computation

• time for using the structural resources.

Let us remember that for Gödel’s construction we need a big amount of resources (space) and a big amount of
time. This challenge turns computation from a process only theoretically supported by the computational models,
as the model of partial recursive functions, toward an actually performed process on physical structures. (Now
many of us are more and more convinced that any physical process can be assimilated with a sort of computation.)

Turning back to the recursive functions, apart of the constant or log time of the structures associated with the
initial functions, each basic rule introduces, step by step, the effects of the time in the process of the “mechanical”
computation. We showed that:

• the composition rule needs a sequential approach

• the primitive recursiveness needs a time proportional with the value of y

• the minimalization rule can generate an never-ending computational process.

Computational mathematics, experimental mathematics and related domains are dominated by time as a fun-
damental variable. The basic mechanisms of computation, emphasized even by the recursive function theory, are
responsible for this intrusion of time in the silent, atemporal world of mathematics.
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14.3.1 Sequentiality
The first event in the process of making the mathematics time-dependent is made when we try to construct a
function using other functions. Starting from the definition of the composition rule, it is evident that we can not
compute the value of the p-ary function g before the end of the computation of all p functions hi. In this case the
composition rule introduces the idea of sequentiality in the process of computation. The composition rule supposes
two steps:

• the first step for computing (sometimes in parallel) all the functions hi

• the second step to compute the function g.

Generally speaking we have no solution to perform in parallel the computation of all the functions involved in
the computation of f using the composition rule. We wish to emphasize that the computation is characterized in
this form by an inherent sequentiality.

Imagine us a computation where each composition is characterized by p = 1. In this case any parallel process
is avoided. There is no machine which performs in parallel this particular computation.

The difficulties in performing parallel processes and the impossibility to define a true parallel architecture are
rooted the composition rule.

14.3.2 O(y) Time
The second step on the way of introducing time in computational mathematics is allowed by the primitive recursive
rule. This rule supposes a sort of composition applied many times. If the composition introduces a constant time,
then the recursiveness will introduce a time that depends on the input variable y. A recursive process wastes time
linearly increasing with y. Indeed, the primitive recursiveness supposes applying the function h y times. Because
we can not compute the value of f (x1,x2, . . . ,xn,y) before the computation of the value for f (x1,x2, . . . ,xn,y−1),
the time becomes proportional with the value of the variable y.

A recursive definition is a concise and a graceful expression, but the time involved for the associated computing
process is in O(2n) if y is expressed with n bits. The action of the time becomes oppressive if we use a concise
expression.

For a process that uses multiple recursive expressions the time can grow, becoming characterized by a higher
order polynomial or even by an exponential relation.

The primitive recursive mechanism is less complex but wastes sometimes big sized structural resources and all
the time much time. The concision of the recursive expression is paid always with time, sometimes with big sized
and complex circuits.

14.3.3 Infinite Time
Man is an inquisitive creature and the price paid for his curiosity in the computation domain is the halting problem.
Many times man, helped by his powerful computers, looks for nothing, but he does not know this. More, even the
machines that does it “has no idea” about the remaining time until the computation ends. So, the machine never
halts and man becomes anxious. This strange situation is rooted in the basic rule of minimalization because the
time involved by this mechanism can go to infinite.

Indeed, the last step in the process of making the mathematics time dependent is made by applying the mini-
malization rule. Even time grows very much in the computation of the functions that use primitive recursiveness
it remains in the finite domain and is predictable. Now, using the minimalization rule time can become infinite if
the value of the input variable has no associated value in the domain of output variables. This rule runs forever
for some input value and we don’t have a formal procedure to predict these situations. The halting problem is
undecidable. If we have a partial recursive function definition and an input value, then the question is: the process
of computation does halt or does not halt? This is an unsolvable problem (see subsection 9.3.5).

The problem which rise in this case is the opportunity to compute certain partial recursive functions. Maybe
it is a non natural phenomenon because the nature is not partial recursive. Or it is, but then it uses its “partial
recursive behavior” to evolve toward exhausting TIME & MATTER.
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14.4 Problems
Composing basic functions

Problem 14.1 Suppose we have only elementary projection operators: EP(i,x1,x0) with i ∈ {0,1}. Using it and
the composition rule solve the problem of selecting four variables: P( j,x3, . . . ,x0).
Hint: represent the number j using the binary form.

Using primitive recursion

Problem 14.2 Using basic functions, composition and primitive recursion define the addition of two numbers:
ADD(x1,x0).

Problem 14.3 Define multiplication of two numbers, MULT (x1,x0), as a primitive recursive function using the
primitive recursive rule.

Problem 14.4 Draw the circuit associated to decrement function, DEC(x) = x−1, defined as a primitive recursive
function. Optimize it reusing as much as possible the same circuit to solve different part of the system.

Problem 14.5 Define subtract function, SUB(x1,x0), as a primitive recursive function.
Hint: if x1 < x0 then SUB(x1,x0) = 0, because the function is defined in N2 with values in N.

Problem 14.6 Define the function computing the scalar product of two n-elements vectors.

Problem 14.7 Define the function which performs division, DIV (a,b), as a partial recursive function.

Problem 14.8 Define the function MOD(a,b) which compute a(mod b).

Problem 14.9 Define the the predicate function, ZERO(x), which returns 1 if the input value is 0 and 1 if the input
value is different from 0.

Problem 14.10 Define the predicate function, EQUAL(a,b), which returns 1 only if the two inputs have the same
value.

Computing with circuits

Problem 14.11 Draw the circuit associated to the function ABS(a,b) = |a− b| defined as a primitive recursive
function.

Problem 14.12 I hope that it will be a challenge for the reader to look for a solution for a prefix network having
S(n) ∈ O(n log n) and D(n) ∈ O(1), using gates (operators) with any number of inputs. This solution exists!

Problem 14.13 Using 2-input AND gates draw the optimal solution for an AND prefix network for n = 8.

Problem 14.14 Write a Verilog description for a 16-bit AND prefix network using modules of 4-input AND prefix
network.

Problem 14.15 Draw an 8-input incrementer using only 2-input gates. Evaluate the size and the depth of the
resulting circuit.

Problem 14.16 Using elementary multiplexors draw the selector circuit for a 4 4-input selector (projector). Eval-
uate the size and the depth of the resulting circuit.



514 CHAPTER 14. ∗ RECURSIVE FUNCTIONS & LOOPS

Problem 14.17 Solve the problem of defining the function acc(x1, . . . ,xn) using the following recurrence

acc(x1, . . . ,xn) = sum(x1,acc(x2, . . . ,xn))

and compare the results with the performance evaluated in Example 9.6.

Problem 14.18 Draw the circuits resulting for the acc structure implemented for n = 8 in two cases: (1) Example
9.6, (2) previous problem.

Problem 14.19 Design the circuit associated with the primitive recursive definition of addition.
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Figure 14.8:

Problem 14.20 What is the function performed by the circuit represented in Figure 14.8? How modifies the
function if the module zero (the basic function generating the number zero) is substituted with one having the
function ident, which transfers to output the unmodified input (ident(x) = x).

Problem 14.21 Design the circuit associated with the primitive recursive definition of MAC (multiply and accu-
mulate or the scalar product of two vectors). The circuit compute the function ∑ai×bi for a sting of n pairs
{ai,bi}. Evaluate the size and the execution time of the resulting circuit.

Problem 14.22 Design the circuit associated with the primitive recursive definition of exponentiation. Evaluate
the size and the execution time of the resulting circuit.

Partial recursive functions

Problem 14.23 Design the circuit associated with the partial recursive definition of division.

Problem 14.24 Design a 3-loop circuit for computing the integer part of binary logarithm of n-bit integers. Com-
pare its size with a combinational solution which solves the problem in constant time.
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Applications

Problem 14.25 Design a carry-look-ahead generator using the prefix network concept.

Problem 14.26

14.5 Projects
Project 14.1

Project 14.2
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Chapter 15

∗ CHOMSKY’S HIERARCHY & LOOPS

In the previous chapter
the constructive mechanism of Kleene’s recursive functions was put in correspondence with the mechanism
of closing loops in digital systems, emphasizing:

• the need of at least three loop to do any computation with a digital system

• how the loop fructifies the simple aspects of computation

• that a new feature asks for an additional loop

In this chapter
the parallel between Chomsky’s hierarchy and loop induced classification is presented. The following cor-
respondences are proved:

• type 3, regular grammars - 2-loop, automata systems

• type 2, context free grammars - 3-loop, processing systems

• type 1, context dependent grammars - 4-loop, computing systems

In the next chapter
the meaning of the term information is analyzed from different view points:

• Chaitin’s algorithmic information theory

• Draganescu’s general information theory

• the functional information theory

The correlation between closing loops and different forms of information are presented.

517
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The correspondence between the formal languages and digital machines that recognize and/or generate them
is a well-known subject. Noam Chomsky has established a hierarchy in formal languages. Therefore, we can
ask the question: the machines associated to each type of formal language are they belonging to a corresponding
hierarchy?

In this book we started with a developing mechanism for digital systems, generating an ordered structural
hierarchy, and we continued associating to this structural hierarchy a functional hierarchy. Each new order having
more autonomy accepts functional gains. We proved that the functional gain, passing from an order to the next, is
given by an additional structural loop.

This functional hierarchy will lead us to emphasize a well-fitted correspondence that associates to each lan-
guage type a structural order. Therefore, our main aim in this chapter is to prove the following correspondences:

1. type 3 languages - two loops machines (2-OS)

2. type 2 languages - three loops machines (3-OS)

3. type 1 languages - four loops machine (4-OS)

If the “expressiveness” of the languages grows, from 3 to 1, then the autonomy of the associated machines must
also increase.

15.1 Chomsky’s Generative Grammars
Noam Chomsky’s papers on formal languages, starting from ’50s, have founded many technical approaches in
computer science, from the automata theory to the high level languages and computational linguistics. This section
is devoted to introduce only the basic concepts necessary to explain the correlation between the formal languages
and the associated physical structures.

Definition 15.1 The finite set of symbols A is an alphabet and the infinite set of strings built with the symbols of A
is A∗. ⋄

Definition 15.2 A language L, finite or infinite, is a sub-set of A∗. ⋄

Two kind of formal languages can be specified:

1. complex formal languages, by an explicit enumeration of the elements of the subset L

2. simple formal languages, given by the rules for generating the subset L.

Obviously, the second is the best way to define a language because it gives us a concise, simple form to manipulate
a big size set (frequently infinite). The generative grammars were introduced by Noam Chomsky in order to define
and to study the properties of the programming languages. Choosing the second way the researchers decided to
study only the simple languages having a constant sized definition. The first way is compulsory only for complex
languages which have no rules to define them.

Definition 15.3 A generative grammar is defined as the 4-tuple G = (N,T,P,n0) where: N is the finite set of the
non-terminal symbols, T is the finite set of the terminal symbols, P is the finite set of the generation rules, or
productions, by the form p→ q with: p ∈ (N ∪T )∗ is a non-empty string of terminals and non-terminals having
compulsory an element from N, q ∈ (N∪T )∗; n0 is the start symbol. ⋄

Definition 15.4 If n0→ p1→ p2→ . . .→ q and all the production rules used are from P of G, then we say that q
is generated in G starting from n0: n0⇒ q. ⋄

Definition 15.5 The language generated by the grammar G is the set L(G) = {p | n0⇒ p}. ⋄

Regarding to the generating rules, Chomsky emphasized three restrictions:



15.1. CHOMSKY’S GENERATIVE GRAMMARS 519

first restriction the length of p cannot be larger than the length of q in the production p→ q

second restriction p has length equal with one in the production p→ q

third restriction the string grows by the generative mechanism only at one end.

Definition 15.6 The generative grammars are classified as follows:

• type-0 grammars, having unrestricted rules

• type-1 grammars, named context-sensitive grammars, having the productions limited by the first restriction

• type-2 grammars, named context-free grammars, having the productions limited by the first and second
restriction

• type-3 grammars, named regular grammars, having the productions limited by the first, second and third
restriction. ⋄

Definition 15.7 The language L(G) is a type-i language, if the grammar G is a type-i grammar, for i = 0,1,2,3. ⋄

Definition 15.8 The set Li is the set of type-i languages, for i = 0,1,2,3. ⋄

Theorem 15.1 L0 ⊃L1 ⊃L2 ⊃L3. ⋄

Proof Directly, using the Definition 9.6. ⋄
Two functions are involved in the relation between languages and machines: a string belonging to a language

must be recognized or must be generated. Recognition and generation are fundamental functions in digital
processing. Indeed, a string of symbols has a meaning that must be understood (recognized) and, according to the
recognized meaning, an answer is computed (generated). One of the simplest processing models can be proposed
according to these two steps. The schematic diagram describing it is shown in Figure 15.1, where:

RECOGNIZER is a digital system or a process that verifies if the input string has a meaning and recognizes that
meaning

GENERATOR is a digital system or a process that, starting from the received meaning and from its own internal
state, modifies the internal state and generates the output string.

RECOGNIZER GENERATOR- - -
IN OUT

Figure 15.1: Processing as Recognition & Generation

The simplest digital system having an internal state is the automaton. Therefore, starting from the second
order systems (2-OS) and ending with the fourth order in digital systems, the characteristics regarding recognition
and generation will be analyzed in correlation with the associated formal languages.

The main formal constraint we impose in recognizing and generating languages is to use only simple machines,
i.e., machines with constant sized definitions. For a string of n symbols, we must use a machine having a definition
with the size belonging to O(1), even if the size of the machine belongs to O( f (n)).

The small complexity, even if the system size or the input string are very large, is the key to define useful and
easy to build machines. There are two theoretical types of machines:

infinite machines if CMachine ∈ O(g(n)), when the input dimension is in O(n)

finite machines if CMachine ∈ O(1) having a constant size, independent of the input dimension (even if for an
infinite input string the machine has a finite size; this being the deep meaning of the term “finite automaton”).
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If the complexity of machines is “infinite” it is out of our interest; we are unable to “say” anything about an
“infinite” machine because the definition is useless to handle. The criteria upon which we select the useful machine
is to be a finite machine, i.e., to have a constant complexity.

The previous discussion is very important because any language can be recognized and generated using any
type of physical machine. We can use for all languages combinational circuits or finite automata. The theory
imposes restrictions because of the efficiency of defining and building concrete machines. For example, we can
design an automaton that recognizes the context free language L2, but this automata must have a number of states
in O(n) for processing the strings having maximum n bits. This automaton will not be a finite automaton, it will be
an infinite machine having a huge definition. Therefore, we associate optimal machines with languages only under
the restriction that the machine must be simple because they have constant definitions, even the size is theoretically
unbounded.

Theorem 15.2 The formal languages generated by Chomsky’s grammars and the machines that recognize and/or
generate them can be optimal associated as follows:

1. L3 - finite automaton

2. L2 - push-down automata

3. L1 - linear memory bounded automata

4. L0 - Turing machines. ⋄

All the textbooks prove this theorem and in the next section we will give some proofs regarding it with emphasis
on the correlation between the type of a language and the number of loops closed inside the associated machine.

15.2 Grammar Types & Number of Loops
This is the main section of this chapter and its aim is to prove the consistency of the described developing mecha-
nism of digital systems using a new argument: the correspondence with another hierarchy emphasized in a related
domain: Chomsky’s formal languages theory. Maybe some important thing happen when a new loop is added in a
digital system if it is the only way to move from a machine associated with a type of formal language toward the
machine associated with a more “expressive” language in the hierarchy. Let us examine this strange effect of the
correlation between the machine’s autonomy and the expressiveness of the language.

15.2.1 Type 3 Grammars & Two Loops Machines (2-OS)
Here we prove that a simple (finite) digital system must have at least two internal loops for recognizing or gener-
ating the regular (type 3) languages. We will start reminding some basic results in formal language theory.

Theorem 15.3 Any type-3 languages can be recognized by the final states of an initial deterministic half-
automaton. ⋄

Indeed, because of the fact that the regular grammars generate only at one end of the string the “knowledge” of
the automaton must refers only to the last received symbol. Therefore, the number of states can be finite because
the alphabet is also finite. In order to offer supplementary information about the string some counters must be
added, but a new loop is not compulsory.

Theorem 15.4 Any type-3 language has a non-deterministic finite automaton which generates it. ⋄

For similar reasons a finite automaton is enough for generate randomly regular strings. A regular string grows
only according with the last symbol generated and a randomly selected rule from which are applicable.

Now, returning to our subject, we must say something about the minimum number of loops needed for building
a machine that recognizes or generates the regular languages.
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Theorem 15.5 The lowest order of a system that implements any finite automaton is two. ⋄

Proof We remind that finite automaton is defined by the 5-tuple A = (X ,Y,Q, f ,g), where: X is the finite
input set, Y is the finite output set, Q is the finite set of the states, f : X ×Q→ Q is the state transition function
and g : X ×Q→ Y is the output transition function. The structure of a finite automaton (Mealy without delay) is
presented in Figure 15.2, where:

CLC

Master Latch
1-OS

Slave Latch
1-OS

? ?

?

?

?

X

Q

0-OS

Y

? ?
CK CK’

REGISTER

	

Figure 15.2: The internal structure of a Mealy automaton

• CLC is a combinational logic circuit that computes the transition functions f and g

• REGISTER is a collection of D flip-flops having a two level internal organization:

– Master Latch, which is a collection of one bit latches that store the current state (the current value
from Q)

– Slave Latch, which is a latch that allows to close in a non-transparent fashion the loop over the en-
tire system, allowing a synchronous behavior (it is avoided if an automaton is designed in the asyn-
chronous variant).

In the system there are two level of loops:

• the first loop level in each one bit latch (from the master latch), allows the storing function

• the second loop level (through CLC, Master Latch and Slave Latch) is imposed by the state transition
function, f , which is defined in X ×Q, with values in Q. Slave Latch has only an electrical role, allowing
only the synchronous transition of the system under the control of the clock signal. ⋄

We can summarize saying that two levels of loops are enough to manage regular languages because:

• the first loop is used to build the circuit that stores the last received or generated symbol: the master latch
from the state register

• the second loop, closed through register and combinational circuit, is for sequencing the process of recog-
nition and generation.

No more memory is needed because the productions are very simple. The string can be recognized (understood) in
“real” time because of the simple rules which generated it. The recognition process can fail before the ending of the
string, because each symbol is related (correctly or incorrectly) only to the previous symbol. The finite automata
are the simplest digital machines that recognize and generate regular strings. We can define a more structured
simple machine, but never a less structured machine having the order 1 or 0. A 0-OS or a 1-OS can be used, but
only renouncing to the simplicity.
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15.2.2 Type 2 Grammars & Three Loops Machines (3-OS)

We are expecting that the step towards the type-2 languages, more expressive languages, should require a better,
more autonomous machine to recognize or to generate them. Do it work the automata dealing with the context-free
languages? Yes, they work, but not as finite automata. Only “infinite” automata are useful for these purposes. If
we don’t agree “infinite” automata, then third order systems (3-OS) must be used. An “infinite” automaton has
a space state dimensioned according to the input set dimension, or according to the length of the input sequence.
If we wish to use an automaton to recognize strings belonging to the second type language, then an automaton
having |Q| ∈ O(n) must be used, where: n is the length of the string and |Q| is the number of states. Our aim is to
investigate only the finite, simple machines and in this respect we must find a solution having constant complexity.

Let us start with a short discussion about the classical example offered by the language {anbn|n > 0}. If we
want to recognize this language using a half-automaton, then the problem raised is to know what is the number of
a’s received before the first b. The machine must memorize somewhere the number of received symbols having
the value a. The only place for an automaton is in the “state space”, but in this case the automaton becomes an
“infinite” machine. The solution to maintain the machine in the limit of the simple machines is to add a kind of
memory to “count” and “memorize” the number of a’s in order to compare it with the number of bs. Instead of
an automaton is better to use the machine represented in Figure 15.3, where the reversible counter counts up the
received as and counts down for each received b. Thus the finite automaton helped by the counter (an “infinite”
but simple automaton) solves the problem.
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Figure 15.3: Finite automaton with counter - a 3-OS that recognizes the language {anbn|n > 0}

The counter is a very simple “memory”, but has the inconvenient that forgets in the “reading” process. Another
inconvenient is its loss of generality. A more general memory is the stack memory. It also forgets by reading but it
is able to store the received string. Let us remember the push-down automata presented in 5.3.1 and Example 5.3
where the family of strings recognized belonged to a type-2 language. For general situations the next well known
theorem works.

Theorem 15.6 All type-2 languages can be recognized by the final state of a push-down automaton (PDA) (see
Definition 5.1). ⋄

The main remark is that a PDA is a small and simple machine because the automaton is a finite machine and
the stack is an infinite, recursive defined machine.

Theorem 15.7 Any type-2 language are generated by a non-deterministic push-down automata. ⋄

And now, what is the main difference between a finite automaton and a PDA? What is the main step done in
order to have a machine that recognizes or generates type-2 languages?

Theorem 15.8 The lowest order of a system that implements a push-down automaton is 3. ⋄



15.2. GRAMMAR TYPES & NUMBER OF LOOPS 523

Proof Because the push-down automata is build using a finite automaton loop coupled with a push-down stack
(see Chapter 5 and Figure 9.9), then it is a third order system. Indeed, a finite automaton is a second order system
and the push-down stack has the same order because it is an “infinite” automaton (the stack implementation implies
a reversible counter serially composed with a RAM). The third loop through the stack has the role to memorize
“the number n”, to memorize the additional relation between the elements of the generated string (in our simple
example the stack memorizes the value n). ⋄

The stack is the simplest memory device because:

1. stores only strings

2. has the access only to one end of the string (last - in first - out)

3. the read operation is destructive (the memory forgets the read information because of the access type).

The simplicity is the reason for using this memory in order to build the first machine a little more complex than
a finite automaton. The first step beyond the automata level is made by PDA. But the same simplicity is also the
reason for which we must renounce to this memory if we want to approach the next type of languages. For the next
step we need a memory in which we can access many times the same stored content. We need a memory who does
not forget when it remembers. Recognizing or generating the context dependent languages will implie to search
for some substrings many times, in order to evaluate the context for different received or generated symbols.

15.2.3 Type 1 Grammars & Four Loops Machines (4-OS)
Let’s try to solve the recognition of a language from L1 using an automaton! Even an “infinite automaton”. After
two minutes of thinking my conclusion is to leave this pleasure to other people ... . More chances we have with a
pushdown automaton, but this solution implies also an “infinite” number of states for the automaton. It is evident
the necessity to make the next step in introducing a new feature for the recognizing/generating machine.

For example when we try to build a machine associated to the language {anbncn|n > 0} we must add a sup-
plementary device. Indeed, if we try to use a PDA for recognizing this language we will be in impossibility to
finish our work because after reading the a’s from the stack the information about n will be lost and we need this
information for “counting” the c’s. We must add something to compensate this disfunctionality. We must think to
add a new reversible counter. But, this solution leads us toward the third loop.

In the general case we can use for L1 a finite defined machine (a machine with CMachine(n) ∈ O(1)) only by
adding, to the push-down stack automaton, a new push-down stack to make a back-up for each symbol read from
the first stack. In this case a new loop is closed in the machine and it becomes a four order system (4-OS). The
new stack compensates the limit of the stack memory that forgets by the reading.

The third loop of the system is necessary because it gives us access to a new external memory. This additional
memory was imposed because a restriction that acts on the productions that define the grammars has been removed.
But, the effect of the additional memory can be substituted if the machine should be equipped with a memory
having more features: the linear bounded memory.

Definition 15.9 The linear bounded automaton (LBA) is a finite automaton (FA) loop connected with a linear
bounded memory (see Figure 15.4) that performs in each cycle the following sequence of operations:

1. generates to the output DOUT the content of the current accessed cell

2. stores to the current accessed cell the symbol applied on the input DIN

3. changes the accessed cell with the next right cell (UP) or the previous left cell (DOWN), or maintains the
same accessed cell (-) (working like a bi-directional list memory). The formal definition of the LBA is:

LBA = (I∪{#}, Q, f ;q0)

where: I∪{#} is the finite alphabet of the machine, Q is the finite state set, q0 ∈ Q is the initial state of the
automaton and f is the transition function of the entire machine:

f = (I∪{#})×Q→ (I∪{#})×Q×{UP, DOWN, −}
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with the very important restriction: the symbol # is prohibited to be substituted. In each state, starting from
the symbol read from memory and from the state of the automaton, a new symbol is written back into the
memory, the automaton switches in a new state and the cell for the next state is selected. In the initial state
of the machine the automaton is in q0, the memory contains the string to be processed limited on both ends
by # and the first symbol from the string is accessed. ⋄

FA Memory

- Linear Bounded

�

?
DIN

DOUT

{UP, DOWN, −}

Figure 15.4: Linear Bounded Automata

Using the machine just defined the context dependent language were studied from the point of view of the
machine that recognizes or generates it.

Theorem 15.9 The context-sensitive languages (type-1 languages) are recognized only by the final states of a
linear bounded automata. ⋄

If the string to be recognized is in a memory in which after reading a symbol it can be written back, then it can
be inspected many times in order to perform a more complex recognizing process.

Theorem 15.10 The context-sensitive languages are generated only by the machines that are at least linear
bounded automata. ⋄

The possibility to re-memorize suggests us a new loop.

Theorem 15.11 The lowest order of a system that implements a linear bounded memory automaton is 4. ⋄

Proof The simplest memory having non-destructive reading can be made by loop connecting two push-down
stack memories. For each POP, from the initial stack, a PUSH with the same symbol or another, in the added
stack, is performed. For each POP from the added stack, a corresponding PUSH can be made in the initial stack.
Thus, these two stacks perform the functions of a memory which doesn’t forget when reading. The sizes of each
stack can be linearly bounded to the string’s length. Thus, the two stacks simulate a bi-directional list.

Because a push-down stack is a 2-OS, a memory with non-destructive reading is a 3-OS (made by loop con-
necting two stacks) and a linear bounded automaton is a 4-OS (see Figure 15.5). ⋄

AUTOMATON

. . . . . . . . . . .

. . . . . . . . . . .

...........

...........

- -

? ?
6

-�
LIFO 0 LIFO 1DATA

COM 0 COM 1

X Y

Figure 15.5: Push-down automaton with an additional stack memory

An equivalent structure for LBA is presented in Figure 15.6, where:
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UDCOUNTER

RAM
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?
-

6
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DOUT

ADR

{UP, DOWN, −}

The third loop

The fourth loop

]

9

Figure 15.6: Automaton with Linear Bounded Memory

• AUTOMATON is a finite automaton (a 2-OS)

• UDCOUNT ER is an “infinite” automaton, having a simple structure (CUDCOUNT ER ∈O(1), even the size is
SUDCOUNT ER ∈ O(logn)), used to point a symbol in memory

• RAM is a random access memory for storing the string (a first order system)

This structure has two loops over a finite automaton. Therefore, it is also a 4-OS. The structure is more complex
but the size is minimal. Instead of the previous solution, in which the content “moves” in front of the automaton,
now the content of the memory is pointed by the content of an up-down counter. Now the pointer moves and the
content is stable in RAM.

The hardware requirement for context-sensitive languages implies a more structured and a more functional
segregated machine. This machine has two supplementary loops added to an automaton with two distinct roles:

• the first, through RAM, for accessing an external memory support

• the second, through UDCOUNT ER and RAM, for accessing an external memory function: a bi-directional
scanned list.

The list can do more than the stack. Both are strings but the second allows only a limited and destructive access
to the content of the string. In a memory hierarchy the list has a higher order because it is equivalent (sometimes
it is implemented so) by two loop-coupled stacks.

15.2.4 Type 0 Grammars & Turing Machines

The computational model of the Turing machine is responsible, together with Kleene’s model, for the (too) strong
imposed von Neumann architecture [von Neumann ’45] of the actual computers.

Definition 15.10 Turing Machine (TM) is a finte automaton (FA) loop connected with an infinite memory (Figure
15.7). The automaton performs in each cycle the following sequence of operations:

1. receives from the output DOUT the content of the current accessed cell in the memory

2. stores to the current accessed cell the symbol generated, on the input DIN, according with the own state and
with the received symbol

3. changes the accessed cell with the next right (UP) or next left (DOWN) cell, or maintains the same accessed
cell (-).



526 CHAPTER 15. ∗ CHOMSKY’S HIERARCHY & LOOPS

The formal definition of the TM is:
T M = (I, Q, f ;q0)

where: I is finite alphabet of the machine, Q is the finite state set, q0 ∈ Q is the initial state of the automaton and
f is the transition function of the entire machine:

f = I×Q→ I×Q×{UP, DOWN, −}.

In each state, starting from the symbol read from the memory and from the state of the automaton, a new symbol
is written in the memory, the automaton switches in a new state and the cell for the next state is selected. In the
initial state the automaton is in q0, the memory contains the string to be processed ended on both ends by # ∈ I,
the selected symbol from the string is the first symbol. ⋄

FA Infinite Memory

{UP, DOWN, −}

? . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

-

�

DIN

DOUT

Figure 15.7: The Turing Machine

A detailed structure of TM is presented in Figure 15.8 for emphasizing its three main components:

1. the finite automaton (FA)

2. the infinite automaton that is the reversible counter, UDCOUNTER, a simple recursive defined device

3. Infinite RAM (also a simple recursive defined structure) addressed by UDCOUNTER.

Theoretically, the Infinite RAM and UDCOUNTER are both more than two “infinite” machines because they
must be in fact infinite. Therefore, TM is not a real machine and we can not classify it as a digital system; we can
not discuss about the order of TM.

Type-0 grammars and the associated languages are characterized with rules having no restrictions. The last
restriction being avoided (the string length can not be reduced in any step of the generative processes), the memory
space cannot be evaluated before the process of generating or recognizing the string (in the generative process the
string can reach an unpredictable length). Therefore the memory must be theoretically unlimited.

The formal language theory is centered on the context free (type-2) languages because these are the most used
programming languages. Therefore, it is enough to study the languages that border the context free languages,

FA

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

U/DCOUNTER

. . . . . . . . . . . . . . . . . . . . .

-

�

-

Infinite RAM

?
ADDRESS

DIN

DOUT

{UP, DOWN, −}

Figure 15.8: The structure of a Turing Machine
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i.e., regular languages and context dependent languages. Languages simpler that the regular language and, in the
same time useful, maybe do not exit. But a question rises: are there languages between type 1 languages and
type 0 languages? In other words, is there a less restrictive condition that the restriction imposed to the context
sensitive language? The answer to this question should become important if we will need formal languages more
less restrictive (or more “expressive”) than the current ones.

15.2.5 Universal Turing Machine: the Simplest Structure
Is TM a simple or a complex machine? The complexity of TM is given by the complexity of the finite automaton
because this part of the machine is actualized for each distinct problem. The finite automaton contains the single
random structure from a TM: the combinational circuit that closes the loop of the automaton. We will prove that
the structural complexity of TM can be reduced only transforming it in the Universal Turing Machine (UTM).

Early theoretical studies where devoted to reduce the number of states of the finite automaton with a minimal
increasing of the number of symbols in the alphabet I [Shannon ’56]. In this approach the complexity of the finite
automaton increases very much. But we believe that, instead of reducing the number of states, the more important
thing is to reduce the structural complexity of UTM. In this respect we will present the simplest UTM built only
with recursive defined circuits.

The problem is to define a machine whose structure can remain unchanged when the executed function
changes. In this case we need a machine with:

• an abstract representation for the needed TM, as a string of symbols stored in the memory

• an automaton, useful for all computable functions, that “understands” and “executes” by interpretation the
abstract representation, stored on the tape, of any automaton associated to a TM.

Interpretation is a process that uses a string encoded representation of an abstract machine, to emulate the
behavior of that machine. It allows us to deal with representations of machines rather than with the machine
themselves.

Let be a machine M with the initial content of the tape T : M(T ). An interpreter of M(T ) will be the machine

U(< e(M),T >)

where e(M) is the string that describes the machine M. On the tape of the machine U there is the description of M
and the string, T , to be processed by the machine M.

Definition 15.11 An UTM is a TM, U(< e(M),T >), that has a finite automaton that interprets any TM’s descrip-
tion, e(M), stored in the same memory with the string, T , to be processed. ⋄

In order to implement an UTM we start from the fact that the transition function f from the state qi can be
reduced to a set of the pair of transitions having the next form:

f (qi,out o f RAM = x) = f (qi,x) = (q j,y,cl)

f (qi,out o f RAM ̸= x) = f (qi, ̸= x) = (qk,z,cm)

where: qi,q j ∈ Q, x,y,z ∈ I, and cl ,cm ∈ {UP, DOWN, −} having the following meaning:

if out of RAM=x
then the next state is q j

the stored symbol is y
the access head command is cl

else the next state is qk
the stored symbol is z
the access head command is cm
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Figure 15.9: The structure of a recursive defined Universal Turing Machine

Each such a pair will be associated with a state of the automaton. Therefore, any state can be represented as a
string of nine symbols having the form:

&,qi,x,q j,y,cl ,qk,z,cm

where & is a symbol that points the beginning of the string associated with the state qi.
A TM can be completely described by specifying the function f , associated to the random structure of the

machine, using the above defined strings to compose a ”program” P.
The tape of UTM will be divided in two sections, one for the string T to be processed by the machine M, and

one containing the description P of the machine M. The content of the tape will be . . .#P@T # . . . where:

• @ is a special symbol which delimits the “program” from the “data”

• the string P ∈ (I∪Q∪{DOWN, UP, −}∪{&})∗ is the “program” that describes the algorithm

• the string T ∈ I∗ represents the “data”.

The automaton of UTM “knows” how to interpret the string P in order to process the string T . It is the only
random structure in UTM. The question is: what are the possibilities to minimize this random structure in UTM?
The answer is: performing a strong functional segregation.

For simplicity, we will use a TM having two tapes (the first segregation!), one for P and one for T . This
machine has an actual implementation using a RAM with two ports for read and a port for write.

The previous form of P must be translated in P′ that uses for each state, instead of the string
&,qi,x,q j,y,cl ,qk,z,cm stored in 9 successive memory cells, the next form, as a single entity stored in one cell:

x,△q j,y,cl ,△qk,z,cm

where: △q j and △qk represents the distance in memory between the current location and the locations that store
the descriptions for the states q j and qk. Each program P has a P′ form (this is the premise for the second
segregation!).

The structure of UTM in the most segregated form is presented in Figure 15.9, where the counters are detailed
and some simple combinatorial circuits are added. The program P′ is stored in RAM starting with a certain address
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n, where the description of the state q0 is loaded. In the following cells are stored the descriptions for q1, . . .. The
string to be processed is stored starting with a certain address m, greater than the address in which the symbol @
is. The initial value of the first address “counter” (ADD & R1) is n, and for the second counter (Inc/Dec & R2) is
m. The multiplexer MUX selects (see Figure 15.9), according to the output of Comp, the appropriate values for:

• the value (y or z) to be written in RAM to the current address generated by Inc/Dec & R2 (the value to be
written on the tape in the current cycle of the simulated TM)

• the signed number to be added to the current value of “program counter” implemented by ADD & R1 (the
relative address of the cell that stores the description of the next state: the next “instruction”)

• the command applied to the counter (Inc/Dec & R2) that points in the data part of the tape

(The latch connected to DOUT2 has only an electrical role, avoiding the transparency on the loop closed through
the RAM built by latches. If the RAM would have been built with master-slave flip-flops (a possible, but a very
inefficient solution) the latch on DOUT2 output is not necessary.)

The strong functional segregation in UTM implies a machine with no random circuits. The randomness of the
machine is totally shifted in the content of the tape (memory), where a “random” string describes an algorithm.
Instead of random circuits we have random string of symbols. The hard random structure of the circuits is converted
to the soft random structure of the string describing the function executed by the machine.

An UTM implemented in a variant with functional segregation emphasizes the fact that the relation between
the recursive part and the random part is the same as the actual relation between the hard part and the soft part of
a computer system.

In this last UTM variant the interpretation of T is substituted with the execution of T. The interpretation is
a controlled process that involves a finite automaton. The execution is made by simple circuits (in this case,
combinational). Comp, MUX, ADD, Inc/Dec are simple circuits that execute. Removing the finite automaton
from the structure of UTM the machine substitutes the interpretation of P with the execution of P.

In order to use only the simplest structure for implementing the machine associated with any formal language
it is evident that the best solution is UTM. The random part of its structure can be null. It is the time for a new
theorem.

Theorem 15.12 The simplest physical structure of a machine that recognizes/generates a formal language is
the physical structure of a 0-state UTM that executes, using only combinational circuits, the “program” P
instead of interpreting P using a finite automaton. ⋄

Proof There is no random part in UTM. The combinational circuit of a finite automaton is random and
all the machines previously associated to formal languages contain at least a finite automaton. Therefore, only
UTM is completely built with recursive defined circuits. The finite automaton is avoided and the interpretation
is substituted with the execution.⋄

The Halting Problem: the Price for Simplicity

The complexity of U depends only on the algorithmic complexity of the string e(M). The structural complexity
is converted in the complexity of the symbolic description of the computation that will be interpreted or executed
in UTM. A hard complexity is converted into a soft complexity even for the problem having solutions with a less
powerful machine (such as finite automata, PDA as LBA). What is the price for translating the complexity in a soft
modeled space? The price is, at least, the unsolvability of the Halting Problem (HP).

HP is one of the most important problems that arise in computability. Let be a machine M(T ) having the tape
content T (a program, M, and an input data, T). The question is: the machine does stops after a finite number of
cycles or does not stop? The halting function sould be computed by another TM, named H, that returns 1 if M with
initial content of tape T stops, else returns 0:

H(< e(M),T >) = 1 if M(T ) halts

H(< e(M),T >) = 0 if M(T ) runs f orever.
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Theorem 15.13 The function H(< e(M),T >) is uncomputable. ⋄

Proof Assume that the TM H exists for any encoded machine description and for any input tape. We will
define an effective TM G such that for any TM F , G halts with the tape content e(F) if H(< e(F),e(F) >) = 0
and runs forever if H(< e(F),e(F) >) = 1. G is an effective machine because it involves the function H and we
assumed that this function is computable.

Now consider the computation H(< e(G),e(G)>) (G halts or not, running on its own description).
If H(< e(G),e(G) >) = 1, then the computation of G(e(G)) halts, but starting from the G’s definition

G(e(G)) the computation halts only if H(< e(G),e(G) >) = 0. Therefore, if H(< e(G),e(G) >) = 1, then
H(< e(G),e(G)>) ̸= 1.

If H(< e(G),e(G)>) = 0, then the computation of G(e(G)) runs forever, but starting from the G’s definition
G(e(G)) the computation runs forever only if H(< e(G),e(G) >) = 1. Therefore, if H(< e(G),e(G) >) = 0,
then H(< e(G),e(G)>) ̸= 0.

The application of function H to the machine G and its description generates a contradiction. Because H is
defined to work for any machine description and for any input tape, we must conclude that the initial assumption
is not correct and H is not computable. [Casti ’92] ⋄

The price for structural simplicity is the limited domain of the computable. See also the minimalization rule
in the previous chapter as an example illustrating the HP.

Let us remember the Theorem 2.1 that proves that circuits compute all the functions. UTM is limited because
it does not compute at least HP. But the advantage of UTM is that the computation has a finite description instead
of the circuits that are huge and complex. Circuits are complex while the algorithms for TMs are simple. But, the
price for the simplicity is the incompleteness.

15.3 Conclusions
Thesis: The actual structure evolved toward simplicity. In this respect we can promote a thesis:

Thesis: Digital machines that recognize and generate formal languages can be “infinite” (big
sized) machines but must have finite definitions (small complexity).

The most important conclusion of this chapter is that there exists a correspondence between:

• L3↔ 2−OS

• L2↔ 3−OS

• L1↔ 4−OS

Turing machine and zero type languages don’t have an associated order in structural hierarchy, because the
Turing machine is only a theoretical model.

Between context-sensitive languages and zero type languages there are many other types of languages, corre-
sponding to a less restricted production of their grammars. Until now, these languages are out of our interest
because most of the programming languages are context-free. Systems having the order more than 4 are, maybe,
associated to these hypothetical languages.

The initial evolution of the machine converted the hardware complexity into the software complexity. Nowadays
VLSI technologies can build big sized circuits only if they are simple.

The complexity cannot grow with the same speed as the size.

We must avoid the growing of the complexity in order to built very large circuits, or we must find other ways to
make computations. A large complex system has only the chance to balance between chaos and (partial) order by
self-organizing processes.
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15.4 Problems
Problem 15.1

15.5 Projects
Project 15.1

Project 15.2
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Chapter 16

∗ LOOPS & FUNCTIONAL
INFORMATION

In the previous chapter
Chomsky’s hierarchy of languages and the loop hierarchy are used to support each other. The languages and
the machines are presented evolving in parallel in order to solve the problems of generated by the complexity
of computation. Evolving together they keep the computing systems as small and simple possible.

In this chapter
Using as starting points the general information theory and the algorithmic information theory is presented
a functional information theory. The main results are:

• 2-loop circuits (the control automata) allows the occurrence of the informational structure

• 3-loop circuits (the microprogrammed processors) generate the context for the functional information

• 4-loop circuits (the general purpose computers) are controlled completely by information

In the next chapter
our book ends with some concluding remarks referring to the ways dealing with the complexity in compu-
tational machines.

533



534 CHAPTER 16. ∗ LOOPS & FUNCTIONAL INFORMATION

One of the most used scientific term is information, but we still don’t know a wide accepted definition of it.
Shannon’s theory shows us only how to measure information not what is information. Many other approaches
show us different, but only particular aspects of this full of meanings word used in sciences, in philosophy or in
our current language. Information shares this ambiguous statute with others widely used terms such as time or
complexity. Time has a very rigorous quantitative approach and in the same time nobody knows what the time is.
Also, complexity is used with so many different meanings.

In the first section of this chapter we will present three points of view regarding the information:

• a brief introduction of Claude Shannon’s definition about what is the quantity of information

• Gregory Chaitin’s approach: the well known algorithmic information theory which offers in the same time
a quantitative and a qualitative evaluation

• Mihai Drǎgǎnescu’s approach: a general information theory built beyond the distinction between artificial
and natural objects.

We explain information, in the second section of this chapter, as a consequence of a structuring processes in
digital systems; this approach will offer only a qualitative image about information as functional information.

Between these “definitions” there are many convergences emphasized in the last section. I believe that for
understanding what is information in computer science these definitions are enough and for a general approach
Drǎgǎnescu’s theory represents a very good start. In the same time only the scientific community is not enough for
validating such an important term. But, maybe a definition accepted in all kind of communities is very hard to be
discovered or to be constructed.

16.1 Definitions of Information

16.1.1 Shannon’s Definiton
The start point of Shannon was the need to offer a theory for the communication process [Shannon ’48]. The
information is associated with a set of events E = {e1, . . . ,en} each having its own probability to come into being

p1, . . . , pn, with
n

∑
i=1

pi = 1. The quantity of information has the value

I(E) =−
n

∑
i=1

pilog pi

.
This quantity of information is proportional with the non-determining removed when an event ei from E occurs.

I(E) is maximized when the probabilities pi have the same value, because if the events are equally probable any
event remove a big non-determining. This definition does not say anything about the information contained in each
event ei. The measure of information is associated only with the set of events E, not with each distinct event.

And,the question remains: what is Information? Qualitative meanings are missing in Shannon’s approach.

16.1.2 Algorithmic Information Theory

Premises

All big ideas have many starting points. It is the case of algorithmic information theory too. We can emphasize
three origins of this theory [Chaitin ’70]:

• Solomonoff’s researches on the inference processes [Solomonoff ’64]

• Kolmogorov’s works on the string complexity [Kolmogorov ’65]

• Chaitin’s papers about the length of programs computing binary strings [Chaitin ’66].
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Solomonoff’s researches on prediction theory can be presented using a small story. A physicist makes the next
experience: observes at each second a binary manifested process and records the events as a string of 0’s and of
1’s. Thus obtains an n-bit string. For predicting the (n+ 1)-th events the physicist is driven to the necessity of a
theory. He has two possibilities:

1. studying the string the physicist finds a pattern periodically repeated, thus he can predict rigorously the
(n+1)-th event

2. studying the string the physicist doesn’t find a pattern and can’t predict the next event.

In the first situation, the physicist will write a scientific paper with a new theory: the “formula” just discovered,
which describes the studied phenomenon, is the pattern emphasized in the recorded binary string. In the second
situation, the physicist can publish only the whole string as his own “theory”, but this “theory” can’t be used to
predict anything. When the string has a pattern a formula can be found and a theory can be built. The behavior of
the studied reality can be condensed and a concise and elegant formalism comes into being. Therefore, there are
two kinds of strings:

• patternless or random strings that are incompressible, having the same size as its shortest description (i.e.,
the complexity has the same value as the size)

• compressible strings in which finite substrings, the patterns, are periodically repeated, allowing a shortest
description.

Kolmogorov’s work starts from the next question: Is there a qualitative difference between the next two
equally probable 16 bits words:

0101010101010101

0011101101000101

or there does not exist any qualitative difference? Yes, there is, can be the answer. However, what is it? The first
has a well-defined generation rule and the second seems to be random. An approach in the classical probability
theory is not enough to characterize such differences between binary strings. We need, about Kolmogorov, some
additional concepts in order to distinguish the two equally probable strings. If we use a fair coin for generating the
previous strings, then we can say that in the second experience all is well, but in the first - the perfect alternating
of 0 and of 1 - something happens! A strange mechanism, maybe an algorithm, controls the process. Kolmogorov
defines the relative complexity (now named Kolmogorov complexity) in order to solve this problem.

Definition 16.1 The complexity of the string x related to the string y is

K f (x|y) = min{|p| | p ∈ {0,1}∗, f (p,y) = x}

where p is a string that describes a procedure, y is the initial string and f is a function; |p| is the length of the
string p. ⋄

The function f can be a Universal Turing Machine (says Gregory Chaitin in another context but solving in
fact a similar problem) and the relative complexity of x related to y is the length of the shortest description p that
computes x starting with y on the tape. Returning to the two previous binary strings, the description for the first
binary string can be shorter than the description for the second, because the first is built using a very simple rule
and the second has no such a rule.

Theorem 16.1 There is a partial recursive function f0 (or an Universal Turing Machine) so as for any other
partial recursive function f and for any binary strings x and y the following condition is true:

K f0(x|y)≤ K f (x|y)+ c f

where c f is a constant. ⋄
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Therefore, always there exist a function that generates the shortest description for obtaining the string x starting
from the string y.

Chaitin’s approach starts by simplifying Kolmogorov’s definition and by sustiruting with a machine the
function f . The teen-eager Gregory Chaitin was preoccupied to study the minimum length of the programs that
generate binary strings [Chaitin ’66]. He substitutes the function f with a Universal Turing Machine, M, where the
description p is a program and the starting binary string y becomes an empty string. Therefore Chaitin’s complexity
is:

CM(x) = min{|p| | p ∈ {0,1}∗,M(p) = x}.

Chaitin’s Definition for Algorithmic Information Content

The definition of algorithmic information content uses a sort of Universal Turing Machine, named M, having some
special characteristics.

Definition 16.2 The machine M (see Figure 16.1) has the following characteristics:
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Figure 16.1: The machine M

• three tapes (memories) as follows:

– a read-only program tape (ROM) in which each location contains only 0’s and 1’s, the access head
can be moved only in one direction and its content cannot be modified

– a read-write working tape (RAM) containing only 0’s and 1’s and blanks, having an access head
that can be moved to the left or to the right

– a write-only output tape (WOM) in which each location contains 0, 1 or comma; its head can be
moved only in one direction

• a finite state strict initial automaton performing eleven possible actions:

– halt

– shift the work tape to the left or to the right (two actions)

– write 0,1 or blank on the read-write tape (three actions)

– read from the current pointed place of the program tape, write the read symbols on the work tape in
the current pointed place and move one place the head of the program tape

– write comma, 0 or 1 on the output tape and move one position the access head (three actions)

– consult an oracle enabling the machine M to chose between two possible transitions of the automaton.

The work tape and the output tape are initially blank. The programming language L associated to the machine M
is the following:
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<instruction> ::= <length of pattern><number of cycles><pattern>

<length of pattern> ::= <1-ary number>

<number of cycles> ::= <1-ary number>

<pattern> ::= <binary string>

<1-ary number> ::= 01 | 001 | 0001 | 00001 | ...

<binary string> ::= 0 | 1 | 00 | 01 | 10 | 11 | 000 | 001 | ...

The automaton of the machine M interprets programs written in L and stored on the read-only program memory. ⋄

The machine M was defined as an architecture because besides structural characteristics it has also defined
the language L. This language is a very simple one having only theoretical implications. The main feature of this
language is that it generates programs using only binary symbols and each program is a self-delimited string (i.e.,
we don’t need a special symbol for indicating the end of the program). Consequently, each program has associated
an easy to compute probability to be generated using many tosses of a fair coin.

Example 16.1 If the program written in L for the machine M is:

000100000101

then the output string will be:
01010101.

Indeed a pattern having the length 2 (the first 4 bits: 0001) is repeated 4 times (the next 6 bits: 000001) and this
pattern is 01 (the last 2 bits:01). ⋄

Using this simple machine Chaitin defines the basic concepts of algorithmic information theory, as follows.

Definition 16.3 The algorithmic probability P(s) is the probability that the machine M eventually halts with the
string s on the output tape, if each bit of the program results by a separate toss of an unbiased coin (the program
results in a random process). ⋄

Example 16.2 Let be the machine M. If m is the number of cycles and n is the length of the pattern, then:

P(s) = 2−(m+2n+4).⋄

Definition 16.4 The algorithmic entropy of the binary string s is H(s) =−log2P(s). ⋄

Now we are prepared to present the definition of the algorithmic information.

Definition 16.5 The bf algorithmic information of the string s is I(s) = min(H(s)), i.e. the shortest program
written for the best machine. ⋄

In this approach the machine complexity or the machine language complexity does not matter, only the length
of the program measured in number of bits is considered.

Example 16.3 What is the algorithmic entropy of the two following strings: s1 a patternless string of n bits and
s2 a string of n zeroes?

Using the previous defined machine M results: H(s1) ∈ O(n) and H(s2) ∈ O(n).

The question of Kolmogorov remains unsolved because the complexity of the strings seems to be the same.
What can be the explanation for this situation? It is obvious that the machine M is not performant enough for
making the distinction between the complexity of the strings s1 and s2. A new better machine must be built.
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Definition 16.6 The machine M from the previous definition becomes M′ if the machine language becomes L′,
defined starting from L modifying only the first line as follows:

<instruction> ::= <the length of <pattern length> in 1-ary>

<pattern length in binary>

<the length of <number of cycles> in 1-ary>

<number of cycles in binary>

<pattern> ⋄

The complexity of the machine M’ is bigger than that of the machine M because it must interpret programs
written in L′ that are more complex than programs written in L. Using the machine M′ more subtle distinctions
can be emphasized in the set of binary strings. Now, we can take back the last example trying to find a difference
between the complexity of the strings s1 and s2.

Example 16.4 The program in L′ that generates in M′ the string s1 is:

00...0︸ ︷︷ ︸
⌈log2n⌉

011XX ...X︸ ︷︷ ︸
⌈log2n⌉

0011XX ...X︸ ︷︷ ︸
n

and for the string s2 is:
001100...0︸ ︷︷ ︸

⌈log2n⌉

011XX ...X︸ ︷︷ ︸
⌈log2n⌉

0

where X ∈ {0,1}. Starting from these two programs written in L′ the entropy becomes: H(s1) ∈O(n) and H(s2) ∈
O(log n). Only this new machine makes the difference between a random string and a “uniform” string. ⋄

Can we say that I(s1) ∈ O(n) and I(s2) ∈ O(log n)? I yes, we can.

Theorem 16.2 The minimal algorithmic entropy for a certain n-bit string is in O(log n). ⋄

Proof If the simplest pattern has the length 1, then only the length of the string depends on n and can be coded
with log2n bits. ⋄

According to the algorithmic information theory the amount of information contained in an n-bit binary string
has not the same value for all the strings. The value of the information is correlated with the complexity of the
string, i. e., with the degree of his internal “organization”. The complexity is minimal in a high organized string.
For a quantitative evaluation we must emphasize some basic relationships.

Chaitin extended the previous defined concepts to the conditioned entropy.

Definition 16.7 H(t|s) is the entropy of the process of the t string generation conditioned by the generation of the
string s.⋄

We can write: H(s, t) = H(t|s)+H(s), where H(s, t) is the entropy of the string s followed by the string t, because:
P(t|s) = P(s,t)

P(s) .

Theorem 16.3 H(s)≤ H(t,s)+ c, c ∈ O(1).⋄

Proof The string s can be generated using a program for the string(t,s) adding a constant program as a prefix.⋄

Theorem 16.4 H(s, t) = H(t,s)+ c, c ∈ O(1). ⋄

Proof The program for the string (t,s) can be converted in a program for (s, t) using a constant size program as
prefix.⋄
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Theorem 16.5 H(s, t)≤ H(s)+H(t)+ c, c ∈ O(1).⋄

Proof The “price” of the concatenation of two programs is a constant length program.⋄

Theorem 16.6 H(t|s)≤ H(t)+ c, c ∈ O(1).⋄

Proof By definition H(t|s) = H(s, t)−H(s) and using the previous theorem we can write: H(t|s)≤H(s)+H(t)+
c−H(s) = H(t)+ c, where c ∈ O(1).⋄

Definition 16.8 A string s is said to be random when I(s) = n + c, where n is the length of the string s and
c ∈ O(1).⋄

Theorem 16.7 For most of n-bit strings s the algorithmic complexity (information) is: H(s) = n+H(n); or most
of the n bits strings are random. ⋄

Proof Each n-bit string has its own distinct program. How many distinct programs have the shorted length
n+H(n)+c−k related to the programs having the length n+H(n)+c (where c∈O(1))? The number of the short
programs decreases by 2k. That is, if the length of the programs decreases linearly, then the number of the distinct
programs decreases exponentially. Therefore, most of n bits strings are random. ⋄

This is a tremendous result because it tells us that almost all of the real processes cannot be condensed in short
representations and, consequently, they can not be manipulated with formal instruments or in formal theories. In
order to enlarge the domain of formal approach, we must “filter” the direct representations so as the insignificant
differences, in comparison with a formal, compact representation, to be eliminated.

Another very important result of algorithmic information theory refers to the complexity of a theorem deduced
in a formal system. The axioms of a formal system can be represented as a finite string, also the rules of inference.
Therefore, the complexity of a theory is the complexity of the string that contains its formal description.

Theorem 16.8 A theorem deduced in an axiomatic theory cannot be proven to be of complexity (entropy) more
than O(1) greater than the complexity (entropy) of the axioms of the theory. Conversely, ”there are formal the-
ories whose axioms have entropy n+O(1) in which it is possible to establish all true propositions of the form
”H(speci f ic string)≥ n”.” [Chaitin ’77] ⋄

Proof We reproduce Chaitin’s proof. “Consider the enumeration of the theorems of the formal axiomatic
theory in order of the size of their proof. For each natural number k, let s∗ be the string in the theorem of the form
”H(s) ≥ n” with n greater than H(axioms)+ k which appears first in this enumeration. On the one hand, if all
theorems are true, then H(s∗)> H(axioms)+k. On the other hand, the above prescription for calculating s∗ shows
that H(s∗) ≤ H(axioms)+H(k)+O(1). It follows that k < H(k)+O(1). However, this inequality is false for all
k ≥ k∗, where k∗ depends only on the rule of inference. The apparent contradiction is avoided only if s∗ does not
exist for k = k∗, i.e., only if it is impossible to prove in the formal theory that a specific string has H greater than
H(axioms)+ k∗. Proof of Converse. The set T of all true propositions of the form ”H(s)< k” is r.e. Chose a fixed
enumeration of T without repetitions, and for each natural number n let s∗ be the string in the last proposition of
the form ”H(s) < n” in the enumeration. It is not difficult to see that H(s∗,n) = n+O(1). Let p be a minimal
program for the pair s∗, n. Then p is the desired axiom, for H(p) = n+O(1) and to obtain all true proposition of
the form ”H(s) ≥ n” from p one enumerates T until all s with H(s) < n have been discovered. All other s have
H(s)≥ n.” ⋄

Consequences

Many aspects of the reality can be encoded in finite binary strings with more or less accuracy. Because, a tremen-
dous majority of this strings are random, our capacity to do strict rigorously forms for all the processes in reality
is practically null. Indeed, the formalization is a process of condensation in short expressions, i.e., in programs
associated with machines. Some programs can be considered a formula for large strings and some not. Only for a
few number of strings (realities) a short program can be written. Therefore, we have three solutions:
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1. to accept this limit

2. to reduce the accuracy of the representations, making partitions in the set of strings, thus generating a
seemingly enlarged space for the process of formalization (many insignificant (?) facts can be “filtered”
out, so “cleaning” up the reality by small details (but attention to the small details!))

3. to accept that the reality has deep laws that govern it and these laws can be discovered by an appropriate
approach which remains to be discovered.

The last solution says that we live in a subtle and yet unknown Cartesian world, the first solution does not
offer us any chances to understand the world, but the middle is the most realistic and optimistic in the same
time, because it invites us to “filter” the reality in order to understand it. The effective knowledge implies many
subjective options. For knowing, we must filter out. The degree of knowledge is correlated with our subjective
implication. The objective knowledge is a nonsense.

Algorithmic information theory is a new way for evaluating and mastering the complexity of the big systems.

16.1.3 General Information Theory
Beyond the quantitative (Shannon, Chaitin) and qualitative (Chaitin) aspects of information in formal systems (like
digital systems for example) turns up the necessity of a general information theory [Drǎgǎnescu ’84]. The concept
of information must be applied to the non-structured or to the informal defined objects, too. These objects can have
an useful function in the future computation paradigms and we must pay attention for them.

To be prepared to understand the premises of this theory we start with two main distinctions:

• between syntax and semantics in the approach of the world of signs

• between the signification and the sense of the signs.

Syntactic-Semantic

Let be a set of signs (usually but incorrectly named symbols in most papers), then two types of relations can be
defined within the semiotic science (the science of signs):

• an internal relation between the elements of the set, named syntactic relation

• an external relation with another set of objects, named semantic relation.

Definition 16.9 The syntactic relation in the set A is a subset of the cartesian product (A×A× . . .×A). ⋄

By the rule, a syntactical relation makes order in manipulating symbols to generate useful configurations.
These relations emphasize the ordered spaces which have a small complexity. We remind that, according to the
algorithmic information theory, the complexity of a set has the order of the complexity of the rule that generates it.

Definition 16.10 The semantic relation between the set S of signifiers and the set O of signifieds is R ∈ (S×O).
The set S is a formal defined mathematical set, but the set O can be a mathematical set and in the same time can be
a collection of physical objects, mental states, ... . Therefore, the semantically relation can be sometimes beyond
of a mathematical relation. ⋄

Sense and Signification

The semantic relation leads us towards two new concepts: signification and sense. Both are aspects of the meaning
associated to a set in which there is a syntactical relation.

Definition 16.11 The signification can be emphasized using a formal semantical relation in which each signifiers
has one or more signifieds. ⋄
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Definition 16.12 The sense of an object is a meaning which cannot be emphasized using a formal semantic rela-
tion. ⋄

By the above definition, the meaning of the sense remains undefined because its meaning may be suggested
only by an informal approach. We can try an informal definition:

The sense may be the signification in the context of the wholeness.

The sense blows up only in the wholeness. We cannot talk about “the set of senses”. Our interest regarding the
sense is due to the fact that the senses act in the whole reality. A symbol or an object full of senses may have
an essential role in the interaction between the technical reality and the wholeness. When an object has sense it
overtakes the system, becomes more than a system. By the rule, an object has a signification and sometimes a
sense. (Seldom there is the situation when the object has only sense, but not in the world of the objects.)

The signification is a formal relation and acts in the structural reality. The sense is an informal connection
between an object and the wholeness and acts in a phenomenological reality. The structural-phenomenological
reality supposes the manifestation of the signification and of the sense. Our limited approach only makes the
difference between the structural and the phenomenological. The pure structural reality does not exist, it is created
only by our helplessness in understanding the world. On the other hand, the “phenomenological reality” is a
pleasantly and motionless dream. Only the play between sense and signification can be a key for dealing with the
complexity of the structural-phenomenological reality.

Generalized Information

Starting from the distinctions above presented the generalized information will be defined using [Drǎgǎnescu
’84].

Definition 16.13 The generalized information is:

N =< S,M >

where: S is the set of objects characterized by a syntactical relation, M is the meaning of S. ⋄

In this general definition, the meaning associated to S is not a consequence of a relation in all the situations.
The meaning must be detailed, emphasizing more distinct levels.

Definition 16.14 The informational structure (or syntactic information) is:

N0 =< S >

where the set of objects S is characterized only by a syntactical (internal) relation.⋄

The informational structure N0 is the simplest information, we can say that it is a pre-information having no
meaning. The informational structure can be only a good support for the information.

Example 16.5 The content of a RAM between the addresses 0103H − 53FBH does not have an informational
character without knowing the architecture of the host computer. ⋄

The first actual information is the semantic information.

Definition 16.15 The semantic information is:

N1 =< S,S >

where: S is a syntactical set, and S is the set of significations of S given by a relation in (S×S). ⋄
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Now the meaning exists but it is reduced to the signification. There are two types of significations:

• R, the referential signification

• C, the contextual signification

thus, we can write:
S =< R,C > .

Definition 16.16 Let us call the reference information: N11 =< S,R >. ⋄

Definition 16.17 Let us call the context information: N12 =< S,C >. ⋄

If in N11 to one significant there are more significats, then adding the N12 the number of the significats can be
reduced, to one in most of the situations. Therefore, the semantic information can be detailed as follows:

N1 =< S,R,C > .

Definition 16.18 Let us call the phenomenological information: N2 =< S,σ >, where: σ are senses. ⋄

Attention! The entity σ is not a set.

Definition 16.19 Let us call the pure phenomenological information: N3 =< σ >. ⋄

Now, the expression of the information is detailed emphasizing all the types of information:

N =< S,R,C,σ >

from the objects without a specified meaning, < S >, to the information without a significant set, < σ >.
Generally speaking, because all the objects are connected to the whole reality the information has only one

form: N. In concrete situations one or another of these forms is promoted because of practical motivations. In
digital systems we can not overtake the level of N1 and in the majority of the situations the level N11. General
information theory associates the information with the meaning in order to emphasize the distinct role of this
strange ingredient.

16.2 Looping toward Functional Information
Information arises in a natural process in which circuits grow in size and in complexity. There is a level from which
the increasing complexity of the circuits tend to stop and only the circuit size continues to grow. This is a very
important moment because the complexity of computation continues to grow based on the increasing of another
entity: the information. The computational power is distributed from this moment between two main structures:

• a physical structure that can grow in size remaining at a moderate or a small complexity

• a symbolic structure that has a random structure with the size in the same order with the complexity.

The birth of information is determined by the gap between the size of circuits and their complexity. This
gap allows the segregation process, which emphasizes functional defined circuits as simple circuits. Also, this
gap increases the weight of control. Indeed, a small number of well defined functional circuits must do complex
computations coordinated by a complex control.

Information assumes the control in the computing systems. It is a way to put together a small number of
functional segregated circuits in order to perform complex computations.We usie simple machines controlled by
complex programs. Information comes out in a process in which the random part of computation is segregated
from the simple (recursive defined) part of computation. Now, let us explain this process.

The first step towards the definition of information is to emphasize the informational structure. In this ap-
proach, we will make two distinctions in the class of the automata. The first between automata having random
loops and functional loops and the second between automata with non-structured states and with structured states.
After that, the informational structure is defined at the level of the second order digital systems and information is
defined at the level of the third order digital systems. We end at the level of the 4-OS where information gains a
complete control of the function in digital systems.
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16.2.1 Random Loop vs. Functional Loop

Let us start with a simple example. Usually we call half-automaton a circuit built by a state register R and a
combinational circuit CLC loop coupled. Most of the circuits designed as half-automaton contain a CLC having
a “random” structure, i.e., a structure without a simple recursive definition. The minimal definition of a random
CLC has the size in the same order with the size of the circuit. On the other hand, there are half-automata with the
loop closed over simple, recursive defined CLCs having big or small sizes. These CLC have well defined functions
and in consequence have always a “name”, such as: adder, comparator, priority encoder, . . .. This distinction can
be extended over all circuits having internal loops and will have a very important consequences on the structuring
process in digital systems. A random structure can not be expanded instead of a recursive defined functional
structure that contains in its definition the expansion rule. In the structural developing process the growth of
the random circuits stops very soon rather than the same process for functional circuits that is limited only by
technological reasons.

Definition 16.20 The random loop of an automaton is a loop on which the actual value assigned for the state has
only structural implications on the combinational circuit without any functional consequences on the automaton.
⋄

Any finite automaton has a random loop and the state code can be assigned in many kinds without functional
effects. Only the optimization process is affected by the actual binary value assigned to each state.

Definition 16.21 The functional loop of an automaton is a loop on which the actual value of the state is strict
related to the function of the automaton. ⋄

A counter has a functional loop and its structure is easy expandable for any number of bits. The same is Bits
Eater Automaton (see Figure 8.19 in Chapter 4). The functional loop will allow us to make an important step
towards the definition of information.

If an automaton has a loop closed through uniform circuits (multiplexors, priority encoder, demultiplexor and
a linear network of XORs, . . .) that all have recursive definitions, then at the input of the state register, the binary
configurations have a precise meaning, imposed by the functional circuits. We don’t have the possibility to choose
the state assignment because of the combinational circuit that has a predefined function.

A final example will illustrate the distinction between the structural loop and the functional loop in a machine
that contains both situations.

Example 16.6 The Elementary Processor (see Figure 9.12) contains two automata. The control automaton has
a structural loop: the commands, whatever they are, can be stored in ROM in many different orders. The binary
configuration stored in ROM is random and the ROM as combinational circuit is then a random circuit. The second
automaton is an functional automaton (Rn & ADDn & nMUX4) with a functional loop: the associated CLC has
well defined digital functions (ADDn & nMUX4)and through the loop we have only binary configurations with
well-defined meaning: numbers.

There is also a third loop, closed over the two previous mentioned automata. The control automaton is loop
connected with a system having a well-defined function. The field <func> is used to generate towards ADDn &
nMUX4 binary configurations with a precise meaning. Therefore, this loop is also a functional one. ⋄

On the random loop we are free to use different codes for the same states in order to optimize the associated
CLC or to satisfy some external imposed conditions (related to the synchronous or asynchronous connection to
the input or to the output of the automaton). The actual code results as a deal with the structure of the circuits that
close the loop.

On the functional loop the structure of the circuit and the meaning of binary configurations are reciprocally
conditioned. The designer has no liberty to choose codes and to optimize circuits. Circuits on the loop are imposed
and signals through the loop have well defined meanings.
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16.2.2 Non-structured States vs. Structured States
The usual automata have the states coded with a compact binary configuration. As we knoow, the size of a
combinational circuit depends, in the general case, exponentially by the number of inputs. If the number of bits
used for coding the state becomes too large the circuit that implements the loop can grow too much. In order
to reduce the size of this combinational circuit the state can be divided in many fields, in each clock cycle being
modified the value of one field only. So the state gets an internal structure.

Definition 16.22 The structured state space automaton (S3A) [Ştefan ’91] is:

S3A = (X×A,Y,Q0×Q1× . . .×Qq, f ,g)

where:

• X×A is the input set, X = {0,1}m and A = {0,1}p = {A0,A1, . . . ,Aq} is the selection set, with q+1 = 2p

• Y is the output set

• Q0×Q1× . . .×Qq is the structured state set

• f : (X×A×Q0×Q1× . . .×Qq)→ Qi has the following form:

f (x,P(a,q,q0,q1, . . . ,qq)) = f ′(x,qa)

with x ∈ X, a ∈ A, qi ∈ Qi, where f ′ : (X ×Qa)→ Qa is the state transition function and P is the projection
function (see Chapter 8)

• g : (X×A×Q0×Q1× . . .×Qq)→ Y has the following form:

g(x,P(a,q,q0,q1, . . . ,qq)) = g′(x,qa)

with x ∈ X, a ∈ A, qi ∈ Qi, where g′ : (X×Qa)→ Y is the output transition function.⋄
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Figure 16.2: The structured state space automaton as a multiple register structure.

The main effect of this approach is the huge reduction of the size of the circuit that closes the loop. Let be Qi =
{0,1}r. Then Q = {0,1}r×(q+1). The size of CLC without structured state space should be SCLC ∈O(2m+r×(q+1)),
but the equivalent variant with structures state space has SCLC′ ∈ O(2m+r). Theoretically, the size of the circuit is
reduced 2q+1 times. The price for this fantastic (only theoretical) reduction is the execution time that is multiplied
with q+1. The time increases linearly and the size decreases exponentially. There is no engineer that dares to
ignore this fact. All the time when this solution is possible, it will be applied.

The structure of a S3A is obtained in a few steps starting from the structure of a standard automaton. In the
first step (see Figure 16.2) the state register is divided in (q+1) smaller registers (Ri, i = 0,1, . . . ,q) each having
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its own clock input on which it receives the clock distributed by the demultiplexer DMUX according to the value
of the address A. The multiplexer MUX selects, according to A, the content of one of the q+ 1 small registers to
be applied to CLC. The output of CLC is stored only in the register that receives the clock.

But, in the structure from Figure 16.2 there are too many circuits. Indeed, each register Ri is build by a master
latch serial connected with the corresponding slave latch. The second stores an element Qi of the Cartesian product
Q, but the first acts only in the cycles in which Qi is modified. Therefore, in each clock cycle only one master latch
is active. Starting from this evidence, the second step will be to replace the registers Ri with latches Li and to add
a single master latch ML (see Figure 16.3). The latch ML is shared by all the slave latches Li for a proper closing
of a non-transparent loop. In each clock cycle the selected Li and ML form a well structured register that allows to
close the loop. ML is triggered by the inverted clock CK′ and the selected latch by the clock CK.
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CK CL
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Figure 16.3: The structured state space automaton as a single master-latch.
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Figure 16.4: The structured state space automaton with RAM and master latch.

The structure formed by DMUX , MUX and L0, . . . ,Lq is obviously a random access memory (RAM) that
stores q+1 words of r bits. Therefore, the last step in structuring a S3A is to emphasize the RAM by the structure
from Figure 16.4. Each clock cycle allows to modify the content of a word stored at the address A according to the
input X and the function performed by CLC.

Example 16.7 A very good example of S3A is the core of each classical processor: the registers (R) and the
arithmetic and logic unit (ALU) that form together RALU (see Figure 16.5). The memory RAM has two read ports,
selected by Left and Right and a write port selected by Dest. It is very easy to imagine such a memory. In
the representation from Figure 16.3 the selections code for DMUX, separated from the selection code of MUX,
becomes Dest and a new MUX is added for the second output port. One output port has the selection code Left
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Figure 16.5: An example of structured state space automaton: Registers with ALU (RALU)

and the other has the selection code Right. MUX selects (by Sel) between the binary configuration received from
an external device (DIN) and the binary configuration offered to the left output LO of the memory RAM.

In each clock cycle two words from the memory, selected by Left and Right (if Sel = 1), or a word from
memory, selected by Right, and a receiver word (if Sel = 0), are offered as arguments for the function Func

performed by ALU and the result is stored to the address indicated by Dest.
The line of command generated by a control automaton for this device is:

<RALU Command> ::= <Left> <Right> <Dest> <Sel> <Func> <Write>

<Left> ::= L0 | L1 | ... | Lq | - ,

<Right> ::= R0 | R1 | ... | Rq | - ,

<Dest> ::= D0 | D1 | ... |Dq | - ,

<Sel> ::= DIN | - ,

<Func> ::= AND | OR | XOR | ADD | SUB | INC | LEFT | SHR,

<Write> ::= W | - .

RALU returns to the control automaton some bits as indicators:
Indicators = {CARRY, OVFL, SGN, ODD, ZERO}.
The output AOUT will be used in applications needed to address an external memory. ⋄

The structured state of RALU is modified by a sequence of commands. This sequence is generated by the rule,
using a control automaton that works according to its switching functions for the state and for the output, taking
into account sometimes the evolution of the indicators.

16.2.3 Informational Structure in Two Loops Circuits (2-OS)

We have seen at the level of the 2-OS appearing a symbolic structure: the Cartesian product defining the state
space of the automaton. This symbolic structure is very important for two reasons:

1. the RALU, that supports it, is one of the main structure involved in defining and building the central unit of
a computing machine

2. it is the support for meanings that gains, step by step, an important role in defining the function of a digital
system; we shall call this new structure informational structure.
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The Cartesian product (Q0×Q1 . . .×Qq) stored in the RAM is the state of the automaton. What are the differences
between this structured state and the state of a standard finite automaton? The state of a standard automaton has
two characteristics:

• it is a whole entity, without an internal structure

• it may be encoded in many equivalent forms and the external behavior of the automaton remains the same;
each particular encoding has its own combinational circuit thus the automaton runs in the state space in the
same manner; any code changing is compensated by a modification in the structure of the circuit.

In S3A, RALU for example, the situation is more different:

• the state has a structure: the structure of a Cartesian product

• using a functional loop (well defined combinational circuit (ALU) closes the loop) we loose the possibility
to make any state assignment for Qi and the concrete form of the state codes have a well defined meaning:
they are numbers.

Definition 16.23 The informational structure is a structured state that has a meaning correlated with the func-
tional loop of an automaton.⋄

The state of a standard automaton doesn’t have any meaning because the loop is closed through a random
circuit having a structure “negotiated” with the state assignment. This meaningless of the state code is used for
minimizing the combinational circuit of the automaton or to satisfy certain external conditions (asybchronous in-
puts or free of hazard outputs). When the state degenerates in informational structure this resource for optimization
is lost. What is the gain? I believe that the gain is a new structure - the informational structure - that will be used
to improve the functional resources of a digital machine and for simplifying its structure.

The functional loop and the structured state lead us in the neighborhood of information, emphasizing the infor-
mational structure. The process was stimulated by the segregation of the simple, recursive defined combinational
resources of the infinite automata. And now: the main step!

16.2.4 Functional Information in Three Loops Circuits (3-OS)
The functional approach in the structured space automata generates the informational structure. Therefore, the
second order digital systems offer the context for the birth of the informational structure. The third order digital
systems is the context in which the informational structure degenerates in information. Therefore, the information
is strongly related to the processing function. At the level of processors the informational structure can act directly
and becomes in this way information.

Let’s put together the just defined RALU with an improved control automaton that was defined as CROM,
thus defining a microprogrammed processor.

Definition 16.24 A microprogrammed processor consists in a RALU, as an functional automaton, loop coupled
with a CROM, as a control automaton. The function of a CROM is given by its internal structure and the associated
microprogramming language. The structure of the simplest CROM is shown in Figure 16.6 (is a variant having the
complexity between the structure from Figure 8.59 and the structure from Figure 8.60), where:

R is the state register containing the address of the current microinstruction

ROM is the combinational random circuit generating (“containing”) the current microinstruction having the
following fields:

<RALU Command> containing subfields for RALU (see Exemple 10.7)

<Out> the field for commanding the external devices (in this example assimilated with the program and
data memory)

<Test> is the field that selects the appropriate indicator for the current switch of CROM
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Figure 16.6: CROM

<Next> is the jump address if the value of T is true (the selected indicator is 1)

<Mod> is the bit that selects together with T the transition mode of the automaton

Inc. is an incrementer realized as a combinational circuit; it generates the next address in current unconditioned
transition of the automaton

MUX is the multiplexer selecting the next address from:

• the incremented current address

• the address generated by the microprogram

• the address 00 . . .0, for restarting the system

• the instruction received from the external memory (the instruction code is constituted by the address
from which begin the microprogram associated to the instruction)

MUXT is the multiplexer that selects the current indicator (it can be 0 or 1 for non-conditioned or usual transi-
tions)

The associated microprogramming language is:
<Microinstruction> ::= <RALU Command> <Out> <Mod> <Test> <Next>

<RALU Command> ::= <Left> <Right> <Dest> <Sel> <Func> <Write>

<Left> ::= L0 | L1 | ... | Lq | - ,

<Right> ::= R0 | R1 | ... | Rq,

<Dest> ::= D0 | D1 | ... |Dq | - ,

<Sel> ::= DIN | - ,

<Func> ::= AND | OR | XOR | ADD | SUB | INC | LEFT | SHR,

<Write> ::= W | - ,

<Out> ::= READ | WRITE | - ,

<Mod> ::= INIT | - ,

<Test> ::= - | WAIT | CARRY | OVFL | SGN | ODD | ZERO | TRUE,

<Next> ::= <a label unused before in this definition of maximum six symbols starting

with a letter>.

The WAIT signal is received from the external memory. ⋄

In the previous defined machine let be q = 15 and r = 16, i.e., the machine has 16 register of 16 bits. The
register Q15 takes the function of the program counter (PC) addressing the program space in the memory. The
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first microprogram must be done for the previous defined machine is the microprogram that initializes the machine
resetting the program counter (PC) and, after that, loops forever reading (fetching) an instruction, incrementing PC
and giving the access to the microprogram execution. Each microprogram, that interprets an instruction, ends with
a jump back to the point where a new instruction is fetched, and so on.

Example 16.8 The main microprogram that drives a microprogrammed machine interpreting a machine language
is described by the next procedure.

Procedure PROCESSOR
PC← the value zero
loop

do READ from PC
until not WAIT

repeat
READ from PC, INIT and PC← PC + 1

repeat
end PROCESSOR

The previous procedure has the next implementation as a microprogram.

L15 R15 D15 XOR W // Clear PC //

LOOP R15 READ WAIT LOOP // Fetch the current instruction //

R15 READ TRUE INIT L15 D15 XOR W // ‘‘Jump" to the

associated microprogram and increment PC //

⋄

The previous microprogram, or a similar one, is stored starting from the address 00 . . .0 in any micropro-
grammed machine. The restart function of CROM facilitates the access to this microroutine.

Definition 16.25 The Processor is a third order machine (3-OS) built with two loop-coupled 2-OS systems, i.e.,
two distinct automata:

1. a functional automaton receiving commands from a control automaton and returning indicators that char-
acterize the current performed operation (usually is a RALU)

2. a control automaton (CROM in a microprogrammed machine) receiving:

• Instructions that initialize the automaton in order to perform it by interpretation (each instruction has
an associated microprogram executed by the controlled subsystems)

• Indicators (flags) from the functional automaton and from the external devices for decisions within the
current microprogram. ⋄

For this subsection one example of instruction is sufficient. The instruction is an exotic one, atypical for
a standard processor but very good as an example. The instruction computes in a register the integer part of
logarithm from a number stored in another register of the processor. The microprogram implements the priority
encoder function (see Chapter 2).

Example 16.9 Let be Q0 the register that stores the variable and Q1 the register that will contain the result, if it
exists, else (the variable has the value zero) the result will be 11 . . .1. The microprogram is:

L1 R1 D1 XOR W

L0 LEFT ZERO ERROR

TEST L0 D0 SHR ZERO LOOP

L1 D1 INC W TRUE TEST

ERROR L0 D0 INC W

L1 R0 D1 SUB W TRUE LOOP
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The label LOOP refers in the previous microprogram. ⋄

Each line of microprogram has a binary coded form according to the structure of circuits commanded.
The machine just defined is the typical digital machine for 3-OS: the processor. Any processor is characterized

by:

• the behavior defined by the set of control sequences (in our example microprograms implemented in ROM)

• the structure that usually contains many functional segregated simple circuits

• the flow of the internal loop signals.

Because the behavior (the set of control sequences or of microprograms) and the structure (composed by uniform
recursive defined circuits) are imposed, we don’t have the liberty to choose the actual coding of the signals that
flows on the loops. In this restricted context there are three types of binary coded sets which “flow” inside the
processor:

• informational structured sets having elements with a well defined meaning, according to the associated
functional loop (for example, the meaning of each Qi from RALU is that of a number, because the circuit
on the loop (ALU) has mainly arithmetic functions)

• the set of indicators or flags that are signals generated indirectly by the informational structure through an
arithmetical or a logical function

• information, an informational structured set that generates functional effects on the whole system by its flow
on a functional loop formed by RALU and CROM.

What is the difference between information and informational structure? Both are informational structures with
a well defined meaning regarding to the physical structure, but information acts having a functional role in the
system in which it flows.

Definition 16.26 The functional information is an informational structure which generates strings of symbols
specifying the actual function of a digital system. ⋄

The content of ROM can be seen as a Cartesian product of many sets, each being responsible for controlling a
physical structure inside or outside the processor. In our example there are 10 fields: six for RALU, one for outside
of the machine (for memory) and 3 for the controller. A sequence of elements from this Cartesian product, i.e., a
microprogram, performs a specific function. We can interpret the information as a symbolical structure having a
meaning through which it acts performing a function.

The informational structure can be data or microprograms, but only the microprograms belong to the informa-
tion. At the level of the third order systems (processors) the information is made up only by microprograms.

Until now, we emphasized in a processing structure two main informational structures:

• the processed strings that are data (informational structure)

• the strings that lead the processing: microprograms (information).

The informational structure is processed by the processor as a whole consisting in two entities:

• a simple and recursive physical structures

• the information as a symbolic complex structure.

The information is executed by the simple functional segregated structures inside the processor.
The information is the random part of the processor. The initial randomness of digital circuits, performing

any functions, was converted in the randomness of symbolic structures which meanings are executed by a simple,
recursive defined digital circuits. Thus, the processor has two structures:

1. a physical one, consisting in a big size, low complex system
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2. a symbolic one, having the complexity related with the performed computation.

According to the sense established for the term information we can say that digital systems do not process the
information, they process through information.

And now, what is the difference between flags and information? A flag is interpreted through information
instead of information that is executed by the physical structure (by the hardware). The value of the flag does not
have any meaning all the time for the processing. It has meaning only when the information “needs” to know
the value of the indicator (the indicator is selected by the field <Test>). The flag acts indirectly and suffers a
symbolic, informational interpretation instead of the hardware execution to which the microprogram is submited.
The flags are an intermediate stage between the informational structure and information. The flags do not belong
to any informational structure.

The loop “closed through” the flags is a weak informational one. The flags classify the huge content of the
informational structure in few classes. Only a small part of the meaning contained in data (the informational
structure) acts having a functional role. Through flags the informational structure manifests with shyness as in-
formation. The flags emphasize the small informational content of the informational structure. Thus, between the
information and the informational structure there is not a net distinction. The informational structure influence,
through the flags only some execution details not the function to be executed.

16.2.5 Controlling by Information in Four Loops Circuits (4-OS)
In the previous subsection, the information interacts directly with the physical structure. All the information is
executed or interpreted by the circuits. The next step disconnects partially the information from circuits. In a
system, having four loops the information can be interpreted by another information acting to the lower level in
the system. The typical 4-OS is the computer structure (see Chapter 6). This structure is more than we need for
computing. Indeed, as we said in Chapter 8 the partial recursive functions can be computed in 3-OS. Why are we
interested in using 4-OS for performing computations? The answer is: for segregating more the simple circuits
from random (complex) informational structure. In a system having four loops the simple and the complex are
maximal segregated, the first in circuits and the second in information.

In order to exemplify how information acts in 4-OS we will use a very simple language: Extended LOOP
(ELOOP). This language is equivalent with the computational model of partial recursive functions. For this lan-
guage, an architecture will be defined. The architecture has associated a processor (3-OS) and works on a computer
(4-OS).

Definition 16.27 The LOOP language (LL) is defined as follows [Calude ’82]:
<character>::=A|B|C|...|Z

<number>::=0|1|2|...|9

<name>::=<character>|<name><number>|<name><character>

<instruction>::=<name>=0|<name>=<name>+1|<name>=<name>

<loop>::=LOOP<name>

<end>::=END

<program>::=<loop><program><end>|<program><program>|<instruction>

⋄

The LOOP language is devoted to compute primitive recursive functions only. (See the proof in [Calude ’82].)
A new feature must be added to the LOOP language in order to use it for computing partial recursive functions.
The language must test sometimes the value resulting in the computation process (see the minimalization rule in
8.1.4).

Definition 16.28 The Extended LOOP Language (ELOOP) is the LL supplemented with the next instruction:

IFX ̸= 0 GO TO < label >

where < label > is the “name” of an instruction from the current program. ⋄
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In order to implement a machine able to execute a program written in the ELOOP language we propose two
architectures: AL1 and AL2. The two architectures will be used to exemplify different degrees of interpretations.
There are two ways in which the information acts in digital systems:

• by execution - digital circuits interpret one, more or all fields of an instruction

• by interpretation - another informational structure (by the rule a microprogram) interprets one, more or all
fields of the instruction.

In the fourth order systems the ratio between interpretation and execution is modified depending on the archi-
tectural approach. If there are fields having associated circuits that directly execute the functions indicated by the
code, then these fields are directly executed, else these are interpreted, usually by microprograms.

Definition 16.29 The assembly language one (AL1), as a minimal architecture associated for the processor that
performs the ELOOP language, contains the following instructions:

LOAD <Register> <Register>: load the first register with the content of the external memory addressed with
the second register

STORE <Register> <Register>: store the content of the first register on the cell addressed with the second
register

COPY <Register> <Register>: copy the content of the first register in the second register

CLR <Register>: reset the content of the register to zero

INC <Register>: increment the content of the register

DEC <Register>: decrement the content of the register

JMP <Register> <address>: if the content of the register is zero, then jump to the instruction stored at the
indicated address, else execute the next instruction

NOP : no operation

where:

<Register> ::= R0 | R1 | ... | R15

The instructions are coded in one 16 bits word. The registers have 16 bits. ⋄

There are some difficulties in the previous defined architecture to construct in registers the addresses for load,
store and jump. In order to avoid this inconvenient in the second architecture addresses are generated as values in
a special field of the instruction.

Definition 16.30 The assembly language two (AL2), as a minimal architecture associated for the processor that
performs ELOOP language, contains the following instructions:

LOAD <Register> <Address>: load the internal register of the processor with the addressed content of the
external memory

STORE <Register> <Address>: store the content of an internal register on the addressed cell in the external
memory

COPY <Register> <Register>: copy the content of the first register in the second register

CLR <Register>: reset the content of the register to zero

INC <Register>: increment the content of the register

DEC <Register>: decrement the content of the register
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JMP <Register> <Address>: if the content of the register is zero, then jump to the instruction stored at the
indicated address, else execute the next instruction

NOP : no operation

where:

<Register> ::= R0 | R1 | ... | R15

<Address> ::= 0H | 1H | ... | FFFFH.

The instructions with the field <Address> are coded in two 16-bits words and the rest in one 16 bits word. The
registers have 16-bits. ⋄

The microprogrammed machine previously defined (see Definition 10.24) can be used without any modifica-
tion to implement the processor associated to these two architectures.

Each instruction in AL1 has the associated microprogram. The reader is invited to make a first exercise
implementing this processor using the microprogrammed machine defined in the previous subsection. The exercise
consists in writing many microprograms. Each of the six instructions using a register needs 16 microprograms,
one for each register. The LOAD, STORE, COPY and JUMP instructions use two registers and we must write
256 microprograms for them. For NOP there is only one microprogram. Therefore, the processor is defined by
3×16+4×2073+1 = microprograms. A big amount of microprogram memory is wasted.

The same machine allows us to implement a processor with the AL2 architecture. In this case, the address is
stored in the second word of the instructions: LOAD, STORE and JUMP. The number of needed microprograms
decreases to 6×16+256+1 = 353.

In order to avoid this big number of microprograms a third exercise can be done. We will modify the internal
structure of the processor thus the field <Register> is interpreted by the circuits, not by the information as mi-
croprogram. (The field <Register> accesses direct through a miltiplexer the RALU inputs <Left> and <Dest>.)
Results a machine defined by eight microprograms only, one for each instruction.

Thus, there are many degrees of interpretation at the level of the fourth order systems. In the first implemen-
tation the entire information contained by the instruction is interpreted by the microprogram.

The second implementation offers a machine in which the field <Address> is executed by the decoder of the
external RAM, after its storage in one register of the processor.

The third implementation allows a maximal execution. This variant interprets only the field that contains the
name of the instruction. The fields specifying the registers are executed by the RAM from RALU and the address
field is stored in RALU and after that is executed by the external memory.

In the first solution, the physical structure has no role in the actual function of the machine. The physical
structure has only a potential role, it interprets the basic information: the microprograms.

The third solution generates a machine in which the information, contained by the programs stored in the
external RAM, acts in two manners: is interpreted by the microprograms (the field containing the name of the
instruction) and is executed by circuits (the fields containing the register names are decoded by the internal RAM
from the RALU and the field containing the value of the address is decoded by the external RAM).

There are processors, which have an architecture in which the information is entirely executed. A pure RISC
processor can be designed having circuits that execute all instruction fields. Between complete interpretation and
complete execution, the current technologies offer all the possibilities.

Starting from the level of the fourth order systems the functional aspects of a digital system is imposed mainly
by the information. The role of the circuits decreases. Circuits become simple even if they gain in size. The
complexity of the computation switches from circuits to information.

16.3 Comparing Information Definitions
Ending this chapter about information, we make some comments about the interrelation between the different
definitions of this full of meanings term that we discussed here. We want to emphasize that there are many
convergences in interpreting different definitions for information.
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Figure 16.7: The levels of information

1. Shannon’s theory evaluates the information associated with the set of events instead of Chaitin’s approach
which emphasizes the information contained in each event. Even with this initial difference, the final results for
big sized realities are in the same order for the majority of events. Indeed, according to Theorem 10.7 the most of
n-bit strings have information around the value of n bits.

2. The functional information and the algorithmic information offer two very distinct images. The first is an
exclusive qualitative approach, instead of the second which is a preponderant quantitative one. Even that, the final
point in this two theories is the same: the program or a related symbolic structure. The functional way starts from
circuits instead of the algorithmic approach that starts from the string of symbols. Both have in the second plane
the idea of computation and both are motivated by the relation between the size and the complexity of the circuits
(for functional information) or of the strings (for algorithmic information).

3. The functional information is a particular form of the generalized information defined by Drǎgǎnescu, because
the meaning (having the form of the referential signification) associated to strings of symbols acts generating
functional effects.

4. The jump from the binary string to the program of a machine that generates the string can be assimilated with
the relation between the string and its meaning. This meaning, i.e., the program, is interpreted by the machine
generating the string. The interpretation is the main function that allows the birth of functional information.
Therefore, the interpretation function, the meaning and the string are main concepts that connect the functional
information, generalized information and algorithmic information.

5. The information acts in a well-defined functional context by its meaning generating a string having the com-
plexity related to the size of its expression. The basic mechanism introduced by information is the interpretation.
A string has a meaning and the meaning must be interpreted. Algorithmic information emphasizes the meaning
and the functional information emphasizes the functional segregated context in which the meaning is interpreted.
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Project 16.2
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Chapter 17

∗ TWENTY EIGHT FINAL
VIEWPOINTS

In the previous chapter
the second part of this book ended with a chapter dealing with this strange ingredient which is information.
We suggested about the concept of information:

• it blinks in 2 order systems

• it consolidates in the 3 order systems

• it takes the functional control in 4 order systems

Starting with the 4th order systems the functionality becomes less dependent by the physical structure being
almost completely information dependent.

In this chapter
we propose to the reader some food for thought to consolidate what we discussed in this book. Also, some
subjects for future investigations are provided. The main obsessions of the author reflected in these 28 final
viewpoints are:

• correlating the number of loops and the desired functionality is the starting point in each digital design

• increasing the local autonomy in a big system saves control and time

• the complexity is more important than the size in One Billion Gates Per Chip Era.

In the next chapter
we will not find anything because it is not written. But any reader can think to the possibility to write a
similar book about computing architecture. The author is not excluded.

557
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Instead of few systematic concluding remarks, the following 28 view-points, i.e., “one” (“28 = 2+8 = 10 =
1+ 0 = 1”), about the game between the simple and the complex in digital systems are proposed. Our approach
in this book is a pseudo-systematic one, in the true postmodern spirit. Therefore, to be too systematic in this
final chapter means to betray the self-imposed style. If there is a deep unitary thought guiding the writing of this
book, then the reader will be sure able to disclose it. If not, I believe that beyond the unity and the depth of
principles guiding our approach must be something moreover that leads us in finding the right way towards the
optimal solutions. Let be the imaginary this strange additional agent that helps us to surpass the obvious limits of
the systematic search in the huge and full of traps space of possible solutions. Now, let’s proceed in the proposed
non-systematic and open end of this book.

1. Loop means autonomy.

Indeed, the signal propagated through the loop is able to generate an independent behaviour without any tran-
sitions received on the inputs. In 1-OS the autonomy manifests in maintaining the state of the circuit’s output
according with the before received temporary transition, thus memorizing it. 2-OSs are characterised by genera-
tive behaviours performed with “constant” inputs. A code received by a microprogrammed processor, specific to
3-OS, triggers the execution of a sequence of microinstructions that interprets the received instruction. In turn,
maintaining the state, generating a sequence of state or interpreting symbolic structures, the loop manifests as a
connection responsible for new, more and more useful functional behaviours.

2. More autonomy means less system level control.

The signal circulating on the loop “tells” to the circuit, with more or less weight, what to do. Therefore, many
processes can be simply triggered by an external signal and afterwards the loop takes the control performing the
designed behaviour. Typical behaviours are “stored” on loops and accessed by simple commands, thus minimizing
the control. We can say merely set of an elementary latch, using a short command, and after that the circuit goes out
of the control until a new command is necessary. Let us remember the vague command ( half of the bits have the
don’t care value) needed by a JK flip-flop used for designing an automaton. Also, a microprogrammed processor
is under the external control only in the fetch cycles. Therefore, by adding new loops the control is minimized
because sometimes many subsystems accept “don’t care” signals.

Also more autonomy implies less control if the controlled subsystems contains loops devoted to simple local
control mechanisms. For example, the third loop introduced in the arithmetic and logic automaton, presented in
Figure 9.8, improves the performance of arithmetic functions because takes over the “care” of carry. Thus the
sequence of commands needed for arithmetic functions have a simplified form. A well introduced loop saves code
reducing the complexity of the control.

3. The autonomy induced by loops allows the segregation between simple and complex. Thus,
the segregation means simplicity.

If the autonomous behaviour of a system is simple and a typical one, useful in many applications, then this be-
haviour can be used in defining sets of simple actions able to be articulated in different complex functions. Such a
behaviour can be accessed with a simple command, avoiding a complex control because of its autonomy (see the
previous viewpoint).

For example, it is very easy to command a JK flip-flop “switch in the other state”, instead to see what is the
current state of a D flip-flop and to command accordingly to switch in 0 or in 1. The second loop of JK flip-flop
works avoiding partially the control needed by the poor D flip-flop with his single loop. The JK flip-flop is a small
and simple structure. The circuit from Figure 8.43 has the same external behaviour as the circuit from Figure
9.4, but the complexity of the second is obviously smaller. Some hidden order of the PLA from the first solution
is segregated in the structure of the “JK register” in the second solution. The second PLA is a smaller random
structure, therefore it has a smaller complexity.

More, the third solution, based on a synchronous presetable counter, segregates more order into the simple,
two-loop circuit used as “register” (see Figure 15.3). The more autonomy, first of the “JK register” and after that
of the counter, means more simplicity segregated, drained from the random structure (PLA) on the loop of an
autonomous circuit.
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Another example is the system of the two-loop connected automata, MAC and FA (see Figure 8.40) performing
the multiply-accumulate function. MAC automaton has a simple structure designed using only recursive defined
circuits and the control automata FA is a random, complex circuit. The simple is segregated in MAC and the
complex remains in FA. A similar segregation process continues in FA, as we have seen before.

4. The apparent complexity is reduced to the actual complexity segregating the simple from the
complex.

Random “mixed” with order remains to be random. The hidden order inside the random doesn’t manifest as order.
Only if an ordered structure is extracted, segregated from a random one, then the complexity of the initial structure
diminishes. Therefore, the initial complexity was an apparent complexity and the complexity of the segregated
structure tends towards the actual complexity. There is a limit, not so easy to be emphasized, for the segregation
process that separates completely the ordered part from the random part of a system.

The complexity of the automaton presented in Figure 4.15 is obviously an apparent complexity. In two steps,
the segregation process allowed by a new loop, reduced the complexity (see the systems represented in Figure 5.2
and Figure 5.3). We have many reasons to believe that the complexity of the system from Figure 5.3 is an actual
complexity.

In the process of reducing the complexity sometimes the size of the system increases due to the increasing
size of the simple circuits (the size of MUX2 and SCOUNT is greather than the size of the “JK register”). But, we
are interested, especially for big sized systems, in reducing the complexity even the size of the system remains the
same or has a small growth. Current technologies manage better the size than the complexity.

Regarding to the area, it is obvious that, at the same size, the simple, recursive defined circuits use less area
than the random, complex circuits. Thus, the previous pointed out risk of the increasing the size of the simple part,
becomes less important.

5. In digital systems the circuit’s complexity must increase slower than their size.

In order to be feasible, testable and maintainable the hardware part of a digital system must be described in a
simple form. Can you imagine a one billion random gates network? This huge combinational circuit is maybe
technologically feasible, but only after its description is made in a computer “understandable” form. This form,
being a random form, has not a condensed manner to be expressed and we don’t have any solution than to specify
each gate with its connections, for all the billion gates, without any error! Because this is an impossible scenario
we don’t have any chance to implement a one billion gates system. Only systems having a sufficient reduced
complexity to be described with a reasonable human effort are implementable. The algorithmic complexity of our
circuits is limited by the “expressivity” of human being, instead of the size of the same circuits, more higher limited
by the microelectronics technologies.

This is the reason for our effort to emphasize the distinction between the apparent complexity and the actual
complexity of our systems. Our design procedure must segregate maximally the ordered part from the random
part in order to minimize the whole complexity. The older techniques of minimizing the size must be rounded up,
almost replaced with techniques of minimizing the complexity.

6. The nowadays gap between the size and the complexity is too big.

The biggest circuits, the RAM chips, have a too big difference between the size and the complexity. Too big
circuits for too minor funcional features. The RAM is only a simple storage support without any effective memory
function. Thus, more fuctions must be performed close to the storage support of the processed bits. There are two
ways of improving the functional capability of the RAM chips. The first is to add on the same chip arithmetic and
logic units in order to make on chip opperations, thus avoiding the transfers between the memory chips and the
processor chip of the system. The bandwidth between the storage support and processing elements is very much
expanded. The second way is to design chips that implement effective memory functions, such as stacks, queues,
lists, trees, ... . A possible example in this respect is the connex memory or the eco-chip (see Chapter 7).

7. Segregation between simple and complex in no-loop circuits is not productive, because the
autonomy lacks.



560 CHAPTER 17. ∗ TWENTY EIGHT FINAL VIEWPOINTS

Using a MUXn for implementing a n binary variable function offers a universal solution but not an optimal one. The
segregation between the simple structure of MUX and the random symbolic structure of bits applied to its selected
inputs is always possible, but inside of the physical structure there are many unuseful circuits. Taking into account
the actual form of the binary configuration applied on the selected inputs, many parts of the MUX’s structure are
removed, resulting a minimized circuit without any associated binary configuration. In this minimizing process the
segregation between simple (circuits) and complex (binary strings) disappears as non-productive.

The mixture of order and random in PLA structure is optimal for random combinational circuits because its
area is smaller than the area of the equivalent ROM and the translation of the ROM content to the PLA structure is
done automatically.

The loop induced autonomy remains to be productive in the segregation process between the simple part and
the complex part of the apparent complex system.

8. If we are in hurry to perform a digital function we must pay the “urgency tax”, i.e. if the
execution time, T decreases then the product size-time, S×T increases.

If the evaluation criterion is the product size× time, then the best circuits are the laziest. There are many examples
in our book. Let be only the adder structure. For constant time the adder has the size in O(n3) (see the carry-
lookahead adder in 2.3.1), for logarithmic time the size is in O(n) (with the carry-lookahead organized as a tree
[Omondi ’94]) and for linear time the size is constant (see the adder automaton in Figure 4.4). Results:

TADD ∈ O(1) implies TADD×SADD ∈ O(n3)
TADD ∈ O(log n) implies TADD×SADD ∈ O(nlog n)
TADD ∈ O(n) implies TADD×SADD ∈ O(n).

Similar evaluations are possible for other functions such as decoding, multiplexing, prefix computing. But the most
spectacular example remains the structured state space automata (see Definition 10.22) where the size decreases
exponentially for a linear decreasing of the speed. We must not forget the first time that information blinks in
digital systems is related to the structured state space.

9. The path from storage systems to the memory functions is given by the autonomy gained
closing supplementary loops.

The famous RAM does not perform any memory functions. It is only a storage support. In order to implement
memory functions (such as LIFO, FIFO, list, tree, connex memory) we need to implement supplementary mech-
anisms. At least one additional loop must be used for linking and accessing the objects managed by a memory
function.

For example, one loop (see 4.3.2) or n loops (see 7.1) must be added for a LIFO memory. Also, a FIFO is
easy to be designed with a RAM and two counters to address the two end of the queue. Thus, the FIFO memory
is a 2-OS. It is obvious that any memory function can be implemented on a computer (4-OS) using a program that
manages the content of RAM.

In order to respond to simple commands a system having a complex memory function must have its own
autonomy.

10. Finite automata are complex automata in comparison with ”non-finite” automata which
may be simple.

According to Definition 2.4, a finite automaton, having the size in the same order with the definition’s dimension,
is a complex circuit. For this reason, big sized finite automata are out of our interest. Viewpoint 5 supports also this
tendency to use only small automata in our projects. All the implementable automata are finite, but the effective
finite automata (see Definition 4.4) are characterized by the property that even the string to be processed is infinite,
the automaton that performs this processing is a finite machine. The structure of an effective finite automaton does
not depend on the length of the received string of data or of commands.
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On the other side, we are invited to introduce in our projects “non-finite” automata only if they are simple,
because of their recursive definitions. We are invited only to pay attention to the correlation between the size of
the structure and the length of the processed string. For example, the sum prefix automaton (see 4.41) has designed
to add maximum p = 2m n-bit numbers with a (m+n)-bit state register. This small care is plentiful compensated
by the very simple circuit that closes the loop.

11. The first turning-point in digital systems’ evolution is the moment when we must tolerate
a small growth of the size and of the complexity of the physical structure in order to reduce
strongly the complexity of the symbolic structure responsible for the functional specification.

When a symbolic structure becomes responsible for the behavior of the system, that symbolic structure starts to
impose its own criteria. Indeed, if we have a system in which coexists a physical structure with a symbolic structure,
then we are compelled to minimize the sum between the physical complexity and the symbolic complexity. In the
example of CROM presented in Figure 4.18 the physical structure is built from simple circuits. The complexity
of the system is due mainly to the symbolic content of the ROM. Adding an incrementer increases a little the
complexity of the circuits and reduces significantly the number of the random distributed bits that encode the
microprograms stored in ROM. Avoiding a big random part from the CROM’s definition, the whole complexity of
the system decreases. For more sophisticated applications a LIFO can be added in order to reduce supplementary
the CROM’s complexity. Similarly, the processor architecture in a 4-OS is improved, with supplementary features
(eventually one or more new loops), with the hope that the programs written in machine language will be statically
and dynamical minimized.

12. In 3-OS disappears the strict correlation between the physical structure and the function
in most of the systems.

Indeed, the basic structure in 3-OS is the processor, a circuit built using mainly simple, standard structure as
subsystems (for example: ALU, latches, registers, shifters, MUXs). Using these standard structures the instruction
set can have some more forms. The actual instruction set, i.e. the actual function of the system, is embedded in
some PLAs used for decoding the instructions (in RISC machines) or for closing the loop of the controller that
interprets the instructions (in CISC machines). Therefore, only the symbolic content of the PLAs specifies the
actual function of the processor. A schematic block containing simple circuits and PLAs says only a little about
the class of instruction performed by the processor. The physical structure remains open towards any instruction
set. The imagination in the circuit domain has almost stopped. Thinking in the circuit domain is substituted more
and more whith the architectural approach.

13. In 4-OS the computer is not a circuit, it has an architecture.

At the level of the 4-OS the functional concreteness of circuits is completely substituted with the promise of
architecture. We cannot say anything about the function of a computer, the typical system in 4-OS, because it is
an universal machine. Only the architectural features defines this system with the function given exclusively by
the programs. A few supplementary loops over 4-OSs are devoted only to improve the performances, without any
functional effects. The functional gains given by closing of new loops is stopped at once with the occurrence of
the information, as the symbolic structure exclusively responsible for functional specifications.

14. In n-OS there are conditions as each bit/byte to be the owner of a processing element.

The information in nature is uniform distributed among the physical structures supporting it. It is reasonable to
believe that the natural distribution of information is an optimal solution. The nature does not wander on the wrong
ways. Starting from this suggestion, unconventional computing systems can be imagined. In the current systems
the information is compact stored in specific devices completely isolated from the device that uses (processes)
it. This is the main idea grounding the current computer architecture: von Neumann architecture. Instead of this
distinction between the storing device and the processing machine there are many proposals to distribute near each
bit/byte small and simple circuits in order to perform a local processing. For example, in devices such as the connex
memory or the eco-chip will be triggered “deep” optimal parallel processes. Many “superficial” sequential mech-
anisms should benefit by these “deep” parallelism. Because there are inherent sequentially processes promoted
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by basic algorithms, there is a chance to use in critical points a “deep” parallel mechanism in order to improve
the time performance. See, for example, the Markov algorithms (7.2.3) which are inherent sequential processes,
but the parallel searching, as a deep mechanism of the connex memory can be successfully used to improve their
implementation.

15. For computing the partial recursive functions we need at least 3-OSs.

The simplest machine which can perform any computation has at least three loops: is one of the main results of
the approach performed in this book. Executing the basic functions is efficiently done by combinational, no-loop
circuits (polynomial sized and log-depth circuits execute the increment and the selection). Sequencing quickly the
composition (using pipeline connections between functional blocks) needs memory circuits (registers), i.e. 1-OS.
Commanding the recursion is done by a counter automaton serially connected with an effector automaton (because
the result of a stage is reused in the next stage). Therefore the primitive recursion is simply mechanized in 2-OS.
Finally, the minimalization rule needs a new loop for testing the halt condition. Controlling the process of looking
for the result imposes the third loop on which the partial results are tested if they are zero or not.

Three loops are sufficient but not efficient for computation. Going over the 3-OS is justified by the informa-
tion’s occurrence and its consequences regarding the flexibility.

16. Each type of language has its own minimal number of loops in order to be recognized or to
be generated.

Infinite random machines make anything, but we are interested only in “infinite” simple structures and finite
random structures. In this respect, an automaton recognizes or generates any language, but we can not define,
design and implement it. The only machines useful in our approach have constant sized definitions, i.e. they are
machines including finite random structures (for example: finite automata) and “infinite” simple structures (such
as stacks, counters, RAMs). In this class of machines we look for the structures associated with types of formal
languages.

Following Chomsky’s classification results the following correspondence with our digital orders:

Li↔ (5− i)−OS

for i = 1,2,3. Another form is Li↔ j−OS with i+ j = 5 suggesting that: the sum between the production’s
restrictions and the machine’s loops is 5 (good number!).

A string in which each symbol is related only with the previous symbol is recognized or generated by finite
automata because the information about the previous symbol can be stored in the internal state of an automaton.
Therefore, L3↔ 2−OS.

If some symbols in a string are generated together with another symbol (in the same production rule), then
the occurrences of these symbols, in a string submitted to recognition, must be temporary memorized in order
to be correlated, in one of the next steps, with the corresponding occurrences of the “twin” symbol. Thus, in
the machines recognizing context-free languages we must add the simplest memory (accepting destructive read).
Therefore, 2-type languages are recognized and generated by finite automata loop coupled with LIFO memories,
i.e.: L2↔ 3−OS.

The context sensitive languages need a memory which does not forget after reading, because the context on
which a symbol is generated is related with another context, and so on, Thus, for each symbol generated with
a context sensitive production rule all the strings must be investigated. It is obvious that a memory having a
destructive reading must be substituted with a memory in which any stored symbol is many time accessible. Two
loop-coupled stacks or a RAM addressed with an up-down counter and a control automaton solve the problem
adding a new loop. LIFO is substituted with a bi-directional list. Therefore, L1↔ 4−OS.

Concluding, the memory function is the key of the correlation between languages and machines. The simplest
machine memorizes in the internal state only for a clock cycle. The second machine memorizes until the stored
content is read (POP operation removes from the stack the read content). Only the last machine has a memory
function that memorizes until the stored content is changed.

17. There is an Universal Turing Machine with no state control.
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The importance of this result (see Figure 9.14) is given by the possibility to build a computing machine with the
simplest (maybe not smallest) physical structure without any random part. (Shannon with its own two-state UTM
[Shannon ’56] reduced to the minimum the number of the automaton states but the random part of the machine (the
combinational circuit on the loop of the automaton) remains to be significant.) The control automaton is substituted
with recursive defined combinational circuits. The random part of computation is supported only by the symbolic
structure stored in RAM. The universal physical structure executes any random symbolic sequence contained in
memory. The simple (circuits) and the complex (strings of symbols) are thus maximally segregated.

18. No state UTM executes, in comparison with the state controlled UTM which interprets.

In the no state UTM (see Figure 9.14) the code read on DOUT1 in each clock cycle acts through Comp and MUX
on ADD and Inc/Dec; we say that the program stored in RAM is executed, because the code acts directly on
combinational circuits performing the encoded action.

In the state controlled UTM the code read from RAM triggers a sequence of commands controlled by a finite
automaton having two or more states. We say that the control sequence of the finite automaton interprets the code
associated with the described TM.

The execution is a sort of interpretation. It is the simplest form of interpretation performed directly, by the
rule in one step combinational circuits.

19. The interpretation is the main process leading towards information.

Usually a circuit executes “interpreting” directly the binary codes received on inputs. If the meaning of the re-
ceived codes overtakes a certain level of complexity, then the execution is substituted with the interpretation. The
sequential process involved in interpretation implies many times much smaller circuits and a smaller loss in speed
(according to Conjecture 2.1; see also viewpoint 8). In this case we are interested in the growth of the meaning
contained in the symbolic structures that flow inside of digital systems. Thus, promoting interpretation instead of
execution the condition for information’s occurrence are little by little grounded.

20. The “simple” can be executed and the “complex” must be interpreted.

The algorithmic thinking means to perform a complex action sequencing many simple actions. For each simple
action there is a simple circuit. The point is to find the set of simple actions useful for any computation. This is the
problem to design an basic architecture in which the elementary actions, the instructions, are executed.

For example, the microprogrammed processor from Definition 10.24 has a basic micro-architecture. Each mi-
croinstruction is executed by the RALU and a received instruction (see Figure 10.8) is interpreted by the associated
microprogram that starts at the ROM address loaded in the register R by the value INIT of the field <Mod> (see the
microprogram in Example 10.14). Therefore, the microinstructions, as a set of many simple actions, are executed
and the instructions, that perform complex actions by a sequence of microinstructions, are interpreted.

This distinction between simple and complex is not compulsory but is very efficient, leading towards big
siezed machines with achieveable complexity. The concept of functional information is a direct consequence of
this apparent trivial distinction.

21. The functional information blinks in 2-OS, occurs in 3-OS and assumes the functional
control in 4-OS.

Conjecture 2.1 acts merciless at the level of 2-OS when the structured state space automata (S3A) is defined. A
mechanism that allows an exponential decreasing of the size at the unbelievable price of a linear decreasing of the
speed imposes the new concept of informational structure. This is the first step on the way of organizing the bits
inside of a digital system. A lot of bits gain a syntactic structure given by the order induced in processing. The
informational structure has very small informational capabilities emphasized by the flags (indicators) that classify
the huge diversity of an informational structure in few classes used to decide in performing a function on certain
data (informational structure).

The organized content of a ROM within a CROM represent also an informational structure, but the meaning
associated with this content is strongly correlated with the functional loop on which it flows. The actual function
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of the system controlled by a CROM is due to the meaning associated of this informational structure. For this
reason at the 3-OS level occurs the functional information, a symbolic structure that acts by its meaning. The
informational content of ROM is executed in 3-OS and the functional information interprets partially or totally (as
in Definition 10.24) the content of the received instructions.

In 4-OS the functional information is, by the rule, interpreted. A computer having a microprogrammed pro-
cessor is a typical system in which the information (the program) stored in the memory is interpreted by micropro-
grams. The machine defined in chapter 10 is a pure microprogrammed one because the entire instruction is used by
the CROM for starting the microprogram; there is not field in the instruction code acting directly on RALU, being
thus executed. Actual machines have the instruction structured in fields and some of them are interpreted and the
rest are executed inside the processor. Also, there are processors that execute all the field of the instructions. These
are the pure RISC processors.

22. Functional information occurs in the process of converting the circuit randomness in the
symbolic randomness.

We can not tolerate the circuit randomness at the high level of complexity. But there are complex computations to
be done. The solution is to convert the circuit randomness in symbolic randomness. The price is the time needed
for interpreting information in a sequential manner. The algorithmic control of computation hinders the entirely
re-conversion of sequential interpretation in parallel execution.

23. The 4-OS imposes the deeper segregation and stops the mechanism of the physical growing
by loops.

The deeper segregation in simple circuits and random symbolic structures slows the process of closing new loops
after the fourth loop. The loops added to 4-OS are imposed only for improving local performances. These new
loops don’t add new functional features because the functional control is assumed by the information. The struc-
turing with circuits is substituted with structuring in information. Many layers of programs cover the physical
structure, the hardware. The functional growth is assumed exclusively by the information. The circuits are sub-
stituted by architectures, each architectural level interpreting the information organized on the next level. The
physical machines are also substituted with virtual machines. The interface with a virtual machine is the associ-
ated architecture.

In the proximity of the 4-OS the functional control is dominated by the information. Fundamental new possi-
bilities occur only in the domain of n-OS. Here the information and the circuits strongly interact opening towards
fundamental changes in thinking about computation. Old ideas, as lambda machines, logic and functional pro-
gramming, cellular automata, Markov algorithms, Lindenmayer systems must be revisited with n-OS in mind.
Also, suggestion given by new computation models promoted by molecular computing or quantum computing
offer theoretical support for applications of the n-OS.

Therefore, around 4-OS les jeu sont fait, but at the end of the scale the n-OSs wait to be used.

24. Circuits are powerful than the Universal Turing Machines but not useful.

What are the gains and the losses in the transition from circuits towards UTM? Using circuits, theoretical any
function has a solution (see Theorem 2.1). UTM guarantees solutions only for the partial recursive functions. The
transition from circuits toward computer architecture is the actual form of the theoretical trend that starts from the
particular solutions given by the random circuits and ends offering an universal solution for computation.

The flexibility of circuits to fit with actual problems is minimal. The flexibility of an universal solution is
maximal.

25. We expect more from the deep interleaving of the information with circuits in n-OS.

Functions implemented on circuits must be seen as an uncontrollable performance of the imaginary. The algo-
rithmic approach, in a system where the information is strictly segregated from the physical structures, seems to
be un-natural. Therefore, we expect more from the well balanced systems containing circuits interleaved with
information, as in the connex memory or in the eco-chip, used in Chapter 7 for exemplifying the n-OS.
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26. Simplicity needs time.

A D flip-flop is faster than a JK flip-flop and the last is faster than a presetable counter. The solutions offered
for the same automaton using the three variants of register have, in the same order, a more and more reduced
complexity (see the three solutions proposed for the exemplified control automaton). But, the action of Conjecture
2.1 promotes always the simpler, slower solution.

Executing is faster than interpreting, but current trends, around 4-OSs, promote interpretation because it asks
simpler physical structures.

27. Simplicity means incompleteness.

The circuits have for almost all solutions (excepting the situations with recursive defined structure) an apparent
high complexity. The actual small complexity is reached after a strong segregation. The strongest segregation
leads towards Universal Turing Machine. But UTM is limited by the effects of Gödelian incompleteness that takes
the form of the halting problem. Accepting the starting limitation, consisting in executions performed using only
simple circuits, the interpretation process is limited. The final limit is given by an initial limitation. The starting
trend toward simplicity leads to the final incompleteness.

28. The dimension of the symbolic expression, time and the machine complexity must be cor-
related in order to gain efficiency.

This book was devoted to the apparent complexity of the circuits. We was interested in minimizing the circuit
complexity. One of the main consequence was the occurrences of the information contained in symbolic expres-
sions. This last point of view refers to a problem to be solved by another book: the symbolic strings have also an
apparent complexity and what must be our attitude in respect to it?

For each computation there are more algorithms. We take now into account only the dimension of their
expression. A conjecture seems to be true about the relation between expression’s dimension of the algorithm and
the associated execution time.

Conjecture 11.1 For the same computation, if the size of the algorithm’s expression, SA decreases, then the
product between SA and the execution time T increases. ⋄

More formal: if there are for the same computation two distinct algorithms, A1 and A2, and the corresponding
execution time are T1 and T2, then for SA1 < SA2 results SA1 ×T1 > SA2 ×T2.

Let be an example. For the function fib (n) are listed below (after [Andonie ’95]) three distinct algorithms.
The first is a recursive algorithm, A1, working in exponential time. It has the shortest following expression.

Procedure fib1(n)
if n < 2 then n

else fib1(n-1) + fib1(n-2)
endif

end fib1(n)

The second algorithm, A2 is an iterative one, working in linear time. Its dimension is greater than the previous.

Procedure fib2(n)
i = 1; j = 1
for k = 1 to n do

j = i+ j, i = j− i
endfor return j

end fib2(n)

The last algorithm, A3 is the fastest, running in log-time. Its expression has obviously the higher complexity.
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Procedure fib3(n)
i = 1; j = 0; k = 0; h = 1
while n > 0 do

if n is odd
then t = jh

j = ih+ jk+ t
i = ik+ t

endif
t = h2

h = 2kh+ t
k = k2 + t
n = n/2

repeat
return j

end fib3(n)

Resuming: SA1 < SA2 < SA3 corresponds to

SA1 ×T1 > SA2 ×T2 > SA3 ×T3.

The algorithmic complexity of the expression influences the complexity of the expressed algorithm. Thus, the
expressiveness means time or powerful machine.

The fastest algorithms are those who “explain in detail to the machine” what is to do. After a long time
explanation the machine works short time and conversely, a short explanations puts the machine to work for long
time. But detailed explanations (programs) need many time to be designed. And more, complex programs generate
uncontrollable symbolic structures. In order to be validate, a complex (long expressed) program asks a test program
with a similar complexity. But, the test program must work properly. And so on.

On the other hand, to run efficiently “expressive”, short expressed, simple programs we need powerful ma-
chines.

How to deal with the time, the machine complexity and the expression’s complexity? The answer holds by
another story.
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Appendix A

Boolean functions

Searching the truth, dealing with numbers and behaving automatically are all based on logic. Starting from the very
elementary level we will see that logic can be “interpreted” arithmetically. We intend to offer a physical support
for both the numerical functions and logical mechanisms. The logic circuit is the fundamental brick used to build
the physical computational structures.

A.1 Short History
There are some significant historical steps on the way from logic to numerical circuits. In the following some of
them are pointed.

Aristotle of Stagira (382-322) a Greek philosopher considered as founder for many scientific domains. Among
them logics. All his writings in logic are grouped under the name Organon, that means instrument of scientific
investigation. He worked with two logic values: true and false.

George Boole (1815-1864) is an English mathematician who formalized the Aristotelian logic like an algebra.
The algebraic logic he proposed in 1854, now called Boolean logic, deals with the truth and the false of complex
expressions of binary variables.

Claude Elwood Shannon (1916-2001) obtained a master degree in electrical engineering and PhD in math-
ematics at MIT. His Master’s thesis, A Symbolic Analysis of Relay and Switching Circuits [Shannon ’38], used
Boolean logic to establish a theoretical background of digital circuits.

A.2 Elementary circuits: gates
Definition A.1 A binary variable takes values in the set {0,1}. We call it bit.

The set of numbers {0,1} is interpreted in logic using the correspondences: 0→ f alse,1→ true in what is
called positive logic, or 1→ f alse,0→ true in what is called negative logic. In the following we use positive logic.

Definition A.2 We call n-bit binary variable an element of the set {0,1}n.

Definition A.3 A logic function is a function having the form f : {0,1}n→{0,1}m with n≥ 0 and m > 0.

In the following we will deal with m= 1. The parallel composition will provide the possibility to build systems
with m > 1.

569
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A.2.1 Zero-input logic circuits
Definition A.4 The 0-bit logic function are f 0

0 = 0 (the false-function) which generates the one bit coded 0, and
f 0
1 = 1 (the true-function) which generate the one bit coded 1.

They are useful for generating initial values in computation (see the zero function as basic function in partial
recursivity).

A.2.2 One input logic circuits
Definition A.5 The 1-bit logic functions, represented by true-tables in Figure A.1, are:

• f 1
0 (x) = 0 – the false function

• f 1
1 (x) = x′ – the invert (not) function

• f 1
2 (x) = x – the driver or identity function

• f 1
3 (x) = 1 – the true function

x f 1
0 f 1

1 f 1
2 f 1

3
0 0 1 0 1

1 0 0 1 1

a.

-

b. c.

x x’
-

“1” = VDD

x

d.

x

e.

Figure A.1: One-bit logic functions. a. The truth table for 1-variable logic functions. b. The circuit for “0”
(false) by connecting to the ground potential. c. The logic symbol for the inverter circuit. d. The logic symbol for
driver function. e. The circuit for “1” (true) by connecting to the high potential.

Numerical interpretation of the NOT circuit: one-bit incrementer. Indeed, the output represents the modulo
2 increment of the inputs.

A.2.3 Two inputs logic circuits
Definition A.6 The 2-bit logic functions are represented by true-tables in Figure A.2.

Interpretations for some of 2-input logic circuits:

• f 2
8 : AND function is:

– a multiplier for 1-bit numbers

– a gate, because x opens the gate for y:
if (x = 1) output = y; else output = 0;

• f 2
6 : XOR (exclusiv OR) is:

– the 2-modulo adder

– NEQ (not-equal) circuit, a comparator pointing out when the two 1-bit numbers on the input are
inequal

– an enabled inverter:
if x = 1 output is y′; else output is y;

– a modulo 2 incrementer.
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x y f 2
0 f 2

1 f 2
2 f 2

3 f 2
4 f 2

5 f 2
6 f 2

7 f 2
8 f 2

9 f 2
A f 2

B f 2
C f 2

D f 2
E f 2

F
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

a.

x

y

x

y

x

y

x

y

x

y

x

y

f 2
8 = xy f 2

7 = (xy)′

f 2
E = x+ y f 2

1 = (x+ y)′

f 2
6 = x⊕ y f 2

9 = (x⊕ y)′

b. c.

d. e.

f. g.

Figure A.2: Two-bit logic functions. a. The table of all two-bit logic functions. b. AND gate – the original
gate. c. NAND gate – the most used gate. d. OR gate. e. NOR gate. f. XOR gate – modulo2 adder. g. NXOR gate
– coincidence circuit.

• f 2
B : the logic implication is also used to compare 1-bit numbers because the output is 1 for y < x

• f 2
1 : NOR function detects when 2-bit numbers have the value zero.

All logic circuits are gates, even if a true gate is only the AND gate.

A.2.4 Many input logic circuits
For enumerating the 3-input function a table with 8 line is needed. On the left side there are 3 columns and on the
right side 256 columns (one for each 8-bit binary configuration defining a logic function).

Theorem A.1 The number of n-input one output logic (Boolean) functions is N = 22n
. ⋄

Enumerating is not a solution starting with n = 3. Maybe the 3-input function can be defined using the 2-input
functions.

A.3 How to Deal with Logic Functions
The systematic and formal development of the theory of logical functions means: (1) a set of elementary functions,
(2) a minimal set of axioms (of formulas considered true), and (3) some rule of deduction.

Because our approach is a pragmatic one: (1) we use an extended (non-minimal) set of elementary functions
containing: NOT, AND, OR, XOR (a minimal one contains only NAND, or only NOR), and (2) we will list a set
of useful principles, i.e., a set of equivalences.

Identity principle Even if the natural tendency of existence is becoming, we stone the value a to be identical
with itself: a = a. Here is one of the fundamental limits of digital systems and of computation based on them.

Double negation principle The negation is a “reversible” function, i.e., if we know the output we can deduce
the input (it is a very rare, somehow unique, feature in the world of logical function): (a′)′) = a. Actually, we can
not found the reversibility in existence. There are logics that don’t accept this principle (see the intuitionist logic
of Heyting & Brower).
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Associativity Having 2-input gates, how can be built gates with much more inputs? For some functions the
associativity helps us.
a+(b+ c) = (a+b)+ c = a+b+ c
a(bc) = (ab)c = abc
a⊕ (b⊕ c) = (a⊕b)⊕ c = a⊕b⊕ c.

Commutativity Commutativity allows us to connect to the inputs of some gates the variable in any order.
a+b = b+a
ab = ba
a⊕b = b⊕a

Distributivity Distributivity offers the possibility to define all logical functions as sum of products or as product
of sums.
a(b+ c) = ab+ac
a+bc = (a+b)(a+ c)
a(b⊕ c) = ab⊕ac.
Not all distributions are possible. For example:

a⊕bc ̸= (a⊕b)(b⊕ c).

The table in Figure A.3 can be used to prove the previous inequality.

a b c bc a ⊕ bc a⊕b a⊕c (a⊕b)(a⊕c)
0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 0 0

1 1 0 0 1 0 1 0

1 1 1 1 0 0 0 0

Figure A.3: Proving by tables. Proof of inequality a⊕bc ̸= (a⊕b)(b⊕ c).

Absorbtion Absorbtion simplify the logic expression.
a+a′ = 1
a+a = a
aa′ = 0
aa = a
a+ab = a
a(a+b) = a
Tertium non datur: a+a′ = 1.

Half-absorbtion The half-absorbtion allows only a smaller, but non-neglecting, simplification.
a+a′b = a+b
a(a′+b) = ab.
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Substitution The substitution principles say us what happen when a variable is substituted with a value.
a+0 = a
a+1 = 1
a0 = 0
a1 = a
a⊕0 = a
a⊕1 = a′.

Exclusion The most powerful simplification occurs when the exclusion principle is applicable.
ab+a′b = b
(a+b)(a′+b) = b.

Proof. For the first form:
ab+a′b = b

applying successively distribution, absorbtion and substitution results:

ab+a′b = b(a+a′) = b1 = b.

For the second form we have the following sequence:

(a+b)(a′+b) = (a+b)a′+(a+b)b = aa′+a′b+ab+bb =

0+(a′b+ab+b) = a′b+ab+b = a′b+b = b.

De Morgan laws Some times we are interested to use inverting gates instead of non-inverting gates, or
conversely. De Morgan laws will help us.
a+b = (a′b′)′ ab = (a′+b′)′

a′+b′ = (ab)′ a′b′ = (a+b)′

A.4 Minimizing Boolean functions
Minimizing logic functions is the first operation to be done after defining a logical function. Minimizing a logical
function means to express it in the simplest form (with minimal symbols). To a simple form a small associated
circuit is expected. The minimization process starts from canonical forms.

A.4.1 Canonical forms
The initial definition of a logic function is usually expressed in a canonical form. The canonical form is given by
a truth table or by the rough expression extracted from it.

Definition A.7 A minterm associated to an n-input logic function is a logic product (AND logic function) de-
pending by all n binary variable. ⋄

Definition A.8 A maxterm associated to an n-input logic function is a logic sum (OR logic function) depending
by all n binary variable. ⋄

Definition A.9 The disjunctive normal form, DNF, of an n-input logic function is a logic sum of minterms. ⋄

Definition A.10 The conjunctive normal form, CNF, of an n-input logic function is a logic product of maxterms.
⋄
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Example A.1 Let be the combinational multiplier for 2 2-bit numbers described in Figure A.4. One number is the
2-bit number {a,b} and the other is {c,d}. The result is the 4-bit number {p3, p2, p1, p0}. The logic equations
result direct as 4 DNFs, one for each output bit:
p3 = abcd
p2 = ab’cd’ + ab’cd + abcd’
p1 = a’bcd’ + a’bcd + ab’c’d + ab’cd + abc’d + abcd’
p0 = a′bc′d +a′bcd +abc′d +abcd.
Indeed, the p3 bit takes the value 1 only if a = 1 and b = 1 and c = 1 and d = 1. The bit p2 is 1 only one of the
following three 4-input ADNs takes the value 1: ab′cd′, ab′cd, abcd′. And so on for the other bits.

Applying the De Morgan rule the equations become: p3 = ((abcd)′)′

p2 = ((ab′cd′)′(ab′cd)′(abcd′)′)′

p1 = ((a′bcd′)′(a′bcd′(ab′c′d)′(ab′cd)′(abc′d)′(abcd′)′)′

p0 = ((a′bc′d)′(a′bcd)′(abc′d)′(abcd)′)′.

These forms are more efficient in implementation because involve the same type of circuits (NANDs), and
because the inverting circuits are usually faster.

ab cd p3 p2 p1 p0

00 00 0 0 0 0

00 01 0 0 0 0

00 10 0 0 0 0

00 11 0 0 0 0

01 00 0 0 0 0

01 01 0 0 0 1

01 10 0 0 1 0

01 11 0 0 1 1

10 00 0 0 0 0

10 01 0 0 1 0

10 10 0 1 0 0

10 11 0 1 1 0

11 00 0 0 0 0

11 01 0 0 1 1

11 10 0 1 1 0

11 11 1 0 0 1

Figure A.4: Combinatinal circuit represented a a truth table. The truth table of the combinational circuit
performing 2-bit multiplication.

The resulting circuit is represented in Figure A.5. It consists in two layers of ADNs. The first layer computes
only minterms and the second “adds” the minterms thus computing the 4 outputs.

The logic depth of the circuit is 2. But in real implementation it can be bigger because of the fact that big
input gates are composed from smaller ones. Maybe a real implementation has the depth 3. The propagation time
is also influenced by the number of inputs and by the fan-out of the circuits.

The size of the resulting circuit is very big also: Smult2 = 54. ⋄

A.4.2 Algebraic minimization

Minimal depth minimization

Example A.2 Let’s revisit the previous example for minimizing independently each function. The least significant
output has the following form:

p0 = a′bc′d +a′bcd +abc′d +abcd.

We will apply the following steps:

p0 = (a′bd)c′+(a′bd)c+(abd)c′+(abd)c

to emphasize the possibility of applying twice the exclusion principle, resulting

p0 = a′bd +abd.
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a

b

c

d

p2

p0

p1

p3

Figure A.5: Direct implementation of a combinational circuit. The direct implementation starting from
DNF of the 2-bit multiplier.

Applying again the same principle results:

p0 = bd(a′+a) = bd1 = bd.

The exclusion principle allowed us to reduce the size of the circuit from 22 to 2.
We continue with the next output:

p1 = a′bcd′+a′bcd +ab′c′d +ab′cd +abc′d +abcd′ =

= a′bc(d′+d)+ab′d(c′+ c)+abc′d +abcd′ =
= a′bc+ab′d +abc′d +abcd′ =
= bc(a′+ad′)+ad(b′+bc′) =
= bc(a′+d′)+ad(b′+ c′) =
= a′bc+bcd′+ab′d +ac′d.
Now we used also the half-absorbtion principle reducing the size from 28 to 16.

Follows the minimization of p2:
p2 = ab′cd′+ab′cd +abcd′ =

= ab′c+abcd′ =
= ab′c+acd′

The p3 output can not be minimized. De Morgan law is used to transform the expressions to be implemented with
NANDs.

p3 = ((abcd)′)′

p2 = ((ab′c)′(acd′)′)′

p1 = ((a′bc)′(bcd′)′(ab′d)′(ac′d)′)′

p1 = ((abcd)′)′.
Results the circuit from Figure A.6. ⋄

Multi-level minimization

Example A.3 The same circuit for multiplying 2-bit numbers is used to exemplify the multilevel minimization.
Results:

p3 = abcd
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a

b

c

d

p3

p2

p1

p0

Figure A.6: Minimal depth minimiztion The first, minimal depth minimization of the 2-bit multiplier.

p2 = ab′c+acd′ = ac(b′+d′) = ac(bd)′

p1 = a′bc+bcd′+ab′d +ac′d = bc(a′+d′)+ad(b′+ c′) = bc(ad)′+ad(bc)′ = (bc)⊕ (ad)
p0 = bd.
Using for XOR the following form:

x⊕ y = ((x⊕ y)′)′ = (xy+ x′y′)′ = (xy)′(x′y′)′ = (xy)′(x+ y)

results the circuit from Figure A.7 with size 22. ⋄

a
b
c
d

p3 p1 p2 p0

Figure A.7: Multi-level minimization. The second, multi-level minimization of the 2-bit multiplier.

Many output circuit minimization

Example A.4 Inspecting carefully the schematics from Figure A.7 results: (1) the output p3 can be obtained
inverting the NAND’s output from the circuit of p2, (2) the output p0 is computed by a part of the circuit used for
p2. Thus, we are encouraged to rewrite same of the functions in order to maximize the common circuits used in
implementation. Results:

x⊕ y = (xy)′(x+ y) = ((xy)+(x+ y)′)′.

p2 = ac(bd)′ = ((ac)′+bd)′

allowing the simplified circuit from Figure A.8. The size is 16 and the depth is 3. But, more important: (1) the
circuits contains only 2-input gates and (2) the maximum fan-out is 2. Both last characteristics led to small area
and high speed. ⋄
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a
b
c
d

p3 p2p1 p0

Figure A.8: Multiple-output minimization. The third, multiple-output minimization of the 2-bit multiplier.

A.4.3 Veitch-Karnaugh diagrams
In order to apply efficiently the exclusion principle we need to group carefully the minterms. Two dimension
diagrams allow to emphasize the best grouping. Formally, the two minterms are adjacent if the Hamming distance
in minimal.

Definition A.11 The Hamming distance between two minterms is given by the total numbers of binary variable
which occur distinct in the two minterms. ⋄

Example A.5 The Hamming distance between m9 = ab′c′d and m4 = a′bc′d′ is 3, because only the variable b
occurs in the same form in both minterms.

The Hamming distance between m9 = ab′c′d and m1 = a′b′c′d is 1, because only the variable which occurs
distinct in the two minterms is a. ⋄

Two n-variable terms having the Hamming distance 1 are minimized, using the exclusion principle, to one
(n−1)-variable term. The size of the associated circuit is reduced from 2(n+1) to n−1.

A n-input Veitch diagram is a two dimensioned surface containing 2n squares, one for each n-value minterm.
The adjacent minterms (minterms having the Hamming distance equal with 1) are placed in adjacent squares. In
Figure A.9 are presented the Veitch diagrams for 2, 3 and 4-variable logic functions. For example, the 4-input
diagram contains in the left half all minterms true for a = 1, in the upper half all minterms true for b = 1, in the
two middle columns all the minterms true for c = 1, and in the two middle lines all the minterms true for d = 1.
Results the lateral columns are adjacent and the lateral line are also adjacent. Actually the surface can be seen as a
toroid.

a. b. c.

m0m1

m2m3

m4 m5

m6 m7

m0

m1

m2

m3

a

b

c

a

b

m0

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m13

m12 m14

m15

a

b

c

d

Figure A.9: Veitch diagrams. The Veitch diagrams for 2, 3, and 4 variables.

Example A.6 Let be the function p1 and p2, two outputs of the 2-bit multiplier. Rewriting them using minterms
results::

p1 = m6 +m7 +m9 +m11 +m13 +m14
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p2 = m10 +m11 +m14.

In Figure A.10 p1 and p2 are represented.
⋄

1 1

1

11

1

1

1

a.

1

b.

a

b

c

d

a

b

c

d

p1 p2

Figure A.10: Using Veitch diagrams. The Veitch diagrams for the functions p1 and p2.

The Karnaugh diagrams have the same property. The only difference is the way in which the minterms are
assigned to squares. For example, in a 4-input Karnaugh diagram each column is associated to a pair of input
variable and each line is associated with a pair containing the other variables. The columns are numbered in
Gray sequence (successive binary configurations are adjacent). The first column contains all minterms true for
ab = 00, the second column contains all minterms true for ab = 01, the third column contains all minterms true
for ab = 11, the last column contains all minterms true for ab = 10. A similar association is made for lines. The
Gray numbering provides a similar adjacency as in Veitch diagrams.

00 01 11 10

00 01 11 10

0

1

00

01

11

10

ab

ab

c

cd

m0 m1 m2m3

m4 m5 m6m7

m0 m1 m2m3

m4 m5 m6m7

m8 m9 m10m11

m12 m13 m14m15

Figure A.11: Karnaugh diagrams. The Karnaugh diagrams for 3 and 4 variables.

In Figure A.12 the same functions, p1 and p2, are represented. The distribution of the surface is different but
the degree of adjacency is identical.

In the following we will use Veitch diagrams, but we will name the them V-K diagrams to be fair with both
Veitch and Karnaugh.

Minimizing with V-K diagrams

The rule to extract the minimized form of a function from a V-K diagram supposes:

• to define:

– the smallest number

– of rectangular surfaces containing only 1’s
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00 01 11 10

00

01

11

10

ab
cd 00 01 11 10

00

01

11

10

ab
cd

p1 p2

1

1

1

1

1

1 1

1

1

Figure A.12: Using Karnaugh diagrams. The Karnaugh diagrams for the functions p1 and p2.

– including all the 1’s

– each surface having a maximal area

– and containing a power of two number of 1’s

• to extract the logic terms (logic product of Boolean variables) associated with each previously emphasized
surface

• to provide de minimized function adding logically (logical OR function) the terms associated with the
surfaces.

1 1

1

11

1

1

1

a.

1

b.

a

b

c

d

a

b

c

d

p1 p2

bcd′

N

a′bc

=
ac′d -

ab′d

1

acd′

)

/

ab′c -

Figure A.13: Minimizing with V-K diagrams. Minimizing the functions p1 and p2.

Example A.7 Let’s take the V-K diagrams from Figure A.10. In the V-K diagram for p1 there are four 2-square
surfaces. The upper horizontal surface is included in the upper half of V-K diagram where b = 1, it is also included
in the two middle columns where c = 1 and it is included in the surface formed by the two horizontal edges of the
diagram where d = 0. Therefore, the associated term is bcd′ which is true for: (b = 1)AND(c = 1)AND(d = 0).

Because the horizontal edges are considered adjacent, in the V-K diagram for p2 m14 and m10 are adjacent
forming a surface having acd′ as associated term.

The previously known form of p1 and p2 result if the terms resulting from the two diagrams are logically added.
⋄

Minimizing incomplete defined functions

There are logic functions incompletely defined, which means for some binary input configurations the output value
does not matter. For example, the designer knows that some inputs do not occur anytime. This lack in definition
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can be used to make an advanced minimization. In the V-K diagrams the corresponding minterms are marked as
“don’t care”s with “-”. When the surfaces are maximized the “don’t care”s can be used to increase the area of 1’s.
Thus, some “don’t care”s will take the value 1 (those which are included in the surfaces of 1’s) and some of “don’t
care”s will take the value 0 (those which are not included in the surfaces of 1’s).

a

b

c

d

a

b

c

d

1

1

1

1 1

1

1

1

1

1 1

1

-

-

-

--

-

a′b

a′c



i

b

c

^

:

a. b.

Figure A.14: Minimizing incomplete defined functions. a. The minimization of y (Example 1.8) ignoring
the “don’t care” terms. b. The minimization of y (Example 1.8) considering the “don’t care” terms.

Example A.8 Let be the 4-input circuit receiving the binary codded decimals (from 0000 to 1001) indicating on
its output if the received number is contained in the interval [2,7]. It is supposed the binary configurations from
1010 to 1111 are not applied on the input of the circuit. If by hazard the circuit receives a meaningless input we
do not care about the value generated by the circuit on its output.

In Figure A.14a the V-K diagram is presented for the version ignoring the “don’t care”s. Results the function:
y = a′b+a′c = a′(b+ c).

If “don’t care”s are considered results the V-K diagram from Figure A.14b. Now each of the two surfaces are
doubled resulting a more simplified form: y = b+ c. ⋄

V-K diagrams with included functions

For various reasons in a V-K diagram we need to include instead of a logic value, 0 or 1, a logic function of variables
which are different from the variables associated with the V-K diagram. For example, a minterm depending on
a,b,c,d can be defined as taking a value which is depending on another logic 2-variable function by s, t.

A simplified rule to extract the minimized form of a function from a V-K diagram containing included functions
is the following:

1. consider first only the 1s from the diagram and the rest of the diagram filed only with 0s and extract the
resulting function

2. consider the 1s as “don’t care”s for surfaces containing the same function and extract the resulting function
“multiplying” the terms with the function

3. “add” the two functions.

Example A.9 Let be the function defined in Figure A.15a. The first step means to define the surfaces of 1s ignoring
the squares containing functions. In Figure A.15b are defined 3 surfaces which provide the first form depending
only by the variables a,b,c,d:

bc′d +a′bc′+b′c

The second step is based on the diagram represented in Figure A.15c, where a surface (c′d) is defined for the
function e′ and a smaller one (acd) for the function e. Results:

c′de′+acde
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e′ e′

Figure A.15: An example of V-K diagram with included functions. a. The initial form. b. The form
considered in the first step. c. The form considered in the second step.

In the third step the two forms are “added” resulting:

f (a,b,c,d,e) = bc′d +a′bc′+b′c+ c′de′+acde.

⋄

Sometimes, an additional algebraic minimization is needed. But, it deserves because including functions in
V-K diagrams is a way to expand the number of variable of the functions represented with a manageable V-K
diagram.

A.5 Problems
Problem A.1
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Appendix B

Basic circuits

Basic CMOS circuits implementing the main logic gates are described in this appendix. They are based on simple
switching circuits realized using MOS transistors. The inverting circuit consists in a pair of two complementary
transistors (see the third section). The main gates described are the NAND gate and the NOR gate. They are
built by appropriately connecting two pairs of complementary MOS transistors (see the fourth section). Tristate
buffers generate an additional, third “state” (the Hi-Z state) to the output of a logic circuit, when the output pair
of complementary MOS transistors are driven by appropriate signals (see the sixth section). Parallel connecting a
pair of complementary MOS transistors provides the transmission gate (see the seventh section).

B.1 Actual digital signals
The ideal logic signals are 0 Volts for false, or 0, and VDD for true, or 1. Real signals are more complex. The first
step in defining real parameters is represented in Figure B.1, where is defined the boundary between the values
interpreted as 0 and the values interpreted as 1.

6

-

v

time

VDD/2

”1”

”0”

6

?
6

?

Valid 1

Valid 0

0

VDD

VDD/2 VHmin =VLmax

VDD

Figure B.1: Defining 0-logic and 1-logic. The circuit is supposed to interpret any value under VDD/2 as 0, and
any value bigger than VDD/2 are interpreted as 1.

This first definition is impossible to be applied because supposes:

VHmin =VLmax.

There is no engineering method to apply the previous relation. A practical solution supposes:

VHmin >VLmax

generating a “forbidden region” for any actual logic signal. Results a more refined definition of the logic signals
represented in Figure B.2, where VL <VLmax and VH >VHmin.

583
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6

-

v

time

VHmin

Valid 1

Valid 0

0

VDD

VLmax

VHmin

VLmax

Forbidden
region

Figure B.2: Defining the “forbidden region” for logic values. A robust design asks a net distinction
between the electrical values interpreted as 0 and the electrical values interpreted as 1.

In real applications we‘are faced with nasty realities. A signal generated to the output of a gate is sometimes
received to the input of the receiving gate distorted by parasitic signals. In Figure B.3 the noise generator simulate
the parasitic effects of the circuits switching in a small neighborhood.
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Figure B.3: The noise margin. The output signal must be generated with more restrictions to allow the receivers
to “understand” correct input signals loaded with noise.

Because of the noise captured from the “environment” a noise margin must be added to expand the forbidden
region with two noise margin regions, one for 0 level, NM0, and another for 1 level, NM1. They are defined as
follows:

NM0 =VIL−VOL

NM1 =VOH −VIH

making the necessary distinctions between the VOH , the 1 at the output of the sender gate, and VIH , the 1 at the
input of the receiver gate.
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B.2 CMOS switches
A logic gates consists in a network of interconnected switches implemented using the two type of MOS transistors:
p-MOS and n-MOS. How behaves the two type of transistors in specific configurations is presented in Figure B.4.

A switch connected to VDD is implemented using a p-MOS transistor. It is represented in Figure B.4a off
(generating z, which means Hi-Z: no signal, neither 0, nor 1) and in Figure B.4b it is represented on (generating 1
logic, or truth).

A switch connected to ground is implemented using a n-MOS transistor. It is represented in Figure B.4c off
(generating z, which means Hi-Z: no signal, neither 0, nor 1) and in Figure B.4e it is represented on (generating 0
logic, or false).

z 0
VDD

z VDD

VDD

�

VDD

�

z

VDD

VDD

-

z

-

0VDD

a. b. c. d.

Figure B.4: Basic switches. a. Open switch connected to VDD. b. Closed switch connected to VDD. c. Open
switch connected to ground. d. Closed switch connected to ground.

A MOS transistor works very well as an on-off switch connecting its drain to a certain potential. A p-MOS
transistor can be used to connect its drain to a high potential when its gates is connected to ground, and an n-MOS
transistor can connect its drain to ground if its gates is connected to a high potential. This complementary behavior
is used to build the elementary logic circuits.

In Figure B.5 is presented the switch-resistor-capacitor model (SRC). If VGS <VT then the transistor is off, if
VGS ≥VT then the transistor is on. In both cases the input of the transistor behaves like a capacitor, the gate-source
capacitor CGS.

When the transistor is on its drain-source resistance is:

RON = Rn
L
W

where: L is the channel length, W is the channel width, and Rn is the resistance per square. The length L is a
constant characterizing a certain technology. For example, if L = 0.13µm this means it is about a 0.13µm process.

The input capacitor has the value:

CGS =
εOX LW

d
.

The value:
COX =

εOX

d
where: εOX ≈ 3.9ε0 is the permittivity of the silicon dioxide, is the gate-to-channel capacitance per unit area of the
MOSFET gate.



586 APPENDIX B. BASIC CIRCUITS

In this conditions the gate input current is:

iG =CGS
dvGS

dt

-

D

S

G G

D

S

CGS

G

D

S

CGS

RON

VGS <VT VGS ≥VT

Figure B.5: The MOSFET switch. The switch-resistor-capacitor model consists in the two states: OF (VGS <

VT ), and ON (VGS ≥VT ). In both states the input is defined by the capacitor CGS.

Example B.1 For an AND gate with low strength, with W = 1.8µm, in 0.13µm technology, supposing COX =
4 f F/µm2, results the input capacitance:

CGS = 4×0.13×1.8 f F = 0.936 f F

Assuming Rn = 5KΩ, results for the same gate:

RON = 5× 0.13
1.8

KΩ = 361Ω

⋄

B.3 The Inverter

B.3.1 The static behavior

The smallest and simplest logic circuit – the invertor – can be built using a pair of complementary transistors,
connecting together the two gates as input and the two drains as output, while the n-MOS source is connected to
ground (interpreted as logic 0) and the p-MOS source to VDD (interpreted as logic 1). Results the circuit represented
in Figure B.6.

The behavior of the invertor consist in combining the behaviors of the two switches previously defined. For
in = 0 pMOS is on and nMOS is o f f the output generating VDD which means 1. For in = 1 pMOS is o f f and
nMOS is on the output generating 0.

The static behavior of the inverter (or NOT) circuit can be easy explained starting from the switches described
in Figure B.4. Connecting together a switch generating z with a switch generating 1 or 0, the connection point will
generate 0 or 1.
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Figure B.6: Building an invertor. a. The invertor circuit. b. The logic symbol for the invertor circuit.

B.3.2 Dynamic behavior

The propagation time of an inverter can be analyzed using the two serially connected invertors represented in
Figure B.7. The delay of the first invertor is generated by its capacitive load, CL, composed by:

• its parasitic drain/bulk capacitance, CDB, is the intrinsic output capacitance of the first invertor

• wiring capacitance, Cwire, which depends on the length of the wire (of width Ww and of length Lw) connected
between the two invertors:

Cwire =CthickoxWwLw

• next stage input capacitance, CG, approximated by summing the gate capacitance for pMOC and nMOS
transistors:

CG =CGp +CGn =Cox(WpLp +WnLn)

The total load capacitance
CL =CDB +Cwire +CG

is sometimes dominated by Cwire. For short connections CG dominates, while for big fan-out both, Cwire and CG
must be considered.

The signal VA is used to measure the propagation time of the first NOT in Figure B.7a. It is generated by
an ideal pulse generator with output impedance 0. Thus, the rising time and the falling time of this signal are
considered 0 (the input capacitance of the NOT circuit is charged or discharged in no time).

The two delay times (see Figure B.7c) associated to an invertor (to a gate in the general case) are defined as
follows:

• tpLH : the time interval between the moment the input switches in 0 and the output reaches VOH/2 coming
from 0

• tpHL: the time interval between the moment the input switches in 1 and the output reaches VOH/2 coming
from VOH
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Figure B.7: The propagation time.

Let us consider the transition of VA from 0 to VOH at tr (rise edge). Before transition, at t−r , CL is fully charged
and VB = VOH . In Figure B.7b is represented the equivalent circuit at t+r , when pMOS is off and nMOS is on. In
this moment starts the process of discharging the capacitance CL at the constant current

IDn(sat) =
1
2

µnCox
Wn

Ln
(VOH −VT n)

2

In Figure B.8, at t−r the transistor is cut, IDn = 0. At t+r the nMOS transistor switch in saturation and becomes an
ideal constant current generator which starts to discharge CL linearly at the constant current IDn(sat). The process
continue until VOUT =VOH , according to the definition of tpHL.

6

-
VOHVOH/2

VIN = 0

VIN =VOH

tr + tpHL

�

t−r

�
VOUT

s

t+r

IDn

ID

Figure B.8: The output characteristic of the nMOS transistor.

In order to compute tpHL we take into consideration the constant value of the discharging current which provide
a linear variation of vOUT .

dvout

dt
=

d
dt
(

qL

CL
) =
−IDn(sat)

CL



B.3. THE INVERTER 589

dvout

dt
=

VOH
2 −VOH

tpHL

We solve the equations for tpHL:

tpHL =CL
1

µnCox
Wn
Ln
(VOH −VT n)

VOH

VOH −VT n

Because:
RONn =

1
µnCox

Wn
Ln
(VOH −VT n)

results:
tpHL =CLRONn

1
1− VT n

VOH

= knRONnCL = knτnL

where:

• τnL is the constant time associated to the H-L transition

• kn is a constant associated to the technology we use; it goes down when VOH increases or VT decreases

The speed of a gate depends by its dimension and by the capacitive load it drives. For a big W the value of
RON is small charging or discharging CL faster.

For tpLH the approach is similar. Results: tpLH = kpτpL.
By definition the propagation time associated to a circuit is:

tp = (tpLH + tpHL)/2

its value being dominated by the value of CL and the size (width) of the two transistors, Wn and Wp.

B.3.3 Buffering
It is usual to be confronted, in designing a big systems, with the buffering problem: a logic signal generated by
a small, “weak” driver must be used to drive a big, “strong” circuit (see Figure B.9a) maintaining in the same
time a high clock frequency. The driver is an invertor with a small Wn =Wp =Wdrive (to make the model simple),
unable to provide an enough small RON to move fast the charge from the load capacitance of a circuit with a big
Wn =Wp =Wload . Therefore the delay introduced between A and B is very big. For our simplified model,

tp = tp0
Wload

Wdriver

where: tp0 is the propagation time when the driver circuit and the load circuit are of the same size.
The solution is to interpose, between the small driver and the big load, additional drivers with progressively

increased area as in Figure B.9b. The logic is preserved, because two NOTs are serially connected. While the
no-buffer solution provides, between A and B, the propagation time:

tp(no−bu f f er) = tp0
Wload

Wdriver

the buffered solution provide the propagation time:

tp(bu f f ered) = tp0(
W1

Wdriver
+

W2

W1
+

Wload

W2
)

How are related the area of the circuits in order to obtain a minimal delay, i.e., how are related Wdriver, W1 and W2?
The relation is given by the minimizing of the delay introduced by the two intermediary circuits. Then, the first
derivative of

W2

W1
+

Wload

W2
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must be 0. Results:
W2 =

√
W1Wload

W2

W1
=

Wload

W2
=

√
Wload

W1

We conclude: in order to add a minimal delay, the size ratio of successive drivers in a chain must be the same.

W1
W2

Wdriver

b.

BA

Wload

a.

A B

Wdriver

Wload

Figure B.9: Buffered connection. a. An invertor with small W is not able to handle at high frequency a circuit
with big W . b. The buffered connection with two intermediary buffers.

In order to design the size of the circuits in Figure B.9b, let us consider Wload
Wdriver

= n. Then,

W1

Wdriver
=

W2

W1
=

Wload

W2
= 3
√

n

The acceleration is

α =
tp(no−bu f f er)

tp(bu f f ered)
=

3√n2

3

For example, for n = 1000 the acceleration is α = 33.3.
The hand calculation, just presented, is approximative, but has the advantages to provide an intuitive under-

standing about the propagation phenomenon, with emphasis on the buffering mechanism.
The price for the acceleration obtained by buffering is the area and energy consumed by the two additional

circuits.

B.3.4 Power dissipation
There are three major physical processes involved in the energy requested by a digital circuit to work:

• switching energy: due to charging and discharging of load capacitances, CL

• short-circuit energy: due to non-zero rise/fall times of the signals

• leakage current energy: which becomes more and more important with the decreasing of device sizes

From the power supply, which provide VDD with enough current, the circuit absorbs as much as needed current.

Switching power

The average switching power dissipated is the energy dissipated in a clock cycle divided by the clock cycle time,
T . Suppose the clock is applied to the input of an invertor. When clock = 0 the load capacitor is loaded from the
power supply with the charge:

QL =CLVDD

We assume in T/2 the capacitor is charged (else the frequency is too big for the investigated circuit). During
the next half-period, when clock = 1, the same charge is transferred from the capacitor to ground. Therefore the
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Figure B.10: The main power consuming process. For Vin = 0 CL is loaded by the current provided by
RON p. The charge from CL is transferred to the ground through RONn for Vin =VOH .

charge QL is transferred from VDD to ground in the time T . The amount of energy used for this transfer is VDDQL,
and the switching power results:

pswitch =
VDDCLVDD

T
=CLV 2

DD fclock

While a big VOH = VDD helped us in reducing tp, now we have difficulties due to the square dependency of
switching power by the same VDD.

Short-circuit power

When the output of the invertor switches between the two logic levels, for a very short time interval around the
moment when VOUT =VDD/2, both transistors have IDD ̸= 0 (see Figure B.11). Thus is consumed the short-circuit
power.

6

-
time

6

-
time

VIN

IDD

IDD(mean)

Figure B.11: Direct flow of current from VDD to ground. This current due to the non-zero edge to the
circuit input can be neglected.

The amount of power wasted by these temporary short-cuts is:

psc = IDD(mean)VDD

where IDD(mean) is the mean value of the current spikes. If the edge of the signal is short and the mean frequency
of switchings is low, then the resulting value is low.
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Leakage power

The last source of energy waste is generated by the leakage current. It will start to be very important in sub 65nm
technologies (for 65nm the leakage power is 40% of the total power consumption). The leakage current and the
associated power is increasing exponentially with each new technology generation and is expected to become the
dominant part of total power. Device threshold voltage scaling, shrinking device dimensions, and larger circuit
sizes are causing this dramatic increase in leakage. Thus, increasing the amount of leakage is critical for power
constraint integrated circuits.

} ?

Diode leakage

Sub-threshold leakage

-

Vout =VDD

�

-

VDD

?

Gate leakage

3

Figure B.12: The two main components of the leakage current. .

pleakage = IleakageVDD

where Ileakage is the sum of subthreshold and gate oxide leakage current. In Figure B.12 the two components of the
leakage current are presented for a NOT circuit with Vin = 0.

B.4 Gates
The 2-input AND circuit, a · b, works like a “gate” opened by the signal a for the signal b. Indeed, the gate is
“open” for b only if a = 1. This is the reason for which the AND circuit was baptised gate. Then, the use imposed
this alias as the generic name for any logic circuit. Thus, AND, OR, XOR, NAND, ... are all called gates.

B.4.1 NAND & NOR gates

The static behavior of gates

For 2-input NAND and 2-input NOR gates the same principle will be applied, interconnecting 2 pairs of comple-
mentary transistors to obtain the needed behaviors.

There are two kind of interconnecting rules for the same type of transistors, p-MOS or n-MOS. They can be
interconnected serially or parallel.

A serial connection will establish an on configuration only if both transistors of the same type are on, and the
connection is off if at least one transistor is off.

A parallel connection will establish an on configuration if at least one is on, and the connection is off only if
both are off.

Applying the previous rules result the circuits presented in Figures B.13 and B.14.
For the NAND gate the output is 0 if both n-MOS transistors are on, and the output is one when at least on

p-MOS transistor is on. Indeed, if A = B = 1 both n transistors are on and both p transistors are off. The output
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Figure B.13: The NAND gate. a. The internal structure of a NAND gate: the output is 1 when at least one
input is 0. b. The logic symbol for NAND.

corresponds with the definition, it is 0. If A = 0 or B = 0 the output is 1, because at least one p transistor is on and
at least one n transistor is off.

A similar explanation works for the NOR gate. The main idea is to design a gate so as to avoid the simultaneous
connection of VDD and ground potential to the output of the gate.

For designing an AND or an OR gate we will use an additional NOT connected to the output of an AND or
an OR gate. The area will be a little bigger (maybe!), but the strength of the circuit will be increased because the
NOT circuit works as a buffer improving the time performance of the non-inverting gate.

The propagation time for the 2-input main gates is computed in a similar way as the propagation for NOT
circuit is computed. The only differences are due to the fact that sometimes RON must be substituted with 2×RON .

Propagation time

Propagation time for NAND gate becomes, in the worst case when only one input switches:

tHL = kn(2RONn)CL

tLH = kp(RON p)CL

because the capacitor CL is charged through one pMOS transistor and is discharged through two, serially connected,
nMOS transistors.

Propagation time for NOR gate becomes, in the worst case when only one input switches:

tHL = kn(RONn)CL

tLH = kp(2RON p)CL

because the capacitor CL is charged through two, serially connected, pMOS transistors and is discharged through
one nMOS transistor.

It is obvious that we must prefer, when is is possible, the use of NAND gates instead of NOR gates, because,
for the same area, RON p > RONn.
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Figure B.14: The NOR gate. a. The internal structure of a NOR gate: the output is 1 only when both inputs
are 0. b. The logic symbol for NOR.

Power consumption & switching activity

The power consumption is determined by the 0 to 1 transitions of the output of a logic gates. The problem is
meaningless for a NOT circuit because the transitions of the output has the same probability as of the transition of
the input. But, for a n-input gate the probability of an output transition depends on the function performed by the
gate.

For a certain gate, with unbiased 0 and 1 applied on the inputs, the output probability of switching from 0 to
1, P0−1, is given by the logic function. We define switching activity, σ , this probability of switching from 0 to 1.

Switching activity for 2-input AND with the inputs A and B is:

σ = P0−1 = POUT=0POUT=1 = (1−PAPB)PAPB

where: PA is the probability of having 1 on the input A, PB is the probability of having 1 on the input B, and POUT=0
is the probability of having 0 on output, while POUT=1 = PAB is the probability of having 1 on output (see Figure
B.15a).

A

B
C

D

A

BB

A

C

PAB = 1/4
PABC = 1/8

PB = 1/2

σ = 3/16

PD = 1/2

PA = 1/2

PC = 1/2

σ = 7/64

PABCD = 1/16

σ = 15/256

a. b. c.

Figure B.15: Switching activity σ and the output probability of 1. a. For 2-input AND. b. For 3-input
AND. c. For 4-input AND.

If the input are not conditioned, PA = PB = 0.5, then the switching activity for a 2-input NAND is σNAND2 =
3/16 (see Figure B.15a).
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Switching activity for 3-input AND with the inputs A, B, and C is σNAND3 = 7/64 (see Figure B.158). The
probability of 1 to the output of a 3-input AND is only 1/8 leading to a smaller σ .

Switching activity for n-input AND is:

σNANDn =
2n−1

22n ≃ 1
2n

The switching activity decreases exponentially with the number of inputs in AND, OR, NAND, NOR gates.
This is a very good news.

Now, we must reconsider the computation of the power substituting CL with σCL:

pswitch = σCLV 2
DD fclock

In big systems, a conservative assumption is that the mean value of the inputs of the logic gates is 3, and,
therefore a global value for switching activity could be σglobal ≃ 1/8. Actual measurements provide frequently
σglobal ≃ 1/10.

Power consumption & glitching

In the previous paragraph we learned that the output of a circuit switch due to the change on the inputs. This is an
ideal situation. Depending on the circuit configuration and on the various delays introduced by gates, unexpected
“activity” manifests sometimes in our network of gates. See the simple example form Figure B.16. From the
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- �
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Figure B.16: Glitching effect. When the input value switch from ABC = 010 to ABC = 111 the output of the
circuit must remain on 1. But, a short glitch occurs because of the delay, tpHLO1, introduced by the first NAND.

logical point of view, when the inputs switch form ABC = 010 to ABC = 111 the output must maintain its value
on 1. Unfortunately, because the effect of the inputs A and B are affected by the extra delay introduced by the first
gate, the unexpected glitch manifests to the output. Follow the wave forms form Figure B.16 to understand why.

The glitch is undesired for various reasons. The most important are two:

• the signal can be latched by a memory circuit (such an elementary latch), thus triggering the switch of a
memory circuit; a careful design can avoid this effect

• the temporary, useless transition discharge and charge back the load capacitor increasing the energy con-
sumed by the circuit.

Let us go back to the Zero circuit represented in two versions in Figure 2.1c and Figure 2.1d. We have now an
additional reason to prefer the second version. The balanced delays to the inputs of the intermediary circuits allow
us to avoid almost totaly the glitching contribution to the power consumption.
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B.4.2 Many-Input Gates
How can be built 3-input NAND or a 3-input NOR applying the same rule? For a 3-input NAND 3 n-MOS
transistors will be connected serially and 3 p-MOS transistors will be connected parallel. Similar for the 3-input
NOR gate.

How “much” this rule can be applied to built n-input gates? Not too much because of the propagation time
which is increased when too many serially connected RON resistors will be used to transfer the electrical charge in
or out from the load capacitor CL. A 4-input NAND, for example, discharge CL trough 4 serially connected RONn,
while a 4-input NOR loads CL with a constant time 4RON pCL. The mean worst case (when only one input switches)
time constants used to compute tp become:

(4RONn+RON p)/2

for NAND, and
(4RON p+RONn)/2

for NOR.
Fortunately, there is another way to increase the number of inputs of a certain gate. It is by composing the

function using an appropriate number of 2-input gates organized as a balanced binary tree.

a. b.

.....

.....

n×Cin n×Cin
.....
.....

.....

.....

Cin

.....

.....

Cin

.....

.....

Cin

.....

.....

Cin

.....

.....

Cin

.....

.....

Cin

Figure B.17: How to manage a many-input gate. a An NAND8 gate with fan-out n. b. The log-depth
equivalent circuit.

For example, an 8-input NAND gate, see Figure B.17a, is recommended to be designed as a binary tree of two
input gates, see Figure B.17b, as follows:

(a ·b · c ·d · e · f ·g ·h)′ = (((a ·b)′+(c ·d)′)′ · ((e · f )′+(g ·h)′)′)′

The form results as the application of the De Morgan law.
In the first case, represented in Figure B.17a, an 8-input NAND uses a similar arrangement as in Figure B.13a,

where instead of two parallel connected pMOS transistors and two serially connected nMOS transistors are used 8
pMOSs and 8 nMOSs. Generally speaking, for each new input an additional pair, nMOS & pMOS, is added.
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Increasing in this way the number of inputs the propagation time is increased linearly because of the serially
connected channels of the nMOS transistors. The load capacitor is discharged to the ground through m×RON ,
where m represents the number of inputs.

The second solution, see Figure B.17b, is to build a balanced tree of gates. In the first case the propagation
time is in O(n), while in the second it is in O(log n) for implementations using transistors having the same size.

For an m-input gate results a log2 m depth network of 2-input gates. For example, see Figure B.17, where
an 8-input NAND is implemented using a 3-level network of gates (first to the 8-input gate the divide & impera
principle is applied, and then the De Morgan rule transformed the first level of four ANDs in four NANDs and the
second level of two ANDs in two NORs). While the maximum propagation time for the 8-input NAND is

tpHL(one−level) = kn×8×RONn× (n×Cin)

where Cin is the value of the input capacitor in a typical gate and n is the fan-out of the circuit, the maximum
propagation time for the equivalent log-depth net of gates is

tpHL(log−levels) = kn((2×2×RONn×Cin)+2×RONn× (n×Cin))

For n = 3 results a 2.4 times faster circuit if the log-depth version is adopted, while for n = 4 the acceleration is
2.67.

Generally, for fan-in equal with m and fan-out equal with n result the acceleration for the log-depth solutions,
α , expressed by the formula:

α =
m×n

2× (n−1+ logm)

Example: n = 4, m = 32, α = 8.
The log-depth circuit has two advantages:

• the intermediary (−1+ logm) stages are loaded with a constant and minimal capacitor – Cin – given by only
one input

• only the final stage drives the real load of the circuit – n×Cin – but its driving capability does not depend
by fan-in.

Various other solutions can be used to speed-up a many-input gate. For example:

(a ·b · c ·d · e · f ·g ·h)′ = (((a ·b · c ·d)′+(e · f ·g ·h)′)′)′

could be a better solution for an 8-input NAND, mainly because the output is generated by a NOT circuit and the
internal capacitors are minimal, making the 4-input NANDs harmless.

B.4.3 AND-NOR gates
For implementing the logic function:

(AB+CD)′

besides the solution of composing it from the previously described circuits, there is a direct solution using 4 CMOS
pairs of transistors, one associated for each input. The resulting circuit is represented in Figure B.18.

The size of the circuit according to Definition 2.2 is 4. (Implementing the function using 2 NANDs, 2 invertors,
and a NOR provides the size 8. Even if the de Morgan rule is applied results 3 NANDs and and invertor, which
means the size is 7.)

The same rule can be applied for implementing any NOR of ANDs. For example, the circuit performing the
logic function

f (A,B,C) = (A(B+C))′

has a simple implementation using a similar approach. The price will be the limited speed or the over-dimensioned
transistors.
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Figure B.18: The AND-NOR gate. a. The circuit. b. The logic symbol for the AND-NOR gate.

B.5 The Tristate Buffers
A tristate circuit has the output able to generate three values: 0, 1, x (which means nothing). The output value x is
unable to impose a specific value, we say the output of the circuit is unconnected or it is off.

Two versions of this kind of circuit are presented in Figures B.19 and B.20.
The inverting version of the tristate buffer uses one additional pair of complementary transistors to disconnect

the output from any potential. If enable = 0 the CMOS transistors connected to the output are both off. Only if
enable = 1 the circuit works as an inverter.

For the non-inverting version the two additional logic gates are used to control the gates of the two output
transistors. Only if enable = 0 the two logic gates transfer the input signal inverted to the gates of the two output
transistor.

B.6 The Transmission Gate
A simple and small version of a gate is the transmission gate which works connecting directly the signal from a
source to a destination. Figure B.21a represents the CMOS version. If enable = 1 then out = in because at least on
transistors is on. If in = 0 the signal is transmitted by the n-MOS transistor, else, if in = 1 the signal is transmitted
by the p-MOS transistor.

The transmission gate is not a regenerative gate in contrast to the previously described gates which were
regenerative gates. A transmission gate performs a true two-direction electrical connection, with all its goods and
bad involved.

The main limitation introduced by the transmission gate is its RON which is serially connected to the CL
increasing the constant time associated to the delay.

The main advantage of this gate is the absence of a connection to the ground or to VDD. Thus, the energy
consumed by this gate is lowered.

One of the frequently used application of the transmission gate is the inverting multiplexor (see Figure B.21c).
The two transmission gates are enabled by in a complementary mode. Thus, only one gate is active at a time,
avoiding the “fight” of two opposite signals to impose the value to the inverter’s input.
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Figure B.19: Tristate inverting buffer. a. The circuit. b. The logic symbol for the inverting tristate buffer.
c. Two-direction connection on one wire. For enable = 1, in/out = out’, while for enable = 0, in =

in/out’. d. Interconnecting two systems. For en1 = 1, en2 = 0, System 1 sends and System
2 receives; for en1 = 0, en2 = 1, System 2 sends and System 1 receives; en1 = en2 = 0 booth
systems are receivers, while en1 = en2 = 1 is not allowed.

When the propagation time is not critical the use of this gate is recommended because, both, area and power
are saved.
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Figure B.20: Tristate non-inverting buffer. a. The circuit. b. The logic symbol for the non-inverting tristate
buffer.
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Figure B.21: The transmission gate. a. The complementary transmission gate. b. The logic symbol. c. An
application: the elementary inverting multiplexer.

B.7 Memory Circuits

B.7.1 Flip-flops

Data latches and their transparency

Master-slave DF-F

Resetable DF-F

B.7.2 # Static memory cell

B.7.3 # Array of cells

B.7.4 # Dynamic memory cell

B.8 Problems

Gates
Problem B.1
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Figure B.22: Data latches. a. Transparent from D to Q (D = Q) for ck = 0. For ck = 1 the loop is closed and
D input has no effect on output. b. Transparent from D to Q for ck = 1. For ck = 0 the loop is closed and D
input has no effect on output.

Problem B.2

Problem B.3

Problem B.4

Flop-flops
Problem B.5

Problem B.6

Problem B.7

Problem B.8
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Figure B.23: Master-slave delay flip-flop (DF-F) with the clock signal active on the positive transi-
tion. a. Implemented with data latches based on transmission gates. b. The equivalent schematic for ck = 0. c.
The equivalent schematic for ck = 1.
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Figure B.24: Master-slave delay flip-flop with asynchronous reset.



Appendix C

# Meta-stability

Any asynchronous signal applied the the input of a clocked circuit is a source of meta-stability [webRef 1]
[Alfke ’05] [webRef 4]. There is a dangerous timing window “centered” on the clock transition edge speci-
fied by the sum of set-up time, edge transition time and hold time. If the data input of a D-FF switches in this
window, then there are three possible behaviors for its output:

• the output does not change according to the change on the flip-flop’s input (the flip-flop does not catch the
input variation)

• the output change according to the change on the flip-flop’s input (the flip-flop catches the input variation)

• the output goes meta-stable for tMS, then goes unpredictable in 1 or 0 (see the wave forms [webRef 2]).

Figure C.1: Metastability [webRef 4].
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Appendix D

# ∗ ConnexArrayT M Simulator

D.1 Top Module: simulator.v

/ * ******************************************************************************************
F i l e name : s i m u l a t o r . v
D e s c r i p t i o n : S i m u l a t o r f o r t h e module ConnexArray . v
****************************************************************************************** * /
module s i m u l a t o r # ( ‘ i n c l u d e ” p a r a m e t e r s . v ” ) ;

reg r e s e t , c l o c k ;
i n t e g e r j ;

i n i t i a l begin c l o c k = 0 ;
f o r e v e r #1 c l o c k = ˜ c l o c k ;

end

ConnexArray d u t ( r e s e t ,
c l o c k ) ;

i n i t i a l begin $readmemh ( ” i n i t i a l D a t a . t x t ” , d u t .mem ) ; end

/ / ASSEMBLER
‘ i n c l u d e ” c o d e G e n e r a t o r . v ” / / a c c e l e r a t o r ’ s a s s e m b l e r

/ / SIMULATION
i n i t i a l begin

r e s e t = 1 ;
f o r ( j =0 ; j <16; j = j +1)
$ d i s p l a y ( ” programMemory[%0d ] \ t = %b ” , j , d u t . progMem [ j ] ) ;

#4 r e s e t = 0 ;
#190 begin

/ / DISPLAY VECTORS OF THE ARRAY
f o r ( j =0 ; j <8; j = j +1)
$ d i s p l a y ( ” v e c t [%0d ] \ t = %d \ t %0d \ t %0d \ t %0d \ t %0d \ t %0d \ t %0d \ t %0d \ t

%0d \ t %0d \ t %0d \ t %0d \ t %0d \ t %0d \ t %0d \ t %0d ” ,
j , d u t . vmem [ 0 ] [ j ] , d u t . vmem [ 1 ] [ j ] ,

d u t . vmem [ 2 ] [ j ] , d u t . vmem [ 3 ] [ j ] ,
d u t . vmem [ 4 ] [ j ] , d u t . vmem [ 5 ] [ j ] ,
d u t . vmem [ 6 ] [ j ] , d u t . vmem [ 7 ] [ j ] ,
d u t . vmem [ 8 ] [ j ] , d u t . vmem [ 9 ] [ j ] ,
d u t . vmem [ 1 0 ] [ j ] , d u t . vmem [ 1 1 ] [ j ] ,
d u t . vmem [ 1 2 ] [ j ] , d u t . vmem [ 1 3 ] [ j ] ,
d u t . vmem [ 1 4 ] [ j ] , d u t . vmem [ 1 5 ] [ j ] ) ;

/ / DISPLAY THE SCALAR MEMORY
f o r ( j =0 ; j <32; j = j +1)

$ d i s p l a y ( ”mem[%0d ] \ t = %0d ” , j , d u t .mem[ j ] ) ;

605
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end
#2 $ f i n i s h ;

end

/ / MONITOR FOR GENERAL TEST
i n i t i a l begin

$monitor ( ” t =%0d pc=%0d i r =%b acc=%d addr=%0d ACC = [%d , %0d , %0d , %0d , %0d ,
%0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d ] ADDR = [%0d , %0d ,
%0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d , %0d ]

b = [%0d%0d%0d%0d%0d%0d%0d%0d%0d%0d%0d%0d%0d%0d%0d%0d ] ” ,
$t ime ,
/ / CONTROLLER
d u t . pc , / / program c o u n t e r
d u t . i r , / / i n s t r u c t i o n r e g i s t e r
d u t . acc , / / a c c u m u l a t o r r e g i s t e r
d u t . addr , / / a d d r e s s r e g i s t e r
/ / MAP−REDUCE ARRAY

/ / a c c u m u l a t o r v e c t o r
d u t . accv [ 0 ] , d u t . accv [ 1 ] , d u t . accv [ 2 ] , d u t . accv [ 3 ] ,
d u t . accv [ 4 ] , d u t . accv [ 5 ] , d u t . accv [ 6 ] , d u t . accv [ 7 ] ,
d u t . accv [ 8 ] , d u t . accv [ 9 ] , d u t . accv [ 1 0 ] , d u t . accv [ 1 1 ] ,
d u t . accv [ 1 2 ] , d u t . accv [ 1 3 ] , d u t . accv [ 1 4 ] , d u t . accv [ 1 5 ] ,

/ / a d d r e s s v e c t o r
d u t . addrv [ 0 ] , d u t . addrv [ 1 ] , d u t . addrv [ 2 ] , d u t . addrv [ 3 ] ,
d u t . addrv [ 4 ] , d u t . addrv [ 5 ] , d u t . addrv [ 6 ] , d u t . addrv [ 7 ] ,
d u t . addrv [ 8 ] , d u t . addrv [ 9 ] , d u t . addrv [ 1 0 ] , d u t . addrv [ 1 1 ] ,
d u t . addrv [ 1 2 ] , d u t . addrv [ 1 3 ] , d u t . addrv [ 1 4 ] , d u t . addrv [ 1 5 ] ,

/ / Boolean v e c t o r
d u t . boo l [ 0 ] , d u t . boo l [ 1 ] , d u t . boo l [ 2 ] , d u t . boo l [ 3 ] ,
d u t . boo l [ 4 ] , d u t . boo l [ 5 ] , d u t . boo l [ 6 ] , d u t . boo l [ 7 ] ,
d u t . boo l [ 8 ] , d u t . boo l [ 9 ] , d u t . boo l [ 1 0 ] , d u t . boo l [ 1 1 ] ,
d u t . boo l [ 1 2 ] , d u t . boo l [ 1 3 ] , d u t . boo l [ 1 4 ] , d u t . boo l [ 1 5 ]
) ;

end
endmodule

D.2 Code generator

/ * ******************************************************************************************
F i l e name : codeG enera to r . v
D e s c r i p t i o n : a s s e m b l e r f o r Connex Array
****************************************************************************************** * /

reg [ 4 : 0 ] aOpCode ;
reg [ 2 : 0 ] aOperand ;
reg [ 7 : 0 ] a S c a l a r ;
reg [ 4 : 0 ] cOpCode ;
reg [ 2 : 0 ] cOperand ;
reg [ 7 : 0 ] c S c a l a r ;
reg [ p − 1 : 0 ] d e l t a A d d r ;
reg [ p − 1 : 0 ] a d d r C o u n t e r ;
reg [ p − 1 : 0 ] l a b e l T a b [0:(1<<p ) − 1 ] ;
ta sk endLine ;

begin
d u t . progMem [ a d d r C o u n t e r ] = {aOpCode ,

aOperand ,
a S c a l a r ,
cOpCode ,
cOperand ,
c S c a l a r } ;
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a d d r C o u n t e r = a d d r C o u n t e r + 1 ;
end

endtask
/ / s e t s l a b e l T a b i n t h e f i r s t pas s l o a d i n g ’ c o u n t e r ’ w i t h ’ l a b e l I n d e x ’
ta sk LB ;

input [ 4 : 0 ] l a b e l I n d e x ;
l a b e l T a b [ l a b e l I n d e x ] = a d d r C o u n t e r ;

endtask
/ / u s e s t h e c o n t e n t o f l a b e l T a b i n t h e second pass
ta sk cULB ;

input [ 4 : 0 ] l a b e l I n d e x ;
begin d e l t a A d d r = l a b e l T a b [ l a b e l I n d e x ] − a d d r C o u n t e r ;

c S c a l a r = d e l t a A d d r [ 7 : 0 ] ;
end

endtask
‘ i n c l u d e ”cgCONTROL . v ” / / c o n t r o l i n s t r u c t i o n s f o r c o n t r o l l e r
‘ i n c l u d e ”cgADD . v ” / / a d d i t i o n
‘ i n c l u d e ”cgADDC . v ” / / a d d i t i o n w i t h c a r r y
‘ i n c l u d e ”cgSUB . v ” / / s u b t r a c t
‘ i n c l u d e ”cgSUBC . v ” / / s u b t r a c t w i t h c a r r y
‘ i n c l u d e ”cgRVSUB . v ” / / r e v e r s e s u b t r a c t
‘ i n c l u d e ”cgRVSUBC . v ” / / r e v e r s e s u b t r a c t w i t h c a r r y
‘ i n c l u d e ”cgMULT . v ” / / m u l t i p l i c a t i o n
‘ i n c l u d e ” cgSHIFT . v ” / / s h i f t
‘ i n c l u d e ”cgLOAD . v ” / / l oad a c c u m u l a t o r
‘ i n c l u d e ”cgSTORE . v ” / / s t o r e a c c u m u l a t o r
‘ i n c l u d e ”cgAND . v ” / / b i t −wi se AND
‘ i n c l u d e ”cgOR . v ” / / b i t −wi se OR
‘ i n c l u d e ”cgXOR . v ” / / b i t −wi se XOR
‘ i n c l u d e ”cgARRAYcONTR . v ” / / a r r a y c o n t r o l i n s t r u c t i o n s
‘ i n c l u d e ”cgGLOBAL . v ” / / g l o b a l o p e r a t i o n s
‘ i n c l u d e ”cgTRANSFER . v ” / / i o t r a n s f e r o p e r a t i o n s
‘ i n c l u d e ”cgSEARCH . v ” / / s e a r c h f u n c t i o n s (ONLY FOR THE SEARCH VERSION )
/ / RUNNING
i n i t i a l begin a d d r C o u n t e r = 0 ;

‘ i n c l u d e ” program . v ” / / f i r s t pas s
a d d r C o u n t e r = 0 ;
‘ i n c l u d e ” program . v ” / / s econd pas s

end

The line

‘ i n c l u d e ”cgSEARCH . v ” / / s e a r c h f u n c t i o n s (ONLY FOR THE SEARCH VERSION )

is added only for the search version.

D.2.1 Assembly Functions
For each instruction, the following files contain tasks which generate the binary form of the instructions used to write programs in assembly
language.

Add functions

/ * ******************************************************************************************
F i l e name : cgADD . v
****************************************************************************************** * /
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/ / i n ARRAY
ta sk VADD; / / v a l u e add :

/ / acc [ i ] <= acc [ i ] + { ( n −8){ a S c a l a r [ 7 ]}} , a S c a l a r }
input [ 7 : 0 ] v a l u e ;
begin aOpCode = add ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task ADD; / / a b s o l u t e add
/ / acc [ i ] <= acc [ i ] + vectMem [ i ] [ a S c a l a r [ v −1:0]]

input [ 7 : 0 ] v a l u e ;
begin aOpCode = add ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RADD; / / r e l a t i v e add :
/ / acc [ i ]<=acc [ i ]+vectMem [ i ] [ a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]]

input [ 7 : 0 ] v a l u e ;
begin aOpCode = add ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask
task RIADD ; / / r e l a t i v e add and i n c r e m e n t :

/ / acc [ i ]<=acc [ i ]+vectMem [ i ] [ a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]]
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ] + a S c a l a r [ v −1:0]

input [ 7 : 0 ] v a l u e ;
begin aOpCode = add ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask
task CADD; / / co−operand add :

/ / acc [ i ] <= acc [ i ] + acc
begin aOpCode = add ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVADD; / / v a l u e add :

/ / acc <= acc + { ( n −8){ c S c a l a r [ 7 ]}} , c S c a l a r }
input [ 7 : 0 ] v a l u e ;
begin cOpCode = add ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cADD; / / immed ia t e add :
/ / acc <= acc + mem[ c S c a l a r [ s −1:0]]

input [ 7 : 0 ] v a l u e ;
begin cOpCode = add ;



D.2. CODE GENERATOR 609

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRADD; / / r e l a t i v e add :
/ / acc <= acc + mem[ addr + c S c a l a r [ s −1:0]]

input [ 7 : 0 ] v a l u e ;
begin cOpCode = add ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRIADD ; / / r e l a t i v e add :
/ / acc <= acc + mem[ addr + c S c a l a r [ s −1:0]]

input [ 7 : 0 ] v a l u e ;
begin cOpCode = add ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCADD; / / acc <= acc + mem[ coOp ]
/ / s c a l a r [ 1 : 0 ] = 00: coOp = r e d u c t i o n add
/ / s c a l a r [ 1 : 0 ] = 01: coOp = r e d u c t i o n min
/ / s c a l a r [ 1 : 0 ] = 10: coOp = r e d u c t i o n max
/ / s c a l a r [ 1 : 0 ] = 11: coOp = r e d u c t i o n f l a g

input [ 7 : 0 ] v a l u e ;
begin cOpCode = add ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Add with carry functions

/ * ******************************************************************************************
F i l e name : cgADDC . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk VADDC;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = addc ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task ADDC;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = addc ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RADDC;



610 APPENDIX D. # ∗ CONNEXARRAYT M SIMULATOR

input [ 7 : 0 ] v a l u e ;
begin aOpCode = addc ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RIADDC ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = addc ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CADDC;
begin aOpCode = addc ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVADDC;

input [ 7 : 0 ] v a l u e ;
begin cOpCode = addc ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cADDC;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = addc ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRADDC;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = addc ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRIADDC ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = addc ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCADDC;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = addc ;

cOperand = cop ;
c S c a l a r = v a l u e ;
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end
endtask

Bitwise AND functions

/ * ******************************************************************************************
F i l e name : cgAND . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk VAND;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwand ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task AND;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwand ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask
task RAND;

input [ 7 : 0 ] v a l u e ;

begin aOpCode = bwand ;
aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RIAND ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwand ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CAND;
begin aOpCode = bwand ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVAND;

input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwand ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
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endtask

task cAND;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwand ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRAND;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwand ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRIAND ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwand ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCAND;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwand ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Array Control functions

/ * ******************************************************************************************
F i l e name : cgARRAYcONTROL . v
****************************************************************************************** * /

ta sk WHEREZERO; / / where acc [ i ] = 0
begin aOpCode = where ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task WHERECARRY; / / where c a r r y
begin aOpCode = where ;

aOperand = v a l ;
a S c a l a r = 8 ’ b1 ;
endLine ;

end
endtask

task WHERENZERO; / / where acc [ i ] != 0
begin aOpCode = where ;

aOperand = v a l ;
a S c a l a r = 8 ’ b100 ;
endLine ;
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end
endtask

task WHERENCARRY; / / where n o t c a r r y
begin aOpCode = where ;

aOperand = v a l ;
a S c a l a r = 8 ’ b101 ;
endLine ;

end
endtask

task ELSEWHERE; / / e l s e where
begin aOpCode = e l sew ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task ENDWHERE;
begin aOpCode = endwhere ;

aOperand = c t l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task NOP;
begin aOpCode = add ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

Controller’s control functions

/ * ******************************************************************************************
F i l e name : cgCONTROL . v
****************************************************************************************** * /

ta sk cJMP ;
input [ 5 : 0 ] l a b e l ;
begin cOpCode = jmp ;

cOperand = c t l ;
cULB( l a b e l ) ;

end
endtask

task cBRZ ;
input [ 5 : 0 ] l a b e l ;
begin cOpCode = b r z ;

cOperand = c t l ;
cULB( l a b e l ) ;

end
endtask

task cBRNZ ;
input [ 5 : 0 ] l a b e l ;
begin cOpCode = brnz ;

cOperand = c t l ;
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cULB( l a b e l ) ;
end

endtask

task cBRZDEC ;
input [ 5 : 0 ] l a b e l ;
begin cOpCode = b r z d e c ;

cOperand = c t l ;
cULB( l a b e l ) ;

end
endtask

task cBRNZDEC ;
input [ 5 : 0 ] l a b e l ;
begin cOpCode = b r n z d e c ;

cOperand = c t l ;
cULB( l a b e l ) ;

end
endtask

task cHALT ;
begin cOpCode = jmp ;

cOperand = c t l ;
c S c a l a r = 8 ’ b0 ;

end
endtask

task cNOP ;
begin cOpCode = add ;

cOperand = v a l ;
c S c a l a r = 8 ’ b0 ;

end
endtask

Global functions

/ * ******************************************************************************************
F i l e name : cgGLOBAL . v
****************************************************************************************** * /
/ / SHIFTS

ta sk GRSHIFT ; / / g l o b a l r i g h t s h i f t w i t h one p o s i t i o n
begin aOpCode = g s h i f t ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task GLSHIFT ; / / g l o b a l l e f t s h i f t w i t h one p o s i t i o n
begin aOpCode = g s h i f t ;

aOperand = v a l ;
a S c a l a r = 8 ’ b1 ;
endLine ;

end
endtask
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Load functions

/ * ******************************************************************************************
F i l e name : cgLOAD . v
****************************************************************************************** * /

/ / i n ARRAY
ta sk VLOAD;

input [ 7 : 0 ] v a l u e
begin aOpCode = l o a d ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task LOAD;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = l o a d ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RLOAD;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = l o a d ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RILOAD ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = l o a d ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CLOAD;
begin aOpCode = l o a d ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task IXLOAD ;
begin aOpCode = i x l o a d ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVLOAD;

input [ 7 : 0 ] v a l u e ;
begin cOpCode = l o a d ;

cOperand = v a l ;
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c S c a l a r = v a l u e ;
end

endtask

task cLOAD;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = l o a d ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRLOAD;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = l o a d ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRILOAD ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = l o a d ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCLOAD; / / s c a l a r [ 1 : 0 ] = 00: r e d u c t i o n add
/ / s c a l a r [ 1 : 0 ] = 01: r e d u c t i o n min
/ / s c a l a r [ 1 : 0 ] = 10: r e d u c t i o n max
/ / s c a l a r [ 1 : 0 ] = 11: r e d u c t i o n f l a g

input [ 7 : 0 ] v a l u e ;
begin cOpCode = l o a d ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Multiplication functions

/ * ******************************************************************************************
F i l e name : cgMULT . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk VMULT;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = mul t ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task MULT;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = mul t ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;
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end
endtask

task RMULT;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = mul t ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RIMULT ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = mul t ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CMULT;
begin aOpCode = mul t ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVMULT;

input [ 7 : 0 ] v a l u e ;
begin cOpCode = mul t ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cMULT;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = mul t ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRMULT;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = mul t ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRIMULT ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = mul t ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCMULT;
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input [ 7 : 0 ] v a l u e ;
begin cOpCode = mul t ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Bitwise OR functions

/ * ******************************************************************************************
F i l e name : cgOR . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk VOR;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwor ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task OR;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwor ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task ROR;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwor ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RIOR ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwor ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task COR;
begin aOpCode = bwor ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVOR ;

input [ 7 : 0 ] v a l u e ;
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begin cOpCode = bwor ;
cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cOR ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwor ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cROR ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwor ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRIOR ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwor ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCOR ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwor ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Reverse subtract functions

/ * ******************************************************************************************
F i l e name : cgRVSUB . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk VRVSUB;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = r s u b ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RVSUB;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = r s u b ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
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endtask

task RRVSUB;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = r s u b ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RIRVSUB ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = r s u b ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CRVSUB;
begin aOpCode = r s u b ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVRVSUB;

input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cRVSUB ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRRVSUB ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRIRVSUB ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCRVSUB ;
input [ 7 : 0 ] v a l u e ;
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begin cOpCode = r s u b ;
cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Reverse subtract with carry functions

/ * ******************************************************************************************
F i l e name : cgRVSUBC . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk VRVSUBC;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = r s u b c ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RVSUBC;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = r s u b c ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RRVSUBC;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = r s u b c ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RIRVSUBC ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = r s u b c ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CRVSUBC;
begin aOpCode = r s u b c ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVRVSUBC;

input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b c ;
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cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cRVSUBC ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b c ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRRVSUBC;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b c ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRIRVSUBC ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b c ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCRVSUBC;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = r s u b c ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Search functions
This file is used only for the search version of the system.

/ * ******************************************************************************************
F i l e name : cgSEARCH . v
****************************************************************************************** * /
/ / SEARCH

ta sk SEARCH; / / s e a r c h co−operand
begin aOpCode = s e a r c h ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task VSEARCH; / / s e a r c h v a l u e
input [ 7 : 0 ] v a l u e ;
begin aOpCode = s e a r c h ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
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endtask

task CSEARCH; / / s e a r c h co−operand
begin aOpCode = c s e a r c h ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task VCSEARCH; / / s e a r c h v a l u e
input [ 7 : 0 ] v a l u e ;
begin aOpCode = c s e a r c h ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

/ / INSTERT
ta sk INSERT ; / / i n s e r t v a l u e i n t h e f i r s t a c t i v e p o s i t i o n

input [ 7 : 0 ] v a l u e ;
begin aOpCode = i n s e r t ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CINSERT ; / / i n s e r t co−operand i n t h e f i r s t a c t i v e p o s i t i o n
begin aOpCode = i n s e r t ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / DELETE
ta sk DELETE ; / / d e l e t e t h e f i r s t a c t i v e p o s i t i o n

begin aOpCode = d e l e t e ;
aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / READ
ta sk READ; / / s h i f t r i g h t one p o s i t i o n Boolean v e c t o r

begin aOpCode = r e a d ;
aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

Shift functions

/ * ******************************************************************************************
F i l e name : cgSHIFT . v
****************************************************************************************** * /
/ / i n ARRAY
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ta sk SHRIGHTC ; / / s h i f t r i g h t one b i t p o s i t i o n w i t h c a r r y
begin aOpCode = s h r i g h t c ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task SHRIGHT ; / / s h i f t r i g h t v a l u e p o s i t i o n s
begin aOpCode = s h r i g h t ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task SHARIGHT ; / / s h i f t r i g h t a r i t h m e t i c one b i t p o s i t i o n
begin aOpCode = s h a r i g h t ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task INSVAL ; / / i n s e r t v a l u e on t h e l e a s t p o s i t i o n s
input [ 7 : 0 ] v a l u e ;
begin aOpCode = i n s v a l ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cSHRIGHTC ; / / s h i f t r i g h t one b i t p o s i t i o n w i t h c a r r y

begin cOpCode = s h r i g h t c ;
cOperand = v a l ;
c S c a l a r = 8 ’ b0 ;

end
endtask

task cSHRIGHT ; / / s h i f t r i g h t v a l u e p o s i t i o n s
begin cOpCode = s h r i g h t ;

cOperand = v a l ;
c S c a l a r = 8 ’ b0 ;

end
endtask

task cSHARIGHT ; / / s h i f t r i g h t a r i t h m e t i c one b i t p o s i t i o n
begin cOpCode = s h a r i g h t ;

cOperand = v a l ;
c S c a l a r = 8 ’ b0 ;

end
endtask

task cINSVAL ; / / i n s e r t v a l u e on t h e l e a s t p o s i t i o n s
input [ 7 : 0 ] v a l u e ;
begin cOpCode = i n s v a l ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask
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Store functions

/ * ******************************************************************************************
F i l e name : cgSTORE . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk ADDRLD; / / addr [ i ] <= acc [ i ]
begin aOpCode = s t o r e ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task STORE ; / / s t o r e acc [ i ] a t a r r a y S c a l a r
input [ 7 : 0 ] v a l u e ;
begin aOpCode = s t o r e ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RSTORE ; / / s t o r e acc [ i ] a t addr [ i ] + a r r a y S c a l a r
input [ 7 : 0 ] v a l u e ;
begin aOpCode = s t o r e ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RISTORE ; / / s t o r e acc [ i ] a t addr [ i ] + a r r a y S c a l a r
/ / addr [ i ] <= addr [ i ] + c o n t r S c a l a r

input [ 7 : 0 ] v a l u e ;
begin aOpCode = s t o r e ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cADDRLD; / / addr <= acc

begin cOpCode = s t o r e ;
cOperand = v a l ;
c S c a l a r = 8 ’ b0 ;

end
endtask

task cSTORE ; / / s t o r e acc a t c o n t r S c a l a r
input [ 7 : 0 ] v a l u e ;
begin cOpCode = s t o r e ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRSTORE ; / / s t o r e acc a t addr + c o n t r S c a l a r
input [ 7 : 0 ] v a l u e ;
begin cOpCode = s t o r e ;

cOperand = mrl ;
c S c a l a r = v a l u e ;
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end
endtask

task cRISTORE ; / / s t o r e acc a t addr + c o n t r S c a l a r
/ / addr <= addr + c o n t r S c a l a r

input [ 7 : 0 ] v a l u e ;
begin cOpCode = s t o r e ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

Subtract functions

/ * ******************************************************************************************
F i l e name : cgSUB . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk VSUB; / / v a l u e sub :
/ / acc [ i ] <= acc [ i ] − { ( n −8){ a S c a l a r [ 7 ]}} , a S c a l a r }

input [ 7 : 0 ] v a l u e ;
begin aOpCode = sub ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task SUB; / / a b s o l u t e sub
/ / acc [ i ] <= acc [ i ] − vectMem [ i ] [ a S c a l a r [ v −1:0]]

input [ 7 : 0 ] v a l u e ;
begin aOpCode = sub ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RSUB; / / r e l a t i v e sub :
/ / acc [ i ]<=acc [ i ]−vectMem [ i ] [ a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]]

input [ 7 : 0 ] v a l u e ;
begin aOpCode = sub ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RISUB ; / / r e l a t i v e sub :
/ / acc [ i ]<=acc [ i ]−vectMem [ i ] [ a d d r V e c t [ i ]+ a S c a l a r [ v −1:0]]
/ / a d d r V e c t [ i ] <= a d d r V e c t [ i ] + a S c a l a r [ v −1:0]

input [ 7 : 0 ] v a l u e ;
begin aOpCode = sub ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CSUB; / / co−operand sub :
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/ / acc [ i ] <= acc [ i ] − acc
begin aOpCode = sub ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVSUB ; / / v a l u e sub :

/ / acc <= acc − { ( n −8){ c S c a l a r [ 7 ]}} , c S c a l a r }
input [ 7 : 0 ] v a l u e ;
begin cOpCode = sub ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cSUB ; / / immed ia t e sub :
/ / acc <= acc − mem[ c S c a l a r [ s −1:0]]

input [ 7 : 0 ] v a l u e ;
begin cOpCode = sub ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRSUB ; / / r e l a t i v e sub :
/ / acc <= acc − mem[ addr + c S c a l a r [ s −1:0]]

input [ 7 : 0 ] v a l u e ;
begin cOpCode = sub ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRISUB ; / / r e l a t i v e sub :
/ / acc <= acc − mem[ addr + c S c a l a r [ s −1:0]]
/ / addr <= addr + c S c a l a r [ s −1:0]

input [ 7 : 0 ] v a l u e ;
begin cOpCode = sub ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCSUB ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = sub ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Subtract with carry functions

/ * ******************************************************************************************
F i l e name : cgSUBC . v
****************************************************************************************** * /
/ / i n ARRAY
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ta sk VSUBC;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = subc ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task SUBC;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = subc ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RSUBC;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = subc ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RISUBC ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = subc ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CSUBC;
begin aOpCode = subc ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVSUBC ;

input [ 7 : 0 ] v a l u e ;
begin cOpCode = subc ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cSUBC ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = subc ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRSUBC ;
input [ 7 : 0 ] v a l u e ;
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begin cOpCode = subc ;
cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask

task cRISUBC ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = subc ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCSUBC ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = subc ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask

Transfer functions

/ * ******************************************************************************************
F i l e name : cgTRANSFER . v
****************************************************************************************** * /
/ / i n CONTROLLER & ARRAY

ta sk VGET;
begin aOpCode = v l o a d ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

task VSEND;
begin aOpCode = v s t o r e ;

aOperand = v a l ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

Bitwise exclusive OR functions

/ * ******************************************************************************************
F i l e name : cgXOR . v
****************************************************************************************** * /
/ / i n ARRAY

ta sk VXOR;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwxor ;

aOperand = v a l ;
a S c a l a r = v a l u e ;
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endLine ;
end

endtask

task XOR;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwxor ;

aOperand = mab ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RXOR;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwxor ;

aOperand = mrl ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task RIXOR ;
input [ 7 : 0 ] v a l u e ;
begin aOpCode = bwxor ;

aOperand = mri ;
a S c a l a r = v a l u e ;
endLine ;

end
endtask

task CXOR;
begin aOpCode = bwxor ;

aOperand = cop ;
a S c a l a r = 8 ’ b0 ;
endLine ;

end
endtask

/ / i n CONTROLLER
ta sk cVXOR;

input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwxor ;

cOperand = v a l ;
c S c a l a r = v a l u e ;

end
endtask

task cXOR ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwxor ;

cOperand = mab ;
c S c a l a r = v a l u e ;

end
endtask

task cRXOR;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwxor ;

cOperand = mrl ;
c S c a l a r = v a l u e ;

end
endtask
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ta sk cRIXOR ;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwxor ;

cOperand = mri ;
c S c a l a r = v a l u e ;

end
endtask

task cCXOR;
input [ 7 : 0 ] v a l u e ;
begin cOpCode = bwxor ;

cOperand = cop ;
c S c a l a r = v a l u e ;

end
endtask
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[Ştefan ’93] Gheorghe Ştefan: Circuite integrate digitale. Ed. Denix, 1993.
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[Ştefan ’98b] Gheorghe Ştefan, “The Connex Memory: A Physical Support for Tree / List Processing” in The
Roumanian Journal of Information Science and Technology, Vol.1, Number 1, 1998, p. 85 - 104.
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[Ştefan ’99] Gheorghe Ştefan, Robert Benea: “Experimente in info cu acizi nucleici”, in M. Drǎgǎnescu, Ştefan
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[Ştefan ’07] Gheorghe Ştefan: “Membrane Computing in Connex Environment”, invited paper at 8th Workshop
on Membrane Computing (WMC8) June 25-28, 2007 Thessaloniki, Greece

[Ştefan ’07a] Gheorghe Ştefan, Marius Stoian: “The efficiency of the register file based architectures in OOP
languages era”, in SINTES13 Craiova, 2007.
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[Thiébaut ’06] Dominique Thiébaut, Gheorghe Ştefan, Mihaela Maliţa: “DNA search and the Connex technol-
ogy” in International Multi-Conference on Computing in the Global Information Technology - Challenges for
the Next Generation of IT&C - ICCGI, 2006 Bucharest, Romania, August 1-3, 2006

[Tokheim ’94] Roger L. Tokheim: Digital Principles, Third Edition, McGraw-Hill, 1994.

[Turing ’36] Alan M. Turing: “On computable Numbers with an Application to the Eintscheidungsproblem”, in
Proc. London Mathematical Society, 42 (1936), 43 (1937).

[Vahid ’06] Frank Vahid: Digital Design, Wiley, 2006.

[von Neumann ’45] John von Neumann: “First Draft of a Report on the EDVAC”, reprinted in IEEE Annals of the
History of Computing, Vol. 5, No. 4, 1993.

[Uyemura ’02] John P. Uyemura: CMOS Logic Circuit Design, Kluver Academic Publishers, 2002.

[Ward ’90] S. A. Ward, R. H. Halstead: Computation Structures, The MIT Press, McGraw-Hill Book Company,
1990.

[Wedig ’89] Robert G. Wedig: “Direct Correspondence Architectures: Principles, Architecture, and Design” in
[Milutinovic ’89].

[Waksman ’68] Abraham Waksman, ”A permutation network,” in J. Ass. Comput. Mach., vol. 15, pp. 159-163,
Jan. 1968.

[webRef 1] http://www.fpga-faq.com/FAQ_Pages/0017_Tell_me_about_metastables.htm

[webRef 2] http://www.fpga-faq.com/Images/meta_pic_1.jpg

[webRef 3] http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#fsa_pfx

[webRef 4] https://techdocs.altium.com/display/FPGA/Reducing+Metastability+in+FPGA+Designs

[Weste ’94] Neil H. E. Weste, Kamran Eshraghian: Principle of CMOS VLSI Design. ASystem Perspective, Second
Edition, Addisson Wesley, 1994.

[Wolfram ’02] Stephen Wolfram: A New Kind of Science, Wolfram Media, Inc., 2002.

[Zurada ’95] Jacek M. Zurada: Introductin to Artificial Neural network, PWS Pub. Company, 1995.

[Yanushkevich ’08] Svetlana N. Yanushkevich, Vlad P. Shmerko: Introduction to Logic Design, CRC Press, 2008.



Index

D flip-flop: delay flip-flop, is the master-slave structure
used for the embodiment of registers, 53

D-latch: is the elementary clocked latch with R=S=D,
47

fan-out: the number on input gates connected to the out-
put of a digital circuit, 513

flip-flop: the edge clocked basic storage element, 50

gate, 518

master-slave principle: the mechanism used to remove
the transparency of a storage element, 50

640


