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INTRODUCTION 

One of the foremost tools in the theoretical study of biological 

molecules is the technique of molecular dynamics simulations (MD). 

This computational method calculates the time dependent behaviour 

of a molecular system. MD simulations have provided detailed 

information on the fluctuations and conformational changes of proteins 

and nucleic acids.   

 
Figure 0-1: a) DNA, b) Viral budding, c) Kinesin 

 
Figure 0-2: a) Clathrin, b) tRNA, c) Vesicle (curtesy XVIVO) [1] 
These methods are now routinely used to investigate the structure, 

dynamics and thermodynamics of biological molecules and their 
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complexes. They are also used in the determination of structures from 

X-ray crystallography and from NMR experiments. 

MD simulations are necessary because we don’t know the 

structure of most proteins and we don’t know how they work together, 

so, for elucidating structural dynamics of proteins there are two major 

approaches: 

 Laboratory experiments (“wet lab”) which are hard, since 

 Atoms are small 

 Difficult to get small pictures, much less movies 

 Biophysical simulation (“dry lab”) 

 Gold standard for protein-sized systems 

 MD simulations 

Primary uses for MD: 

 Determine structures by watching them form 

 Understand dynamics by watching things move 

 Transform messy wet stuff into nice dry data mining 

Biological molecules exhibit a wide range of time scales over which 

specific processes occur; for example [2]: 

1. Local Motions (0.01 to 5 Å, 10-15 s to 10-1 s)  
 Atomic fluctuations  
 Sidechain Motions  
 Loop Motions  

2. Rigid Body Motions (1 to 10Å, 10-9 s to 1 s)  
 Helix Motions  
 Domain Motions (hinge bending)  
 Subunit motions  

3. Large-Scale Motions (> 5Å, 10-7 s to 104 s)  
 Helix coil transitions  
 Dissociation/Association  
 Folding and Unfolding  

Many important biological phenomena occur on timescales 
between 10µs and 1ms: 

 Major structural changes; 
 Interactions of proteins with other proteins, nucleic acids and 

drug molecules; 
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 Folding of many proteins. 

The molecular dynamics method was first introduced by Alder and 

Wainwright in the late 1950's [3] [4] to study the interactions of hard 

spheres. Many important insights concerning the behaviour of simple 

liquids emerged from their studies. The next major advance was in 

1964, when Rahman carried out the first simulation using a realistic 

potential for liquid argon [5]. The first molecular dynamics simulation 

of a realistic system was done by Rahman and Stillinger in their 

simulation of liquid water in 1974 [6]. 

The first protein simulations appeared in 

1977 with the simulation of the bovine 

pancreatic trypsin inhibitor (BPTI) [7]. 

Today in the literature, one routinely 

finds molecular dynamics simulations of 

solvated proteins, protein-DNA 

complexes as well as lipid systems 

addressing a variety of issues including 

the thermodynamics of ligand binding 

and the folding of small proteins. The 

number of simulation techniques has 

greatly expanded; there exist now many 

specialized techniques for particular 

problems, including mixed quantum mechanical - classical 

simulations, that are being employed to study enzymatic reactions in 

the context of the full protein. Molecular dynamics simulation 

techniques are widely used in experimental procedures such as X-ray 

crystallography and NMR structure determination. 

Molecular dynamics simulations generate information at the 

microscopic level, including atomic positions and velocities. The 

conversion of this microscopic information to macroscopic observables 

such as pressure, energy, heat capacities, etc., requires statistical 

mechanics. Statistical mechanics is fundamental to the study of 

biological systems by molecular dynamics simulation. For more 

detailed information, refer to the numerous excellent books available 

on the subject. [8] 

Figure 0-3: Bovine 
Pancreatic Trypsin Inhibitor 
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In a molecular dynamics simulation, one often wishes to explore 

the macroscopic properties of a system through microscopic 

simulations, for example, to calculate changes in the binding free 

energy of a particular drug candidate, or to examine the energetics and 

mechanisms of conformational change. The connection between 

microscopic simulations and macroscopic properties is made via 

statistical mechanics which provides the rigorous mathematical 

expressions that relate macroscopic properties to the distribution and 

motion of the atoms and molecules of the N-body system; molecular 

dynamics simulations provide the means to solve the equation of 

motion of the particles and evaluate these mathematical formulas. With 

molecular dynamics simulations, one can study both thermodynamic 

properties and/or time dependent (kinetic) phenomenon. 

All-atom molecular dynamics simulations provide a vehicle for 

capturing the structures, motions, and interactions of biological 

macromolecules in full atomic detail.  

Recent years have seen substantial advances in both the 

timescales accessible to molecular dynamics simulations and in the 

quality of the force fields used in such simulations. Together, these 

developments have led to dramatic improvements in the ability of 

molecular dynamics simulations to capture the structure and 

dynamics of proteins. 

Access to longer timescales and the improved sampling of 

conformations has been enabled by progress in a number of areas. 

A specialized computer for molecular dynamics simulations, called 

Anton, has allowed us to access long-timescale (up to 1 millisecond) 

dynamics in proteins using all-atom simulations with an explicit 

representation of solvent molecules. 

The last five years have also seen substantial improvements in the 

force fields used in molecular dynamics simulations. In this area, NMR 

spectroscopy has played a central role by providing a wealth of 

experimental data reporting on a broad range of structural and 

dynamical properties of peptides and proteins; such data are ideally 

suited to validate molecular dynamics simulations. 



 

 
21 

 

Having access to long and accurate molecular dynamics 

simulations, it is in turn possible to provide new insight in to the 

dynamical properties of proteins, finding new drugs and treatments to 

major ailments. 
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1. PARALLEL COMPUTATION AND PROGRAMMING 

Parallel computing is a type of computation in which many 

calculations are carried out simultaneously [9], operating on the 

principle that large problems can often be divided into smaller ones, 

which are then solved at the same time. There are several different 

forms of parallel computing: bit-level, instruction-level, data, and task 

parallelism. Parallelism has been employed for many years, mainly in 

high-performance computing, but interest in it has grown lately due to 

the physical constraints preventing frequency scaling. [10] As power 

consumption (and consequently heat generation) by computers has 

become a concern in recent years, [11] parallel computing has become 

the dominant paradigm in computer architecture, mainly in the form 

of multi-core processors. [11] 

 

Figure 1-1: IBM Supercomputers 

IBM's Blue Gene/P massively 
parallel supercomputer.

Blue Gene/L System
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Parallel computing is closely related to 

concurrent computing—they are frequently used 

together, and often conflated, though the two are 

distinct: it is possible to have parallelism without 

concurrency (such as bit-level parallelism), and 

concurrency without parallelism (such as 

multitasking by time-sharing on a single-core 

CPU). [12] In parallel computing, a computational 

task is typically broken down in several, often 

many, very similar subtasks that can be 

processed independently and whose results are 

combined afterwards, upon completion. In 

contrast, in concurrent computing, the various 

processes often do not address related tasks; 

when they do, as is typical in distributed computing, the separate tasks 

may have a varied nature and often require some inter-process 

communication during execution. 

Parallel computers can be roughly classified according to the level 

at which the hardware supports parallelism, with multi-core and multi-

processor computers having multiple processing elements within a 

single machine, while clusters, MPPs, and grids use multiple 

computers to work on the same task. Specialized parallel computer 

architectures are sometimes used alongside traditional processors, for 

accelerating specific tasks. 

In some cases, parallelism is transparent to the programmer, such 

as in bit-level or instruction-level parallelism, but explicitly parallel 

algorithms, particularly those that use concurrency, are more difficult 

to write than sequential ones, [13] because concurrency introduces 

several new classes of potential software bugs, of which race conditions 

are the most common. Communication and synchronization between 

the different subtasks are typically some of the greatest obstacles to 

getting good parallel program performance. 

A theoretical upper bound on the speed-up of a single program as 

a result of parallelization is given by Amdahl's law. 

Figure 1-2: A cabinet from 
IBM's Blue Gene/L massively 

parallel supercomputer 
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1.1. PARALLELISM VS. CONCURRENCY 

The term Parallelism refers to techniques to make programs faster 

by performing several computations in parallel. This requires hardware 

with multiple processing units. In many cases the sub-computations 

are of the same structure, but this is not necessary. Graphic 

computations on a GPU are parallelism. Key problem of parallelism is 

to reduce data dependencies in order to be able to perform 

computations on independent computation units with minimal 

communication between them. To this end it can be even an advantage 

to do the same computation twice on different units. [14] 

The term Concurrency refers to techniques that make program 

more usable. Concurrency can be implemented and is used a lot on 

single processing units, nonetheless it may benefit from multiple 

processing units with respect to speed. If an operating system is called 

a multi-tasking operating system, this is a synonym for supporting 

concurrency. If you can load multiple documents simultaneously in the 

tabs of your browser and you can still open menus and perform more 

actions, this is concurrency. [14] 

If you run distributed-net computations in the background while 

working with interactive applications in the foreground, that is 

concurrency. On the other hand, dividing a task into packets that can 

be computed via distributed-net clients, this is parallelism. [14] 
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1.2. AMDAHL'S LAW [15] 

1.2.1. Definition 

In computer architecture, Amdahl's law gives the theoretical 

speedup in latency of the execution of a task at fixed workload that can 

be expected of a system whose resources are improved. It is named 

after computer scientist Gene Amdahl, and was presented at the AFIPS 

Spring Joint Computer Conference in 1967. 

Amdahl’s law states: 

 𝑆 =
1

1−𝑝+
𝑝

𝑠

 (1-1) 

 

Where: 

 𝑆 – theoretical speedup of the whole task; 

 𝑠 – speedup in the latency of the execution of the part of the 

task that benefits from the improvement of the resources of the 

system; 

 𝑝 – percentage of the execution time of the whole task 

concerning the part that benefits from the improvement of the 

resources of the system before the improvement. 

 

With the added restriction that: 

 𝑆 ≤
1

1−𝑝
 (1-2) 

Meaning that the theoretical speedup of the execution of the whole 

task increases with the improvement of the resources of the system and 

that regardless the magnitude of the improvement, the theoretical 

speedup is always limited by the part of the task that cannot benefit from 

the improvement. 
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Figure 1-3: SVG Graph illustrating Amdahl's law 
Amdahl's law is often used in parallel computing to predict the 

theoretical speedup when using multiple processors. 

1.2.2. Examples  

 For example, if a program needs 20 hours using a single processor 

core, and a particular part of the program which takes one hour to 

execute cannot be parallelized, while the remaining 19 hours (p = 0.95) 

of execution time can be parallelized, then regardless of how many 

processors are devoted to a parallelized execution of this program, the 

minimum execution time cannot be less than that critical one hour. 

Hence, the theoretical speedup is limited to at most 20 times ((1 − p)-1 

= 20). 

For this reason, parallel computing is relevant only for a low 

number of processors and very parallelizable programs. 
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1.2.3. Speedup in a serial program [16] 

Assume that a task has two independent parts, A and B. 

 

Part B takes roughly 25% of the time of the whole computation. By 

working very hard, one may be able to make this part 5 times faster, 

but this only reduces the time for the whole computation by a little. 

 

In contrast, one may need to perform less work to make part A be 

twice as fast. This will make the computation much faster than by 

optimizing part B, even though part B's speedup is greater by ratio, (5 

times versus 2 times). 

 

 

For example, with a serial program in two parts A and B for which 

TA = 3s and TB = 1s: 

 if part B is made to run 5 times faster, that is s = 5 and p = 

TB/(TA + TB) = 0.25, then S=1.25; 

 if part A is made to run 2 times faster, that is s = 2 and p = 

TA/(TA + TB) = 0.75, then S=1.60; 

Therefore, making part A to run 2 times faster is better than 

making part B to run 5 times faster. 

The percentage improvement in speed can be calculated as: 

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 100 (1 −
1

𝑆
) (1-3) 

Improving part A by a factor of 2 will increase overall program 

speed by a factor of 1.60, which makes it 37.5% faster than the original 

computation. 

    However, improving part B by a factor of 5, which presumably 

requires more effort, will only achieve an overall speedup factor of 1.25, 

which makes it 20% faster. 
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1.3. GUSTAFSON'S LAW [17] 

Gustafson's law (or Gustafson–Barsis's law) gives the theoretical 

speedup in latency of the execution of a task at fixed execution time 

that can be expected of a system whose resources are improved. It is 

named after computer scientist John L. Gustafson and his colleague 

Edwin H. Barsis, and was presented in the article Reevaluating 

Amdahl's Law in 1988. 

Gustafson's law can be formulated the following way: 

 𝑆 = 1 − 𝑝 + 𝑠𝑝 (1-4) 
Where: 

 𝑆 – theoretical speedup of the whole task; 

 𝑠 – speedup in the latency of the execution of the part of the 

task that benefits from the improvement of the resources of the 

system; 

 𝑝 – percentage of the execution time of the whole task 

concerning the part that benefits from the improvement of the 

resources of the system before the improvement. 

Another approach: 

 If N is the number of processors, s is the amount of time spent (by 

a serial processor) on serial parts of a program and p is the amount of 

time spent (by a serial processor) on parts of the program that can be 

done in parallel, then Amdahl's law says that speedup is given by 

 𝑆 =  
𝑠+𝑝

𝑠 +
𝑝

𝑁

  =
1

𝑠 +
𝑝

𝑁
 
 (1-5) 

where we have set total time s + p = 1 for algebraic simplicity. For 

N = 1024, this is an unforgivingly steep function of s near s = 0 (see 

Figure 1-4).  

The steepness of the graph near s = 0 (approximately - N) implies 

that very few problems will experience even a 100-fold speedup.  

Yet for three very practical applications (s = 0.4 - 0.8 percent) used, 

we have achieved the speedup factors on a 1024-processor hypercube 
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which we believe are unprecedented [18]: 1021 for beam stress analysis 

using conjugate gradients, 1020 for baffled surface wave simulation 

using explicit finite differences, and 1016 for unstable fluid flow using 

flux-corrected transport. How can this be, when Amdahl's argument 

would predict otherwise? 

 

Figure 1-4: Speedup under Amdahl’s Law [17] 
The expression and graph both contain the implicit assumption 

that p is independent of N, which is virtually never the case. One does 

not take a fixed-size problem and run it on various numbers of 

processors except when doing academic research; in practice, the 

problem size scales with the number of processors. When given a more 

powerful processor, the problem generally expands to make use of the 

increased facilities. Users have control over such things as grid 

resolution, number of time steps, difference operator complexity, and 

other parameters that are usually adjusted to allow the program to be 
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run in some desired amount of time. Hence, it may be most realistic to 

assume that run time, not problem size, is constant. 

As a first approximation, we have found that it is the parallel or 

vector part of a program that scales with the problem size. Times for 

vector start-up, program loading, serial bottlenecks and I/O that make 

up the s component of the run do not grow with problem size. When we 

double the number of degrees of freedom in a physical simulation, we 

double the number of processors. But this means that, as a first 

approximation, the amount of work that can be done in parallel varies 

linearly with the number of processors. For the three applications 

mentioned above, we found that the parallel portion scaled by factors 

of 1023.9969, 1023.9965, and 1023.9965. If we use s' and p' to 

represent serial and parallel time spent on the parallel system, then a 

serial processor would require time s' + p' x N to perform the task. This 

reasoning gives an alternative to Amdahl's law suggested by E. Barsis 

at Sandia: 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =  (𝑠′ +  𝑝′𝑁) / (𝑠′ +  𝑝′) 

=  𝑠′ +  𝑝′𝑁 

=  𝑁 + (1 −  𝑁)𝑠′ 

In contrast with Figure 1-4: Speedup under Amdahl’s Law , this 

function is simply a line, and one with much more moderate slope: 1 −

 𝑁. It is thus much easier to achieve efficient parallel performance than 

is implied by Amdahl's paradigm. The two approaches, fixed-sized and 

scaled-sized, are contrasted and summarized in Figure 1-5 and Figure 

1-6. 

 
Figure 1-5: Fixed size model (Speedup = 1/(s + p/N)) 
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Figure 1-6: Scaled-Size Model (Speedup = s + Np) 

The work to date shows that it is not an insurmountable task to 

extract very high efficiency from a massively-parallel ensemble, for the 

reasons presented here. We feel that it is important for the computing 

research community to overcome the “mental block” against massive 

parallelism imposed by a misuse of Amdahl’s speedup formula; 

speedup should be measured by scaling the problem to the number of 

processors, not fixing problem size. We expect to extend our success to 

a broader range of applications and even larger values for N. 

Gustafson's law addresses the shortcomings of Amdahl's law, 

which is based on the assumption of a fixed problem size, that is of an 

execution workload that does not change with respect to the 

improvement of the resources. Gustafson's law instead proposes that 

programmers tend to set the size of problems to fully exploit the 

computing power that becomes available as the resources improve. 

Therefore, if faster equipment is available, larger problems can be 

solved within the same time. 

The impact of Gustafson's law was to shift research goals to select 

or reformulate problems so that solving a larger problem in the same 

amount of time would be possible. In a way the law redefines efficiency, 

due to the possibility that limitations imposed by the sequential part of 

a program may be countered by increasing the total amount of 

computation. 

1.4. AMDAHL’S LAW OR GUSTAFSON’S LAW [19] 

There are two distinct pillars of Gustafson’s law. I will describe 

them both in my own words. 
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1.4.1. Lemma 1 

 “There are workloads that are gaseous in nature: when provided 

with more compute power, they expand to consume the newly provided 

power.” 

Such programs are more common than you think. I will give four 

real-life examples: 

1. Bitcoin mining. If I give you more compute power, you will not 

finish sooner. Instead, you will just mine more coins. 

2. Graphics. If I give you more compute power, you will just run 

your frames at a higher resolution or with more details. 

3. Numerical analysis such as computing pi. If I give you more 

computes, you will just compute more digits of pi. 

4. Weather Prediction. If I give you more computes, you will just 

run your software longer to get even more accurate predictions. 

Side note: This property is also found in several non-parallel 

programs. 

1.4.2. Lemma 2 

“When the problem size is increased, the parallel portion expands 

faster than the serial portion.” 

For example, Matrix-Matrix-Multiply (MMM). The setup of MMM, 

i.e. initializing the matrices increases linearly with the size of the 

matrix. however, the actual compute is 𝑂(𝑛3). 

1.4.3. What’s does it imply 

Gustafson’s law only applies for workloads where both the above 

conditions are true. If a workload follows Gustafson’s law, it is hurt. 
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1.4.4. What does it not imply 

It does NOT imply that Amdahl’s law is dead. It just implies 

Amdahl’s law is less important in some workloads. I stress on the word 

less because the serial portion still exists and we know that it still hurts 

performance, but just with a lesser magnitude. 

There are many workloads out there which aren’t gaseous. For 

example, when sorting a list of numbers in Excel, I will not increase the 

size of my balance sheet if my computer gets faster. Similarly, when 

doing spell check, I will not write longer documents if my computer has 

become faster. Lastly, I will not make my database transactions 

lengthier if I can run them faster. 

1.4.5. Shortcoming of Gustafson’s Law 

Just like Amdahl’s law, Gustafson’s law makes all the same 

assumptions about the world being infinitely parallel or completely 

serial. It also does not account for overhead associated with the 

creation/deletion of threads. It does not account for other type of serial 

portions such as critical sections. See this post for my list of 

assumptions. Thus, Gustafson’s law only becomes applicable if: (a) the 

workload obeys all the assumptions of Amdahl’s law, and (b) it obeys 

the above two Lemma’s. 

1.4.6. What can programmers do? 

Still try to eliminate the serial part. If you can’t eliminate the serial 

part, at least try to make it so that the serial part grows slower than 

the parallel part when the working set increases. Also try to make the 

time in serial part constant and independent of the number of threads 

(I realize this impossible in most cases). 

1.4.7. What can architects do? 

Keep Gustafson’s law in mind and ensure that workloads that do 

obey Gustafson’s law do not get penalized. This implies ensuring that 

a workload that does expand to leverage more cores does not become 
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limited due to the memory system. (I am just asking for a balanced 

design). 

1.5. WHEN AMDAHL’S LAW IS INAPPLICABLE? [20] 

A lot of industry and academic folks use the term Amdahl’s law 

without understanding what it really means. Today I will discuss what 

Gene Amdahl said in 1967, what has become of it, and how it is often 

misused. 

1.5.1. Gene Amdahl’s insight 

Amdahl’s law was derived from Gene Amdahl’s 1967 paper in 

AFIPS computer conference. On a side note, I am fascinated by the 

opening sentence of this paper: 

For over a decade prophets have voiced the contention that the 

organization of a single computer has reached its limits and that truly 

significant advances can be made only by interconnection of a 

multiplicity of computers in such a manner as to permit cooperative 

solution. 

Deja Vu — apparently, the death of single thread performance is 

not new. 

This following sentence from this paper is the basis of the infamous 

Amdahl’s law: 

… the effort expended on achieving high parallel processing rates is 

wasted unless it is accompanied by achievements in sequential 

processing rates of very nearly the same magnitude. 

It is important to note that the paper did not have an equation. 

Neither did it talk about what types of serial bottlenecks exist, what 

parallel programming paradigm is he referring to, etc. 
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1.5.2. The equation 

Somewhere along the road, we decided to convert Amdahl’s insight 

into a law and characterize it using an equation. I could not find its 

origin but the equation goes as follows: 

 𝑇𝑁 = 𝛼 +
1−𝛼

𝑁
 (1-6) 

Where: 

 𝑁 – number of cores 

 𝑇𝑁 – time consumed with N cores 
 𝛼 – fraction of instructions in serial code 

1.5.3. Simplifying assumptions 

This equation makes seven simplifying assumptions: 

1. The world is black and white: the number of executing threads is 

either equal to 1 or N; there is nothing in between. This is often false, 

e.g., in Google Map Reduce, the number of threads in the Map phase 

may be N but the number of threads in the Reduce phase are often 

smaller than N but greater than 1. 

 

2. The parallel portion has perfect speedup. This is not true because 

contention for shared data (critical sections) and shared resources 

(caches, memory bandwidth) often prohibit the program from reaching 

perfect linear speedup. 

 

3. The parallel portion has infinite scaling, i.e., performance never 

saturates. This is incorrect because contention for shared data and 

shared resources increases with the number of threads. This 

contention can reach a point that adding more threads does not 

increase performance (or reduces performance). 

 

 

4. There is no thread creation/deletion overhead. Allocating and de-

allocating threads is expensive and this overhead increases linearly 

with the number of threads. 
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5. The length of the serial, single-threaded portion is independent of 

the number of threads. The single thread work often consists of splitting 

the work for the parallel portion. This work is often a function of how 

many threads will be spawned during the parallel work. Furthermore, 

more threads can lead to more inter-core communication, thereby 

extending the length of the serial portion. 

 

 

6. Serial and parallel code runs at the same rate. 

 

7. The serial portion cannot be overlapped with the parallel threads. 

Many workloads embed serial portions inside parallel portions in order 

to overlap their execution with parallel work, e.g., exploiting pipeline 

parallelism between serial and parallel portions. 

The main distinction that reduces the scope of Amdahl’s law is #7. 

1.5.4. Who can use Amdahl’s law? 

Amdahl’s law is only applicable in certain fork-join programming 

paradigms. Specifically, it is applicable to workloads where some code 

runs as a single thread followed by some embarrassingly parallel code, 

e.g., matrix-matrix-multiply or other HPC kernels. 

1.5.5. Who should avoid using the term “Amdahl’s law”? 

As with any analytic model, Amdahl’s law should only be used 

when a workload fits the programming model assumed by the model. 

There are many programs that do not fit this model. Fundamentally, 

Amdahl’s law assumes that any code which cannot be parallelized is 

always on the critical program path. This is not the case in many 

modern programming paradigms as some non-parallel code sections 

can run in parallel with other independent code. For example: 

1. Critical sections: Critical Sections are portions of code where only 

one thread can execute at a given time; other threads wanting to 
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execute the critical section must wait. These critical sections can 

serialize a variable number of threads depending on the contention for 

the critical section. This contention is sometimes zero and sometimes 

very high. Thus, Amdahl’s law does not apply to critical section 

intensive workloads such as databases. 

 

2. Serial stages in a pipeline/task parallel workload: The serial 

stage only leads to serialization if it is the critical path of the program. 

It may have zero or more threads waiting for it at any given time. For 

example, all graphics workloads have a thread which is producing work 

for the other threads. This serial thread does not become a bottleneck 

unless it cannot feed the other threads fast enough. However, if it 

becomes the bottleneck, then the parallel portion seizes to matter. 

Thus, the Amdahl’s equation does not characterize the behavior of 

these kernels. 

3. Regions of limited parallelism: These exist in programs due to 

contention for hardware resources or thread creation/deletion 

overhead. The Amdahl’s equation does not apply to these as it assumes 

that the serial part is only one thread. For example, Google Map Reduce 

does not follow the Amdahl’s model. 

The above constructs change the first-order analytic models of the 

program completely and do not fit Amdahl’s. Yet, we often use serial 

portions and Amdahl’s law synonymously. I must admit that it is one 

of my pet peeves and I believe that we need to fix this problem as a 

community. It is best to use more specific terms for different types of 

serial code in order to avoid misunderstanding. 

1.5.6. Concrete Example 

Let’s think about pipeline workloads. Let’s use a simple example of 

a workload called Rank. Rank compares a set of input strings in a file 

to a given search string and returns the N most similar strings to the 

search string. 

There are three stages in a particular implementation of Rank: 
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S1. Read input string — this is sequential 

S2. Compute similarity score by comparing to search string — 

multiple strings can be compared concurrently 

S3. Insert string in a heap sorted according to the similarity score. 

Drop the element with the lowest similarity score in case the heap has 

N+1 elements after the insertion. — this is a critical section in a naive 

implementation. 

Now in the above code, there are three distinct loops that can be 

done one after the other in which case #1 and #3 will be your Amdahl’s 

serial portions (where only a single thread exists). However, I can be 

smart and write this code as a pipeline where S1, S2, and S3 run 

concurrently and communicate via work-queues. 

Let’s suppose each iteration of S1 takes 1K cycles, S2 takes 10K 

cycles, and S3 takes 2K cycles. Then as I up the number of cores, 

eventually the throughput of this pipeline will become limited by S3 

because even if I speed up S2 to 1000 cycles per iterations (by giving it 

10 cores), S3 will not speed up. Thus, once I have say 5 cores assigned 

to S2, more cores will not help with performance. 

Now, naively (and incorrectly), people call this Amdahl’s law. No it 

is not Amdahl’s law because the above cannot be characterized by the 

Amdahl’s equation. If we use Amdahl’s, the serial code is 3K cycles and 

parallel core is 10K cycles. Thus, with infinite cores: 

Cycles_per_iteration_with_P_cores = 3K + 10K/P 

Thus, the fastest speed will be 3K cycles per iteration. This is 

obviously wrong. 

The equation which characterizes this pipeline case is as follows: 

Cycles_per_iteration = MAX (Cycles_per_S1, Cycle_per_S2 / 

cores_assigned_to_S2, Cycle_per_S3); 

This is my poster child example of showing why Amdahl’s doesn’t 

work for all non-parallel code. 
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1.6. TYPES OF SERIAL BOTTLENECKS [21] 

In my definition, a serial bottleneck is code which can lead to 

thread serialization, i.e., it can cause threads to wait on each other. At 

a broader level, there are two types of serial bottlenecks: 

Fully serial, always on Critical Path: These are code portions where 

only a single thread exists. These bottlenecks cause other threads to 

wait every time they execute. These include kernels which cannot be 

parallelized at all. 

These single threaded regions are the classic Amdahl’s bottlenecks. 

They have an important property that they always end up on the critical 

program path, i.e., if you take a single-threaded region and speed it up 

by a 100 cycles, the overall program execution time reduces by a 100 

cycles. In addition to that, they have the following attributes. 

 Easier to detect (program is in a fully serial portion if number of 

alive threads == 1) 

 Do not impact the performance of parallel program portions 

(since they do not run concurrently with the parallel portion) 

 Are less common since most people realize their disadvantages 

 Shortening them always provides performance benefit (may be 

small, but its >0) 

Partially serial: These include serial portions which are embedded 

in the parallel portions. I call them partial bottlenecks because (a) they 

block a variable number of threads (between 0 to N-1), and (b) they can 

be on or off the critical path thus shortening them may or may not 

benefit overall performance. These bottlenecks generally arise when 

threads communicate or contend for shared resources or shared data. 

The classic example of a partial bottleneck is a critical section. Only 

one thread can execute a critical section at a given time, all other 

threads wanting to execute the critical section must wait. However, 

threads not wanting to execute the critical section can continue to 

work. Thus, the impact on performance of the critical section depends 

on the number of waiting threads which in turn depends on the 

contention for the critical section. A highly contended critical section 
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stalls a lot of threads while a critical section with no contention is 

practically the same as parallel code. 

The following distinguishes partial-bottlenecks from fully-serial 

bottlenecks: 

 The existence and severity of these bottlenecks is highly 

dependent on the input set, machine configuration, the number 

of cores, communication latencies, cache sizes, etc. 

 These bottlenecks are much harder to identify for the programmer 

since they only surface at run-time 

 They impact only the parallel program portions 

 Are very common in servers and sometimes in HPC kernels 

 Shortening them is only beneficial if they are causing serialization 

 They limit thread scalability, i.e., they can cause the performance 

to peak at a given number of threads such that more threads 

reduce performance 

1.6.1. Some background 

I feel that fully-serial bottlenecks are discussed more because of 

historical reasons. Classic parallel computers consist of loosely 

connected processors which require hundreds or thousands of cycles 

to communicate (sometimes via Ethernet). When writing code for such 

a machine, it is logical for the programmers to eliminate thread 

communication from the parallel portions and leave as fully-serial the 

kernels where it is impossible to remove (or minimize) thread 

communication. This trade-off has changed with the advent of multi-

core: cores are tightly integrated and thread communication is a 

smaller overhead. Thus, we can expect more programs to contain 

partially-serial code with thread communication.  

1.6.2. Who should this concern? 

If you are a theoretical computer scientist, you should know that 

Amdahl’s law (the equation that is known as the law) only applies to 

the fully serial portions and not to the partially serial portions. The 

partial bottlenecks have a very different behavior which has different 
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equations (See examples of critical sections, pipeline workloads, and 

task parallelism). 

If you are designing hardware for running parallel programs, 

understanding the differences between these bottlenecks is pivotal. I 

will give an example from my personal experience. When I was first 

asked to architect a heterogeneous code chip for parallel programs, I 

considered only the fully-serial bottlenecks and hence the first 

architecture I designed had a single fast core and many slow cores. I 

wrote an OS scheduler which turned on the fast core only in the serial 

phase and turned on the many small cores only in the parallel region. 

It worked and I was done! However, as I learned more about parallel 

programs, and learned about these fine-grain bottlenecks (which are 

often a bigger issue), the landscape changed completely. I needed 

enough on-chip power to keep both slow and fast cores on at the same 

time. I had to design mechanisms to detect these fine-grain serial 

portions. I had to take thread migration overheads into account.  I had 

to decide how small my small cores can be depending on how scalable 

my parallel portion is. Thus, I urge hardware designers to understand 

this distinction as designing multicores without knowing about these 

finer-grain bottlenecks can lead to very sub-optimal decisions. (Side 

note for developers: you will be surprised at how few chip architects 

know this). 

If you do performance analysis, you should know that while you 

can characterize the fully-serial bottlenecks easily, you cannot expect 

that staring at the code or counting instructions will tell you much 

about the partially parallel portions since their severity is a function of 

contention and very dependent on run-time behavior. (Side note for 

programmers: this makes life very hard for us computer architects 

because deterministic performance simulations become next to 

impossible). 

If you are an application programmer, you should already know 

these bottlenecks and everything about them. If not, you learn asap 

because you will find it useful. 
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1.7. ON USING DEPENDENCE INFORMATION [22] 

Writing parallel code is all about finding parallelism in an 

algorithm. What limits parallelism are the dependencies among 

different code portions. Understanding the dependencies in a program 

early on can help the programmers (a) determine the amount of 

available parallelism, and (b) chose the best parallel programming 

paradigm for the program. In this post, I try to layout a taxonomy of 

dependencies in loops and how it plays into parallel programming. 

1.7.1. Definition of tasks 

It is any piece of work that needs to be done and often takes more 

than one instructions. The instructions in the task are closely coupled 

such that it logically makes sense to group them together. 

1.7.2. What are task dependencies? 

There are two types of dependencies at the task granularity. 

Data Dependency: A task K is said to be data-dependent on task J 

if K needs data generated by J. For example, 

J: foo = bar + 3; 

K: lama = foo + 3; 

Note that this dependency is ordered: the dependent task J can 

neither run before K nor in parallel with K. 

Un-ordered Dependency: A task J and K are said to have an 

unordered dependency if they both read-modify-write the same 

data. For example, 

J: foo++; 

K: foo++; 

Note that J and K can be processed in any order but they cannot 

be processed in parallel.  

Thus, two tasks can run concurrently only if they are independent. 

The goal in parallel programming is to remove as 
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many dependencies as possible by re-factoring the code or the 

algorithm. 

1.7.3. How does it apply to loops? 

Let’s use the following loop as an example: 

for i = 1 to N: 

A(i); B(i); C(i); 

A single core will run the loop in this order: A0, B0, C0, A1, B1, C1, 

A2, … (A0 = task A in iteration 0, B0 = task B in iteration 0, etc.) 

Loops have two types of dependencies: 

Intra-Iteration: Typically, tasks within an iteration of the loop are 

dependent on each other for data. For example, B0 depends on A0. 

Inter-iteration: Sometimes different loop iterations share data or 

hardware resources which creates data or ordered dependencies among 

them. For example, A1 depends on A0. 

1.7.4. How it applies to parallel programming? 

I have seen four types of common loops. 

1. No parallelism exists in a loop where all tasks are data-

dependent on the previous tasks. Thus, programmers should re factor 

the code to remove those dependencies before writing any parallel code. 

If no dependencies can be removed, then the loop should be left 

untouched. For example, 
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 2. Loops with independent iterations are easy to parallelize. In this 

case, programmers should consider using SIMD and watch out for 

false-sharing and off-chip bandwidth. For example, 

  

 
3. In a typical loop, some tasks are independent of other iterations 

while other tasks have inter-iteration dependencies. In my experience, 

such dependencies are usually un-ordered which can be enforced using 

http://www.futurechips.org/wp-content/uploads/2011/07/loop-all-depend.png
http://www.futurechips.org/wp-content/uploads/2011/07/loop-no-depend.png
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critical sections. For example, task B should be put inside a critical 

section in the following loop. 

 
4. If you cannot remove ordered dependencies, you should use a 

lesson from hardware designers, i.e., use pipeline parallelism. For 

example, the following loop is well-suited for pipeline parallelism where 

one thread can process all instances of “A” in-order, one thread can be 

in-charge of processing “B”s, and the last thread can be in-charge of 

processing “C”s. Note that if B is substantially longer than A or C, it is 

possible to use multiple threads for the “B-stage” but that will make 

things out of order and C will need a re-ordering structure to put them 

back in order.  

 
And there are many other types of loops out there.  

 

http://www.futurechips.org/wp-content/uploads/2011/07/loop-cs-depend.png
http://www.futurechips.org/wp-content/uploads/2011/07/loop-file-io-depend.png
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1.8. UNDERSTANDING CRITICAL SECTIONS IMPACT [23] 

In shared memory systems, multiple threads are not allowed to 

update shared data concurrently, known as the mutual exclusion 

principle. Instead, accesses to shared data are encapsulated in regions 

of code guarded by synchronization primitives (e.g. locks). Such 

guarded regions of code are called critical sections. The semantics of a 

critical section dictate that only one thread can execute it at a given 

time. Any other thread that requires access to shared data must wait 

for the current thread to complete the critical section. 

There are two types of critical sections in programs. I call them 

update critical sections and reduction critical sections. 

1.8.1. Update Critical Sections 

Update critical sections occur in the midst of the parallel kernels. 

They protect shared data which multiple threads try to read-modify-

write during the kernel’s execution, instead of waiting till the end of the 

kernel’s execution. Their execution can be overlapped with the 

execution of non-critical-section code.  

For simplicity, let’s assume a kernel which has only one critical 

section. Each iteration of the loop spends one unit of time inside the 

critical section and three units of time outside the critical section. The 

following chart demonstrates the execution timeline of this critical 

section intensive application. 

 
When a single thread executes, only 25% of execution time is spent 

executing the critical section. If the same loop is split across two 

threads, the execution time reduces by 2x. Similarly, increasing the 

http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.11.05AM.png
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number of threads to four further reduces execution time. As the 

critical section is always busy, the system becomes critical section 

limited and further increasing the number of threads from four to eight 

does not reduce the execution time. 

We can capture this using a simple equation. Suppose 

Tcs = Time inside critical section 

Tnocs = Time outside critical section 

Tp = Time with p cores 

N = Number of iterations 

  

Then Tp can be computed as: 

 

We compute Pcs, i.e., the number of threads required to saturate 

the execution time, by solving the above equation for P: 

 

1.8.2. Fine-grain critical sections 

To reduce the contention for critical sections, many applications 

use different locks to protect disjoint data. Since these critical sections 

are protecting disjoint data, they can execute concurrently, thereby 

increasing throughput. In this software, the longest critical section, 

which has the highest contention, is the performance limiter. This can 

be captured using the following equation: 

 

Note that this model is rather simplistic but it still conveys that 

long, frequently occurring critical sections can limit performance as the 

number of threads increases. 

http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.11.23AM.png
http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.11.37AM.png
http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.30.30AM.png
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1.8.3. Reduction Critical Sections 

Reduction critical sections occur at the end of kernels and are used 

to combine the intermediate results computed by individual threads. 

The key difference between update and reduction critical sections is 

that, unlike update critical sections, reduction critical sections occur 

at the end of a kernel and their execution cannot be overlapped with 

the execution of the non-critical-section code. Since every thread 

executes the critical section, the total time spent in executing the 

critical sections increases linearly with the number of threads. 

Furthermore, as the number of threads increase, the fraction of 

execution time spent in the parallelized portion of the code 

reduces.  Thus, as the number of threads increase, the total time spent 

in the critical sections increases and the total time spent outside 

critical sections decreases. Consequently, critical sections begin to 

dominate the execution time and the overall execution time starts to 

increase.  

For simplicity, let us assume that a kernel executes for 10 times 

units as a single thread and 2 of those 10 units are spent in reduction. 

The following figure shows its execution as the number of threads 

increases. 

 

Notice how the parallel region shrinks with more threads but the 

critical sections begin to dominate the execution. We can capture this 

using a simple analytic model: 

 

http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.11.59AM.png
http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.12.31AM.png
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We compute Pcs, i.e., the number of threads required to saturate 

the execution time, by solving the above equation for P: 

 

1.8.4. Cache Locality: A second order effect 

The above analysis assumes that the execution time of each 

instance of the critical section is independent of the number of cores. 

This is not a true assumption. In fact, latency of the critical section 

increases with the number of cores for two reasons. First, critical 

sections must incur cache misses in fetching the shared data that is 

resident at another core. With more cores, shared data bounces around 

more frequently thereby increasing the probability of a cache miss. 

Second, the cache miss latency among cores increases with the number 

of cores due to longer wires and more interconnect hops. This increase 

in the number of misses and the cost of each miss further increases 

the overhead of critical sections on performance. 

When there is contention for shared data, execution of threads gets 

serialized, which reduces performance.  As the number of threads 

increases, the contention for critical sections also increases. Therefore, 

in applications that have significant data synchronization (e.g. Mozilla 

Firefox, MySQL database, and operating system kernels), critical 

sections limit both performance (at a given number of threads) and 

scalability. 

1.8.5. Looking forward … 

 It is important to either shorten the critical sections or create fine-

grain critical sections that do not suffer high contention. Parallel 

programming is already a daunting task and expecting programmers 

to shrink or eliminate critical sections is unreasonable. I believe that 

hardware can assist in this matter. Solutions like hardware 

http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.12.44AM.png
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Transactional memory (TM) have been proposed to shorten the critical 

sections by letting them run concurrently, as long as it does not violate 

correctness. Another orthogonal solution is proposed in a paper titled 

“Accelerating Critical Section Execution with Asymmetric Multi-Core 

Architectures” [24] is to accelerate critical sections using a faster core 

on a chip with heterogeneous cores.  A combination of TM and ACS can 

practically eliminate the overhead of critical sections, thereby relieving 

the programmer of this burden. 
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2. SOFTWARE, HARDWARE AND COMPETITION 

2.1. GROMACS 

GROMACS is an engine to perform molecular dynamics 

simulations and energy minimization. These are two of the many 

techniques that belong to the realm of computational chemistry and 

molecular modelling. Computational chemistry is just a name to 

indicate the use of computational techniques in chemistry, ranging 

from quantum mechanics of molecules to dynamics of large complex 

molecular aggregates. Molecular modelling indicates the general 

process of describing complex chemical systems in terms of a realistic 

atomic model, with the goal being to understand and predict 

macroscopic properties based on detailed knowledge on an atomic 

scale. Often, molecular modelling is used to design new materials, for 

which the accurate prediction of physical properties of realistic systems 

is required. [25] 

Macroscopic physical properties can be distinguished by (a) static 

equilibrium properties, such as the binding constant of an inhibitor to 

an enzyme, the average potential energy of a system, or the radial 

distribution function of a liquid, and (b) dynamic or non-equilibrium 

properties, such as the viscosity of a liquid, diffusion processes in 

membranes, the dynamics of phase changes, reaction kinetics, or the 

dynamics of defects in crystals. The choice of technique depends on the 

question asked and on the feasibility of the method to yield reliable 

results at the present state of the art. Ideally, the (relativistic) time-

dependent Schrodinger equation describes the properties of ¨molecular 

systems with high accuracy, but anything more complex than the 

equilibrium state of a few atoms cannot be handled at this ab initio 

level. Thus, approximations are necessary; the higher the complexity of 

a system and the longer the time span of the processes of interest is, 

the more severe the required approximations are. At a certain point 

(reached very much earlier than one would wish), the ab initio approach 

must be augmented or replaced by empirical parameterization of the 

model used. Where simulations based on physical principles of atomic 

interactions still fail due to the complexity of the system, molecular 

modelling is based entirely on a similarity analysis of known structural 
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and chemical data. The QSAR methods (Quantitative Structure Activity 

Relations) and many homology-based protein structure predictions 

belong to the latter category. 

Macroscopic properties are always ensemble averages over a 

representative statistical ensemble (either equilibrium or non-

equilibrium) of molecular systems. For molecular modelling, this has 

two important consequences: 

• The knowledge of a single structure, even if it is the structure of 

the global energy minimum, is not sufficient. It is necessary to generate 

a representative ensemble at a given temperature, in order to compute 

macroscopic properties. But this is not enough to compute 

thermodynamic equilibrium properties that are based on free energies, 

such as phase equilibria, binding constants, solubility, relative stability 

of molecular conformations, etc. The computation of free energies and 

thermodynamic potentials requires special extensions of molecular 

simulation techniques. 

• While molecular simulations, in principle, provide atomic details 

of the structures and motions, such details are often not relevant for 

the macroscopic properties of interest. This opens the way to simplify 

the description of interactions and average over irrelevant details. The 

science of statistical mechanics provides the theoretical framework for 

such simplifications. There is a hierarchy of methods ranging from 

considering groups of atoms as one unit, describing motion in a 

reduced number of collective coordinates, averaging over solvent 

molecules with potentials of mean force combined with stochastic 

dynamics, to mesoscopic dynamics describing densities rather than 

atoms and fluxes as response to thermodynamic gradients rather than 

velocities or accelerations as response to forces. 

For the generation of a representative equilibrium ensemble two 

methods are available: (a) Monte Carlo simulations and (b) Molecular 

Dynamics simulations. For the generation of non-equilibrium 

ensembles and for the analysis of dynamic events, only the second 

method is appropriate. While Monte Carlo simulations are more simple 

than MD (they do not require the computation of forces), they do not 

yield significantly better statistics than MD in a given amount of 
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computer time. Therefore, MD is the more universal technique. If a 

starting configuration is very far from equilibrium, the forces may be 

excessively large and the MD simulation may fail. In those cases, a 

robust energy minimization is required. Another reason to perform an 

energy minimization is the removal of all kinetic energy from the 

system: if several “snapshots” from dynamic simulations must be 

compared, energy minimization reduces the thermal noise in the 

structures and potential energies so that they can be compared better. 

2.2. THE GLOBAL MD  

1. Input initial conditions 

Potential interaction 𝑉 as a function of atom positions, positions 𝒓 

of all atoms in the system, velocities 𝒗 of all atoms in the system 

Repeat 2,3,4 for the required number of steps: 

2. Compute forces 

The force on any atom 

 𝑭𝑖 = −
𝜕𝑉

𝜕𝒓𝑖
 (2-1) 

is computed by calculating the force between non-bonded atom pairs: 

 𝑭𝑖 = ∑ 𝑭𝑖𝑗𝑗  (2-2) 
plus bonded interactions forces, restraining and external forces. 

Potential, kinetic energies and the pressure tensor may be computed. 

3. Update configuration 

The movement of the atoms is simulated by numerically solving 

Newton's equations of motion: 

 
𝑑2𝒓𝑖

𝑑𝑡2 =
𝑭𝑖

𝑚𝑖
 (2-3) 

 
𝑑𝒓𝑖

𝑑𝑡
= 𝑣𝑖;

𝑑𝑣𝑖

𝑑𝑡
=

𝑭𝑖

𝑚𝑖
 (2-4) 

4. Output step (if required) 

write positions, velocities, energies, temperature, pressure, etc. 
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Figure 2-1: GROMACS global MD algorithm [25] 
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2.3. MAP-REDUCE ARCHITECTURE 

2.3.1. History 

Map-Reduce architecture is a machine developed on the model 

made public by Kleene. [26] Map-Reduce is a programming model and 

an associated implementation for processing and generating large data 

sets with a parallel, distributed algorithm on a cluster. 

MRA gave birth to the Connex system in the fall of 2001, based on 

an older Connex memory concept, developed by Gheorghe STEFAN and 

Dan TOMESCU. 

Connex architecture is a general-purpose SIMD (Single 

Instruction, Multiple Data) computing architecture. 

This architecture is a solution to solve computationally intensive 

problems. Unlike existing general purpose processors that are based 

on Turing machine model, this architecture is trying a different 

approach. The general idea is built from computing model of Kleene. In 

the Turing published his work, published Kleene partially recursive 

functions model. He defined calculation using a set of functions (zero 

increment, projection) and rules (composition, primitive recursion and 

minimization). 

In 2003 the first chip was manufactured using this architecture, 

CA4096, the company BrightScale (formerly Connex Technology, Inc.) 

manufactured in 130nm technology at TSMC (Taiwan Semiconductor 

Manufacturing Company) followed in 2007 BA1024 manufacture in 

95nm technology and in 2008 BA1024B in 65nm technology. 

2.3.2. Connex architecture 

Connex architecture consists of four main elements: 

 Connex array - from 64 to 4096 32-bit execution units (EU); 

 I/O Plan - 2D shift register of 64 to 4096 32-bit words; 

 Interconnection Fabric - standard 128-bit interface with 

external memory; 
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 Controller - CPU controlling system, it sees Connex array and 

I/O Plan web as coprocessors. 

 
Figure 2-2: Connex general architecture 

Connex architecture, exposed schematically in Figure 2-2, consists 

of multiple execution units (EU) (up to several thousand) selectively 

executing the same instruction in parallel. These cells are coordinated 

processing of a Central Unit of Execution (CONTROLLER) that can send 

instructions to the execution unit and can receive information from 

them through a reduction mode (NET REDUCTION) accessible to all 

cells. Selection of cells which process a particular statement is based 

on an individual's own cells bit determines if the cell is active or not. 

Connex module array comprises the following: 

 Execution unit, with 512 kB to 4096 kB of memory, receiving 

a 16-bit instruction each clock cycle; 

 Reduction net - circuit that can do operations on all values of 

execution units (ex. the sum of all values). 
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Figure 2-3: Connex array module 
Access to external memory can be made directly by the Central 

Unit of Execution, or the row of cells via a System Input / Output 

controlled also by the Central Execution. Execution units are 

designated by the index of that cell. Further, the number of cells is P 

and these are numbered from 0 to P-1 from left to right as shown. These 

EU are interconnected through a left and right communication channel 

which can transmit information through a communication channel 

unidirectional linking with Module Input / Output and each access 

module Reducer that can submit information to the Central Unit of 

Execution. 

The execution unit contains the following: 

 Scalar unit - the arithmetic logic unit 16-bit special 

instructions to execute multi-cycle instructions and operations 

with fractional numbers; 

 Boolean unit - the unit used to determine whether execution 

unit will be active or not; 

 Data memory - 512-4096 KB data memory; 

 Shift unit - manages connections Connex left-right module 

array and data exchange with I/O plane. 
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Figure 2-4: Connex array execution unit 
Each unit has its own memory, knows its index and the boolean 

bit that determines whether it is active or not. 

2.4. COMPETITION 

Several other parallel computing platforms have been started, each 

bearing a higher or lower degree of flexibility (or specialization). 

2.4.1.  Anton 

“A Special-Purpose Machine That Achieves a Hundred-Fold Speedup 

in Bio-molecular Simulations” 

Molecular dynamics simulation has long been recognized as a 

potentially transformative tool for understanding the behaviour of 

proteins and other biological macromolecules, and for developing a new 

generation of precisely targeted drugs. 

Many biologically important phenomena, however, occur over 

timescales that have previously fallen far outside the reach of MD 

technology. 

Researchers have constructed a specialized, massively parallel 

machine, called Anton, that is capable of performing atomic-level 

simulations of proteins at a speed roughly two orders of magnitude 
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beyond that of the previous state of the art. The machine has now 

simulated the behaviour of a number of proteins for periods as long as 

a millisecond - approximately 100 times the length of the longest such 

simulation previously published - revealing aspects of protein 

dynamics that were previously inaccessible to both computational and 

experimental study. The speed at which Anton performs these 

simulations is in large part the result of a tightly coupled code sign 

process in which the machine architecture was developed in concert 

with novel algorithms, including an asymptotically optimal parallel 

algorithm with highly attractive constant factors for the range-limited 

N-body problem. [27] 

 

Figure 2-5 Anton supercomputer and insides 
Anton is a special-purpose molecular dynamics machine, 

massively parallel, using custom-designed chips and designed together 

with a new algorithmic approach. It’s dramatically faster for MD, but 

far less flexible for other purposes. 

In 2012 there were 13 operational machines, each one capable of 

millisecond-scale simulations and much harder simulations than 

either very large number of very short simulations and/or very short 

simulations of very large molecules. 

Anton supercomputer Anton processing unit
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2.4.2. Comparison between Anton and other machines 

Table 1 Comparison of MD simulation speeds (all-atom, explicit solvent, 
standard DHFR benchmark) [28] 
Computational platform Speed 

(ns/day) 

Single-processor codes ~ 2 

Parallel supercomputers ~ 200 

Anton 1 (512-node machine) 17 400 

Anton 2 (512-node machine) 85 000 

 

Table 2 Largest published molecular dynamics simulations (all-atom 
simulations of proteins in explicit solvent) 
Length (µs) Hardware Software Protein 

2 Single x86 GROMACS villin HP-3 

10 HPC cluster NAMD ww domain 

1 119 Anton 1 [native] ww domain 

2 092 Anton 1 [native] NTL9 

 

2.4.3. Anton computation time for researchers  

Anton was made available for use by researches, universities and 

other non-profit organisations / institutions without cost, at National 

Resource for Biomedical Supercomputing (NRBSC), where the funding 

for NRBSC’s involvement was provided by NIH. 

Time has been allocated to 45 research groups, all selected by 

National Academies. 
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3. IMPLEMENTATION 

In this section, I’ll explain how various MD algorithms have been 

implemented on the Map-Reduce accelerator.  

3.1. SYSTEM VARIABLES 

Every algorithm uses the following variables with the associated 

meaning: 

Particle vectors 
𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑎𝑙 𝑋, 𝑌, 𝑍 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 (𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑜𝑥)[𝑛𝑚? ] 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑎𝑙 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑𝑠 [𝑛𝑚/𝑛𝑠] 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑎𝑙 𝐹𝑥, 𝐹𝑦 , 𝐹𝑧 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 [𝑁] 

MD parameters 
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑑𝑡 − 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 (0.04)[𝑝𝑠] 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑠𝑒𝑎𝑟𝑐ℎ (10)[−] 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑋𝑀𝑎𝑥 , 𝑌𝑀𝑎𝑥 , 𝑍𝑀𝑎𝑥 − 𝑏𝑜𝑥 𝑤𝑖𝑑𝑡ℎ, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑑𝑒𝑝𝑡ℎ [𝑛𝑚] 

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑁𝑀𝑎𝑥 − 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑃𝑀𝑎𝑥 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

Particle parameters 
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑚 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠 (72)[𝑘𝑔/𝑘𝑚𝑜𝑙] 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝐶6, 𝐶12

− 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑟−6 𝑎𝑛𝑑 𝑟−12, 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑓𝑜𝑟𝑐𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 [𝑁/𝑚] 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑟𝐶 − 𝑐𝑢𝑡𝑜𝑓𝑓 𝑟𝑎𝑑𝑖𝑢𝑠 (1.2)[𝑛𝑚] 

Thermostat 
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝜏𝑡 − 𝐵𝑒𝑟𝑒𝑛𝑑𝑠𝑒𝑛 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡 strength (1)[𝑝𝑠] 

𝑟𝑒𝑎𝑙 𝜆 −  𝐵𝑒𝑟𝑒𝑛𝑑𝑠𝑒𝑛 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡 𝑠𝑝𝑒𝑒𝑑 𝑎𝑑𝑗𝑢𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 (~1, 0.8 … 1.25)[−] 

𝑟𝑒𝑎𝑙 𝑇 − 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (~315)[𝐾] 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑇0 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (315)[𝐾] 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑘𝐵 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [𝐽/𝐾] 

Where: 𝑟𝑒𝑎𝑙 = 𝑓𝑙𝑜𝑎𝑡 𝑜𝑟 𝑑𝑜𝑢𝑏𝑙𝑒 (𝑓𝑙𝑜𝑎𝑡) 

3.2. PERIODIC BOUNDARY CONDITIONS 

Periodic boundary conditions (PBCs) are a set of boundary 

conditions which are often chosen for approximating a large (infinite) 

system by using a small part called a unit cell. PBCs are often used in 
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computer simulations and mathematical models. The topology of two-

dimensional PBC is equal to that of a world map of some video games; 

the geometry of the unit cell satisfies perfect two-dimensional tiling, 

and when an object passes through one side of the unit cell, it re-

appears on the opposite side with the same velocity. In topological 

terms, the space made by two-dimensional PBCs can be thought of as 

being mapped onto a torus (compactification). The large systems 

approximated by PBCs consist of an infinite number of unit cells. In 

computer simulations, one of these is the original simulation box, and 

others are copies called images. During the simulation, only the 

properties of the original simulation box need to be recorded and 

propagated. The minimum-image convention is a common form of PBC 

particle bookkeeping in which each individual particle in the simulation 

interacts with the closest image of the remaining particles in the 

system. 

In molecular dynamics simulation, PBC are usually applied to 

calculate bulk gasses, liquids, crystals or mixtures. A common 

application uses PBC to simulate solvated macromolecules in a bath of 

explicit solvent. 
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Figure 3-1: Schematic representation of the idea of periodic boundary 

conditions [29] 
The following algorithm has been implemented: 

1. Check if any particle is outside of the simulation box 

2. If the particle is outside, create a new particle entering the 

simulation box (preserve speed) in the opposite direction from 

where it left the box 

3. Delete the old particle 

3.3. PSEUDOCODE IMPLEMENTATION OF THE PBC 

// What’s being computed 

all particle DIM coordinates must be between 0 and DIM_Max, where 

DIM is X, Y or Z 

// Pseudo-code 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑋 ≥ 𝑋𝑀𝑎𝑥 

𝑋 = 𝑋 − 𝑋𝑀𝑎𝑥 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 
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𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑋 < 0 

𝑋 = 𝑋 + 𝑋𝑀𝑎𝑥 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑌 ≥ 𝑌𝑀𝑎𝑥 

𝑌 = 𝑌 − 𝑌𝑀𝑎𝑥 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑌 < 0 

𝑌 = 𝑌 + 𝑌𝑀𝑎𝑥 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑍 ≥ 𝑍𝑀𝑎𝑥 

𝑍 = 𝑍 − 𝑍𝑀𝑎𝑥 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑍 < 0 

𝑍 = 𝑍 + 𝑍𝑀𝑎𝑥 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

 

3.4. NEIGHBOUR SEARCHING 

To reduce simulation time, the number of interactions must be 

reduced to the most important ones. Van der Waals interactions are 

only representative to up to a distance of 𝑟𝑐  = 1.2 …  1.3 𝑛𝑚. Anything 

else is considered as not interacting with the particle. 

 
Figure 3-2: Neighbors for the current particle [30] 
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3.5. PSEUDOCODE IMPLEMENTATION OF THE NEIGHBOUR 

SEARCH 

// What’s being computed 

𝑖𝑓 (√𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 < 𝑟𝐶) → 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 

// Variables 

𝑟𝑒𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧, 𝑡𝑟 

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 

// Pseudo-code 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑖 − 1 … 𝑃𝑀𝑎𝑥{ 

// Particle 𝑖 is not a neighbour to itself 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑒𝑥𝑐𝑒𝑝𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖 

 

// Start calculating the distance between particle 𝑖 and the rest of 

the particles 

// Create new temp vectors for X, Y, Z dimensions and subtract 𝑖𝑡ℎ 

particle coordinates 

𝑡𝑥 = 𝑋 − 𝑟𝑒𝑝𝑒𝑎𝑡(𝑋[𝑖], 𝑃𝑀𝑎𝑥) 

𝑡𝑦 = 𝑌 − 𝑟𝑒𝑝𝑒𝑎𝑡(𝑌[𝑖], 𝑃𝑀𝑎𝑥) 

𝑡𝑧 = 𝑍 − 𝑟𝑒𝑝𝑒𝑎𝑡(𝑍[𝑖], 𝑃𝑀𝑎𝑥) 

 

// Calculate the squares 

𝑡𝑥2 = 𝑡𝑥 ∗ 𝑡𝑥 

𝑡𝑦2 = 𝑡𝑦 ∗ 𝑡𝑦 

𝑡𝑧2 = 𝑡𝑧 ∗ 𝑡𝑧 

 

// Add the squared vectors 

𝑡𝑟 = 𝑡𝑥2 + 𝑡𝑦2 + 𝑡𝑧2 

 

// Make neighbour list 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑤ℎ𝑒𝑟𝑒 𝑡𝑟 > 1/𝑟𝑐
2 

𝑎𝑑𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖 𝑎𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

} 
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3.6. FORCE COMPUTATION 

The interaction between the particles in the system is only a non-

bonded interaction, a Van der Waals interaction, described by the 

Lennard-Jones potential. 

The Lennard-Jones potential (also referred to as the L-J potential, 

6-12 potential, or 12-6 potential) is a mathematically simple model that 

approximates the interaction between a pair of neutral atoms or 

molecules. A form of this interatomic potential was first proposed in 

1924 by John Lennard-Jones. [31] The most common expressions of 

the L-J potential are: 

𝑉𝐿𝐽 = 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] = 𝜀 [(
𝑟𝑚

𝑟
)

12

− 2 (
𝑟𝑚

𝑟
)

6

] =
𝐶12

𝑟12
−

𝐶6

𝑟6
 

Where: 

 𝜀 is the depth of the potential well; 

 σ is the finite distance at which the inter-particle potential is zero; 

 r is the distance between the particles; 

 𝑟𝑚 is the distance at which the potential reaches its minimum. 

At 𝑟𝑚, the potential function has the value −ε. The distances are 

related as 𝑟𝑚= 21/6σ ≈ 1.122σ. These parameters can be fitted to 

reproduce experimental data or accurate quantum chemistry 

calculations.  
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Figure 3-3: A graph of strength versus distance for the 12-6 Lennard-

Jones potential. 
 

Due to its computational simplicity, the Lennard-Jones potential 

is used extensively in computer simulations even though more accurate 

potentials exist. 

3.7. PSEUDOCODE IMPLEMENTATION OF FORCE COMPUTATION 

// What’s being computed 

𝐹(𝑟) = (
𝐶12

𝑟12
−

𝐶6

𝑟6
)

1

𝑟
  

// Variables 

𝑟𝑒𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝐹𝑟𝑒𝑠𝑐𝑋
, 𝐹𝑟𝑒𝑠𝑐𝑌

, 𝐹𝑟𝑒𝑠𝑐𝑍
, 𝐹𝑣𝑑𝑤 

𝑟𝑒𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑛𝑣1, 𝑡𝑟𝑖𝑛𝑣2, 𝑡𝑟𝑖𝑛𝑣4, 𝑡𝑟𝑖𝑛𝑣7 

𝑟𝑒𝑎𝑙 𝐶6, 𝐶12 

// Pseudo-code 

𝐹𝑟𝑒𝑠𝑐𝑋
, 𝐹𝑟𝑒𝑠𝑐𝑌

, 𝐹𝑟𝑒𝑠𝑐𝑍
= 𝑟𝑒𝑝𝑒𝑎𝑡(0, 𝑃𝑀𝑎𝑥) 

//𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 have been already calculated at step 3.5 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟, 𝑗 − 1 … 𝑁𝑀𝑎𝑥{ 

𝑡𝑟𝑖𝑛𝑣1 = 1/𝑡𝑟 
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𝑡𝑟𝑖𝑛𝑣2 = 𝑡𝑟𝑖𝑛𝑣1 ∗ 𝑡𝑟𝑖𝑛𝑣1 

𝑡𝑟𝑖𝑛𝑣4 = 𝑡𝑟𝑖𝑛𝑣2 ∗ 𝑡𝑟𝑖𝑛𝑣2 

𝑡𝑟𝑖𝑛𝑣7 = 𝑡𝑟𝑖𝑛𝑣4 ∗ 𝑡𝑟𝑖𝑛𝑣2 ∗ 𝑡𝑟𝑖𝑛𝑣1 

 

𝐹𝑣𝑑𝑤 = 𝐶12 ∗ 𝑡𝑟𝑖𝑛𝑣7 − 𝐶6 ∗ 𝑡𝑟𝑖𝑛𝑣4 

 

𝐹𝑟𝑒𝑠𝑐𝑋
+= 𝐹𝑣𝑑𝑤 ∗ 𝑡𝑥 

𝐹𝑟𝑒𝑠𝑐𝑌
+= 𝐹𝑣𝑑𝑤 ∗ 𝑡𝑦 

𝐹𝑟𝑒𝑠𝑐𝑍
+= 𝐹𝑣𝑑𝑤 ∗ 𝑡𝑧 

} 

 

3.8. TEMPERATURE COUPLING 

In any system, we must take the necessary steps to prevent or treat 

the generation of free energy. One of these steps is the temperature 

coupling. I’ve chosen to implement the Berendsen thermostat [32], 

which is an algorithm to re-scale the velocities of particles in molecular 

dynamics simulations to control the simulation temperature. 

3.9. PSEUDOCODE FOR TEMPERATURE COUPLING 

// What’s being computed 

𝜆 = √1 +
𝑑𝑡

𝜏𝑡
∙

𝑇0

𝑇 − 1
;  𝑇 =

∑𝑚𝑣2

𝑘𝐵 ∙ 𝑛𝑟𝑑𝑓
 

// Variables 

𝑟𝑒𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑉𝑥
2, 𝑉𝑦

2, 𝑉𝑧
2, 𝑉2  

𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑘𝐵 = 8.3144621455𝑒 − 03 

𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚 = 72 

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑛𝑟𝑑𝑓 = 3𝑃𝑀𝑎𝑥 − 3 

𝑟𝑒𝑎𝑙 𝑡𝑒𝑚𝑝 

𝑟𝑒𝑎𝑙 𝜆 

// Pseudo-code 
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𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

𝑉𝑥
2 = 𝑉𝑥 ∗ 𝑉𝑥 

𝑉𝑦
2 = 𝑉𝑦 ∗ 𝑉𝑦 

𝑉𝑧
2 = 𝑉𝑧 ∗ 𝑉𝑧 

𝑉2 = 𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2 

𝑡𝑒𝑚𝑝 = 𝑚 ∗ 𝑠𝑢𝑚_𝑟𝑒𝑑𝑢𝑐𝑒(𝑉2) ∗ 𝑘𝐵
−1 ∗ 𝑛𝑟𝑑𝑓−1 

// First two terms from the series expansion for 𝜆 should be enough 

𝜆 ≈ 1 +
1

2
∙

𝑇0 ∙ 𝑑𝑡

𝜏𝑡
∙

1

𝑇 − 1
−

1

8
∙ (

𝑇0 ∙ 𝑑𝑡

𝜏𝑡
∙

1

𝑇 − 1
)

2

+
1

16
∙ (

𝑇0 ∙ 𝑑𝑡

𝜏𝑡
∙

1

𝑇 − 1
)

3

+ ⋯ 

𝑖𝑓 𝜆 < 0.8 𝑡ℎ𝑒𝑛 𝜆 = 0.8 𝑒𝑙𝑠𝑒 

𝑖𝑓 𝜆 > 1.25 𝑡ℎ𝑒𝑛 𝜆 = 1.25 

3.10. COORDINATE AND VELOCITY UPDATING 

After all the previous steps have been completed, the new 

coordinates and the new speed of the particles can be computed. 
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Figure 3-4: GROMACS update algorithm [25] 

3.11. PSEUDOCODE FOR COORDINATE AND VELOCITY 

UPDATING 

// Pseudo-code 

𝑉𝑥 = 𝜆 ∗ 𝑉𝑥 + 𝐹𝑟𝑒𝑠𝑐𝑥
∗

𝑑𝑡

𝑚
 

𝑉𝑦 = 𝜆 ∗ 𝑉𝑦 + 𝐹𝑟𝑒𝑠𝑐𝑦
∗

𝑑𝑡

𝑚
 

𝑉𝑧 = 𝜆 ∗ 𝑉𝑧 + 𝐹𝑟𝑒𝑠𝑐𝑧
∗

𝑑𝑡

𝑚
 

𝑋 = 𝑋 + 𝑉𝑥 ∗ 𝑑𝑡 

𝑌 = 𝑌 + 𝑉𝑦 ∗ 𝑑𝑡 

𝑍 = 𝑍 + 𝑉𝑧 ∗ 𝑑𝑡 
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4. FUTURE WORK 

The MD simulation domain is evolving [33], and more simulation 

power is required to be able to simulate interesting phenomena in 

reasonable amounts of time. For this, either performance, power 

consumption or scalability costs need to be significantly reduced. 

And additional development time must be spent to make MRA able 

to perform protein folding simulations: 

 Non-bonded interactions (Coulomb interaction etc.) 

 Bonded interactions (Bond stretching: Morse potential, Cubic 

potential, FENE potential, Angle potential: Harmonic, Cosine etc.) 

 Parallelization (dynamic load balancing, domain decomposition) 

 Quantum molecular potentials 

 Integrators (Leap-frog, Verlet) 

 Cut-off schemes (group, Verlet, twin-range) 

 Temperature coupling (V-rescale, Andersen) 

 Pressure coupling (Berendsen, Parrinello-Rahman) 

 Outputting steps (trajectory files) 

But, before all that, it is my personal opinion that MRA needs a 

viable compiler. 
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5. RESULTS AND CONCLUSIONS 

Running code present in Annexe 1 – Code on the Map-Reduce 

architecture simulator, we get the following results: 

Full simulation (simulation box periodicity, neighbour search, VdW 

force computation, Berendsen thermostat and update): 33040 cycles, 

simulation box periodicity: 80 cycles, neighbour searching: 26410 

cycles, force computation: 6409 cycles, Berendsen thermostat: 91 

cycles and coordinate / speed update: 50 cycles. 

 
Table 3: Simulation cycles and percent time spent on algorithm 

 

 

Table 4: Performance for non-bonded interactions [33] [34] 

 

* expecting Anton 2 in fall 2016 

** Intel i5 750 processor was used for comparison 

 

 

Simulation part Cycles Percent of algorithm

Full simulation 33040 100.00%

Box periodicity 80 0.24%

Neighbour search 26410 79.93%

Force computation 6409 19.40%

Thermostat 91 0.28%

Update 50 0.15%

Machine Cores NS:F Freq. Price Perf. Power Perf./Watt

[GHz] [USD] [µs/day] [W] [Wh/µs]

Intel i5 1 1:10 2.7 GHz $200 5.84 65 267.1

Intel i5 (SSE) 1 1:10 2.7 GHz $200 9.78 70 171.8

Intel i5 4 1:10 2.7 GHz $200 18.94 90 114.0

Intel i5 (SSE) 4 1:10 2.7 GHz $200 31.48 95 72.4

MRA (FPGA) 512 1:1 0.5 GHz $1000 52.42 35 16.0

MRA (FPGA) 512 1:10 0.5 GHz $1000 187.01 35 4.5

MRA (ASIC) 512 1:10 1.0 GHz $10 374.02 3 0.2

Anton 1 – 0.4 GHz - 572.32 75 3.1

Anton 512 – 0.4 GHz $10Mil 293027.84 116500 9.5
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Table 5: MRA cell usage 

 
 

From Table 3 and Table 4 we can see that there are some very 

interesting and promising results but additional funding is required to 

take the next design step (FPGA -> ASIC).  

Chip development costs are extremely high, complex system-on-

chip (SOC) platforms like Ax family (Apple) or the IBM Cell very likely 

surpassed $1B in total development costs, involving thousands of 

engineers in total. On the other hand, relatively modest SOCs like the 

Epiphany family of chips (Adapteva) were designed for less than $3M 

over the period of several years. Even simpler ASICs like Bitcoin mining 

chips can be designed for budgets under $1M. 

But usually, the costs of hardware development are between $300k 

- $200M (already done), software development $0 - $800M (partially 

completed, several tools available but more are needed), chip tape-out 

($100k - $3M) and testing $5k - $1M, not involving additional per wafer 

or per chip costs. 

Of course, it’s always advantageous to make chips, especially 

promising ones, where all the benefits (performance, energy 

consumption) outweigh the development costs. 

 

Simulation part Active cells Controller

Full simulation 75.6% 13.8%

Box periodicity 66.8% 0.0%

Neighbour search 79.2% 15.30%

Force computation 60.4% 7.60%

Thermostat 51.0% 62.70%

Update 100.0% 17%
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ANNEXE 1 – CODE 
// --------------------------------------------------------------- 

// Vectors 

`define X   0 // particle's X coordinates 

`define Y   1 // particle's Y coordinates 

`define Z   2 // particle's Z coordinates 

`define Vx   3 // particle's speed on X axis 

`define Vy   4 // particle's speed on Y axis 

`define Vz   5 // particle's speed on Z axis 

`define dX   6 // delta X between two particles 

`define dY   7 // delta Y between two particles 

`define dZ   8  // delta Z between two particles 

`define DIMXMAX  9 // simulation box width (constant) 

`define DIMYMAX 10 // simulation box length (constant) 

`define DIMZMAX 11  // simulation box height (constant) 

`define SRX  12 // shift register X temp 

`define SRY  13 // shift register Y temp 

`define SRZ  14 // shift register Z temp 

`define Rinv2 15 // 1/r^2 vector 

`define Rinv7 16 // 1/r^7 vector 

`define Rinv13 17 // 1/r^13 vector 

`define NEG  18 // change sign mask 

`define TMP  19  // temporary 

`define RSVD  20 // all vectors below are reserved 

 

// Vector reuse 

`define FRX  12 // X decomposition of final force 

`define FRY  13 // Y decomposition of final force 

`define FRZ  14 // Z decomposition of final force 

`define Fvdw  15 // final Van der Waals force 

`define V   15 // final speed 
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// --------------------------------------------------------------- 

// Memory locations 

`define P   8 // number of particles in the system 

`define DIMXMAX  9 // already defined above 

`define DIMYMAX 10 // already defined above 

`define DIMZMAX 11 // already defined above 

`define Rc2  12 // squared cut-off radius (rc^2) 

`define  One  13 // the value 1 in floating-point 

`define C6  14 // VdW C6 constant 

`define C12  15 // VdW C12 constant 

`define  NaN  16 // not-a-number floating-point flag 

`define  Ptmp  17 // current particle number 

`define Idx  18 // index 

`define  V2T  19 // squared speed to temperature  

`define  DTT  20 // reference temperature 

`define  Lambda 21 // temperature coupling output 

`define  dt_m  22 // dt / particle mass 

`define dt  23 // simulation time step 

// --------------------------------------------------------------- 

// Labels 

`define  RSH   0 

`define  NS   1 

`define F   2 

`define  S   3 

 

// --------------------------------------------------------------- 

// Cooperand values 

`define  Radd    0 

`define  Rmin    1 

`define  Rmax    2 

`define  Rflg    3 

`define SR0   4  



 

 
6-81 

 

// --------------------------------------------------------------- 

// Main 

// Initialization 

   cNOP;    ACTIVATE;    

   cVLOAD(`RSVD);   NOP;     

   cNOP;    CADDRLD;    

   cVLOAD(3);   VLOAD(128);    

LB(`RSH);  cBRNZDEC(`RSH);  VMULT(64);    

   cNOP;    STORE(`NEG);   

 

   cNOP;    IXLOAD;     

   cSEND(`P);   CCOMPARE; 

   cNOP;    WHERECARRY; 

 

LB(`S);  cSEND(`DIMXMAX);  CLOAD;     

   cNOP;    XOR(`NEG);    

   cNOP;    STORE(`DIMXMAX); 

   cSEND(`DIMYMAX);  CLOAD; 

   cNOP;    XOR(`NEG); 

   cNOP;    STORE(`DIMYMAX); 

   cSEND(`DIMZMAX);  CLOAD; 

   cNOP;    XOR(`NEG); 

   cNOP;    STORE(`DIMZMAX); 

 

// Particle periodicity 

 // X coordinates 

   cNOP;    LOAD(`X);    

   cNOP;    XOR(`NEG);    

   cNOP;    COMPARE(`DIMXMAX);  

   cNOP;    NOP;     

   cNOP;    WHERECARRY;    

   cNOP;    XOR(`NEG);    

   cNOP;    FADD(`DIMXMAX);   

   cNOP;    MADD; 
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   cNOP;    APACK; 

   cNOP;    ENDWHERE;    

   cNOP;    XOR(`NEG);    

   cNOP;    COMPARE(`NEG);   

   cNOP;    NOP;     

   cNOP;    WHERECARRY;    

   cNOP;    FADD(`DIMXMAX);   

   cNOP;    MADD; 

   cNOP;    APACK; 

   cNOP;    XOR(`NEG);    

   cNOP;    ENDWHERE;    

   cNOP;    STORE(`X);    

 // Y coordinates 

   cNOP;    LOAD(`Y);    

   cNOP;    XOR(`NEG);    

   cNOP;    COMPARE(`DIMYMAX);  

   cNOP;    NOP;     

   cNOP;    WHERECARRY;    

   cNOP;    XOR(`NEG);    

   cNOP;    FADD(`DIMYMAX);   

   cNOP;    MADD; 

   cNOP;    APACK; 

   cNOP;    ENDWHERE;    

   cNOP;    XOR(`NEG);    

   cNOP;    COMPARE(`NEG);   

   cNOP;    NOP;     

   cNOP;    WHERECARRY;    

   cNOP;    FADD(`DIMYMAX);   

   cNOP;    MADD; 

   cNOP;    APACK; 

   cNOP;    XOR(`NEG);    

   cNOP;    ENDWHERE;    

   cNOP;    STORE(`Y);    

 // Z coordinates 
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   cNOP;    LOAD(`Z);    

   cNOP;    XOR(`NEG);    

   cNOP;    COMPARE(`DIMZMAX);  

   cNOP;    NOP;     

   cNOP;    WHERECARRY;    

   cNOP;    XOR(`NEG);    

   cNOP;    FADD(`DIMZMAX);   

   cNOP;    MADD; 

   cNOP;    APACK; 

   cNOP;    ENDWHERE;    

   cNOP;    XOR(`NEG);    

   cNOP;    COMPARE(`NEG);   

   cNOP;    NOP;     

   cNOP;    WHERECARRY;    

   cNOP;    FADD(`DIMZMAX);   

   cNOP;    MADD; 

   cNOP;    APACK; 

   cNOP;    XOR(`NEG);    

   cNOP;    ENDWHERE;    

   cNOP;    STORE(`Z);    

   

// Particle neighbour search 

  // Preparation 

   cVLOAD(0);   NOP; 

   cSTORE(`Idx);   NOP; 

    cLOAD(`P);   LOAD(`X); 

    cVSUB(1);    STORE(`SRX); 

   cNOP;    LOAD(`Y); 

   cNOP;    STORE(`SRY); 

   cNOP;    LOAD(`Z); 

   cNOP;    STORE(`SRZ); 

  // X cords 

LB(`NS);  cNOP;    LOAD(`SRX);    

   cNOP;    SRSTORE;    
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   cCSEND(`SR0);   CLOAD;     

   cNOP;    XOR(`NEG);    

   cNOP;    FADD(`X);    

   cNOP;    MADD; 

   cNOP;    APACK; 

   cNOP;    STORE(`dX);    

   cNOP;    FMULT(`dX);    

   cNOP;    MPACK; 

   cNOP;    STORE(`dX);    

   cNOP;    SRSHLEFT; 

   cNOP;    SRLOAD;     

   cNOP;    STORE(`SRX);   

  // Y coords 

   cNOP;    LOAD(`SRY);    

   cNOP;    SRSTORE;    

   cCSEND(`SR0);   CLOAD;     

   cNOP;    XOR(`NEG);    

   cNOP;    FADD(`Y);    

   cNOP;    MADD; 

   cNOP;    APACK; 

   cNOP;    STORE(`dY);    

   cNOP;    FMULT(`dY);    

   cNOP;    MPACK; 

   cNOP;    STORE(`dY);    

   cNOP;    SRSHLEFT; 

   cNOP;    SRLOAD;     

   cNOP;    STORE(`SRY);   

  // Z coords 

   cNOP;    LOAD(`SRZ);    

   cNOP;    SRSTORE;    

   cCSEND(`SR0);   CLOAD;     

   cNOP;    XOR(`NEG);    

   cNOP;    FADD(`Z);    

   cNOP;    MADD; 
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   cNOP;    APACK; 

   cNOP;    STORE(`dZ);    

   cNOP;    FMULT(`dZ);    

   cNOP;    MPACK; 

   cNOP;    STORE(`dZ);    

   cNOP;    SRSHLEFT; 

   cNOP;    SRLOAD;     

   cNOP;    STORE(`SRZ);   

  // Calculate squared distance between selected particle 

and the rest 

   cNOP;    LOAD(`dX);    

   cNOP;    FADD(`dY);    

   cNOP;    MADD; 

   cNOP;    APACK; 

   cNOP;    FADD(`dZ);    

   cNOP;    MADD; 

   cNOP;    APACK; 

  // Select all particles that are "close" 

   cSEND(`Rc2);   CCOMPARE; 

   cNOP;    WHERECARRY; 

   cNOP;    STORE(`TMP); 

   cSTORE(`Ptmp);   IXLOAD; 

   cSEND(`Idx);   WHEREOP; 

   cNOP;    NOP; 

   cLOAD(`Idx);   ELSEWHERE; 

   cVADD(1);    LOAD(`TMP); 

  // Store distance between particles    

   cSTORE(`Idx);   RISTORE(1);    

   cLOAD(`Ptmp);   LOAD(`dX); 

   cNOP;    RISTORE(1);    

   cNOP;    LOAD(`dY); 

   cNOP;    RISTORE(1);    

   cNOP;    LOAD(`dZ); 

   cNOP;    RISTORE(1);    
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   cNOP;    ENDWHERE; 

   cBRNZDEC(`NS);   ENDWHERE; 

   cSEND(`NaN);   CLOAD; 

   cNOP;    RISTORE(1);    

// Force calculation 

   cVLOAD(`RSVD);   NOP;     

   cNOP;    CADDRLD;    

   cVLOAD(0);   NOP; 

   cNOP;    CLOAD;     

   cNOP;    STORE(`FRX);   

   cNOP;    STORE(`FRY); 

   cNOP;    STORE(`FRZ); 

LB(`F);  cNOP;    RILOAD(1);    

   cSEND(`NaN);   WHEREOP;    

   cNOP;    ELSEWHERE; 

   cNOP;    STORE(`TMP);   

   cSEND(`One);   CLOAD; 

   cNOP;    FDIV(`TMP); 

   cNOP;    MDIV; 

   cNOP;    DPACK(`TMP);   

   cNOP;    STORE(`Rinv2);   

   cNOP;    FSQRT;     

   cNOP;    NOP; 

   cNOP;    FMULT(`Rinv2);   

   cNOP;    MPACK; 

   cNOP;    FMULT(`Rinv2);   

   cNOP;    MPACK; 

   cNOP;    FMULT(`Rinv2);   

   cNOP;    MPACK; 

   cNOP;    STORE(`Rinv7);   

   cNOP;    FMULT(`Rinv2);   

   cNOP;    MPACK; 

   cNOP;    FMULT(`Rinv2);   

   cNOP;    MPACK; 
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   cNOP;    FMULT(`Rinv2);   

   cNOP;    MPACK; 

   cNOP;    STORE(`Rinv13);   

   cSEND(`C6);   CLOAD;     

   cNOP;    FMULT(`Rinv7);   

   cNOP;    MPACK; 

   cNOP;    XOR(`NEG);    

   cNOP;    STORE(`Fvdw);   

   cSEND(`C12);   CLOAD;     

   cNOP;    FMULT(`Rinv13);   

   cNOP;    MPACK; 

   cNOP;    FADD(`Fvdw);   

   cNOP;    MADD; 

   cNOP;    STORE(`Fvdw); 

   cNOP;    RILOAD(1);    

   cNOP;    FMULT(`Fvdw); 

   cNOP;    MPACK; 

   cNOP;    FADD(`FRX); 

   cNOP;    MADD; 

   cNOP;    STORE(`FRX); 

   cNOP;    RILOAD(1);    

   cNOP;    FMULT(`Fvdw); 

   cNOP;    MPACK; 

   cNOP;    FADD(`FRY); 

   cNOP;    MADD; 

   cNOP;    STORE(`FRY); 

   cNOP;    RILOAD(1);    

   cNOP;    FMULT(`Fvdw); 

   cNOP;    MPACK; 

   cNOP;    FADD(`FRZ); 

   cNOP;    MADD; 

   cBRAACT(`F);   STORE(`FRZ);   

// Temperature coupling 

   cNOP;    ACTIVATE;    
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   cNOP;    IXLOAD;     

   cSEND(`P);   CCOMPARE; 

   cNOP;    WHERECARRY; 

 

   cNOP;    LOAD(`Vx); 

   cNOP;    FMULT(`Vx); 

   cNOP;    MPACK; 

   cNOP;    STORE(`V); 

    

   cNOP;    LOAD(`Vy); 

   cNOP;    FMULT(`Vy); 

   cNOP;    MPACK; 

   cNOP;    FADD(`V); 

   cNOP;    MADD; 

   cNOP;    STORE(`V); 

  // Compute system temperature, Lambda 

   cNOP;    LOAD(`Vz); 

   cNOP;    FMULT(`Vz); 

   cNOP;    MPACK; 

   cNOP;    FADD(`V); 

   cNOP;    MADD; 

   cNOP;    STORE(`V); 

   cNOP;    NOP; 

   cNOP;    NOP; 

   cNOP;    NOP; 

   cNOP;    NOP; 

   cCLOAD(5);   NOP; 

   cFMULT(`V2T);   NOP; 

   cMPACK;    NOP; 

   cXOR(`NEG);   NOP; 

   cFADD(`One);   NOP; 

   cMADD;    NOP; 

   cAPACK;    NOP; 

    cXOR(`NEG);   NOP; 
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   cSTORE(`Ptmp);   NOP; 

   cLOAD(`One);   NOP; 

   cFDIV(`Ptmp);   NOP; 

   cMDIV;    NOP; 

   cDPACK(`Ptmp);   NOP; 

   cFMULT(`DTT);   NOP; 

   cMPACK;    NOP; 

   cFADD(`One);   NOP; 

   cMADD;    NOP; 

   cAPACK;    NOP; 

   cFSQRT;    NOP; 

   cSTORE(`Lambda);  NOP; 

// Update speed vector 

   cCSEND(`Lambda);  CLOAD; 

   cNOP;    FMULT(`Vx); 

   cNOP;    MPACK; 

   cNOP;    STORE(`Ptmp); 

   cCSEND(`dt_m);   CLOAD; 

   cNOP;    FMULT(`FRX); 

   cNOP;    MPACK; 

   cNOP;    FADD(`Ptmp); 

   cNOP;    MADD; 

   cNOP;    STORE(`Vx); 

    

   cCSEND(`Lambda);  CLOAD; 

   cNOP;    FMULT(`Vy); 

   cNOP;    MPACK; 

   cNOP;    STORE(`Ptmp); 

   cCSEND(`dt_m);   CLOAD; 

   cNOP;    FMULT(`FRY); 

   cNOP;    MPACK; 

   cNOP;    FADD(`Ptmp); 

   cNOP;    MADD; 

   cNOP;    STORE(`Vy); 
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   cCSEND(`Lambda);  CLOAD; 

   cNOP;    FMULT(`Vz); 

   cNOP;    MPACK; 

   cNOP;    STORE(`Ptmp); 

   cCSEND(`dt_m);   CLOAD; 

   cNOP;    FMULT(`FRZ); 

   cNOP;    MPACK; 

   cNOP;    FADD(`Ptmp); 

   cNOP;    MADD; 

   cNOP;    STORE(`Vz); 

// Update coordinates 

   cCSEND(`dt);   CLOAD; 

   cNOP;    FMULT(`Vx); 

   cNOP;    MPACK; 

   cNOP;    FADD(`X); 

   cNOP;    MADD; 

   cNOP;    STORE(`X); 

    

   cCSEND(`dt);   CLOAD; 

   cNOP;    FMULT(`Vy); 

   cNOP;    MPACK; 

   cNOP;    FADD(`Y); 

   cNOP;    MADD; 

   cNOP;    STORE(`Y); 

 

   cCSEND(`dt);   CLOAD; 

   cNOP;    FMULT(`Vz); 

   cNOP;    MPACK; 

   cNOP;    FADD(`Z); 

   cNOP;    MADD; 

   cJMP(`S);    STORE(`Z); 

    

   cHALT;    NOP; 


