
University “Politehnica” of Bucharest

Faculty of Electronics, Telecommunications and Information Technology

N-Body Problem, Application, on a Map-Reduce Accelerator,

to Molecular Dynamics

Dissertation Thesis

submitted in partial fulfilment of the requirements for the Degree of

Master of Science in the domain of Electronics and telecommunications,

study program Advanced Microelectronics

Thesis Advisor: Student:

Prof. univ. Dr. Ing. Gheorghe ȘTEFAN Ing. David MIHĂIȚĂ

– 2016 –

Copyright © 2016, David MIHĂIȚĂ / U.P.B

All rights reserved.

The author hereby grants to UPB permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or in part.

TABLE OF CONTENTS

Table of Contents ... 9

Table of figures .. 13

Tables .. 14

Terms and abbreviations ... 15

Introduction... 17

1. Parallel computation and programming 1-23

1.1. Parallelism vs. Concurrency ... 1-25

1.2. Amdahl's law [15] ... 1-26

1.2.1. Definition .. 1-26

1.2.2. Examples .. 1-27

1.2.3. Speedup in a serial program [16] 1-28

1.3. Gustafson's law [17] ... 1-29

1.4. Amdahl’s Law or Gustafson’s Law [19] 1-32

1.4.1. Lemma 1 ... 1-33

1.4.2. Lemma 2 ... 1-33

1.4.3. What’s does it imply .. 1-33

1.4.4. What does it not imply .. 1-34

1.4.5. Shortcoming of Gustafson’s Law 1-34

1.4.6. What can programmers do? 1-34

1.4.7. What can architects do? .. 1-34

1.5. When Amdahl’s law is inapplicable? [20] 1-35

1.5.1. Gene Amdahl’s insight .. 1-35

1.5.2. The equation ... 1-36

1.5.3. Simplifying assumptions ... 1-36

1.5.4. Who can use Amdahl’s law? 1-37

1.5.5. Who should avoid using the term “Amdahl’s law”? 1-37

1.5.6. Concrete Example ... 1-38

1.6. Types of serial bottlenecks [21] ... 1-40

1.6.1. Some background ... 1-41

1.6.2. Who should this concern? ... 1-41

1.7. On Using Dependence Information [22] 1-43

1.7.1. Definition of tasks ... 1-43

1.7.2. What are task dependencies? 1-43

1.7.3. How does it apply to loops? 1-44

1.7.4. How it applies to parallel programming? 1-44

1.8. Understanding Critical Sections impact [23] 1-47

1.8.1. Update Critical Sections .. 1-47

1.8.2. Fine-grain critical sections .. 1-48

1.8.3. Reduction Critical Sections 1-49

1.8.4. Cache Locality: A second order effect 1-50

1.8.5. Looking forward … .. 1-50

2. Software, hardware and competition 2-53

2.1. Gromacs ... 2-53

2.2. The global MD algorithm .. 2-55

2.3. Map-Reduce architecture ... 2-57

2.3.1. History .. 2-57

2.3.2. Connex architecture .. 2-57

2.4. Competition .. 2-60

2.4.1. Anton .. 2-60

2.4.2. Comparison between Anton and other machines 2-62

2.4.3. Anton computation time for researchers 2-62

3. Implementation .. 3-63

3.1. System variables .. 3-63

3.2. Periodic boundary conditions ... 3-63

3.3. Pseudocode implementation of the PBC 3-65

3.4. Neighbour searching .. 3-66

3.5. Pseudocode implementation of the neighbour search 3-67

3.6. Force computation ... 3-68

3.7. Pseudocode implementation of force computation 3-69

3.8. Temperature coupling .. 3-70

3.9. Pseudocode for temperature coupling 3-70

3.10. Coordinate and velocity updating 3-71

3.11. Pseudocode for coordinate and velocity updating 3-72

4. Results and conclusions ... 4-73

5. References .. 6-77

Annexe 1 – Code ... 6-79

TABLE OF FIGURES

Figure 0-1: a) DNA, b) Viral budding, c) Kinesin 17

Figure 0-2: a) Clathrin, b) tRNA, c) Vesicle (curtesy XVIVO) [1] 17

Figure 0-3: Bovine Pancreatic Trypsin Inhibitor 19

Figure 1-1: IBM Supercomputers .. 1-23

Figure 1-2: A cabinet from IBM's Blue Gene/L massively parallel

supercomputer ... 1-24

Figure 1-3: SVG Graph illustrating Amdahl's law 1-27

Figure 1-4: Speedup under Amdahl’s Law [17] 1-30

Figure 1-5: Fixed size model (Speedup = 1/(s + p/N)) 1-31

Figure 1-6: Scaled-Size Model (Speedup = s + Np) 1-32

Figure 2-1: GROMACS global MD algorithm [25] 2-56

Figure 2-2: Connex general architecture 2-58

Figure 2-3: Connex array module ... 2-59

Figure 2-4: Connex array execution unit 2-60

Figure 2-5 Anton supercomputer and insides 2-61

Figure 3-1: Schematic representation of the idea of periodic boundary

conditions [29] .. 3-65

Figure 3-2: Neighbors for the current particle [30] 3-66

Figure 3-3: A graph of strength versus distance for the 12-6 Lennard-

Jones potential. .. 3-69

Figure 3-4: GROMACS update algorithm [25] 3-72

file:///C:/Users/Anand/Desktop/Disertatie/Disertatie.docx%23_Toc454446966
file:///C:/Users/Anand/Desktop/Disertatie/Disertatie.docx%23_Toc454446968
file:///C:/Users/Anand/Desktop/Disertatie/Disertatie.docx%23_Toc454446968

TABLES

Table 1 Comparison of MD simulation speeds (all-atom, explicit solvent,

standard DHFR benchmark) [28] .. 2-62

Table 2 Largest published molecular dynamics simulations (all-atom

simulations of proteins in explicit solvent) 2-62

Table 3: Simulation cycles and percent time spent on algorithm ... 5-75

Table 4: Performance for non-bonded interactions [33] [34] 5-75

Table 5: MRA cell usage .. 5-76

TERMS AND ABBREVIATIONS

ACS – Accelerating Critical Section

ASIC – Application-specific integrated circuit

BPTI – bovine pancreatic trypsin inhibitor

CPU – central processing unit

CS – Critical Section

DNA – deoxyribonucleic acid

EU – execution unit

FPGA – Field-Programmable Gate Array

I/O – input / output

L-J potential – Lennard-Jones potential

MRA – Map-Reduce architecture

MD – molecular dynamics

MPP – massive parallel processing

NIH – National Institutes of Health

NMR – nuclear magnetic resonance

NRBSC – National Resource for Biomedical Supercomputing

PBC – Periodic boundary conditions (PBCs)

SIMD – Single Instruction, Multiple Data

SOC – System-on-chip

TM – Transactional memory

VdW – Van der Waals

17

INTRODUCTION

One of the foremost tools in the theoretical study of biological

molecules is the technique of molecular dynamics simulations (MD).

This computational method calculates the time dependent behaviour

of a molecular system. MD simulations have provided detailed

information on the fluctuations and conformational changes of proteins

and nucleic acids.

Figure 0-1: a) DNA, b) Viral budding, c) Kinesin

Figure 0-2: a) Clathrin, b) tRNA, c) Vesicle (curtesy XVIVO) [1]
These methods are now routinely used to investigate the structure,

dynamics and thermodynamics of biological molecules and their

18

complexes. They are also used in the determination of structures from

X-ray crystallography and from NMR experiments.

MD simulations are necessary because we don’t know the

structure of most proteins and we don’t know how they work together,

so, for elucidating structural dynamics of proteins there are two major

approaches:

 Laboratory experiments (“wet lab”) which are hard, since

 Atoms are small

 Difficult to get small pictures, much less movies

 Biophysical simulation (“dry lab”)

 Gold standard for protein-sized systems

 MD simulations

Primary uses for MD:

 Determine structures by watching them form

 Understand dynamics by watching things move

 Transform messy wet stuff into nice dry data mining

Biological molecules exhibit a wide range of time scales over which

specific processes occur; for example [2]:

1. Local Motions (0.01 to 5 Å, 10-15 s to 10-1 s)
 Atomic fluctuations
 Sidechain Motions
 Loop Motions

2. Rigid Body Motions (1 to 10Å, 10-9 s to 1 s)
 Helix Motions
 Domain Motions (hinge bending)
 Subunit motions

3. Large-Scale Motions (> 5Å, 10-7 s to 104 s)
 Helix coil transitions
 Dissociation/Association
 Folding and Unfolding

Many important biological phenomena occur on timescales
between 10µs and 1ms:

 Major structural changes;
 Interactions of proteins with other proteins, nucleic acids and

drug molecules;

19

 Folding of many proteins.

The molecular dynamics method was first introduced by Alder and

Wainwright in the late 1950's [3] [4] to study the interactions of hard

spheres. Many important insights concerning the behaviour of simple

liquids emerged from their studies. The next major advance was in

1964, when Rahman carried out the first simulation using a realistic

potential for liquid argon [5]. The first molecular dynamics simulation

of a realistic system was done by Rahman and Stillinger in their

simulation of liquid water in 1974 [6].

The first protein simulations appeared in

1977 with the simulation of the bovine

pancreatic trypsin inhibitor (BPTI) [7].

Today in the literature, one routinely

finds molecular dynamics simulations of

solvated proteins, protein-DNA

complexes as well as lipid systems

addressing a variety of issues including

the thermodynamics of ligand binding

and the folding of small proteins. The

number of simulation techniques has

greatly expanded; there exist now many

specialized techniques for particular

problems, including mixed quantum mechanical - classical

simulations, that are being employed to study enzymatic reactions in

the context of the full protein. Molecular dynamics simulation

techniques are widely used in experimental procedures such as X-ray

crystallography and NMR structure determination.

Molecular dynamics simulations generate information at the

microscopic level, including atomic positions and velocities. The

conversion of this microscopic information to macroscopic observables

such as pressure, energy, heat capacities, etc., requires statistical

mechanics. Statistical mechanics is fundamental to the study of

biological systems by molecular dynamics simulation. For more

detailed information, refer to the numerous excellent books available

on the subject. [8]

Figure 0-3: Bovine
Pancreatic Trypsin Inhibitor

20

In a molecular dynamics simulation, one often wishes to explore

the macroscopic properties of a system through microscopic

simulations, for example, to calculate changes in the binding free

energy of a particular drug candidate, or to examine the energetics and

mechanisms of conformational change. The connection between

microscopic simulations and macroscopic properties is made via

statistical mechanics which provides the rigorous mathematical

expressions that relate macroscopic properties to the distribution and

motion of the atoms and molecules of the N-body system; molecular

dynamics simulations provide the means to solve the equation of

motion of the particles and evaluate these mathematical formulas. With

molecular dynamics simulations, one can study both thermodynamic

properties and/or time dependent (kinetic) phenomenon.

All-atom molecular dynamics simulations provide a vehicle for

capturing the structures, motions, and interactions of biological

macromolecules in full atomic detail.

Recent years have seen substantial advances in both the

timescales accessible to molecular dynamics simulations and in the

quality of the force fields used in such simulations. Together, these

developments have led to dramatic improvements in the ability of

molecular dynamics simulations to capture the structure and

dynamics of proteins.

Access to longer timescales and the improved sampling of

conformations has been enabled by progress in a number of areas.

A specialized computer for molecular dynamics simulations, called

Anton, has allowed us to access long-timescale (up to 1 millisecond)

dynamics in proteins using all-atom simulations with an explicit

representation of solvent molecules.

The last five years have also seen substantial improvements in the

force fields used in molecular dynamics simulations. In this area, NMR

spectroscopy has played a central role by providing a wealth of

experimental data reporting on a broad range of structural and

dynamical properties of peptides and proteins; such data are ideally

suited to validate molecular dynamics simulations.

21

Having access to long and accurate molecular dynamics

simulations, it is in turn possible to provide new insight in to the

dynamical properties of proteins, finding new drugs and treatments to

major ailments.

1-23

1. PARALLEL COMPUTATION AND PROGRAMMING

Parallel computing is a type of computation in which many

calculations are carried out simultaneously [9], operating on the

principle that large problems can often be divided into smaller ones,

which are then solved at the same time. There are several different

forms of parallel computing: bit-level, instruction-level, data, and task

parallelism. Parallelism has been employed for many years, mainly in

high-performance computing, but interest in it has grown lately due to

the physical constraints preventing frequency scaling. [10] As power

consumption (and consequently heat generation) by computers has

become a concern in recent years, [11] parallel computing has become

the dominant paradigm in computer architecture, mainly in the form

of multi-core processors. [11]

Figure 1-1: IBM Supercomputers

IBM's Blue Gene/P massively
parallel supercomputer.

Blue Gene/L System

1-24

Parallel computing is closely related to

concurrent computing—they are frequently used

together, and often conflated, though the two are

distinct: it is possible to have parallelism without

concurrency (such as bit-level parallelism), and

concurrency without parallelism (such as

multitasking by time-sharing on a single-core

CPU). [12] In parallel computing, a computational

task is typically broken down in several, often

many, very similar subtasks that can be

processed independently and whose results are

combined afterwards, upon completion. In

contrast, in concurrent computing, the various

processes often do not address related tasks;

when they do, as is typical in distributed computing, the separate tasks

may have a varied nature and often require some inter-process

communication during execution.

Parallel computers can be roughly classified according to the level

at which the hardware supports parallelism, with multi-core and multi-

processor computers having multiple processing elements within a

single machine, while clusters, MPPs, and grids use multiple

computers to work on the same task. Specialized parallel computer

architectures are sometimes used alongside traditional processors, for

accelerating specific tasks.

In some cases, parallelism is transparent to the programmer, such

as in bit-level or instruction-level parallelism, but explicitly parallel

algorithms, particularly those that use concurrency, are more difficult

to write than sequential ones, [13] because concurrency introduces

several new classes of potential software bugs, of which race conditions

are the most common. Communication and synchronization between

the different subtasks are typically some of the greatest obstacles to

getting good parallel program performance.

A theoretical upper bound on the speed-up of a single program as

a result of parallelization is given by Amdahl's law.

Figure 1-2: A cabinet from
IBM's Blue Gene/L massively

parallel supercomputer

1-25

1.1. PARALLELISM VS. CONCURRENCY

The term Parallelism refers to techniques to make programs faster

by performing several computations in parallel. This requires hardware

with multiple processing units. In many cases the sub-computations

are of the same structure, but this is not necessary. Graphic

computations on a GPU are parallelism. Key problem of parallelism is

to reduce data dependencies in order to be able to perform

computations on independent computation units with minimal

communication between them. To this end it can be even an advantage

to do the same computation twice on different units. [14]

The term Concurrency refers to techniques that make program

more usable. Concurrency can be implemented and is used a lot on

single processing units, nonetheless it may benefit from multiple

processing units with respect to speed. If an operating system is called

a multi-tasking operating system, this is a synonym for supporting

concurrency. If you can load multiple documents simultaneously in the

tabs of your browser and you can still open menus and perform more

actions, this is concurrency. [14]

If you run distributed-net computations in the background while

working with interactive applications in the foreground, that is

concurrency. On the other hand, dividing a task into packets that can

be computed via distributed-net clients, this is parallelism. [14]

1-26

1.2. AMDAHL'S LAW [15]

1.2.1. Definition

In computer architecture, Amdahl's law gives the theoretical

speedup in latency of the execution of a task at fixed workload that can

be expected of a system whose resources are improved. It is named

after computer scientist Gene Amdahl, and was presented at the AFIPS

Spring Joint Computer Conference in 1967.

Amdahl’s law states:

 𝑆 =
1

1−𝑝+
𝑝

𝑠

 (1-1)

Where:

 𝑆 – theoretical speedup of the whole task;

 𝑠 – speedup in the latency of the execution of the part of the

task that benefits from the improvement of the resources of the

system;

 𝑝 – percentage of the execution time of the whole task

concerning the part that benefits from the improvement of the

resources of the system before the improvement.

With the added restriction that:

 𝑆 ≤
1

1−𝑝
 (1-2)

Meaning that the theoretical speedup of the execution of the whole

task increases with the improvement of the resources of the system and

that regardless the magnitude of the improvement, the theoretical

speedup is always limited by the part of the task that cannot benefit from

the improvement.

1-27

Figure 1-3: SVG Graph illustrating Amdahl's law
Amdahl's law is often used in parallel computing to predict the

theoretical speedup when using multiple processors.

1.2.2. Examples

 For example, if a program needs 20 hours using a single processor

core, and a particular part of the program which takes one hour to

execute cannot be parallelized, while the remaining 19 hours (p = 0.95)

of execution time can be parallelized, then regardless of how many

processors are devoted to a parallelized execution of this program, the

minimum execution time cannot be less than that critical one hour.

Hence, the theoretical speedup is limited to at most 20 times ((1 − p)-1

= 20).

For this reason, parallel computing is relevant only for a low

number of processors and very parallelizable programs.

1-28

1.2.3. Speedup in a serial program [16]

Assume that a task has two independent parts, A and B.

Part B takes roughly 25% of the time of the whole computation. By

working very hard, one may be able to make this part 5 times faster,

but this only reduces the time for the whole computation by a little.

In contrast, one may need to perform less work to make part A be

twice as fast. This will make the computation much faster than by

optimizing part B, even though part B's speedup is greater by ratio, (5

times versus 2 times).

For example, with a serial program in two parts A and B for which

TA = 3s and TB = 1s:

 if part B is made to run 5 times faster, that is s = 5 and p =

TB/(TA + TB) = 0.25, then S=1.25;

 if part A is made to run 2 times faster, that is s = 2 and p =

TA/(TA + TB) = 0.75, then S=1.60;

Therefore, making part A to run 2 times faster is better than

making part B to run 5 times faster.

The percentage improvement in speed can be calculated as:

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 100 (1 −
1

𝑆
) (1-3)

Improving part A by a factor of 2 will increase overall program

speed by a factor of 1.60, which makes it 37.5% faster than the original

computation.

 However, improving part B by a factor of 5, which presumably

requires more effort, will only achieve an overall speedup factor of 1.25,

which makes it 20% faster.

1-29

1.3. GUSTAFSON'S LAW [17]

Gustafson's law (or Gustafson–Barsis's law) gives the theoretical

speedup in latency of the execution of a task at fixed execution time

that can be expected of a system whose resources are improved. It is

named after computer scientist John L. Gustafson and his colleague

Edwin H. Barsis, and was presented in the article Reevaluating

Amdahl's Law in 1988.

Gustafson's law can be formulated the following way:

 𝑆 = 1 − 𝑝 + 𝑠𝑝 (1-4)
Where:

 𝑆 – theoretical speedup of the whole task;

 𝑠 – speedup in the latency of the execution of the part of the

task that benefits from the improvement of the resources of the

system;

 𝑝 – percentage of the execution time of the whole task

concerning the part that benefits from the improvement of the

resources of the system before the improvement.

Another approach:

 If N is the number of processors, s is the amount of time spent (by

a serial processor) on serial parts of a program and p is the amount of

time spent (by a serial processor) on parts of the program that can be

done in parallel, then Amdahl's law says that speedup is given by

 𝑆 =
𝑠+𝑝

𝑠 +
𝑝

𝑁

 =
1

𝑠 +
𝑝

𝑁

 (1-5)

where we have set total time s + p = 1 for algebraic simplicity. For

N = 1024, this is an unforgivingly steep function of s near s = 0 (see

Figure 1-4).

The steepness of the graph near s = 0 (approximately - N) implies

that very few problems will experience even a 100-fold speedup.

Yet for three very practical applications (s = 0.4 - 0.8 percent) used,

we have achieved the speedup factors on a 1024-processor hypercube

1-30

which we believe are unprecedented [18]: 1021 for beam stress analysis

using conjugate gradients, 1020 for baffled surface wave simulation

using explicit finite differences, and 1016 for unstable fluid flow using

flux-corrected transport. How can this be, when Amdahl's argument

would predict otherwise?

Figure 1-4: Speedup under Amdahl’s Law [17]
The expression and graph both contain the implicit assumption

that p is independent of N, which is virtually never the case. One does

not take a fixed-size problem and run it on various numbers of

processors except when doing academic research; in practice, the

problem size scales with the number of processors. When given a more

powerful processor, the problem generally expands to make use of the

increased facilities. Users have control over such things as grid

resolution, number of time steps, difference operator complexity, and

other parameters that are usually adjusted to allow the program to be

1-31

run in some desired amount of time. Hence, it may be most realistic to

assume that run time, not problem size, is constant.

As a first approximation, we have found that it is the parallel or

vector part of a program that scales with the problem size. Times for

vector start-up, program loading, serial bottlenecks and I/O that make

up the s component of the run do not grow with problem size. When we

double the number of degrees of freedom in a physical simulation, we

double the number of processors. But this means that, as a first

approximation, the amount of work that can be done in parallel varies

linearly with the number of processors. For the three applications

mentioned above, we found that the parallel portion scaled by factors

of 1023.9969, 1023.9965, and 1023.9965. If we use s' and p' to

represent serial and parallel time spent on the parallel system, then a

serial processor would require time s' + p' x N to perform the task. This

reasoning gives an alternative to Amdahl's law suggested by E. Barsis

at Sandia:

𝑆𝑐𝑎𝑙𝑒𝑑 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = (𝑠′ + 𝑝′𝑁) / (𝑠′ + 𝑝′)

= 𝑠′ + 𝑝′𝑁

= 𝑁 + (1 − 𝑁)𝑠′

In contrast with Figure 1-4: Speedup under Amdahl’s Law , this

function is simply a line, and one with much more moderate slope: 1 −

 𝑁. It is thus much easier to achieve efficient parallel performance than

is implied by Amdahl's paradigm. The two approaches, fixed-sized and

scaled-sized, are contrasted and summarized in Figure 1-5 and Figure

1-6.

Figure 1-5: Fixed size model (Speedup = 1/(s + p/N))

1-32

Figure 1-6: Scaled-Size Model (Speedup = s + Np)

The work to date shows that it is not an insurmountable task to

extract very high efficiency from a massively-parallel ensemble, for the

reasons presented here. We feel that it is important for the computing

research community to overcome the “mental block” against massive

parallelism imposed by a misuse of Amdahl’s speedup formula;

speedup should be measured by scaling the problem to the number of

processors, not fixing problem size. We expect to extend our success to

a broader range of applications and even larger values for N.

Gustafson's law addresses the shortcomings of Amdahl's law,

which is based on the assumption of a fixed problem size, that is of an

execution workload that does not change with respect to the

improvement of the resources. Gustafson's law instead proposes that

programmers tend to set the size of problems to fully exploit the

computing power that becomes available as the resources improve.

Therefore, if faster equipment is available, larger problems can be

solved within the same time.

The impact of Gustafson's law was to shift research goals to select

or reformulate problems so that solving a larger problem in the same

amount of time would be possible. In a way the law redefines efficiency,

due to the possibility that limitations imposed by the sequential part of

a program may be countered by increasing the total amount of

computation.

1.4. AMDAHL’S LAW OR GUSTAFSON’S LAW [19]

There are two distinct pillars of Gustafson’s law. I will describe

them both in my own words.

1-33

1.4.1. Lemma 1

 “There are workloads that are gaseous in nature: when provided

with more compute power, they expand to consume the newly provided

power.”

Such programs are more common than you think. I will give four

real-life examples:

1. Bitcoin mining. If I give you more compute power, you will not

finish sooner. Instead, you will just mine more coins.

2. Graphics. If I give you more compute power, you will just run

your frames at a higher resolution or with more details.

3. Numerical analysis such as computing pi. If I give you more

computes, you will just compute more digits of pi.

4. Weather Prediction. If I give you more computes, you will just

run your software longer to get even more accurate predictions.

Side note: This property is also found in several non-parallel

programs.

1.4.2. Lemma 2

“When the problem size is increased, the parallel portion expands

faster than the serial portion.”

For example, Matrix-Matrix-Multiply (MMM). The setup of MMM,

i.e. initializing the matrices increases linearly with the size of the

matrix. however, the actual compute is 𝑂(𝑛3).

1.4.3. What’s does it imply

Gustafson’s law only applies for workloads where both the above

conditions are true. If a workload follows Gustafson’s law, it is hurt.

1-34

1.4.4. What does it not imply

It does NOT imply that Amdahl’s law is dead. It just implies

Amdahl’s law is less important in some workloads. I stress on the word

less because the serial portion still exists and we know that it still hurts

performance, but just with a lesser magnitude.

There are many workloads out there which aren’t gaseous. For

example, when sorting a list of numbers in Excel, I will not increase the

size of my balance sheet if my computer gets faster. Similarly, when

doing spell check, I will not write longer documents if my computer has

become faster. Lastly, I will not make my database transactions

lengthier if I can run them faster.

1.4.5. Shortcoming of Gustafson’s Law

Just like Amdahl’s law, Gustafson’s law makes all the same

assumptions about the world being infinitely parallel or completely

serial. It also does not account for overhead associated with the

creation/deletion of threads. It does not account for other type of serial

portions such as critical sections. See this post for my list of

assumptions. Thus, Gustafson’s law only becomes applicable if: (a) the

workload obeys all the assumptions of Amdahl’s law, and (b) it obeys

the above two Lemma’s.

1.4.6. What can programmers do?

Still try to eliminate the serial part. If you can’t eliminate the serial

part, at least try to make it so that the serial part grows slower than

the parallel part when the working set increases. Also try to make the

time in serial part constant and independent of the number of threads

(I realize this impossible in most cases).

1.4.7. What can architects do?

Keep Gustafson’s law in mind and ensure that workloads that do

obey Gustafson’s law do not get penalized. This implies ensuring that

a workload that does expand to leverage more cores does not become

1-35

limited due to the memory system. (I am just asking for a balanced

design).

1.5. WHEN AMDAHL’S LAW IS INAPPLICABLE? [20]

A lot of industry and academic folks use the term Amdahl’s law

without understanding what it really means. Today I will discuss what

Gene Amdahl said in 1967, what has become of it, and how it is often

misused.

1.5.1. Gene Amdahl’s insight

Amdahl’s law was derived from Gene Amdahl’s 1967 paper in

AFIPS computer conference. On a side note, I am fascinated by the

opening sentence of this paper:

For over a decade prophets have voiced the contention that the

organization of a single computer has reached its limits and that truly

significant advances can be made only by interconnection of a

multiplicity of computers in such a manner as to permit cooperative

solution.

Deja Vu — apparently, the death of single thread performance is

not new.

This following sentence from this paper is the basis of the infamous

Amdahl’s law:

… the effort expended on achieving high parallel processing rates is

wasted unless it is accompanied by achievements in sequential

processing rates of very nearly the same magnitude.

It is important to note that the paper did not have an equation.

Neither did it talk about what types of serial bottlenecks exist, what

parallel programming paradigm is he referring to, etc.

1-36

1.5.2. The equation

Somewhere along the road, we decided to convert Amdahl’s insight

into a law and characterize it using an equation. I could not find its

origin but the equation goes as follows:

 𝑇𝑁 = 𝛼 +
1−𝛼

𝑁
 (1-6)

Where:

 𝑁 – number of cores

 𝑇𝑁 – time consumed with N cores
 𝛼 – fraction of instructions in serial code

1.5.3. Simplifying assumptions

This equation makes seven simplifying assumptions:

1. The world is black and white: the number of executing threads is

either equal to 1 or N; there is nothing in between. This is often false,

e.g., in Google Map Reduce, the number of threads in the Map phase

may be N but the number of threads in the Reduce phase are often

smaller than N but greater than 1.

2. The parallel portion has perfect speedup. This is not true because

contention for shared data (critical sections) and shared resources

(caches, memory bandwidth) often prohibit the program from reaching

perfect linear speedup.

3. The parallel portion has infinite scaling, i.e., performance never

saturates. This is incorrect because contention for shared data and

shared resources increases with the number of threads. This

contention can reach a point that adding more threads does not

increase performance (or reduces performance).

4. There is no thread creation/deletion overhead. Allocating and de-

allocating threads is expensive and this overhead increases linearly

with the number of threads.

1-37

5. The length of the serial, single-threaded portion is independent of

the number of threads. The single thread work often consists of splitting

the work for the parallel portion. This work is often a function of how

many threads will be spawned during the parallel work. Furthermore,

more threads can lead to more inter-core communication, thereby

extending the length of the serial portion.

6. Serial and parallel code runs at the same rate.

7. The serial portion cannot be overlapped with the parallel threads.

Many workloads embed serial portions inside parallel portions in order

to overlap their execution with parallel work, e.g., exploiting pipeline

parallelism between serial and parallel portions.

The main distinction that reduces the scope of Amdahl’s law is #7.

1.5.4. Who can use Amdahl’s law?

Amdahl’s law is only applicable in certain fork-join programming

paradigms. Specifically, it is applicable to workloads where some code

runs as a single thread followed by some embarrassingly parallel code,

e.g., matrix-matrix-multiply or other HPC kernels.

1.5.5. Who should avoid using the term “Amdahl’s law”?

As with any analytic model, Amdahl’s law should only be used

when a workload fits the programming model assumed by the model.

There are many programs that do not fit this model. Fundamentally,

Amdahl’s law assumes that any code which cannot be parallelized is

always on the critical program path. This is not the case in many

modern programming paradigms as some non-parallel code sections

can run in parallel with other independent code. For example:

1. Critical sections: Critical Sections are portions of code where only

one thread can execute at a given time; other threads wanting to

1-38

execute the critical section must wait. These critical sections can

serialize a variable number of threads depending on the contention for

the critical section. This contention is sometimes zero and sometimes

very high. Thus, Amdahl’s law does not apply to critical section

intensive workloads such as databases.

2. Serial stages in a pipeline/task parallel workload: The serial

stage only leads to serialization if it is the critical path of the program.

It may have zero or more threads waiting for it at any given time. For

example, all graphics workloads have a thread which is producing work

for the other threads. This serial thread does not become a bottleneck

unless it cannot feed the other threads fast enough. However, if it

becomes the bottleneck, then the parallel portion seizes to matter.

Thus, the Amdahl’s equation does not characterize the behavior of

these kernels.

3. Regions of limited parallelism: These exist in programs due to

contention for hardware resources or thread creation/deletion

overhead. The Amdahl’s equation does not apply to these as it assumes

that the serial part is only one thread. For example, Google Map Reduce

does not follow the Amdahl’s model.

The above constructs change the first-order analytic models of the

program completely and do not fit Amdahl’s. Yet, we often use serial

portions and Amdahl’s law synonymously. I must admit that it is one

of my pet peeves and I believe that we need to fix this problem as a

community. It is best to use more specific terms for different types of

serial code in order to avoid misunderstanding.

1.5.6. Concrete Example

Let’s think about pipeline workloads. Let’s use a simple example of

a workload called Rank. Rank compares a set of input strings in a file

to a given search string and returns the N most similar strings to the

search string.

There are three stages in a particular implementation of Rank:

1-39

S1. Read input string — this is sequential

S2. Compute similarity score by comparing to search string —

multiple strings can be compared concurrently

S3. Insert string in a heap sorted according to the similarity score.

Drop the element with the lowest similarity score in case the heap has

N+1 elements after the insertion. — this is a critical section in a naive

implementation.

Now in the above code, there are three distinct loops that can be

done one after the other in which case #1 and #3 will be your Amdahl’s

serial portions (where only a single thread exists). However, I can be

smart and write this code as a pipeline where S1, S2, and S3 run

concurrently and communicate via work-queues.

Let’s suppose each iteration of S1 takes 1K cycles, S2 takes 10K

cycles, and S3 takes 2K cycles. Then as I up the number of cores,

eventually the throughput of this pipeline will become limited by S3

because even if I speed up S2 to 1000 cycles per iterations (by giving it

10 cores), S3 will not speed up. Thus, once I have say 5 cores assigned

to S2, more cores will not help with performance.

Now, naively (and incorrectly), people call this Amdahl’s law. No it

is not Amdahl’s law because the above cannot be characterized by the

Amdahl’s equation. If we use Amdahl’s, the serial code is 3K cycles and

parallel core is 10K cycles. Thus, with infinite cores:

Cycles_per_iteration_with_P_cores = 3K + 10K/P

Thus, the fastest speed will be 3K cycles per iteration. This is

obviously wrong.

The equation which characterizes this pipeline case is as follows:

Cycles_per_iteration = MAX (Cycles_per_S1, Cycle_per_S2 /

cores_assigned_to_S2, Cycle_per_S3);

This is my poster child example of showing why Amdahl’s doesn’t

work for all non-parallel code.

1-40

1.6. TYPES OF SERIAL BOTTLENECKS [21]

In my definition, a serial bottleneck is code which can lead to

thread serialization, i.e., it can cause threads to wait on each other. At

a broader level, there are two types of serial bottlenecks:

Fully serial, always on Critical Path: These are code portions where

only a single thread exists. These bottlenecks cause other threads to

wait every time they execute. These include kernels which cannot be

parallelized at all.

These single threaded regions are the classic Amdahl’s bottlenecks.

They have an important property that they always end up on the critical

program path, i.e., if you take a single-threaded region and speed it up

by a 100 cycles, the overall program execution time reduces by a 100

cycles. In addition to that, they have the following attributes.

 Easier to detect (program is in a fully serial portion if number of

alive threads == 1)

 Do not impact the performance of parallel program portions

(since they do not run concurrently with the parallel portion)

 Are less common since most people realize their disadvantages

 Shortening them always provides performance benefit (may be

small, but its >0)

Partially serial: These include serial portions which are embedded

in the parallel portions. I call them partial bottlenecks because (a) they

block a variable number of threads (between 0 to N-1), and (b) they can

be on or off the critical path thus shortening them may or may not

benefit overall performance. These bottlenecks generally arise when

threads communicate or contend for shared resources or shared data.

The classic example of a partial bottleneck is a critical section. Only

one thread can execute a critical section at a given time, all other

threads wanting to execute the critical section must wait. However,

threads not wanting to execute the critical section can continue to

work. Thus, the impact on performance of the critical section depends

on the number of waiting threads which in turn depends on the

contention for the critical section. A highly contended critical section

1-41

stalls a lot of threads while a critical section with no contention is

practically the same as parallel code.

The following distinguishes partial-bottlenecks from fully-serial

bottlenecks:

 The existence and severity of these bottlenecks is highly

dependent on the input set, machine configuration, the number

of cores, communication latencies, cache sizes, etc.

 These bottlenecks are much harder to identify for the programmer

since they only surface at run-time

 They impact only the parallel program portions

 Are very common in servers and sometimes in HPC kernels

 Shortening them is only beneficial if they are causing serialization

 They limit thread scalability, i.e., they can cause the performance

to peak at a given number of threads such that more threads

reduce performance

1.6.1. Some background

I feel that fully-serial bottlenecks are discussed more because of

historical reasons. Classic parallel computers consist of loosely

connected processors which require hundreds or thousands of cycles

to communicate (sometimes via Ethernet). When writing code for such

a machine, it is logical for the programmers to eliminate thread

communication from the parallel portions and leave as fully-serial the

kernels where it is impossible to remove (or minimize) thread

communication. This trade-off has changed with the advent of multi-

core: cores are tightly integrated and thread communication is a

smaller overhead. Thus, we can expect more programs to contain

partially-serial code with thread communication.

1.6.2. Who should this concern?

If you are a theoretical computer scientist, you should know that

Amdahl’s law (the equation that is known as the law) only applies to

the fully serial portions and not to the partially serial portions. The

partial bottlenecks have a very different behavior which has different

1-42

equations (See examples of critical sections, pipeline workloads, and

task parallelism).

If you are designing hardware for running parallel programs,

understanding the differences between these bottlenecks is pivotal. I

will give an example from my personal experience. When I was first

asked to architect a heterogeneous code chip for parallel programs, I

considered only the fully-serial bottlenecks and hence the first

architecture I designed had a single fast core and many slow cores. I

wrote an OS scheduler which turned on the fast core only in the serial

phase and turned on the many small cores only in the parallel region.

It worked and I was done! However, as I learned more about parallel

programs, and learned about these fine-grain bottlenecks (which are

often a bigger issue), the landscape changed completely. I needed

enough on-chip power to keep both slow and fast cores on at the same

time. I had to design mechanisms to detect these fine-grain serial

portions. I had to take thread migration overheads into account. I had

to decide how small my small cores can be depending on how scalable

my parallel portion is. Thus, I urge hardware designers to understand

this distinction as designing multicores without knowing about these

finer-grain bottlenecks can lead to very sub-optimal decisions. (Side

note for developers: you will be surprised at how few chip architects

know this).

If you do performance analysis, you should know that while you

can characterize the fully-serial bottlenecks easily, you cannot expect

that staring at the code or counting instructions will tell you much

about the partially parallel portions since their severity is a function of

contention and very dependent on run-time behavior. (Side note for

programmers: this makes life very hard for us computer architects

because deterministic performance simulations become next to

impossible).

If you are an application programmer, you should already know

these bottlenecks and everything about them. If not, you learn asap

because you will find it useful.

1-43

1.7. ON USING DEPENDENCE INFORMATION [22]

Writing parallel code is all about finding parallelism in an

algorithm. What limits parallelism are the dependencies among

different code portions. Understanding the dependencies in a program

early on can help the programmers (a) determine the amount of

available parallelism, and (b) chose the best parallel programming

paradigm for the program. In this post, I try to layout a taxonomy of

dependencies in loops and how it plays into parallel programming.

1.7.1. Definition of tasks

It is any piece of work that needs to be done and often takes more

than one instructions. The instructions in the task are closely coupled

such that it logically makes sense to group them together.

1.7.2. What are task dependencies?

There are two types of dependencies at the task granularity.

Data Dependency: A task K is said to be data-dependent on task J

if K needs data generated by J. For example,

J: foo = bar + 3;

K: lama = foo + 3;

Note that this dependency is ordered: the dependent task J can

neither run before K nor in parallel with K.

Un-ordered Dependency: A task J and K are said to have an

unordered dependency if they both read-modify-write the same

data. For example,

J: foo++;

K: foo++;

Note that J and K can be processed in any order but they cannot

be processed in parallel.

Thus, two tasks can run concurrently only if they are independent.

The goal in parallel programming is to remove as

1-44

many dependencies as possible by re-factoring the code or the

algorithm.

1.7.3. How does it apply to loops?

Let’s use the following loop as an example:

for i = 1 to N:

A(i); B(i); C(i);

A single core will run the loop in this order: A0, B0, C0, A1, B1, C1,

A2, … (A0 = task A in iteration 0, B0 = task B in iteration 0, etc.)

Loops have two types of dependencies:

Intra-Iteration: Typically, tasks within an iteration of the loop are

dependent on each other for data. For example, B0 depends on A0.

Inter-iteration: Sometimes different loop iterations share data or

hardware resources which creates data or ordered dependencies among

them. For example, A1 depends on A0.

1.7.4. How it applies to parallel programming?

I have seen four types of common loops.

1. No parallelism exists in a loop where all tasks are data-

dependent on the previous tasks. Thus, programmers should re factor

the code to remove those dependencies before writing any parallel code.

If no dependencies can be removed, then the loop should be left

untouched. For example,

1-45

 2. Loops with independent iterations are easy to parallelize. In this

case, programmers should consider using SIMD and watch out for

false-sharing and off-chip bandwidth. For example,

3. In a typical loop, some tasks are independent of other iterations

while other tasks have inter-iteration dependencies. In my experience,

such dependencies are usually un-ordered which can be enforced using

http://www.futurechips.org/wp-content/uploads/2011/07/loop-all-depend.png
http://www.futurechips.org/wp-content/uploads/2011/07/loop-no-depend.png

1-46

critical sections. For example, task B should be put inside a critical

section in the following loop.

4. If you cannot remove ordered dependencies, you should use a

lesson from hardware designers, i.e., use pipeline parallelism. For

example, the following loop is well-suited for pipeline parallelism where

one thread can process all instances of “A” in-order, one thread can be

in-charge of processing “B”s, and the last thread can be in-charge of

processing “C”s. Note that if B is substantially longer than A or C, it is

possible to use multiple threads for the “B-stage” but that will make

things out of order and C will need a re-ordering structure to put them

back in order.

And there are many other types of loops out there.

http://www.futurechips.org/wp-content/uploads/2011/07/loop-cs-depend.png
http://www.futurechips.org/wp-content/uploads/2011/07/loop-file-io-depend.png

1-47

1.8. UNDERSTANDING CRITICAL SECTIONS IMPACT [23]

In shared memory systems, multiple threads are not allowed to

update shared data concurrently, known as the mutual exclusion

principle. Instead, accesses to shared data are encapsulated in regions

of code guarded by synchronization primitives (e.g. locks). Such

guarded regions of code are called critical sections. The semantics of a

critical section dictate that only one thread can execute it at a given

time. Any other thread that requires access to shared data must wait

for the current thread to complete the critical section.

There are two types of critical sections in programs. I call them

update critical sections and reduction critical sections.

1.8.1. Update Critical Sections

Update critical sections occur in the midst of the parallel kernels.

They protect shared data which multiple threads try to read-modify-

write during the kernel’s execution, instead of waiting till the end of the

kernel’s execution. Their execution can be overlapped with the

execution of non-critical-section code.

For simplicity, let’s assume a kernel which has only one critical

section. Each iteration of the loop spends one unit of time inside the

critical section and three units of time outside the critical section. The

following chart demonstrates the execution timeline of this critical

section intensive application.

When a single thread executes, only 25% of execution time is spent

executing the critical section. If the same loop is split across two

threads, the execution time reduces by 2x. Similarly, increasing the

http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.11.05AM.png

1-48

number of threads to four further reduces execution time. As the

critical section is always busy, the system becomes critical section

limited and further increasing the number of threads from four to eight

does not reduce the execution time.

We can capture this using a simple equation. Suppose

Tcs = Time inside critical section

Tnocs = Time outside critical section

Tp = Time with p cores

N = Number of iterations

Then Tp can be computed as:

We compute Pcs, i.e., the number of threads required to saturate

the execution time, by solving the above equation for P:

1.8.2. Fine-grain critical sections

To reduce the contention for critical sections, many applications

use different locks to protect disjoint data. Since these critical sections

are protecting disjoint data, they can execute concurrently, thereby

increasing throughput. In this software, the longest critical section,

which has the highest contention, is the performance limiter. This can

be captured using the following equation:

Note that this model is rather simplistic but it still conveys that

long, frequently occurring critical sections can limit performance as the

number of threads increases.

http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.11.23AM.png
http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.11.37AM.png
http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.30.30AM.png

1-49

1.8.3. Reduction Critical Sections

Reduction critical sections occur at the end of kernels and are used

to combine the intermediate results computed by individual threads.

The key difference between update and reduction critical sections is

that, unlike update critical sections, reduction critical sections occur

at the end of a kernel and their execution cannot be overlapped with

the execution of the non-critical-section code. Since every thread

executes the critical section, the total time spent in executing the

critical sections increases linearly with the number of threads.

Furthermore, as the number of threads increase, the fraction of

execution time spent in the parallelized portion of the code

reduces. Thus, as the number of threads increase, the total time spent

in the critical sections increases and the total time spent outside

critical sections decreases. Consequently, critical sections begin to

dominate the execution time and the overall execution time starts to

increase.

For simplicity, let us assume that a kernel executes for 10 times

units as a single thread and 2 of those 10 units are spent in reduction.

The following figure shows its execution as the number of threads

increases.

Notice how the parallel region shrinks with more threads but the

critical sections begin to dominate the execution. We can capture this

using a simple analytic model:

http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.11.59AM.png
http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.12.31AM.png

1-50

We compute Pcs, i.e., the number of threads required to saturate

the execution time, by solving the above equation for P:

1.8.4. Cache Locality: A second order effect

The above analysis assumes that the execution time of each

instance of the critical section is independent of the number of cores.

This is not a true assumption. In fact, latency of the critical section

increases with the number of cores for two reasons. First, critical

sections must incur cache misses in fetching the shared data that is

resident at another core. With more cores, shared data bounces around

more frequently thereby increasing the probability of a cache miss.

Second, the cache miss latency among cores increases with the number

of cores due to longer wires and more interconnect hops. This increase

in the number of misses and the cost of each miss further increases

the overhead of critical sections on performance.

When there is contention for shared data, execution of threads gets

serialized, which reduces performance. As the number of threads

increases, the contention for critical sections also increases. Therefore,

in applications that have significant data synchronization (e.g. Mozilla

Firefox, MySQL database, and operating system kernels), critical

sections limit both performance (at a given number of threads) and

scalability.

1.8.5. Looking forward …

 It is important to either shorten the critical sections or create fine-

grain critical sections that do not suffer high contention. Parallel

programming is already a daunting task and expecting programmers

to shrink or eliminate critical sections is unreasonable. I believe that

hardware can assist in this matter. Solutions like hardware

http://www.futurechips.org/wp-content/uploads/2011/06/Screenshot20110618at12.12.44AM.png

1-51

Transactional memory (TM) have been proposed to shorten the critical

sections by letting them run concurrently, as long as it does not violate

correctness. Another orthogonal solution is proposed in a paper titled

“Accelerating Critical Section Execution with Asymmetric Multi-Core

Architectures” [24] is to accelerate critical sections using a faster core

on a chip with heterogeneous cores. A combination of TM and ACS can

practically eliminate the overhead of critical sections, thereby relieving

the programmer of this burden.

2-53

2. SOFTWARE, HARDWARE AND COMPETITION

2.1. GROMACS

GROMACS is an engine to perform molecular dynamics

simulations and energy minimization. These are two of the many

techniques that belong to the realm of computational chemistry and

molecular modelling. Computational chemistry is just a name to

indicate the use of computational techniques in chemistry, ranging

from quantum mechanics of molecules to dynamics of large complex

molecular aggregates. Molecular modelling indicates the general

process of describing complex chemical systems in terms of a realistic

atomic model, with the goal being to understand and predict

macroscopic properties based on detailed knowledge on an atomic

scale. Often, molecular modelling is used to design new materials, for

which the accurate prediction of physical properties of realistic systems

is required. [25]

Macroscopic physical properties can be distinguished by (a) static

equilibrium properties, such as the binding constant of an inhibitor to

an enzyme, the average potential energy of a system, or the radial

distribution function of a liquid, and (b) dynamic or non-equilibrium

properties, such as the viscosity of a liquid, diffusion processes in

membranes, the dynamics of phase changes, reaction kinetics, or the

dynamics of defects in crystals. The choice of technique depends on the

question asked and on the feasibility of the method to yield reliable

results at the present state of the art. Ideally, the (relativistic) time-

dependent Schrodinger equation describes the properties of ¨molecular

systems with high accuracy, but anything more complex than the

equilibrium state of a few atoms cannot be handled at this ab initio

level. Thus, approximations are necessary; the higher the complexity of

a system and the longer the time span of the processes of interest is,

the more severe the required approximations are. At a certain point

(reached very much earlier than one would wish), the ab initio approach

must be augmented or replaced by empirical parameterization of the

model used. Where simulations based on physical principles of atomic

interactions still fail due to the complexity of the system, molecular

modelling is based entirely on a similarity analysis of known structural

2-54

and chemical data. The QSAR methods (Quantitative Structure Activity

Relations) and many homology-based protein structure predictions

belong to the latter category.

Macroscopic properties are always ensemble averages over a

representative statistical ensemble (either equilibrium or non-

equilibrium) of molecular systems. For molecular modelling, this has

two important consequences:

• The knowledge of a single structure, even if it is the structure of

the global energy minimum, is not sufficient. It is necessary to generate

a representative ensemble at a given temperature, in order to compute

macroscopic properties. But this is not enough to compute

thermodynamic equilibrium properties that are based on free energies,

such as phase equilibria, binding constants, solubility, relative stability

of molecular conformations, etc. The computation of free energies and

thermodynamic potentials requires special extensions of molecular

simulation techniques.

• While molecular simulations, in principle, provide atomic details

of the structures and motions, such details are often not relevant for

the macroscopic properties of interest. This opens the way to simplify

the description of interactions and average over irrelevant details. The

science of statistical mechanics provides the theoretical framework for

such simplifications. There is a hierarchy of methods ranging from

considering groups of atoms as one unit, describing motion in a

reduced number of collective coordinates, averaging over solvent

molecules with potentials of mean force combined with stochastic

dynamics, to mesoscopic dynamics describing densities rather than

atoms and fluxes as response to thermodynamic gradients rather than

velocities or accelerations as response to forces.

For the generation of a representative equilibrium ensemble two

methods are available: (a) Monte Carlo simulations and (b) Molecular

Dynamics simulations. For the generation of non-equilibrium

ensembles and for the analysis of dynamic events, only the second

method is appropriate. While Monte Carlo simulations are more simple

than MD (they do not require the computation of forces), they do not

yield significantly better statistics than MD in a given amount of

2-55

computer time. Therefore, MD is the more universal technique. If a

starting configuration is very far from equilibrium, the forces may be

excessively large and the MD simulation may fail. In those cases, a

robust energy minimization is required. Another reason to perform an

energy minimization is the removal of all kinetic energy from the

system: if several “snapshots” from dynamic simulations must be

compared, energy minimization reduces the thermal noise in the

structures and potential energies so that they can be compared better.

2.2. THE GLOBAL MD

1. Input initial conditions

Potential interaction 𝑉 as a function of atom positions, positions 𝒓

of all atoms in the system, velocities 𝒗 of all atoms in the system

Repeat 2,3,4 for the required number of steps:

2. Compute forces

The force on any atom

 𝑭𝑖 = −
𝜕𝑉

𝜕𝒓𝑖
 (2-1)

is computed by calculating the force between non-bonded atom pairs:

 𝑭𝑖 = ∑ 𝑭𝑖𝑗𝑗 (2-2)
plus bonded interactions forces, restraining and external forces.

Potential, kinetic energies and the pressure tensor may be computed.

3. Update configuration

The movement of the atoms is simulated by numerically solving

Newton's equations of motion:

𝑑2𝒓𝑖

𝑑𝑡2 =
𝑭𝑖

𝑚𝑖
 (2-3)

𝑑𝒓𝑖

𝑑𝑡
= 𝑣𝑖;

𝑑𝑣𝑖

𝑑𝑡
=

𝑭𝑖

𝑚𝑖
 (2-4)

4. Output step (if required)

write positions, velocities, energies, temperature, pressure, etc.

2-56

Figure 2-1: GROMACS global MD algorithm [25]

2-57

2.3. MAP-REDUCE ARCHITECTURE

2.3.1. History

Map-Reduce architecture is a machine developed on the model

made public by Kleene. [26] Map-Reduce is a programming model and

an associated implementation for processing and generating large data

sets with a parallel, distributed algorithm on a cluster.

MRA gave birth to the Connex system in the fall of 2001, based on

an older Connex memory concept, developed by Gheorghe STEFAN and

Dan TOMESCU.

Connex architecture is a general-purpose SIMD (Single

Instruction, Multiple Data) computing architecture.

This architecture is a solution to solve computationally intensive

problems. Unlike existing general purpose processors that are based

on Turing machine model, this architecture is trying a different

approach. The general idea is built from computing model of Kleene. In

the Turing published his work, published Kleene partially recursive

functions model. He defined calculation using a set of functions (zero

increment, projection) and rules (composition, primitive recursion and

minimization).

In 2003 the first chip was manufactured using this architecture,

CA4096, the company BrightScale (formerly Connex Technology, Inc.)

manufactured in 130nm technology at TSMC (Taiwan Semiconductor

Manufacturing Company) followed in 2007 BA1024 manufacture in

95nm technology and in 2008 BA1024B in 65nm technology.

2.3.2. Connex architecture

Connex architecture consists of four main elements:

 Connex array - from 64 to 4096 32-bit execution units (EU);

 I/O Plan - 2D shift register of 64 to 4096 32-bit words;

 Interconnection Fabric - standard 128-bit interface with

external memory;

2-58

 Controller - CPU controlling system, it sees Connex array and

I/O Plan web as coprocessors.

Figure 2-2: Connex general architecture

Connex architecture, exposed schematically in Figure 2-2, consists

of multiple execution units (EU) (up to several thousand) selectively

executing the same instruction in parallel. These cells are coordinated

processing of a Central Unit of Execution (CONTROLLER) that can send

instructions to the execution unit and can receive information from

them through a reduction mode (NET REDUCTION) accessible to all

cells. Selection of cells which process a particular statement is based

on an individual's own cells bit determines if the cell is active or not.

Connex module array comprises the following:

 Execution unit, with 512 kB to 4096 kB of memory, receiving

a 16-bit instruction each clock cycle;

 Reduction net - circuit that can do operations on all values of

execution units (ex. the sum of all values).

2-59

Figure 2-3: Connex array module
Access to external memory can be made directly by the Central

Unit of Execution, or the row of cells via a System Input / Output

controlled also by the Central Execution. Execution units are

designated by the index of that cell. Further, the number of cells is P

and these are numbered from 0 to P-1 from left to right as shown. These

EU are interconnected through a left and right communication channel

which can transmit information through a communication channel

unidirectional linking with Module Input / Output and each access

module Reducer that can submit information to the Central Unit of

Execution.

The execution unit contains the following:

 Scalar unit - the arithmetic logic unit 16-bit special

instructions to execute multi-cycle instructions and operations

with fractional numbers;

 Boolean unit - the unit used to determine whether execution

unit will be active or not;

 Data memory - 512-4096 KB data memory;

 Shift unit - manages connections Connex left-right module

array and data exchange with I/O plane.

2-60

Figure 2-4: Connex array execution unit
Each unit has its own memory, knows its index and the boolean

bit that determines whether it is active or not.

2.4. COMPETITION

Several other parallel computing platforms have been started, each

bearing a higher or lower degree of flexibility (or specialization).

2.4.1. Anton

“A Special-Purpose Machine That Achieves a Hundred-Fold Speedup

in Bio-molecular Simulations”

Molecular dynamics simulation has long been recognized as a

potentially transformative tool for understanding the behaviour of

proteins and other biological macromolecules, and for developing a new

generation of precisely targeted drugs.

Many biologically important phenomena, however, occur over

timescales that have previously fallen far outside the reach of MD

technology.

Researchers have constructed a specialized, massively parallel

machine, called Anton, that is capable of performing atomic-level

simulations of proteins at a speed roughly two orders of magnitude

2-61

beyond that of the previous state of the art. The machine has now

simulated the behaviour of a number of proteins for periods as long as

a millisecond - approximately 100 times the length of the longest such

simulation previously published - revealing aspects of protein

dynamics that were previously inaccessible to both computational and

experimental study. The speed at which Anton performs these

simulations is in large part the result of a tightly coupled code sign

process in which the machine architecture was developed in concert

with novel algorithms, including an asymptotically optimal parallel

algorithm with highly attractive constant factors for the range-limited

N-body problem. [27]

Figure 2-5 Anton supercomputer and insides
Anton is a special-purpose molecular dynamics machine,

massively parallel, using custom-designed chips and designed together

with a new algorithmic approach. It’s dramatically faster for MD, but

far less flexible for other purposes.

In 2012 there were 13 operational machines, each one capable of

millisecond-scale simulations and much harder simulations than

either very large number of very short simulations and/or very short

simulations of very large molecules.

Anton supercomputer Anton processing unit

2-62

2.4.2. Comparison between Anton and other machines

Table 1 Comparison of MD simulation speeds (all-atom, explicit solvent,
standard DHFR benchmark) [28]
Computational platform Speed

(ns/day)

Single-processor codes ~ 2

Parallel supercomputers ~ 200

Anton 1 (512-node machine) 17 400

Anton 2 (512-node machine) 85 000

Table 2 Largest published molecular dynamics simulations (all-atom
simulations of proteins in explicit solvent)
Length (µs) Hardware Software Protein

2 Single x86 GROMACS villin HP-3

10 HPC cluster NAMD ww domain

1 119 Anton 1 [native] ww domain

2 092 Anton 1 [native] NTL9

2.4.3. Anton computation time for researchers

Anton was made available for use by researches, universities and

other non-profit organisations / institutions without cost, at National

Resource for Biomedical Supercomputing (NRBSC), where the funding

for NRBSC’s involvement was provided by NIH.

Time has been allocated to 45 research groups, all selected by

National Academies.

3-63

3. IMPLEMENTATION

In this section, I’ll explain how various MD algorithms have been

implemented on the Map-Reduce accelerator.

3.1. SYSTEM VARIABLES

Every algorithm uses the following variables with the associated

meaning:

Particle vectors
𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑎𝑙 𝑋, 𝑌, 𝑍 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 (𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑜𝑥)[𝑛𝑚?]

𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑎𝑙 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑𝑠 [𝑛𝑚/𝑛𝑠]

𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑒𝑎𝑙 𝐹𝑥, 𝐹𝑦 , 𝐹𝑧 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 [𝑁]

MD parameters
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑑𝑡 − 𝑡𝑖𝑚𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 (0.04)[𝑝𝑠]

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑠𝑒𝑎𝑟𝑐ℎ (10)[−]

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑋𝑀𝑎𝑥 , 𝑌𝑀𝑎𝑥 , 𝑍𝑀𝑎𝑥 − 𝑏𝑜𝑥 𝑤𝑖𝑑𝑡ℎ, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑑𝑒𝑝𝑡ℎ [𝑛𝑚]

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑁𝑀𝑎𝑥 − 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑃𝑀𝑎𝑥 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

Particle parameters
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑚 − 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠 (72)[𝑘𝑔/𝑘𝑚𝑜𝑙]

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝐶6, 𝐶12

− 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑟−6 𝑎𝑛𝑑 𝑟−12, 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑓𝑜𝑟𝑐𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 [𝑁/𝑚]

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑟𝐶 − 𝑐𝑢𝑡𝑜𝑓𝑓 𝑟𝑎𝑑𝑖𝑢𝑠 (1.2)[𝑛𝑚]

Thermostat
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝜏𝑡 − 𝐵𝑒𝑟𝑒𝑛𝑑𝑠𝑒𝑛 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡 strength (1)[𝑝𝑠]

𝑟𝑒𝑎𝑙 𝜆 − 𝐵𝑒𝑟𝑒𝑛𝑑𝑠𝑒𝑛 𝑡ℎ𝑒𝑟𝑚𝑜𝑠𝑡𝑎𝑡 𝑠𝑝𝑒𝑒𝑑 𝑎𝑑𝑗𝑢𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 (~1, 0.8 … 1.25)[−]

𝑟𝑒𝑎𝑙 𝑇 − 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (~315)[𝐾]

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑇0 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (315)[𝐾]

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑎𝑙 𝑘𝐵 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 [𝐽/𝐾]

Where: 𝑟𝑒𝑎𝑙 = 𝑓𝑙𝑜𝑎𝑡 𝑜𝑟 𝑑𝑜𝑢𝑏𝑙𝑒 (𝑓𝑙𝑜𝑎𝑡)

3.2. PERIODIC BOUNDARY CONDITIONS

Periodic boundary conditions (PBCs) are a set of boundary

conditions which are often chosen for approximating a large (infinite)

system by using a small part called a unit cell. PBCs are often used in

3-64

computer simulations and mathematical models. The topology of two-

dimensional PBC is equal to that of a world map of some video games;

the geometry of the unit cell satisfies perfect two-dimensional tiling,

and when an object passes through one side of the unit cell, it re-

appears on the opposite side with the same velocity. In topological

terms, the space made by two-dimensional PBCs can be thought of as

being mapped onto a torus (compactification). The large systems

approximated by PBCs consist of an infinite number of unit cells. In

computer simulations, one of these is the original simulation box, and

others are copies called images. During the simulation, only the

properties of the original simulation box need to be recorded and

propagated. The minimum-image convention is a common form of PBC

particle bookkeeping in which each individual particle in the simulation

interacts with the closest image of the remaining particles in the

system.

In molecular dynamics simulation, PBC are usually applied to

calculate bulk gasses, liquids, crystals or mixtures. A common

application uses PBC to simulate solvated macromolecules in a bath of

explicit solvent.

3-65

Figure 3-1: Schematic representation of the idea of periodic boundary

conditions [29]
The following algorithm has been implemented:

1. Check if any particle is outside of the simulation box

2. If the particle is outside, create a new particle entering the

simulation box (preserve speed) in the opposite direction from

where it left the box

3. Delete the old particle

3.3. PSEUDOCODE IMPLEMENTATION OF THE PBC

// What’s being computed

all particle DIM coordinates must be between 0 and DIM_Max, where

DIM is X, Y or Z

// Pseudo-code

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑋 ≥ 𝑋𝑀𝑎𝑥

𝑋 = 𝑋 − 𝑋𝑀𝑎𝑥

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

3-66

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑋 < 0

𝑋 = 𝑋 + 𝑋𝑀𝑎𝑥

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑌 ≥ 𝑌𝑀𝑎𝑥

𝑌 = 𝑌 − 𝑌𝑀𝑎𝑥

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑌 < 0

𝑌 = 𝑌 + 𝑌𝑀𝑎𝑥

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑍 ≥ 𝑍𝑀𝑎𝑥

𝑍 = 𝑍 − 𝑍𝑀𝑎𝑥

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑠𝑒𝑙𝑒𝑐𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑍 < 0

𝑍 = 𝑍 + 𝑍𝑀𝑎𝑥

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

3.4. NEIGHBOUR SEARCHING

To reduce simulation time, the number of interactions must be

reduced to the most important ones. Van der Waals interactions are

only representative to up to a distance of 𝑟𝑐 = 1.2 … 1.3 𝑛𝑚. Anything

else is considered as not interacting with the particle.

Figure 3-2: Neighbors for the current particle [30]

3-67

3.5. PSEUDOCODE IMPLEMENTATION OF THE NEIGHBOUR

SEARCH

// What’s being computed

𝑖𝑓 (√𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 < 𝑟𝐶) → 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

// Variables

𝑟𝑒𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧, 𝑡𝑟

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖

// Pseudo-code

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑖 − 1 … 𝑃𝑀𝑎𝑥{

// Particle 𝑖 is not a neighbour to itself

𝑠𝑒𝑙𝑒𝑐𝑡 𝑒𝑥𝑐𝑒𝑝𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖

// Start calculating the distance between particle 𝑖 and the rest of

the particles

// Create new temp vectors for X, Y, Z dimensions and subtract 𝑖𝑡ℎ

particle coordinates

𝑡𝑥 = 𝑋 − 𝑟𝑒𝑝𝑒𝑎𝑡(𝑋[𝑖], 𝑃𝑀𝑎𝑥)

𝑡𝑦 = 𝑌 − 𝑟𝑒𝑝𝑒𝑎𝑡(𝑌[𝑖], 𝑃𝑀𝑎𝑥)

𝑡𝑧 = 𝑍 − 𝑟𝑒𝑝𝑒𝑎𝑡(𝑍[𝑖], 𝑃𝑀𝑎𝑥)

// Calculate the squares

𝑡𝑥2 = 𝑡𝑥 ∗ 𝑡𝑥

𝑡𝑦2 = 𝑡𝑦 ∗ 𝑡𝑦

𝑡𝑧2 = 𝑡𝑧 ∗ 𝑡𝑧

// Add the squared vectors

𝑡𝑟 = 𝑡𝑥2 + 𝑡𝑦2 + 𝑡𝑧2

// Make neighbour list

𝑠𝑒𝑙𝑒𝑐𝑡 𝑤ℎ𝑒𝑟𝑒 𝑡𝑟 > 1/𝑟𝑐
2

𝑎𝑑𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖 𝑎𝑠 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

}

3-68

3.6. FORCE COMPUTATION

The interaction between the particles in the system is only a non-

bonded interaction, a Van der Waals interaction, described by the

Lennard-Jones potential.

The Lennard-Jones potential (also referred to as the L-J potential,

6-12 potential, or 12-6 potential) is a mathematically simple model that

approximates the interaction between a pair of neutral atoms or

molecules. A form of this interatomic potential was first proposed in

1924 by John Lennard-Jones. [31] The most common expressions of

the L-J potential are:

𝑉𝐿𝐽 = 4𝜀 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] = 𝜀 [(
𝑟𝑚

𝑟
)

12

− 2 (
𝑟𝑚

𝑟
)

6

] =
𝐶12

𝑟12
−

𝐶6

𝑟6

Where:

 𝜀 is the depth of the potential well;

 σ is the finite distance at which the inter-particle potential is zero;

 r is the distance between the particles;

 𝑟𝑚 is the distance at which the potential reaches its minimum.

At 𝑟𝑚, the potential function has the value −ε. The distances are

related as 𝑟𝑚= 21/6σ ≈ 1.122σ. These parameters can be fitted to

reproduce experimental data or accurate quantum chemistry

calculations.

3-69

Figure 3-3: A graph of strength versus distance for the 12-6 Lennard-

Jones potential.

Due to its computational simplicity, the Lennard-Jones potential

is used extensively in computer simulations even though more accurate

potentials exist.

3.7. PSEUDOCODE IMPLEMENTATION OF FORCE COMPUTATION

// What’s being computed

𝐹(𝑟) = (
𝐶12

𝑟12
−

𝐶6

𝑟6
)

1

𝑟

// Variables

𝑟𝑒𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝐹𝑟𝑒𝑠𝑐𝑋
, 𝐹𝑟𝑒𝑠𝑐𝑌

, 𝐹𝑟𝑒𝑠𝑐𝑍
, 𝐹𝑣𝑑𝑤

𝑟𝑒𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑡𝑟𝑖𝑛𝑣1, 𝑡𝑟𝑖𝑛𝑣2, 𝑡𝑟𝑖𝑛𝑣4, 𝑡𝑟𝑖𝑛𝑣7

𝑟𝑒𝑎𝑙 𝐶6, 𝐶12

// Pseudo-code

𝐹𝑟𝑒𝑠𝑐𝑋
, 𝐹𝑟𝑒𝑠𝑐𝑌

, 𝐹𝑟𝑒𝑠𝑐𝑍
= 𝑟𝑒𝑝𝑒𝑎𝑡(0, 𝑃𝑀𝑎𝑥)

//𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 have been already calculated at step 3.5

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟, 𝑗 − 1 … 𝑁𝑀𝑎𝑥{

𝑡𝑟𝑖𝑛𝑣1 = 1/𝑡𝑟

3-70

𝑡𝑟𝑖𝑛𝑣2 = 𝑡𝑟𝑖𝑛𝑣1 ∗ 𝑡𝑟𝑖𝑛𝑣1

𝑡𝑟𝑖𝑛𝑣4 = 𝑡𝑟𝑖𝑛𝑣2 ∗ 𝑡𝑟𝑖𝑛𝑣2

𝑡𝑟𝑖𝑛𝑣7 = 𝑡𝑟𝑖𝑛𝑣4 ∗ 𝑡𝑟𝑖𝑛𝑣2 ∗ 𝑡𝑟𝑖𝑛𝑣1

𝐹𝑣𝑑𝑤 = 𝐶12 ∗ 𝑡𝑟𝑖𝑛𝑣7 − 𝐶6 ∗ 𝑡𝑟𝑖𝑛𝑣4

𝐹𝑟𝑒𝑠𝑐𝑋
+= 𝐹𝑣𝑑𝑤 ∗ 𝑡𝑥

𝐹𝑟𝑒𝑠𝑐𝑌
+= 𝐹𝑣𝑑𝑤 ∗ 𝑡𝑦

𝐹𝑟𝑒𝑠𝑐𝑍
+= 𝐹𝑣𝑑𝑤 ∗ 𝑡𝑧

}

3.8. TEMPERATURE COUPLING

In any system, we must take the necessary steps to prevent or treat

the generation of free energy. One of these steps is the temperature

coupling. I’ve chosen to implement the Berendsen thermostat [32],

which is an algorithm to re-scale the velocities of particles in molecular

dynamics simulations to control the simulation temperature.

3.9. PSEUDOCODE FOR TEMPERATURE COUPLING

// What’s being computed

𝜆 = √1 +
𝑑𝑡

𝜏𝑡
∙

𝑇0

𝑇 − 1
; 𝑇 =

∑𝑚𝑣2

𝑘𝐵 ∙ 𝑛𝑟𝑑𝑓

// Variables

𝑟𝑒𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑉𝑥
2, 𝑉𝑦

2, 𝑉𝑧
2, 𝑉2

𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑘𝐵 = 8.3144621455𝑒 − 03

𝑟𝑒𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑚 = 72

𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑛𝑟𝑑𝑓 = 3𝑃𝑀𝑎𝑥 − 3

𝑟𝑒𝑎𝑙 𝑡𝑒𝑚𝑝

𝑟𝑒𝑎𝑙 𝜆

// Pseudo-code

3-71

𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑙𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑉𝑥
2 = 𝑉𝑥 ∗ 𝑉𝑥

𝑉𝑦
2 = 𝑉𝑦 ∗ 𝑉𝑦

𝑉𝑧
2 = 𝑉𝑧 ∗ 𝑉𝑧

𝑉2 = 𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2

𝑡𝑒𝑚𝑝 = 𝑚 ∗ 𝑠𝑢𝑚_𝑟𝑒𝑑𝑢𝑐𝑒(𝑉2) ∗ 𝑘𝐵
−1 ∗ 𝑛𝑟𝑑𝑓−1

// First two terms from the series expansion for 𝜆 should be enough

𝜆 ≈ 1 +
1

2
∙

𝑇0 ∙ 𝑑𝑡

𝜏𝑡
∙

1

𝑇 − 1
−

1

8
∙ (

𝑇0 ∙ 𝑑𝑡

𝜏𝑡
∙

1

𝑇 − 1
)

2

+
1

16
∙ (

𝑇0 ∙ 𝑑𝑡

𝜏𝑡
∙

1

𝑇 − 1
)

3

+ ⋯

𝑖𝑓 𝜆 < 0.8 𝑡ℎ𝑒𝑛 𝜆 = 0.8 𝑒𝑙𝑠𝑒

𝑖𝑓 𝜆 > 1.25 𝑡ℎ𝑒𝑛 𝜆 = 1.25

3.10. COORDINATE AND VELOCITY UPDATING

After all the previous steps have been completed, the new

coordinates and the new speed of the particles can be computed.

3-72

Figure 3-4: GROMACS update algorithm [25]

3.11. PSEUDOCODE FOR COORDINATE AND VELOCITY

UPDATING

// Pseudo-code

𝑉𝑥 = 𝜆 ∗ 𝑉𝑥 + 𝐹𝑟𝑒𝑠𝑐𝑥
∗

𝑑𝑡

𝑚

𝑉𝑦 = 𝜆 ∗ 𝑉𝑦 + 𝐹𝑟𝑒𝑠𝑐𝑦
∗

𝑑𝑡

𝑚

𝑉𝑧 = 𝜆 ∗ 𝑉𝑧 + 𝐹𝑟𝑒𝑠𝑐𝑧
∗

𝑑𝑡

𝑚

𝑋 = 𝑋 + 𝑉𝑥 ∗ 𝑑𝑡

𝑌 = 𝑌 + 𝑉𝑦 ∗ 𝑑𝑡

𝑍 = 𝑍 + 𝑉𝑧 ∗ 𝑑𝑡

4-73

4. FUTURE WORK

The MD simulation domain is evolving [33], and more simulation

power is required to be able to simulate interesting phenomena in

reasonable amounts of time. For this, either performance, power

consumption or scalability costs need to be significantly reduced.

And additional development time must be spent to make MRA able

to perform protein folding simulations:

 Non-bonded interactions (Coulomb interaction etc.)

 Bonded interactions (Bond stretching: Morse potential, Cubic

potential, FENE potential, Angle potential: Harmonic, Cosine etc.)

 Parallelization (dynamic load balancing, domain decomposition)

 Quantum molecular potentials

 Integrators (Leap-frog, Verlet)

 Cut-off schemes (group, Verlet, twin-range)

 Temperature coupling (V-rescale, Andersen)

 Pressure coupling (Berendsen, Parrinello-Rahman)

 Outputting steps (trajectory files)

But, before all that, it is my personal opinion that MRA needs a

viable compiler.

5-75

5. RESULTS AND CONCLUSIONS

Running code present in Annexe 1 – Code on the Map-Reduce

architecture simulator, we get the following results:

Full simulation (simulation box periodicity, neighbour search, VdW

force computation, Berendsen thermostat and update): 33040 cycles,

simulation box periodicity: 80 cycles, neighbour searching: 26410

cycles, force computation: 6409 cycles, Berendsen thermostat: 91

cycles and coordinate / speed update: 50 cycles.

Table 3: Simulation cycles and percent time spent on algorithm

Table 4: Performance for non-bonded interactions [33] [34]

* expecting Anton 2 in fall 2016

** Intel i5 750 processor was used for comparison

Simulation part Cycles Percent of algorithm

Full simulation 33040 100.00%

Box periodicity 80 0.24%

Neighbour search 26410 79.93%

Force computation 6409 19.40%

Thermostat 91 0.28%

Update 50 0.15%

Machine Cores NS:F Freq. Price Perf. Power Perf./Watt

[GHz] [USD] [µs/day] [W] [Wh/µs]

Intel i5 1 1:10 2.7 GHz $200 5.84 65 267.1

Intel i5 (SSE) 1 1:10 2.7 GHz $200 9.78 70 171.8

Intel i5 4 1:10 2.7 GHz $200 18.94 90 114.0

Intel i5 (SSE) 4 1:10 2.7 GHz $200 31.48 95 72.4

MRA (FPGA) 512 1:1 0.5 GHz $1000 52.42 35 16.0

MRA (FPGA) 512 1:10 0.5 GHz $1000 187.01 35 4.5

MRA (ASIC) 512 1:10 1.0 GHz $10 374.02 3 0.2

Anton 1 – 0.4 GHz - 572.32 75 3.1

Anton 512 – 0.4 GHz $10Mil 293027.84 116500 9.5

5-76

Table 5: MRA cell usage

From Table 3 and Table 4 we can see that there are some very

interesting and promising results but additional funding is required to

take the next design step (FPGA -> ASIC).

Chip development costs are extremely high, complex system-on-

chip (SOC) platforms like Ax family (Apple) or the IBM Cell very likely

surpassed $1B in total development costs, involving thousands of

engineers in total. On the other hand, relatively modest SOCs like the

Epiphany family of chips (Adapteva) were designed for less than $3M

over the period of several years. Even simpler ASICs like Bitcoin mining

chips can be designed for budgets under $1M.

But usually, the costs of hardware development are between $300k

- $200M (already done), software development $0 - $800M (partially

completed, several tools available but more are needed), chip tape-out

($100k - $3M) and testing $5k - $1M, not involving additional per wafer

or per chip costs.

Of course, it’s always advantageous to make chips, especially

promising ones, where all the benefits (performance, energy

consumption) outweigh the development costs.

Simulation part Active cells Controller

Full simulation 75.6% 13.8%

Box periodicity 66.8% 0.0%

Neighbour search 79.2% 15.30%

Force computation 60.4% 7.60%

Thermostat 51.0% 62.70%

Update 100.0% 17%

6-77

6. REFERENCES

[1] [Online]. Available: http://www.xvivo.net/.

[2] “Theory of Molecular Dynamics Simulations,” [Online]. Available:

http://www.ch.embnet.org/MD_tutorial/pages/MD.Part1.html. [Accessed June 2016].

[3] B. J. Alder and T. E. J. Wainwright, The Journal of Chemical Physics, vol. 27, p. 1208, 1957.

[4] B. J. Alder and T. E. J. Wainwright, Chemical Physics, vol. 31, p. 459, 1959.

[5] A. Rahman, Physical Review A, vol. 136, p. 405, 1964.

[6] F. H. Stillinger and A. J. Rahman, Chemical Physics, vol. 60, p. 1545, 1974.

[7] J. A. McCammon, B. R. Gelin and M. Karplus, Nature (Lond.), vol. 267, p. 585, 1977.

[8] D. McQuarrie, Statistical Mechanics, New York: Harper & Row, 1976.

[9] A. Gottlieb and G. S. Almasi, Highly parallel computing, Redwood City, California:
Benjamin/Cummings, 1989.

[10] S. Adve, “Parallel Computing Research at Illinois: The UPCRC Agenda,” University of Illinois at
Urbana-Champaign, Illinois, November 2008.

[11] K. Asanovíc, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patterson, W.

Plishker, J. Shalf, S. Williams and K. Yelick, “The Landscape of Parallel Computing Research:
A View from Berkley,” Electrical Engineering and Computer Sciences University of California

at Berkeley, 2006.

[12] R. Pike, “Concurrency is not Parallelism,” in Waza conference, 2012.

[13] J. L. Hennessy, D. A. Patterson and J. R. Larus, Computer organization and design: the
hardware/software interface, San Francisco: Kaufmann, 1999.

[14] “https://wiki.haskell.org/Parallelism_vs._Concurrency,” [Online]. [Accessed July 2016].

[15] G. M. Amdahl, “Validity of the single processor approach to achieving large scale computing

capabilities,” in AFIPS spring joint computer conference, IBM Sunnyvale, California, 1967.

[16] [Online]. Available:
https://en.wikipedia.org/wiki/Amdahl%27s_law#Speedup_in_a_serial_program.

[17] E. H. B. John L. Gustafson, “Reevaluating Amdahl's Law,” in Communications of the ACM,

1988.

[18] R. G. J. M. G. Benner, “Development and analysis of scientific application programs on a 1024-
processor hypercube,” Sandia National Laboratories, Feb. 1988.

[19] [Online]. Available: http://www.futurechips.org/thoughts-for-researchers/parallel-

programming-amdahls-law-gustafsons-law.html. [Accessed June 2016].

6-78

[20] [Online]. Available: http://www.futurechips.org/thoughts-for-researchers/parallel-
programming-gene-amdahl-said.html. [Accessed June 2016].

[21] [Online]. Available: http://www.futurechips.org/software-for-hardware-guys/types-serial-

bottlenecks.html. [Accessed June 2016].

[22] [Online]. Available: http://www.futurechips.org/chip-design-for-all/parallel-programming-
dependences-loop-iterations.html. [Accessed June 2016].

[23] [Online]. Available: http://www.futurechips.org/tips-for-power-coders/parallel-

programming-understanding-impact-critical-sections.html. [Accessed June 2016].

[24] M. A. Suleman, O. Mutlu, M. K. Qureshi and Y. N. Patt, “Accelerating Critical Section
Execution with Asymmetric Multi-Core Architectures,” ASPLOS’09, 2009.

[25] [Online]. Available: ftp://ftp.gromacs.org/pub/manual/manual-5.1.2.pdf.

[26] S. C. Kleene, “Origins of recursive function theory,” Foundations of Computer Science, pp. 371-

382, 1979.

[27] D. E. Shaw, “Anton, a Special-Purpose Machine for Molecular Dynamics Simulation,” D. E.
Shaw Research, LLC, New York, 2007.

[28] D. E. Shaw, “Anton 2: raising the bar for performance and programmability in a special-

purpose molecular dynamics supercomputer,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, Piscataway, NJ, USA,

2014.

[29] [Online]. Available: http://isaacs.sourceforge.net/phys/pbc.html. [Accessed June 2016].

[30] [Online]. Available: https://www.computer.org/csdl/trans/td/2014/01/ttd2014010043-
abs.html. [Accessed June 2016].

[31] J. E. Lennard-Jones, “On the Determination of Molecular Fields,” Proc. R. Soc. , London, 1924.

[32] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak,
“Molecular-Dynamics with Coupling to an External Bath,” Journal of Chemical Physics 81 (8):

3684–3690, 1984.

[33] D. E. Shaw, “Anton: A Specialized ASIC for Molecular Dynamics,” D E Shaw Research, LLC,
2008.

[34] [Online]. Available: http://ark.intel.com/products/42915/Intel-Core-i5-750-Processor-8M-

Cache-2_66-GHz.

[35] H. Zeiger, “Simulation studies reveal the role disulfide bonds play in protein folding,” [Online].
Available: http://phys.org/news/2015-08-simulation-reveal-role-disulfide-bonds.html.

6-79

ANNEXE 1 – CODE
// ---

// Vectors

`define X 0 // particle's X coordinates

`define Y 1 // particle's Y coordinates

`define Z 2 // particle's Z coordinates

`define Vx 3 // particle's speed on X axis

`define Vy 4 // particle's speed on Y axis

`define Vz 5 // particle's speed on Z axis

`define dX 6 // delta X between two particles

`define dY 7 // delta Y between two particles

`define dZ 8 // delta Z between two particles

`define DIMXMAX 9 // simulation box width (constant)

`define DIMYMAX 10 // simulation box length (constant)

`define DIMZMAX 11 // simulation box height (constant)

`define SRX 12 // shift register X temp

`define SRY 13 // shift register Y temp

`define SRZ 14 // shift register Z temp

`define Rinv2 15 // 1/r^2 vector

`define Rinv7 16 // 1/r^7 vector

`define Rinv13 17 // 1/r^13 vector

`define NEG 18 // change sign mask

`define TMP 19 // temporary

`define RSVD 20 // all vectors below are reserved

// Vector reuse

`define FRX 12 // X decomposition of final force

`define FRY 13 // Y decomposition of final force

`define FRZ 14 // Z decomposition of final force

`define Fvdw 15 // final Van der Waals force

`define V 15 // final speed

6-80

// ---

// Memory locations

`define P 8 // number of particles in the system

`define DIMXMAX 9 // already defined above

`define DIMYMAX 10 // already defined above

`define DIMZMAX 11 // already defined above

`define Rc2 12 // squared cut-off radius (rc^2)

`define One 13 // the value 1 in floating-point

`define C6 14 // VdW C6 constant

`define C12 15 // VdW C12 constant

`define NaN 16 // not-a-number floating-point flag

`define Ptmp 17 // current particle number

`define Idx 18 // index

`define V2T 19 // squared speed to temperature

`define DTT 20 // reference temperature

`define Lambda 21 // temperature coupling output

`define dt_m 22 // dt / particle mass

`define dt 23 // simulation time step

// ---

// Labels

`define RSH 0

`define NS 1

`define F 2

`define S 3

// ---

// Cooperand values

`define Radd 0

`define Rmin 1

`define Rmax 2

`define Rflg 3

`define SR0 4

6-81

// ---

// Main

// Initialization

 cNOP; ACTIVATE;

 cVLOAD(`RSVD); NOP;

 cNOP; CADDRLD;

 cVLOAD(3); VLOAD(128);

LB(`RSH); cBRNZDEC(`RSH); VMULT(64);

 cNOP; STORE(`NEG);

 cNOP; IXLOAD;

 cSEND(`P); CCOMPARE;

 cNOP; WHERECARRY;

LB(`S); cSEND(`DIMXMAX); CLOAD;

 cNOP; XOR(`NEG);

 cNOP; STORE(`DIMXMAX);

 cSEND(`DIMYMAX); CLOAD;

 cNOP; XOR(`NEG);

 cNOP; STORE(`DIMYMAX);

 cSEND(`DIMZMAX); CLOAD;

 cNOP; XOR(`NEG);

 cNOP; STORE(`DIMZMAX);

// Particle periodicity

 // X coordinates

 cNOP; LOAD(`X);

 cNOP; XOR(`NEG);

 cNOP; COMPARE(`DIMXMAX);

 cNOP; NOP;

 cNOP; WHERECARRY;

 cNOP; XOR(`NEG);

 cNOP; FADD(`DIMXMAX);

 cNOP; MADD;

6-82

 cNOP; APACK;

 cNOP; ENDWHERE;

 cNOP; XOR(`NEG);

 cNOP; COMPARE(`NEG);

 cNOP; NOP;

 cNOP; WHERECARRY;

 cNOP; FADD(`DIMXMAX);

 cNOP; MADD;

 cNOP; APACK;

 cNOP; XOR(`NEG);

 cNOP; ENDWHERE;

 cNOP; STORE(`X);

 // Y coordinates

 cNOP; LOAD(`Y);

 cNOP; XOR(`NEG);

 cNOP; COMPARE(`DIMYMAX);

 cNOP; NOP;

 cNOP; WHERECARRY;

 cNOP; XOR(`NEG);

 cNOP; FADD(`DIMYMAX);

 cNOP; MADD;

 cNOP; APACK;

 cNOP; ENDWHERE;

 cNOP; XOR(`NEG);

 cNOP; COMPARE(`NEG);

 cNOP; NOP;

 cNOP; WHERECARRY;

 cNOP; FADD(`DIMYMAX);

 cNOP; MADD;

 cNOP; APACK;

 cNOP; XOR(`NEG);

 cNOP; ENDWHERE;

 cNOP; STORE(`Y);

 // Z coordinates

6-83

 cNOP; LOAD(`Z);

 cNOP; XOR(`NEG);

 cNOP; COMPARE(`DIMZMAX);

 cNOP; NOP;

 cNOP; WHERECARRY;

 cNOP; XOR(`NEG);

 cNOP; FADD(`DIMZMAX);

 cNOP; MADD;

 cNOP; APACK;

 cNOP; ENDWHERE;

 cNOP; XOR(`NEG);

 cNOP; COMPARE(`NEG);

 cNOP; NOP;

 cNOP; WHERECARRY;

 cNOP; FADD(`DIMZMAX);

 cNOP; MADD;

 cNOP; APACK;

 cNOP; XOR(`NEG);

 cNOP; ENDWHERE;

 cNOP; STORE(`Z);

// Particle neighbour search

 // Preparation

 cVLOAD(0); NOP;

 cSTORE(`Idx); NOP;

 cLOAD(`P); LOAD(`X);

 cVSUB(1); STORE(`SRX);

 cNOP; LOAD(`Y);

 cNOP; STORE(`SRY);

 cNOP; LOAD(`Z);

 cNOP; STORE(`SRZ);

 // X cords

LB(`NS); cNOP; LOAD(`SRX);

 cNOP; SRSTORE;

6-84

 cCSEND(`SR0); CLOAD;

 cNOP; XOR(`NEG);

 cNOP; FADD(`X);

 cNOP; MADD;

 cNOP; APACK;

 cNOP; STORE(`dX);

 cNOP; FMULT(`dX);

 cNOP; MPACK;

 cNOP; STORE(`dX);

 cNOP; SRSHLEFT;

 cNOP; SRLOAD;

 cNOP; STORE(`SRX);

 // Y coords

 cNOP; LOAD(`SRY);

 cNOP; SRSTORE;

 cCSEND(`SR0); CLOAD;

 cNOP; XOR(`NEG);

 cNOP; FADD(`Y);

 cNOP; MADD;

 cNOP; APACK;

 cNOP; STORE(`dY);

 cNOP; FMULT(`dY);

 cNOP; MPACK;

 cNOP; STORE(`dY);

 cNOP; SRSHLEFT;

 cNOP; SRLOAD;

 cNOP; STORE(`SRY);

 // Z coords

 cNOP; LOAD(`SRZ);

 cNOP; SRSTORE;

 cCSEND(`SR0); CLOAD;

 cNOP; XOR(`NEG);

 cNOP; FADD(`Z);

 cNOP; MADD;

6-85

 cNOP; APACK;

 cNOP; STORE(`dZ);

 cNOP; FMULT(`dZ);

 cNOP; MPACK;

 cNOP; STORE(`dZ);

 cNOP; SRSHLEFT;

 cNOP; SRLOAD;

 cNOP; STORE(`SRZ);

 // Calculate squared distance between selected particle

and the rest

 cNOP; LOAD(`dX);

 cNOP; FADD(`dY);

 cNOP; MADD;

 cNOP; APACK;

 cNOP; FADD(`dZ);

 cNOP; MADD;

 cNOP; APACK;

 // Select all particles that are "close"

 cSEND(`Rc2); CCOMPARE;

 cNOP; WHERECARRY;

 cNOP; STORE(`TMP);

 cSTORE(`Ptmp); IXLOAD;

 cSEND(`Idx); WHEREOP;

 cNOP; NOP;

 cLOAD(`Idx); ELSEWHERE;

 cVADD(1); LOAD(`TMP);

 // Store distance between particles

 cSTORE(`Idx); RISTORE(1);

 cLOAD(`Ptmp); LOAD(`dX);

 cNOP; RISTORE(1);

 cNOP; LOAD(`dY);

 cNOP; RISTORE(1);

 cNOP; LOAD(`dZ);

 cNOP; RISTORE(1);

6-86

 cNOP; ENDWHERE;

 cBRNZDEC(`NS); ENDWHERE;

 cSEND(`NaN); CLOAD;

 cNOP; RISTORE(1);

// Force calculation

 cVLOAD(`RSVD); NOP;

 cNOP; CADDRLD;

 cVLOAD(0); NOP;

 cNOP; CLOAD;

 cNOP; STORE(`FRX);

 cNOP; STORE(`FRY);

 cNOP; STORE(`FRZ);

LB(`F); cNOP; RILOAD(1);

 cSEND(`NaN); WHEREOP;

 cNOP; ELSEWHERE;

 cNOP; STORE(`TMP);

 cSEND(`One); CLOAD;

 cNOP; FDIV(`TMP);

 cNOP; MDIV;

 cNOP; DPACK(`TMP);

 cNOP; STORE(`Rinv2);

 cNOP; FSQRT;

 cNOP; NOP;

 cNOP; FMULT(`Rinv2);

 cNOP; MPACK;

 cNOP; FMULT(`Rinv2);

 cNOP; MPACK;

 cNOP; FMULT(`Rinv2);

 cNOP; MPACK;

 cNOP; STORE(`Rinv7);

 cNOP; FMULT(`Rinv2);

 cNOP; MPACK;

 cNOP; FMULT(`Rinv2);

 cNOP; MPACK;

6-87

 cNOP; FMULT(`Rinv2);

 cNOP; MPACK;

 cNOP; STORE(`Rinv13);

 cSEND(`C6); CLOAD;

 cNOP; FMULT(`Rinv7);

 cNOP; MPACK;

 cNOP; XOR(`NEG);

 cNOP; STORE(`Fvdw);

 cSEND(`C12); CLOAD;

 cNOP; FMULT(`Rinv13);

 cNOP; MPACK;

 cNOP; FADD(`Fvdw);

 cNOP; MADD;

 cNOP; STORE(`Fvdw);

 cNOP; RILOAD(1);

 cNOP; FMULT(`Fvdw);

 cNOP; MPACK;

 cNOP; FADD(`FRX);

 cNOP; MADD;

 cNOP; STORE(`FRX);

 cNOP; RILOAD(1);

 cNOP; FMULT(`Fvdw);

 cNOP; MPACK;

 cNOP; FADD(`FRY);

 cNOP; MADD;

 cNOP; STORE(`FRY);

 cNOP; RILOAD(1);

 cNOP; FMULT(`Fvdw);

 cNOP; MPACK;

 cNOP; FADD(`FRZ);

 cNOP; MADD;

 cBRAACT(`F); STORE(`FRZ);

// Temperature coupling

 cNOP; ACTIVATE;

6-88

 cNOP; IXLOAD;

 cSEND(`P); CCOMPARE;

 cNOP; WHERECARRY;

 cNOP; LOAD(`Vx);

 cNOP; FMULT(`Vx);

 cNOP; MPACK;

 cNOP; STORE(`V);

 cNOP; LOAD(`Vy);

 cNOP; FMULT(`Vy);

 cNOP; MPACK;

 cNOP; FADD(`V);

 cNOP; MADD;

 cNOP; STORE(`V);

 // Compute system temperature, Lambda

 cNOP; LOAD(`Vz);

 cNOP; FMULT(`Vz);

 cNOP; MPACK;

 cNOP; FADD(`V);

 cNOP; MADD;

 cNOP; STORE(`V);

 cNOP; NOP;

 cNOP; NOP;

 cNOP; NOP;

 cNOP; NOP;

 cCLOAD(5); NOP;

 cFMULT(`V2T); NOP;

 cMPACK; NOP;

 cXOR(`NEG); NOP;

 cFADD(`One); NOP;

 cMADD; NOP;

 cAPACK; NOP;

 cXOR(`NEG); NOP;

6-89

 cSTORE(`Ptmp); NOP;

 cLOAD(`One); NOP;

 cFDIV(`Ptmp); NOP;

 cMDIV; NOP;

 cDPACK(`Ptmp); NOP;

 cFMULT(`DTT); NOP;

 cMPACK; NOP;

 cFADD(`One); NOP;

 cMADD; NOP;

 cAPACK; NOP;

 cFSQRT; NOP;

 cSTORE(`Lambda); NOP;

// Update speed vector

 cCSEND(`Lambda); CLOAD;

 cNOP; FMULT(`Vx);

 cNOP; MPACK;

 cNOP; STORE(`Ptmp);

 cCSEND(`dt_m); CLOAD;

 cNOP; FMULT(`FRX);

 cNOP; MPACK;

 cNOP; FADD(`Ptmp);

 cNOP; MADD;

 cNOP; STORE(`Vx);

 cCSEND(`Lambda); CLOAD;

 cNOP; FMULT(`Vy);

 cNOP; MPACK;

 cNOP; STORE(`Ptmp);

 cCSEND(`dt_m); CLOAD;

 cNOP; FMULT(`FRY);

 cNOP; MPACK;

 cNOP; FADD(`Ptmp);

 cNOP; MADD;

 cNOP; STORE(`Vy);

6-90

 cCSEND(`Lambda); CLOAD;

 cNOP; FMULT(`Vz);

 cNOP; MPACK;

 cNOP; STORE(`Ptmp);

 cCSEND(`dt_m); CLOAD;

 cNOP; FMULT(`FRZ);

 cNOP; MPACK;

 cNOP; FADD(`Ptmp);

 cNOP; MADD;

 cNOP; STORE(`Vz);

// Update coordinates

 cCSEND(`dt); CLOAD;

 cNOP; FMULT(`Vx);

 cNOP; MPACK;

 cNOP; FADD(`X);

 cNOP; MADD;

 cNOP; STORE(`X);

 cCSEND(`dt); CLOAD;

 cNOP; FMULT(`Vy);

 cNOP; MPACK;

 cNOP; FADD(`Y);

 cNOP; MADD;

 cNOP; STORE(`Y);

 cCSEND(`dt); CLOAD;

 cNOP; FMULT(`Vz);

 cNOP; MPACK;

 cNOP; FADD(`Z);

 cNOP; MADD;

 cJMP(`S); STORE(`Z);

 cHALT; NOP;

