
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 3442

Map-Scan Node Accelerator for Big-Data

Mihaela Maliţa
Computer Science Deptartment

Saint Anselm College
Manchester, NH, USA
mmalita@anselm.edu

Gheorghe M. Ştefan
Electronic Devices, Circuits and Architectures Deptartment

Politehnica University of Bucharest
Bucharest, Romania

gheorghe.stefan@upb.ro

Abstract—The current hybrid architectures, used to accel-
erate the nodes of the various distributed computing systems
running Big Data applications, are mainly based on Nvidia’s
GPU or Intel’s MIC accelerators. These accelerators are
marked by limitations due to their too general and ad hoc
structural and architectural features. In this paper, we propose
a Map-Scan architecture, as a generalization of a Map-Reduce
architecture, more appropriate for the parallel approach in
defining the accelerator part of a hybrid system. The paper
describes the organization and the architecture of a hybrid
system based on our Map-Scan Accelerator (MSA). The degree
of parallelism achieved by our proposal is compared with the
current implementations. The energy consumption is estimated,
by simulation, for the ASIC versions of MSA. We conclude
that the Map-Scan approach in defining the accelerator of a
hybrid system provides the appropriate solution for acceler-
ating various Big Data applications and linear algebra based
applications.

Keywords-hybrid architecture; parallel accelerator; map-
scan architecture; energy aware accelerator;

I. INTRODUCTION

The three main types of platforms currently in use in Big
Data – Symmetrical Multi-Processors, Clusters, or Grids –
can benefit from a powerful improvement by using many-
core accelerators in each of their nodes. The most used ac-
celerators currently considered are GPUs, MICs1 or FPGAs.
Each of these solutions have their specific drawback. The
first two have to face strong legacies, while the last one is
hard to be efficiently used. Indeed, Nvidia’s GPU emerges
from a circuit for accelerating graphics applications, Intel’s
Xeon Phi MIC is an ad-hoc configured many-core based
on x86 architecture, while for providing FPGA solutions,
strong hardware design skills are requested. Graphics is too
specific. Connecting circular x86 cores does not guarantee
the requested features for solving efficiently parallel tasks.
Using HDL offers high-performance circuits only in the
hard-to-find hand of a highly-experienced digital designer.
Not to mention the energy inefficiency associated with all
the three solutions.

Let us see how perform the available many-core accel-
erators for Convolutional Neural Network (CNN), a very
frequently used function in Big Data. We will learn that their

1Many Integrated Core

huge computational power is too much under used. Indeed,
while from Intel’s i7 CPU, with 112 GFLOPs/sec, 32%
is used for real time object detection, with Titan X GPU,
for 40-90 fps, are used maximum 63 GFLOPs/sec from
its peak performance of 6 TFLOPs/sec [9], or with Xeon
Phi accelerator with 57 cores, having peak performance at
2 TFLOPs/sec, only 0.48 GFLOPs/sec is used from each
core which is able to provide 35.2 GFLOPs/sec [8]. It is
hard to explain why from 32% use of the peak performance
for a CPU we go to less than 2% use for the many-core
accelerators?

Another example is offered by the scan operation (a
powerful parallel primitive operation with a broad range
of Big Data applications). In [3] the authors evaluate the
execution time for the prefix-sum scan operation on Nvidia
platform, running at approximatively 1GHz, compared with
a mono core Intel platform, running at approximatively
3GHz. The acceleration provided by the 575-core Nvidia
GPU (NVIDIA GeForce 8800 GTX GPU) is less than 6×
in the best case.

We must accept, on the basis of these two examples, that
we are faced with a hidden architectural and organizational
failure.

An appropriate solution must provide at least a good use
of the peak performance, and a meaningful acceleration, at
a reasonable energy use. In the same time, integrating the
accelerator in the system must be done as easy as possible
from the software point of view.

The map-scan architecture we propose as accelerator is
an expansion of the map-reduce architecture, because the
reduction function for the associative operator ◦ which
computes:

x1 ◦ x2 ◦ . . .◦ xn

is only the last value computed by the scan function

y1 = x1
y2 = x1 ◦ x2
. . .
yn = x1 ◦ x2 ◦ . . .◦ xn

applied to the input vector ⟨x1,x2, . . . ,xn⟩.

3443

The structure of our Map-Scan Accelerator (MSA) con-
sists of two main levels: the map level of a linear array of
p cells able to execute predicated vector operations, and the
scan level, a log-depth circuit which computes the prefixes
for few associative functions (add, max, ...). While the map
level of the structure provides SIMD features, the scan, as
a generalized reduction, adds the necessary features for an
efficient general purpose functional accelerator.

The functionality accelerated on MSA can be best defined
by kernels of various library of functions. These kernels
are the implementations of the targeted libraries for limited
size data structures. For example, the Eigen kernel on MSA
contains all the Eigen functions defined on p-limited size
vectors and matrices, so the Eigen library can be virtualized
for data structure of any size.

Compared to the GPU and MIC based accelerators, we
proposed an architecture derived from a functional compu-
tational model [5] capable of responding to the requirements
of an accelerator for computationally intensive functions.
Combining the SIMD abilities of the map level with the
few most used reduction functions, generalized at the scan
level, provides an architecture which exceeds the parallel
features offered by the current accelerators. Obviously, we
are able to do this because no legacy stops us to propose
any kind of new architecture.

On the other hand, compared with the FPGA based
solution, we can take advantage of the flexibility this tech-
nology offers by designing a parameterizable & configurable
programmable structure. Our architecture can be designed
in a maximal functionally version with all the sizes (word
dimension, number of cells, the size of the memory in each
cell, ...) parameterized. Once the program is written for
the accelerator, the physical implementation is synthesized
optimally on specific sizes and using only the requested
features. Therefore, the FPGA technology could be both, a
solution for small market products, or an intermediary step
toward an ASIC solution for big consumer markets.

The next section describes the organization and the ar-
chitecture of MSA. The third section evaluates the perfor-
mance provided by out proposal for few specific functions
frequently involved in the Big Data domain.

II. MAP-SCAN ORGANIZATION AND ARCHITECTURE

In [11] and [7] we presented a Map-Reduce architecture
and its first implementations. This architecture is based on
the generic partial recursive rule of composition [5]. The
generality of Map-Reduce recursive model is also presented
in [1]. In this paper we introduce a generalization by
substituting the reduce mechanism with its general imple-
mentation: scan mechanism. Reduce is only the last term
of scan. We do this because the scan operation is a useful
building block for many parallel algorithms, such as: radix-
sort quick-sort, string comparison, lexical analysis, stream

eng0 eng1 engp−1

mem0 mem1 memp−1MAP

SCAN

INTERFACE CONTROLLER
�

?

�

?

�

?6 6 6

-

{instruction, value}

--

? ? ?

DISTRIBUTE

?

data

RedOut

MEMORY ARM or equiv.

6
?

6
?

Runs library kernel

�
-

x86/ARM-based
HOST

- �

6 6

ACCELERATED PROCESSING UNIT

MAP-SCAN ACC.

Runs Library

MAP-SCAN ARRAY

Runs application

Figure 1. Hybrid system based on a Map-Scan Accelerator.

compaction, polynomial evaluation, solving recurrences, tree
operations, histograms, etc.

A. The Organization of Map-Scan Accelerator

The Map-Scan Accelerator (MSA) is conceived to work
in conjunction with an x86/ARM-based HOST computer
(see Figure 1). Any computational intensive task, performed
by ACCELERATED PROCESSING UNIT (APU), is passed
from HOST to MSA together with the associated data. Once
the computation done, the result is send back to the host or
it is used to accomplish another task. MSA consists of the
following main parts:

• ARM or an equivalent processor
• local MEMORY for data and programs
• MAP-SCAN ARRAY the core of the accelerator con-

taining the following blocks:
– INTERFACE used to transfer data & programs

between MEMORY and MAP-SCAN ARRAY
– CONTROLLER which issues in each clock cycle a

pair of instructions from its program memory, one
for itself and another for the MAP array

– DISTRIBUTE is a log-depth pipelined distribu-
tion tree for {instruction, value} sent by
CONTROLLER to MAP array, where value is a
scalar or an address

3444

– MAP is a linear array of p cells each containing:
∗ execution unit, engi, for i= 0,1, . . . , p−1, which

receives in each clock cycle an instruction and
executes it if the cell is in the active state

∗ local data memory, memi, for i = 0,1, . . . , p−1,
which stores m scalars.

– SCAN a log-depth pipelined network of cells used
to perform prefix functions which take from MAP
a p-component vector and sends back to MAP, in
O(log p) time, a vector of the same size; a special,
faster way, is used to send back to the MAP array
and to CONTROLLER the result of the reduction
operations, RedOut.

In each cell, engi is an integer execution unit with few
specialized functions to accelerate the floating-point oper-
ations executed sequentially. The low weight of floating-
point operations allows us to avoid the overload supposed
by specific floating-point units.

Another way to keep the size of cells and the energy they
use as small as possible is to decide the use in each engi
an accumulator based execution unit. At this early stage of
development, it is difficult to determine how many registers
should be considered for a register file system, or how
deep should be an execution stack. It turns out that, the
simple, initial solution we considered is enough good for
the applications we already investigated. If needed, the next
step will be to substitute the accumulator (a one level stack)
with a stack of few levels.

B. The Architecture of Map-Scan Accelerator

The data structure in the MAP array is the vector of
scalars. The entire content of the local memories, memi,
distributed along the array of cells, is represented by a p×m
matrix M, where each line in M is a horizontal vector:

Vj = ⟨s0 j,s1 j, . . . ,s(p−1) j⟩

distributed along the cells, for j = 0,1, . . . ,m−1, and each
column in M is a vertical vector:

Wi = ⟨si0,si1, . . . ,si(m−1)⟩

stored in the local memory of celli, for i = 0,1, . . . , p−1.
In addition, there are few specific horizontal vectors

distributed along the array:
• IX = ⟨0,1, . . . , p−1⟩ : the constant vector index, used

to identify each cell
• B = ⟨b0,b1, . . . ,bp−1⟩ : a Boolean vector, used to ac-

tivate the cells of the MAP array (the cell i is active
only if bi = 1, else the cell i ignores the instruction
received in the current cycle from CONTROLLER
through DISTRIBUTE)

• ACC = ⟨acc0,acc1, . . . ,accp−1⟩ : accumulator vector,
used as left operand and as destination for the result

• CR = ⟨cr0,cr1, . . . ,crp−1⟩ : carry vector

• ADDR = ⟨addr0,addr1, . . . ,addrp−1⟩ : address vector,
used to address in the local memories memi.

Correspondingly, in CONTROLLER there are the scalar
resources: acc, cr, addr.

The instruction set architecture (ISA) of MRA is the
Cartesian product of two ISAs:

ISAMRA = cISA×aISA

where cISA is executed by CONTROLLER, while aISA is
executed in the array of cells.

The arithmetic and logic operations are the same in the
two sets. In cISA these operations are defined on scalars,
while in aISA are executed on vectors. The instructions look
like:

acc <= acc OP operand

in CONTROL, and

acci <= bi ? acci OP operandi : acci

where OP represents an arithmetic or logic operation and
operand and operandi, the right operands, are selected in
seven modes. For example, ADD operation in any engi is
performed in the following modes:

VADD(val) : acc <= acc + val
ADD(val) : acc <= acc + mem[val]
RADD(val) : acc <= acc + mem[val+addr]
RIADD(val): acc <= acc + mem[val+addr]

addr <= val + addr
CADD : acc <= acc + coOperand
CAADD : acc <= acc + mem[coOperand]
CRADD : acc <= acc + mem[coOperand+addr]

where val is the immediate value, and coOperand is acc.
For CONTROLLER the operations are performed similarly,
but the coOperand is RedOut.

The main differences between cISA and aISA are in the
control instructions subsets. The control instructions for
CONTROLLER are the standard conditioned or uncondi-
tioned jumps and branches. In MAP array, aISA provides a
spatial control using predicated operations. It is based on
operations applied on the Boolean vector B. The main spatial
control operations are:

• activate : bi <= 1, for i = 0,1, . . . , p−1
• where (cond) : bi <= (bi & condi) ? 1 : 0
• endwhere : restore B to the previous value
Example 2.1: In Figure 2 is shown a simple code which

multiplies the index vector IX with the sum of its odd
components. The line labeled with LB(1) is a wait loop for
the latency introduced by the log-depth reduction network.
In this example we consider p= 512, then between the cycle
when the odd accumulators of MAP array are selected and
the cycle when the reduction sum is loaded in CONTROL’s
accumulator we must allow a latency of 9 cycles.

The execution time of the program, for p = 512, is:
T (p)= 7+ log2 p= 16. In this 16 cycles are executed 3×515
load operations, 512 ANDs, 255 ADDs, 512 MULTs, and

3445

1024 spatial selection operations, i.e., 340 operations per
cycle which corresponds to a degree of parallelism of 66%.⋄

/∗∗∗
I n d e x v e c t o r i s m u l t i p l i e d w i t h t h e sum o f i t s odd
components .

Number o f c e l l s : p = 512 => x = log 2 p
∗∗∗ /

cVLOAD (1) ; IXLOAD ; / / acc<=1; acc [i]<= i
cNOP ; CAND; / / acc [i]<=acc [i] & acc
cVLOAD(x + 1) ;WHEREZERO; / / acc<=10; o n l y even c e l l s

LB (1) ; cBRNZDEC (1) ; IXLOAD ; / / l a t e n c y loop ; load i n d e x
cNOP ; ENDWHERE; / / r e a c t i v a t e a l l c e l l s
cCLOAD (0) ; IXLOAD ; / / acc<=redAdd ; acc [i]<= i
cNOP ; CMULT; / / acc [i]<=acc [i] ∗ redAdd

Figure 2. Example of code executed by MRA. The left column contains
instructions, prefixed with c, for CONTROLLER, while the right column
contains instructions for the MAP array.

C. The Use of Map-Scan Accelerator

The most efficient way to software integrate a MSA is to
run on it a library of computationally intense functions. Let
us say the Eigen library. Then, at the MSA level, ARM loads
into CONTROLLER the program for EigenKernelLibrary
and uses the MAP-SCAN matrix as deployment environment
to support the Eigen Library implementation for HOST.

The EigenKernelLibrary(p,m,n) is a “bounded” library
of functions defined on the limited size data structure accord-
ing to the size of the MAP-SCAN ARRAY characterized by
p cells, and m n-bit words local memories memi. Then at
the level of MRA the Eigen library can be developed in a
high level language as:

Eigen(EigenKernelLibrary(p,m,n))

Thus, EigenKernelLibrary(p,m,n) is seen as the firmware
level of our architecture.

III. EVALUATION

For this preliminary presentation of our architecture we
selected three examples of the frequently used tasks per-
formed in Big Data applications: K-means clustering, scan,
CNN.

Because it is hard to make fair comparisons when different
technology are involved in actual implementations, we will
consider the architectural acceleration, the acceleration due
to the architectural decisions.

A. Architectural Acceleration

Let be two platforms, P1 and P2, each running on its clock
frequency, f1 ̸= f2. Running the same application, F, the
execution time is t1(F) on P1 and t2(F)< t1(A) on P2. The
actual acceleration provided by P2 is t1(F)/t2(F). We define

the architectural acceleration, the acceleration provided by
P2 running at the same frequency as P1 which is

t1(F)

t2(F)
× f1

f2

B. K-Means Clustering

Given n d-dimension vectorial entities (points)

⟨x1,x2, . . . ,xn⟩

k-means clustering provides the partition into k sets. The
generic algorithm consists of the following main steps:

1) set (randomly) k d-dimension centers and assign (ran-
domly) each point to a center

2) compute for each d-dimension point the Euclidean
distance to the k centers and assign each point to the
“nearest” center

3) compare the new assignments to the old ones
if no difference, then stop the process
else continue

4) move the k centers to the means of created groups,
and go to (2).

The degree of parallelism for the steps 2 and 3 on the
previous loop is maximal. Only the step 4 is executed with
a degree of parallelism p/k.

Let us consider initially a number of points equal with p.
Then, each point is associated to a cell, which stores the d
coordinates. The computation is not I/O bounded even for
the smallest data bandwidth of 4GB/sec, if 30k > p. In these
easy to fulfil conditions, by simulation, the architectural
acceleration of a pure sequential computation results, for
k > 10:

A ≃ p× α
1+α

where:

α =
execution time f or steps 2+3

execution time f or step 4
≃ 16

4+ log2 p

For p = 1024, A ≃ 546.
The number of points can be easy expanded, maintaining

the acceleration, to hundreds of thousands if the computation
remains not I/O bounded. The data for each set of p points
is stored in d +1 horizontal vectors.

C. Scan

In [6], the k-means clustering is accelerated using the
scan operation of prefix-sum. Our architecture is featured
with specific hardware for this operation. In contrast to the
previous application, scan computation is IO bounded in our
MSA, i.e., the weight of the time spent for the data transfer,
when the operation is a “short-lived” process, dominates the
computational time.

We consider first the case of a “short-lived” process.

3446

The execution time on an NVIDIA GeForce 8800 GTX
GPU for 220 numbers is 1.11 ms, out of which 0.092 ms
are due to the transfer (at 86GB/sec) [3].

The processing time on our MSA with p = 1024 for
220 numbers is 0.033ms at 1 GHz. Considering the same
bandwidth to the external memory, the total execution time
becomes 0.133 ms. The architectural acceleration provided
by our solution, compared to Nvidia GPU, is 11.18× if the
transfer time is considered.

But, if the transfer time does not count, because the func-
tion is executed as apart of an application which provides
the data inside the MAP array and lets the result in the same
place, the architectural acceleration is 38.86×.

The architectural efficiency of using a core in MSA is

38.86× 575
1024

×= 21.82×

compared with a core in the GPU we considered.

D. Deep Neural Networks

The Big-Data domain starts to be dominated by Ma-
chine Learning, as an AI technique based on deep CNN
algorithms. The main computational pattern for CNN is
the matrix-vector multiplication [4]. It is obvious for the
fully connected layers, while for the convolutional layers we
must consider: (1) each receptive fields in the input three-
dimension volume (see [4]) a vector Vi of F ×F ×D1 input
components, and (2) the K filters as vectors of the same
number of parameters (weights). Then, the convolution sup-
poses to multiply the weights matrix M of (F ×F ×D1)×K
size with the input vector Vi. Results a K-component vector.
The nonlinear activation function f is applied to its com-
ponents and results the K-component vector in the output
volume. The matrix M is unique for a convolutional layer.
Therefore, it is loaded only once for the computation of one
convolutional layer.

In the training process floating point operations are usu-
ally requested, while in the running process almost all the
time integer operations are used. Therefore, we provide both
types of arithmetic operations.

1) Integer Matrix-Vector Multiplication: The algorithm
for integer multiplication of N ×M matrix (N ≤ min(m, p)
lines, and M ≤ p columns) with a M-component vector
consists of three main operations:

• control, performed by the CONTROLLER unit
• integer multiplication, performed in the MAP array
• integer addition, performed in the SCAN section

All these three operations are performed in parallel on
distinct hardware resources. The main problem solved for
optimizing the algorithm was to avoid the effect of the
latency, of O(log p), introduced by the SCAN section to its
RedOut output (see Figure 1). An additional shift register
introduced in the organization of the MAP array allows
to insert back into the MAP array the output RedOut of

SCAN, avoiding an explicit load in the CONTROLLER’s
accumulator. Thus, instead of providing each component
of the resulting vector with a latency in O(log p), only
the final form of the resulting vector is provided with a
O(log p) latency. The program in assembly language is listed
in Figure 3, where the instruction IP(255) multiplies the
accumulator vector with the next line of the matrix and
pushes the inner product provided by SCAN at RedOut
in the above mentioned shift register. After N runs of the
one step loop

LB(‘P);cBRNZDEC(‘P); IP(255);

the latency loop

LB(‘L); cBRNZDEC(‘L); NOP;

introduces a delay according to the size, p, of the MAP
array.

/∗∗∗
FUNCTION NAME: Matr ix−v e c t o r m u l t i p l i c a t i o n
The f u n c t i o n m u l t i p l i e s a NxM m a t r i x w i t h a M−component
v e c t o r
I n i t i a l : addr [i] = I +1 : I i s a d d r e s s o f t h e l a s t l i n e

acc [i] = V[i] : t h e v e c t o r
F i n a l : acc [i] = r e s u l t
∗∗∗ /
/ / Parame ter s :

‘ d e f i n e N 13 / / number o f l i n e s
‘ d e f i n e S (x−1) / / l a t e n c y s i z e because p = 2ˆ x

/ / L a b e l s :
‘ d e f i n e P 1 / / main loop l a b e l
‘ d e f i n e L 2 / / l a t e n c y loop l a b e l

cVLOAD(‘N) ; NOP; / / acc <= N;
LB(‘P) ; cBRNZDEC(‘P) ; IP (2 5 5) ; / / l oop c o n t r o l ; IP

cVLOAD(‘S) ; NOP; / / i n i t l a t e n c y loop
LB(‘L) ; cBRNZDEC(‘L) ; NOP; / / l a t e n c y loop

cNOP ; SRLOAD; / / r e s u l t i n acc [i]

Figure 3. The program for matrix-vector multiplication. For big N the
program is executed in ∼ N cycles.

The execution time for matrix-vector multiplication is

T (N) = N +2+ log2 p ∈ O(N)

Compared with a mono-core engine the acceleration is
supra-linear, because besides the parallelism offered by the
many-cell structure of the MAP array, we benefit by the
parallelism in the SCAN section, and by the control running
on a different physical resource, the CONTROLLER unit.

2) Floating Point Matrix-Vector Multiplication: The log
latency introduced by the REDUCE unit can’t be easy
avoided like in the previous case. The price for avoiding
latency when float reduction add is involved is to double
the local memory used. A first loop computes all the N
vector products and provides the vector of the maximum
exponents in the serial register. Then, the second loop uses
the exponents to compute the reduction add from the vector

3447

products provided by the first loop. Thus the computing time
for the float matrix-vector multiplication remains in O(N).

E. Previous Work

The Map-Scan architecture is proposed based on previous
work done in implementing a Map-Reduce architecture in
few versions: CA4096, CA1024, BA1024 [11] [7]. The best
performance, obtained in 65nm standard process technol-
ogy, is 120GOPS/Watt and 6.25GOPS/mm2, where GOPS
stands for Giga 16-bit integer Operations Per Second. The
application domain for these first versions was HDTV.

An FPGA implementation is done using the Zynq-7020
system-on-chip on the Zedboard development platform [2].
The ARM featured on Zynq-7020 provided a first version of
MSA in the particular case of a Map-Reduce architecture.
The targeted application is visual search for Big Data.

Figure 4. Power consumption evaluated for out MSA.

A 28nm simulation of a MAP-SCAN ARRAY running
at 1GHz was used to evaluate the size and the power for a
version having the word size n= 32, p= 2048 the number of
cells p= 2048, and the memory size m= 1024. The resulting
area of the chip is 9.2× 9.2mm2 = 84.64mm2. The power
consuming of the chip is shown in Figure 4.

IV. CONCLUSION

Our preliminary evaluations for frequently used tasks are
very encouraging. For K-means cluster computation the ac-
celeration is higher than the critical threshold of O(p/log p).
For the scan function, the use of each cell in our proposal

is 21.82× higher than the use in Nvidia architecture. For
CNN implementation a supra-linear acceleration is provided
for matrix-vector multiplication.

The only drawback is given by the IO bounded computa-
tions. The “von Neumann bottleneck” persists.

REFERENCES

[1] R. Andonie, M. Maliţa and G. M. Ştefan, “MapReduce: From
Elementary Circuits to Cloud”, in Kreinovich, Vladik (Ed.),
Uncertainty Modeling, Springer, pp. 1-14, 2017.

[2] C. Bı̂ra, R. Hobincu, L. Petricǎ, V. Codreanu, and S. Coţofanǎ,
“Energy-Efficient Computation of L1 and L2 Norms on a
FPGA SIMD Accelerator, with Applications to Visual Search”,
in Proc. of the 18th Intl. Conf. on Circuits, Systems, Com.
and Computers (CSCC), Advances in Information Science and
Applications - Volume II, pp. 432-437, 2014.

[3] M. Harris, (2017, April) Parallel Prefix Sum (Scan) with
CUDA. [Online]. Available: https://www.mimuw.edu.pl/∼ps
209291/kgkp/slides/scan.pdf

[4] A. Karpathy, “Cs231n: Convolutional neural networks for vi-
sual recognition”. [Online]. Available: http://cs231n.github.io/

[5] S. Kleene, “General recursive functions of natural numbers”,
Mathematische Annalen, vol. 112, no. 1, pp. 727-742, 1936.

[6] K. J. Kohlhoff, V. S. Pande and R. B. Altman, “K-Means for
Parallel Architectures Using All-Prefix-Sum Sorting and Up-
dating Steps”, IEEE Transactions on Parallel and Distributed
Systems, Volume: 24, Issue: 8, Aug. 2013, pp. 1602 - 1612.

[7] M. Maliţa, G. Ştefan and D. Thiébaut, “Not Multi, but Many-
Core: Designing Integral Parallel Architectures for Embedded
Computation”, ACM SIGARCH Computer Architecture News,
35(5):32-38, December 2007.

[8] G. Raina (2016); Deep Convolutional Netvork evaluation on
the Xeon Phi: Where Subword Parallelism meets Many-
Core, Eindhoven University of Technology. [Online]. Available:
http://repository.tue.nl/844256

[9] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You only
look once: Unified, real-time object detection”, Cornell Univ.
Library, 2016.

[10] D. Singh and C. K. Reddy, “A survey on platforms
for big data analytics”, Journal of Big Data 2014 2:8.
[Online]. Available: https://journalofbigdata.springeropen.com
/articles/10.1186/s40537-014-0008-6

[11] G. M. Ştefan, A. Sheel, B. Mı̂ţu, T. Thomson, and
D. Tomescu, (2006, Aug.) “The CA1024: A Fully Pro-
grammable System-On-Chip for Cost-Effective HDTV Me-
dia Processing” Stanford University: Hot Chips: A Sym-
posium on High Performance Chips. [Online]. Available:
https://youtu.be/HMLT4EpKBAw at 35:00.

